WO2024116409A1 - Vehicle vibration damping method and vehicle vibration damping device - Google Patents

Vehicle vibration damping method and vehicle vibration damping device Download PDF

Info

Publication number
WO2024116409A1
WO2024116409A1 PCT/JP2022/044603 JP2022044603W WO2024116409A1 WO 2024116409 A1 WO2024116409 A1 WO 2024116409A1 JP 2022044603 W JP2022044603 W JP 2022044603W WO 2024116409 A1 WO2024116409 A1 WO 2024116409A1
Authority
WO
WIPO (PCT)
Prior art keywords
target value
vehicle
moment
pitch
vertical force
Prior art date
Application number
PCT/JP2022/044603
Other languages
French (fr)
Japanese (ja)
Inventor
宏信 菊池
裕登 井上
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/044603 priority Critical patent/WO2024116409A1/en
Publication of WO2024116409A1 publication Critical patent/WO2024116409A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability

Definitions

  • the present invention relates to a vehicle vibration damping method and a vehicle vibration damping device.
  • Patent Document 1 describes a technology that selects the larger of the first and second target damping forces that suppress vibrations in the heave and pitch directions of the vehicle body, and outputs a control signal to the damper according to the selected target damping force.
  • An object of the present invention is to improve the efficiency of vibration suppression on the vehicle body springs when reducing vehicle vibration by controlling at least one of the force in the vertical direction or the moment in the pitch direction of the vehicle.
  • a vehicle vibration control method that reduces vehicle vibration by controlling at least one of the vehicle's vertical force or pitch moment.
  • a first target value which is a target value of the vertical force
  • a second target value which is a target value of the pitch moment
  • the sign of the upward vertical force and the sign of the pitch moment that lowers the front of the vehicle are the same, it is determined whether the sign of the first target value and the sign of the second target value are equal. If the signs are the same, the vertical force is controlled based on the first target value and the pitch moment is controlled based on the second target value.
  • the priority between the vertical force and the pitch moment is determined based on the magnitude of the gain of the vertical force and the pitch moment relative to the vertical acceleration or the front-rear acceleration on the vehicle's body springs. If the priority of the vertical force is higher than the priority of the pitch moment, the vertical force is controlled based on the first target value and the control of the pitch moment based on the second target value is limited. If the priority of the pitch moment is higher than the priority of the vertical force, the pitch moment is controlled based on the second target value and the control of the vertical force based on the first target value is limited.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a vehicle vibration damping device according to an embodiment
  • FIG. 2 is a schematic diagram of a suspension structure.
  • FIG. 2 is a block diagram of an example of a functional configuration of a controller.
  • FIG. 11 is a frequency characteristic diagram of the gain of the vertical acceleration and the longitudinal acceleration of an occupant's head relative to the vertical speed and pitch rate of the vehicle body.
  • FIG. 4 is a block diagram of an example of a functional configuration of a chattering suppression unit.
  • 13 is a block diagram of an example of a functional configuration of a limiting coefficient calculation unit.
  • FIG. 6A and 6B are diagrams illustrating examples of limit coefficient settings.
  • FIG. 4 is a block diagram of an example of a functional configuration of a target torque determination unit.
  • 2 is a flowchart of an example of a vehicle vibration damping method according to an embodiment.
  • 13 is a flowchart of an example of a priority order determination process.
  • a vehicle 100 includes a steering angle measurement device 1, a steering device 2, an accelerator pedal 3, a brake pedal 4, an inertial measurement unit (IMU) 5, wheel speed measurement devices 6FR, 6FL, 6RR, and 6RL, a right front wheel 7FR, a left front wheel 7FL, a right rear wheel 7RR, and a left rear wheel 7RL, front wheel drive shafts 8FR and 8FL, rear wheel drive shafts 8RR and 8RL, a controller 10, a power converter 11, a front wheel drive source 12F, a rear wheel drive source 12R, and a battery 13.
  • the right front wheel 7FR and the left front wheel 7FL may be collectively referred to as "front wheels 7F”
  • the right rear wheel 7RR and the left rear wheel 7RL may be collectively referred to as "rear wheels 7R”.
  • the steering angle measurement device 1 measures the steering angle ⁇ f of the steering wheel 2a, which steers the steered wheels (i.e., the front wheels 7F) to change the traveling direction of the vehicle 100, and outputs it to the controller 10.
  • the steering angle measurement device 1 may measure the steering angle of the front wheels 7F instead of the steering angle ⁇ f of the steering wheel 2a. In this case, the steering angle ⁇ f may be calculated by multiplying the steering angle by the steering gear ratio. If the vehicle 100 is equipped with a driving assistance device that automatically controls the steering angle of the front wheels 7F, the steering angle measurement device 1 may acquire the steering angle ⁇ f or the command value of the steering angle generated by the driving assistance device instead of the measured value of the steering angle ⁇ f or the steering angle.
  • the steering device 2 is composed of a steering wheel 2a, a steering shaft 2b connected to it, and a steering mechanism (not shown) that can change the angle of the front wheels 7F relative to the vehicle 100.
  • the steering angle measurement device 1 is connected to the steering device 2, and measures the change in angle of the steering shaft 2b that accompanies the rotation of the steering wheel 2a by the driver.
  • the rotation of the steering shaft 2b is converted by the steering device into a change in the angle of the front wheels 7F relative to the vehicle 100.
  • the drive shaft may be omitted.
  • the accelerator pedal 3 is a member operated by the driver to adjust the acceleration/deceleration of the vehicle 100.
  • the accelerator pedal 3 has a sensor that measures its stroke amount (hereinafter referred to as “accelerator operation amount Ac”) and transmits the measured accelerator operation amount Ac to the controller 10.
  • the controller 10 may obtain the acceleration/deceleration command from the driving support device as the accelerator operation amount Ac.
  • the brake pedal 4 is a member operated by the driver to adjust the deceleration of the vehicle 100.
  • the brake pedal 4 has a sensor that measures its stroke amount (hereinafter referred to as "brake operation amount Br”) and transmits the measured brake operation amount Br to the controller 10.
  • the controller 10 may obtain the deceleration command from the driving support device as the brake operation amount Br.
  • the IMU 5 detects the time rates of change d ⁇ , d ⁇ , and d ⁇ of the roll angle ⁇ , pitch angle ⁇ , and yaw angle ⁇ of the vehicle 100, as well as the longitudinal acceleration ddx, lateral acceleration ddy, and vertical acceleration ddz, and transmits them to the controller 10.
  • the wheel speed measurement devices 6FR, 6FL, 6RR, and 6RL (hereinafter sometimes collectively referred to as "wheel speed measurement device 6") measure the wheel speeds ⁇ FR, ⁇ FL, ⁇ RR, and ⁇ RL of the right front wheel 7FR, the left front wheel 7FL, the right rear wheel 7RR, and the left rear wheel 7RL, respectively, and output them to the controller 10.
  • the front wheel drive shafts 8FR and 8FL are installed at positions corresponding to the right front wheel 7FR and the left front wheel 7FL, respectively, and transmit the driving force and braking force generated by the front wheel drive source 12F to the right front wheel 7FR and the left front wheel 7FL.
  • a degree of rotational freedom is provided between the front wheel 7F and the front wheel 7F, allowing the steering device 2 to change the steering angle of the front wheel 7F.
  • the rear wheel drive shafts 8RR and 8RL are installed at positions corresponding to the right rear wheel 7RR and the left rear wheel 7RL, respectively, and transmit the driving force and braking force generated by the rear wheel drive source 12R to the right rear wheel 7RR and the left rear wheel 7RL.
  • a degree of rotational freedom is provided between the rear wheel 7R and the rear wheel drive shafts 8RR and 8RL, making it possible to change the steering angle of the rear wheel 7R.
  • the controller 10 is an electronic control unit (ECU) that independently controls the braking/driving force generated on the front wheels 7F and the braking/driving force generated on the rear wheels 7R.
  • the controller 10 includes a processor 10a and peripheral components such as a storage device 10b.
  • the processor 10a may be, for example, a central processing unit (CPU) or a micro-processing unit (MPU).
  • the storage device 10b may include a semiconductor storage device, a magnetic storage device, an optical storage device, or the like.
  • the functions of the controller 10 described below are realized, for example, by the processor 10a executing a computer program stored in the storage device 10b.
  • the controller 10 determines target braking/driving torques Tft, Trt of the front wheel drive source 12F and the rear wheel drive source 12R based on the steering angle ⁇ f, accelerator operation amount Ac, brake operation amount Br, roll angle ⁇ , pitch angle ⁇ , yaw angle ⁇ 's time rates of change d ⁇ , d ⁇ , d ⁇ , longitudinal acceleration ddx, lateral acceleration ddy, vertical acceleration ddz, and wheel speeds ⁇ FR, ⁇ FL, ⁇ RR, and ⁇ RL obtained from the steering angle measurement device 1, accelerator pedal 3, brake pedal 4, IMU 5, and wheel speed measurement device 6, respectively, and outputs them to the power converter 11.
  • the power converter 11 converts the power supplied from the battery 13 electrically connected to the power converter 11 into power to be supplied to the front wheel drive source 12F and the rear wheel drive source 12R so as to realize the target braking/driving torques Tft, Trt commanded by the controller 10.
  • the front wheel drive source 12F and the rear wheel drive source 12R are also used as generators, and regenerative power is supplied to the battery 13 through the power converter 11 to charge it.
  • a single power converter 11 is shown for the front wheel drive source 12F and the rear wheel drive source 12R in FIG. 1, the power converter 11 can supply power independently so that the front wheel drive source 12F and the rear wheel drive source 12R can generate braking and driving forces independently.
  • the front-wheel drive source 12F and the rear-wheel drive source 12R generate driving force and braking force for the front wheels 7F and the rear wheels 7R, respectively.
  • the front-wheel drive source 12F and the rear-wheel drive source 12R may each include an electric motor and a reduction gear to which the rotating shaft is connected.
  • the electric motor is connected to the power converter 11 and converts the power supplied from the power converter 11 into the rotational force of the rotor of the electric motor.
  • the electric motor is used as a generator, and electricity is extracted from the rotational force and used to charge the battery 13.
  • the reduction gear converts the rotational speed between the rotor and the front-wheel drive shafts 8FR and 8FL or the rear-wheel drive shafts 8RR and 8RL, thereby converting the rotational torque generated in the rotor into the driving torque or braking torque of the front-wheel drive shafts 8FR and 8FL or the rear-wheel drive shafts 8RR and 8RL.
  • the power source of the front-wheel drive source 12F and/or the rear-wheel drive source 12R is not limited to an electric motor, and may be, for example, an internal combustion engine.
  • FIG. 2 is a schematic diagram of a suspension structure of the front wheels 7F and rear wheels 7R relative to the vehicle body 20 of the vehicle 100.
  • the wheels are connected via a link mechanism so that the degree of freedom of movement relative to the vehicle body 20 is one degree of freedom, excluding the degree of freedom of movement used for steering.
  • one end of the spring mechanisms 21f, 21r that generate a force proportional to the relative displacement from a stationary position between the vehicle body 20 and the wheel, and one end of the damper mechanisms 22f, 22r that generate a force proportional to the relative speed between the vehicle body 20 and the wheel are connected to the link mechanism or the axle, and the other end is connected to the vehicle body 20, so that the relative motion between the vehicle body 20 and the wheel is passively suppressed.
  • the braking/driving force Fxf acting on the front wheels 7F is calculated by dividing the braking/driving torque Tf of the front wheel drive source 12F by the rotation radius rtf of the tire of the front wheel 7F
  • the braking/driving force Fxr acting on the rear wheels 7R is calculated by dividing the braking/driving torque Tr of the rear wheel drive source 12R by the rotation radius rtr of the tire of the rear wheel 7R.
  • the signs of the braking/driving forces Fxf and Fxr are defined so that the sign of the drive torque is "positive" and the sign of the braking torque is "negative".
  • the application point of the braking and driving forces Fxf and Fxr is the wheel center.
  • the signs of the vertical forces Fzf and Fzr are defined so that the sign of the upward force is "positive" and the sign of the downward force is "negative".
  • Fz2f, Fz2r, Fx2f, and Fx2r are internal forces between the vehicle body 20 and the wheels
  • Fz1f and Fz1r are internal forces between the road surface and the wheels
  • Usf and Usr are control forces acting by actuators in the suspension, and these are also internal forces between the vehicle body 20 and the wheels.
  • the controller 10 includes a target value setting unit 30, a frequency component analysis unit 31, a vehicle speed calculation unit 32, a priority order determination unit 33, a chattering suppression unit 34, a limit coefficient calculation unit 35, and a target torque determination unit 36.
  • the target value setting unit 30 calculates the required amounts of force and moment used to suppress vibrations of the body of the vehicle 100.
  • the required amount of force in the vertical direction, the required amount of moment in the pitch direction, and the required amount of force in the fore-aft direction are respectively the first target value Fz2, the second target value Mp2, and the third target value Fx2, the relationship between the target values Fz2, Mp2, and Fx2 and the braking/driving torques Tf and Tr is given by the following equation.
  • “lf” and “lr” are the distances from the center of gravity of the vehicle 100 to the front wheel 7F and the rear wheel 7R, respectively, and “ ⁇ ” is the front/rear torque distribution.
  • the first target value Fz2, the second target value Mp2, and the third target value Fx2 can be set by multiplying the vertical speed dz, pitch rate d ⁇ , and longitudinal speed dx of the vehicle 100 by predetermined feedback gains (-Cdz), (-Cdp), and (-Cdx), respectively.
  • the degree of freedom of the controllable parameters is "2."
  • the feedback gain (-Cdz) for calculating the third target value Fx2 in the fore-aft direction is set to "0.”
  • the braking/driving torques Tf and Tr of the front wheels 7F and the rear wheels 7R are set to satisfy the following equation, and the braking/driving forces due to the braking/driving torques Tf and Tr are offset by each other.
  • the degree of freedom of control is one, and only one of the braking/driving torques Tf, Tr of the front wheels 7F and the rear wheels 7R can be freely set.
  • the braking/driving torque Tr of the rear wheels 7R that satisfies the first target value Fz2 and the second target value Mp2 is calculated, and the braking/driving torque Tf of the front wheels 7F is calculated using the above equation.
  • the vehicle speed calculation unit 32 calculates the vehicle speed V, which is the speed of the center of gravity of the body of the vehicle 100, based on the wheel speeds ⁇ FR, ⁇ FL, ⁇ RR, and ⁇ RL.
  • the frequency component analysis unit 31 calculates frequency components of the vehicle behavior.
  • the frequency component analysis unit 31 acquires the vertical acceleration ddz and the pitch rate d ⁇ from the IMU 5.
  • the frequency component analysis unit 31 calculates the vertical velocity dz based on the vertical acceleration ddz, and extracts the frequency component dzf of the vertical velocity dz in the first frequency band ⁇ f1 by performing bandpass filter processing on the vertical velocity dz.
  • the frequency component analysis unit 31 extracts the frequency component d ⁇ f of the pitch rate d ⁇ in the second frequency band ⁇ f2 by performing bandpass filter processing on the pitch rate d ⁇ .
  • the first frequency band ⁇ f1 is set so as to include frequency components that cause the vertical velocity dz to significantly affect the vertical acceleration or the longitudinal acceleration on the vehicle body springs of the vehicle 100.
  • the first frequency band ⁇ f1 is set so that the effect of the vertical velocity dz in the first frequency band ⁇ f1 on the vertical acceleration or the longitudinal acceleration on the vehicle body springs is greater than the effect in frequency bands other than the first frequency band ⁇ f1.
  • the second frequency band ⁇ f2 is set so as to include frequency components that cause the pitch rate d ⁇ to significantly affect the vertical acceleration or the longitudinal acceleration on the vehicle body springs of the vehicle 100.
  • the second frequency band ⁇ f2 is set so that the effect of the pitch rate d ⁇ in the second frequency band ⁇ f2 on the vertical acceleration or the longitudinal acceleration on the vehicle body springs is larger than the effect in frequency bands other than the second frequency band ⁇ f2.
  • Gain Gxz is the gain of the longitudinal acceleration of the head at the position of the occupant's forehead relative to the vertical velocity dz
  • gain Gxp is the gain of the longitudinal acceleration of the head relative to the pitch rate d ⁇
  • gain Gzz is the gain of the vertical acceleration of the head relative to the vertical velocity dz
  • gain Gzp is the gain of the vertical acceleration of the head relative to the pitch rate d ⁇ .
  • the range indicated by the arrow 40 contains peaks of the gains Gxz and Gzz, and the vertical velocity dz greatly affects the vertical acceleration or longitudinal acceleration on the body springs of the vehicle 100. Therefore, the first frequency band ⁇ f1 is set to include the range indicated by the arrow 40. Furthermore, the range indicated by the arrow 41 contains peaks of the gains Gxp and Gzp, and the pitch rate d ⁇ greatly affects the vertical acceleration or longitudinal acceleration on the body springs of the vehicle 100. Therefore, the second frequency band ⁇ f2 is set to include the range indicated by the arrow 41.
  • the priority determination unit 33 determines the priority between suppression of vibration of the vehicle 100 based on the first target value Fz2 and suppression of vibration of the vehicle 100 based on the second target value Mp2, and calculates the target braking/driving torque Tr0 based on the determination result.
  • the priority determination unit 33 determines whether the sign of the first target value Fz2 and the sign of the second target value Mp2 are equal.
  • the sign of the upward vertical force and the sign of the moment in the pitch direction (diving pitch) that lowers the front of the vehicle 100 are defined as being the same sign.
  • the sign of the upward vertical force and the sign of the moment in the pitch direction that lowers the front of the vehicle 100 may be defined as being positive.
  • the target braking/driving torque Tr0 is calculated based on the following equation (1).
  • the first and second terms on the right side of the formula (1) also have the same sign, and the torque component based on the first target value Fz2 and the torque component based on the second target value Mp2 do not cancel each other out.
  • the torque component based on the first target value Fz2 and the torque component based on the second target value Mp2 cancel each other out, resulting in a reduction in the vibration suppression effect.
  • the priority order determination unit 33 determines whether the vehicle speed V is equal to or greater than a threshold value Vth. If the vehicle speed V is equal to or greater than the threshold value Vth, the priority order determination unit 33 calculates the target braking/driving torque Tr0 using only the second target value Mp2 as the required force based on the following equation (2).
  • the pitch rate can be suppressed to suppress the change in the gaze point. Also, in a driving assistance system using a camera or radar, when the vehicle speed V is high, it is necessary to detect objects that are farther away, so the detection accuracy of the sensor can be improved by suppressing pitching.
  • the target braking/driving torque Tr0 is calculated based on the following equation (2).
  • the pitch rate d ⁇ contains many frequency components that significantly affect the vertical acceleration or longitudinal acceleration on the vehicle body springs, vibrations in the pitch direction are preferentially suppressed, thereby making it possible to effectively suppress vibrations for the occupants and improve ride comfort.
  • of the frequency component of the vertical velocity dz in the first frequency band ⁇ f1 is greater than the threshold value dzth, the target braking/driving torque Tr0 is calculated using only the first target value Fz2 as the required force based on the following equation (3).
  • the priority determination unit 33 determines which has a higher priority, whether to calculate the target braking/driving torque Tr0 using only the first target value Fz2 as the required force or to calculate the target braking/driving torque Tr0 using only the second target value Mp2 as the required force, based on the absolute value
  • the anti-dive angle ⁇ f and the anti-squat angle ⁇ r are equal, the magnitude of the vertical forces generated by the front wheels 7F and the rear wheels 7R are equal.
  • the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above equation (3).
  • the priority determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (2).
  • the chattering suppression unit 34 suppresses chattering when switching between the target braking/driving torque Tr0 (equation (3)) calculated using only the first target value Fz2 as the required force and the target braking/driving torque Tr0 (equation (2)) calculated using only the second target value Mp2 as the required force.
  • FIG. 5 is a block diagram of an example of the functional configuration of the chattering suppression unit 34.
  • the chattering suppression unit 34 includes a rate limiter 50 and a low-pass filter (LPF) 51.
  • the rate limiter 50 limits the time rate of change of the target braking/driving torque Tr0 to a limit value or less.
  • the rate limiter 50 may limit the time rate of change with the same limit value L when the target braking/driving torque Tr0 increases and decreases, or may limit with different limit values L1 and L2.
  • the LPF 51 applies low-pass filtering to the target braking/driving torque Tr0 whose time rate of change has been limited by the rate limiter 50, and outputs the target braking/driving torque Tr1 after low-pass filtering.
  • the limiting coefficient calculation unit 35 calculates a limiting coefficient C that limits the target braking/driving torque Tr1 in accordance with the driver's operation input and the vehicle body behavior of the vehicle 100.
  • 6 is a block diagram of an example of a functional configuration of the limiting coefficient calculation unit 35.
  • the limiting coefficient calculation unit 35 includes a driver input determination unit 60, a vehicle body behavior determination unit 61, a wheel speed difference dependent limiting coefficient setting unit 62, and a limiting coefficient setting unit 63.
  • the driver input determination unit 60 sets the value of the driver input flag Cd to "0" when the accelerator operation amount Ac exceeds the threshold value Acth, when the brake operation amount Br exceeds the threshold value Brth, or when the steering angle ⁇ f exceeds the threshold value ⁇ fth, and sets the value of the driver input flag Cd to "1" when the accelerator operation amount Ac does not exceed the threshold value Acth, the brake operation amount Br does not exceed the threshold value Brth, and the steering angle ⁇ f does not exceed the threshold value ⁇ fth.
  • the vehicle body behavior determination unit 61 sets the value of the vehicle body behavior flag Cm to "0" when the longitudinal acceleration ddx exceeds the threshold value ddxth, when the lateral acceleration ddy exceeds the threshold value ddyth, or when the yaw rate d ⁇ exceeds the threshold value d ⁇ th, and sets the value of the vehicle body behavior flag Cm to "1" when the longitudinal acceleration ddx does not exceed the threshold value ddxth, the lateral acceleration ddy does not exceed the threshold value ddyth, and the yaw rate d ⁇ does not exceed the threshold value d ⁇ th.
  • Figure 7 (a) shows an example of setting the front/rear wheel speed difference dependent limiting coefficient Cfr.
  • the front/rear wheel speed difference dependent limiting coefficient Cfr has a value in the range from "0" to "1".
  • the front/rear wheel speed difference dependent limiting coefficient Cfr is "1" when the wheel speed difference
  • the thresholds ⁇ fr1 and ⁇ fr2 may be set appropriately using vehicle specifications, simulations, and experiments with an actual vehicle.
  • the wheel speed difference dependent limiting coefficient setting unit 62 sets a left/right wheel speed difference dependent limiting coefficient Clrf that limits the target braking/driving torque Tr0 when the wheel speed difference ⁇ lrf between the right front wheel 7FR and the left front wheel 7FL is excessive (for example, when slippage occurs in either the right front wheel 7FR or the left front wheel 7FL).
  • FIG. 7B shows an example of setting the left/right wheel speed difference dependent limiting coefficient Clrf.
  • the left/right wheel speed difference dependent limiting coefficient Clrf has a value in the range from "0" to "1".
  • the left/right wheel speed difference dependent limiting coefficient Clrf is "1" when the wheel speed difference
  • the threshold values ⁇ lrf1 and ⁇ lrf2 may be set appropriately using vehicle specifications, simulations, and experiments using an actual vehicle.
  • the wheel speed difference dependent limiting coefficient setting unit 62 sets a left/right wheel speed difference dependent limiting coefficient Clrr that limits the target braking/driving torque Tr0 when the wheel speed difference ⁇ lrr between the right rear wheel 7RR and the left rear wheel 7RL is excessively large (for example, when slippage occurs at either the right rear wheel 7RR or the left rear wheel 7RL).
  • the limit coefficient setting unit 63 outputs the limit coefficient C to the target torque determination unit 36.
  • the target torque determination unit 36 calculates a limited target braking/driving torque Trt for the rear wheels 7R by limiting the target braking/driving torque Tr1 output by the chattering suppression unit 34 with the limiting coefficient C.
  • the target braking/driving torque Tft for the front wheels 7F is calculated so that all or part of the braking/driving force generated at the rear wheels 7R by the target braking/driving torque Trt is offset by the braking/driving force of the front wheels 7F.
  • 8 is a block diagram of an example of a functional configuration of the target torque determination unit 36.
  • the target torque determination unit 36 includes a target torque correction unit 70, a rate limiter 71, an LPF 72, and a front wheel torque calculation unit 73.
  • a target torque correction unit 70 calculates a product C ⁇ Tr1 by multiplying the target braking/driving torque Tr1 by a limiting coefficient C.
  • a rate limiter 71 limits the time rate of change of the product C ⁇ Tr1.
  • An LPF 72 performs low-pass filtering on the output of the rate limiter 71 to calculate a target braking/driving torque Trt for the rear wheels 7R.
  • the target torque correction unit 70 calculates a target braking/driving torque Tft that generates a braking/driving force on the front wheels 7F that offsets all or part of the braking/driving force generated on the rear wheels 7R by the target braking/driving torque Trt, based on the target braking/driving torque Trt of the rear wheels 7R.
  • the power converter 11 supplies electric power to the front-wheel drive source 12F and the rear-wheel drive source 12R so as to realize the target braking/driving torques Tft and Trt commanded by the controller 10.
  • the front-wheel drive source 12F and the rear-wheel drive source 12R generate braking/driving forces corresponding to the target braking/driving torques Tft and Trt on the front wheels 7F and the rear wheels 7R, respectively.
  • step S1 the controller 10 acquires information measured by the IMU 5.
  • step S2 the target value setting unit 30 sets a first target value Fz2 and a second target value Mp2.
  • the vehicle speed calculation unit 32 calculates the vehicle speed V, which is the speed of the center of gravity of the body of the vehicle 100.
  • step S4 the frequency component analysis unit 31 calculates frequency components dzf and d ⁇ f of the vehicle behavior.
  • step S5 the priority order determination unit 33 performs a priority order determination process.
  • the priority order between suppression of vibration of the vehicle 100 based on the first target value Fz2 and suppression of vibration of the vehicle 100 based on the second target value Mp2 is determined, and the target braking/driving torque Tr0 is calculated based on the determination result.
  • the details of the priority order determination process will be described later with reference to FIG. 10.
  • step S6 the chattering suppression unit 34 suppresses chattering at the switching between the target braking/driving torque Tr0 calculated using only the first target value Fz2 as the required force and the target braking/driving torque Tr0 calculated using only the second target value Mp2 as the required force.
  • step S7 the limiting coefficient calculation unit 35 calculates the limiting coefficient C.
  • step S8 the target torque determination unit 36 calculates the target braking/driving torque Trt for the rear wheels 7R by limiting the target braking/driving torque Tr1 after suppressing chattering using the limiting coefficient C.
  • the target braking/driving torque Tft for the front wheels 7F is calculated based on the target braking/driving torque Trt for the rear wheels 7R.
  • the power converter 11, the front wheel drive source 12F and the rear wheel drive source 12R generate braking/driving forces for the front wheels 7F and the rear wheels 7R according to the target braking/driving torques Tft and Trt, respectively.
  • step S10 the priority order determination unit 33 determines whether the sign of the first target value Fz2 and the sign of the second target value Mp2 are the same. If the signs are the same (step S10: Y), the process proceeds to step S11. If the signs are different (step S10: N), the process proceeds to step S12. In step S11, the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (1). In step S12, the priority order determination unit 33 determines whether the vehicle speed V is equal to or greater than the threshold value Vth. If the vehicle speed V is equal to or greater than the threshold value Vth (step S12: Y), the process proceeds to step S13. If the vehicle speed V is less than the threshold value Vth (step S12: N), the process proceeds to step S14. In step S13, the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (2).
  • step S14 the priority determination unit 33 determines whether the absolute value
  • step S14 the process proceeds to step S16.
  • step S15 the priority determination unit 33 calculates the target braking/driving torque Tr0 based on either the above formula (2) or (3) according to the absolute value
  • step S16 the priority determination unit 33 determines whether the absolute value
  • step S18: Y If the absolute value
  • step S19 the priority determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (3).
  • step S20 the priority determination unit 33 calculates the target braking/driving torque Tr0 based on either the above formula (2) or (3) in accordance with the absolute value
  • Fig. 11(a) is a schematic diagram of the simulation result of the frequency characteristic of the gain of the vertical displacement of the vehicle body relative to the vertical displacement of the tire contact point
  • Fig. 11(b) is a schematic diagram of the simulation result of the frequency characteristic of the gain of the pitch angle change of the vehicle body relative to the pitch angle change of the tire contact point.
  • the dashed line shows the simulation result when the target braking/driving torque is always calculated by the above formula (1)
  • the solid line and dotted line show the simulation result when the above formula (2) and (3) are switched, respectively, when the signs of the first target value Fz2 and the second target value Mp2 are different. It can be seen that the vehicle behavior is more suppressed by switching the target braking/driving torque when the signs of the first target value Fz2 and the second target value Mp2 are different, compared to the case where the above formula (1) is always used.
  • a first target value which is a target value of a force in a vertical direction and a second target value which is a target value of a moment in a pitch direction are set, and when the sign of the upward vertical force and the sign of the moment in a pitch direction which lowers the front of the vehicle 100 are set to be the same, it is determined whether the sign of the first target value and the sign of the second target value are equal. If the signs are the same, the vertical force is controlled based on the first target value and the pitch moment is controlled based on the second target value. If the signs are different, the vertical force and the pitch moment are controlled by adjusting the body springs of the vehicle 100.
  • a priority order between the vertical force and the pitch moment is determined based on the magnitude of the gain for the vertical acceleration or the fore-aft acceleration, and if the priority order of the vertical force is higher than the priority order of the pitch moment, the vertical force is controlled based on a first target value and the control of the pitch moment based on a second target value is restricted, and if the priority order of the pitch moment is higher than the priority order of the vertical force, the pitch moment is controlled based on the second target value and the control of the vertical force based on the first target value is restricted.
  • a priority order between the vertical force and the pitch moment may be determined based on the frequency components of the vertical force and the pitch moment input to the vehicle 100. This makes it possible to determine whether or not there is a large effect on the vehicle body springs based on the frequency components.
  • the pitch moment has a higher priority than the up-down force. This can reduce the change in the driver's viewpoint caused by the behavior of the vehicle body, and can reduce errors in the detection of distant objects by the camera or radar of the driving support device.
  • the time rate of change of the target braking/driving torque calculated using only the first target value as the required force and the target braking/driving torque calculated using only the second target value as the required force may be limited to a limit value or may be subjected to low-pass filtering. This can reduce sudden changes in the vehicle behavior.
  • At least one of the control of the vertical force based on the first target value or the control of the pitch moment based on the second target value may be limited when the difference in rotation speed between the front and rear wheels exceeds a first threshold value, when the difference in rotation speed between the left and right wheels exceeds a second threshold value, when the yaw rate generated in the vehicle 100 exceeds a third threshold value, when the lateral acceleration exceeds a fourth threshold value, when the longitudinal acceleration exceeds a fifth threshold value, when the steering angle of the steering wheel exceeds a sixth threshold value, when the accelerator operation amount exceeds a seventh threshold value, or when the brake operation amount exceeds an eighth threshold value.
  • Vehicle body 21f, 21r...spring mechanism, 22f, 22r...damper mechanism, 23f, 23r...instantaneous center of rotation, 30...target value setting unit, 31...frequency component analysis unit, 32...vehicle speed calculation unit, 33...priority determination unit, 34...chattering suppression unit, 35...limiting coefficient calculation unit, 36...target torque determination unit, 50...rate limiter, 51, 72...low-pass filter, 60...driver input determination unit, 61...vehicle behavior determination unit, 62...wheel speed difference dependent limiting coefficient setting unit, 63...limiting coefficient setting unit, 70...target torque correction unit, 71...rate limiter, 73...front wheel torque calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Provided is a vehicle vibration damping method for reducing vibrations of a vehicle (100) by controlling at least one of a force in the vertical direction of the vehicle (100) or a moment in the pitch direction thereof, wherein: a first target value, which is a target value of the force in the vertical direction, and a second target value, which is a target value of the moment in the pitch direction, are set; when the sign of the first target value and the sign of the second target value are equal to each other, the force in the vertical direction is controlled on the basis of the first target value and the moment in the pitch direction is controlled on the basis of the second target value; and, when the signs are different from each other, switching between controlling the force in the vertical direction on the basis of the first target value and controlling the moment in the pitch direction on the basis of the second target value is performed on the basis of the magnitudes of the gains of the force in the vertical direction and the moment in the pitch direction relative to the vertical acceleration or longitudinal acceleration on a vehicle body spring.

Description

車両制振方法及び車両制振装置Vehicle vibration damping method and vehicle vibration damping device
 本発明は、車両制振方法及び車両制振装置に関する。 The present invention relates to a vehicle vibration damping method and a vehicle vibration damping device.
 下記特許文献1には、車体のヒーブ方向及びピッチ方向のそれぞれ振動を抑制する第1及び第2目標減衰力のうち大きな目標減衰力を選択して、選択した目標減衰力に応じた制御信号をダンパに出力する技術が記載されている。 Patent Document 1 below describes a technology that selects the larger of the first and second target damping forces that suppress vibrations in the heave and pitch directions of the vehicle body, and outputs a control signal to the damper according to the selected target damping force.
特開2001-1736号公報JP 2001-1736 A
 しかしながら、車体の上下方向の振動を抑制する減衰力とピッチ方向の振動を抑止する減衰力のうち大きな減衰力を単純に選択して車体に加えると、車体バネ上の振動を効率よく抑制できないことがある。
 本発明は、車両の上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御して車両の振動を軽減する際に、車体バネ上の振動抑制の効率を向上することを目的とする。
However, if the larger of the damping forces that suppress vibrations in the vertical direction and the pitch direction of the vehicle body is simply selected and applied to the vehicle body, it may not be possible to efficiently suppress vibrations on the vehicle body springs.
An object of the present invention is to improve the efficiency of vibration suppression on the vehicle body springs when reducing vehicle vibration by controlling at least one of the force in the vertical direction or the moment in the pitch direction of the vehicle.
 本発明の一態様によれば、車両の上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御して車両の振動を軽減する車両制振方法が与えられる。車両制振方法では、上下方向の力の目標値である第1目標値と、ピッチ方向のモーメントの目標値である第2目標値と、を設定し、上向き方向の上下方向の力の符号と車両の前部を下げるピッチ方向のモーメントの符号とを同符号としたとき第1目標値の符号と第2目標値の符号とが等しいか否かを判定し、符号が同一の場合には、第1目標値に基づいて上下方向の力を制御するとともに第2目標値に基づいてピッチ方向のモーメントを制御し、符号が異なる場合に、上下方向の力とピッチ方向のモーメントの、車両の車体バネ上の上下方向加速度又は前後方向加速度に対するゲインの大きさに基づいて、上下方向の力とピッチ方向のモーメントとの間の優先順位を判定し、上下方向の力の優先順位がピッチ方向のモーメントの優先順位より高い場合に、第1目標値に基づいて上下方向の力を制御するとともに、第2目標値に基づくピッチ方向のモーメントの制御を制限し、ピッチ方向のモーメントの優先順位が上下方向の力の優先順位より高い場合に、第2目標値に基づいてピッチ方向のモーメントを制御するとともに、第1目標値に基づく上下方向の力の制御を制限する。 According to one aspect of the present invention, a vehicle vibration control method is provided that reduces vehicle vibration by controlling at least one of the vehicle's vertical force or pitch moment. In the vehicle vibration control method, a first target value, which is a target value of the vertical force, and a second target value, which is a target value of the pitch moment, are set, and when the sign of the upward vertical force and the sign of the pitch moment that lowers the front of the vehicle are the same, it is determined whether the sign of the first target value and the sign of the second target value are equal. If the signs are the same, the vertical force is controlled based on the first target value and the pitch moment is controlled based on the second target value. If the signs are different, the priority between the vertical force and the pitch moment is determined based on the magnitude of the gain of the vertical force and the pitch moment relative to the vertical acceleration or the front-rear acceleration on the vehicle's body springs. If the priority of the vertical force is higher than the priority of the pitch moment, the vertical force is controlled based on the first target value and the control of the pitch moment based on the second target value is limited. If the priority of the pitch moment is higher than the priority of the vertical force, the pitch moment is controlled based on the second target value and the control of the vertical force based on the first target value is limited.
 本発明によれば、車両の上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御して車両の振動を軽減する際に、車体バネ上の振動抑制の効率を向上できる。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
According to the present invention, when vibrations of a vehicle are reduced by controlling at least one of the force in the vertical direction and the moment in the pitch direction of the vehicle, it is possible to improve the efficiency of vibration suppression on the vehicle body springs.
The objects and advantages of the invention will be realized and attained by means of the elements and combinations recited in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
実施形態の車両制振装置を備えた車両の概略構成図である。1 is a schematic configuration diagram of a vehicle equipped with a vehicle vibration damping device according to an embodiment; 懸架構造の模式図である。FIG. 2 is a schematic diagram of a suspension structure. コントローラの機能構成例のブロック図である。FIG. 2 is a block diagram of an example of a functional configuration of a controller. 車体の上下方向速度及びピッチレートに対する乗員頭部の上下方向加速度及び前後方向加速度のゲインの周波数特性図である。FIG. 11 is a frequency characteristic diagram of the gain of the vertical acceleration and the longitudinal acceleration of an occupant's head relative to the vertical speed and pitch rate of the vehicle body. チャタリング抑制部の機能構成例のブロック図である。FIG. 4 is a block diagram of an example of a functional configuration of a chattering suppression unit. 制限係数演算部の機能構成例のブロック図である。13 is a block diagram of an example of a functional configuration of a limiting coefficient calculation unit. FIG. (a)及び(b)は制限係数の設定例の説明図である。6A and 6B are diagrams illustrating examples of limit coefficient settings. 目標トルク決定部の機能構成例のブロック図である。FIG. 4 is a block diagram of an example of a functional configuration of a target torque determination unit. 実施形態の車両制振方法の一例のフローチャートである。2 is a flowchart of an example of a vehicle vibration damping method according to an embodiment. 優先順位判定処理の一例のフローチャートである。13 is a flowchart of an example of a priority order determination process. (a)及び(b)はシミュレーション結果の模式図である。13A and 13B are schematic diagrams showing the results of a simulation.
 (構成)
 図1を参照する。車両100は、操舵角測定装置1と、操舵装置2と、アクセルペダル3と、ブレーキペダル4と、慣性測定装置(IMU:Inertial Measurement Unit)5と、車輪速測定装置6FR、6FL、6RR及び6RLと、右前輪7FR、左前輪7FL、右後輪7RR及び左後輪7RLと、前輪駆動軸8FR及び8FLと、後輪駆動軸8RR及び8RLと、コントローラ10と、電力変換器11と、前輪駆動源12Fと、後輪駆動源12Rと、バッテリ13を備える。なお、以下の説明において右前輪7FR及び左前輪7FLを「前輪7F」と総称し、右後輪7RR及び左後輪7RLを「後輪7R」と総称することがある。
(composition)
Referring to Fig. 1, a vehicle 100 includes a steering angle measurement device 1, a steering device 2, an accelerator pedal 3, a brake pedal 4, an inertial measurement unit (IMU) 5, wheel speed measurement devices 6FR, 6FL, 6RR, and 6RL, a right front wheel 7FR, a left front wheel 7FL, a right rear wheel 7RR, and a left rear wheel 7RL, front wheel drive shafts 8FR and 8FL, rear wheel drive shafts 8RR and 8RL, a controller 10, a power converter 11, a front wheel drive source 12F, a rear wheel drive source 12R, and a battery 13. In the following description, the right front wheel 7FR and the left front wheel 7FL may be collectively referred to as "front wheels 7F", and the right rear wheel 7RR and the left rear wheel 7RL may be collectively referred to as "rear wheels 7R".
 操舵角測定装置1は、車両100の進行方向を変更するための転舵輪(すなわち前輪7F)を転舵するステアリングホイール2aの操舵角δfを測定してコントローラ10に出力する。操舵角測定装置1は、ステアリングホイール2aの操舵角δfに代えて前輪7Fの転舵角を測定してもよい。この場合には、転舵角にステアリングギア比を乗算して操舵角δfを算出してもよい。前輪7Fの転舵角が自動制御される運転支援装置が車両100に搭載されている場合に、操舵角測定装置1は、操舵角δfや転舵角の測定値に代えて運転支援装置が生成した操舵角δfや転舵角の指令値を取得してもよい。 The steering angle measurement device 1 measures the steering angle δf of the steering wheel 2a, which steers the steered wheels (i.e., the front wheels 7F) to change the traveling direction of the vehicle 100, and outputs it to the controller 10. The steering angle measurement device 1 may measure the steering angle of the front wheels 7F instead of the steering angle δf of the steering wheel 2a. In this case, the steering angle δf may be calculated by multiplying the steering angle by the steering gear ratio. If the vehicle 100 is equipped with a driving assistance device that automatically controls the steering angle of the front wheels 7F, the steering angle measurement device 1 may acquire the steering angle δf or the command value of the steering angle generated by the driving assistance device instead of the measured value of the steering angle δf or the steering angle.
 操舵装置2は、ステアリングホイール2aと、それに接続されたステアリングシャフト2bと、車両100に対する前輪7Fの角度を変化させることができる操舵機構(図示せず)とで構成されている。操舵角測定装置1は操舵装置2に接続されており、運転者によるステアリングホイール2aの回転操作に伴うステアリングシャフト2bの角度の変化を測定する。一般の車両では、ステアリングシャフト2bの回転が、操舵装置により車両100に対する前輪7Fの角度変化に変換される。一方で、ステアバイワイヤシステムではドライブシャフトを省略してもよい。 The steering device 2 is composed of a steering wheel 2a, a steering shaft 2b connected to it, and a steering mechanism (not shown) that can change the angle of the front wheels 7F relative to the vehicle 100. The steering angle measurement device 1 is connected to the steering device 2, and measures the change in angle of the steering shaft 2b that accompanies the rotation of the steering wheel 2a by the driver. In a typical vehicle, the rotation of the steering shaft 2b is converted by the steering device into a change in the angle of the front wheels 7F relative to the vehicle 100. On the other hand, in a steer-by-wire system, the drive shaft may be omitted.
 アクセルペダル3は、車両100の加減速度を調整するために運転者によって操作される部材である。アクセルペダル3は、そのストローク量(以下「アクセル操作量Ac」と表記する)を測定するセンサを有し、測定したアクセル操作量Acをコントローラ10に送信する。運転者によるアクセルペダル3の操作とは別に運転支援装置により加減速制御が行われる場合には、コントローラ10は、運転支援装置による加減速指令をアクセル操作量Acとして取得してよい。ブレーキペダル4は、車両100の減速度を調整するために運転者によって操作される部材である。ブレーキペダル4は、そのストローク量(以下「ブレーキ操作量Br」と表記する)を測定するセンサを有し、測定したブレーキ操作量Brをコントローラ10に送信する。運転者によるブレーキペダル4の操作とは別に運転支援装置により減速制御が行われる場合には、コントローラ10は、運転支援装置による減速指令をブレーキ操作量Brとして取得してよい。 The accelerator pedal 3 is a member operated by the driver to adjust the acceleration/deceleration of the vehicle 100. The accelerator pedal 3 has a sensor that measures its stroke amount (hereinafter referred to as "accelerator operation amount Ac") and transmits the measured accelerator operation amount Ac to the controller 10. When acceleration/deceleration control is performed by the driving support device separately from the driver's operation of the accelerator pedal 3, the controller 10 may obtain the acceleration/deceleration command from the driving support device as the accelerator operation amount Ac. The brake pedal 4 is a member operated by the driver to adjust the deceleration of the vehicle 100. The brake pedal 4 has a sensor that measures its stroke amount (hereinafter referred to as "brake operation amount Br") and transmits the measured brake operation amount Br to the controller 10. When deceleration control is performed by the driving support device separately from the driver's operation of the brake pedal 4, the controller 10 may obtain the deceleration command from the driving support device as the brake operation amount Br.
 IMU5は、車両100のロール角φ、ピッチ角θ、ヨー角ψの時間変化率dφ、dθ、dψと、前後方向加速度ddx、横方向加速度ddy、上下方向加速度ddzとを検出してコントローラ10に送信する。
 車輪速測定装置6FR、6FL、6RR及び6RL(以下「車輪速測定装置6」と総称することがある)は、右前輪7FR、左前輪7FL、右後輪7RR及び左後輪7RLの車輪速ωFR、ωFL、ωRR及びωRLをそれぞれ測定してコントローラ10へ出力する。前輪駆動軸8FR及び8FLは、それぞれ右前輪7FR及び左前輪7FLに対応する位置に設置され、前輪駆動源12Fが発生する駆動力及び制動力を右前輪7FR及び左前輪7FLに伝達する。前輪駆動軸8FR及び8FLと前輪7Fとの間には回転自由度を持たせ、操舵装置2による前輪7Fの転舵角の変更を可能にする。後輪駆動軸8RR及び8RLは、それぞれ右後輪7RR及び左後輪7RLに対応する位置に設置され、後輪駆動源12Rが発生する駆動力及び制動力を右後輪7RR及び左後輪7RLに伝達する。後輪操舵可能な車両の場合には、後輪7Rと後輪駆動軸8RR及び8RLとの間には回転自由度を持たせ、後輪7Rの転舵角の変更を可能にする。
The IMU 5 detects the time rates of change dφ, dθ, and dψ of the roll angle φ, pitch angle θ, and yaw angle ψ of the vehicle 100, as well as the longitudinal acceleration ddx, lateral acceleration ddy, and vertical acceleration ddz, and transmits them to the controller 10.
The wheel speed measurement devices 6FR, 6FL, 6RR, and 6RL (hereinafter sometimes collectively referred to as "wheel speed measurement device 6") measure the wheel speeds ωFR, ωFL, ωRR, and ωRL of the right front wheel 7FR, the left front wheel 7FL, the right rear wheel 7RR, and the left rear wheel 7RL, respectively, and output them to the controller 10. The front wheel drive shafts 8FR and 8FL are installed at positions corresponding to the right front wheel 7FR and the left front wheel 7FL, respectively, and transmit the driving force and braking force generated by the front wheel drive source 12F to the right front wheel 7FR and the left front wheel 7FL. A degree of rotational freedom is provided between the front wheel 7F and the front wheel 7F, allowing the steering device 2 to change the steering angle of the front wheel 7F. The rear wheel drive shafts 8RR and 8RL are installed at positions corresponding to the right rear wheel 7RR and the left rear wheel 7RL, respectively, and transmit the driving force and braking force generated by the rear wheel drive source 12R to the right rear wheel 7RR and the left rear wheel 7RL. In the case of a vehicle capable of rear wheel steering, a degree of rotational freedom is provided between the rear wheel 7R and the rear wheel drive shafts 8RR and 8RL, making it possible to change the steering angle of the rear wheel 7R.
 コントローラ10は、前輪7Fに発生させる制駆動力と後輪7Rに発生させる制駆動力とを独立して制御する電子制御ユニット(ECU:Electronic Control Unit)である。コントローラ10は、プロセッサ10aと、記憶装置10b等の周辺部品とを含む。プロセッサ10aは、例えばCPU(Central Processing Unit)やMPU(Micro-Processing Unit)であってよい。記憶装置10bは、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。以下に説明するコントローラ10の機能は、例えばプロセッサ10aが、記憶装置10bに格納されたコンピュータプログラムを実行することにより実現される。
 コントローラ10は、操舵角測定装置1、アクセルペダル3、ブレーキペダル4、IMU5、車輪速測定装置6からそれぞれ取得した操舵角δf、アクセル操作量Ac、ブレーキ操作量Br、ロール角φ、ピッチ角θ、ヨー角ψの時間変化率dφ、dθ、dψ、前後方向加速度ddx、横方向加速度ddy、上下方向加速度ddz、車輪速ωFR、ωFL、ωRR及びωRLに基づいて、前輪駆動源12F及び後輪駆動源12Rの目標制駆動トルクTft、Trtを決定し、電力変換器11に出力する。
The controller 10 is an electronic control unit (ECU) that independently controls the braking/driving force generated on the front wheels 7F and the braking/driving force generated on the rear wheels 7R. The controller 10 includes a processor 10a and peripheral components such as a storage device 10b. The processor 10a may be, for example, a central processing unit (CPU) or a micro-processing unit (MPU). The storage device 10b may include a semiconductor storage device, a magnetic storage device, an optical storage device, or the like. The functions of the controller 10 described below are realized, for example, by the processor 10a executing a computer program stored in the storage device 10b.
The controller 10 determines target braking/driving torques Tft, Trt of the front wheel drive source 12F and the rear wheel drive source 12R based on the steering angle δf, accelerator operation amount Ac, brake operation amount Br, roll angle φ, pitch angle θ, yaw angle ψ's time rates of change dφ, dθ, dψ, longitudinal acceleration ddx, lateral acceleration ddy, vertical acceleration ddz, and wheel speeds ωFR, ωFL, ωRR, and ωRL obtained from the steering angle measurement device 1, accelerator pedal 3, brake pedal 4, IMU 5, and wheel speed measurement device 6, respectively, and outputs them to the power converter 11.
 電力変換器11は、コントローラ10から指令された目標制駆動トルクTft、Trtを実現するように、電力変換器11と電気的に接続されるバッテリ13から供給される電力を、前輪駆動源12F及び後輪駆動源12Rに供給する電力に変換する。また、前輪駆動源12F及び後輪駆動源12Rを発電機として利用し、この電力変換器11を通して、バッテリ13に回生電力を供給して充電する。図1では、前輪駆動源12F及び後輪駆動源12Rに対して、単一の電力変換器11を示しているが、電力変換器11は、前輪駆動源12F及び後輪駆動源12Rが独立して制動力と駆動力を発生できるように、独立して電力を供給できる。 The power converter 11 converts the power supplied from the battery 13 electrically connected to the power converter 11 into power to be supplied to the front wheel drive source 12F and the rear wheel drive source 12R so as to realize the target braking/driving torques Tft, Trt commanded by the controller 10. The front wheel drive source 12F and the rear wheel drive source 12R are also used as generators, and regenerative power is supplied to the battery 13 through the power converter 11 to charge it. Although a single power converter 11 is shown for the front wheel drive source 12F and the rear wheel drive source 12R in FIG. 1, the power converter 11 can supply power independently so that the front wheel drive source 12F and the rear wheel drive source 12R can generate braking and driving forces independently.
 前輪駆動源12F及び後輪駆動源12Rは、それぞれ前輪7F及び後輪7Rに駆動力及び制動力を発生させる。例えば前輪駆動源12F及び後輪駆動源12Rは、それぞれ電動モータと、その回転軸が接続される減速機を備えてよい。電動モータは電力変換器11と接続されており、電力変換器11から供給される電力を電動モータのロータの回転力へ変換する。または、電動モータを発電機として利用し、回転力から電力を取り出してバッテリ13の充電に使用する。減速機は、ロータと前輪駆動軸8FR及び8FLや後輪駆動軸8RR及び8RLとの間で回転数を変換することで、ロータに生じた回転トルクを、前輪駆動軸8FR及び8FLや後輪駆動軸8RR及び8RLの駆動トルクや制動トルクへ変換する。なお、前輪駆動源12F及び/又は後輪駆動源12Rの動力源は電動モータに限定されず、例えば内燃機関であってもよい。 The front-wheel drive source 12F and the rear-wheel drive source 12R generate driving force and braking force for the front wheels 7F and the rear wheels 7R, respectively. For example, the front-wheel drive source 12F and the rear-wheel drive source 12R may each include an electric motor and a reduction gear to which the rotating shaft is connected. The electric motor is connected to the power converter 11 and converts the power supplied from the power converter 11 into the rotational force of the rotor of the electric motor. Alternatively, the electric motor is used as a generator, and electricity is extracted from the rotational force and used to charge the battery 13. The reduction gear converts the rotational speed between the rotor and the front-wheel drive shafts 8FR and 8FL or the rear-wheel drive shafts 8RR and 8RL, thereby converting the rotational torque generated in the rotor into the driving torque or braking torque of the front-wheel drive shafts 8FR and 8FL or the rear-wheel drive shafts 8RR and 8RL. Note that the power source of the front-wheel drive source 12F and/or the rear-wheel drive source 12R is not limited to an electric motor, and may be, for example, an internal combustion engine.
 図2は、車両100の車体20に対する前輪7F及び後輪7Rのホイールの懸架構造の模式図である。ホイールは、操舵のために用いる動作の自由度を除いて、車体20に対する動作の自由度が1自由度となるようにリンク機構を介して接続される。また、車体20とホイールとの静止位置からの相対変位に比例する力を発生させるばね機構21f、21rの一端と、車体20とホイールとの相対速度に比例する力を発生するダンパ機構22f、22rの一端とが、リンク機構あるいはアクスル部に対して接続され、もう一方の端が車体20に接続されることで、車体20とホイールとの間の相対運動が受動的に抑制される。
 車体20とホイールとの間のリンク機構の構成により、車体20とホイールとの相対的な位置変化が瞬間的に0となる点(以下「瞬間回転中心」と表記する)23f、23rが存在する。瞬間回転中心23fと前輪7Fのホイール中心とを結ぶ直線と車両前後方向に沿った水平線との間の角度を、アンチダイブ角θf、後輪7Rのホイール中心とを結ぶ直線と水平線との間の角度をアンチスカット角θrと呼ぶ。本明細書では、アンチダイブ角θfとアンチスカット角θrとが正である場合を前提とする。
2 is a schematic diagram of a suspension structure of the front wheels 7F and rear wheels 7R relative to the vehicle body 20 of the vehicle 100. The wheels are connected via a link mechanism so that the degree of freedom of movement relative to the vehicle body 20 is one degree of freedom, excluding the degree of freedom of movement used for steering. In addition, one end of the spring mechanisms 21f, 21r that generate a force proportional to the relative displacement from a stationary position between the vehicle body 20 and the wheel, and one end of the damper mechanisms 22f, 22r that generate a force proportional to the relative speed between the vehicle body 20 and the wheel are connected to the link mechanism or the axle, and the other end is connected to the vehicle body 20, so that the relative motion between the vehicle body 20 and the wheel is passively suppressed.
Due to the configuration of the link mechanism between the vehicle body 20 and the wheels, there are points (hereinafter referred to as "instantaneous rotation centers") 23f, 23r at which the relative position change between the vehicle body 20 and the wheels becomes zero instantaneously. The angle between the straight line connecting the instantaneous rotation center 23f to the wheel center of the front wheel 7F and the horizontal line along the vehicle longitudinal direction is called the anti-dive angle θf, and the angle between the straight line connecting the wheel center of the rear wheel 7R and the horizontal line is called the anti-squat angle θr. In this specification, it is assumed that the anti-dive angle θf and the anti-squat angle θr are positive.
 前輪7Fに働く制駆動力Fxfは前輪駆動源12Fの制駆動トルクTfを前輪7Fのタイヤの回転半径rtfで除することで算出され、後輪7Rに働く制駆動力Fxrは後輪駆動源12Rの制駆動トルクTrを後輪7Rのタイヤの回転半径rtrで除することで算出される。制駆動力Fxf、Fxrの符号は、駆動トルクの符号が「正」であり制動トルクの符号が「負」となるように定義する。
 また例えば、駆動源12F、12Rがモータであり、減速機、ディファレンシャルギア、ドライブシャフトを介して、各輪に駆動トルクを伝達する場合、制駆動力Fxf、Fxrの着力点はホイール中心となる。制駆動力Fxf、Fxrがホイール中心に作用するとき、前輪7Fには上下力Fzf=-Fxf×tanθfが作用し、後輪7Rには上下力Fzr=Fxr×tanθrが作用する。上下力Fzf、Fzrの符号は上方向の力の符号が「正」となり下方向の力の符号が「負」となるようには定義する。Fz2f、Fz2r、Fx2f、Fx2rは、車体20とホイールとの間の内力であり、Fz1fとFz1rは、路面とホイールとの間の内力である。また、UsfとUsrはサスペンション内のアクチュエータが作用する制御力であり、これらも車体20とホイールとの間の内力である。
The braking/driving force Fxf acting on the front wheels 7F is calculated by dividing the braking/driving torque Tf of the front wheel drive source 12F by the rotation radius rtf of the tire of the front wheel 7F, and the braking/driving force Fxr acting on the rear wheels 7R is calculated by dividing the braking/driving torque Tr of the rear wheel drive source 12R by the rotation radius rtr of the tire of the rear wheel 7R. The signs of the braking/driving forces Fxf and Fxr are defined so that the sign of the drive torque is "positive" and the sign of the braking torque is "negative".
For example, when the driving sources 12F and 12R are motors and drive torque is transmitted to each wheel via a reduction gear, a differential gear, and a drive shaft, the application point of the braking and driving forces Fxf and Fxr is the wheel center. When the braking and driving forces Fxf and Fxr act on the wheel center, a vertical force Fzf=-Fxf×tan θf acts on the front wheel 7F, and a vertical force Fzr=Fxr×tan θr acts on the rear wheel 7R. The signs of the vertical forces Fzf and Fzr are defined so that the sign of the upward force is "positive" and the sign of the downward force is "negative". Fz2f, Fz2r, Fx2f, and Fx2r are internal forces between the vehicle body 20 and the wheels, and Fz1f and Fz1r are internal forces between the road surface and the wheels. Also, Usf and Usr are control forces acting by actuators in the suspension, and these are also internal forces between the vehicle body 20 and the wheels.
 図3は、コントローラ10の機能構成例のブロック図である。コントローラ10は、目標値設定部30と、周波数成分分析部31と、車速演算部32と、優先順位判定部33と、チャタリング抑制部34と、制限係数演算部35と、目標トルク決定部36とを備える。
 目標値設定部30は、車両100の車体の振動の抑制に用いる力とモーメントの要求量を算出する。
 いま、上下方向の力の要求量、ピッチ方向のモーメントの要求量、前後方向の力の要求量を、それぞれ第1目標値Fz2、第2目標値Mp2及び第3目標値Fx2とすると、目標値Fz2、Mp2及びFx2と、制駆動トルクTf及びTrとの間の関係は、次式によって与えられる。
3 is a block diagram of an example of a functional configuration of the controller 10. The controller 10 includes a target value setting unit 30, a frequency component analysis unit 31, a vehicle speed calculation unit 32, a priority order determination unit 33, a chattering suppression unit 34, a limit coefficient calculation unit 35, and a target torque determination unit 36.
The target value setting unit 30 calculates the required amounts of force and moment used to suppress vibrations of the body of the vehicle 100.
Now, if the required amount of force in the vertical direction, the required amount of moment in the pitch direction, and the required amount of force in the fore-aft direction are respectively the first target value Fz2, the second target value Mp2, and the third target value Fx2, the relationship between the target values Fz2, Mp2, and Fx2 and the braking/driving torques Tf and Tr is given by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)中の「lf」及び「lr」は、それぞれ車両100の重心から前輪7F及び後輪7Rまでの距離であり、「μ」は前後トルク配分である。
 第1目標値Fz2、第2目標値Mp2及び第3目標値Fx2は、それぞれ車両100の上下方向速度dz、ピッチレートdθ、前後方向速度dxに、所定のフィードバックゲイン(-Cdz)、(-Cdp)、(-Cdx)を乗じることによって設定できる。
In equation (1), "lf" and "lr" are the distances from the center of gravity of the vehicle 100 to the front wheel 7F and the rear wheel 7R, respectively, and "μ" is the front/rear torque distribution.
The first target value Fz2, the second target value Mp2, and the third target value Fx2 can be set by multiplying the vertical speed dz, pitch rate dθ, and longitudinal speed dx of the vehicle 100 by predetermined feedback gains (-Cdz), (-Cdp), and (-Cdx), respectively.
 ここで前輪7Fと後輪7Rとを独立した駆動源で駆動する場合には、制御できるパラメータの自由度は「2」となる。このため、フィードバックゲイン(-Cdz)、(-Cdp)、(-Cdx)のうち、前後方向の第3目標値Fx2を計算するためのフィードバックゲインである(-Cdx)を「0」に設定する。
 また、前輪7Fと後輪7Rで生じる制駆動力が前後方向の加速度に影響を与えないように、次式を満足する前輪7F及び後輪7Rの制駆動トルクTf及びTrを設定し、制駆動トルクTf及びTrによる制駆動力を互いに相殺する。
 Tf=-rtf/rtr×Tr
 このため、制御の自由度としては1自由度となり、自由に設定できるのは前輪7F及び後輪7Rの制駆動トルクTf、Trのいずれか一方となる。
 本明細書では第1目標値Fz2及び第2目標値Mp2を満足する後輪7Rの制駆動トルクTrを算出し、上式を用いて前輪7Fの制駆動トルクTfを算出する。
 目標値設定部30は、IMU5で取得した上下方向加速度ddzに基づいて上下方向速度dzを算出し、上下方向速度dzにフィードバックゲイン(-Cdz)を乗じて第1目標値Fz2=(-Cdz)×dzを算出する。また、IMU5で取得したピッチレートdθにフィードバックゲイン(-Cdp)を乗じて第2目標値Mp2=(-Cdp)×dθを算出する。
Here, when the front wheels 7F and the rear wheels 7R are driven by independent drive sources, the degree of freedom of the controllable parameters is "2." For this reason, of the feedback gains (-Cdz), (-Cdp), and (-Cdx), the feedback gain (-Cdx) for calculating the third target value Fx2 in the fore-aft direction is set to "0."
In addition, to prevent the braking/driving forces generated at the front wheels 7F and the rear wheels 7R from affecting the longitudinal acceleration, the braking/driving torques Tf and Tr of the front wheels 7F and the rear wheels 7R are set to satisfy the following equation, and the braking/driving forces due to the braking/driving torques Tf and Tr are offset by each other.
Tf = -rtf/rtr x Tr
Therefore, the degree of freedom of control is one, and only one of the braking/driving torques Tf, Tr of the front wheels 7F and the rear wheels 7R can be freely set.
In this specification, the braking/driving torque Tr of the rear wheels 7R that satisfies the first target value Fz2 and the second target value Mp2 is calculated, and the braking/driving torque Tf of the front wheels 7F is calculated using the above equation.
The target value setting unit 30 calculates the vertical velocity dz based on the vertical acceleration ddz acquired by the IMU 5, and multiplies the vertical velocity dz by a feedback gain (-Cdz) to calculate a first target value Fz2=(-Cdz)×dz. Also, the target value setting unit 30 multiplies the pitch rate dθ acquired by the IMU 5 by a feedback gain (-Cdp) to calculate a second target value Mp2=(-Cdp)×dθ.
 車速演算部32は、車輪速ωFR、ωFL、ωRR及びωRLに基づいて、車両100の車体の重心速度である車速Vを演算する。車速演算部32は、前輪7Fの平均車輪速ωF=(ωFR+ωFL)/2に前輪7Fのタイヤの回転半径rtfを乗じて第1車速VF=rtf×ωFを演算する。後輪7Rの平均車輪速ωR=(ωRR+ωRL)/2に後輪7Rのタイヤの回転半径rtrを乗じて第2車速VR=rtr×ωRを演算する。第1車速VFと第2車速VRを平均して車速V=(VF+VR)/2を得る。 The vehicle speed calculation unit 32 calculates the vehicle speed V, which is the speed of the center of gravity of the body of the vehicle 100, based on the wheel speeds ωFR, ωFL, ωRR, and ωRL. The vehicle speed calculation unit 32 multiplies the average wheel speed ωF = (ωFR + ωFL)/2 of the front wheels 7F by the rotation radius rtf of the tires of the front wheels 7F to calculate the first vehicle speed VF = rtf x ωF. The vehicle speed calculation unit 32 multiplies the average wheel speed ωR = (ωRR + ωRL)/2 of the rear wheels 7R by the rotation radius rtr of the tires of the rear wheels 7R to calculate the second vehicle speed VR = rtr x ωR. The first vehicle speed VF and the second vehicle speed VR are averaged to obtain the vehicle speed V = (VF + VR)/2.
 周波数成分分析部31は、車両挙動の周波数成分を演算する。周波数成分分析部31は、上下方向加速度ddzとピッチレートdθをIMU5から取得する。周波数成分分析部31は、上下方向加速度ddzに基づいて上下方向速度dzを演算し、上下方向速度dzにバンドパスフィルタ処理を施すことにより、第1周波数帯域Δf1における上下方向速度dzの周波数成分dzfを抽出する。また、ピッチレートdθにバンドパスフィルタ処理を施すことにより、第2周波数帯域Δf2におけるピッチレートdθの周波数成分dθfを抽出する。
 第1周波数帯域Δf1は、上下方向速度dzが車両100の車体バネ上の上下方向加速度又は前後方向加速度に大きく影響する周波数成分を含むように設定する。例えば第1周波数帯域Δf1における上下方向速度dzが車体バネ上の上下方向加速度又は前後方向加速度に与える影響が、第1周波数帯域Δf1以外の周波数帯域における影響よりも大きくなるように第1周波数帯域Δf1を設定する。
 また、第2周波数帯域Δf2は、ピッチレートdθが車両100の車体バネ上の上下方向加速度又は前後方向加速度に大きく影響する周波数成分を含むように設定する。例えば第2周波数帯域Δf2におけるピッチレートdθが車体バネ上の上下方向加速度又は前後方向加速度に与える影響が、第2周波数帯域Δf2以外の周波数帯域における影響よりも大きくなるように第2周波数帯域Δf2を設定する。
The frequency component analysis unit 31 calculates frequency components of the vehicle behavior. The frequency component analysis unit 31 acquires the vertical acceleration ddz and the pitch rate dθ from the IMU 5. The frequency component analysis unit 31 calculates the vertical velocity dz based on the vertical acceleration ddz, and extracts the frequency component dzf of the vertical velocity dz in the first frequency band Δf1 by performing bandpass filter processing on the vertical velocity dz. In addition, the frequency component analysis unit 31 extracts the frequency component dθf of the pitch rate dθ in the second frequency band Δf2 by performing bandpass filter processing on the pitch rate dθ.
The first frequency band Δf1 is set so as to include frequency components that cause the vertical velocity dz to significantly affect the vertical acceleration or the longitudinal acceleration on the vehicle body springs of the vehicle 100. For example, the first frequency band Δf1 is set so that the effect of the vertical velocity dz in the first frequency band Δf1 on the vertical acceleration or the longitudinal acceleration on the vehicle body springs is greater than the effect in frequency bands other than the first frequency band Δf1.
Moreover, the second frequency band Δf2 is set so as to include frequency components that cause the pitch rate dθ to significantly affect the vertical acceleration or the longitudinal acceleration on the vehicle body springs of the vehicle 100. For example, the second frequency band Δf2 is set so that the effect of the pitch rate dθ in the second frequency band Δf2 on the vertical acceleration or the longitudinal acceleration on the vehicle body springs is larger than the effect in frequency bands other than the second frequency band Δf2.
 図4は、車体の上下方向速度dz及びピッチレートdθに対する乗員頭部の上下方向加速度及び前後方向加速度のゲインの周波数特性図である。ゲインGxzは上下方向速度dzに対する乗員の額位置での頭部の前後方向加速度のゲインであり、ゲインGxpはピッチレートdθに対する頭部の前後方向加速度のゲインであり、ゲインGzzは上下方向速度dzに対する頭部の上下方向加速度のゲインであり、ゲインGzpはピッチレートdθに対する頭部の上下方向加速度のゲインである。
 矢印40が示す範囲にはゲインGxz及びGzzのピークがあり、上下方向速度dzが車両100の車体バネ上の上下方向加速度又は前後方向加速度に大きく影響する。したがって矢印40で示す範囲を含むように第1周波数帯域Δf1を設定する。また、矢印41が示す範囲にはゲインGxp及びGzpのピークがあり、ピッチレートdθが車両100の車体バネ上の上下方向加速度又は前後方向加速度に大きく影響する。したがって矢印41で示す範囲を含むように第2周波数帯域Δf2を設定する。
4 is a frequency characteristic diagram of the gain of the vertical acceleration and the longitudinal acceleration of the occupant's head relative to the vertical velocity dz and the pitch rate dθ of the vehicle body. Gain Gxz is the gain of the longitudinal acceleration of the head at the position of the occupant's forehead relative to the vertical velocity dz, gain Gxp is the gain of the longitudinal acceleration of the head relative to the pitch rate dθ, gain Gzz is the gain of the vertical acceleration of the head relative to the vertical velocity dz, and gain Gzp is the gain of the vertical acceleration of the head relative to the pitch rate dθ.
The range indicated by the arrow 40 contains peaks of the gains Gxz and Gzz, and the vertical velocity dz greatly affects the vertical acceleration or longitudinal acceleration on the body springs of the vehicle 100. Therefore, the first frequency band Δf1 is set to include the range indicated by the arrow 40. Furthermore, the range indicated by the arrow 41 contains peaks of the gains Gxp and Gzp, and the pitch rate dθ greatly affects the vertical acceleration or longitudinal acceleration on the body springs of the vehicle 100. Therefore, the second frequency band Δf2 is set to include the range indicated by the arrow 41.
 図3を参照する。優先順位判定部33は、第1目標値Fz2に基づく車両100の振動の抑制と、第2目標値Mp2に基づく車両100の振動の抑制との間の優先順位を判定し、判定結果に基づいて目標制駆動トルクTr0を算出する。
 優先順位判定部33は、第1目標値Fz2の符号と第2目標値Mp2の符号とが等しいか否かを判定する。ここで、上向き方向の上下方向の力の符号と車両100の前部を下げるピッチ方向(ダイビングピッチ)のモーメントの符号とが同符号であると定義する。例えば上向き方向の上下方向の力の符号と車両100の前部を下げるピッチ方向のモーメントの符号とが正であると定義してよい。第1目標値Fz2の符号と第2目標値Mp2の符号を判定する代わりに、上下方向速度dzの符号とピッチレートdθの符号が等しいか否かを判定してもよい。
 第1目標値Fz2の符号と第2目標値Mp2の符号とが等しい場合には、次式(1)に基づいて目標制駆動トルクTr0を算出する。
3, the priority determination unit 33 determines the priority between suppression of vibration of the vehicle 100 based on the first target value Fz2 and suppression of vibration of the vehicle 100 based on the second target value Mp2, and calculates the target braking/driving torque Tr0 based on the determination result.
The priority determination unit 33 determines whether the sign of the first target value Fz2 and the sign of the second target value Mp2 are equal. Here, the sign of the upward vertical force and the sign of the moment in the pitch direction (diving pitch) that lowers the front of the vehicle 100 are defined as being the same sign. For example, the sign of the upward vertical force and the sign of the moment in the pitch direction that lowers the front of the vehicle 100 may be defined as being positive. Instead of determining the sign of the first target value Fz2 and the sign of the second target value Mp2, it may be determined whether the sign of the vertical velocity dz and the sign of the pitch rate dθ are equal.
When the sign of the first target value Fz2 and the sign of the second target value Mp2 are the same, the target braking/driving torque Tr0 is calculated based on the following equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 第1目標値Fz2の符号と第2目標値Mp2の符号とが等しい場合、式(1)の右辺の第1項及び第2項も同符号となり、第1目標値Fz2に基づくトルク成分と第2目標値Mp2に基づくトルク成分とが打ち消し合うことはない。一方で、両者の符号が異なる場合には、第1目標値Fz2に基づくトルク成分と第2目標値Mp2に基づくトルク成分とが打ち消し合うので、結果として振動抑制効果が低減する。このため、第1目標値Fz2の符号と第2目標値Mp2の符号とが異なる場合には、第1目標値Fz2のみを要求力として目標制駆動トルクTr0を算出して上下方向速度を抑制するか、第2目標値Mp2のみを要求力として目標制駆動トルクTr0を算出してピッチレートを抑制するか、いずれの優先順位が高いかを判定する。
 まず優先順位判定部33は、車速Vが閾値Vth以上であるか否かを判定する。車速Vが閾値Vth以上である場合には、次式(2)に基づいて第2目標値Mp2のみを要求力として目標制駆動トルクTr0を算出する。
When the sign of the first target value Fz2 and the sign of the second target value Mp2 are the same, the first and second terms on the right side of the formula (1) also have the same sign, and the torque component based on the first target value Fz2 and the torque component based on the second target value Mp2 do not cancel each other out. On the other hand, when the signs of the two are different, the torque component based on the first target value Fz2 and the torque component based on the second target value Mp2 cancel each other out, resulting in a reduction in the vibration suppression effect. Therefore, when the sign of the first target value Fz2 and the sign of the second target value Mp2 are different, it is determined which has a higher priority: calculating the target braking/driving torque Tr0 using only the first target value Fz2 as the required force to suppress the vertical speed, or calculating the target braking/driving torque Tr0 using only the second target value Mp2 as the required force to suppress the pitch rate.
First, the priority order determination unit 33 determines whether the vehicle speed V is equal to or greater than a threshold value Vth. If the vehicle speed V is equal to or greater than the threshold value Vth, the priority order determination unit 33 calculates the target braking/driving torque Tr0 using only the second target value Mp2 as the required force based on the following equation (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 車速Vが高いほど運転者の注視点が遠くなり、車体のピッチングによる注視点の変化が大きくなるため、ピッチレートを抑制して注視点変化を抑えることができる。またカメラやレーダを用いた運転支援システムにおいても、車速Vが高い場合にはより遠方の対象物を検出する必要があるため、ピッチングを抑制することによりセンサの検出精度を向上できる。
 また、第2周波数帯域Δf2におけるピッチレートdθの周波数成分の絶対値|dθf|が閾値dθthよりも大きい場合も、次式(2)に基づいて目標制駆動トルクTr0を算出する。これにより、車体バネ上の上下方向加速度又は前後方向加速度に大きく影響する周波数成分がピッチレートdθに多く含まれている場合には、ピッチ方向の振動を優先して抑制することで、乗員に対する振動を効果的に抑制でき乗り心地を改善できる。
 一方、第1周波数帯域Δf1における上下方向速度dzの周波数成分の絶対値|dzf|が閾値dzthよりも大きい場合は、次式(3)に基づいて第1目標値Fz2のみを要求力として目標制駆動トルクTr0を算出する。
Since the higher the vehicle speed V, the farther the driver's gaze point becomes and the greater the change in the gaze point due to the pitching of the vehicle body, the pitch rate can be suppressed to suppress the change in the gaze point. Also, in a driving assistance system using a camera or radar, when the vehicle speed V is high, it is necessary to detect objects that are farther away, so the detection accuracy of the sensor can be improved by suppressing pitching.
In addition, when the absolute value |dθf| of the frequency components of the pitch rate dθ in the second frequency band Δf2 is larger than the threshold value dθth, the target braking/driving torque Tr0 is calculated based on the following equation (2). As a result, when the pitch rate dθ contains many frequency components that significantly affect the vertical acceleration or longitudinal acceleration on the vehicle body springs, vibrations in the pitch direction are preferentially suppressed, thereby making it possible to effectively suppress vibrations for the occupants and improve ride comfort.
On the other hand, when the absolute value |dzf| of the frequency component of the vertical velocity dz in the first frequency band Δf1 is greater than the threshold value dzth, the target braking/driving torque Tr0 is calculated using only the first target value Fz2 as the required force based on the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 周波数成分の絶対値|dθf|が閾値dθthよりも大きく、且つ周波数成分の絶対値|dzf|が閾値dzthよりも大きい場合、又は周波数成分の絶対値|dθf|が閾値dθth以下であり、且つ周波数成分の絶対値|dzf|が閾値dzth以下である場合には、周波数成分に基づく優先順位判定ができない状態であるとみなし、車両諸元に基づいて優先順位を判定する。具体的には優先順位判定部33は、車両のサスペンションとタイヤの幾何学関係等の車両諸元で決定されるアンチダイブ角θf及びアンチスカット角θrの差分の絶対値|θf-θr|に基づいて、第1目標値Fz2のみを要求力として目標制駆動トルクTr0を算出するか、第2目標値Mp2のみを要求力として目標制駆動トルクTr0を算出するか、いずれの優先順位が高いかを判定する。
 アンチダイブ角θfとアンチスカット角θrが等しい場合には、前輪7F及び後輪7Rで生じる上下力の大きさは等しくなる。このため前輪7F及び後輪7Rによる制駆動力を上下力に変換することで制振できるのは、上下方向のみとなる。このため、アンチダイブ角θf及びアンチスカット角θrの差分の絶対値|θf-θr|が閾値未満である場合には、優先順位判定部33は、上式(3)に基づいて目標制駆動トルクTr0を算出する。
When the absolute value |dθf| of the frequency component is greater than the threshold value dθth and the absolute value |dzf| of the frequency component is greater than the threshold value dzth, or when the absolute value |dθf| of the frequency component is equal to or less than the threshold value dθth and the absolute value |dzf| of the frequency component is equal to or less than the threshold value dzth, it is considered that the priority determination based on the frequency component is not possible, and the priority is determined based on the vehicle specifications. Specifically, the priority determination unit 33 determines which has a higher priority, whether to calculate the target braking/driving torque Tr0 using only the first target value Fz2 as the required force or to calculate the target braking/driving torque Tr0 using only the second target value Mp2 as the required force, based on the absolute value |θf-θr| of the difference between the anti-dive angle θf and the anti-squat angle θr determined by the vehicle specifications such as the geometric relationship between the suspension and the tires of the vehicle.
When the anti-dive angle θf and the anti-squat angle θr are equal, the magnitude of the vertical forces generated by the front wheels 7F and the rear wheels 7R are equal. Therefore, vibration can only be suppressed in the vertical direction by converting the braking/driving forces of the front wheels 7F and the rear wheels 7R into vertical forces. Therefore, when the absolute value |θf-θr| of the difference between the anti-dive angle θf and the anti-squat angle θr is less than the threshold value, the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above equation (3).
 一方で、アンチダイブ角θfとアンチスカット角θrの差分が大きい場合には、前輪7F及び後輪7Rによる制駆動力を上下力に変換することでモーメントを発生させることができる。このため、アンチダイブ角θf及びアンチスカット角θrの差分の絶対値|θf-θr|が閾値以上である場合には、優先順位判定部33は、上式(2)に基づいて目標制駆動トルクTr0を算出する。 On the other hand, when the difference between the anti-dive angle θf and the anti-squeezing angle θr is large, a moment can be generated by converting the braking/driving force of the front wheels 7F and the rear wheels 7R into vertical forces. Therefore, when the absolute value |θf-θr| of the difference between the anti-dive angle θf and the anti-squeezing angle θr is equal to or greater than a threshold value, the priority determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (2).
 チャタリング抑制部34は、第1目標値Fz2のみを要求力として算出した目標制駆動トルクTr0(式(3))と、第2目標値Mp2のみを要求力として算出した目標制駆動トルクTr0(式(2))の切替のチャタリングを抑制する。図5は、チャタリング抑制部34の機能構成例のブロック図である。チャタリング抑制部34は、レートリミッタ50と、ローパスフィルタ(LPF)51を備える。レートリミッタ50は、目標制駆動トルクTr0の時間変化率を制限値以下に制限する。レートリミッタ50は、目標制駆動トルクTr0の増加時と減少時とで同じ制限値Lで時間変化率を制限してもよく、異なる制限値L1、L2で制限してもよい。LPF51は、レートリミッタ50で時間変化率が制限された目標制駆動トルクTr0にローパスフィルタ処理を施して、ローパスフィルタ処理後の目標制駆動トルクTr1を出力する。レートリミッタ50の制限値L、L1、L2とLPF51のカットオフ周波数を適切に設定すれば、切り替えが連続的に生じても、目標トルクの急変を抑制できる。 The chattering suppression unit 34 suppresses chattering when switching between the target braking/driving torque Tr0 (equation (3)) calculated using only the first target value Fz2 as the required force and the target braking/driving torque Tr0 (equation (2)) calculated using only the second target value Mp2 as the required force. FIG. 5 is a block diagram of an example of the functional configuration of the chattering suppression unit 34. The chattering suppression unit 34 includes a rate limiter 50 and a low-pass filter (LPF) 51. The rate limiter 50 limits the time rate of change of the target braking/driving torque Tr0 to a limit value or less. The rate limiter 50 may limit the time rate of change with the same limit value L when the target braking/driving torque Tr0 increases and decreases, or may limit with different limit values L1 and L2. The LPF 51 applies low-pass filtering to the target braking/driving torque Tr0 whose time rate of change has been limited by the rate limiter 50, and outputs the target braking/driving torque Tr1 after low-pass filtering. By appropriately setting the limit values L, L1, and L2 of the rate limiter 50 and the cutoff frequency of the LPF 51, it is possible to suppress sudden changes in the target torque even if switching occurs continuously.
 図3を参照する。制限係数演算部35は、運転者の操作入力と車両100の車体挙動に応じて目標制駆動トルクTr1を制限する制限係数Cを演算する。
 図6は、制限係数演算部35の機能構成例のブロック図である。制限係数演算部35は、運転者入力判定部60と、車体挙動判定部61と、車輪速差分依存制限係数設定部62と、制限係数設定部63を備える。
 運転者入力判定部60は、アクセル操作量Acが閾値Acthを越えた場合、ブレーキ操作量Brが閾値Brthを越えた場合、又は操舵角δfが閾値δfthを越えた場合に、運転者入力フラグCdの値を「0」に設定し、アクセル操作量Acが閾値Acthを越えず、ブレーキ操作量Brが閾値Brthを越えず、且つ操舵角δfが閾値δfthを越えない場合に運転者入力フラグCdの値を「1」に設定する。
 車体挙動判定部61は、前後方向加速度ddxが閾値ddxthを越えた場合、横方向加速度ddyが閾値ddythを越えた場合、又はヨーレイトdψが閾値dψthを越えた場合に、車体挙動フラグCmの値を「0」に設定し、前後方向加速度ddxが閾値ddxthを越えず、横方向加速度ddyが閾値ddythを越えず、且つヨーレイトdψが閾値dψthを越えない場合に、車体挙動フラグCmの値を「1」に設定する。
3, the limiting coefficient calculation unit 35 calculates a limiting coefficient C that limits the target braking/driving torque Tr1 in accordance with the driver's operation input and the vehicle body behavior of the vehicle 100.
6 is a block diagram of an example of a functional configuration of the limiting coefficient calculation unit 35. The limiting coefficient calculation unit 35 includes a driver input determination unit 60, a vehicle body behavior determination unit 61, a wheel speed difference dependent limiting coefficient setting unit 62, and a limiting coefficient setting unit 63.
The driver input determination unit 60 sets the value of the driver input flag Cd to "0" when the accelerator operation amount Ac exceeds the threshold value Acth, when the brake operation amount Br exceeds the threshold value Brth, or when the steering angle δf exceeds the threshold value δfth, and sets the value of the driver input flag Cd to "1" when the accelerator operation amount Ac does not exceed the threshold value Acth, the brake operation amount Br does not exceed the threshold value Brth, and the steering angle δf does not exceed the threshold value δfth.
The vehicle body behavior determination unit 61 sets the value of the vehicle body behavior flag Cm to "0" when the longitudinal acceleration ddx exceeds the threshold value ddxth, when the lateral acceleration ddy exceeds the threshold value ddyth, or when the yaw rate dψ exceeds the threshold value dψth, and sets the value of the vehicle body behavior flag Cm to "1" when the longitudinal acceleration ddx does not exceed the threshold value ddxth, the lateral acceleration ddy does not exceed the threshold value ddyth, and the yaw rate dψ does not exceed the threshold value dψth.
 車輪速差分依存制限係数設定部62は、前輪7Fと後輪7Rとの間の車輪速差分Δωfr=ωF-ωRが過大である場合(例えば前輪7F及び/又は後輪7Rでスリップが生じた場合)に、目標制駆動トルクTr0を制限する前後車輪速差分依存制限係数Cfrを設定する。図7(a)は前後車輪速差分依存制限係数Cfrの設定例を示す。前後車輪速差分依存制限係数Cfrは「0」から「1」までの範囲の値を有する。前後車輪速差分依存制限係数Cfrは、車輪速差分|Δωfr|が閾値Δωfr1以下の場合には「1」であり、車輪速差分|Δωfr|が閾値Δωfr1以上で閾値Δωfr2以下の範囲では、車輪速差分|Δωfr|の増加に伴って「1」から「0」まで減少し、車輪速差分|Δωfr|が閾値Δωfr2以上の場合に「0」となる。閾値Δωfr1及びΔωfr2は、車両諸元、シミュレーション、実車での実験を利用して適宜設定してよい。 The wheel speed difference dependent limiting coefficient setting unit 62 sets a front/rear wheel speed difference dependent limiting coefficient Cfr that limits the target braking/driving torque Tr0 when the wheel speed difference Δωfr = ωF - ωR between the front wheels 7F and the rear wheels 7R is excessively large (for example, when slippage occurs at the front wheels 7F and/or the rear wheels 7R). Figure 7 (a) shows an example of setting the front/rear wheel speed difference dependent limiting coefficient Cfr. The front/rear wheel speed difference dependent limiting coefficient Cfr has a value in the range from "0" to "1". The front/rear wheel speed difference dependent limiting coefficient Cfr is "1" when the wheel speed difference |Δωfr| is equal to or less than the threshold value Δωfr1, decreases from "1" to "0" as the wheel speed difference |Δωfr| increases in the range where the wheel speed difference |Δωfr| is equal to or more than the threshold value Δωfr1 and equal to or less than the threshold value Δωfr2, and becomes "0" when the wheel speed difference |Δωfr| is equal to or more than the threshold value Δωfr2. The thresholds Δωfr1 and Δωfr2 may be set appropriately using vehicle specifications, simulations, and experiments with an actual vehicle.
 車輪速差分依存制限係数設定部62は、右前輪7FRと左前輪7FLとの間の車輪速差分Δωlrfが過大である場合(例えば右前輪7FRと左前輪7FLの何れかでスリップが生じた場合)に、目標制駆動トルクTr0を制限する左右車輪速差分依存制限係数Clrfを設定する。図7(b)は、左右車輪速差分依存制限係数Clrfの設定例を示す。左右車輪速差分依存制限係数Clrfは、「0」から「1」までの範囲の値を有する。左右車輪速差分依存制限係数Clrfは、車輪速差分|Δωlrf|が閾値Δωlrf1以下の場合には「1」であり、車輪速差分|Δωlrf|が閾値Δωlrf1以上で閾値Δωlrf2以下の範囲では、車輪速差分|Δωlrf|の増加に伴って「1」から「0」まで減少し、車輪速差分|Δωlrf|が閾値Δωlrf2以上の場合に「0」となる。閾値Δωlrf1及びΔωlrf2は、車両諸元、シミュレーション、実車での実験を利用して適宜設定してよい。
 車輪速差分依存制限係数設定部62は、左右車輪速差分依存制限係数Clrfの設定方法と同様に、右後輪7RRと左後輪7RLとの間の車輪速差分Δωlrrが過大である場合(例えば右後輪7RRと左後輪7RLの何れかでスリップが生じた場合)に、目標制駆動トルクTr0を制限する左右車輪速差分依存制限係数Clrrを設定する。
The wheel speed difference dependent limiting coefficient setting unit 62 sets a left/right wheel speed difference dependent limiting coefficient Clrf that limits the target braking/driving torque Tr0 when the wheel speed difference Δωlrf between the right front wheel 7FR and the left front wheel 7FL is excessive (for example, when slippage occurs in either the right front wheel 7FR or the left front wheel 7FL). FIG. 7B shows an example of setting the left/right wheel speed difference dependent limiting coefficient Clrf. The left/right wheel speed difference dependent limiting coefficient Clrf has a value in the range from "0" to "1". The left/right wheel speed difference dependent limiting coefficient Clrf is "1" when the wheel speed difference |Δωlrf| is equal to or less than the threshold value Δωlrf1, decreases from "1" to "0" as the wheel speed difference |Δωlrf| increases in the range where the wheel speed difference |Δωlrf| is equal to or more than the threshold value Δωlrf1 and equal to or less than the threshold value Δωlrf2, and becomes "0" when the wheel speed difference |Δωlrf| is equal to or more than the threshold value Δωlrf2. The threshold values Δωlrf1 and Δωlrf2 may be set appropriately using vehicle specifications, simulations, and experiments using an actual vehicle.
Similar to the method of setting the left/right wheel speed difference dependent limiting coefficient Clrf, the wheel speed difference dependent limiting coefficient setting unit 62 sets a left/right wheel speed difference dependent limiting coefficient Clrr that limits the target braking/driving torque Tr0 when the wheel speed difference Δωlrr between the right rear wheel 7RR and the left rear wheel 7RL is excessively large (for example, when slippage occurs at either the right rear wheel 7RR or the left rear wheel 7RL).
 制限係数設定部63は、前後車輪速差分依存制限係数Cfr、左右車輪速差分依存制限係数Clrf、Clrrの中の最小値を選択し、選択された最小値と運転者入力フラグCdと車体挙動フラグCmとを乗算して得られる積を、制限係数C=Cd×Cm×min(Cfr,Clrf,Clrr)として算出する。制限係数設定部63は、制限係数Cを目標トルク決定部36へ出力する。
 図3を参照する。目標トルク決定部36は、チャタリング抑制部34が出力した目標制駆動トルクTr1を制限係数Cで制限することにより、制限後の後輪7Rの目標制駆動トルクTrtを算出する。また、目標制駆動トルクTrtにより後輪7Rで生じる制駆動力の全部又は一部を、前輪7Fの制駆動力で相殺するように、前輪7Fの目標制駆動トルクTftを算出する。
 図8は、目標トルク決定部36の機能構成例のブロック図である。目標トルク決定部36は、目標トルク修正部70と、レートリミッタ71と、LPF72と、前輪トルク演算部73を備える。
The limit coefficient setting unit 63 selects the minimum value from the front/rear wheel speed difference dependent limit coefficient Cfr and the left/right wheel speed difference dependent limit coefficients Clrf and Clrr, and multiplies the selected minimum value by the driver input flag Cd and the vehicle body behavior flag Cm to calculate the product as limit coefficient C=Cd×Cm×min(Cfr, Clrf, Clrr). The limit coefficient setting unit 63 outputs the limit coefficient C to the target torque determination unit 36.
3, the target torque determination unit 36 calculates a limited target braking/driving torque Trt for the rear wheels 7R by limiting the target braking/driving torque Tr1 output by the chattering suppression unit 34 with the limiting coefficient C. In addition, the target braking/driving torque Tft for the front wheels 7F is calculated so that all or part of the braking/driving force generated at the rear wheels 7R by the target braking/driving torque Trt is offset by the braking/driving force of the front wheels 7F.
8 is a block diagram of an example of a functional configuration of the target torque determination unit 36. The target torque determination unit 36 includes a target torque correction unit 70, a rate limiter 71, an LPF 72, and a front wheel torque calculation unit 73.
 目標トルク修正部70は、目標制駆動トルクTr1に制限係数Cを乗算した積C×Tr1を算出する。レートリミッタ71は、積C×Tr1の時間変化率を制限する。LPF72は、レートリミッタ71の出力にローパスフィルタ処理を施して後輪7Rの目標制駆動トルクTrtを算出する。
 また、目標トルク修正部70は、後輪7Rの目標制駆動トルクTrtに基づいて、目標制駆動トルクTrtにより後輪7Rで生じる制駆動力の全部又は一部を相殺する制駆動力を前輪7Fに発生させる目標制駆動トルクTftを算出する。例えば目標トルク修正部70は、次式に基づいて目標制駆動トルクTftを算出してよい。
 Tft=-(rtf/rtr)×Trt
 図1を参照する。コントローラ10は、目標制駆動トルクTft及びTrtを電力変換器11へ出力する。電力変換器11は、コントローラ10から指令された目標制駆動トルクTft及びTrtを実現するように、前輪駆動源12F及び後輪駆動源12Rに電力を供給する。前輪駆動源12F及び後輪駆動源12Rは、それぞれ目標制駆動トルクTft及びTrtに応じた制駆動力を前輪7F及び後輪7Rを発生させる。
A target torque correction unit 70 calculates a product C×Tr1 by multiplying the target braking/driving torque Tr1 by a limiting coefficient C. A rate limiter 71 limits the time rate of change of the product C×Tr1. An LPF 72 performs low-pass filtering on the output of the rate limiter 71 to calculate a target braking/driving torque Trt for the rear wheels 7R.
Furthermore, the target torque correction unit 70 calculates a target braking/driving torque Tft that generates a braking/driving force on the front wheels 7F that offsets all or part of the braking/driving force generated on the rear wheels 7R by the target braking/driving torque Trt, based on the target braking/driving torque Trt of the rear wheels 7R. For example, the target torque correction unit 70 may calculate the target braking/driving torque Tft based on the following equation.
Tft = -(rtf/rtr) x Trt
Referring to Fig. 1, the controller 10 outputs target braking/driving torques Tft and Trt to the power converter 11. The power converter 11 supplies electric power to the front-wheel drive source 12F and the rear-wheel drive source 12R so as to realize the target braking/driving torques Tft and Trt commanded by the controller 10. The front-wheel drive source 12F and the rear-wheel drive source 12R generate braking/driving forces corresponding to the target braking/driving torques Tft and Trt on the front wheels 7F and the rear wheels 7R, respectively.
 (動作)
 図9は、実施形態の車両制振方法の一例のフローチャートである。ステップS1においてコントローラ10は、IMU5が測定した情報を取得する。ステップS2において目標値設定部30は、第1目標値Fz2と第2目標値Mp2を設定する。ステップS3において車速演算部32は、車両100の車体の重心速度である車速Vを演算する。ステップS4において周波数成分分析部31は、車両挙動の周波数成分dzf、dθfを演算する。
 ステップS5において優先順位判定部33は、優先順位判定処理を行う。優先順位判定処理では第1目標値Fz2に基づく車両100の振動の抑制と、第2目標値Mp2に基づく車両100の振動の抑制との間の優先順位を判定し、判定結果に基づいて目標制駆動トルクTr0を算出する。優先順位判定処理の詳細は図10を参照して後述する。
(motion)
9 is a flowchart of an example of a vehicle vibration damping method according to an embodiment. In step S1, the controller 10 acquires information measured by the IMU 5. In step S2, the target value setting unit 30 sets a first target value Fz2 and a second target value Mp2. In step S3, the vehicle speed calculation unit 32 calculates the vehicle speed V, which is the speed of the center of gravity of the body of the vehicle 100. In step S4, the frequency component analysis unit 31 calculates frequency components dzf and dθf of the vehicle behavior.
In step S5, the priority order determination unit 33 performs a priority order determination process. In the priority order determination process, the priority order between suppression of vibration of the vehicle 100 based on the first target value Fz2 and suppression of vibration of the vehicle 100 based on the second target value Mp2 is determined, and the target braking/driving torque Tr0 is calculated based on the determination result. The details of the priority order determination process will be described later with reference to FIG. 10.
 ステップS6においてチャタリング抑制部34は、第1目標値Fz2のみを要求力として算出した目標制駆動トルクTr0と、第2目標値Mp2のみを要求力として算出した目標制駆動トルクTr0との間の切替のチャタリングを抑制する。ステップS7において制限係数演算部35は、制限係数Cを演算する。ステップS8において目標トルク決定部36は、チャタリングを抑制した後の目標制駆動トルクTr1を制限係数Cで制限して後輪7Rの目標制駆動トルクTrtを算出する。また、後輪7Rの目標制駆動トルクTrtに基づいて前輪7Fの目標制駆動トルクTftを算出する。
 ステップS9において電力変換器11と、前輪駆動源12F及び後輪駆動源12Rは、目標制駆動トルクTft及びTrtに応じた制駆動力をそれぞれ前輪7F及び後輪7Rを発生させる。
In step S6, the chattering suppression unit 34 suppresses chattering at the switching between the target braking/driving torque Tr0 calculated using only the first target value Fz2 as the required force and the target braking/driving torque Tr0 calculated using only the second target value Mp2 as the required force. In step S7, the limiting coefficient calculation unit 35 calculates the limiting coefficient C. In step S8, the target torque determination unit 36 calculates the target braking/driving torque Trt for the rear wheels 7R by limiting the target braking/driving torque Tr1 after suppressing chattering using the limiting coefficient C. In addition, the target braking/driving torque Tft for the front wheels 7F is calculated based on the target braking/driving torque Trt for the rear wheels 7R.
In step S9, the power converter 11, the front wheel drive source 12F and the rear wheel drive source 12R generate braking/driving forces for the front wheels 7F and the rear wheels 7R according to the target braking/driving torques Tft and Trt, respectively.
 図10は、優先順位判定処理の一例のフローチャートである。ステップS10にて優先順位判定部33は、第1目標値Fz2の符号と第2目標値Mp2の符号が等しいか否かを判定する。符号が等しい場合(ステップS10:Y)に処理はステップS11へ進む。符号が異なる場合(ステップS10:N)に処理はステップS12へ進む。ステップS11において優先順位判定部33は上式(1)に基づき目標制駆動トルクTr0を算出する。
 ステップS12にて優先順位判定部33は、車速Vが閾値Vth以上であるか否かを判定する。車速Vが閾値Vth以上である場合(ステップS12:Y)に処理はステップS13へ進む。車速Vが閾値Vth未満の場合(ステップS12:N)に処理はステップS14へ進む。ステップS13にて優先順位判定部33は上式(2)に基づき目標制駆動トルクTr0を算出する。
10 is a flowchart of an example of a priority order determination process. In step S10, the priority order determination unit 33 determines whether the sign of the first target value Fz2 and the sign of the second target value Mp2 are the same. If the signs are the same (step S10: Y), the process proceeds to step S11. If the signs are different (step S10: N), the process proceeds to step S12. In step S11, the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (1).
In step S12, the priority order determination unit 33 determines whether the vehicle speed V is equal to or greater than the threshold value Vth. If the vehicle speed V is equal to or greater than the threshold value Vth (step S12: Y), the process proceeds to step S13. If the vehicle speed V is less than the threshold value Vth (step S12: N), the process proceeds to step S14. In step S13, the priority order determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (2).
 ステップS14にて優先順位判定部33は、第2周波数帯域Δf2におけるピッチレートdθの周波数成分の絶対値|dθf|が閾値dθthよりも大きく、且つ第1周波数帯域Δf1における第1周波数帯域Δf1における上下方向速度dzの周波数成分の絶対値|dzf|が閾値dzthよりも大きいか否かを判定する。絶対値|dθf|が閾値dθthよりも大きく且つ絶対値|dzf|が閾値dzthよりも大きい場合(ステップS14:Y)に処理はステップS15へ進む。絶対値|dθf|が閾値dθth以下であるか絶対値|dzf|が閾値dzth以下である場合(ステップS14:N)に処理はステップS16へ進む。ステップS15にて優先順位判定部33はアンチダイブ角θf及びアンチスカット角θrの差分の絶対値|θf-θr|に応じて上式(2)又は(3)のいずれか一方に基づき目標制駆動トルクTr0を算出する。 In step S14, the priority determination unit 33 determines whether the absolute value |dθf| of the frequency component of the pitch rate dθ in the second frequency band Δf2 is greater than the threshold value dθth, and whether the absolute value |dzf| of the frequency component of the vertical velocity dz in the first frequency band Δf1 in the first frequency band Δf1 is greater than the threshold value dzth. If the absolute value |dθf| is greater than the threshold value dθth and the absolute value |dzf| is greater than the threshold value dzth (step S14: Y), the process proceeds to step S15. If the absolute value |dθf| is equal to or less than the threshold value dθth or the absolute value |dzf| is equal to or less than the threshold value dzth (step S14: N), the process proceeds to step S16. In step S15, the priority determination unit 33 calculates the target braking/driving torque Tr0 based on either the above formula (2) or (3) according to the absolute value |θf-θr| of the difference between the anti-dive angle θf and the anti-squat angle θr.
 ステップS16にて優先順位判定部33は、絶対値|dθf|が閾値dθthよりも大きいか否かを判定する。絶対値|dθf|が閾値dθthよりも大きい場合(ステップS16:Y)に処理はステップS17へ進む。絶対値|dθf|が閾値dθth以下の場合(ステップS16:N)に処理はステップS18へ進む。ステップS17にて優先順位判定部33は上式(2)に基づき目標制駆動トルクTr0を算出する。
 ステップS18にて絶対値|dzf|が閾値dzthよりも大きいか否かを判定する。絶対値|dzf|が閾値dzthよりも大きい場合(ステップS18:Y)に処理はステップS19へ進む。絶対値|dzf|が閾値dzth以下の場合(ステップS18:N)に処理はステップS20へ進む。ステップS19にて優先順位判定部33は上式(3)に基づき目標制駆動トルクTr0を算出する。
 ステップS20にて優先順位判定部33はアンチダイブ角θf及びアンチスカット角θrの差分の絶対値|θf-θr|に応じて上式(2)又は(3)のいずれか一方に基づき目標制駆動トルクTr0を算出する。
In step S16, the priority determination unit 33 determines whether the absolute value |dθf| is greater than the threshold value dθth. If the absolute value |dθf| is greater than the threshold value dθth (step S16: Y), the process proceeds to step S17. If the absolute value |dθf| is equal to or less than the threshold value dθth (step S16: N), the process proceeds to step S18. In step S17, the priority determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (2).
In step S18, it is determined whether the absolute value |dzf| is greater than the threshold value dzth. If the absolute value |dzf| is greater than the threshold value dzth (step S18: Y), the process proceeds to step S19. If the absolute value |dzf| is equal to or less than the threshold value dzth (step S18: N), the process proceeds to step S20. In step S19, the priority determination unit 33 calculates the target braking/driving torque Tr0 based on the above formula (3).
In step S20, the priority determination unit 33 calculates the target braking/driving torque Tr0 based on either the above formula (2) or (3) in accordance with the absolute value |θf-θr| of the difference between the anti-dive angle θf and the anti-squat angle θr.
 (シミュレーション結果)
 図11(a)は、タイヤ接地点の上下変位に対する車体の上下変位のゲインの周波数特性のシミュレーション結果の模式図であり、図11(b)は、タイヤ接地点のピッチ角変化に対する車体のピッチ角変化のゲインの周波数特性のシミュレーション結果の模式図である。破線は、常に上式(1)により目標制駆動トルクを算出した場合のシミュレーション結果を示し、実線及び点線は、第1目標値Fz2と第2目標値Mp2の符号が異なる場合にそれぞれ上式(2)及び(3)に切り替える場合のシミュレーション結果を示している。第1目標値Fz2と第2目標値Mp2の符号が異なる場合に目標制駆動トルクを切り替えることにより、上式(1)を常に用いる場合と比較して、車両挙動をより抑制していることが分かる。
(simulation result)
Fig. 11(a) is a schematic diagram of the simulation result of the frequency characteristic of the gain of the vertical displacement of the vehicle body relative to the vertical displacement of the tire contact point, and Fig. 11(b) is a schematic diagram of the simulation result of the frequency characteristic of the gain of the pitch angle change of the vehicle body relative to the pitch angle change of the tire contact point. The dashed line shows the simulation result when the target braking/driving torque is always calculated by the above formula (1), and the solid line and dotted line show the simulation result when the above formula (2) and (3) are switched, respectively, when the signs of the first target value Fz2 and the second target value Mp2 are different. It can be seen that the vehicle behavior is more suppressed by switching the target braking/driving torque when the signs of the first target value Fz2 and the second target value Mp2 are different, compared to the case where the above formula (1) is always used.
 (変形例)
 上記の実施形態では、前輪駆動源12F及び後輪駆動源12Rが発生する制駆動力を制御して上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御する例について説明したが、本発明はこのような例に限定されない。本発明は、例えば制動装置により前輪7F、後輪7Rに発生する制動力や、アクティブサスペンションのストローク、アクティブサスペンションが発生する力や減衰力の前後配分を制御することによって、上下方向の力又はピッチ方向のモーメントを制御する場合にも適用可能である。
(Modification)
In the above embodiment, an example has been described in which the braking/driving forces generated by the front-wheel drive source 12F and the rear-wheel drive source 12R are controlled to control at least one of the vertical force and the pitch moment, but the present invention is not limited to such an example. The present invention can also be applied to cases in which the vertical force or the pitch moment is controlled by controlling, for example, the braking forces generated by the braking device on the front wheels 7F and the rear wheels 7R, the stroke of the active suspension, or the front/rear distribution of the force and damping force generated by the active suspension.
 (実施形態の効果)
 (1)車両制振方法では、上下方向の力の目標値である第1目標値と、ピッチ方向のモーメントの目標値である第2目標値と、を設定し、上向き方向の上下方向の力の符号と車両100の前部を下げるピッチ方向のモーメントの符号とを同符号としたとき第1目標値の符号と第2目標値の符号とが等しいか否かを判定し、符号が同一の場合には、第1目標値に基づいて上下方向の力を制御するとともに第2目標値に基づいてピッチ方向のモーメントを制御し、符号が異なる場合に、上下方向の力とピッチ方向のモーメントの、車両100の車体バネ上の上下方向加速度又は前後方向加速度に対するゲインの大きさに基づいて、上下方向の力とピッチ方向のモーメントとの間の優先順位を判定し、上下方向の力の優先順位がピッチ方向のモーメントの優先順位より高い場合に、第1目標値に基づいて上下方向の力を制御するとともに、第2目標値に基づくピッチ方向のモーメントの制御を制限し、ピッチ方向のモーメントの優先順位が上下方向の力の優先順位より高い場合に、第2目標値に基づいてピッチ方向のモーメントを制御するとともに、第1目標値に基づく上下方向の力の制御を制限する。
(Effects of the embodiment)
(1) In the vehicle vibration control method, a first target value which is a target value of a force in a vertical direction and a second target value which is a target value of a moment in a pitch direction are set, and when the sign of the upward vertical force and the sign of the moment in a pitch direction which lowers the front of the vehicle 100 are set to be the same, it is determined whether the sign of the first target value and the sign of the second target value are equal. If the signs are the same, the vertical force is controlled based on the first target value and the pitch moment is controlled based on the second target value. If the signs are different, the vertical force and the pitch moment are controlled by adjusting the body springs of the vehicle 100. A priority order between the vertical force and the pitch moment is determined based on the magnitude of the gain for the vertical acceleration or the fore-aft acceleration, and if the priority order of the vertical force is higher than the priority order of the pitch moment, the vertical force is controlled based on a first target value and the control of the pitch moment based on a second target value is restricted, and if the priority order of the pitch moment is higher than the priority order of the vertical force, the pitch moment is controlled based on the second target value and the control of the vertical force based on the first target value is restricted.
 これにより、車体の上下方向の力とピッチ方向のモーメントとを比較し、制振に必要な上下力の方向が一致する場合は両方の制御力をそのまま採用し、一致しない場合はいずれかの制御力に適切に切り替えることで、効率の良い車両の制振を実現することができる。また、車体の上下方向の力とピッチ方向のモーメントのうち、車体バネ上への影響の大きい制御力を優先することで乗員の乗り心地を向上できる。 This allows for efficient vehicle vibration control by comparing the vertical force of the vehicle body with the moment in the pitch direction, and if the directions of the vertical forces required for vibration control match, both control forces are used as is, but if they do not match, the control force is appropriately switched to one of the two.In addition, the ride comfort for passengers can be improved by prioritizing the control force that has the greatest effect on the vehicle body springs, out of the vertical force and pitch direction moment of the vehicle body.
 (2)車両100に入力される上下方向の力の周波数成分とピッチ方向のモーメントの周波数成分とに基づいて、上下方向の力とピッチ方向のモーメントとの間の優先順位を判定してもよい。これにより、車体バネ上への影響の大きいか否かを周波数成分に基づいて判定できる。
 (3)車体バネ上の上下方向加速度又は前後方向加速度に対して上下方向の力が与えるゲインの周波数特性に応じて定めた第1周波数帯域における上下方向の力の周波数成分の大きさが閾値以上であり、且つ車体バネ上の上下方向加速度又は前後方向加速度に対してピッチ方向のモーメントが与えるゲインの周波数特性に応じて定めた第2周波数帯域におけるピッチ方向のモーメントの周波数成分の大きさが閾値以上である場合、又は第1周波数帯域における上下方向の力の周波数成分の大きさが閾値未満であり且つ第2周波数帯域におけるピッチ方向のモーメントの周波数成分の大きさが閾値未満である場合に、車両100のサスペンション、タイヤの幾何学的関係により定まるアンチダイブ角及びアンチスカット角に基づいて、上下方向の力とピッチ方向のモーメントとの間の優先順位を判定してもよい。
 これにより、周波数成分に基づいて上下方向の力とピッチ方向のモーメントとの間の優先順位を判定する難しい場合に、車輪の制駆動力で発生させ易い方を優先することができる。
(2) A priority order between the vertical force and the pitch moment may be determined based on the frequency components of the vertical force and the pitch moment input to the vehicle 100. This makes it possible to determine whether or not there is a large effect on the vehicle body springs based on the frequency components.
(3) In a case where the magnitude of the frequency component of the vertical force in a first frequency band determined according to the frequency characteristics of the gain imparted by the vertical force to the vertical acceleration or the longitudinal acceleration on the vehicle body springs is equal to or greater than a threshold value, and the magnitude of the frequency component of the pitch moment in a second frequency band determined according to the frequency characteristics of the gain imparted by the pitch moment to the vertical acceleration or the longitudinal acceleration on the vehicle body springs is equal to or greater than a threshold value, or where the magnitude of the frequency component of the vertical force in the first frequency band is less than a threshold value and the magnitude of the frequency component of the pitch moment in the second frequency band is less than a threshold value, the priority between the vertical force and the pitch moment may be determined based on the anti-dive angle and anti-squat angle determined by the geometric relationship between the suspension and tires of the vehicle 100.
As a result, in cases where it is difficult to determine the priority between the vertical force and the pitch moment based on the frequency components, it is possible to give priority to the one that is easier to generate in the braking/driving force of the wheels.
 (4)車両100の車速が閾値以上の高い場合に上下方向の力よりもピッチ方向のモーメントの優先順位が高いと判定してもよい。これにより、車体の挙動による運転者の視点の変化を小さくすることができ、運転支援装置のカメラやレーダによる遠方の物体検知の誤差を減少できる。
 (5)第1目標値のみを要求力として算出した目標制駆動トルクと、第2目標値のみを要求力として算出した目標制駆動トルクとを、時間変化率を制限値以下に制限し、または、ローパスフィルタ処理をしてもよい。これにより、車両の挙動の急変を軽減できる。
(4) When the vehicle speed of the vehicle 100 is higher than a threshold, it may be determined that the pitch moment has a higher priority than the up-down force. This can reduce the change in the driver's viewpoint caused by the behavior of the vehicle body, and can reduce errors in the detection of distant objects by the camera or radar of the driving support device.
(5) The time rate of change of the target braking/driving torque calculated using only the first target value as the required force and the target braking/driving torque calculated using only the second target value as the required force may be limited to a limit value or may be subjected to low-pass filtering. This can reduce sudden changes in the vehicle behavior.
 (6)前輪と後輪との間の回転数差が第1閾値を超えた場合、左輪と右輪の間の回転数差が第2閾値を超えた場合、車両100に発生するヨーレイトが第3閾値を超えた場合、横方向加速度が第4閾値を超えた場合、もしくは前後方向加速度が第5閾値を超えた場合、又はステアリングホイールの操舵角が第6閾値を超えた場合、アクセル操作量が第7閾値を超えた場合、もしくはブレーキ操作量が第8閾値を越えた場合に、第1目標値に基づく上下方向の力の制御又は第2目標値に基づくピッチ方向のモーメントの制御の少なくとも一方を制限してもよい。
 これにより、制振制御により車両の挙動が不安定になったり、運転者が意図する加減速、旋回運動に影響を与えることを防ぐことができる。
(6) At least one of the control of the vertical force based on the first target value or the control of the pitch moment based on the second target value may be limited when the difference in rotation speed between the front and rear wheels exceeds a first threshold value, when the difference in rotation speed between the left and right wheels exceeds a second threshold value, when the yaw rate generated in the vehicle 100 exceeds a third threshold value, when the lateral acceleration exceeds a fourth threshold value, when the longitudinal acceleration exceeds a fifth threshold value, when the steering angle of the steering wheel exceeds a sixth threshold value, when the accelerator operation amount exceeds a seventh threshold value, or when the brake operation amount exceeds an eighth threshold value.
This makes it possible to prevent the vibration damping control from making the vehicle unstable and from affecting the acceleration/deceleration and cornering movements intended by the driver.
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。 All examples and conditional terms described herein are intended for educational purposes to assist the reader in understanding the present invention and the concepts provided by the inventor for the advancement of technology, and should be construed without being limited to the above specifically described examples and conditions, and the configuration of the examples in this specification with respect to showing the advantages and disadvantages of the present invention. Although the embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions and modifications can be made thereto without departing from the spirit and scope of the present invention.
 100…車両、1…操舵角測定装置、2…操舵装置、2a…ステアリングホイール、2b…ステアリングシャフト、3…アクセルペダル、4…ブレーキペダル、5…慣性測定装置、6FL、6FR、6RL、6RR…車輪速測定装置、7FL…左前輪、7FR…右前輪、7RL…左後輪、7RR…右後輪、8FL、8FR…前輪駆動軸、8RL、8RR…後輪駆動軸、10…コントローラ、10a…プロセッサ、10b…記憶装置、11…電力変換器、12F…前輪駆動源、12R…後輪駆動源、13…バッテリ、20…車体、21f、21r…ばね機構、22f、22r…ダンパ機構、23f、23r…瞬間回転中心、30…目標値設定部、31…周波数成分分析部、32…車速演算部、33…優先順位判定部、34…チャタリング抑制部、35…制限係数演算部、36…目標トルク決定部、50…レートリミッタ、51、72…ローパスフィルタ、60…運転者入力判定部、61…車体挙動判定部、62…車輪速差分依存制限係数設定部、63…制限係数設定部、70…目標トルク修正部、71…レートリミッタ、73…前輪トルク演算部 100...vehicle, 1...steering angle measuring device, 2...steering device, 2a...steering wheel, 2b...steering shaft, 3...accelerator pedal, 4...brake pedal, 5...inertial measurement device, 6FL, 6FR, 6RL, 6RR...wheel speed measuring device, 7FL...left front wheel, 7FR...right front wheel, 7RL...left rear wheel, 7RR...right rear wheel, 8FL, 8FR...front wheel drive shaft, 8RL, 8RR...rear wheel drive shaft, 10...controller, 10a...processor, 10b...storage device, 11...power converter, 12F...front wheel drive source, 12R...rear wheel drive source, 13...battery, 20... Vehicle body, 21f, 21r...spring mechanism, 22f, 22r...damper mechanism, 23f, 23r...instantaneous center of rotation, 30...target value setting unit, 31...frequency component analysis unit, 32...vehicle speed calculation unit, 33...priority determination unit, 34...chattering suppression unit, 35...limiting coefficient calculation unit, 36...target torque determination unit, 50...rate limiter, 51, 72...low-pass filter, 60...driver input determination unit, 61...vehicle behavior determination unit, 62...wheel speed difference dependent limiting coefficient setting unit, 63...limiting coefficient setting unit, 70...target torque correction unit, 71...rate limiter, 73...front wheel torque calculation unit

Claims (7)

  1.  車両の上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御して前記車両の振動を軽減する車両制振方法であって、
     前記上下方向の力の目標値である第1目標値と、前記ピッチ方向のモーメントの目標値である第2目標値と、を設定し、
     上向き方向の前記上下方向の力の符号と前記車両の前部を下げる前記ピッチ方向のモーメントの符号とを同符号としたとき前記第1目標値の符号と前記第2目標値の符号とが等しいか否かを判定し、
     前記符号が同一の場合には、前記第1目標値に基づいて前記上下方向の力を制御するとともに前記第2目標値に基づいて前記ピッチ方向のモーメントを制御し、
     前記符号が異なる場合に、前記上下方向の力と前記ピッチ方向のモーメントの、前記車両の車体バネ上の上下方向加速度又は前後方向加速度に対するゲインの大きさに基づいて、前記上下方向の力と前記ピッチ方向のモーメントとの間の優先順位を判定し、
     前記上下方向の力の優先順位が前記ピッチ方向のモーメントの優先順位より高い場合に、前記第1目標値に基づいて前記上下方向の力を制御するとともに、前記第2目標値に基づく前記ピッチ方向のモーメントの制御を制限し、
     前記ピッチ方向のモーメントの優先順位が前記上下方向の力の優先順位より高い場合に、前記第2目標値に基づいて前記ピッチ方向のモーメントを制御するとともに、前記第1目標値に基づく前記上下方向の力の制御を制限する、
     ことを特徴とする車両制振方法。
    A vehicle vibration damping method for reducing vibration of a vehicle by controlling at least one of a vertical force or a pitch moment of the vehicle, comprising:
    setting a first target value which is a target value of the force in the vertical direction and a second target value which is a target value of the moment in the pitch direction;
    determining whether or not the sign of the first target value and the sign of the second target value are equal when the sign of the upward force in the vertical direction and the sign of the moment in the pitch direction that lowers the front part of the vehicle are the same;
    When the signs are the same, the vertical force is controlled based on the first target value, and the pitch moment is controlled based on the second target value.
    When the signs are different, a priority order between the vertical force and the pitch moment is determined based on a magnitude of a gain of the vertical force and the pitch moment with respect to a vertical acceleration or a longitudinal acceleration on a body spring of the vehicle;
    when the priority of the vertical force is higher than the priority of the pitch moment, controlling the vertical force based on the first target value and limiting the control of the pitch moment based on the second target value;
    when the priority of the moment in the pitch direction is higher than the priority of the force in the vertical direction, controlling the moment in the pitch direction based on the second target value and limiting the control of the force in the vertical direction based on the first target value.
    A vehicle vibration damping method comprising:
  2.  前記車両に入力される上下方向の力の周波数成分と前記ピッチ方向のモーメントの周波数成分とに基づいて、前記上下方向の力と前記ピッチ方向のモーメントとの間の優先順位を判定する、ことを特徴とする請求項1に記載の車両制振方法。 The vehicle vibration control method according to claim 1, characterized in that a priority between the vertical force and the pitch moment is determined based on the frequency components of the vertical force and the pitch moment input to the vehicle.
  3.  前記車体バネ上の上下方向加速度又は前後方向加速度に対して前記上下方向の力が与えるゲインの周波数特性に応じて定めた第1周波数帯域における前記上下方向の力の周波数成分の大きさが閾値以上であり、且つ前記車体バネ上の上下方向加速度又は前後方向加速度に対して前記ピッチ方向のモーメントが与えるゲインの周波数特性に応じて定めた第2周波数帯域における前記ピッチ方向のモーメントの周波数成分の大きさが閾値以上である場合、又は前記第1周波数帯域における前記上下方向の力の周波数成分の大きさが閾値未満であり、且つ前記第2周波数帯域における前記ピッチ方向のモーメントの周波数成分の大きさが閾値未満である場合に、前記車両のサスペンション、タイヤの幾何学的関係により定まるアンチダイブ角及びアンチスカット角に基づいて、前記上下方向の力と前記ピッチ方向のモーメントとの間の優先順位を判定する、ことを特徴とする請求項1に記載の車両制振方法。 The vehicle vibration control method according to claim 1, characterized in that, when the magnitude of the frequency component of the vertical force in a first frequency band determined according to the frequency characteristics of the gain that the vertical force imparts to the vertical acceleration or the longitudinal acceleration on the vehicle body spring is equal to or greater than a threshold value, and the magnitude of the frequency component of the pitch moment in a second frequency band determined according to the frequency characteristics of the gain that the pitch moment imparts to the vertical acceleration or the longitudinal acceleration on the vehicle body spring is equal to or greater than a threshold value, or when the magnitude of the frequency component of the vertical force in the first frequency band is less than a threshold value, and the magnitude of the frequency component of the pitch moment in the second frequency band is less than a threshold value, the priority between the vertical force and the pitch moment is determined based on an anti-dive angle and an anti-squat angle determined by a geometric relationship between the suspension and tires of the vehicle.
  4.  前記車両の車速が閾値以上の高い場合に前記上下方向の力よりも前記ピッチ方向のモーメントの優先順位が高いと判定する、ことを特徴とする請求項1に記載の車両制振方法。 The vehicle vibration control method according to claim 1, characterized in that it is determined that the pitch moment has a higher priority than the vertical force when the vehicle speed of the vehicle is higher than a threshold value.
  5.  前記第1目標値のみを要求力として算出した目標制駆動トルクと、前記第2目標値のみを要求力として算出した目標制駆動トルクとを、時間変化率を制限値以下に制限し、または、ローパスフィルタ処理をする請求項1に記載の車両制振方法。 The vehicle vibration control method according to claim 1, in which the time rate of change of the target braking/driving torque calculated using only the first target value as the required force and the target braking/driving torque calculated using only the second target value as the required force is limited to a limit value or less, or is subjected to low-pass filter processing.
  6.  前輪と後輪との間の回転数差が第1閾値を超えた場合、左輪と右輪の間の回転数差が第2閾値を超えた場合、前記車両に発生するヨーレイトが第3閾値を超えた場合、横方向加速度が第4閾値を超えた場合、もしくは前後方向加速度が第5閾値を超えた場合、又はステアリングホイールの操舵角が第6閾値を超えた場合、アクセル操作量が第7閾値を超えた場合、もしくはブレーキ操作量が第8閾値を越えた場合に、前記第1目標値に基づく前記上下方向の力の制御又は前記第2目標値に基づく前記ピッチ方向のモーメントの制御の少なくとも一方を制限することを特徴とする請求項1に記載の車両制振方法。 The vehicle vibration control method according to claim 1, characterized in that at least one of the control of the vertical force based on the first target value or the control of the pitch moment based on the second target value is limited when the rotation speed difference between the front and rear wheels exceeds a first threshold, when the rotation speed difference between the left and right wheels exceeds a second threshold, when the yaw rate generated in the vehicle exceeds a third threshold, when the lateral acceleration exceeds a fourth threshold, when the longitudinal acceleration exceeds a fifth threshold, when the steering wheel steering angle exceeds a sixth threshold, when the accelerator operation amount exceeds a seventh threshold, or when the brake operation amount exceeds an eighth threshold.
  7.  車両の上下方向の力又はピッチ方向のモーメントの少なくとも一方を制御して前記車両の振動を軽減する車両制振装置であって、
     前記車両の挙動を発生させるアクチュエータと、
     前記上下方向の力の目標値である第1目標値と、前記ピッチ方向のモーメントの目標値である第2目標値と、を設定する処理と、上向き方向の前記上下方向の力の符号と前記車両の前部を下げる前記ピッチ方向のモーメントの符号とが同符号とを同符号としたとき前記第1目標値の符号と前記第2目標値の符号とが等しいか否かを判定する処理と、前記符号が同一の場合には、前記アクチュエータによって前記第1目標値に基づいて前記上下方向の力を制御するとともに前記第2目標値に基づいて前記ピッチ方向のモーメントを制御する処理と、前記符号が異なる場合に、前記上下方向の力と前記ピッチ方向のモーメントの、前記車両の車体バネ上の上下方向加速度又は前後方向加速度に対するゲインの大きさに基づいて、前記上下方向の力と前記ピッチ方向のモーメントとの間の優先順位を判定する処理と、前記上下方向の力の優先順位が前記ピッチ方向のモーメントの優先順位より高い場合に、前記アクチュエータによって前記第1目標値に基づいて前記上下方向の力を制御するとともに、前記第2目標値に基づく前記ピッチ方向のモーメントの制御を制限する処理と、前記ピッチ方向のモーメントの優先順位が前記上下方向の力の優先順位より高い場合に、前記アクチュエータによって前記第2目標値に基づいて前記ピッチ方向のモーメントを制御するとともに、前記第1目標値に基づく前記上下方向の力の制御を制限する処理と、を実行するコントローラと、
     を備えることを特徴とする車両制振装置。
    A vehicle vibration damping device that reduces vibration of a vehicle by controlling at least one of a vertical force or a pitch moment of the vehicle,
    An actuator that generates a behavior of the vehicle;
    a process of setting a first target value which is a target value of the vertical force and a second target value which is a target value of the pitch direction moment; a process of determining whether or not the sign of the first target value and the sign of the second target value are equal when the sign of the vertical force in an upward direction and the sign of the pitch direction moment which lowers the front of the vehicle are the same; a process of controlling the vertical force based on the first target value by the actuator and controlling the pitch direction moment based on the second target value when the signs are different; a controller that executes a process of determining a priority between the vertical force and the pitch moment based on a magnitude of a gain for a vertical force; a process of controlling the vertical force based on the first target value by the actuator and limiting control of the pitch moment based on the second target value when the priority of the vertical force is higher than the priority of the pitch moment; and a process of controlling the pitch moment based on the second target value by the actuator and limiting control of the vertical force based on the first target value when the priority of the pitch moment is higher than the priority of the vertical force.
    A vehicle vibration damping device comprising:
PCT/JP2022/044603 2022-12-02 2022-12-02 Vehicle vibration damping method and vehicle vibration damping device WO2024116409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044603 WO2024116409A1 (en) 2022-12-02 2022-12-02 Vehicle vibration damping method and vehicle vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044603 WO2024116409A1 (en) 2022-12-02 2022-12-02 Vehicle vibration damping method and vehicle vibration damping device

Publications (1)

Publication Number Publication Date
WO2024116409A1 true WO2024116409A1 (en) 2024-06-06

Family

ID=91323185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044603 WO2024116409A1 (en) 2022-12-02 2022-12-02 Vehicle vibration damping method and vehicle vibration damping device

Country Status (1)

Country Link
WO (1) WO2024116409A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006884A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Active type suspension, and attitude variation suppression method for vehicle
JP2016025783A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Vehicular control apparatus
JP2016119738A (en) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 Vehicular braking force control device
JP2021049992A (en) * 2021-01-07 2021-04-01 Kyb株式会社 Suspension device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006884A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Active type suspension, and attitude variation suppression method for vehicle
JP2016025783A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Vehicular control apparatus
JP2016119738A (en) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 Vehicular braking force control device
JP2021049992A (en) * 2021-01-07 2021-04-01 Kyb株式会社 Suspension device

Similar Documents

Publication Publication Date Title
US8718872B2 (en) Vehicle attitude controller
CN109070873B (en) Vehicle control device and method
EP1745974B1 (en) Attitude control device for vehicle
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
EP1632382B1 (en) Vehicle stability control system with running resistance fluctuation compensation
JP4131270B2 (en) Vehicle braking / driving force control device
JP4193838B2 (en) Vehicle braking / driving force control device
CN110239499B (en) Vehicle control device and vehicle control method
CN105984462B (en) Vibration control apparatus and vibration control system
KR20130033963A (en) Vehicle motion control apparatus and suspension control apparatus
JP2006335171A (en) Driving/braking force control device for vehicle
JP2009273275A (en) Controller for vehicle
WO2012032870A1 (en) Vehicle body vibration damping control device
US20170106755A1 (en) Vehicle control apparatus
US11097587B2 (en) Electromagnetic suspension apparatus
JP2006264628A (en) Vehicular braking/driving force control system
JP4797586B2 (en) Vehicle braking / driving force control device
JP2010188918A (en) Behavior control device
WO2024116409A1 (en) Vehicle vibration damping method and vehicle vibration damping device
CN117412894A (en) Vehicle control device, vehicle control method, and vehicle control system
WO2024121888A1 (en) Braking/driving method and braking/driving device
JP2020131739A (en) Vehicle posture control device
JP2009196504A (en) Suspension control device
WO2024121887A1 (en) Vehicle vibration-damping method and vehicle vibration-damping device
US20240001910A1 (en) Vehicle movement control device and vehicle movement control method