WO2024116357A1 - Semiconductor photoelectrode - Google Patents

Semiconductor photoelectrode Download PDF

Info

Publication number
WO2024116357A1
WO2024116357A1 PCT/JP2022/044284 JP2022044284W WO2024116357A1 WO 2024116357 A1 WO2024116357 A1 WO 2024116357A1 JP 2022044284 W JP2022044284 W JP 2022044284W WO 2024116357 A1 WO2024116357 A1 WO 2024116357A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor
semiconductor thin
photoelectrode
band gap
Prior art date
Application number
PCT/JP2022/044284
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 渦巻
紗弓 里
晃洋 鴻野
浩伸 蓑輪
淳 荒武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/044284 priority Critical patent/WO2024116357A1/en
Publication of WO2024116357A1 publication Critical patent/WO2024116357A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/087Photocatalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • This disclosure relates to semiconductor photoelectrodes.
  • the device that produces hydrogen through a water splitting reaction using a semiconductor photoelectrode has an oxidation tank and a reduction tank that are connected via a proton exchange membrane. An aqueous solution and an oxidation electrode are placed in the oxidation tank, and an aqueous solution and a reduction electrode are placed in the reduction tank. The oxidation electrode and reduction electrode are electrically connected by a conductor.
  • the water splitting reaction using photocatalysts consists of a water oxidation reaction and a proton reduction reaction.
  • light is irradiated onto an n-type photocatalyst material, electrons and holes are generated and separated in the photocatalyst.
  • the holes move to the surface of the photocatalyst material and contribute to the water oxidation reaction.
  • the electrons move to the reduction electrode and contribute to the proton reduction reaction.
  • this type of oxidation-reduction reaction progresses, resulting in a water splitting reaction.
  • a thin semiconductor film is used for the oxidation electrode.
  • the target water oxidation reaction takes place on the surface of the thin semiconductor film.
  • thin semiconductor films with a narrow band gap such as indium gallium nitride, are expected to improve the efficiency of solar energy conversion because they can absorb a wider range of wavelengths.
  • semiconductor thin films with narrow band gaps have poor crystallinity due to the difficulty of crystal growth, and as a result, even if the wavelengths that can be absorbed are expanded, the rate of electron-hole recombination is high, meaning that the expected efficiency cannot be achieved.
  • an etching reaction occurs as a side reaction, starting from dislocations on the surface of the semiconductor thin film.
  • the etching reaction for gallium nitride is as follows:
  • Etching reaction 2GaN + 3H2O + 6h + ⁇ N2 + Ga2O3 + 6H + The more dislocations (lattice defects) there are on the surface of the semiconductor thin film (poor crystallinity), the more the etching reaction progresses, and the fewer reaction sites there are for the target reaction to proceed, resulting in a problem that the light energy conversion efficiency decreases within a few hours.
  • indium gallium nitride thin films have more lattice defects than gallium nitride thin films due to the difficulty of crystal growth, and the etching reaction progresses more easily, which is a problem.
  • This disclosure has been made in light of the above, and aims to improve the light energy conversion efficiency of semiconductor photoelectrodes.
  • the semiconductor photoelectrode of one embodiment of the present disclosure comprises a first semiconductor thin film in which a first thin film made of a III-V compound semiconductor and a second thin film made of a III-V compound semiconductor having a larger band gap than the first thin film are arranged alternately.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of this embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of Example 8.
  • FIG. 3 is a diagram showing an outline of an apparatus for carrying out an oxidation-reduction reaction test.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of this embodiment.
  • the semiconductor photoelectrode shown in Fig. 1 includes an insulating or conductive substrate 1, a semiconductor thin film 2 (second semiconductor thin film) made of a III-V compound semiconductor arranged on the substrate 1, a semiconductor thin film 3 (first semiconductor thin film) made of a III-V compound semiconductor arranged on the semiconductor thin film 2, and an oxygen generating catalyst layer 4 arranged on the semiconductor thin film 3.
  • Substrate 1 is an insulating or conductive substrate such as a gallium nitride substrate, a sapphire substrate, or a silicon-based substrate.
  • the semiconductor thin film 2 is made of a III-V compound semiconductor such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), or indium gallium nitride (InGaN).
  • the semiconductor thin film 2 is an n-type semiconductor.
  • the semiconductor thin film 3 of this embodiment is a semiconductor thin film in which a first thin film 3-1 (semiconductor thin film) made of a III-V compound semiconductor and a second thin film 3-2 (semiconductor thin film) made of a III-V compound semiconductor with a larger band gap than the first thin film 3-1 are arranged alternately.
  • the semiconductor thin film 3 forms a quantum well structure in which a second thin film 3-2 (several nm thick) with a larger band gap than the first thin film 3-1 is regularly sandwiched between two first thin films 3-1 as an intermediate layer.
  • the structure in which the second thin film 3-2 is sandwiched between the first thin films 3-1 has the effect of alleviating the strain energy that occurs when the semiconductor thin film 3 is grown, improving the crystallinity of the semiconductor thin film 3 and enabling the solar energy conversion efficiency to be maintained for a long period of time.
  • indium gallium nitride (InGaN) having a narrow band gap is used for the first thin film 3-1
  • gallium nitride (GaN) having a larger band gap than indium gallium nitride is used for the second thin film 3-2
  • the present invention is not limited to this.
  • pairs of InGaN and AlGaN, GaN and AlGaN, InxGa1 -xN and InyGa1 - yN (x>y), AlxGa1 -xN and AlyGa1 -yN (x ⁇ y), etc. may be used as the pair of the first thin film 3-1 and the second thin film 3-2.
  • the band gap of the first thin film 3-1 is preferably about 6.0 eV or less, and more preferably about 3.0 eV or less.
  • the film thickness of the first thin film 3-1 is preferably 10 nm to 70 nm, and more preferably 20 nm to 50 nm.
  • indium gallium nitride with an indium composition of 10% was used for the first thin film 3-1, but the indium composition is preferably 1% to 40%.
  • the second thin film 3-2 is preferably made of a III-V compound semiconductor with fewer lattice defects than the first thin film 3-1.
  • the second thin film 3-2 reduces the contact points between the aqueous solution and the surface dislocations (lattice defects) that are the starting points of the etching reaction, and aims to extend the life of the amount of hydrogen and oxygen produced by the water splitting reaction (light energy conversion efficiency).
  • the thickness of the second thin film 3-2 is preferably 1 nm to 2 nm.
  • the deposition methods for the first thin film 3-1 and the second thin film 3-2 include physical vapor deposition methods such as vacuum deposition and sputtering, chemical vapor deposition methods such as metal-organic vapor deposition, and liquid phase deposition.
  • the oxygen generating catalyst layer 4 can be obtained by forming a metal on the semiconductor thin film 3 and then oxidizing it. Alternatively, an oxide can be formed directly on the semiconductor thin film 3.
  • Methods for forming metal films include physical vapor deposition methods such as vacuum deposition and sputtering, chemical vapor deposition methods such as metal-organic vapor deposition, and liquid phase deposition.
  • NiO nickel oxide
  • the oxygen generating catalyst layer 4 may be at least one metal selected from the group consisting of Ni, Co, Cu, W, Ta, Pd, Ru, Fe, Zn, and Nb, or an oxide of said metal.
  • the thickness of the oxygen generating catalyst layer 4 is preferably 1 nm to 10 nm, and more preferably 1 nm to 3 nm, which allows sufficient light transmission.
  • Example 1 In the semiconductor photoelectrode of Example 1, an n-type GaN substrate was used as the substrate 1 .
  • a silicon-doped n-GaN semiconductor thin film was epitaxially grown by metalorganic chemical vapor deposition on a 2-inch n-GaN substrate 1 to form the semiconductor thin film 2.
  • the n-GaN semiconductor thin film had a thickness of 5 ⁇ m and a carrier density of 3 ⁇ 10 18 cm -3 .
  • an indium gallium nitride (In0.1Ga0.9N : band gap approximately 3.0eV) alloy semiconductor with an indium composition ratio of 10% was epitaxially grown on the n -GaN semiconductor thin film by metal organic chemical vapor deposition.
  • the thickness of the In0.1Ga0.9N semiconductor thin film was set to 20nm, which is sufficient to maintain the crystal quality.
  • GaN band gap approximately 3.4 eV
  • the thickness of the GaN semiconductor thin film was set to 1 nm, which is sufficient to promote the transport of electrons and holes due to the quantum well structure.
  • the entire semiconductor thin film 3 had a thickness of about 500 nm, which is sufficient to absorb light.
  • 22 pairs of the first thin film 3-1 and the second thin film 3-2 were arranged.
  • the first thin film 3-1 and the second thin film 3-2 were grown alternately, and then the first thin film 3-1 was grown last. That is, in the semiconductor thin film 3 of Example 1, the first thin film 3-1 was formed on the semiconductor thin film 2, and the first thin film 3-1 was also formed on the outermost surface on the oxygen generating catalyst layer 4 side (directly below the oxygen generating catalyst layer 4). Moreover, for all the first thin films 3-1 of Example 1, the same In 0.1 Ga 0.9 N semiconductor thin films (band gap approximately 3.0 eV) were used with the same film thickness.
  • Ni was vacuum-deposited to a thickness of about 1 nm on the first thin film 3-1 ( In0.1Ga0.9N semiconductor thin film) which was the outermost surface layer (top layer) of the semiconductor thin film 3.
  • This semiconductor electrode was then heat-treated in air at 300°C for 1 hour to form NiO.
  • the cross section of the sample was observed with a TEM and the thickness of the NiO film was found to be 2 nm. In this way, the semiconductor photoelectrode of Example 1 was obtained.
  • Example 2 is a semiconductor photoelectrode in which the film thickness of the second thin film 3-2 of the semiconductor thin film 3 is set to 2 nm.
  • Example 3 is a semiconductor photoelectrode in which the first thin film 3-1 of the semiconductor thin film 3 is made of In 0.2 Ga 0.8 N (band gap: about 2.63 eV).
  • Example 4 is a semiconductor photoelectrode in which the thickness of the first thin film 3-1 of the semiconductor thin film 3 is 50 nm.
  • Example 5 is a semiconductor photoelectrode in which the bottom layer of the semiconductor thin film 3 is the second thin film 3-2. Specifically, as the semiconductor thin film 3, the second thin film 3-2 is formed on the semiconductor thin film 2, the first thin film 3-1 is formed thereon, and the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the top surface layer is the first thin film 3-1. The oxygen generating catalyst layer 4 is formed on the top surface layer, the first thin film 3-1. Other points are the same as those of Example 1.
  • Example 6 is a semiconductor photoelectrode in which the bottom layer and the outermost layer (uppermost layer) of the semiconductor thin film 3 are the second thin film 3-2. Specifically, as the semiconductor thin film 3, the second thin film 3-2 is formed on the semiconductor thin film 2, the first thin film 3-1 is formed thereon, the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the outermost layer is the second thin film 3-2. The oxygen generating catalyst layer 4 is formed on the outermost layer, the second thin film 3-2. Other points are the same as those of Example 1.
  • Example 7 is a semiconductor photoelectrode in which the outermost surface layer of the semiconductor thin film 3 is a second thin film 3-2. Specifically, as the semiconductor thin film 3, a first thin film 3-1 is formed on the semiconductor thin film 2, a second thin film 3-2 is formed thereon, and the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the outermost surface layer is the second thin film 3-2. An oxygen generating catalyst layer 4 is formed on the outermost surface layer, the second thin film 3-2. Other points are the same as those of Example 1.
  • Example 8 Fig. 2 is a cross-sectional view showing the configuration of the semiconductor photoelectrode of Example 8.
  • first thin films 5-1-1 to 5-1-N of the semiconductor thin film 5 formed on the semiconductor thin film 2 are different from the first thin film 3-1 of the semiconductor thin film 3 of Example 1 shown in Fig. 1, but the rest is similar to the semiconductor photoelectrode of Example 1.
  • the second thin film 5-2 is similar to the second thin film 3-2 of Example 1.
  • the semiconductor thin film 5 shown in the figure has N (N>1) first thin films 5-1-1 to 5-1-N.
  • the first thin films 5-1-1 to 5-1-N may also be referred to as first thin films 5-1-n.
  • n (n>1) indicates the order in which the first thin films are formed.
  • Each first thin film 5-1-n in Example 8 is formed by growing indium gallium nitride with a composition gradient of indium from m1% to m2% (m1 ⁇ m2) from the substrate 1 toward the oxygen generating catalyst layer 4. That is, the first thin film 5-1-n of the semiconductor photoelectrode 3 has an indium composition ratio (concentration) that is gradually changed (increased) in the stacking direction.
  • m1 and m2 are set for each first thin film 5-1-n. That is, as n increases, m1 and m2 are also set to larger values.
  • each first thin film 5-1-n is arranged so that the band gap narrows in the direction from the second semiconductor thin film 2 toward the oxygen generating catalyst layer 4.
  • m2 m1 + 2.
  • Example 8 m2 of the nth (n>1) first thin film 5-1-n is equal to m1 of the n+1th first thin film 5-1-n+1. Therefore, the bandgap at the top of the oxygen generating catalyst layer 4 side of the nth arranged (formed) first thin film 5-1-n is equal to the bandgap at the bottom of the second semiconductor thin film 2 side of the next n+1th arranged first thin film 5-1-n+1.
  • the semiconductor photoelectrode of Example 8 used an n-type GaN substrate for substrate 1.
  • a silicon-doped n-GaN semiconductor thin film was epitaxially grown by metalorganic chemical vapor deposition on a 2-inch n-GaN substrate 1 to form the semiconductor thin film 2.
  • the n-GaN semiconductor thin film had a thickness of 5 ⁇ m and a carrier density of 3 ⁇ 10 18 cm -3 .
  • indium gallium nitride In0.02Ga0.98N: band gap approximately 3.32eV ) with an indium composition ratio gradient of 0 ⁇ 2.0% from the substrate 1 toward the oxygen evolution catalyst layer 4 was grown on the n - GaN semiconductor thin film.
  • the thickness of the In0.02Ga0.98N semiconductor thin film was set to 50 nm, which is sufficient to maintain the crystal quality.
  • GaN band gap approximately 3.4 eV
  • the thickness of the GaN semiconductor thin film was set to 1 nm, which can promote the transport of electrons and holes due to the quantum well structure.
  • indium gallium nitride In0.04Ga0.96N : band gap approximately 3.24 eV
  • the indium composition ratio being graded from 2.0 to 4.0% from the substrate 1 toward the oxygen evolution catalyst layer 4.
  • GaN band gap approximately 3.4 eV
  • the first thin film 5-1-n and the second thin film 5-2 were grown alternately until the first thin film 5-1-N, the outermost layer of the semiconductor thin film 5, became In0.2Ga0.8N ( band gap approximately 2.63 eV), to form the semiconductor thin film 5.
  • the entire semiconductor thin film 5 had a thickness of approximately 500 nm, which is sufficient to sufficiently absorb light.
  • the first thin film 5-1-n and the second thin film 5-2 are grown alternately, and then the first thin film 5-1-N is grown last. That is, in the semiconductor thin film 5 of Example 8, the first thin film 5-1-1 is formed on the semiconductor thin film 2, and the first thin film 5-1-N is also formed on the outermost surface layer on the oxygen generating catalyst layer 4 side (directly below the oxygen generating catalyst layer 4).
  • Ni was vacuum-deposited to a thickness of about 1 nm on the surface of the first thin film 5-1-N ( In0.2Ga0.8N semiconductor thin film) which was the outermost layer of the semiconductor thin film 5.
  • This semiconductor electrode was then heat-treated in air at 300°C for 1 hour to form NiO.
  • the cross section of the sample was observed with a TEM and the thickness of the NiO film was found to be 2 nm. In this way, the semiconductor photoelectrode of Example 8 was obtained.
  • Example 8 a pair of InGaN and GaN is used for the first thin film 5-1-n and the second thin film 5-2, but this is not limited to this.
  • the pair of the first thin film 5-1-n and the second thin film 5-2 may be InGaN and AlGaN, GaN and AlGaN, etc.
  • Example 9 is a semiconductor photoelectrode in which the bottom layer of the semiconductor thin film 5 is the second thin film 5-2. Specifically, as the semiconductor thin film 5, the second thin film 5-2 is formed on the semiconductor thin film 2, the first thin film 5-1-1 is formed thereon, the first thin film 5-1-n and the second thin film 5-2 are formed alternately, and then the top surface layer is the first thin film 5-1-N. The oxygen generating catalyst layer 4 is formed on the top surface layer, the first thin film 5-1-N. Other points are the same as those of Example 8.
  • Example 10 is a semiconductor photoelectrode in which the bottom layer and the outermost layer (uppermost layer) of the semiconductor thin film 5 are the second thin film 5-2. Specifically, as the semiconductor thin film 5, the second thin film 5-2 is formed on the semiconductor thin film 2, the first thin film 5-1-1 is formed thereon, the first thin films 5-1-n and the second thin films 5-2 are formed alternately, and then the outermost layer is the second thin film 5-2. The oxygen generating catalyst layer 4 is formed on the outermost layer, the second thin film 5-2. Other points are the same as those of Example 8.
  • Example 11 is a semiconductor photoelectrode in which the outermost surface layer of the semiconductor thin film 5 is the second thin film 5-2. Specifically, as the semiconductor thin film 5, a first thin film 5-1-1 is formed on the semiconductor thin film 2, a second thin film 5-2 is formed thereon, and the first thin films 5-1-n and the second thin films 5-2 are alternately formed, and then the outermost surface layer is the second thin film 5-2. The oxygen generating catalyst layer 4 is formed on the outermost surface layer, the second thin film 5-2. Other points are the same as those of Example 8.
  • Comparative Example 1 is a comparative example of Examples 1 to 7.
  • the semiconductor photoelectrode of Comparative Example 1 does not include a second thin film 3-2 (GaN layer), and uses a single layer of a first thin film 3-1 ( In0.1Ga0.9N : band gap approximately 3.0 eV) having a thickness of 500 nm as the semiconductor thin film 3.
  • Other points are similar to those of Example 1.
  • Comparative Example 2 is a comparative example of Examples 8 to 11.
  • the semiconductor photoelectrode of Comparative Example 2 does not include a second thin film 5-2 (GaN layer), and uses a single layer (first thin film) of indium gallium nitride grown in the semiconductor thin film 5 with an indium composition gradient of 0 to 20% from the substrate 1 toward the oxygen evolution catalyst layer 4.
  • the thickness of the semiconductor thin film 5 was 500 nm. Other points are the same as those of Example 8.
  • the apparatus in FIG. 3 comprises an oxidation tank 110 and a reduction tank 120.
  • An aqueous solution 111 is placed in the oxidation tank 110, and an oxidation electrode 112 is placed in the aqueous solution 111.
  • the oxidation electrode 112 is in contact with the aqueous solution 111.
  • An aqueous solution 121 is placed in the reduction tank 120, and a reduction electrode 122 is placed in the aqueous solution 121.
  • the reduction electrode 122 is in contact with the aqueous solution 121.
  • a 1 mol/l aqueous solution of sodium hydroxide was used as the aqueous solution 111 in the oxidation tank 110.
  • an aqueous solution of potassium hydroxide, an aqueous rubidium solution, an aqueous solution of cesium hydroxide, or hydrochloric acid may also be used as the aqueous solution 111.
  • the semiconductor photoelectrode under test was used as the oxidation electrode 112. Specifically, for each of Examples 1 to 11 and Comparative Examples 1 and 2, a part of the surface of the oxygen evolution catalyst layer 4 of the semiconductor photoelectrode was scratched off, and a lead was connected to a part of the exposed n-GaN surface, and soldered using indium (In). After that, the indium surface was covered with epoxy resin so as not to be exposed, and then installed as the oxidation electrode 112.
  • a 0.5 mol/l aqueous solution of potassium bicarbonate was used as the aqueous solution 121 in the reduction tank 120.
  • As the aqueous solution 121 in addition to the aqueous solution of potassium bicarbonate, an aqueous solution of sodium bicarbonate, an aqueous solution of potassium chloride, or an aqueous solution of sodium chloride may also be used.
  • the reduction electrode 122 may be a metal or a metal compound.
  • Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru, etc. may be used as the reduction electrode 122.
  • the oxidation tank 110 and reduction tank 120 are connected via a proton membrane 130. Protons generated in the oxidation tank 110 diffuse into the reduction tank 120 via the proton membrane 130.
  • Nafion (registered trademark) is used for the proton membrane 130. Nafion is a perfluorocarbon material that consists of a hydrophobic Teflon skeleton made of carbon and fluorine and perfluoro side chains with sulfonic acid groups.
  • the oxidation electrode 112 and reduction electrode 122 are electrically connected by a conductor 132, and electrons move from the oxidation electrode 112 to the reduction electrode 122.
  • a 300 W high-pressure xenon lamp (illuminance: 20 mW/cm 2 ( ⁇ 500 nm)) was used as the light source 140 , and the semiconductor photoelectrode installed as the oxidation electrode 112 was uniformly irradiated with light.
  • the light source 140 may irradiate light of a wavelength that can be absorbed by the material that constitutes the semiconductor photoelectrode installed as the oxidation electrode 112. For example, if the oxidation electrode 112 is made of gallium nitride, the wavelength that can be absorbed by the oxidation electrode 112 is 365 nm or less.
  • the light source 140 may be a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-sun light source, or sunlight, or a combination of these light sources.
  • the light source 140 was fixed so as to face the surface of the semiconductor photoelectrode (oxidation electrode 112) prepared by the above-mentioned procedure on which the oxygen generating catalyst layer 4 was formed, and the semiconductor photoelectrode was uniformly irradiated with light.
  • the target product is hydrogen, but by changing the metal of the reduction electrode 122 (e.g., Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru) or the atmosphere in the cell, it is also possible to produce carbon compounds through the reduction reaction of carbon dioxide, or ammonia through the reduction reaction of nitrogen.
  • the metal of the reduction electrode 122 e.g., Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru
  • Table 1 shows the amounts of oxygen and hydrogen gas generated immediately after light irradiation and 100 hours after light irradiation in Examples 1 to 7 and Comparative Example 1. The amounts of each gas generated were normalized by the surface area of the semiconductor photoelectrode. It was found that oxygen and hydrogen were generated during light irradiation in all examples.
  • Example 1 Comparing the amounts of oxygen and hydrogen produced in Example 1 and Comparative Example 1, it was found that Example 1 produced about 1.5 times more than Comparative Example 1 immediately after light irradiation. In addition, differences in the amounts produced were observed as time passed from the start of light irradiation. In Comparative Example 1, the amounts of oxygen and hydrogen produced were each reduced by about 15% 100 hours after light irradiation, while in Example 1, the amounts of oxygen and hydrogen produced were maintained at a reduction of about 10% 100 hours after light irradiation.
  • the amount of generation did not decrease significantly compared to Example 1, and it was possible to confirm the performance improvement due to the alternating growth of the first thin film 3-1 and the second thin film 3-2. Also, even if the bottom and/or top layer of the semiconductor thin film 3 was the second thin film 3-2 as in Examples 5 to 7, the amount of generation did not decrease significantly compared to Example 1, and it was possible to confirm the performance improvement due to the alternating growth of the first thin film 3-1 and the second thin film 3-2.
  • Example 3 when the In composition was improved as in Example 3, it was confirmed that the amount of generated light was improved due to the broadening of the wavelength range that could be absorbed.
  • Table 2 shows the amounts of oxygen and hydrogen gas produced immediately after light irradiation and 100 hours after light irradiation in Examples 7 to 11 and Comparative Example 2.
  • the amounts of each gas produced are normalized by the surface area of the semiconductor photoelectrode. It was found that oxygen and hydrogen were produced during light irradiation in all examples.
  • Example 8 and Comparative Example 2 the results were similar to those of Example 1 and Comparative Example 1. Specifically, when comparing the amounts of oxygen and hydrogen produced in Example 8 and Comparative Example 2, it was found that Example 8 produced about 1.3 times more oxygen than Comparative Example 2 immediately after light irradiation. In addition, differences in the amounts produced were observed as time passed from the start of light irradiation. In Comparative Example 2, the amounts of oxygen and hydrogen produced were each reduced by about 15% 100 hours after light irradiation, while in Example 8, the amounts of oxygen and hydrogen produced were maintained at a reduction of about 10% 100 hours after light irradiation.
  • Example 8 when comparing the amounts of oxygen and hydrogen generated in Example 8, in which the first thin film 5-1-n had an indium composition gradient, with Example 1, it was found that Example 8 generated approximately twice as much as Example 1.
  • the semiconductor thin film 3 in which InGaN layers and GaN layers were grown alternately was used to increase the efficiency of the amount of hydrogen and oxygen produced by the water splitting reaction (light energy conversion efficiency) and extend the life of the device.
  • the semiconductor photoelectrode of this embodiment includes semiconductor thin films 3 and 5 that alternately include first thin films 3-1, 5-1-n made of III-V group compound semiconductors and second thin films 3-2, 5-2 made of III-V group compound semiconductors with a larger band gap than the first thin films.
  • a quantum well structure is formed in which multiple second thin films (intermediate layers) with a larger band gap than the first thin film are regularly sandwiched between the semiconductor thin film 3 (first thin film), promoting the separation of electron-hole pairs generated in the semiconductor thin film 3 (semiconductor photocatalyst) and improving the solar energy conversion efficiency.
  • the structure in which the second thin film is sandwiched has the effect of alleviating the strain energy that occurs when the semiconductor thin film 3 is grown, improving the crystallinity of the semiconductor thin film 3 and realizing a longer life for the solar energy conversion efficiency.
  • Substrate 2 Semiconductor thin film (second semiconductor thin film) 3.
  • Semiconductor thin film (first semiconductor thin film) 3-1 First thin film 3-2 Second thin film 4
  • Oxygen generating catalyst layer 5
  • Semiconductor thin film (first semiconductor thin film) 5-1-1 to 5-1-N First thin film 5-2 Second thin film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

This semiconductor photoelectrode comprises a first semiconductor thin film 3 including a first thin film 3-1 and a second thin film 3-2 arranged alternately, wherein the first thin film 3-1 comprises a group III-V compound semiconductor, and the second thin film 3-2 comprises a group III-V compound semiconductor having a band gap larger than that of the first thin film.

Description

半導体光電極Semiconductor Photoelectrodes
 本開示は、半導体光電極に関する。 This disclosure relates to semiconductor photoelectrodes.
 半導体光電極を用いた水の分解反応により水素を生成する装置は、プロトン交換膜を介してつながっている酸化槽と還元槽を有し、酸化槽に水溶液と酸化電極を入れ、還元槽に水溶液と還元電極を入れる。酸化電極と還元電極とは導線で電気的に接続される。 The device that produces hydrogen through a water splitting reaction using a semiconductor photoelectrode has an oxidation tank and a reduction tank that are connected via a proton exchange membrane. An aqueous solution and an oxidation electrode are placed in the oxidation tank, and an aqueous solution and a reduction electrode are placed in the reduction tank. The oxidation electrode and reduction electrode are electrically connected by a conductor.
 光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなる。n型の光触媒材料に光を照射すると、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、水の酸化反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。 The water splitting reaction using photocatalysts consists of a water oxidation reaction and a proton reduction reaction. When light is irradiated onto an n-type photocatalyst material, electrons and holes are generated and separated in the photocatalyst. The holes move to the surface of the photocatalyst material and contribute to the water oxidation reaction. Meanwhile, the electrons move to the reduction electrode and contribute to the proton reduction reaction. Ideally, this type of oxidation-reduction reaction progresses, resulting in a water splitting reaction.
 酸化反応:2H2O+4h+→O2+4H+
 還元反応:4H++4e-→2H2
Oxidation reaction: 2H2O + 4h +O2 + 4H +
Reduction reaction: 4H + + 4e - → 2H 2
 酸化電極には半導体薄膜が用いられる。水溶液中で光を照射すると、半導体薄膜表面では目的とする水の酸化反応が進行する。例えば窒化インジウムガリウムなどのバンドギャップの狭い半導体薄膜は、吸収可能な波長が広がることから太陽光エネルギー変換効率向上に期待されている。 A thin semiconductor film is used for the oxidation electrode. When light is irradiated in an aqueous solution, the target water oxidation reaction takes place on the surface of the thin semiconductor film. For example, thin semiconductor films with a narrow band gap, such as indium gallium nitride, are expected to improve the efficiency of solar energy conversion because they can absorb a wider range of wavelengths.
 しかし、バンドギャップの狭い半導体薄膜は、結晶成長が難しいことから結晶性が悪く、これにより吸収可能な波長が広がっても電子-正孔再結合割合が高く、期待通りの効率が発揮できないことが問題である。 However, semiconductor thin films with narrow band gaps have poor crystallinity due to the difficulty of crystal growth, and as a result, even if the wavelengths that can be absorbed are expanded, the rate of electron-hole recombination is high, meaning that the expected efficiency cannot be achieved.
 また、半導体薄膜表面では、副反応として半導体薄膜表面の転位を起点としたエッチング反応が進行する。窒化ガリウムのエッチング反応は以下の通りである。 In addition, on the surface of the semiconductor thin film, an etching reaction occurs as a side reaction, starting from dislocations on the surface of the semiconductor thin film. The etching reaction for gallium nitride is as follows:
 エッチング反応:2GaN + 3H2O + 6h+→ N+ Ga2O3 + 6H+
 半導体薄膜表面の転位(格子欠陥)が多い(結晶性が悪い)ほどエッチング反応が進行し、目的反応を進行できる反応場が減少することにより、光エネルギー変換効率が数時間で減少してしまうという問題がある。例えば、窒化インジウムガリウム薄膜は結晶成長が難しいことから窒化ガリウム薄膜に比べて格子欠陥が多く、エッチング反応が進行しやすいことが問題である。
Etching reaction: 2GaN + 3H2O + 6h +N2 + Ga2O3 + 6H +
The more dislocations (lattice defects) there are on the surface of the semiconductor thin film (poor crystallinity), the more the etching reaction progresses, and the fewer reaction sites there are for the target reaction to proceed, resulting in a problem that the light energy conversion efficiency decreases within a few hours. For example, indium gallium nitride thin films have more lattice defects than gallium nitride thin films due to the difficulty of crystal growth, and the etching reaction progresses more easily, which is a problem.
 本開示は、上記に鑑みてなされたものであり、半導体光電極の光エネルギー変換効率を向上することを目的とする。 This disclosure has been made in light of the above, and aims to improve the light energy conversion efficiency of semiconductor photoelectrodes.
 本開示の一態様の半導体光電極は、III-V族化合物半導体からなる第1の薄膜と、前記薄膜よりバンドキャップが大きいIII-V族化合物半導体からなる第2の薄膜と、を交互に配置した第1の半導体薄膜を備える。 The semiconductor photoelectrode of one embodiment of the present disclosure comprises a first semiconductor thin film in which a first thin film made of a III-V compound semiconductor and a second thin film made of a III-V compound semiconductor having a larger band gap than the first thin film are arranged alternately.
 本開示によれば、半導体光電極の光エネルギー変換効率を向上することができる。 According to this disclosure, it is possible to improve the light energy conversion efficiency of semiconductor photoelectrodes.
図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of this embodiment. 図2は、実施例8の半導体光電極の構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of Example 8. 図3は、酸化還元反応試験を行う装置の概要を示す図である。FIG. 3 is a diagram showing an outline of an apparatus for carrying out an oxidation-reduction reaction test.
 以下、本開示の実施の形態について図面を用いて説明する。なお、本開示は以下で説明する実施の形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において変更を加えても構わない。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the embodiment described below, and modifications may be made without departing from the spirit of the present disclosure.
 [半導体光電極の構成]
 図1は、本実施形態の半導体光電極の構成の一例を示す断面図である。図1に示す半導体光電極は、絶縁性または導電性の基板1と、基板1の上に配置されたIII-V族化合物半導体からなる半導体薄膜2(第2の半導体薄膜)と、半導体薄膜2の上に配置されたIII-V族化合物半導体からなる半導体薄膜3(第1の半導体薄膜)と、半導体薄膜3の上に配置された酸素発生触媒層4とを備える。
[Configuration of semiconductor photoelectrode]
Fig. 1 is a cross-sectional view showing an example of the configuration of a semiconductor photoelectrode of this embodiment. The semiconductor photoelectrode shown in Fig. 1 includes an insulating or conductive substrate 1, a semiconductor thin film 2 (second semiconductor thin film) made of a III-V compound semiconductor arranged on the substrate 1, a semiconductor thin film 3 (first semiconductor thin film) made of a III-V compound semiconductor arranged on the semiconductor thin film 2, and an oxygen generating catalyst layer 4 arranged on the semiconductor thin film 3.
 基板1は、窒化ガリウム基板、サファイア基板、シリコン系基板などの絶縁性または導電性の基板である。 Substrate 1 is an insulating or conductive substrate such as a gallium nitride substrate, a sapphire substrate, or a silicon-based substrate.
 半導体薄膜2には、窒化ガリウム(GaN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウムガリウム(InGaN)等のIII-V族化合物半導体を用いる。半導体薄膜2は、n型半導体である。 The semiconductor thin film 2 is made of a III-V compound semiconductor such as gallium nitride (GaN), aluminum gallium nitride (AlGaN), or indium gallium nitride (InGaN). The semiconductor thin film 2 is an n-type semiconductor.
 本実施形態の半導体薄膜3は、III-V族化合物半導体からなる第1の薄膜3-1(半導体薄膜)と、第1の薄膜3-1よりバンドキャップが大きいIII-V族化合物半導体からなる第2の薄膜3-2(半導体薄膜)と、を交互に配置した半導体薄膜である。すなわち、半導体薄膜3は、2つの第1の薄膜3-1の間に、第1の薄膜3-1よりもバンドギャップの大きい第2の薄膜3-2(厚さ数nm)を中間層として規則的に挟み込む量子井戸構造を形成する。 The semiconductor thin film 3 of this embodiment is a semiconductor thin film in which a first thin film 3-1 (semiconductor thin film) made of a III-V compound semiconductor and a second thin film 3-2 (semiconductor thin film) made of a III-V compound semiconductor with a larger band gap than the first thin film 3-1 are arranged alternately. In other words, the semiconductor thin film 3 forms a quantum well structure in which a second thin film 3-2 (several nm thick) with a larger band gap than the first thin film 3-1 is regularly sandwiched between two first thin films 3-1 as an intermediate layer.
 これにより、半導体薄膜3(半導体光触媒)中で生成した電子-正孔対の分離を促進し、光エネルギー変換効率を向上することができる。これは第2の薄膜3-2が十分に薄い場合、光エネルギーによって半導体薄膜3中で生成した電子-正孔対は、量子井戸間の相互作用により形成されるミニバンドの間を高速で流れることによって分離が促進されるためである。 This promotes the separation of electron-hole pairs generated in the semiconductor thin film 3 (semiconductor photocatalyst), improving the light energy conversion efficiency. This is because, if the second thin film 3-2 is sufficiently thin, the electron-hole pairs generated in the semiconductor thin film 3 by light energy flow at high speed between the minibands formed by the interaction between quantum wells, promoting their separation.
 また、第1の薄膜3-1の間に第2の薄膜3-2を挟み込む構造は、半導体薄膜3を成長ずる際に生じる歪エネルギーを緩和する効果があり、半導体薄膜3の結晶性を向上させ、太陽光エネルギー変換効率を長時間維持することができる。 In addition, the structure in which the second thin film 3-2 is sandwiched between the first thin films 3-1 has the effect of alleviating the strain energy that occurs when the semiconductor thin film 3 is grown, improving the crystallinity of the semiconductor thin film 3 and enabling the solar energy conversion efficiency to be maintained for a long period of time.
 後述する実施例では、第1の薄膜3-1には、バンドギャップが狭い窒化インジウムガリウム(InGaN)を用い、第2の薄膜3-2には窒化インジウムガリウムよりもバンドギャップが大きい窒化ガリウム(GaN)を用いたが、これに限定されない。例えば、第1の薄膜3-1と第2の薄膜3-2のペアとして、InGaNとAlGaN、GaNとAlGaN、InxGa1-xNとInyGa1-yN(x>y)、AlxGa1-xNとAlyGa1-yN(x<y)等のペアを用いてもよい。 In the embodiment described later, indium gallium nitride (InGaN) having a narrow band gap is used for the first thin film 3-1, and gallium nitride (GaN) having a larger band gap than indium gallium nitride is used for the second thin film 3-2, but the present invention is not limited to this. For example, pairs of InGaN and AlGaN, GaN and AlGaN, InxGa1 -xN and InyGa1 - yN (x>y), AlxGa1 -xN and AlyGa1 -yN (x<y), etc. may be used as the pair of the first thin film 3-1 and the second thin film 3-2.
 第1の薄膜3-1のバンドギャップは、約6.0eV以下が好ましく、約3.0eV以下がより好ましい。第1の薄膜3-1の膜厚は、10 nmから70nmが好ましく20 nmから50nmがより好ましい。後述する実施例では、第1の薄膜3-1のインジウム組成10%とした窒化インジウムガリウムを用いたが、インジウム組成は1%から40%が望ましい。 The band gap of the first thin film 3-1 is preferably about 6.0 eV or less, and more preferably about 3.0 eV or less. The film thickness of the first thin film 3-1 is preferably 10 nm to 70 nm, and more preferably 20 nm to 50 nm. In the examples described below, indium gallium nitride with an indium composition of 10% was used for the first thin film 3-1, but the indium composition is preferably 1% to 40%.
 第2の薄膜3-2には、第1の薄膜3-1より格子欠陥が少ないIII-V族化合物半導体を用いることが好ましい。第2の薄膜3-2は、エッチング反応の起点となる表面の転位(格子欠陥)と水溶液との接点を減らし、水分解反応による水素・酸素生成量(光エネルギー変換効率)の長寿命化を図るものである。第2の薄膜3-2の膜厚は、1nmから2nmが望ましい。 The second thin film 3-2 is preferably made of a III-V compound semiconductor with fewer lattice defects than the first thin film 3-1. The second thin film 3-2 reduces the contact points between the aqueous solution and the surface dislocations (lattice defects) that are the starting points of the etching reaction, and aims to extend the life of the amount of hydrogen and oxygen produced by the water splitting reaction (light energy conversion efficiency). The thickness of the second thin film 3-2 is preferably 1 nm to 2 nm.
 第1の薄膜3-1および第2の薄膜3-2の成膜方法としては、真空蒸着法、スパッタリング法等の物理的気相成長法、有機金属気相成長法等の化学的気相成長法、および液相成長法等がある。 The deposition methods for the first thin film 3-1 and the second thin film 3-2 include physical vapor deposition methods such as vacuum deposition and sputtering, chemical vapor deposition methods such as metal-organic vapor deposition, and liquid phase deposition.
 酸素発生触媒層4は、半導体薄膜3上に金属を形成した後に酸化することで得られる。その他の方法として、半導体薄膜3上に直接酸化物を形成しても良い。金属の成膜方法としては、真空蒸着法、スパッタリング法等の物理的気相成長法、有機金属気相成長法等の化学的気相成長法、および液相成長法等がある。 The oxygen generating catalyst layer 4 can be obtained by forming a metal on the semiconductor thin film 3 and then oxidizing it. Alternatively, an oxide can be formed directly on the semiconductor thin film 3. Methods for forming metal films include physical vapor deposition methods such as vacuum deposition and sputtering, chemical vapor deposition methods such as metal-organic vapor deposition, and liquid phase deposition.
 酸素発生触媒層4について、後述する実施例ではNiO(酸化ニッケル)を使用したが、これに限定されない。酸素発生触媒層4は、Ni、Co、Cu、W、Ta、Pd、Ru、Fe、Zn、Nbからなる群より選択される少なくとも1種類の金属あるいは前記金属からなる酸化物でもよい。酸素発生触媒層4の厚さは、1 nmから10 nmが好ましく、光を十分に透過することができる1 nmから3 nmがより好ましい。 In the examples described below, NiO (nickel oxide) is used for the oxygen generating catalyst layer 4, but this is not limited to this. The oxygen generating catalyst layer 4 may be at least one metal selected from the group consisting of Ni, Co, Cu, W, Ta, Pd, Ru, Fe, Zn, and Nb, or an oxide of said metal. The thickness of the oxygen generating catalyst layer 4 is preferably 1 nm to 10 nm, and more preferably 1 nm to 3 nm, which allows sufficient light transmission.
 [実施例と比較対象例の作製]
 以下、本実施形態の半導体光電極を作製した実施例1から11について説明する。また、第2の薄膜3-2を備えない比較対象例1、2についても説明する。
[Preparation of Examples and Comparative Examples]
Examples 1 to 11 in which the semiconductor photoelectrode of this embodiment was fabricated will be described below. Comparative Examples 1 and 2 in which the second thin film 3-2 was not provided will also be described.
 <実施例1>
 実施例1の半導体光電極は、基板1にn型のGaN基板を用いた。
Example 1
In the semiconductor photoelectrode of Example 1, an n-type GaN substrate was used as the substrate 1 .
 半導体薄膜2として、2インチのn-GaN基板1上に、シリコンをドープしたn-GaN半導体薄膜を有機金属気相成長法によりエピタキシャル成長させた。n-GaN半導体薄膜の膜厚は5μm、キャリア密度は3×1018 cm-3であった。 A silicon-doped n-GaN semiconductor thin film was epitaxially grown by metalorganic chemical vapor deposition on a 2-inch n-GaN substrate 1 to form the semiconductor thin film 2. The n-GaN semiconductor thin film had a thickness of 5 μm and a carrier density of 3×10 18 cm -3 .
 次に、第1の薄膜3-1として、n-GaN半導体薄膜の上に、インジウムの組成比を10%とした窒化インジウムガリウム(In0.1Ga0.9N:バンドギャップ約3.0eV)混晶半導体を、有機金属気相成長法によりエピタキシャル成長させた。In0.1Ga0.9N半導体薄膜の膜厚は、結晶品質を十分に保てる20 nmとした。 Next, as the first thin film 3-1, an indium gallium nitride ( In0.1Ga0.9N : band gap approximately 3.0eV) alloy semiconductor with an indium composition ratio of 10% was epitaxially grown on the n -GaN semiconductor thin film by metal organic chemical vapor deposition. The thickness of the In0.1Ga0.9N semiconductor thin film was set to 20nm, which is sufficient to maintain the crystal quality.
 次に、第2の薄膜3-2として、In0.1Ga0.9N半導体薄膜の上にGaN(バンドギャップ約3.4eV)を有機金属気相成長法によりエピタキシャル成長した。GaN半導体薄膜の膜厚は、量子井戸構造による電子-正孔の輸送を促進できる1 nmとした。 Next, as the second thin film 3-2, GaN (band gap approximately 3.4 eV) was epitaxially grown by metalorganic chemical vapor deposition on the In 0.1 Ga 0.9 N semiconductor thin film. The thickness of the GaN semiconductor thin film was set to 1 nm, which is sufficient to promote the transport of electrons and holes due to the quantum well structure.
 その後、第1の薄膜3-1と第2の薄膜3-2とを交互に成長させて、半導体薄膜3を形成した。半導体薄膜3全体は、光を十分に吸収するに足る、厚さ約500nmとした。実施例1では、第1の薄膜3-1と第2の薄膜3-2のペアが22層配置される。 Then, the first thin film 3-1 and the second thin film 3-2 were grown alternately to form the semiconductor thin film 3. The entire semiconductor thin film 3 had a thickness of about 500 nm, which is sufficient to absorb light. In Example 1, 22 pairs of the first thin film 3-1 and the second thin film 3-2 were arranged.
 ここでは、第1の薄膜3-1と第2の薄膜3-2を交互に成長させた後、最後に第1の薄膜3-1を成長した。すなわち、実施例1の半導体薄膜3は、半導体薄膜2の上に第1の薄膜3-1が形成され、酸素発生触媒層4側の最表面(酸素発生触媒層4の直下)にも第1の薄膜3-1が形成される。また、実施例1の第1の薄膜3-1には、全て同じIn0.1Ga0.9N半導体薄膜(バンドギャップ約3.0eV)を、同じ膜厚で用いた。 Here, the first thin film 3-1 and the second thin film 3-2 were grown alternately, and then the first thin film 3-1 was grown last. That is, in the semiconductor thin film 3 of Example 1, the first thin film 3-1 was formed on the semiconductor thin film 2, and the first thin film 3-1 was also formed on the outermost surface on the oxygen generating catalyst layer 4 side (directly below the oxygen generating catalyst layer 4). Moreover, for all the first thin films 3-1 of Example 1, the same In 0.1 Ga 0.9 N semiconductor thin films (band gap approximately 3.0 eV) were used with the same film thickness.
 次に、半導体薄膜3の最表面層(最上層)の第1の薄膜3-1(In0.1Ga0.9N半導体薄膜)の上に、膜厚約1 nmのNiを真空蒸着した。その後、この半導体電極を空気中、300℃で1時間熱処理し、NiOを形成した。試料断面をTEM観察し、NiOの膜厚は2 nmであった。以上により、実施例1の半導体光電極を得た。 Next, Ni was vacuum-deposited to a thickness of about 1 nm on the first thin film 3-1 ( In0.1Ga0.9N semiconductor thin film) which was the outermost surface layer (top layer) of the semiconductor thin film 3. This semiconductor electrode was then heat-treated in air at 300°C for 1 hour to form NiO. The cross section of the sample was observed with a TEM and the thickness of the NiO film was found to be 2 nm. In this way, the semiconductor photoelectrode of Example 1 was obtained.
 <実施例2>
 実施例2は、半導体薄膜3の第2の薄膜3-2の膜厚を、2nmとした半導体光電極である。その他の点においては実施例1と同様である。
Example 2
Example 2 is a semiconductor photoelectrode in which the film thickness of the second thin film 3-2 of the semiconductor thin film 3 is set to 2 nm.
 <実施例3>
 実施例3は、半導体薄膜3の第1の薄膜3-1を、In0.2Ga0.8N(バンドギャップ約2.63eV)とした半導体光電極である。その他の点においては実施例1と同様である。
Example 3
Example 3 is a semiconductor photoelectrode in which the first thin film 3-1 of the semiconductor thin film 3 is made of In 0.2 Ga 0.8 N (band gap: about 2.63 eV).
 <実施例4>
 実施例4は、半導体薄膜3の第1の薄膜3-1の膜厚を、50nmとした半導体光電極である。その他の点においては実施例1と同様である。
Example 4
Example 4 is a semiconductor photoelectrode in which the thickness of the first thin film 3-1 of the semiconductor thin film 3 is 50 nm.
 <実施例5>
 実施例5は、半導体薄膜3の最下層を第2の薄膜3-2とした半導体光電極である。具体的には、半導体薄膜3として、半導体薄膜2上に第2の薄膜3-2を形成し、その上に第1の薄膜3-1を形成し、第1の薄膜3-1と第2の薄膜3-2とを交互に形成した後、最表面層を第1の薄膜3-1とした。酸素発生触媒層4は、最表面層の第1の薄膜3-1の上に形成した。その他の点においては実施例1と同様である。
Example 5
Example 5 is a semiconductor photoelectrode in which the bottom layer of the semiconductor thin film 3 is the second thin film 3-2. Specifically, as the semiconductor thin film 3, the second thin film 3-2 is formed on the semiconductor thin film 2, the first thin film 3-1 is formed thereon, and the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the top surface layer is the first thin film 3-1. The oxygen generating catalyst layer 4 is formed on the top surface layer, the first thin film 3-1. Other points are the same as those of Example 1.
 <実施例6>
 実施例6は、半導体薄膜3の最下層および最表面層(最上層)を第2の薄膜3-2とした半導体光電極である。具体的には、半導体薄膜3として、半導体薄膜2上に第2の薄膜3-2を形成し、その上に第1の薄膜3-1を形成し、第1の薄膜3-1と第2の薄膜3-2とを交互に形成した後、最表面層を第2の薄膜3-2とした。酸素発生触媒層4は、最表面層の第2の薄膜3-2の上に形成した。その他の点においては実施例1と同様である。
Example 6
Example 6 is a semiconductor photoelectrode in which the bottom layer and the outermost layer (uppermost layer) of the semiconductor thin film 3 are the second thin film 3-2. Specifically, as the semiconductor thin film 3, the second thin film 3-2 is formed on the semiconductor thin film 2, the first thin film 3-1 is formed thereon, the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the outermost layer is the second thin film 3-2. The oxygen generating catalyst layer 4 is formed on the outermost layer, the second thin film 3-2. Other points are the same as those of Example 1.
 <実施例7>
 実施例7は、半導体薄膜3の最表面層を第2の薄膜3-2とした半導体光電極である。具体的には、半導体薄膜3として、半導体薄膜2上に第1の薄膜3-1を形成し、その上に第2の薄膜3-2を形成し、第1の薄膜3-1と第2の薄膜3-2とを交互に形成した後、最表面層を第2の薄膜3-2とした。酸素発生触媒層4は、最表面層の第2の薄膜3-2の上に形成した。その他の点においては実施例1と同様である。
Example 7
Example 7 is a semiconductor photoelectrode in which the outermost surface layer of the semiconductor thin film 3 is a second thin film 3-2. Specifically, as the semiconductor thin film 3, a first thin film 3-1 is formed on the semiconductor thin film 2, a second thin film 3-2 is formed thereon, and the first thin film 3-1 and the second thin film 3-2 are alternately formed, and then the outermost surface layer is the second thin film 3-2. An oxygen generating catalyst layer 4 is formed on the outermost surface layer, the second thin film 3-2. Other points are the same as those of Example 1.
 <実施例8>
 図2は、実施例8の半導体光電極の構成を示す断面図である。図2に示す半導体光電極は、半導体薄膜2の上に形成される半導体薄膜5の第1の薄膜5-1-1~5-1-Nが、図1に示す実施例1の半導体薄膜3の第1の薄膜3-1と異なり、その他は実施例1の半導体光電極と同様である。第2の薄膜5-2は、実施例1の第2の薄膜3-2と同様である。
Example 8
Fig. 2 is a cross-sectional view showing the configuration of the semiconductor photoelectrode of Example 8. In the semiconductor photoelectrode shown in Fig. 2, first thin films 5-1-1 to 5-1-N of the semiconductor thin film 5 formed on the semiconductor thin film 2 are different from the first thin film 3-1 of the semiconductor thin film 3 of Example 1 shown in Fig. 1, but the rest is similar to the semiconductor photoelectrode of Example 1. The second thin film 5-2 is similar to the second thin film 3-2 of Example 1.
 図示する半導体薄膜5は、N(N>1)個の第1の薄膜5-1-1~5-1-Nを有する。なお、第1の薄膜5-1-1~5-1-Nは、第1の薄膜5-1-nと記載する場合もある。n(n>1)は、第1の薄膜が形成された順番を示す。 The semiconductor thin film 5 shown in the figure has N (N>1) first thin films 5-1-1 to 5-1-N. The first thin films 5-1-1 to 5-1-N may also be referred to as first thin films 5-1-n. n (n>1) indicates the order in which the first thin films are formed.
 実施例8の各第1の薄膜5-1-nは、それぞれ、インジウムの組成比を基板1から酸素発生触媒層4方向へm1%からm2%(m1<m2)へと組成傾斜をかけた窒化インジウムガリウムを成長させたものである。すなわち、半導体光電極3の第1の薄膜5-1-nは、インジウムの組成比(濃度)を積層方向に徐々に変えた(増加させた)ものである。m1およびm2は、第1の薄膜5-1-n毎に設定される。すなわち、nが大きくなるにつれて、m1およびm2も大きな値が設定される。これにより、各第1の薄膜5-1-nは、第2の半導体薄膜2から酸素発生触媒層4の方向にバンドキャップが狭くなるように配置される。ここでは、m2=m1+2とした。 Each first thin film 5-1-n in Example 8 is formed by growing indium gallium nitride with a composition gradient of indium from m1% to m2% (m1 < m2) from the substrate 1 toward the oxygen generating catalyst layer 4. That is, the first thin film 5-1-n of the semiconductor photoelectrode 3 has an indium composition ratio (concentration) that is gradually changed (increased) in the stacking direction. m1 and m2 are set for each first thin film 5-1-n. That is, as n increases, m1 and m2 are also set to larger values. As a result, each first thin film 5-1-n is arranged so that the band gap narrows in the direction from the second semiconductor thin film 2 toward the oxygen generating catalyst layer 4. Here, m2 = m1 + 2.
 また、実施例8では、n番目(n>1)の第1の薄膜5-1-nのm2と、n+1番目の第1の薄膜5-1-n+1のm1とが等しい。したがって、n番目に配置(形成)された第1の薄膜5-1-nの酸素発生触媒層4側の最上部のバンドキャップと、その次のn+1番目に配置された第1の薄膜5-1-n+1の第2の半導体薄膜2側の最下部のバンドキャップとが等しい。 In addition, in Example 8, m2 of the nth (n>1) first thin film 5-1-n is equal to m1 of the n+1th first thin film 5-1-n+1. Therefore, the bandgap at the top of the oxygen generating catalyst layer 4 side of the nth arranged (formed) first thin film 5-1-n is equal to the bandgap at the bottom of the second semiconductor thin film 2 side of the next n+1th arranged first thin film 5-1-n+1.
 以下に実施例8の半導体光電極の製造方法を説明する。 The manufacturing method for the semiconductor photoelectrode of Example 8 is described below.
 実施例8の半導体光電極は、基板1にn型のGaN基板を用いた。 The semiconductor photoelectrode of Example 8 used an n-type GaN substrate for substrate 1.
 半導体薄膜2として、2インチのn-GaN基板1上に、シリコンをドープしたn-GaN半導体薄膜を有機金属気相成長法によりエピタキシャル成長させた。n-GaN半導体薄膜の膜厚は5μm、キャリア密度は3×1018 cm-3であった。 A silicon-doped n-GaN semiconductor thin film was epitaxially grown by metalorganic chemical vapor deposition on a 2-inch n-GaN substrate 1 to form the semiconductor thin film 2. The n-GaN semiconductor thin film had a thickness of 5 μm and a carrier density of 3×10 18 cm -3 .
 次に、第1の薄膜5-1-1として、n-GaN半導体薄膜の上に、インジウムの組成比を基板1から酸素発生触媒層4方向へ0→2.0%と組成傾斜をかけた窒化インジウムガリウム(In0.02Ga0.98N:バンドギャップ約3.32eV)を成長させた。In0.02Ga0.98N半導体薄膜の膜厚は、結晶品質を十分に保てる50 nmとした。 Next, as the first thin film 5-1-1, indium gallium nitride ( In0.02Ga0.98N: band gap approximately 3.32eV ) with an indium composition ratio gradient of 0→2.0% from the substrate 1 toward the oxygen evolution catalyst layer 4 was grown on the n - GaN semiconductor thin film. The thickness of the In0.02Ga0.98N semiconductor thin film was set to 50 nm, which is sufficient to maintain the crystal quality.
 次に、第2の薄膜5-2として、In0.02Ga0.98N半導体薄膜の上にGaN(バンドギャップ約3.4eV)を成長させた。GaN半導体薄膜の膜厚は、量子井戸構造による電子-正孔の輸送を促進できる1 nmとした。 Next, as the second thin film 5-2, GaN (band gap approximately 3.4 eV) was grown on the In 0.02 Ga 0.98 N semiconductor thin film. The thickness of the GaN semiconductor thin film was set to 1 nm, which can promote the transport of electrons and holes due to the quantum well structure.
 次に、第1の薄膜5-1-2として、GaN半導体薄膜の膜厚の上にインジウムの組成比を基板1から酸素発生触媒層4方向へ2.0→4.0%と組成傾斜をかけた窒化インジウムガリウム(In0.04Ga0.96N:バンドギャップ約3.24eV)を成長させた。次に、第2の薄膜5-2として、In0.04Ga0.96N 半導体薄膜の上に、GaN(バンドギャップ約3.4eV)を成長させた。 Next, as the first thin film 5-1-2, indium gallium nitride ( In0.04Ga0.96N : band gap approximately 3.24 eV) was grown on the GaN semiconductor thin film, with the indium composition ratio being graded from 2.0 to 4.0% from the substrate 1 toward the oxygen evolution catalyst layer 4. Next, as the second thin film 5-2 , GaN (band gap approximately 3.4 eV) was grown on the In0.04Ga0.96N semiconductor thin film.
 このようにして、半導体薄膜5の最表面層の第1の薄膜5-1-NがIn0.2Ga0.8N(バンドギャップ約2.63eV)となるまで、第1の薄膜5-1-nと第2の薄膜5-2とを交互に成長させて、半導体薄膜5を形成した。半導体薄膜5全体は、光を十分に吸収するに足る、厚さ約500nmとした。 In this manner, the first thin film 5-1-n and the second thin film 5-2 were grown alternately until the first thin film 5-1-N, the outermost layer of the semiconductor thin film 5, became In0.2Ga0.8N ( band gap approximately 2.63 eV), to form the semiconductor thin film 5. The entire semiconductor thin film 5 had a thickness of approximately 500 nm, which is sufficient to sufficiently absorb light.
 ここでは、第1の薄膜5-1-nと第2の薄膜5-2を交互に成長させた後、最後に第1の薄膜5-1-Nを成長した。すなわち、実施例8の半導体薄膜5は、半導体薄膜2の上に第1の薄膜5-1-1が形成され、酸素発生触媒層4側の最表面層(酸素発生触媒層4の直下)にも第1の薄膜5-1-Nが形成される。 Here, the first thin film 5-1-n and the second thin film 5-2 are grown alternately, and then the first thin film 5-1-N is grown last. That is, in the semiconductor thin film 5 of Example 8, the first thin film 5-1-1 is formed on the semiconductor thin film 2, and the first thin film 5-1-N is also formed on the outermost surface layer on the oxygen generating catalyst layer 4 side (directly below the oxygen generating catalyst layer 4).
 次に、半導体薄膜5の最表面層の第1の薄膜5-1-N(In0.2Ga0.8N半導体薄膜)の表面に、膜厚約1 nmのNiを真空蒸着した。その後、この半導体電極を空気中、300℃で1時間熱処理し、NiOを形成した。試料断面をTEM観察し、NiOの膜厚は2 nmであった。以上により、実施例8の半導体光電極を得た。 Next, Ni was vacuum-deposited to a thickness of about 1 nm on the surface of the first thin film 5-1-N ( In0.2Ga0.8N semiconductor thin film) which was the outermost layer of the semiconductor thin film 5. This semiconductor electrode was then heat-treated in air at 300°C for 1 hour to form NiO. The cross section of the sample was observed with a TEM and the thickness of the NiO film was found to be 2 nm. In this way, the semiconductor photoelectrode of Example 8 was obtained.
 なお、実施例8では、第1の薄膜5-1-nと第2の薄膜5-2にInGaNとGaNのペアを用いたが、これに限定されない。例えば、第1の薄膜5-1-nと第2の薄膜5-2のペアとして、InGaNとAlGaN、GaNとAlGaN等を用いてもよい。 In Example 8, a pair of InGaN and GaN is used for the first thin film 5-1-n and the second thin film 5-2, but this is not limited to this. For example, the pair of the first thin film 5-1-n and the second thin film 5-2 may be InGaN and AlGaN, GaN and AlGaN, etc.
 <実施例9>
 実施例9は、半導体薄膜5の最下層を第2の薄膜5-2とした半導体光電極である。具体的には、半導体薄膜5として、半導体薄膜2上に第2の薄膜5-2を形成し、その上に第1の薄膜5-1-1を形成し、第1の薄膜5-1-nと第2の薄膜5-2とを交互に形成した後、最表面層を第1の薄膜5-1-Nとした。酸素発生触媒層4は、最表面層の第1の薄膜5-1-Nの上に形成した。その他の点においては実施例8と同様である。
<Example 9>
Example 9 is a semiconductor photoelectrode in which the bottom layer of the semiconductor thin film 5 is the second thin film 5-2. Specifically, as the semiconductor thin film 5, the second thin film 5-2 is formed on the semiconductor thin film 2, the first thin film 5-1-1 is formed thereon, the first thin film 5-1-n and the second thin film 5-2 are formed alternately, and then the top surface layer is the first thin film 5-1-N. The oxygen generating catalyst layer 4 is formed on the top surface layer, the first thin film 5-1-N. Other points are the same as those of Example 8.
 <実施例10>
 実施例6は、半導体薄膜5の最下層および最表面層(最上層)を第2の薄膜5-2とした半導体光電極である。具体的には、半導体薄膜5として、半導体薄膜2上に第2の薄膜5-2を形成し、その上に第1の薄膜5-1-1を形成し、第1の薄膜5-1-nと第2の薄膜5-2とを交互に形成した後、最表面層を第2の薄膜5-2とした。酸素発生触媒層4は、最表面層の第2の薄膜5-2の上に形成した。その他の点においては実施例8と同様である。
Example 10
Example 6 is a semiconductor photoelectrode in which the bottom layer and the outermost layer (uppermost layer) of the semiconductor thin film 5 are the second thin film 5-2. Specifically, as the semiconductor thin film 5, the second thin film 5-2 is formed on the semiconductor thin film 2, the first thin film 5-1-1 is formed thereon, the first thin films 5-1-n and the second thin films 5-2 are formed alternately, and then the outermost layer is the second thin film 5-2. The oxygen generating catalyst layer 4 is formed on the outermost layer, the second thin film 5-2. Other points are the same as those of Example 8.
 <実施例11>
 実施例11は、半導体薄膜5の最表面層を第2の薄膜5-2とした半導体光電極である。具体的には、半導体薄膜5として、半導体薄膜2上に第1の薄膜5-1-1を形成し、その上に第2の薄膜5-2を形成し、第1の薄膜5-1-nと第2の薄膜5-2とを交互に形成した後、最表面層を第2の薄膜5-2とした。酸素発生触媒層4は、最表面層の第2の薄膜5-2の上に形成した。その他の点においては実施例8と同様である。
Example 11
Example 11 is a semiconductor photoelectrode in which the outermost surface layer of the semiconductor thin film 5 is the second thin film 5-2. Specifically, as the semiconductor thin film 5, a first thin film 5-1-1 is formed on the semiconductor thin film 2, a second thin film 5-2 is formed thereon, and the first thin films 5-1-n and the second thin films 5-2 are alternately formed, and then the outermost surface layer is the second thin film 5-2. The oxygen generating catalyst layer 4 is formed on the outermost surface layer, the second thin film 5-2. Other points are the same as those of Example 8.
 <比較対象例1>
 比較対象例1は、実施例1から実施例7の比較例である。比較対象例1の半導体光電極は、第2の薄膜3-2(GaN層)を設けずに、半導体薄膜3に厚さ500 nmの第1の薄膜3-1(In0.1Ga0.9N:バンドギャップ約3.0eV)の単層を用いた。その他の点においては実施例1と同様である。
<Comparative example 1>
Comparative Example 1 is a comparative example of Examples 1 to 7. The semiconductor photoelectrode of Comparative Example 1 does not include a second thin film 3-2 (GaN layer), and uses a single layer of a first thin film 3-1 ( In0.1Ga0.9N : band gap approximately 3.0 eV) having a thickness of 500 nm as the semiconductor thin film 3. Other points are similar to those of Example 1.
 <比較対象例2>
 比較対象例2は、実施例8から実施例11の比較例である。比較対象例2の半導体光電極は、第2の薄膜5-2(GaN層)を設けずに、半導体薄膜5にインジウムの組成比を基板1から酸素発生触媒層4方向へ0→20%と組成傾斜をかけた窒化インジウムガリウムを成長させた単層(第1の薄膜)を用いた。半導体薄膜5の膜厚は500 nmとした。その他の点においては実施例8と同様である。
<Comparative Example 2>
Comparative Example 2 is a comparative example of Examples 8 to 11. The semiconductor photoelectrode of Comparative Example 2 does not include a second thin film 5-2 (GaN layer), and uses a single layer (first thin film) of indium gallium nitride grown in the semiconductor thin film 5 with an indium composition gradient of 0 to 20% from the substrate 1 toward the oxygen evolution catalyst layer 4. The thickness of the semiconductor thin film 5 was 500 nm. Other points are the same as those of Example 8.
 [酸化還元反応試験]
 実施例1から11と比較対象例1、2について図3の装置を用いて酸化還元反応試験を行った。
[Oxidation-reduction reaction test]
An oxidation-reduction reaction test was carried out for Examples 1 to 11 and Comparative Examples 1 and 2 using the device shown in FIG.
 図3の装置は、酸化槽110と還元槽120を備える。酸化槽110には、水溶液111が入れられ、酸化電極112が水溶液111中に入れられる。酸化電極112は水溶液111に接している。還元槽120には、水溶液121が入れられ、還元電極122が水溶液121中に入れられる。還元電極122は水溶液121に接している。 The apparatus in FIG. 3 comprises an oxidation tank 110 and a reduction tank 120. An aqueous solution 111 is placed in the oxidation tank 110, and an oxidation electrode 112 is placed in the aqueous solution 111. The oxidation electrode 112 is in contact with the aqueous solution 111. An aqueous solution 121 is placed in the reduction tank 120, and a reduction electrode 122 is placed in the aqueous solution 121. The reduction electrode 122 is in contact with the aqueous solution 121.
 酸化槽110の水溶液111には、1mol/lの水酸化ナトリウム水溶液を用いた。水溶液111として、水酸化ナトリウム以外に、水酸化カリウム水溶液、水溶液ルビジウム水溶液、水酸化セシウム水溶液または塩酸を用いてもよい。 A 1 mol/l aqueous solution of sodium hydroxide was used as the aqueous solution 111 in the oxidation tank 110. In addition to sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous rubidium solution, an aqueous solution of cesium hydroxide, or hydrochloric acid may also be used as the aqueous solution 111.
 酸化電極112には、試験対象の半導体光電極を用いた。具体的には、実施例1から11および比較対象例1、2のそれぞれについて、半導体光電極の酸素発生触媒層4表面の一部をけがき、露出したn-GaN表面の一部に、導線を接続し、インジウム(In)を用いてはんだ付けした。その後、インジウム表面が露出しないようにエポキシ樹脂で被覆したものを酸化電極112として設置した。 The semiconductor photoelectrode under test was used as the oxidation electrode 112. Specifically, for each of Examples 1 to 11 and Comparative Examples 1 and 2, a part of the surface of the oxygen evolution catalyst layer 4 of the semiconductor photoelectrode was scratched off, and a lead was connected to a part of the exposed n-GaN surface, and soldered using indium (In). After that, the indium surface was covered with epoxy resin so as not to be exposed, and then installed as the oxidation electrode 112.
 還元槽120の水溶液121には、0.5mol/lの炭酸水素カリウム水溶液を用いた。水溶液121として、炭酸水素カリウム水溶液以外に、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、または塩化ナトリウム水溶液を用いてもよい。 A 0.5 mol/l aqueous solution of potassium bicarbonate was used as the aqueous solution 121 in the reduction tank 120. As the aqueous solution 121, in addition to the aqueous solution of potassium bicarbonate, an aqueous solution of sodium bicarbonate, an aqueous solution of potassium chloride, or an aqueous solution of sodium chloride may also be used.
 還元電極122には白金(ニラコ製)を用いた。還元電極122は金属または金属化合物であればよい。還元電極122として、例えば、Ni、Fe、Au、Pt、Ag、Cu、In、Ti、Co、Ruなどを用いてもよい。 Platinum (manufactured by Nilaco) was used for the reduction electrode 122. The reduction electrode 122 may be a metal or a metal compound. For example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru, etc. may be used as the reduction electrode 122.
 酸化槽110と還元槽120はプロトン膜130を介して繋がっている。酸化槽110で生成したプロトンはプロトン膜130を介して還元槽120へ拡散する。プロトン膜130には、ナフィオン(登録商標)を用いた。ナフィオンは、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。 The oxidation tank 110 and reduction tank 120 are connected via a proton membrane 130. Protons generated in the oxidation tank 110 diffuse into the reduction tank 120 via the proton membrane 130. Nafion (registered trademark) is used for the proton membrane 130. Nafion is a perfluorocarbon material that consists of a hydrophobic Teflon skeleton made of carbon and fluorine and perfluoro side chains with sulfonic acid groups.
 酸化電極112と還元電極122は導線132で電気的に接続されており、酸化電極112から還元電極122へ電子が移動する。 The oxidation electrode 112 and reduction electrode 122 are electrically connected by a conductor 132, and electrons move from the oxidation electrode 112 to the reduction electrode 122.
 光源140として、300 Wの高圧キセノンランプ(照度20mW/cm2(λ≦500nm))を用い、酸化電極112として設置した半導体光電極に均一に光を照射した。 A 300 W high-pressure xenon lamp (illuminance: 20 mW/cm 2 (λ≦500 nm)) was used as the light source 140 , and the semiconductor photoelectrode installed as the oxidation electrode 112 was uniformly irradiated with light.
 光源140は、酸化電極112として設置する半導体光電極を構成する材料が吸収可能な波長の光を照射できればよい。例えば、酸化電極112が窒化ガリウムで構成される場合、酸化電極112が吸収可能な波長は365nm以下の波長である。光源140としては、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、または太陽光などの光源を用いてもよいし、これらの光源を組み合わせてもよい。 The light source 140 may irradiate light of a wavelength that can be absorbed by the material that constitutes the semiconductor photoelectrode installed as the oxidation electrode 112. For example, if the oxidation electrode 112 is made of gallium nitride, the wavelength that can be absorbed by the oxidation electrode 112 is 365 nm or less. The light source 140 may be a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-sun light source, or sunlight, or a combination of these light sources.
 酸化還元反応試験では、各反応槽において窒素ガスを10 ml/minで流し、試料の光照射面積を1 cm2とし、水溶液の攪拌は撹拌子とスターラーを用いて250 rpmの回転速度で各反応槽の底の中心位置で水溶液111,121を攪拌した。 In the redox reaction test, nitrogen gas was flowed in each reaction tank at 10 ml/min, the light irradiation area of the sample was 1 cm2 , and the aqueous solutions 111 and 121 were stirred at the center of the bottom of each reaction tank using a stirrer and a stirrer at a rotation speed of 250 rpm.
 反応槽内が窒素ガスに十分に置換された後、光源140を、上述の手順で作製した半導体光電極(酸化電極112)の酸素発生触媒層4が形成されている面に向くように固定し、半導体光電極に均一に光を照射した。 After the atmosphere in the reaction vessel was sufficiently replaced with nitrogen gas, the light source 140 was fixed so as to face the surface of the semiconductor photoelectrode (oxidation electrode 112) prepared by the above-mentioned procedure on which the oxygen generating catalyst layer 4 was formed, and the semiconductor photoelectrode was uniformly irradiated with light.
 光照射中任意の時間に、各反応槽内のガスを採取し、ガスクロマトグラフにて反応生成物を分析した。その結果、酸化槽110では酸素が、還元槽120では水素が生成していることを確認した。 Gas samples were taken from each reaction tank at any time during light irradiation, and the reaction products were analyzed using a gas chromatograph. As a result, it was confirmed that oxygen was produced in the oxidation tank 110, and hydrogen was produced in the reduction tank 120.
 なお、実施例では目的生成物を水素としたが、還元電極122の金属(例えば、Ni、Fe、Au、Pt、Ag、Cu、In、Ti、Co、Ru)あるいは、セル内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成、または窒素の還元反応によるアンモニアの生成も可能である。 In the embodiment, the target product is hydrogen, but by changing the metal of the reduction electrode 122 (e.g., Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co, Ru) or the atmosphere in the cell, it is also possible to produce carbon compounds through the reduction reaction of carbon dioxide, or ammonia through the reduction reaction of nitrogen.
 [試験結果]
 実施例1から7および比較対象例1における、光照射直後および光照射100時間後の酸素・水素ガスの生成量を表1に示す。各ガスの生成量は、半導体光電極の表面積で規格化して示した。どの例でも光照射時に、酸素と水素が生成していることがわかった。
[Test results]
Table 1 shows the amounts of oxygen and hydrogen gas generated immediately after light irradiation and 100 hours after light irradiation in Examples 1 to 7 and Comparative Example 1. The amounts of each gas generated were normalized by the surface area of the semiconductor photoelectrode. It was found that oxygen and hydrogen were generated during light irradiation in all examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較対象例1の酸素・水素生成量を比較すると、光照射直後から実施例1が比較対象例1に比べて1.5倍程度生成量が多いことがわかった。また、光照射開始から時間が経つにつれ、生成量に差が見られた。比較対象事例1では、光照射から100時間後に酸素・水素それぞれの生成量は約15%減である一方、実施例1では光照射から100時間後に酸素・水素それぞれの生成量は約10%減に維持されていることがわかった。 Comparing the amounts of oxygen and hydrogen produced in Example 1 and Comparative Example 1, it was found that Example 1 produced about 1.5 times more than Comparative Example 1 immediately after light irradiation. In addition, differences in the amounts produced were observed as time passed from the start of light irradiation. In Comparative Example 1, the amounts of oxygen and hydrogen produced were each reduced by about 15% 100 hours after light irradiation, while in Example 1, the amounts of oxygen and hydrogen produced were maintained at a reduction of about 10% 100 hours after light irradiation.
 実施例2のように、中間層としての第2の薄膜3-2(GaN層)の膜厚を2nm程度厚くしても、また、実施例4のように第1の薄膜3-1(InGaN層)の膜厚を50nm程度厚くしても、実施例1に比べて大きく生成量が減少することはなく、第1の薄膜3-1と第2の薄膜3-2とを交互に成長したことによる性能向上を確認することができた。また、実施例5~7のように、半導体薄膜3の最下層および/または最上層を第2の薄膜3-2としても、実施例1に比べて大きく生成量が減少することはなく、第1の薄膜3-1と第2の薄膜3-2とを交互に成長したことによる性能向上を確認することができた。 Even if the thickness of the second thin film 3-2 (GaN layer) as an intermediate layer was increased by about 2 nm as in Example 2, or the thickness of the first thin film 3-1 (InGaN layer) was increased by about 50 nm as in Example 4, the amount of generation did not decrease significantly compared to Example 1, and it was possible to confirm the performance improvement due to the alternating growth of the first thin film 3-1 and the second thin film 3-2. Also, even if the bottom and/or top layer of the semiconductor thin film 3 was the second thin film 3-2 as in Examples 5 to 7, the amount of generation did not decrease significantly compared to Example 1, and it was possible to confirm the performance improvement due to the alternating growth of the first thin film 3-1 and the second thin film 3-2.
 また、実施例3のようにIn組成を向上した場合、吸収できる波長域が広がったことによる生成量の向上を確認することができた。 In addition, when the In composition was improved as in Example 3, it was confirmed that the amount of generated light was improved due to the broadening of the wavelength range that could be absorbed.
 次に、実施例7から11および比較対象例2における、光照射直後および光照射100時間後の酸素・水素ガスの生成量を表2に示す。各ガスの生成量は、半導体光電極の表面積で規格化して示した。どの例でも光照射時に、酸素と水素が生成していることがわかった。 Table 2 shows the amounts of oxygen and hydrogen gas produced immediately after light irradiation and 100 hours after light irradiation in Examples 7 to 11 and Comparative Example 2. The amounts of each gas produced are normalized by the surface area of the semiconductor photoelectrode. It was found that oxygen and hydrogen were produced during light irradiation in all examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例8と比較対象例2を比べた場合も、実施例1と比較対象例1と同様であった。具体的には、実施例8と比較対象例2の酸素・水素生成量を比較すると、光照射直後から実施例8が比較対象例2に比べて1.3倍程度生成量が多いことがわかった。また、光照射開始から時間が経つにつれ、生成量に差が見られた。比較対象事例2では、光照射から100時間後に酸素・水素それぞれの生成量は約15%減である一方、実施例8では光照射から100時間後に酸素・水素それぞれの生成量は約10%減に維持されていることがわかった。 Comparing Example 8 and Comparative Example 2, the results were similar to those of Example 1 and Comparative Example 1. Specifically, when comparing the amounts of oxygen and hydrogen produced in Example 8 and Comparative Example 2, it was found that Example 8 produced about 1.3 times more oxygen than Comparative Example 2 immediately after light irradiation. In addition, differences in the amounts produced were observed as time passed from the start of light irradiation. In Comparative Example 2, the amounts of oxygen and hydrogen produced were each reduced by about 15% 100 hours after light irradiation, while in Example 8, the amounts of oxygen and hydrogen produced were maintained at a reduction of about 10% 100 hours after light irradiation.
 また、実施例9~11ように、半導体薄膜5の最下層および/または最上層を第2の薄膜5-2としても、実施例8に比べて大きく生成量が減少することはなく、第1の薄膜5-1-nと第2の薄膜5-2とを交互に成長したことによる性能向上を確認することができた。 Also, as in Examples 9 to 11, even when the bottom and/or top layer of the semiconductor thin film 5 was the second thin film 5-2, the amount of production did not decrease significantly compared to Example 8, and it was possible to confirm the performance improvement achieved by alternately growing the first thin film 5-1-n and the second thin film 5-2.
 また、第1の薄膜5-1-nにインジウムの組成傾斜かけた実施例8と実施例1の酸素・水素生成量を比較すると、実施例8が実施例1に比べて2倍程度生成量が多いことがわかった。 In addition, when comparing the amounts of oxygen and hydrogen generated in Example 8, in which the first thin film 5-1-n had an indium composition gradient, with Example 1, it was found that Example 8 generated approximately twice as much as Example 1.
 このように、実施例1~11では、InGaN層とGaN層を交互に成長した半導体薄膜3を用いて水分解反応による水素・酸素生成量(光エネルギー変換効率)の高効率化および長寿命化を図ることができた。 In this way, in Examples 1 to 11, the semiconductor thin film 3 in which InGaN layers and GaN layers were grown alternately was used to increase the efficiency of the amount of hydrogen and oxygen produced by the water splitting reaction (light energy conversion efficiency) and extend the life of the device.
 以上説明したように、本実施形態の半導体光電極は、III-V族化合物半導体からなる第1の薄膜3-1、5-1-nと、第1の薄膜よりバンドキャップが大きいIII-V族化合物半導体からなる第2の薄膜3-2,5-2と、を交互に配置した半導体薄膜3、5を備える。 As described above, the semiconductor photoelectrode of this embodiment includes semiconductor thin films 3 and 5 that alternately include first thin films 3-1, 5-1-n made of III-V group compound semiconductors and second thin films 3-2, 5-2 made of III-V group compound semiconductors with a larger band gap than the first thin films.
 本実施形態によれば、半導体薄膜3(第1の薄膜)中に、第1の薄膜よりバンドギャップの大きい第2の薄膜(中間層)を規則的に複数挟み込む量子井戸構造を形成することで、半導体薄膜3(半導体光触媒)中で生成した電子-正孔対の分離を促進し、太陽光エネルギー変換効率向上を実現することができる。 In this embodiment, a quantum well structure is formed in which multiple second thin films (intermediate layers) with a larger band gap than the first thin film are regularly sandwiched between the semiconductor thin film 3 (first thin film), promoting the separation of electron-hole pairs generated in the semiconductor thin film 3 (semiconductor photocatalyst) and improving the solar energy conversion efficiency.
 また、第2の薄膜を挟み込む構造は半導体薄膜3を成長ずる際に生じる歪エネルギーを緩和する効果があり、半導体薄膜3の結晶性を向上させ、太陽光エネルギー変換効率の長寿命化を実現できる。 In addition, the structure in which the second thin film is sandwiched has the effect of alleviating the strain energy that occurs when the semiconductor thin film 3 is grown, improving the crystallinity of the semiconductor thin film 3 and realizing a longer life for the solar energy conversion efficiency.
 例えば、InGaN薄膜のようなバンドギャップの狭い半導体薄膜において、電子-正孔再結合割合を低減し、太陽光エネルギー変換効率を向上することができる。また、GaN系薄膜のエッチング反応の起点である表面の転位(格子欠陥)を減らし、結晶性を向上させることで、エッチング反応を抑制し、光エネルギー変換効率の安定性を向上することができる。 For example, in semiconductor thin films with a narrow band gap such as InGaN thin films, it is possible to reduce the rate of electron-hole recombination and improve the solar energy conversion efficiency. In addition, by reducing surface dislocations (lattice defects), which are the starting point of the etching reaction in GaN-based thin films, and improving crystallinity, it is possible to suppress the etching reaction and improve the stability of the light energy conversion efficiency.
 1 基板
 2 半導体薄膜(第2の半導体薄膜)
 3 半導体薄膜(第1の半導体薄膜)
 3-1 第1の薄膜
 3-2 第2の薄膜
 4 酸素発生触媒層
 5 半導体薄膜(第1の半導体薄膜)
 5-1-1~5-1-N 第1の薄膜
 5-2 第2の薄膜
 
1 Substrate 2 Semiconductor thin film (second semiconductor thin film)
3. Semiconductor thin film (first semiconductor thin film)
3-1 First thin film 3-2 Second thin film 4 Oxygen generating catalyst layer 5 Semiconductor thin film (first semiconductor thin film)
5-1-1 to 5-1-N First thin film 5-2 Second thin film

Claims (6)

  1.  III-V族化合物半導体からなる第1の薄膜と、前記第1の薄膜よりバンドキャップが大きいIII-V族化合物半導体からなる第2の薄膜と、を交互に配置した第1の半導体薄膜を備える
     半導体光電極。
    A semiconductor photoelectrode comprising a first semiconductor thin film, the first thin film being made of a III-V compound semiconductor and a second thin film being made of a III-V compound semiconductor having a larger band gap than that of the first thin film, and the second thin film being arranged alternately.
  2.  前記第1の半導体薄膜の上に配置された酸素発生触媒層を、さらに備える
     請求項1に記載の半導体光電極。
    The semiconductor photoelectrode according to claim 1 , further comprising an oxygen evolution catalyst layer disposed on the first semiconductor thin film.
  3.  基板上に配置されたIII-V族化合物半導体からなる第2の半導体薄膜を、さらに備え、
     前記第1の半導体薄膜は、前記第2の半導体薄膜の上に配置され、
     前記第2の半導体薄膜は、n型半導体である
     請求項1または2に記載の半導体光電極。
    a second semiconductor thin film made of a III-V compound semiconductor disposed on the substrate;
    the first semiconductor thin film is disposed on the second semiconductor thin film;
    The semiconductor photoelectrode according to claim 1 , wherein the second semiconductor thin film is an n-type semiconductor.
  4.  前記第1の薄膜は、窒化インジウムガリウムであり、
     前記第2の薄膜は、窒化ガリウムである
     請求項1または2に記載の半導体光電極。
    the first thin film is indium gallium nitride;
    The semiconductor photoelectrode according to claim 1 , wherein the second thin film is made of gallium nitride.
  5.  前記第1の半導体薄膜の各第1の薄膜は、前記酸素発生触媒層の方向にバンドキャップが狭くなるように配置される
     請求項2に記載の半導体光電極。
    The semiconductor photoelectrode according to claim 2 , wherein each of the first semiconductor thin films is disposed so that a band gap thereof narrows in a direction toward the oxygen evolution catalyst layer.
  6.  基板上に配置されたIII-V族化合物半導体からなる第2の半導体薄膜を、さらに備え、
     前記第1の半導体薄膜は、前記第2の半導体薄膜の上に配置され、
     前記第1の半導体薄膜のn番目(n>1)に配置された第1の薄膜の前記酸素発生触媒層側の最上部のバンドキャップと、n+1番目に配置された第1の薄膜の前記第2の半導体薄膜側の最下部のバンドキャップとが等しい
     請求項2に記載の半導体光電極。
     
     
    a second semiconductor thin film made of a III-V compound semiconductor disposed on the substrate;
    the first semiconductor thin film is disposed on the second semiconductor thin film;
    3. The semiconductor photoelectrode according to claim 2, wherein a band gap at an uppermost portion of the first thin film arranged at an n-th position (n>1) of the first semiconductor thin films on the oxygen evolution catalyst layer side is equal to a band gap at a lowermost portion of the first thin film arranged at an n+1th position on the second semiconductor thin film side.

PCT/JP2022/044284 2022-11-30 2022-11-30 Semiconductor photoelectrode WO2024116357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044284 WO2024116357A1 (en) 2022-11-30 2022-11-30 Semiconductor photoelectrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044284 WO2024116357A1 (en) 2022-11-30 2022-11-30 Semiconductor photoelectrode

Publications (1)

Publication Number Publication Date
WO2024116357A1 true WO2024116357A1 (en) 2024-06-06

Family

ID=91323138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044284 WO2024116357A1 (en) 2022-11-30 2022-11-30 Semiconductor photoelectrode

Country Status (1)

Country Link
WO (1) WO2024116357A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208324A (en) * 2013-03-29 2014-11-06 住友電気工業株式会社 Nitride semiconductor photocatalyst and nitride semiconductor electrode
JP2020090693A (en) * 2018-12-04 2020-06-11 日本電信電話株式会社 Semiconductor photoelectrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208324A (en) * 2013-03-29 2014-11-06 住友電気工業株式会社 Nitride semiconductor photocatalyst and nitride semiconductor electrode
JP2020090693A (en) * 2018-12-04 2020-06-11 日本電信電話株式会社 Semiconductor photoelectrode

Similar Documents

Publication Publication Date Title
JP5753641B2 (en) Carbon dioxide reduction apparatus and method for reducing carbon dioxide
US9551077B2 (en) Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
WO2020116153A1 (en) Semiconductor optical electrode
WO2020116151A1 (en) Method for producing nitride semiconductor photoelectrode
JP6715172B2 (en) Method for manufacturing semiconductor photoelectrode
JP6483628B2 (en) Semiconductor photocatalyst
JP2018090862A (en) Semiconductor photoelectrode
WO2024116357A1 (en) Semiconductor photoelectrode
JP6649237B2 (en) Photocatalytic oxidation-reduction reactor
WO2019230343A1 (en) Semiconductor photoelectrode
JP6898566B2 (en) Semiconductor optical electrode
WO2024116358A1 (en) Semiconductor photoelectrode
JP6470190B2 (en) Semiconductor photocatalyst
JP6322157B2 (en) Semiconductor photocatalytic film and oxidation-reduction reactor
US20200115810A1 (en) Devices and methods for photoelectrochemical water splitting
JP7343810B2 (en) Method for manufacturing nitride semiconductor photoelectrode
US10927466B2 (en) Passivating window and capping layer for photoelectrochemical cells
WO2021240590A1 (en) Nitride semiconductor photocatalyst thin film and method for manufacturing nitride semiconductor photocatalyst thin film
US20240044022A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
WO2023089654A1 (en) Production method for semiconductor photoelectrode
JP7406167B2 (en) Method for manufacturing nitride semiconductor photocatalytic thin film
WO2023089656A1 (en) Method for producing semiconductor photoelectrode
JP2019099884A (en) Semiconductor photoelectrode
US20230392269A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
WO2021234804A1 (en) Semiconductor photoelectrode