WO2024116356A1 - Rolling mill and rolling method - Google Patents

Rolling mill and rolling method Download PDF

Info

Publication number
WO2024116356A1
WO2024116356A1 PCT/JP2022/044275 JP2022044275W WO2024116356A1 WO 2024116356 A1 WO2024116356 A1 WO 2024116356A1 JP 2022044275 W JP2022044275 W JP 2022044275W WO 2024116356 A1 WO2024116356 A1 WO 2024116356A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic oil
oil chamber
side hydraulic
operating
hydraulic cylinder
Prior art date
Application number
PCT/JP2022/044275
Other languages
French (fr)
Japanese (ja)
Inventor
健治 堀井
敏裕 宇杉
章弘 山元
光 中谷
大介 岩城
浩希 山崎
Original Assignee
Primetals Technologies Japan 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan 株式会社 filed Critical Primetals Technologies Japan 株式会社
Priority to PCT/JP2022/044275 priority Critical patent/WO2024116356A1/en
Publication of WO2024116356A1 publication Critical patent/WO2024116356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B29/00Counter-pressure devices acting on rolls to inhibit deflection of same under load, e.g. backing rolls ; Roll bending devices, e.g. hydraulic actuators acting on roll shaft ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/40Control of flatness or profile during rolling of strip, sheets or plates using axial shifting of the rolls

Definitions

  • the present invention relates to a rolling machine and a rolling method.
  • Patent Document 1 describes an upper work roll, a radial bearing and a thrust bearing provided on the operating side and driving side of the upper work roll to support the upper work roll, a shift cylinder provided on the operating side of the upper work roll for applying a force to the thrust bearing in both the operating side and driving side directions, and a shift cylinder provided on the driving side of the upper work roll for applying a force to the radial bearing in both the operating side and driving side directions, and states that the shift cylinders each apply a force to the radial bearing and thrust bearing in the same direction when the upper work roll does not shift axially at least during rolling.
  • Patent document 1 discloses a structure that shifts the rolls on both the drive side and the operating side.
  • the direction of the thrust force acting on the rolls of a rolling mill can switch between the drive side and the operating side.
  • a thrust force in the opposite direction acts on the roll after the roll position is set, causing the roll, or more specifically the members supporting the roll, to temporarily move away from the drive side and operating side arms that support the thrust force.
  • the positions of the arms on both sides must be adjusted again to support the thrust force of the roll.
  • the present invention aims to provide a rolling mill and rolling method that can improve the life of roll support parts such as bearings on both sides of the roll without creating excessive pressure inside the piping connected to the hydraulic cylinder.
  • the present invention includes a number of means for solving the above problems, and an example thereof includes a mill roll, a number of hydraulic cylinders including a driving side hydraulic cylinder provided on the driving side of the mill roll configured to apply an axial force to the mill roll, and an operating side hydraulic cylinder provided on the operating side of the mill roll configured to apply the axial force, and a hydraulic circuit configured to feed hydraulic oil to the multiple hydraulic cylinders, so that the driving side hydraulic cylinder and the operating side hydraulic cylinder move in the axial direction and maintain the axial position of the mill roll, and the hydraulic circuit is configured such that after the hydraulic circuit has maintained the axial position of the mill roll, when an external force applied to the mill roll causes only one of the driving side hydraulic cylinder or the operating side hydraulic cylinder to apply the axial force to the mill roll, the other of the driving side hydraulic cylinder or the operating side hydraulic cylinder moves in the opposite direction to the one hydraulic cylinder.
  • FIG. 1 is a diagram showing an outline of a rolling facility including a rolling mill according to a first embodiment of the present invention
  • FIG. 1 is a front view for explaining an outline of a rolling mill according to a first embodiment. This is a view taken along the arrows A-A' in Figure 2.
  • FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention.
  • FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment.
  • FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment.
  • FIG. 1 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment.
  • FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment.
  • FIG. 4 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a modified example of the first embodiment.
  • FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a second embodiment.
  • FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a third embodiment.
  • FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a third embodiment.
  • FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a fourth embodiment.
  • thrust resistance force refers to the force in the roll axial direction that acts on each roll and its bearing housing of the rolling mill during rolling or when shifting during rolling, and refers to the force that acts on the device that supports that force, and has the same meaning as thrust force.
  • Thrust reaction force refers to the force that arises from the device that supports the thrust resistance force, and refers to a force that is the same magnitude as the thrust resistance force but in the opposite direction.
  • Example 1 A rolling mill and a rolling method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • FIG. 1 A rolling mill and a rolling method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • FIG. 1 A rolling mill and a rolling method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • FIG. 1 A rolling mill and a rolling method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • Figure 1 is a diagram showing an overview of the rolling equipment equipped with the rolling mill of this embodiment 1
  • Figure 2 is a front view explaining the overview of the rolling mill
  • Figure 3 is a view taken along the line A-A' in Figure 2.
  • the rolling equipment 1 is equipped with multiple rolling mills that hot roll the rolled material 5 into strips, and has a control device 80 and five stands, from the entry side of the rolled material 5, namely, a first stand 30, a second stand 40, a third stand 50, a fourth stand 60, and a fifth stand 70.
  • the first stand 30, the second stand 40, the third stand 50, the fourth stand 60, and the fifth stand 70, and the part of the control device 80 that controls each stand correspond to the rolling mill as referred to in the present invention.
  • the rolling equipment 1 is not limited to multiple stands such as the five stands shown in FIG. 1, and may be a single stand. In addition, since there is no restriction on the temperature of the rolled material during rolling, it may be a rolling equipment that performs cold rolling.
  • FIG. 2 a part of the outline of the rolling mill of the present invention will be explained using FIG. 2.
  • the fifth stand 70 shown in FIG. 1 will be explained as an example, but the rolling mill of the present invention can be applied to any of the first stand 30, second stand 40, third stand 50, and fourth stand 60 shown in FIG. 1.
  • the fifth stand 70 which is the rolling mill of this embodiment, is a six-stage rolling mill that rolls the rolled material 5, and has a housing 700, a control device 80, and a hydraulic device 90.
  • the housing 700 is provided with an upper work roll 710, a lower work roll 711, an upper intermediate roll 720 and a lower intermediate roll 721 that support the upper work roll 710 and the lower work roll 711 by contacting them, respectively. It also is provided with an upper backing roll 730 and a lower backing roll 731 that support the upper intermediate roll 720 and the lower intermediate roll 721 by contacting them, respectively.
  • the "mill roll” in the present invention corresponds to any of the upper work roll 710, lower work roll 711, upper intermediate roll 720, lower intermediate roll 721, upper backup roll 730, and lower backup roll 731 described above.
  • the upper and lower work rolls and the upper and lower backup rolls correspond to the "mill roll”.
  • the axial end of the upper work roll 710 is provided on the operating side with a radial bearing 790A (see FIG. 7) that shifts in the axial direction of the roll together with the upper work roll 710 and receives the load from the roll, and this radial bearing 790A is supported by an upper operating side bearing box 712A.
  • a radial bearing 790B (see FIG. 7) is provided that shifts in the axial direction of the roll together with the upper work roll 710 and receives the load from the roll, and this radial bearing 790B is supported by an upper driving side bearing box 712B.
  • the operating side radial bearing 790A and the driving side radial bearing 790B are configured to support not only the roll bending force acting in the vertical direction but also the thrust force acting in the roll axial direction.
  • the lower work roll 711 also has bearings (not shown for convenience of illustration) at the axial ends on both the drive side and the operation side, and these bearings are supported by the lower work roll bearing box 713 (bearing box 713A on the operation side, and bearing box 713B on the drive side).
  • the upper work roll 710 is configured to be shiftable in the roll axis direction by a shift cylinder 715 as shown in FIG. 3 via an upper operating side bearing housing 712A on the operating side and an upper driving side bearing housing 712B on the driving side.
  • the lower work roll 711 is configured to be shiftable in the roll axis direction by a shift cylinder 717 as shown in FIG. 3 via a bearing housing 713A on the operating side and a bearing housing 713B on the driving side.
  • the upper work roll 710 and the lower intermediate roll 721 have tapered portions at their operating side ends, and the lower work roll 711 and the upper intermediate roll 720 have tapered portions at their driving side ends.
  • the upper work roll 710 and the lower work roll 711 are point-symmetrical from top to bottom, and the upper intermediate roll 720 and the lower intermediate roll 721 are point-symmetrical from top to bottom.
  • the entry side fixed member 702 is fixed to the housing 700 on the entry side of the rolled material 5.
  • An exit side fixed member 703 is fixed to the housing 700 on the exit side of the rolled material 5 so as to face the entry side fixed member 702.
  • the upper work roll bearing box 712 is supported by two upper work roll bending cylinders 740, 742 provided in the axial direction of the roll of the entry side fixed member 702, and two upper work roll bending cylinders 741, 743 provided in the axial direction of the roll of the exit side fixed member 703.
  • the lower work roll bearing housing 713 is supported by lower work roll bending cylinders 744, 746 provided on the entry side fixed member 702 and lower work roll bending cylinders 745, 747 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied vertically to the bearing of the lower work roll 711.
  • the upper work roll bending cylinders 740, 741 are arranged to apply a bending force to the bearing of the upper work roll 710 that contacts the rolled material 5 in the vertical increase side (toward the opposite side of the rolled material).
  • the upper work roll bending cylinders 742, 743 are arranged to apply a bending force to the bearing in the vertical decrease side (toward the rolled material), which is the opposite direction to the upper work roll bending cylinders 740, 741.
  • the lower work roll bending cylinders 744, 745 are arranged to apply a bending force to the bearing of the lower work roll 711 that contacts the rolled material 5 in the vertical increase direction.
  • the lower work roll bending cylinders 746, 747 are arranged to apply a bending force to the bearing in the decrease direction, which is the opposite direction to the lower work roll bending cylinders 744, 745.
  • two upper work roll bearing box backlash removing cylinders 760 are provided in the axial direction of the roll on the inlet fixed member 702 on the inlet side of the rolling material 5 so as to apply a horizontal force, specifically a pressing force in the rolling direction, to the upper work roll 710 via the liner (not shown) of the upper work roll bearing box 712.
  • the entry side fixed member 702 is provided with two lower work roll bearing housing clearance cylinders 762 so as to apply a pressing force in the rolling direction to the lower work roll 711 via the liner of the lower work roll bearing housing 713.
  • These cylinders allow the desired force to be applied to the upper work roll 710, etc. in a direction perpendicular to the roll axis direction.
  • a hydraulic cylinder 705A may be provided on both the drive side and the operation side of the exit side of the housing 700 as a horizontal actuator for adjusting the angle of the upper work roll 710 in the horizontal direction.
  • a hydraulic cylinder 705B may be provided on both the drive side and the operation side of the exit side of the housing 700 as a horizontal actuator for adjusting the angle of the lower work roll 711 in the horizontal direction.
  • hydraulic cylinders 705E, 705F may be provided on both the drive side and operation side of the exit side of the housing 700
  • hydraulic cylinders 706C, 706D may be provided on both the drive side and operation side of the entry side of the housing 700, as horizontal actuators for adjusting the horizontal angles of the upper intermediate roll 720, the lower intermediate roll 721, the upper backing roll 730, and the lower backing roll 731.
  • hydraulic cylinders 705A, 705B, 705E, 705F, 706C, and 706D as horizontal actuators are not limited to hydraulic cylinders, and can be other configurations such as worm gears.
  • Bearings are provided at the axial ends of the upper intermediate roll 720 on both the drive side and the operation side, and these bearings are supported by an upper intermediate roll bearing box 722.
  • bearings are provided at the axial ends of the lower intermediate roll 721 on both the drive side and the operation side, and these bearings are supported by a lower intermediate roll bearing box 723.
  • the upper intermediate roll 720 supports the upper intermediate roll bearing box 722 with an upper intermediate roll bending cylinder 750 provided on the entry side fixed member 702 and an upper intermediate roll bending cylinder 751 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied to the bearing in the vertical increase direction.
  • the lower intermediate roll 72 on both the operating side and the driving side, supports the lower intermediate roll bearing box 723 with a lower intermediate roll bending cylinder 752 provided on the entry side fixed member 702 and a lower intermediate roll bending cylinder 753 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied to the bearing in the vertical increase direction.
  • the exit housing 700 is provided with an upper intermediate roll bearing box clearance cylinder 771 so as to apply a horizontal force to the upper intermediate roll 720 via the upper intermediate roll bearing box 722.
  • the exit housing 700 is provided with a lower intermediate roll bearing box clearance cylinder 773 so as to apply a horizontal force to the lower intermediate roll 721 via the lower intermediate roll bearing box 723.
  • bearings are provided at the axial end of the upper backup roll 730 on both the drive side and the operation side, and these bearings are supported by an upper backup roll bearing box 732.
  • bearings are provided at the axial end of the lower backup roll 731 on both the drive side and the operation side, and these bearings are supported by a lower backup roll bearing box 733.
  • the entry housing 700 is provided with an upper backup roll bearing box clearance cylinder 780 so as to apply a horizontal force to the upper backup roll 730 via the upper backup roll bearing box 732.
  • the entry housing 700 is provided with a lower backup roll bearing box clearance cylinder 782 so as to apply a horizontal force to the lower backup roll 731 via the lower backup roll bearing box 733.
  • the hydraulic device 90 is connected to each hydraulic cylinder, such as the above-mentioned bending cylinders, the clearance removing cylinders, the shift cylinders 715, 717, the hydraulic cylinders 705A, 705B, 705E, 705F, 706C, 706D, and the rolling cylinders (not shown) that apply a rolling force to the upper work roll 710 and the lower work roll 711 to roll the rolled material 5, and this hydraulic device 90 is connected to the control device 80.
  • each hydraulic cylinder such as the above-mentioned bending cylinders, the clearance removing cylinders, the shift cylinders 715, 717, the hydraulic cylinders 705A, 705B, 705E, 705F, 706C, 706D, and the rolling cylinders (not shown) that apply a rolling force to the upper work roll 710 and the lower work roll 711 to roll the rolled material 5, and this hydraulic device 90 is connected to the control device 80.
  • the control device 80 controls the operation of the hydraulic device 90, and controls the drive of each of the bending cylinders described above by supplying and discharging pressurized oil to those cylinders.
  • the control device 80 is configured to be able to drive the drive side exit shift cylinder 715C (see FIG. 7) and the operation side exit shift cylinder 715B (see FIG. 7), for example, to shift the upper work roll 710 in the axial direction.
  • Figures 4 to 6 are schematic diagrams that explain the problem of the present invention.
  • the solenoid switching valve 810 is energized at b to shift toward the drive side, and then the solenoid switching valve is returned to the neutral position, the pilot check valve is closed, and the shift operation toward the drive side is stopped.
  • the roll set 710A including the upper work roll 710 is shown in a simplified, integrated form.
  • the shift cylinders are installed on the entry side and the exit side, but since the entry side of the rolling material 5 has substantially the same configuration as the exit side, only the driving side exit shift cylinder 515C and the operating side exit shift cylinder 515B are shown here as examples.
  • the axial position of the roll set 710A is supported on the drive side by the drive side output shift cylinder 515C via the drive side arm 714C, and on the drive side by the operation side output shift cylinder 515B via the operation side arm 714B.
  • the driving side output shift cylinder 515C is a single-rod type cylinder and includes a driving side output plate side hydraulic oil chamber 523a on the rod side, a driving side output opposite plate side hydraulic oil chamber 523b on the head side, a rod 523c, and a piston 523d.
  • the operating side output shift cylinder 515B is also a single-rod type cylinder, and is equipped with an operating side output plate side hydraulic oil chamber 525a on the rod side, an operating side output opposite plate side hydraulic oil chamber 525b on the head side, a rod 525c, and a piston 525d.
  • a pilot check valve 821 and a relief valve 811 are provided on the pressure line 803, and a pilot check valve 822 and a relief valve 812 are provided on the pressure line 804.
  • the pressure line 803 branches into a drive side opposite plate side pressure line 505 and an operation side plate side pressure line 506 on the cylinder side of the pilot check valve 821.
  • the drive side opposite plate side pressure line 505 is connected to the drive side outlet side opposite plate side hydraulic oil chamber 523b, and the operation side plate side pressure line 506 is connected to the operation side outlet side plate side hydraulic oil chamber 525a.
  • the pressure line 804 branches into a drive side plate side pressure line 507 and an operating side opposite plate side pressure line 508 on the cylinder side of the pilot check valve 822.
  • the drive side plate side pressure line 507 is connected to the drive side outlet plate side hydraulic oil chamber 523a
  • the operating side opposite plate side pressure line 508 is connected to the operating side outlet opposite plate side hydraulic oil chamber 525b.
  • the operating side outlet side opposite plate side hydraulic oil chamber 525b which is the head side of the operating side outlet shift cylinder 515B
  • the driving side outlet plate side hydraulic oil chamber 523a which is the rod side of the driving side outlet shift cylinder 515C
  • the driving side plate side pressure line 507 and the operating side opposite plate side pressure line 508 are connected by the driving side plate side pressure line 507 and the operating side opposite plate side pressure line 508, so that the pressures pdr , pwh of each hydraulic oil chamber are equal.
  • Figure 5 shows the moment when roll set 710A moves to the drive side on its own after the shift position of roll set 710A is determined, pilot check valves 821 and 822 are closed, and the shift operation is stopped, and then roll set 710A first hits drive side arm 714C.
  • Figure 6 shows the state when roll set 710A has moved further toward the driving side from Figure 5, the remaining backlash on the operating side has become zero, and the movement of roll set 710A toward the driving side has stopped.
  • the piston 525d of the operating side outlet shift cylinder 515B wants to move by 2 to the operating side outlet opposite plate hydraulic oil chamber 525b side, but because the operating side outlet opposite plate hydraulic oil chamber 525b side can support the pushing force from the operating side outlet plate hydraulic oil chamber 525a side with half the pressure of the operating side outlet plate hydraulic oil chamber 525a side due to the area difference, the operating side outlet opposite plate hydraulic oil chamber 525b side can only move 1/2 corresponding to the movement 1 of the driving side outlet plate hydraulic oil chamber 523a side. Therefore, the operating side outlet plate hydraulic oil chamber 525a side cannot move by 2 and only moves 1/2. Therefore, the hydraulic oil equivalent to (2-1/2) on the operating side outlet plate side hydraulic oil chamber 525a flows out from the relief valve 811.
  • the driving side output shift cylinder 515C moves 1 toward the driving side
  • the operating side output shift cylinder 515B moves 1/2 toward the operating side. This makes the remaining backlash 0. Therefore, the driving side arm 714C moves toward the driving side by 2/3 of the remaining backlash, and the operating side arm 714B moves toward the operating side by 1/3 of the remaining backlash.
  • the operating side arm 714B moves in the operating side direction by 1/3 of the remaining play, causing the position sensor 716 to move by 1/3 of the remaining play.
  • the shift position of the roll set 710A becomes misaligned, so the shift position needs to be adjusted frequently.
  • Figures 7 to 9 are plan views that explain the details of the upper work roll part of the rolling mill.
  • the entry fixed member 702 on the operation side is provided with an entry shift cylinder 715A on the operation side that applies force to the upper work roll 710 in both the operation side and drive side directions via an operation side arm 714A connected to an upper operation side bearing housing 712A that supports the radial bearing 790A on the operation side.
  • the operation side exit fixed member 703 is provided with an operation side exit shift cylinder 715B that applies force to the upper work roll 710 in both the operation side and drive side directions via an operation side arm 714B connected to an upper operation side bearing housing 712A that supports the operation side radial bearing 790A.
  • a position sensor 716 is provided in the operating side exit shift cylinder 715B to detect the position of the upper work roll 710 in the roll axis direction. Note that the position sensor 716 may be provided at any of the other operating side entry shift cylinders 715A and driving side shift cylinders 715C and 715D. Also, it does not have to be one, and two or more may be provided.
  • the drive-side entry fixed member 702 is provided with a drive-side entry shift cylinder 715D that applies force to the upper work roll 710 in both the operating side and drive side directions via a drive-side arm 714D connected to an upper drive-side bearing housing 712B that supports the drive-side radial bearing 790B.
  • the drive-side exit fixed member 703 is provided with a drive-side exit shift cylinder 715C that applies force to the upper work roll 710 in both the operating side and drive side directions via a drive-side arm 714C connected to an upper drive-side bearing housing 712B that supports the drive-side radial bearing 790B.
  • the operating side radial bearing 790A is further subjected to an axial force acting on the upper work roll 710, and is ultimately supported by the operating side shift cylinders 715A and 715B.
  • the driving side radial bearing 790B is subjected to an axial force acting on the upper work roll 710, but this force is supported by the driving side shift cylinders 715C and 715D.
  • both the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D can support forces in both the operating side direction and the driving side direction.
  • All of these operating side entry shift cylinder 715A, operating side exit shift cylinder 715B, driving side exit shift cylinder 715C, and driving side entry shift cylinder 715D are double-rod cylinders in which the internal pistons 923d, 925d (only the exit side is shown in each case) have two rods 923c, 925c (only the exit side is shown in each case).
  • this embodiment is equipped with a hydraulic circuit that sends hydraulic oil to multiple hydraulic cylinders, moving the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B in the axial direction and maintaining the axial position of the upper work roll 710.
  • pressure lines 805, 806, 807, and 808 are provided to connect each corresponding hydraulic oil chamber on the inlet and outlet sides.
  • the hydraulic circuit is such that the driving side outlet plate side hydraulic oil chamber 923a, the driving side inlet plate side hydraulic oil chamber 924a, the operating side outlet opposite plate side hydraulic oil chamber 925b, and the operating side inlet opposite plate side hydraulic oil chamber 926b are connected by the driving side plate side pressure line 807 and the operating side opposite plate side pressure line 808, and the driving side outlet opposite plate side hydraulic oil chamber 923b, the driving side inlet opposite plate side hydraulic oil chamber 924b, the operating side outlet plate side hydraulic oil chamber 925a, and the operating side inlet plate side hydraulic oil chamber 926a are connected by the driving side opposite plate side pressure line 805 and the operating side plate side pressure line 806.
  • the hydraulic circuit is configured so that the other hydraulic cylinder of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B also moves the same specified stroke in the opposite direction without changing the amount of oil in the connected pressure lines 805, 806, 807, 808.
  • a radial bearing 790A is arranged in the upper operating side bearing box 712A.
  • a radial bearing 790B is arranged in the upper driving side bearing box 712B.
  • the forces of the upper work roll bending cylinders 740, 741 and the upper work roll bearing box clearance cylinder 760 act on the radial bearings 790A, 790B. These radial bearings 790A, 790B support these vertical forces acting on the roll axis while rotating.
  • radial bearings 790A, 790B also support the axial force acting on upper operation side bearing housing 712A and upper drive side bearing housing 712B, four-row tapered roller bearings are generally used. Also, bearings of the same specifications are used for drive side radial bearing 790B and operation side radial bearing 790A, which can be made to avoid complicated maintenance work.
  • pressure line 801 branching off from pressure line 800A through which pressurized oil discharged from a pump (not shown) of the hydraulic device 90 flows
  • solenoid switching valve 810 for adjusting the amount of oil flowing in and out is provided on the outlet side of tank line 802 branching off from tank line 800B connected to a tank (not shown) in which the pressurized oil is stored.
  • the rod side (operating side outlet plate side hydraulic oil chamber 925a side) of the operating side shift cylinders 715A, 715B close to the plate is connected to pressure lines 801, 800A via the operating side plate side pressure line 806 and pressure line 803, and a force in the operating side direction acts on the upper operating side bearing housing 712A.
  • the rod side of the driving side shift cylinders 715C, 715D closer to the opposite plate is also connected to pressure lines 801, 800A via driving side opposite plate side pressure line 805 and pressure line 803, and a force in the operating side direction acts on the upper driving side bearing housing 712B.
  • the rod side of the operating side shift cylinders 715A, 715B facing away from the plate (the operating side outlet side opposite plate side hydraulic oil chamber 925b side) and the rod side of the driving side shift cylinders 715C, 715D facing away from the plate (the driving side outlet side plate side hydraulic oil chamber 923a side) are connected to the tank lines 802, 800B via the operating side opposite plate side pressure line 808 or the driving side plate side pressure line 807 and pressure line 804, respectively, so that both the operating side and driving side shift cylinders generate a shift force towards the operating side.
  • the rod side of the operating side shift cylinders 715A, 715B closest to the plate (the operating side outlet side hydraulic oil chamber 925b side) is connected to the pressure lines 801, 800A via the operating side opposite plate side pressure line 808 and pressure line 804, and a force in the drive side direction acts on the upper operating side bearing housing 712A.
  • the rod side (drive side outlet plate side hydraulic oil chamber 923a side) of the drive side shift cylinders 715C, 715D is connected to pressure lines 801, 800A via drive side plate side pressure line 807 and pressure line 804, and a force in the drive side direction acts on the upper drive side bearing box 712B.
  • the rod side closer to the plate of the operating side shift cylinders 715A, 715B (the operating side outlet plate side hydraulic oil chamber 925a side) and the rod side closer to the opposite plate of the driving side shift cylinders 715C, 715D (the driving side outlet opposite plate side hydraulic oil chamber 923b side) are connected to the tank lines 802, 800B via the operating side plate side pressure line 806 or the driving side opposite plate side pressure line 805 and pressure line 803, respectively, so that both the operating side and driving side shift cylinders generate a shift force towards the driving side.
  • the pilot check valves 821, 822 prevent hydraulic oil from flowing to either the rod side closest to the plate or the rod side opposite the plate of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D.
  • a pilot check valve 822 is provided in the pressure line 804 downstream of the solenoid switching valve 810, and a pilot check valve 821 is provided in the pressure line 803 downstream of the solenoid switching valve 810, and this prevents pressure oil from flowing to both the rod and head sides of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D when the solenoid switching valve 810 is in neutral. This allows the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D to support the upper work roll 710 so that it does not move in the axial direction, even when the shifting of the upper work roll 710 is stopped.
  • relief valves 811, 812 are provided between the pilot check valves 821, 822 and the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D to keep the pressure rise in the piping at the allowable pressure of the machine.
  • Figure 8 shows the structure around the inlet side shift cylinders on the operating side and drive side. In order to explain the operation, Figure 8 only explains the case where the piping on the rod side closest to the plate on the operating side and the rod side closest to the opposite plate on the drive side are connected, but the same can be said for other piping connections.
  • Fswe and Fsde are each Ftr /4, and although not shown, the force Fswd with which the output side operating side shift cylinder 715B supports the upper operating side bearing housing 712A and the force Fsdd with which the drive side output shift cylinder 715C supports the upper drive side bearing housing 712B are also Ftr /4, and the sum of these four is Ftr , which supports the thrust force Ftr .
  • line M which is the center position of the distance between the support positions on the operating side and the driving side, remains at the center position of the distance between the support positions on the operating side and the driving side even if La changes by ⁇ La.
  • line M is close to the center position of the rolling material 5, even if there is thermal expansion, there is only a very small amount of axial slippage between the upper work roll 710 and the rolling material 5, and rolling is not hindered.
  • FIG. 10 is a plan view illustrating the details of the upper work roll portion of a rolling mill that is a modified version of embodiment 1.
  • FIG. 10 shows an example of a configuration in which a shift block 712A1 containing upper work roll bending cylinders 740, 741 is connected to operating side shift cylinders 715A, 715B on the operating side, and a shift block 712B1 containing upper work roll bending cylinders 740, 741 is connected to driving side shift cylinders 715C, 715D on the driving side.
  • the thrust reaction force can be made the same on the operating side and the driving side, just as in the case of the configuration shown in Figure 7, in which the entry side fixed member 702 and the exit side fixed member 703 have bending cylinders 740, 741 built in.
  • the rolling mill of the first embodiment of the present invention described above, after the hydraulic circuit has held the axial position of the upper work roll 710, if an external force received by the upper work roll 710 causes only one of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B to apply an axial force to the upper work roll 710, the other of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B is configured to move in the opposite direction to the other hydraulic cylinder.
  • the thrust reaction force of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D can be made the same as long as no excessive thrust resistance force acts, and the pressure in the hydraulic cylinders can be prevented from increasing to the set pressure of the relief valves 811, 812 or higher. Therefore, excessive load is not applied to the support parts such as the operating side bearing and the driving side bearing of the mill roll, and the life can be improved.
  • the thrust force may be supported on one side or on both sides, and the state of support of the thrust force may change before and after the relief valve is actuated.
  • the operating pressure of the relief valve affects the pressure on the secondary side of the pilot check valve, but since the operating pressure of the relief valve changes depending on the flow rate, it may be difficult to determine from the pressure measurement results on the secondary side of the pilot check valve whether the thrust force is supported on one side or on both sides.
  • the thrust force is calculated by multiplying the areas of both pressure chambers of the cylinder, and it was found that if it remains uncertain whether the thrust force is supported by one side or both sides of the cylinder, it may be difficult to accurately calculate the thrust force.
  • the thrust force can always be supported on both sides, even when an abnormal thrust force acts and causes the relief valves 811, 812 to operate, so the thrust force can be accurately determined from the pressure measurement results on the secondary side of the pilot check valves 821, 822.
  • rolling mills in which the upper and lower rolls are inclined in opposite directions to create a crossed state have high plate crown/plate shape control capabilities, but because a large thrust force acts between the rolled material 5 and the upper work roll 710, there are limits to the load capacity due to the strength of the bearings and roll ends that receive the thrust force.
  • the vertical resistance of the thrust receiving part affects the rolling load measurement value. If there is a thrust force support device on only one side, it can also cause a differential load.
  • the thrust force can be made the same on the operating side and the driving side, so the differential load can be minimized, although this depends on the friction coefficient of the thrust receiving part.
  • the hydraulic circuit is configured so that the driving side exit plate side hydraulic oil chamber 923a and the operating side exit opposite plate side hydraulic oil chamber 925b are connected by pressure lines 807, 808, and the driving side exit opposite plate side hydraulic oil chamber 923b and the operating side exit plate side hydraulic oil chamber 925a are connected by pressure lines 805, 806, so that the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B each apply force to the upper work roll 710 in the same direction. This ensures that the amount of hydraulic oil moving through the piping does not change.
  • the hydraulic circuit is configured so that when either one of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B moves a specified stroke, the other hydraulic cylinder of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B also moves a specified stroke in the opposite direction without changing the amount of oil in the connected pressure lines 805, 806, 807, 808.
  • This allows the strokes of both the driving side and the operating side to be moved to be the same, the pressure in the piping does not become so high that it exceeds the set pressure of the relief valves 811, 812, and both the driving side and the operating side can apply force in the same direction to the mill roll to support the thrust force.
  • the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B are double rod cylinders, and the cross-sectional area in the direction in which the force of the hydraulic oil is applied is the same for the driving side outlet plate side hydraulic oil chamber 923a and the driving side outlet opposite plate side hydraulic oil chamber 923b, and the cross-sectional area in the direction in which the force of the hydraulic oil is applied is the same for the operating side outlet plate side hydraulic oil chamber 925a and the operating side outlet opposite plate side hydraulic oil chamber 925b, and the driving side outlet plate side hydraulic oil chamber 923a and the operating side outlet opposite plate side hydraulic oil chamber 925b are pressure lines.
  • the bearing box connection part of the drive side hydraulic cylinder and the operation side hydraulic cylinder can be made closer to the plate, so the structure around the bearing box connection part can be made symmetrical on the drive side and the operation side, and the structure can be made common, resulting in a simpler device than other embodiments described later.
  • the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B are provided on the entry side and exit side of the rolling mill, respectively, and by providing pressure lines 805, 806, 807, 808 that connect the corresponding hydraulic oil chambers on the entry side and exit side, the support force on the entry side and exit side of the hydraulic cylinders can be made the same, so that no moment acts on the bearing housing, preventing rotation in the horizontal plane of the mill roll and equalizing the support force on the entry side and exit side of the rolled material 5 with a simple structure.
  • the device also includes a control device 80 that controls the operation of multiple hydraulic cylinders.
  • the control device 80 is configured to drive the drive side shift cylinders 715C, 715D and the operation side shift cylinders 715A, 715B to shift the upper work roll 710 in the axial direction, thereby enabling automatic axial shifting of the mill roll.
  • the mill roll is tilted at an arbitrary angle relative to the plate, the thrust force acting on the mill roll increases, but this large thrust force is supported by half on the operating side and half on the driving side, making the support forces on the inlet and outlet sides equal with a simple structure, preventing moment from acting on the bearing housing, and reducing the support force per hydraulic cylinder to 1/4.
  • the cross-sectional areas of the hydraulic oil chambers on the drive side closer to the plate and the operation side closer to the opposite plate are matched and connected with piping
  • the cross-sectional areas of the drive side closer to the opposite plate and the operation side closer to the plate are matched and connected with piping.
  • Example 2 A rolling mill and a rolling method according to a second embodiment of the present invention will be described with reference to Fig. 11.
  • Fig. 11 is a plan view for explaining the details of an upper work roll portion of the rolling mill according to the second embodiment.
  • the drive side exit shift cylinder 715C1, drive side entry shift cylinder 715D1, operation side entry shift cylinder 715A1, and operation side exit shift cylinder 715B1 are all single rod cylinders, and the single rods 923c1, 925c1 of each cylinder (only the exit side is shown in each example) are oriented in the same direction and are arranged on the operation side.
  • the operating side entry shift cylinder 715A1 is connected to the operating side arm 714A and the upper operating side bearing housing 712A via a transmission member 715A2, and the operating side exit shift cylinder 715B1 is connected to the operating side arm 714B and the upper operating side bearing housing 712A via a transmission member 715B2, thereby supporting the upper work roll 710.
  • the drive side outlet plate side hydraulic oil chamber 923a1 and the operation side outlet opposite plate side hydraulic oil chamber 925b1 are connected by drive side plate side pressure lines 807A, 807B, and the cross-sectional areas in the direction in which the hydraulic oil force is applied (area of piston 923d1 and piston 925d1) are the same, and the drive side outlet opposite plate side hydraulic oil chamber 923b1 and the operation side outlet plate side hydraulic oil chamber 925a1 are connected by pressure lines 805A, 805B and operation side plate side pressure line 806, and the cross-sectional areas in the direction in which the hydraulic oil force is applied (area of piston 923d1 and piston 925d1) are the same.
  • roll set 710A is moved toward the drive side while receiving thrust resistance from roll set 710A toward the operation side, and after the position of roll set 710A is set, a thrust resistance in the drive side direction acts on roll set 710A due to changes in conditions such as the rotation of the rolls of the rolling mill, and when only roll set 710A moves toward the drive side, the thrust resistance is evenly supported by both the drive side and the operation side, so the pressure does not rise above the set pressure of relief valves 811, 812.
  • relief valves 811, 812 may be provided on the secondary side of pilot check valves 821, 822 to take into account emergencies such as the application of unexpected excessive thrust resistance.
  • the rolling mill and rolling method of the second embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
  • the same hydraulic cylinder can be used on the operating side and the driving side, but the mechanical devices around the cylinder, such as the shift device, have different structures on the operating side and the driving side.
  • the roll changing device on the operating side can be located close to the rolling mill, which is similar to the case where a shift cylinder is provided only on the operating side of a normal work roll shift, so there is no need to expand the space on the operating side, and space can be saved economically.
  • the configuration of this embodiment is preferable when securing space on the operation side, regardless of whether it is hot rolling or cold rolling.
  • the configuration of the single rod cylinder in this embodiment is not limited to the form shown in FIG. 11, and the driving side exit shift cylinder 715C1 and the driving side entry shift cylinder 715D1 can also be configured to support the driving side arms 714C, 714D via a transmission member in the same way as the operating side entry shift cylinder 715A1 and the operating side exit shift cylinder 715B1, so that the single rod faces outward in the axial direction.
  • an intermediate cylinder is further provided as shown in FIG. 14, which will be described later.
  • the rolling mill becomes more compact. Space can be secured on the operating side for roll changing, and the drive side is similarly compact, so space can be secured as well. Furthermore, because the structure on the drive side can be made symmetrical with the structure on the operating side, it is possible to standardize the structure and achieve a simple device configuration.
  • Example 3 A rolling mill and a rolling method according to a third embodiment of the present invention will be described with reference to Figures 12 and 13.
  • Figures 12 and 13 are plan views for explaining the details of an upper work roll portion of the rolling mill according to the third embodiment.
  • pressure line 805B1 branching off from pressure line 803 is connected to the drive side entry side opposite plate side hydraulic oil chamber 833b of the drive side entry side shift cylinder 833 of both rods
  • pressure line 805B2 branching off from pressure line 803 is connected to the operation side entry side plate side hydraulic oil chamber 830a of the operation side entry side shift cylinder 830 of both rods.
  • the driving side inlet side opposite plate hydraulic oil chamber 833b and the driving side outlet side opposite plate hydraulic oil chamber 832b of the driving side outlet shift cylinder 832 of both rods are connected by a pressure line 823
  • this driving side outlet side opposite plate hydraulic oil chamber 832b and the operating side outlet plate side hydraulic oil chamber 831a of the operating side outlet shift cylinder 831 of both rods are connected by a pressure line 824
  • this operating side outlet plate side hydraulic oil chamber 831a and the operating side inlet plate side hydraulic oil chamber 830a are connected by a pressure line 825.
  • Fig. 13 shows a state in which the upper work roll 710 in Fig. 12 has an arbitrary inclination angle with respect to the rolled material 5.
  • the center of the strip width at the strip passing position is set to be approximately the same position as the center of the rolling mill, and in this case, the inclination angle ⁇ c is set counterclockwise around the center position of the rolling mill in the strip width direction.
  • the upper work roll 710 can shift to various positions, and even when it does not shift, the distance from the rolling mill center to the thrust force acting position can differ between the operating side and the driving side.
  • the axial position of the upper work roll 710 is determined using the configuration of this embodiment, no excessive force is applied to the shift device even if the inclination angle is changed during rolling or the pilot check valves 821, 822 remain in their activated state.
  • the deviation in the roll axis direction caused by changing the tilt angle is very small because the deviation between the center of the distance between the support positions and the center of the tilt (rolling mill center position) is small.
  • the total amount of hydraulic oil on the secondary side of the pilot check valves 821 and 822 does not change.
  • the rolling mill and rolling method of the third embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
  • Example 4 A rolling mill and a rolling method according to a fourth embodiment of the present invention will be described with reference to Fig. 14.
  • Fig. 14 is a plan view for explaining the details of the upper work roll portion of the rolling mill according to the fourth embodiment. Note that Fig. 14 shows only the exit side, but the entry side has a similar structure, and the details are omitted.
  • the driving side exit shift cylinder 935C and the operating side exit shift cylinder 935B are single-rod cylinders.
  • the rod 943c of the driving side exit shift cylinder 935C and the rod 945c of the operating side exit shift cylinder 935B are oriented in opposite directions and are each positioned on the rolling material 5 side.
  • first intermediate cylinder 971 there are two single-rod intermediate cylinders, a first intermediate cylinder 971 and a second intermediate cylinder 973.
  • first intermediate cylinder 971 and second intermediate cylinder 973 are dummy cylinders, and there is no particular object to be pressed.
  • the driving side outlet rod side hydraulic oil chamber 943a of the driving side outlet shift cylinder 935C and the rod side hydraulic oil chamber 971b of the first intermediate cylinder 971 are connected by an intermediate rod pressure line 807C2
  • the driving side outlet head side hydraulic oil chamber 943b and the head side hydraulic oil chamber 973a of the second intermediate cylinder 973 are connected by an intermediate rod pressure line 805C2.
  • the operating side outlet rod side hydraulic oil chamber 945a of the operating side outlet shift cylinder 935B and the rod side hydraulic oil chamber 973b of the second intermediate cylinder 973 are connected by an intermediate rod pressure line 805C1
  • the operating side outlet head side hydraulic oil chamber 945b and the head side hydraulic oil chamber 971a of the first intermediate cylinder 971 are connected by an intermediate rod pressure line 807C1.
  • the ratio of the cross-sectional area between the drive side outlet rod side hydraulic oil chamber 943a and the drive side outlet head side hydraulic oil chamber 943b in the direction in which the hydraulic oil force is applied, the ratio of the cross-sectional area between the operation side outlet rod side hydraulic oil chamber 945a and the operation side outlet head side hydraulic oil chamber 945b in the direction in which the hydraulic oil force is applied, the ratio of the cross-sectional area between the rod side hydraulic oil chamber 971b and the head side hydraulic oil chamber 971a in the direction in which the hydraulic oil force is applied, and the ratio of the cross-sectional area between the rod side hydraulic oil chamber 973b and the head side hydraulic oil chamber 973a in the direction in which the hydraulic oil force is applied are the same for all cylinders.
  • the rolling mill and rolling method of the fourth embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
  • the bearing housing connection part of the hydraulic cylinder on the driving side and the bearing housing connection part of the hydraulic cylinder on the operating side can be located closer to the rolled material 5, so the structure around the bearing housing connection part can be made symmetrical on the driving side and the operating side, making it possible to standardize the structure and resulting in a simple device.
  • the length of the hydraulic cylinder is shorter than in the double-rod configuration of Example 1, so the protrusion on the operating side of the shift device can be reduced, making it possible to secure space for the roll changing device.
  • the piston 973d of the second intermediate cylinder 973, the piston 943d of the driving side output shift cylinder 935C, the piston 945d of the operating side output shift cylinder 935B, and the piston 971d of the first intermediate cylinder 971 can have the same cross-sectional area, but this is not necessary as long as the ratio of the cross-sectional area of the head/rod side of the pistons of each cylinder is the same.
  • the present invention is not limited to the above-mentioned embodiment, but includes various modified examples.
  • the above-mentioned embodiment has been described in detail to explain the present invention in an easily understandable manner, and the present invention is not necessarily limited to the embodiment having all of the described configurations.
  • the above description is based on a rolling mill in which the mill rolls shift in the axial direction of the rolls, but the present invention also covers rolling mills that are equipped with hydraulic cylinders that fix the axial position, i.e., rolling mills that do not shift in the axial direction.
  • piston 924a drive side inlet plate side hydraulic oil chamber (drive side plate side hydraulic oil chamber) 924b...Drive side inlet side opposite plate side hydraulic oil chamber (drive side opposite plate side hydraulic oil chamber) 925a, 925a1...operation side outlet plate side hydraulic oil chamber (operation side plate side hydraulic oil chamber) 925b, 925b1...operation side, outlet side, opposite plate side hydraulic oil chamber (operation side, opposite plate side hydraulic oil chamber) 925c1...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The present invention comprises: a plurality of hydraulic cylinders that include drive-side shift cylinders 715C, 715D and operation-side shift cylinders 715A, 715B that are configured to apply force to an upper work roll 710 in the axial direction thereof; and a hydraulic circuit that is configured to send hydraulic fluid to the plurality of hydraulic cylinders to move the drive-side shift cylinders 715C, 715D and the operation-side shift cylinders 715A, 715B in the axial direction and hold the position of the upper work roll 710 in the axial direction. The hydraulic circuit is configured such that, when only either the drive-side shift cylinders 715C, 715D or the operation-side shift cylinders 715A, 715B are applying force to the upper work roll 710 in the axial direction due to external force on the upper work roll 710 after the hydraulic circuit has held the position of the upper work roll 710 in the axial direction, the other hydraulic cylinders move in the opposite direction.

Description

圧延機及び圧延方法Rolling machine and rolling method
 本発明は、圧延機及び圧延方法に関する。 The present invention relates to a rolling machine and a rolling method.
 特許文献1には、上ワークロールと、上ワークロールの操作側及び駆動側に設けられ、上ワークロールを支持するラジアル軸受,スラスト軸受と、上ワークロールの操作側に設けられ、スラスト軸受に対して操作側及び駆動側の両方向への力を付与するシフトシリンダと、上ワークロールの駆動側に設けられ、ラジアル軸受に対して操作側及び駆動側の両方向への力を付与するシフトシリンダと、を備え、シフトシリンダは、上ワークロールが少なくとも圧延中に軸方向にシフトしないときに、各々がラジアル軸受,スラスト軸受に対して同じ方向に力を付与する、ことが記載されている。 Patent Document 1 describes an upper work roll, a radial bearing and a thrust bearing provided on the operating side and driving side of the upper work roll to support the upper work roll, a shift cylinder provided on the operating side of the upper work roll for applying a force to the thrust bearing in both the operating side and driving side directions, and a shift cylinder provided on the driving side of the upper work roll for applying a force to the radial bearing in both the operating side and driving side directions, and states that the shift cylinders each apply a force to the radial bearing and thrust bearing in the same direction when the upper work roll does not shift axially at least during rolling.
国際公開2022/030004号International Publication No. 2022/030004
 特許文献1では、駆動側と操作側の両側でロールシフトさせる構造が開示されている。 Patent document 1 discloses a structure that shifts the rolls on both the drive side and the operating side.
 圧延機のロールは、回転等の条件の変化によって、ロールに作用するスラスト力の方向が駆動側又は操作側で切り替わることがある。この場合、ロール位置を設定した後に反対方向のスラスト力が作用して、スラスト力を支える駆動側及び操作側のアームからロール、より具体的にはロールを支持する部材が一旦離れることになる。そのため、再度両側のアームを位置調整してロールのスラスト力を支えなければならない。 When conditions such as rotation change, the direction of the thrust force acting on the rolls of a rolling mill can switch between the drive side and the operating side. In this case, a thrust force in the opposite direction acts on the roll after the roll position is set, causing the roll, or more specifically the members supporting the roll, to temporarily move away from the drive side and operating side arms that support the thrust force. As a result, the positions of the arms on both sides must be adjusted again to support the thrust force of the roll.
 しかし、アームは、ロールに軸方向の力を与える支持部に軸方向の不均等なガタ(隙間)が存在することで、一方のアームだけでスラスト力を支える場合が生じることがある。 However, if there is uneven axial play (gap) in the support part that applies axial force to the roll, it may happen that the thrust force is supported by only one arm.
 一方のアームで支えきれない場合は、アームを動かす油圧シリンダの接続された配管内がリリーフ弁設定圧(最高圧)以上の圧力になり、作動油がリリーフ弁から抜けることで他方のアームも動かすことになる。しかしリリーフ弁設定圧は高圧なので、負荷が作用する軸受等の周辺機器の寿命低下につながる虞があることが検討の結果明らかとなった。 If one arm cannot support the load, the pressure in the piping connected to the hydraulic cylinder that moves the arm will exceed the relief valve set pressure (maximum pressure), and hydraulic oil will escape through the relief valve, causing the other arm to move as well. However, because the relief valve set pressure is high, it became clear through investigations that this could lead to a shortened lifespan of peripheral equipment such as bearings that are subjected to the load.
 上述のケースに限られず、発熱する金属帯の熱によりロールが熱膨張する場合も、軸方向に不均等なガタが生じ得るので、上記と同様の問題が生じる可能性があることが明らかとなった。 It has become clear that this is not limited to the above-mentioned cases, but that problems similar to those described above may occur if the roll expands due to heat from the heated metal band, as this can cause uneven play in the axial direction.
 本発明は、油圧シリンダの接続された配管内を過大な圧力にすることなく、ロールの両側の軸受などのロール支持部の寿命を向上させることが可能な圧延機及び圧延方法を提供することを目的とする。 The present invention aims to provide a rolling mill and rolling method that can improve the life of roll support parts such as bearings on both sides of the roll without creating excessive pressure inside the piping connected to the hydraulic cylinder.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、ミルロールと、前記ミルロールに対してその軸方向の力を付与するように構成された前記ミルロールの駆動側に設けられた駆動側油圧シリンダ、及び前記軸方向の力を付与するように構成された前記ミルロールの操作側に設けられた操作側油圧シリンダを含む複数の油圧シリンダと、複数の前記油圧シリンダに作動油を送り、前記駆動側油圧シリンダ及び前記操作側油圧シリンダが前記軸方向に動き、前記ミルロールの前記軸方向の位置を保持するように構成された油圧回路と、を備え、前記油圧回路は、前記油圧回路が前記ミルロールの前記軸方向の位置を保持した後に、前記ミルロールが受ける外力により前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちいずれか一方の油圧シリンダだけが前記ミルロールに前記軸方向の力を付与する状態になった場合に前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちもう一方の油圧シリンダが前記一方の油圧シリンダとは反対方向に動くように構成されている。 The present invention includes a number of means for solving the above problems, and an example thereof includes a mill roll, a number of hydraulic cylinders including a driving side hydraulic cylinder provided on the driving side of the mill roll configured to apply an axial force to the mill roll, and an operating side hydraulic cylinder provided on the operating side of the mill roll configured to apply the axial force, and a hydraulic circuit configured to feed hydraulic oil to the multiple hydraulic cylinders, so that the driving side hydraulic cylinder and the operating side hydraulic cylinder move in the axial direction and maintain the axial position of the mill roll, and the hydraulic circuit is configured such that after the hydraulic circuit has maintained the axial position of the mill roll, when an external force applied to the mill roll causes only one of the driving side hydraulic cylinder or the operating side hydraulic cylinder to apply the axial force to the mill roll, the other of the driving side hydraulic cylinder or the operating side hydraulic cylinder moves in the opposite direction to the one hydraulic cylinder.
 本発明によれば、油圧シリンダの接続された配管内を過大な圧力にすることなく、ロールの両側の軸受などのロール支持部の寿命を向上させることができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, it is possible to improve the life of the roll support parts, such as the bearings on both sides of the roll, without creating excessive pressure inside the piping connected to the hydraulic cylinder. Other issues, configurations and effects than those mentioned above will become clear from the explanation of the embodiments below.
実施例1の圧延機を備えた圧延設備の概要を示す図である。1 is a diagram showing an outline of a rolling facility including a rolling mill according to a first embodiment of the present invention; 実施例1の圧延機の概要を説明する正面図である。FIG. 1 is a front view for explaining an outline of a rolling mill according to a first embodiment. 図2のA-A’矢視図である。This is a view taken along the arrows A-A' in Figure 2. 本発明の課題を説明する概略図である。FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する概略図である。FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する概略図である。FIG. 1 is a schematic diagram illustrating a problem to be solved by the present invention. 実施例1の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment. 実施例1の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment. 実施例1の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 2 is a plan view for explaining details of an upper work roll portion of the rolling mill of the first embodiment. 実施例1の変形例の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 4 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a modified example of the first embodiment. 実施例2の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a second embodiment. 実施例3の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a third embodiment. 実施例3の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a third embodiment. 実施例4の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。FIG. 11 is a plan view for explaining details of an upper work roll portion of a rolling mill according to a fourth embodiment.
 以下に本発明の圧延機及び圧延方法の実施例を、図面を用いて説明する。 Below, an embodiment of the rolling machine and rolling method of the present invention will be explained with reference to the drawings.
 なお、本明細書で用いる図面において、同一のまたは対応する構成要素には同一、または類似の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。 In addition, in the drawings used in this specification, identical or corresponding components are given the same or similar reference numerals, and repeated explanations of these components may be omitted.
 また、本明細書中でスラスト抵抗力とは、圧延中や圧延中シフトしているときに、圧延機の各ロールやその軸受箱に作用するロール軸方向の力であり、その力を支える装置に対して作用する力のことを意味し、スラスト力と同じ意味である。スラスト反力とは、スラスト抵抗力を支える装置から生じる力であり、スラスト抵抗力と方向が逆で同じ大きさの力のことを意味する。 In addition, in this specification, thrust resistance force refers to the force in the roll axial direction that acts on each roll and its bearing housing of the rolling mill during rolling or when shifting during rolling, and refers to the force that acts on the device that supports that force, and has the same meaning as thrust force. Thrust reaction force refers to the force that arises from the device that supports the thrust resistance force, and refers to a force that is the same magnitude as the thrust resistance force but in the opposite direction.
 <実施例1> 
 本発明の圧延機及び圧延方法の実施例1について図1乃至図10を用いて説明する。
Example 1
A rolling mill and a rolling method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10. FIG.
 最初に、本実施例の圧延機を備えた圧延設備の概要について図1乃至図3を用いて説明する。図1は本実施例1の圧延機を備えた圧延設備の概要を示す図、図2は圧延機の概要を説明する正面図、図3は図2のA-A’矢視図である。 First, an overview of the rolling equipment equipped with the rolling mill of this embodiment will be described with reference to Figures 1 to 3. Figure 1 is a diagram showing an overview of the rolling equipment equipped with the rolling mill of this embodiment 1, Figure 2 is a front view explaining the overview of the rolling mill, and Figure 3 is a view taken along the line A-A' in Figure 2.
 図1に示すように、圧延設備1は、圧延材5をストリップに熱間圧延する圧延機を複数備えており、制御装置80と、圧延材5の入側から、第1スタンド30、第2スタンド40、第3スタンド50、第4スタンド60、第5スタンド70の5つのスタンドと、を有している。 As shown in FIG. 1, the rolling equipment 1 is equipped with multiple rolling mills that hot roll the rolled material 5 into strips, and has a control device 80 and five stands, from the entry side of the rolled material 5, namely, a first stand 30, a second stand 40, a third stand 50, a fourth stand 60, and a fifth stand 70.
 このうち、第1スタンド30、第2スタンド40、第3スタンド50、第4スタンド60、第5スタンド70の各々と、制御装置80のうち各スタンドを制御する部分と、が本発明でいう圧延機に相当する。 Of these, the first stand 30, the second stand 40, the third stand 50, the fourth stand 60, and the fifth stand 70, and the part of the control device 80 that controls each stand, correspond to the rolling mill as referred to in the present invention.
 なお、圧延設備1については、図1に示す5スタンドのような複数スタンドに限られず、1スタンドであってもよい。また、圧延する際の圧延材の温度を限定するものではないので、冷間圧延する圧延設備であってもよい。 The rolling equipment 1 is not limited to multiple stands such as the five stands shown in FIG. 1, and may be a single stand. In addition, since there is no restriction on the temperature of the rolled material during rolling, it may be a rolling equipment that performs cold rolling.
 次に、本発明の圧延機の概要の一部について図2を用いて説明する。なお、図2以降では図1に示す第5スタンド70を例に説明するが、本発明の圧延機は、図1に示す第1スタンド30や、第2スタンド40、第3スタンド50、第4スタンド60のうちいずれのスタンドにも適用することができる。 Next, a part of the outline of the rolling mill of the present invention will be explained using FIG. 2. Note that in FIG. 2 and subsequent figures, the fifth stand 70 shown in FIG. 1 will be explained as an example, but the rolling mill of the present invention can be applied to any of the first stand 30, second stand 40, third stand 50, and fourth stand 60 shown in FIG. 1.
 図2において、本実施例の圧延機である第5スタンド70は、圧延材5を圧延する6段の圧延機であって、ハウジング700と、制御装置80と、油圧装置90とを有している。 In FIG. 2, the fifth stand 70, which is the rolling mill of this embodiment, is a six-stage rolling mill that rolls the rolled material 5, and has a housing 700, a control device 80, and a hydraulic device 90.
 ハウジング700は、上ワークロール710及び下ワークロール711、これら上ワークロール710及び下ワークロール711にそれぞれ接触することで支持する上中間ロール720、下中間ロール721を備えている。更に、上中間ロール720、下中間ロール721にそれぞれ接触することで支持する上補強ロール730、下補強ロール731を備えている。 The housing 700 is provided with an upper work roll 710, a lower work roll 711, an upper intermediate roll 720 and a lower intermediate roll 721 that support the upper work roll 710 and the lower work roll 711 by contacting them, respectively. It also is provided with an upper backing roll 730 and a lower backing roll 731 that support the upper intermediate roll 720 and the lower intermediate roll 721 by contacting them, respectively.
 このうち、本発明における「ミルロール」は、上述の上ワークロール710、下ワークロール711、上中間ロール720、下中間ロール721、上補強ロール730、及び下補強ロール731のいずれもが該当する。なお、第1スタンド30や、第2スタンド40のような中間ロールを備えない圧延機の場合は、上下ワークロール、及び上下補強ロールが「ミルロール」に該当する。 Among these, the "mill roll" in the present invention corresponds to any of the upper work roll 710, lower work roll 711, upper intermediate roll 720, lower intermediate roll 721, upper backup roll 730, and lower backup roll 731 described above. In the case of a rolling mill that does not have an intermediate roll such as the first stand 30 or the second stand 40, the upper and lower work rolls and the upper and lower backup rolls correspond to the "mill roll".
 これらの各ロールのうち、上ワークロール710の軸方向の端部のうち、操作側には、上ワークロール710と共にロールの軸方向にシフトし、ロールからの荷重を受けるラジアル軸受790A(図7参照)が設けられており、このラジアル軸受790Aを上操作側軸受箱712Aにより支持している。同様に、駆動側には、上ワークロール710と共にロールの軸方向にシフトし、ロールからの荷重を受けるラジアル軸受790B(図7参照)が設けられており、このラジアル軸受790Bを上駆動側軸受箱712Bにより支持している。ここで、操作側のラジアル軸受790A及び駆動側のラジアル軸受790Bは、垂直方向に作用するロールベンディング力のみならずロール軸方向に作用するスラスト力を支持し得るように構成している。 Of these rolls, the axial end of the upper work roll 710 is provided on the operating side with a radial bearing 790A (see FIG. 7) that shifts in the axial direction of the roll together with the upper work roll 710 and receives the load from the roll, and this radial bearing 790A is supported by an upper operating side bearing box 712A. Similarly, on the driving side, a radial bearing 790B (see FIG. 7) is provided that shifts in the axial direction of the roll together with the upper work roll 710 and receives the load from the roll, and this radial bearing 790B is supported by an upper driving side bearing box 712B. Here, the operating side radial bearing 790A and the driving side radial bearing 790B are configured to support not only the roll bending force acting in the vertical direction but also the thrust force acting in the roll axial direction.
 下ワークロール711も、同様に、軸方向の端部に軸受(図示の都合上省略)が駆動側及び操作側のいずれにも設けられており、これらの軸受を下ワークロール軸受箱713(操作側が軸受箱713A、駆動側が軸受箱713B)により支持している。 The lower work roll 711 also has bearings (not shown for convenience of illustration) at the axial ends on both the drive side and the operation side, and these bearings are supported by the lower work roll bearing box 713 (bearing box 713A on the operation side, and bearing box 713B on the drive side).
 本実施例では、上ワークロール710は、操作側の上操作側軸受箱712A及び駆動側の上駆動側軸受箱712Bを介して、図3に示すようなシフトシリンダ715によりロール軸方向にシフト可能に構成されている。同様に、下ワークロール711も、操作側の軸受箱713A及び駆動側の軸受箱713Bを介して、図3に示すようなシフトシリンダ717によりロール軸方向にシフト可能に構成されている。 In this embodiment, the upper work roll 710 is configured to be shiftable in the roll axis direction by a shift cylinder 715 as shown in FIG. 3 via an upper operating side bearing housing 712A on the operating side and an upper driving side bearing housing 712B on the driving side. Similarly, the lower work roll 711 is configured to be shiftable in the roll axis direction by a shift cylinder 717 as shown in FIG. 3 via a bearing housing 713A on the operating side and a bearing housing 713B on the driving side.
 また、図3に示すように、上ワークロール710や下中間ロール721では操作側の端部に、下ワークロール711や上中間ロール720では駆動側の端部に先細り部が設けられており、上ワークロール710と下ワークロール711とで上下で点対称になっているとともに、上中間ロール720と下中間ロール721とで上下で点対称になっている。 Also, as shown in FIG. 3, the upper work roll 710 and the lower intermediate roll 721 have tapered portions at their operating side ends, and the lower work roll 711 and the upper intermediate roll 720 have tapered portions at their driving side ends. The upper work roll 710 and the lower work roll 711 are point-symmetrical from top to bottom, and the upper intermediate roll 720 and the lower intermediate roll 721 are point-symmetrical from top to bottom.
 図2に戻り、入側固定部材702は圧延材5の入側のハウジング700に固定されている。圧延材5の出側のハウジング700には、この入側固定部材702に対向するように出側固定部材703が固定されている。 Returning to FIG. 2, the entry side fixed member 702 is fixed to the housing 700 on the entry side of the rolled material 5. An exit side fixed member 703 is fixed to the housing 700 on the exit side of the rolled material 5 so as to face the entry side fixed member 702.
 第5スタンド70では、図2に示すように、操作側及び駆動側のいずれにおいても、入側固定部材702のロールの軸方向に2つ設けられた上ワークロールベンディングシリンダ740,742と、出側固定部材703のロールの軸方向に2つ設けられた上ワークロールベンディングシリンダ741,743とにより上ワークロール軸受箱712を支持している。 In the fifth stand 70, as shown in FIG. 2, on both the operating side and the driving side, the upper work roll bearing box 712 is supported by two upper work roll bending cylinders 740, 742 provided in the axial direction of the roll of the entry side fixed member 702, and two upper work roll bending cylinders 741, 743 provided in the axial direction of the roll of the exit side fixed member 703.
 そして、適宜これらのシリンダを駆動することで上ワークロール710の軸受に対して鉛直方向にベンディング力を与えるようになっている。 Then, by driving these cylinders appropriately, a bending force is applied vertically to the bearings of the upper work roll 710.
 同様に、操作側及び駆動側のいずれにおいても、入側固定部材702に設けられた下ワークロールベンディングシリンダ744,746と出側固定部材703に設けられた下ワークロールベンディングシリンダ745,747とにより下ワークロール軸受箱713を支持しており、適宜これらのシリンダを駆動することで下ワークロール711の軸受に対して鉛直方向にベンディング力を与えるようになっている。 Similarly, on both the operating side and the driving side, the lower work roll bearing housing 713 is supported by lower work roll bending cylinders 744, 746 provided on the entry side fixed member 702 and lower work roll bending cylinders 745, 747 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied vertically to the bearing of the lower work roll 711.
 これらのシリンダのうち、上ワークロールベンディングシリンダ740,741は圧延材5に接触する上ワークロール710の軸受に鉛直方向インクリース側(反圧延材側方向)にベンディング力を与えるように配置されている。また、上ワークロールベンディングシリンダ742,743は、軸受に上ワークロールベンディングシリンダ740,741とは反対方向である鉛直方向デクリース側(圧延材側方向)のベンディング力を与えるように配置されている。 Of these cylinders, the upper work roll bending cylinders 740, 741 are arranged to apply a bending force to the bearing of the upper work roll 710 that contacts the rolled material 5 in the vertical increase side (toward the opposite side of the rolled material). In addition, the upper work roll bending cylinders 742, 743 are arranged to apply a bending force to the bearing in the vertical decrease side (toward the rolled material), which is the opposite direction to the upper work roll bending cylinders 740, 741.
 同様に、下ワークロールベンディングシリンダ744,745は圧延材5に接触する下ワークロール711の軸受に鉛直方向インクリース側にベンディング力を与えるように配置されている。また、下ワークロールベンディングシリンダ746,747は、軸受に下ワークロールベンディングシリンダ744,745と反対方向のデクリース側のベンディング力を与えるように配置されている。 Similarly, the lower work roll bending cylinders 744, 745 are arranged to apply a bending force to the bearing of the lower work roll 711 that contacts the rolled material 5 in the vertical increase direction. In addition, the lower work roll bending cylinders 746, 747 are arranged to apply a bending force to the bearing in the decrease direction, which is the opposite direction to the lower work roll bending cylinders 744, 745.
 更に、図2に示すように、がた取りを目的として、圧延材5の入側の入側固定部材702に、上ワークロール軸受箱712のライナ(図示省略)を介して上ワークロール710に水平方向の力、具体的には圧延方向に押圧力を加えるように上ワークロール軸受箱がた取りシリンダ760がロールの軸方向に2つ設けられている。 Furthermore, as shown in FIG. 2, for the purpose of removing backlash, two upper work roll bearing box backlash removing cylinders 760 are provided in the axial direction of the roll on the inlet fixed member 702 on the inlet side of the rolling material 5 so as to apply a horizontal force, specifically a pressing force in the rolling direction, to the upper work roll 710 via the liner (not shown) of the upper work roll bearing box 712.
 同様に、入側固定部材702には、下ワークロール軸受箱713のライナを介して下ワークロール711に圧延方向に押圧力を加えるように下ワークロール軸受箱がた取りシリンダ762が2つ設けられている。 Similarly, the entry side fixed member 702 is provided with two lower work roll bearing housing clearance cylinders 762 so as to apply a pressing force in the rolling direction to the lower work roll 711 via the liner of the lower work roll bearing housing 713.
 これらのシリンダにより、ロール軸方向に対して直交する方向で上ワークロール710等に所望の力を加えることができる。 These cylinders allow the desired force to be applied to the upper work roll 710, etc. in a direction perpendicular to the roll axis direction.
 更に、図2に示すように、上ワークロール710を水平方向に角度調整するための水平方向アクチュエータとして、ハウジング700の出側の駆動側及び操作側のいずれにも油圧シリンダ705Aが設けられている場合もある。 Furthermore, as shown in FIG. 2, a hydraulic cylinder 705A may be provided on both the drive side and the operation side of the exit side of the housing 700 as a horizontal actuator for adjusting the angle of the upper work roll 710 in the horizontal direction.
 同様に、下ワークロール711を水平方向に角度調整するための水平方向アクチュエータとして、ハウジング700の出側の駆動側及び操作側のいずれにも油圧シリンダ705Bが設けられている場合がある。 Similarly, a hydraulic cylinder 705B may be provided on both the drive side and the operation side of the exit side of the housing 700 as a horizontal actuator for adjusting the angle of the lower work roll 711 in the horizontal direction.
 更に、上中間ロール720、下中間ロール721、上補強ロール730、及び下補強ロール731をそれぞれ水平方向に角度調整するための水平方向アクチュエータとして、ハウジング700の出側の駆動側及び操作側のいずれにも油圧シリンダ705E,705Fが、ハウジング700の入側の駆動側及び操作側のいずれにも油圧シリンダ706C,706Dがそれぞれ設けられている場合がある。 Furthermore, hydraulic cylinders 705E, 705F may be provided on both the drive side and operation side of the exit side of the housing 700, and hydraulic cylinders 706C, 706D may be provided on both the drive side and operation side of the entry side of the housing 700, as horizontal actuators for adjusting the horizontal angles of the upper intermediate roll 720, the lower intermediate roll 721, the upper backing roll 730, and the lower backing roll 731.
 これらの水平方向アクチュエータとしての油圧シリンダ705A,705B,705E,705F,706C,706Dは油圧シリンダに限られず、ウォームギアなどの他の構成とすることが可能である。 These hydraulic cylinders 705A, 705B, 705E, 705F, 706C, and 706D as horizontal actuators are not limited to hydraulic cylinders, and can be other configurations such as worm gears.
 上中間ロール720の軸方向の端部に軸受(図示省略)が駆動側及び操作側のいずれにも設けられており、これらの軸受を上中間ロール軸受箱722により支持している。下中間ロール721も、同様に、軸方向の端部に軸受(図示省略)が駆動側及び操作側のいずれにも設けられており、これらの軸受を下中間ロール軸受箱723により支持している。 Bearings (not shown) are provided at the axial ends of the upper intermediate roll 720 on both the drive side and the operation side, and these bearings are supported by an upper intermediate roll bearing box 722. Similarly, bearings (not shown) are provided at the axial ends of the lower intermediate roll 721 on both the drive side and the operation side, and these bearings are supported by a lower intermediate roll bearing box 723.
 上中間ロール720は、操作側及び駆動側のいずれにおいても、入側固定部材702に設けられた上中間ロールベンディングシリンダ750と出側固定部材703に設けられた上中間ロールベンディングシリンダ751とにより上中間ロール軸受箱722を支持しており、適宜これらのシリンダを駆動することで軸受に対して鉛直方向インクリース側にベンディング力を与えるようになっている。 On both the operating side and the driving side, the upper intermediate roll 720 supports the upper intermediate roll bearing box 722 with an upper intermediate roll bending cylinder 750 provided on the entry side fixed member 702 and an upper intermediate roll bending cylinder 751 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied to the bearing in the vertical increase direction.
 下中間ロール721も、操作側及び駆動側のいずれにおいても、入側固定部材702に設けられた下中間ロールベンディングシリンダ752と出側固定部材703に設けられた下中間ロールベンディングシリンダ753とにより下中間ロール軸受箱723を支持しており、適宜これらのシリンダを駆動することで軸受に対して鉛直方向インクリース側にベンディング力を与えるようになっている。 The lower intermediate roll 721, on both the operating side and the driving side, supports the lower intermediate roll bearing box 723 with a lower intermediate roll bending cylinder 752 provided on the entry side fixed member 702 and a lower intermediate roll bending cylinder 753 provided on the exit side fixed member 703, and by appropriately driving these cylinders, a bending force is applied to the bearing in the vertical increase direction.
 また、図2に示すように、出側のハウジング700に、上中間ロール軸受箱722を介して上中間ロール720に水平方向の力を加えるように上中間ロール軸受箱がた取りシリンダ771が設けられている。同様に、出側のハウジング700には、下中間ロール軸受箱723を介して下中間ロール721に水平方向の力を加えるように下中間ロール軸受箱がた取りシリンダ773が設けられている。 Also, as shown in FIG. 2, the exit housing 700 is provided with an upper intermediate roll bearing box clearance cylinder 771 so as to apply a horizontal force to the upper intermediate roll 720 via the upper intermediate roll bearing box 722. Similarly, the exit housing 700 is provided with a lower intermediate roll bearing box clearance cylinder 773 so as to apply a horizontal force to the lower intermediate roll 721 via the lower intermediate roll bearing box 723.
 更に、上補強ロール730の軸方向の端部に軸受(図示省略)が駆動側及び操作側のいずれにも設けられており、これらの軸受を上補強ロール軸受箱732により支持している。下補強ロール731も、同様に、軸方向の端部に軸受(図示省略)が駆動側及び操作側のいずれにも設けられており、これらの軸受を下補強ロール軸受箱733により支持している。 Furthermore, bearings (not shown) are provided at the axial end of the upper backup roll 730 on both the drive side and the operation side, and these bearings are supported by an upper backup roll bearing box 732. Similarly, bearings (not shown) are provided at the axial end of the lower backup roll 731 on both the drive side and the operation side, and these bearings are supported by a lower backup roll bearing box 733.
 また、図2に示すように、入側のハウジング700には、上補強ロール軸受箱732を介して上補強ロール730に水平方向の力を加えるように上補強ロール軸受箱がた取りシリンダ780が設けられている。同様に、入側のハウジング700には、下補強ロール軸受箱733を介して下補強ロール731に水平方向の力を加えるように下補強ロール軸受箱がた取りシリンダ782が設けられている。 Also, as shown in FIG. 2, the entry housing 700 is provided with an upper backup roll bearing box clearance cylinder 780 so as to apply a horizontal force to the upper backup roll 730 via the upper backup roll bearing box 732. Similarly, the entry housing 700 is provided with a lower backup roll bearing box clearance cylinder 782 so as to apply a horizontal force to the lower backup roll 731 via the lower backup roll bearing box 733.
 油圧装置90は、上述した各ベンディングシリンダやがた取りシリンダ、シフトシリンダ715,717、油圧シリンダ705A,705B,705E,705F,706C,706D、あるいは圧延材5を圧延するための圧下力を上ワークロール710及び下ワークロール711に加える圧下シリンダ(図示省略)等の各油圧シリンダに接続されており、この油圧装置90は制御装置80に接続されている。 The hydraulic device 90 is connected to each hydraulic cylinder, such as the above-mentioned bending cylinders, the clearance removing cylinders, the shift cylinders 715, 717, the hydraulic cylinders 705A, 705B, 705E, 705F, 706C, 706D, and the rolling cylinders (not shown) that apply a rolling force to the upper work roll 710 and the lower work roll 711 to roll the rolled material 5, and this hydraulic device 90 is connected to the control device 80.
 制御装置80は油圧装置90を作動制御して、上述した各ベンディングシリンダ等に圧油を給排することでそれらの各シリンダを駆動制御している。これにより、制御装置80は、一例として、駆動側出側シフトシリンダ715C(図7参照)と操作側出側シフトシリンダ715B(図7参照)とを駆動して、上ワークロール710を軸方向にシフト可能に構成されている。 The control device 80 controls the operation of the hydraulic device 90, and controls the drive of each of the bending cylinders described above by supplying and discharging pressurized oil to those cylinders. As a result, the control device 80 is configured to be able to drive the drive side exit shift cylinder 715C (see FIG. 7) and the operation side exit shift cylinder 715B (see FIG. 7), for example, to shift the upper work roll 710 in the axial direction.
 次に、本発明における圧延機及び圧延方法の特徴的な部分について、第5スタンド70の各ロールのうち、上ワークロール710に関係する構成を例にして図4乃至図6を用いて説明する。なお、下ワークロール711や上中間ロール720、下中間ロール721、上補強ロール730、及び下補強ロール731、さらには他のスタンドのワークロールや中間ロール、補強ロールについても同等の構成・方法とすることができ、その詳細な構成は略同じであるため、説明は省略する。 Next, the characteristic parts of the rolling mill and rolling method of the present invention will be described with reference to Figures 4 to 6, taking as an example the configuration related to the upper work roll 710 among the rolls of the fifth stand 70. Note that the lower work roll 711, upper intermediate roll 720, lower intermediate roll 721, upper back-up roll 730, and lower back-up roll 731, as well as the work rolls, intermediate rolls, and back-up rolls of other stands, can have the same configuration and method, and since the detailed configurations are approximately the same, a description will be omitted.
 最初に、本発明の課題について図4乃至図6を用いて説明する。図4乃至図6は本発明の課題を説明する概略図である。 First, the problem of the present invention will be explained using Figures 4 to 6. Figures 4 to 6 are schematic diagrams that explain the problem of the present invention.
 図4では、電磁切換弁810をb励磁とし駆動側方向にシフトし、その後、電磁切換弁を中立位置にしてパイロットチェック弁を閉とし駆動側方向へのシフト動作を止めた瞬間を示している。 In Figure 4, the solenoid switching valve 810 is energized at b to shift toward the drive side, and then the solenoid switching valve is returned to the neutral position, the pilot check valve is closed, and the shift operation toward the drive side is stopped.
 ここでは、説明を容易にするため、上ワークロール710を始めとしたロールセット710Aは簡略化した一体的な形で表現している。シフトシリンダは入側と出側に設置されているが、圧延材5の入側については出側と略同じ構成のため、ここでは出側の駆動側出側シフトシリンダ515C及び操作側出側シフトシリンダ515Bのみを例示している。 To make the explanation easier, the roll set 710A including the upper work roll 710 is shown in a simplified, integrated form. The shift cylinders are installed on the entry side and the exit side, but since the entry side of the rolling material 5 has substantially the same configuration as the exit side, only the driving side exit shift cylinder 515C and the operating side exit shift cylinder 515B are shown here as examples.
 図4に示すように、ロールセット710Aが、駆動側では駆動側アーム714Cを介して駆動側出側シフトシリンダ515Cにより軸方向位置が支持され、駆動側では操作側アーム714Bを介して操作側出側シフトシリンダ515Bにより軸方向位置が支持される。 As shown in FIG. 4, the axial position of the roll set 710A is supported on the drive side by the drive side output shift cylinder 515C via the drive side arm 714C, and on the drive side by the operation side output shift cylinder 515B via the operation side arm 714B.
 駆動側出側シフトシリンダ515Cは片ロッド型のシリンダであり、ロッド側の駆動側出側板側作動油室523a、ヘッド側の駆動側出側反板側作動油室523b、ロッド523c、及びピストン523dなどを備える。 The driving side output shift cylinder 515C is a single-rod type cylinder and includes a driving side output plate side hydraulic oil chamber 523a on the rod side, a driving side output opposite plate side hydraulic oil chamber 523b on the head side, a rod 523c, and a piston 523d.
 操作側出側シフトシリンダ515Bも片ロッド型のシリンダであり、ロッド側の操作側出側板側作動油室525a、ヘッド側の操作側出側反板側作動油室525b、ロッド525c、及びピストン525dなどを備える。 The operating side output shift cylinder 515B is also a single-rod type cylinder, and is equipped with an operating side output plate side hydraulic oil chamber 525a on the rod side, an operating side output opposite plate side hydraulic oil chamber 525b on the head side, a rod 525c, and a piston 525d.
 図4に示す油圧回路では、圧力ライン803上にパイロットチェック弁821及びリリーフ弁811が、圧力ライン804上にパイロットチェック弁822及びリリーフ弁812が設けられている。 In the hydraulic circuit shown in FIG. 4, a pilot check valve 821 and a relief valve 811 are provided on the pressure line 803, and a pilot check valve 822 and a relief valve 812 are provided on the pressure line 804.
 圧力ライン803は、パイロットチェック弁821のシリンダ側にて駆動側反板側圧力ライン505及び操作側板側圧力ライン506に分岐している。駆動側反板側圧力ライン505は駆動側出側反板側作動油室523bに接続され、操作側板側圧力ライン506は操作側出側板側作動油室525aに接続される。 The pressure line 803 branches into a drive side opposite plate side pressure line 505 and an operation side plate side pressure line 506 on the cylinder side of the pilot check valve 821. The drive side opposite plate side pressure line 505 is connected to the drive side outlet side opposite plate side hydraulic oil chamber 523b, and the operation side plate side pressure line 506 is connected to the operation side outlet side plate side hydraulic oil chamber 525a.
 圧力ライン804は、パイロットチェック弁822のシリンダ側にて駆動側板側圧力ライン507及び操作側反板側圧力ライン508に分岐している。駆動側板側圧力ライン507は駆動側出側板側作動油室523aに接続され、操作側反板側圧力ライン508は操作側出側反板側作動油室525bに接続される。 The pressure line 804 branches into a drive side plate side pressure line 507 and an operating side opposite plate side pressure line 508 on the cylinder side of the pilot check valve 822. The drive side plate side pressure line 507 is connected to the drive side outlet plate side hydraulic oil chamber 523a, and the operating side opposite plate side pressure line 508 is connected to the operating side outlet opposite plate side hydraulic oil chamber 525b.
 図4における構成では、ロールセット710Aを駆動側にシフトする際にロールセット710Aから駆動側出側シフトシリンダ515C及び操作側出側シフトシリンダ515Bに作用するスラスト抵抗力Hは、H=H+Hで表される。ここで、Hは操作側に、Hは駆動側に作用する力である。 4, when the roll set 710A is shifted to the driving side, the thrust resistance force Ht acting from the roll set 710A to the driving side output shift cylinder 515C and the operation side output shift cylinder 515B is expressed as Ht = Hd + Hw , where Hw is the force acting on the operation side and Hd is the force acting on the driving side.
 操作側出側シフトシリンダ515Bのヘッド側である操作側出側反板側作動油室525bと駆動側出側シフトシリンダ515Cのロッド側である駆動側出側板側作動油室523aとは駆動側板側圧力ライン507及び操作側反板側圧力ライン508によりつながっているので、各々の作動油室の圧力pdr,pwhは等しい。 The operating side outlet side opposite plate side hydraulic oil chamber 525b, which is the head side of the operating side outlet shift cylinder 515B, and the driving side outlet plate side hydraulic oil chamber 523a, which is the rod side of the driving side outlet shift cylinder 515C, are connected by the driving side plate side pressure line 507 and the operating side opposite plate side pressure line 508, so that the pressures pdr , pwh of each hydraulic oil chamber are equal.
 但し、操作側出側シフトシリンダ515Bのヘッド側の圧力を受けるピストン525dの断面積Awhと駆動側出側シフトシリンダ515Cのロッド側の圧力を受けるピストン523dの断面積Adrとでは面積差があるので、操作側出側シフトシリンダ515Bの出力Fwは駆動側出側シフトシリンダ515Cの出力Fdより大きく、ロールセット710Aからシフトシリンダに作用するスラスト抵抗力はH>Hの関係となり、操作側アーム714Bに作用するスラスト抵抗力Hの方が大きな値となっている。 However, since there is an area difference between the cross-sectional area Awh of piston 525d which receives pressure on the head side of operating side exit shift cylinder 515B and the cross-sectional area Adr of piston 523d which receives pressure on the rod side of driving side exit shift cylinder 515C, the output Fw of operating side exit shift cylinder 515B is greater than the output Fd of driving side exit shift cylinder 515C and the thrust resistance forces acting from roll set 710A to the shift cylinder have a relationship of Hw > Hd , with the thrust resistance force Hw acting on operating side arm 714B being a greater value.
 このような構成において、ロールセット710Aが駆動側へ自ら移動したときを考える。図5は、ロールセット710Aのシフト位置が定まり、パイロットチェック弁821,822を閉とし、シフト動作を止めたあとに、ロールセット710Aが自ら駆動側方向に移動し、最初に駆動側アーム714Cにあたった瞬間を示す。 In this configuration, consider the case where roll set 710A moves to the drive side on its own. Figure 5 shows the moment when roll set 710A moves to the drive side on its own after the shift position of roll set 710A is determined, pilot check valves 821 and 822 are closed, and the shift operation is stopped, and then roll set 710A first hits drive side arm 714C.
 操作側では、操作側アーム714Bに対し残りのガタが存在している。実際の設備では、駆動側と操作側のガタが完全に同じになることはないので、残りのガタが0になることはない。 On the operating side, there is residual play in the operating side arm 714B. In actual equipment, the play on the drive side and the operating side will never be exactly the same, so the remaining play will never be zero.
 図6は、図5からロールセット710Aがさらに駆動側方向へ動き、操作側に生じていた残りのガタが0となり、ロールセット710Aの駆動側方向への動きが止まったときを示す。 Figure 6 shows the state when roll set 710A has moved further toward the driving side from Figure 5, the remaining backlash on the operating side has become zero, and the movement of roll set 710A toward the driving side has stopped.
 ここでは、駆動側出側シフトシリンダ515Cの駆動側出側板側作動油室523aの面積Adr、駆動側出側反板側作動油室523bの面積Adh、操作側出側シフトシリンダ515Bの操作側出側板側作動油室525aの面積Awr、及び操作側出側反板側作動油室525bの面積Awhが、Awh=2AwrかつAdh=2Adrの関係にある場合を示す。 Here, the area Adr of the driving side outlet plate side hydraulic oil chamber 523a of the driving side outlet shift cylinder 515C, the area Adh of the driving side outlet opposite plate side hydraulic oil chamber 523b, the area Awr of the operating side outlet plate side hydraulic oil chamber 525a of the operating side outlet shift cylinder 515B, and the area Awh of the operating side outlet opposite plate side hydraulic oil chamber 525b are shown to be in the relationship Awh = 2Awr and Adh = 2Adr .
 最初に駆動側アーム714Cにあたったときに、駆動側出側シフトシリンダ515Cはロールセット710Aのスラスト抵抗力に押されてpdhの圧力が立つ。pwrはpdhと同じ圧力になろうとする。そして、Awr=Awh/2なのでpwh=pwr/2、また、pdr=pwh=pwr/2=pdh/2になろうとする。 When it first hits the driving side arm 714C, the driving side exit shift cylinder 515C is pushed by the thrust resistance of the roll set 710A and the pressure of pdh is generated. pwr tries to become the same pressure as pdh . And, since Awr = Awh /2, pwh = pwr /2 and pdr = pwh = pwr /2 = pdh /2.
 ここで、Adh×pdh=H+Adr×pdrの関係のため、上述の関係を代入すると、
  Adh×pdh=H+(Adh/2)×(pdh/2)
 の関係が成立し、この式からH=Adh×pdh×3/4となる。すなわち、駆動側出側シフトシリンダ515Cのロッド側にも圧力が立つので、駆動側出側シフトシリンダ515Cのヘッド側の押し力の3/4までしか支えることができない。
Here, since the relationship is A dh ×p dh =H d +A dr ×p dr , by substituting the above relationship,
A dh × p dh = H d + (A dh / 2) × (p dh / 2)
This equation gives Hd = Adh x pdh x 3/4. In other words, since pressure is also exerted on the rod side of the driving side output shift cylinder 515C, it can only support up to 3/4 of the pushing force on the head side of the driving side output shift cylinder 515C.
 そして、駆動側出側シフトシリンダ515CがHに押されて負けたとき、駆動側出側シフトシリンダ515Cが押されて1だけ動いたとする。 Then, when the driving side output shift cylinder 515C is pushed by Hd and loses, the driving side output shift cylinder 515C is pushed and moves by 1.
 駆動側出側シフトシリンダ515CがHに押されて駆動側方向へ動く場合、操作側アーム714Bが残りのガタを減じるように操作側に動くことになる。 When the driving side output shift cylinder 515C is pushed by Hd and moves towards the driving side, the operating side arm 714B moves towards the operating side so as to reduce the remaining backlash.
 駆動側出側シフトシリンダ515Cが1だけ駆動側に動いたとすると、駆動側出側シフトシリンダ515Cの駆動側出側反板側作動油室523bから操作側出側シフトシリンダ515Bの操作側出側板側作動油室525aに作動油が流れる。このため、操作側出側シフトシリンダ515Bのピストン525dは2だけ操作側出側反板側作動油室525b側に動きたいものの、操作側出側反板側作動油室525b側はその面積差から操作側出側板側作動油室525a側の半分の圧力で操作側出側板側作動油室525a側からの押し力を支えられるので、操作側出側反板側作動油室525b側は駆動側出側板側作動油室523a側の動き1に対応した1/2しか動くことができない。そのため、操作側出側板側作動油室525a側は2動くことができず、1/2しか動かない。従って、操作側出側板側作動油室525a側の(2-1/2)に相当する作動油はリリーフ弁811から流出することになる。 If the driving side outlet shift cylinder 515C moves by 1 to the driving side, hydraulic oil flows from the driving side outlet opposite plate hydraulic oil chamber 523b of the driving side outlet shift cylinder 515C to the operating side outlet plate hydraulic oil chamber 525a of the operating side outlet shift cylinder 515B. Therefore, the piston 525d of the operating side outlet shift cylinder 515B wants to move by 2 to the operating side outlet opposite plate hydraulic oil chamber 525b side, but because the operating side outlet opposite plate hydraulic oil chamber 525b side can support the pushing force from the operating side outlet plate hydraulic oil chamber 525a side with half the pressure of the operating side outlet plate hydraulic oil chamber 525a side due to the area difference, the operating side outlet opposite plate hydraulic oil chamber 525b side can only move 1/2 corresponding to the movement 1 of the driving side outlet plate hydraulic oil chamber 523a side. Therefore, the operating side outlet plate hydraulic oil chamber 525a side cannot move by 2 and only moves 1/2. Therefore, the hydraulic oil equivalent to (2-1/2) on the operating side outlet plate side hydraulic oil chamber 525a flows out from the relief valve 811.
 具体的には、駆動側出側シフトシリンダ515Cが1だけ駆動側に動いたとすると、操作側出側シフトシリンダ515Bは1/2だけ操作側へ動く。これによって、残りのガタが0になる。そのため、駆動側アーム714Cは残りのガタ×2/3だけ駆動側方向に動き、操作側アーム714Bは残りのガタ×1/3だけ操作側方向に動いたことになる。 Specifically, if the driving side output shift cylinder 515C moves 1 toward the driving side, the operating side output shift cylinder 515B moves 1/2 toward the operating side. This makes the remaining backlash 0. Therefore, the driving side arm 714C moves toward the driving side by 2/3 of the remaining backlash, and the operating side arm 714B moves toward the operating side by 1/3 of the remaining backlash.
 また、駆動側出側シフトシリンダ515CがHで押されて駆動側方向に1だけ動いたとき、駆動側出側シフトシリンダ515Cのロッド側も1だけ動くので操作側出側シフトシリンダ515Bのヘッド側は面積比分1/2動き、操作側出側シフトシリンダ515Bのロッド側も1/2動く。従って、作動油量はAdh×1-Awr×1/2=Adh×3/4がリリーフ弁811から抜ける。そして、駆動側アーム714Cは残りのガタの2/3、操作側アーム714Bは残りのガタの1/3、それぞれが動いたところで、駆動側出側シフトシリンダ515Cと操作側出側シフトシリンダ515Bが止まる。 Also, when driving side output shift cylinder 515C is pushed by Hd and moves 1 in the driving side direction, the rod side of driving side output shift cylinder 515C also moves 1, so the head side of operating side output shift cylinder 515B moves 1/2 the area ratio, and the rod side of operating side output shift cylinder 515B also moves 1/2. Therefore, the amount of hydraulic oil A dh × 1 - A wr × 1/2 = A dh × 3/4 is released from relief valve 811. Then, when driving side arm 714C has moved 2/3 of the remaining backlash and operating side arm 714B has moved 1/3 of the remaining backlash, driving side output shift cylinder 515C and operating side output shift cylinder 515B stop.
 操作側アーム714Bは、残りのガタ×1/3だけ操作側方向に動くので、位置センサ716に残りのガタ×1/3の動きが生じる。 The operating side arm 714B moves in the operating side direction by 1/3 of the remaining play, causing the position sensor 716 to move by 1/3 of the remaining play.
 残りのガタは操作側のガタと駆動側のガタの差であり、残りのガタが1mm程度ある場合、位置センサ716は1mm×1/3=0.3mm程度操作側に動くことになる。 The remaining play is the difference between the play on the operating side and the play on the drive side, and if the remaining play is about 1 mm, the position sensor 716 will move about 1 mm x 1/3 = 0.3 mm toward the operating side.
 以上のように、ロールセット710Aから操作側方向のスラスト抵抗力を受けながらロールセット710Aを駆動側方向に動かし、ロールセット710Aの位置を設定したあとに、圧延機のロールの回転などの条件の変化によって、ロールセット710Aに駆動側方向のスラスト抵抗力が作用してロールセット710Aのみが駆動側方向に動いたとき、駆動側と操作側の両方でスラスト抵抗力を支える状態となるまでに、リリーフ弁811,812の設定圧(最高圧)より圧力が上昇して、作動油がリリーフ弁811,812から抜けてしまう。 As described above, when roll set 710A is moved toward the driving side while receiving thrust resistance from roll set 710A toward the operating side, and the position of roll set 710A is set, if a thrust resistance in the driving side direction acts on roll set 710A due to a change in conditions such as the rotation of the rolls of the rolling mill, causing only roll set 710A to move toward the driving side, the pressure will rise above the set pressure (maximum pressure) of relief valves 811, 812 before the thrust resistance is supported by both the driving side and the operating side, causing hydraulic oil to leak out of relief valves 811, 812.
 つまり、駆動側だけで支えられるときは駆動側だけで支えるが、駆動側が負けたときに限って駆動側と操作側の両方で支えることになり、そのときにはリリーフ弁811,812から作動油が抜けていく間は最高圧以上になってしまう。 In other words, when the drive side alone can support the load, it will do so, but only when the drive side loses will both the drive side and the operating side support the load, and in that case the pressure will exceed the maximum pressure while the hydraulic oil is leaking out of the relief valves 811 and 812.
 したがって、リリーフ弁811,812の設定圧になるまでは両側で支えることができないことと、両側で支えるときは設定圧(最高圧)以上になってしまう、との問題がある。 Therefore, there are problems in that both sides cannot support the pressure until it reaches the set pressure of the relief valves 811 and 812, and when both sides support the pressure, it will exceed the set pressure (maximum pressure).
 さらに、ロールセット710Aのシフト位置のずれが生じるので、頻繁にシフト位置調整を行う必要がある。 Furthermore, the shift position of the roll set 710A becomes misaligned, so the shift position needs to be adjusted frequently.
 以上では、駆動側アーム714Cに先にあたり、操作側に残りのガタが生じたときを示したが、操作側アーム714Bが先にあたり、駆動側に残りのガタが生じたときも同様の問題が生じる。 The above shows the case where the driving side arm 714C hits first, leaving the remaining backlash on the operating side, but the same problem occurs when the operating side arm 714B hits first, leaving the remaining backlash on the driving side.
 また、以上の説明ではスラスト抵抗力の方向が変わったときの問題を示したが、熱膨張によってロールセット710Aの長さに変化が生じたときにも、一方に残りのガタが生じたことと同様の状態となるため、同様の問題を生じる。 The above explanation has shown the problem that occurs when the direction of the thrust resistance force changes, but when the length of roll set 710A changes due to thermal expansion, the same problem occurs because the same condition occurs as when residual backlash occurs on one side.
 次いで、このような問題を解決することが可能な本実施例の特徴的な構成について図7乃至図9を用いて説明する。図7乃至図9は圧延機のうち、上ワークロール部分の詳細を説明する平面図である。 Next, the characteristic configuration of this embodiment that can solve these problems will be explained using Figures 7 to 9. Figures 7 to 9 are plan views that explain the details of the upper work roll part of the rolling mill.
 図7に示すように、操作側の入側固定部材702には、操作側のラジアル軸受790Aを支持する上操作側軸受箱712Aに接続された操作側アーム714Aを介して、上ワークロール710に対して操作側及び駆動側の両方向への力を付与する操作側入側シフトシリンダ715Aが設けられている。 As shown in FIG. 7, the entry fixed member 702 on the operation side is provided with an entry shift cylinder 715A on the operation side that applies force to the upper work roll 710 in both the operation side and drive side directions via an operation side arm 714A connected to an upper operation side bearing housing 712A that supports the radial bearing 790A on the operation side.
 また、操作側の出側固定部材703には、操作側のラジアル軸受790Aを支持する上操作側軸受箱712Aに接続された操作側アーム714Bを介して上ワークロール710に対して操作側及び駆動側の両方向への力を付与する操作側出側シフトシリンダ715Bが設けられている。 Furthermore, the operation side exit fixed member 703 is provided with an operation side exit shift cylinder 715B that applies force to the upper work roll 710 in both the operation side and drive side directions via an operation side arm 714B connected to an upper operation side bearing housing 712A that supports the operation side radial bearing 790A.
 この操作側出側シフトシリンダ715Bの部分には、上ワークロール710のロール軸方向の位置を検出する位置センサ716が設けられている。なお、位置センサ716を設ける位置はこれに限定されず、他の操作側入側シフトシリンダ715A、駆動側シフトシリンダ715C,715Dの位置でもよい。また、1つである必要は無く、2つ以上とすることができる。 A position sensor 716 is provided in the operating side exit shift cylinder 715B to detect the position of the upper work roll 710 in the roll axis direction. Note that the position sensor 716 may be provided at any of the other operating side entry shift cylinders 715A and driving side shift cylinders 715C and 715D. Also, it does not have to be one, and two or more may be provided.
 同様に、駆動側の入側固定部材702には、駆動側のラジアル軸受790Bを支持する上駆動側軸受箱712Bに接続された駆動側アーム714Dを介して上ワークロール710に対して操作側及び駆動側の両方向への力を付与する駆動側入側シフトシリンダ715Dが設けられている。 Similarly, the drive-side entry fixed member 702 is provided with a drive-side entry shift cylinder 715D that applies force to the upper work roll 710 in both the operating side and drive side directions via a drive-side arm 714D connected to an upper drive-side bearing housing 712B that supports the drive-side radial bearing 790B.
 また、駆動側の出側固定部材703には、駆動側のラジアル軸受790Bを支持する上駆動側軸受箱712Bに接続された駆動側アーム714Cを介して上ワークロール710に対して操作側及び駆動側の両方向への力を付与する駆動側出側シフトシリンダ715Cが設けられている。 In addition, the drive-side exit fixed member 703 is provided with a drive-side exit shift cylinder 715C that applies force to the upper work roll 710 in both the operating side and drive side directions via a drive-side arm 714C connected to an upper drive-side bearing housing 712B that supports the drive-side radial bearing 790B.
 操作側のラジアル軸受790Aには更に上ワークロール710に作用する軸方向の力が作用し、最終的には操作側シフトシリンダ715A,715Bが支えている。同様に、駆動側のラジアル軸受790Bには上ワークロール710に作用する軸方向の力が作用するが、その力は駆動側シフトシリンダ715C,715Dが支えている。 The operating side radial bearing 790A is further subjected to an axial force acting on the upper work roll 710, and is ultimately supported by the operating side shift cylinders 715A and 715B. Similarly, the driving side radial bearing 790B is subjected to an axial force acting on the upper work roll 710, but this force is supported by the driving side shift cylinders 715C and 715D.
 この上ワークロール710に作用する軸方向の力は操作側方向のときもあるし、駆動側方向のときもあることから、操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dのいずれのシリンダも、操作側方向及び駆動側方向のどちらの方向の力も支えられる。 Because the axial force acting on the work roll 710 is sometimes in the operating side direction and sometimes in the driving side direction, both the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D can support forces in both the operating side direction and the driving side direction.
 これら操作側入側シフトシリンダ715A,操作側出側シフトシリンダ715B,駆動側出側シフトシリンダ715C,駆動側入側シフトシリンダ715Dのいずれも、内在するピストン923d,925d(いずれも出側のみ例示)がロッド923c,925c(いずれも出側のみ例示)を2つ有する両ロッド型のシリンダとなっている。 All of these operating side entry shift cylinder 715A, operating side exit shift cylinder 715B, driving side exit shift cylinder 715C, and driving side entry shift cylinder 715D are double-rod cylinders in which the internal pistons 923d, 925d (only the exit side is shown in each case) have two rods 923c, 925c (only the exit side is shown in each case).
 また、本実施例では、複数の油圧シリンダに作動油を送り、駆動側シフトシリンダ715C,715D及び操作側シフトシリンダ715A,715Bが軸方向に動き、上ワークロール710の軸方向の位置を保持するように構成された油圧回路を備えている。 In addition, this embodiment is equipped with a hydraulic circuit that sends hydraulic oil to multiple hydraulic cylinders, moving the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B in the axial direction and maintaining the axial position of the upper work roll 710.
 この油圧回路では、油圧回路が上ワークロール710の軸方向の位置を保持した後に、上ワークロール710が受ける外力により駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちいずれか一方の油圧シリンダだけが上ワークロール710に軸方向の力を付与する状態になった場合に駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちもう一方の油圧シリンダが一方の油圧シリンダとは反対方向に動くように構成されている。 In this hydraulic circuit, after the hydraulic circuit has held the axial position of the upper work roll 710, if an external force received by the upper work roll 710 causes only one of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B to apply an axial force to the upper work roll 710, the other of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B will move in the opposite direction to the other hydraulic cylinder.
 また、入側と出側で対応する各々の作動油室同士を連結する圧力ライン805,806,807,808を備えている。例えば、油圧回路は、駆動側シフトシリンダ715C,715Dと操作側シフトシリンダ715A,715Bの各々が上ワークロール710に対して同じ方向に力を付与するように、駆動側出側板側作動油室923a、駆動側入側板側作動油室924aと操作側出側反板側作動油室925b、操作側入側反板側作動油室926bが駆動側板側圧力ライン807,操作側反板側圧力ライン808で接続されるとともに、駆動側出側反板側作動油室923b、駆動側入側反板側作動油室924bと操作側出側板側作動油室925a、操作側入側板側作動油室926aが駆動側反板側圧力ライン805及び操作側板側圧力ライン806で接続されている。 In addition, pressure lines 805, 806, 807, and 808 are provided to connect each corresponding hydraulic oil chamber on the inlet and outlet sides. For example, the hydraulic circuit is such that the driving side outlet plate side hydraulic oil chamber 923a, the driving side inlet plate side hydraulic oil chamber 924a, the operating side outlet opposite plate side hydraulic oil chamber 925b, and the operating side inlet opposite plate side hydraulic oil chamber 926b are connected by the driving side plate side pressure line 807 and the operating side opposite plate side pressure line 808, and the driving side outlet opposite plate side hydraulic oil chamber 923b, the driving side inlet opposite plate side hydraulic oil chamber 924b, the operating side outlet plate side hydraulic oil chamber 925a, and the operating side inlet plate side hydraulic oil chamber 926a are connected by the driving side opposite plate side pressure line 805 and the operating side plate side pressure line 806.
 これにより、外力の方向が変化したり、機械装置の熱膨張によって、支持される側の支持間距離と支持する側の支持間距離に変化が生じたとき等において、駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちいずれか一方の油圧シリンダが所定のストローク動いたとき、油圧回路は、連結された圧力ライン805,806,807,808内の油量を変えることなく、駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bの他方の油圧シリンダも同じ大きさの所定のストロークだけ反対方向に動くように構成されている。 As a result, when the direction of an external force changes, or when the distance between the supports on the supported side and the supporting side changes due to thermal expansion of a mechanical device, when either the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B moves a specified stroke, the hydraulic circuit is configured so that the other hydraulic cylinder of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B also moves the same specified stroke in the opposite direction without changing the amount of oil in the connected pressure lines 805, 806, 807, 808.
 上操作側軸受箱712Aには、ラジアル軸受790Aが配置されている。上駆動側軸受箱712Bには、ラジアル軸受790Bが配置されている。 A radial bearing 790A is arranged in the upper operating side bearing box 712A. A radial bearing 790B is arranged in the upper driving side bearing box 712B.
 ラジアル軸受790A,790Bには上ワークロールベンディングシリンダ740,741や上ワークロール軸受箱がた取りシリンダ760の力が作用する。これらラジアル軸受790A,790Bはロール軸に対して作用するこれらの垂直方向の力を回転しながら支持する。 The forces of the upper work roll bending cylinders 740, 741 and the upper work roll bearing box clearance cylinder 760 act on the radial bearings 790A, 790B. These radial bearings 790A, 790B support these vertical forces acting on the roll axis while rotating.
 更に、ラジアル軸受790A,790Bは、上操作側軸受箱712A,上駆動側軸受箱712Bに作用する軸方向の力も支持することから、4列テーパころ軸受が一般的に使われている。また、駆動側のラジアル軸受790Bと操作側のラジアル軸受790Aとは同じ仕様の軸受が使われており、保全業務が煩雑になることを避けることができるようになっているものとすることができる。 Furthermore, because radial bearings 790A, 790B also support the axial force acting on upper operation side bearing housing 712A and upper drive side bearing housing 712B, four-row tapered roller bearings are generally used. Also, bearings of the same specifications are used for drive side radial bearing 790B and operation side radial bearing 790A, which can be made to avoid complicated maintenance work.
 操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dの駆動系では、油圧装置90のポンプ(図示省略)から吐出された圧油が流れる圧力ライン800Aから分岐した圧力ライン801や、圧油が貯留されているタンク(図示省略)に接続されているタンクライン800Bから分岐したタンクライン802の出側に油の流入出量を調節する電磁切換弁810が設けられている。 In the drive system of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D, there are provided pressure line 801 branching off from pressure line 800A through which pressurized oil discharged from a pump (not shown) of the hydraulic device 90 flows, and solenoid switching valve 810 for adjusting the amount of oil flowing in and out is provided on the outlet side of tank line 802 branching off from tank line 800B connected to a tank (not shown) in which the pressurized oil is stored.
 電磁切換弁810は、a励磁されると操作側シフトシリンダ715A,715Bの板寄りのロッド側(操作側出側板側作動油室925a側)が操作側板側圧力ライン806及び圧力ライン803を介して圧力ライン801,800Aにつながり、上操作側軸受箱712Aに対し操作側方向の力が作用する。 When the solenoid switching valve 810 is energized, the rod side (operating side outlet plate side hydraulic oil chamber 925a side) of the operating side shift cylinders 715A, 715B close to the plate is connected to pressure lines 801, 800A via the operating side plate side pressure line 806 and pressure line 803, and a force in the operating side direction acts on the upper operating side bearing housing 712A.
 また、駆動側シフトシリンダ715C,715Dの反板寄りのロッド側(駆動側出側反板側作動油室923b側)も駆動側反板側圧力ライン805及び圧力ライン803を介して圧力ライン801,800Aにつながり、上駆動側軸受箱712Bに対し操作側方向の力が作用する。 In addition, the rod side of the driving side shift cylinders 715C, 715D closer to the opposite plate (the driving side outlet side opposite plate side hydraulic oil chamber 923b side) is also connected to pressure lines 801, 800A via driving side opposite plate side pressure line 805 and pressure line 803, and a force in the operating side direction acts on the upper driving side bearing housing 712B.
 更に、操作側シフトシリンダ715A,715Bの反板寄りのロッド側(操作側出側反板側作動油室925b側)と駆動側シフトシリンダ715C,715Dの板寄りのロッド側(駆動側出側板側作動油室923a側)は、それぞれ操作側反板側圧力ライン808または駆動側板側圧力ライン807及び圧力ライン804を介してタンクライン802,800Bにつながることによって、操作側と駆動側のどちらのシフトシリンダも、操作側方向へのシフト力を生じる。 Furthermore, the rod side of the operating side shift cylinders 715A, 715B facing away from the plate (the operating side outlet side opposite plate side hydraulic oil chamber 925b side) and the rod side of the driving side shift cylinders 715C, 715D facing away from the plate (the driving side outlet side plate side hydraulic oil chamber 923a side) are connected to the tank lines 802, 800B via the operating side opposite plate side pressure line 808 or the driving side plate side pressure line 807 and pressure line 804, respectively, so that both the operating side and driving side shift cylinders generate a shift force towards the operating side.
 電磁切換弁810は、b励磁されると、操作側シフトシリンダ715A,715Bの反板寄りのロッド側(操作側出側反板側作動油室925b側)が操作側反板側圧力ライン808及び圧力ライン804を介して圧力ライン801,800Aにつながり、上操作側軸受箱712Aに対し駆動側方向の力が作用する。 When the solenoid switching valve 810 is energized, the rod side of the operating side shift cylinders 715A, 715B closest to the plate (the operating side outlet side hydraulic oil chamber 925b side) is connected to the pressure lines 801, 800A via the operating side opposite plate side pressure line 808 and pressure line 804, and a force in the drive side direction acts on the upper operating side bearing housing 712A.
 また、駆動側シフトシリンダ715C,715Dの板寄りのロッド側(駆動側出側板側作動油室923a側)が駆動側板側圧力ライン807及び圧力ライン804を介して圧力ライン801,800Aにつながり、上駆動側軸受箱712Bに対し駆動側方向の力が作用する。 In addition, the rod side (drive side outlet plate side hydraulic oil chamber 923a side) of the drive side shift cylinders 715C, 715D is connected to pressure lines 801, 800A via drive side plate side pressure line 807 and pressure line 804, and a force in the drive side direction acts on the upper drive side bearing box 712B.
 更に、操作側シフトシリンダ715A,715Bの板寄りのロッド側(操作側出側板側作動油室925a側)と駆動側シフトシリンダ715C,715Dの反板寄りのロッド側(駆動側出側反板側作動油室923b側)は、それぞれ操作側板側圧力ライン806または駆動側反板側圧力ライン805及び圧力ライン803を介してタンクライン802,800Bにつながることによって、操作側と駆動側のどちらのシフトシリンダも、駆動側方向へのシフト力を生じる。 Furthermore, the rod side closer to the plate of the operating side shift cylinders 715A, 715B (the operating side outlet plate side hydraulic oil chamber 925a side) and the rod side closer to the opposite plate of the driving side shift cylinders 715C, 715D (the driving side outlet opposite plate side hydraulic oil chamber 923b side) are connected to the tank lines 802, 800B via the operating side plate side pressure line 806 or the driving side opposite plate side pressure line 805 and pressure line 803, respectively, so that both the operating side and driving side shift cylinders generate a shift force towards the driving side.
 電磁切換弁810は、中立にすると、操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dのいずれも、パイロットチェック弁821,822で板寄りのロッド側、反板寄りのロッド側ともに作動油が流れないようになっている。 When the solenoid switching valve 810 is in neutral, the pilot check valves 821, 822 prevent hydraulic oil from flowing to either the rod side closest to the plate or the rod side opposite the plate of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D.
 これらの電磁切換弁810の構成と制御装置80による励磁制御とにより、上ワークロール710の軸方向のシフトを止めたときに、操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dで、上ワークロール710が軸方向に動かないように支持する装置としている。 The configuration of these solenoid switching valves 810 and excitation control by the control device 80 allow the operating side shift cylinders 715A, 715B and driving side shift cylinders 715C, 715D to support the upper work roll 710 so that it does not move in the axial direction when the axial shift of the upper work roll 710 is stopped.
 電磁切換弁810の下流側の圧力ライン804にはパイロットチェック弁822が、電磁切換弁810の下流側の圧力ライン803にはパイロットチェック弁821がそれぞれ設けられており、電磁切換弁810が中立になったときに操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dのロッド側、ヘッド側ともに圧油が流れることを防ぐ構成となっている。これにより、上ワークロール710のシフトを止めたときも、操作側シフトシリンダ715A,715Bと駆動側シフトシリンダ715C,715Dで、上ワークロール710が軸方向に動かないように支持するものとしている。 A pilot check valve 822 is provided in the pressure line 804 downstream of the solenoid switching valve 810, and a pilot check valve 821 is provided in the pressure line 803 downstream of the solenoid switching valve 810, and this prevents pressure oil from flowing to both the rod and head sides of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D when the solenoid switching valve 810 is in neutral. This allows the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D to support the upper work roll 710 so that it does not move in the axial direction, even when the shifting of the upper work roll 710 is stopped.
 更に、想定外の過大なスラスト抵抗力が作用するなどの非常時を考慮して、パイロットチェック弁821,822と操作側シフトシリンダ715A,715B及び駆動側シフトシリンダ715C,715Dとの間にリリーフ弁811,812を設け、配管内の昇圧を機械の許容圧力に留めるようにしている。 Furthermore, in consideration of emergencies such as the application of unexpected excessive thrust resistance, relief valves 811, 812 are provided between the pilot check valves 821, 822 and the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D to keep the pressure rise in the piping at the allowable pressure of the machine.
 なお、図7の油圧系統は、本発明を説明する部分のみを示すものであり、流量調整弁、チェック弁などが適宜必要に応じて追加されるものである。 Note that the hydraulic system in Figure 7 only shows the portion that explains the present invention, and flow control valves, check valves, etc. can be added as necessary.
 図8は、操作側及び駆動側の入側のシフトシリンダまわりの構造を示す。図8では、作用を説明するため、操作側の板寄りのロッド側と駆動側の反板寄りのロッド側の配管がつながっている場合についてのみ説明する図であるが、他の配管連結部でも同様のことが言える。 Figure 8 shows the structure around the inlet side shift cylinders on the operating side and drive side. In order to explain the operation, Figure 8 only explains the case where the piping on the rod side closest to the plate on the operating side and the rod side closest to the opposite plate on the drive side are connected, but the same can be said for other piping connections.
 図8において、操作側と駆動側の支持位置間距離の中心位置をラインMにて示し、Fsdeは駆動側入側シフトシリンダ715Dが上駆動側軸受箱712Bを支持する力、Fsweは操作側入側シフトシリンダ715Aが上操作側軸受箱712Aを支持する力、Lは操作側と駆動側の支持位置間距離、Ftrは上ワークロール710に作用するスラスト力である。ここでは、操作側方向のスラスト力が作用している場合を想定する。 8, the center position of the distance between the support positions on the operating side and the drive side is indicated by line M, Fsde is the force with which the drive side entry shift cylinder 715D supports the upper drive side bearing housing 712B, Fswe is the force with which the operating side entry shift cylinder 715A supports the upper operating side bearing housing 712A, La is the distance between the support positions on the operating side and the drive side, and Ftr is the thrust force acting on the upper work roll 710. Here, it is assumed that a thrust force is acting in the operating side direction.
 図8の状態では、FsweとFsdeは、それぞれFtr/4であり、図示はないが出側の操作側出側シフトシリンダ715Bが上操作側軸受箱712Aを支持する力Fswdと駆動側出側シフトシリンダ715Cが上駆動側軸受箱712Bを支持する力FsddもFtr/4であり、これら4つの合計はFtrとなって、スラスト力Ftrを支持する。 In the state of FIG. 8, Fswe and Fsde are each Ftr /4, and although not shown, the force Fswd with which the output side operating side shift cylinder 715B supports the upper operating side bearing housing 712A and the force Fsdd with which the drive side output shift cylinder 715C supports the upper drive side bearing housing 712B are also Ftr /4, and the sum of these four is Ftr , which supports the thrust force Ftr .
 図9は、図8において、圧延中、上ワークロール710が圧延材5によって加熱されたり、ラジアル軸受790A,790Bが負荷を受けながら回転するときに発熱し、また、周囲の温度変化などで、操作側と駆動側の支持位置間距離LaがΔLaだけ伸びた状態となったときを想定している。 In Figure 9, it is assumed that during rolling, the upper work roll 710 is heated by the rolling material 5, the radial bearings 790A, 790B generate heat as they rotate under load, and the distance La between the support positions on the operating side and the driving side is extended by ΔLa due to changes in the surrounding temperature, etc.
 図9に示すように、操作側と駆動側の支持位置間距離LaがΔLaだけ変化すると、駆動側の支持位置がΔLa/2だけ反板寄りに移動し、駆動側シフトシリンダ715C,715Dの反板寄り側から操作側シフトシリンダ715A,715Bの板寄り側へ作動油が流れ、操作側の支持位置がΔLa/2だけ反板寄りに移動する。 As shown in Figure 9, when the distance La between the support positions on the operating side and the driving side changes by ΔLa, the support position on the driving side moves by ΔLa/2 toward the opposite side to the plate, hydraulic oil flows from the opposite side to the plate of the driving side shift cylinders 715C, 715D to the plate side of the operating side shift cylinders 715A, 715B, and the support position on the operating side moves by ΔLa/2 toward the opposite side to the plate.
 すなわち、本実施例の油圧回路では、操作側と駆動側の支持位置間距離LaがΔLaだけ変化しても、パイロットチェック弁821,822出側の圧力ライン805,806,807,808内の油量は変化しないので、操作側シフトシリンダ715A,715Bによる上ワークロール710の支持力と駆動側シフトシリンダ715C,715Dによる上ワークロール710の支持力とが同じ状態を維持できるのでトータルの支持力のバランスが変化することはない。 In other words, in the hydraulic circuit of this embodiment, even if the distance La between the support positions on the operating side and the driving side changes by ΔLa, the amount of oil in the pressure lines 805, 806, 807, and 808 on the outlet side of the pilot check valves 821 and 822 does not change, so the support force of the upper work roll 710 by the operating side shift cylinders 715A and 715B and the support force of the upper work roll 710 by the driving side shift cylinders 715C and 715D can be maintained in the same state, and the balance of the total support force does not change.
 したがって、操作側と駆動側の支持位置間距離の中心位置であるラインMは、LaがΔLaだけ変化しても、操作側と駆動側の支持位置間距離の中心位置のままである。すなわち、ラインMは、圧延材5センタ位置に近いことから、熱膨張があっても、上ワークロール710と圧延材5の軸方向の滑りは極わずかしか生じず、圧延を阻害することはない。 Therefore, line M, which is the center position of the distance between the support positions on the operating side and the driving side, remains at the center position of the distance between the support positions on the operating side and the driving side even if La changes by ΔLa. In other words, since line M is close to the center position of the rolling material 5, even if there is thermal expansion, there is only a very small amount of axial slippage between the upper work roll 710 and the rolling material 5, and rolling is not hindered.
 ここでは、熱膨張があった場合を示したが、熱収縮があった場合も、同様に支持力が変化することはなく、ラインMもその位置は変化しない。 Here we show the case where thermal expansion occurs, but if thermal contraction occurs, the supporting force will not change and the position of line M will not change either.
 次いで、本実施例の変形例について図10を用いて説明する。図10は実施例1の変形例の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。 Next, a modified version of this embodiment will be described with reference to FIG. 10. FIG. 10 is a plan view illustrating the details of the upper work roll portion of a rolling mill that is a modified version of embodiment 1.
 図10は、操作側では上ワークロールベンディングシリンダ740,741を内在したシフトブロック712A1を操作側シフトシリンダ715A,715Bと連結し、駆動側では上ワークロールベンディングシリンダ740,741を内在したシフトブロック712B1を駆動側シフトシリンダ715C,715Dと連結した構成とした例である。 FIG. 10 shows an example of a configuration in which a shift block 712A1 containing upper work roll bending cylinders 740, 741 is connected to operating side shift cylinders 715A, 715B on the operating side, and a shift block 712B1 containing upper work roll bending cylinders 740, 741 is connected to driving side shift cylinders 715C, 715D on the driving side.
 このようなシフトブロック712A1,712B1を用いる場合も、入側固定部材702、出側固定部材703がベンディングシリンダ740,741を内在した図7等の構成の場合と同様に、操作側と駆動側とでスラスト反力を同じにすることができる。 When using such shift blocks 712A1, 712B1, the thrust reaction force can be made the same on the operating side and the driving side, just as in the case of the configuration shown in Figure 7, in which the entry side fixed member 702 and the exit side fixed member 703 have bending cylinders 740, 741 built in.
 なお、図7の構成を採用し、さらにパイロットチェック弁821,822の2次側に圧力測定装置を設けることにより、ロールに作用するスラスト力を精度よく測定することができるようになる。 In addition, by adopting the configuration shown in FIG. 7 and further providing a pressure measuring device on the secondary side of pilot check valves 821 and 822, it becomes possible to measure the thrust force acting on the roll with high accuracy.
 次に、本実施例の効果について説明する。 Next, we will explain the effects of this embodiment.
 上述した本発明の実施例1の圧延機によれば、油圧回路が上ワークロール710の軸方向の位置を保持した後に、上ワークロール710が受ける外力により駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちいずれか一方の油圧シリンダだけが上ワークロール710に軸方向の力を付与する状態になった場合に駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちもう一方の油圧シリンダが一方の油圧シリンダとは反対方向に動くように構成されている。  According to the rolling mill of the first embodiment of the present invention described above, after the hydraulic circuit has held the axial position of the upper work roll 710, if an external force received by the upper work roll 710 causes only one of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B to apply an axial force to the upper work roll 710, the other of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B is configured to move in the opposite direction to the other hydraulic cylinder.
 ミルロールの軸方向位置を保持した後で、ミルロールに作用する軸方向の外力の方向が変化したときに、操作側油圧シリンダと駆動側油圧シリンダの一方のガタが先に無くなったとしても、一方の油圧シリンダが押されて支えられなくなり動いたときに他の一方の油圧シリンダが一方の油圧シリンダとは反対の方向に同じ量動く、との動作が連続的に繰り返されて、やがて残りのガタがなくなり、他の一方の油圧シリンダも支えることになることから、他方の油圧シリンダのガタが無くなるまで間に一方の油圧シリンダに大きな軸方向の外力が作用し続けることを避けることができる。 When the direction of the axial external force acting on the mill roll changes after the axial position of the mill roll is maintained, even if the backlash of one of the operating hydraulic cylinder and the driving hydraulic cylinder disappears first, when one hydraulic cylinder is pushed and no longer supported and moves, the other hydraulic cylinder moves the same amount in the opposite direction to the one hydraulic cylinder. This action is continuously repeated until the remaining backlash disappears and the other hydraulic cylinder also begins to support the other hydraulic cylinder, preventing a large axial external force from continuing to act on one hydraulic cylinder until the backlash of the other hydraulic cylinder disappears.
 すなわち、熱膨張が生じたり、スラスト抵抗力の方向が変わったり、軸受箱と軸受の間、軸受内部、軸受とロールの間、軸受箱とシフト装置の間などにロールの軸方向にギャップが存在しても、過大なスラスト抵抗力が作用しない限り操作側シフトシリンダ715A,715Bと駆動側シフトシリンダ715C,715Dのシリンダ自体のスラスト反力を同じにすることができ、油圧シリンダ内の圧力がリリーフ弁811,812設定圧以上の昇圧が生じることを避けることができる。このため、ミルロールの操作側軸受や駆動側軸受などの支持部に過剰な負荷が作用せず、寿命の向上を図ることができる。例えば、軸受の寿命をLh、負荷をPlとすると、ころ軸受の場合、Lh∝(1/Pl)10/3の関係があることから、Plに1/2を入れるとLh=10となるため、片側でスラスト力を保持した場合に比べて、軸受の寿命は10倍延ばすことができる。 That is, even if thermal expansion occurs, the direction of thrust resistance force changes, or gaps exist in the axial direction of the roll between the bearing housing and the bearing, inside the bearing, between the bearing and the roll, between the bearing housing and the shift device, etc., the thrust reaction force of the operating side shift cylinders 715A, 715B and the driving side shift cylinders 715C, 715D can be made the same as long as no excessive thrust resistance force acts, and the pressure in the hydraulic cylinders can be prevented from increasing to the set pressure of the relief valves 811, 812 or higher. Therefore, excessive load is not applied to the support parts such as the operating side bearing and the driving side bearing of the mill roll, and the life can be improved. For example, if the life of the bearing is Lh and the load is Pl, in the case of a roller bearing, there is a relationship of Lh ∝ (1/Pl) 10/3 , so if 1/2 is added to Pl, Lh = 10, and the life of the bearing can be extended by 10 times compared to the case where the thrust force is held on one side.
 また、従来の構成では、リリーフ弁設定圧以上に昇圧すると、パイロットチェック弁の2次側から作動油が流出するため、シフト位置のずれが生じることから、頻繁にシフト位置調整を行う必要があったが、本実施例の構成ではリリーフ弁811,812設定圧以上の昇圧を抑制できるので、頻繁なシフト位置調整を必要としない、との効果も得られる。すなわち、従来のような複雑な圧力計測装置や流入出油量調整部調節が不要になり、シンプルな装置構成とすることもできる。加えて、複雑な制御装置無しで電磁切換弁810のON/OFF制御のみで実現可能であることから、制御系の装置構成の簡略化も図ることができる。 In addition, in the conventional configuration, when the pressure is increased above the relief valve set pressure, hydraulic oil flows out from the secondary side of the pilot check valve, causing a shift position shift, and therefore requiring frequent adjustment of the shift position. However, in the configuration of this embodiment, the pressure increase above the set pressure of the relief valves 811, 812 can be suppressed, so frequent adjustment of the shift position is not required. In other words, there is no need for a complex pressure measurement device or adjustment of the inflow and outflow oil amount adjustment unit as in the conventional configuration, and a simple device configuration can be achieved. In addition, since this can be achieved without a complex control device, by only controlling the ON/OFF of the solenoid switching valve 810, the device configuration of the control system can also be simplified.
 例えば上述の特許文献1の場合、片側でスラスト力を支持したり、両側でスラスト力を支持したり、リリーフ弁の作動前後でスラスト力の支持状態が変わることがある。また、リリーフ弁の作動圧力はパイロットチェック弁の2次側の圧力に影響を与えることになるが、リリーフ弁の作動圧力は流量によって変化するため、パイロットチェック弁の2次側の圧力測定結果から、片側でスラスト力を支持しているのか、それとも、両側でスラスト力を支持しているのか、を判定することが難しい場合がある。そのため、パイロットチェック弁の2次側に圧力測定装置を設置し、その圧力を測定したとしても、シリンダの両方の圧力室の面積をかけることでスラスト力を求めることになるので、スラスト力を支持しているシリンダが片側か両側かが不確かなままでは、スラスト力を精度よく求めることが難しくなる虞があることが判った。 For example, in the case of Patent Document 1 mentioned above, the thrust force may be supported on one side or on both sides, and the state of support of the thrust force may change before and after the relief valve is actuated. In addition, the operating pressure of the relief valve affects the pressure on the secondary side of the pilot check valve, but since the operating pressure of the relief valve changes depending on the flow rate, it may be difficult to determine from the pressure measurement results on the secondary side of the pilot check valve whether the thrust force is supported on one side or on both sides. Therefore, even if a pressure measuring device is installed on the secondary side of the pilot check valve and the pressure is measured, the thrust force is calculated by multiplying the areas of both pressure chambers of the cylinder, and it was found that if it remains uncertain whether the thrust force is supported by one side or both sides of the cylinder, it may be difficult to accurately calculate the thrust force.
 しかし、本実施例の構成では、異常なスラスト力が作用しリリーフ弁811,812が作動した場合も含めて、常に両側でスラスト力を支持できるので、パイロットチェック弁821,822の2次側の圧力測定結果から精度よくスラスト力を求めることができる。 However, in the configuration of this embodiment, the thrust force can always be supported on both sides, even when an abnormal thrust force acts and causes the relief valves 811, 812 to operate, so the thrust force can be accurately determined from the pressure measurement results on the secondary side of the pilot check valves 821, 822.
 また、上下のロールを相互に反対方向に傾斜させてクロス状態とした圧延機は、高い板クラウン/板形状制御能力を有するが、圧延材5と上ワークロール710との間で大きなスラスト力が作用するのでスラスト力を受ける軸受やロール端部の強度によって負荷能力の限界があった。 In addition, rolling mills in which the upper and lower rolls are inclined in opposite directions to create a crossed state have high plate crown/plate shape control capabilities, but because a large thrust force acts between the rolled material 5 and the upper work roll 710, there are limits to the load capacity due to the strength of the bearings and roll ends that receive the thrust force.
 特に負荷条件が厳しい場合、軸受の潤滑としてグリースを適用できず循環給油などの油潤滑を採用する必要がでてくるが、循環給油などの油潤滑を採用した場合に設備が複雑で設備コストが高額になる。 In particular, when the load conditions are severe, grease cannot be used to lubricate the bearings and it becomes necessary to use oil lubrication such as circulating oil supply. However, using oil lubrication such as circulating oil supply requires complex equipment and high equipment costs.
 これに対し、上述の本実施例の構成を採用することで、作用する負荷を半分にできれば、機械設備として簡素なグリース潤滑を採用でき、設備コストや操業コストも低く抑えることができるメリットがある。また、作用する負荷を半分にできれば、上ワークロール710の小径化が可能となるため、圧延荷重を下げることにつなげられることから、硬質材の圧延にも適用が可能となる。 In contrast, by adopting the configuration of this embodiment described above, if the applied load can be halved, simple grease lubrication can be used as mechanical equipment, which has the advantage of keeping equipment costs and operating costs low. In addition, if the applied load can be halved, the diameter of the upper work roll 710 can be reduced, which leads to a reduction in the rolling load, making it applicable to rolling of hard materials.
 以上の説明では、軸受がベンディング力とスラスト力の両方を受ける場合について説明しているが、ベンディング力を受けるラジアル軸受とスラスト力を受けるスラスト軸受を別々設けている場合もある。軸受の構造は適宜選択されるものであり、それらの構造においても本実施例の構成を採用することで作用する負荷を半分にでき、軸受などのロール支持部の寿命延長につながる。 The above explanation has been about the case where the bearing receives both bending and thrust forces, but there are also cases where a radial bearing that receives bending forces and a thrust bearing that receives thrust forces are provided separately. The structure of the bearings can be selected appropriately, and even in such structures, the load acting on them can be halved by adopting the configuration of this embodiment, which leads to an extension of the life of the roll support parts such as the bearings.
 さらに、スラスト受け部の上下方向の抵抗は圧延荷重計測値に対し影響を及ぼす。片側だけにスラスト力支持装置がある場合は、差荷重の原因にもなる。本実施例の構成を採用することでスラスト力が操作側と駆動側とで同じにできるのでスラスト受け部の摩擦係数にもよるが差荷重を最小化できる。 Furthermore, the vertical resistance of the thrust receiving part affects the rolling load measurement value. If there is a thrust force support device on only one side, it can also cause a differential load. By adopting the configuration of this embodiment, the thrust force can be made the same on the operating side and the driving side, so the differential load can be minimized, although this depends on the friction coefficient of the thrust receiving part.
 このことから、本実施例の構成を採用することでスラスト受け部の圧延方向の移動抵抗を小さくした構造にすることができる。これによって、圧延中に傾斜を変更するときの抵抗を小さくすることが可能となる。 As a result, by adopting the configuration of this embodiment, it is possible to create a structure that reduces the movement resistance of the thrust receiving part in the rolling direction. This makes it possible to reduce the resistance when changing the inclination during rolling.
 また、油圧回路は、駆動側シフトシリンダ715C,715Dと操作側シフトシリンダ715A,715Bの各々が上ワークロール710に対して同じ方向に力を付与するように、駆動側出側板側作動油室923aと操作側出側反板側作動油室925bが圧力ライン807,808で接続されるとともに、駆動側出側反板側作動油室923bと操作側出側板側作動油室925aが圧力ライン805,806で接続されているため、配管内を移動する作動油の油量が変わらないように構成することができる。 In addition, the hydraulic circuit is configured so that the driving side exit plate side hydraulic oil chamber 923a and the operating side exit opposite plate side hydraulic oil chamber 925b are connected by pressure lines 807, 808, and the driving side exit opposite plate side hydraulic oil chamber 923b and the operating side exit plate side hydraulic oil chamber 925a are connected by pressure lines 805, 806, so that the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B each apply force to the upper work roll 710 in the same direction. This ensures that the amount of hydraulic oil moving through the piping does not change.
 更に、油圧回路は、駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bのうちいずれか一方の油圧シリンダが所定のストローク動いたとき、連結された圧力ライン805,806,807,808内の油量を変えることなく、駆動側シフトシリンダ715C,715Dまたは操作側シフトシリンダ715A,715Bの他方の油圧シリンダも所定のストローク反対方向に動くように構成されていることで、駆動側又は操作側の両方のストロークが同じになるように動かすことができ、配管内の圧力がリリーフ弁811,812設定圧を超えるような高圧になることがなく、駆動側と操作側の両方でミルロールに対して同じ方向に力を付与してスラスト力を支持することができる。 Furthermore, the hydraulic circuit is configured so that when either one of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B moves a specified stroke, the other hydraulic cylinder of the driving side shift cylinders 715C, 715D or the operating side shift cylinders 715A, 715B also moves a specified stroke in the opposite direction without changing the amount of oil in the connected pressure lines 805, 806, 807, 808. This allows the strokes of both the driving side and the operating side to be moved to be the same, the pressure in the piping does not become so high that it exceeds the set pressure of the relief valves 811, 812, and both the driving side and the operating side can apply force in the same direction to the mill roll to support the thrust force.
 また、駆動側シフトシリンダ715C,715D及び操作側シフトシリンダ715A,715Bは両ロッドシリンダであり、駆動側出側板側作動油室923aと駆動側出側反板側作動油室923bの作動油の力が付与される方向の断面積が同じであり、操作側出側板側作動油室925aと操作側出側反板側作動油室925bの作動油の力が付与される方向の断面積が同じであり、駆動側出側板側作動油室923aと操作側出側反板側作動油室925bが圧力ライン807,808で接続されるとともに、駆動側出側反板側作動油室923bと操作側出側板側作動油室925aが圧力ライン805,806で接続されていることにより、ミルロールに作用する操作側方向のスラスト力を支持する力と駆動側方向のスラスト力を支持する力を等しくでき、ミルロールの操作側と駆動側の軸受が同一仕様の場合に軸受などの支持部の寿命を最大化することができるとともに、負荷による各部の傷みをやわらげられる、との効果が得られる。また、両ロッドとすることで、駆動側の油圧シリンダと操作側の油圧シリンダの軸受箱連結部を板寄りとすることができるため、軸受箱連結部まわりの構造を駆動側と操作側で対称とすることができ、構造の共通化を図ることが可能となり、後述する他の実施例に比べてシンプルな装置とすることができる。 In addition, the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B are double rod cylinders, and the cross-sectional area in the direction in which the force of the hydraulic oil is applied is the same for the driving side outlet plate side hydraulic oil chamber 923a and the driving side outlet opposite plate side hydraulic oil chamber 923b, and the cross-sectional area in the direction in which the force of the hydraulic oil is applied is the same for the operating side outlet plate side hydraulic oil chamber 925a and the operating side outlet opposite plate side hydraulic oil chamber 925b, and the driving side outlet plate side hydraulic oil chamber 923a and the operating side outlet opposite plate side hydraulic oil chamber 925b are pressure lines. 807, 808, and the drive side outlet side opposite plate hydraulic oil chamber 923b and the operation side outlet plate side hydraulic oil chamber 925a are connected by pressure lines 805, 806, so that the force supporting the thrust force in the operation side direction acting on the mill roll can be made equal to the force supporting the thrust force in the drive side direction, and when the bearings on the operation side and drive side of the mill roll are of the same specification, the life of the support parts such as the bearings can be maximized and damage to each part due to load can be reduced. In addition, by using both rods, the bearing box connection part of the drive side hydraulic cylinder and the operation side hydraulic cylinder can be made closer to the plate, so the structure around the bearing box connection part can be made symmetrical on the drive side and the operation side, and the structure can be made common, resulting in a simpler device than other embodiments described later.
 更に、駆動側シフトシリンダ715C,715Dと操作側シフトシリンダ715A,715Bの各々は圧延機の入側と出側に設けられ、入側と出側で対応する各々の作動油室同士を連結する圧力ライン805,806,807,808を備えることで、油圧シリンダの入側と出側の支持力を同じにすることができるので、軸受箱に対しモーメントが作用しないようにすることができることからミルロールの水平面内における回転を防止することができるとともに、シンプルな構造で圧延材5の入側と出側の支持力を均等にすることができる。 Furthermore, the driving side shift cylinders 715C, 715D and the operating side shift cylinders 715A, 715B are provided on the entry side and exit side of the rolling mill, respectively, and by providing pressure lines 805, 806, 807, 808 that connect the corresponding hydraulic oil chambers on the entry side and exit side, the support force on the entry side and exit side of the hydraulic cylinders can be made the same, so that no moment acts on the bearing housing, preventing rotation in the horizontal plane of the mill roll and equalizing the support force on the entry side and exit side of the rolled material 5 with a simple structure.
 また、複数の油圧シリンダの駆動を制御する制御装置80を備え、制御装置80は、駆動側シフトシリンダ715C,715Dと操作側シフトシリンダ715A,715Bとを駆動して、上ワークロール710を軸方向にシフト可能に構成されていることにより、ミルロールの軸方向シフトを自動で行うことができる。 The device also includes a control device 80 that controls the operation of multiple hydraulic cylinders. The control device 80 is configured to drive the drive side shift cylinders 715C, 715D and the operation side shift cylinders 715A, 715B to shift the upper work roll 710 in the axial direction, thereby enabling automatic axial shifting of the mill roll.
 更に、各ロールを水平方向に角度調整する水平方向アクチュエータを備える。ミルロールを板に対し任意の傾斜角を設けるとミルロールに作用するスラスト力が大きくなるが、その大きなスラスト力を操作側と駆動側それぞれ半分ずつ支持し、シンプルな構造で入側と出側の支持力を均等にし、軸受箱に対しモーメントが作用しないようにすることができ、1本の油圧シリンダあたりの支持力を1/4にすることができる。 Furthermore, it is equipped with a horizontal actuator that adjusts the angle of each roll horizontally. If the mill roll is tilted at an arbitrary angle relative to the plate, the thrust force acting on the mill roll increases, but this large thrust force is supported by half on the operating side and half on the driving side, making the support forces on the inlet and outlet sides equal with a simple structure, preventing moment from acting on the bearing housing, and reducing the support force per hydraulic cylinder to 1/4.
 なお、両ロッドとした一つの油圧シリンダで、2つのロッド径を変える、すなわち2つの作動油室の断面積が異なるようにすることも可能である。 In addition, it is possible to use a single hydraulic cylinder with two rods and change the diameters of the two rods, i.e., make the cross-sectional areas of the two hydraulic oil chambers different.
 その場合は、駆動側の板寄りと操作側の反板寄りの作動油室の断面積を合わせて配管で連結し、また、駆動側の反板寄りと操作側の板寄りの断面積を合わせて配管で連結することで、駆動側の反板寄り側と操作側の板寄り側及び駆動側の板寄り側と操作側の反板寄り側がそれぞれスラスト反力として同じ力を付与することで、スラスト反力を半減にすることが可能であり、駆動側と操作側で同じ支持する力とすることが可能となり、軸受などのロール支持部の寿命を最大化できる。 In that case, the cross-sectional areas of the hydraulic oil chambers on the drive side closer to the plate and the operation side closer to the opposite plate are matched and connected with piping, and the cross-sectional areas of the drive side closer to the opposite plate and the operation side closer to the plate are matched and connected with piping. This allows the drive side closer to the opposite plate and the operation side closer to the plate, and the drive side closer to the opposite plate and the operation side closer to the opposite plate to each apply the same thrust reaction force, which can halve the thrust reaction force and make it possible to have the same supporting force on the drive side and the operation side, maximizing the life of roll support parts such as bearings.
 また、選択的に操作側方向のスラスト力を支持する力を大きくしたい場合、操作側の反板寄りと駆動側の板寄りの作動油室の断面積が操作側の板寄りと駆動側の反板寄りの作動油室の断面積よりも大きくなるように、ロッド径に径差を設けることを選択することが可能である。 In addition, if you want to selectively increase the force that supports the thrust force in the direction of the operating side, you can choose to provide a difference in the rod diameter so that the cross-sectional area of the hydraulic oil chamber on the operating side near the plate and the driving side near the plate is larger than the cross-sectional area of the hydraulic oil chamber on the operating side near the plate and the driving side near the plate.
 <実施例2> 
 本発明の実施例2の圧延機及び圧延方法について図11を用いて説明する。図11は実施例2の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。
Example 2
A rolling mill and a rolling method according to a second embodiment of the present invention will be described with reference to Fig. 11. Fig. 11 is a plan view for explaining the details of an upper work roll portion of the rolling mill according to the second embodiment.
 図11に示す本実施例の圧延機では、駆動側出側シフトシリンダ715C1、駆動側入側シフトシリンダ715D1、操作側入側シフトシリンダ715A1、及び操作側出側シフトシリンダ715B1はいずれも片ロッドシリンダであり、いずれのシリンダの片ロッド923c1,925c1(いずれも出側のみ例示)の向きが同じで操作側に配置されている。 In the rolling mill of this embodiment shown in Figure 11, the drive side exit shift cylinder 715C1, drive side entry shift cylinder 715D1, operation side entry shift cylinder 715A1, and operation side exit shift cylinder 715B1 are all single rod cylinders, and the single rods 923c1, 925c1 of each cylinder (only the exit side is shown in each example) are oriented in the same direction and are arranged on the operation side.
 このために、操作側入側シフトシリンダ715A1は伝達部材715A2を介して操作側アーム714Aおよび上操作側軸受箱712Aに接続され、操作側出側シフトシリンダ715B1は伝達部材715B2を介して操作側アーム714Bおよび上操作側軸受箱712Aに接続されていることで上ワークロール710を支持している。 For this reason, the operating side entry shift cylinder 715A1 is connected to the operating side arm 714A and the upper operating side bearing housing 712A via a transmission member 715A2, and the operating side exit shift cylinder 715B1 is connected to the operating side arm 714B and the upper operating side bearing housing 712A via a transmission member 715B2, thereby supporting the upper work roll 710.
 更に、駆動側出側板側作動油室923a1と操作側出側反板側作動油室925b1が駆動側板側圧力ライン807A,807Bで接続されるとともに、作動油の力が付与される方向の断面積(ピストン923d1とピストン925d1の面積)が同じであるとともに、駆動側出側反板側作動油室923b1と操作側出側板側作動油室925a1が圧力ライン805A,805B,操作側板側圧力ライン806で接続されるとともに、作動油の力が付与される方向の断面積(ピストン923d1とピストン925d1の面積)が同じとなっている。 Furthermore, the drive side outlet plate side hydraulic oil chamber 923a1 and the operation side outlet opposite plate side hydraulic oil chamber 925b1 are connected by drive side plate side pressure lines 807A, 807B, and the cross-sectional areas in the direction in which the hydraulic oil force is applied (area of piston 923d1 and piston 925d1) are the same, and the drive side outlet opposite plate side hydraulic oil chamber 923b1 and the operation side outlet plate side hydraulic oil chamber 925a1 are connected by pressure lines 805A, 805B and operation side plate side pressure line 806, and the cross-sectional areas in the direction in which the hydraulic oil force is applied (area of piston 923d1 and piston 925d1) are the same.
 このような構成によっても、実施例1で説明した図7の構成と同様に、ΔLaの熱変形があった場合にも、ラインMをはさんで駆動側と操作側でそれぞれΔLa/2ずつ反対側に移動することで、駆動側と操作側で均等な力で支持することが可能となる。  Even with this configuration, as with the configuration of FIG. 7 described in Example 1, even if there is thermal deformation of ΔLa, the driving side and the operating side can be moved to the opposite side by ΔLa/2 on each side of the line M, making it possible to support the driving side and the operating side with equal force.
 すなわち、ロールセット710Aから操作側方向のスラスト抵抗力を受けながらロールセット710Aを駆動側方向に動かし、ロールセット710Aの位置を設定したあとに、圧延機のロールの回転などの条件の変化によって、ロールセット710Aに駆動側方向のスラスト抵抗力が作用し、ロールセット710Aのみが駆動側方向に動いたとき、駆動側と操作側の両方でスラスト抵抗力を均等に支える状態とできるので、リリーフ弁811,812設定圧以上に圧力が上昇してしまうようなことはない。 In other words, roll set 710A is moved toward the drive side while receiving thrust resistance from roll set 710A toward the operation side, and after the position of roll set 710A is set, a thrust resistance in the drive side direction acts on roll set 710A due to changes in conditions such as the rotation of the rolls of the rolling mill, and when only roll set 710A moves toward the drive side, the thrust resistance is evenly supported by both the drive side and the operation side, so the pressure does not rise above the set pressure of relief valves 811, 812.
 なお、この場合であっても、想定外の過大なスラスト抵抗力が作用するなどの非常時を考慮してパイロットチェック弁821,822の2次側にリリーフ弁811,812を設けることはある。 Even in this case, relief valves 811, 812 may be provided on the secondary side of pilot check valves 821, 822 to take into account emergencies such as the application of unexpected excessive thrust resistance.
 その他の構成・動作は前述した実施例1の圧延機及び圧延方法と略同じ構成・動作であり、詳細は省略する。 The rest of the configuration and operation are substantially the same as those of the rolling mill and rolling method of the first embodiment described above, and details are omitted.
 本発明の実施例2の圧延機及び圧延方法においても、前述した実施例1の圧延機及び圧延方法とほぼ同様な効果が得られる。 The rolling mill and rolling method of the second embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
 また、本実施例では、操作側と駆動側とで油圧シリンダ自体は同じものを使用できるが、シリンダまわりのシフト装置などの機械装置は操作側と駆動側とで異なる構造となる。このため、設備が複雑になるものの、シフトシリンダを含めたシフト装置の操作側のハウジングからの突出量を実施例1の構成に比べて小さくすることができるので、操作側の組替装置の取合いなどでシフト装置を大きくすることが難しいときに好適に採用することが可能な構成である。 In addition, in this embodiment, the same hydraulic cylinder can be used on the operating side and the driving side, but the mechanical devices around the cylinder, such as the shift device, have different structures on the operating side and the driving side. This makes the equipment more complex, but the amount of protrusion of the shift device, including the shift cylinder, from the operating side housing can be made smaller than in the configuration of Example 1, so this configuration can be preferably adopted when it is difficult to make the shift device larger due to the need to accommodate a rearrangement device on the operating side, etc.
 具体的には、操作側のロール組替装置を圧延機側に近接配置でき、通常のワークロールシフトの操作側にのみシフトシリンダを設けた場合と同様にすることができることから、操作側のスペースを広げる必要がなく、経済的なスペースとすることができる。 Specifically, the roll changing device on the operating side can be located close to the rolling mill, which is similar to the case where a shift cylinder is provided only on the operating side of a normal work roll shift, so there is no need to expand the space on the operating side, and space can be saved economically.
 その他に、装置によって駆動側にスペース制約がある場合は、操作側シフトシリンダ715A1,715B1のヘッド側が反板寄り側として、駆動側シフトシリンダ715C1,715D1のヘッド側が板寄り側とすることも可能である。 In addition, if there are space constraints on the driving side due to the device, it is also possible to make the head side of the operating side shift cylinders 715A1, 715B1 the side away from the plate, and the head side of the driving side shift cylinders 715C1, 715D1 the side closer to the plate.
 熱延や冷延を問わず操作側のスペースを確保する際に本実施例の構成が好ましい。 The configuration of this embodiment is preferable when securing space on the operation side, regardless of whether it is hot rolling or cold rolling.
 なお、本実施例の片ロッドシリンダの構成では、図11に示す形態に限られず、駆動側出側シフトシリンダ715C1、駆動側入側シフトシリンダ715D1も操作側入側シフトシリンダ715A1、操作側出側シフトシリンダ715B1と同様に伝達部材を介して駆動側アーム714C,714Dを支持することで片ロッドが軸方向の外側を向くように構成されているものとすることができる。この場合、後述する図14のように更に中間シリンダを設けることとする。 The configuration of the single rod cylinder in this embodiment is not limited to the form shown in FIG. 11, and the driving side exit shift cylinder 715C1 and the driving side entry shift cylinder 715D1 can also be configured to support the driving side arms 714C, 714D via a transmission member in the same way as the operating side entry shift cylinder 715A1 and the operating side exit shift cylinder 715B1, so that the single rod faces outward in the axial direction. In this case, an intermediate cylinder is further provided as shown in FIG. 14, which will be described later.
 このようにロッドが外側を向くようにシフトシリンダを配置すると、圧延機がコンパクトになる。操作側ではロール組替のスペースを確保でき、駆動側でも同様にコンパクトになるのでスペースを確保できる。さらに、駆動側の構造が操作側の構造と対称にすることができるので、構造の共通化を図ることが可能となり、シンプルな装置構成とすることができる。 By positioning the shift cylinder so that the rod faces outward in this way, the rolling mill becomes more compact. Space can be secured on the operating side for roll changing, and the drive side is similarly compact, so space can be secured as well. Furthermore, because the structure on the drive side can be made symmetrical with the structure on the operating side, it is possible to standardize the structure and achieve a simple device configuration.
 <実施例3> 
 本発明の実施例3の圧延機及び圧延方法について図12及び図13を用いて説明する。図12及び図13は実施例3の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。
Example 3
A rolling mill and a rolling method according to a third embodiment of the present invention will be described with reference to Figures 12 and 13. Figures 12 and 13 are plan views for explaining the details of an upper work roll portion of the rolling mill according to the third embodiment.
 図12および図13に示す本実施例の圧延機では、圧力ライン803から分岐した圧力ライン805B1が両ロッドの駆動側入側シフトシリンダ833の駆動側入側反板側作動油室833bに接続され、圧力ライン803から分岐した圧力ライン805B2が両ロッドの操作側入側シフトシリンダ830の操作側入側板側作動油室830aに接続されている。 In the rolling mill of this embodiment shown in Figures 12 and 13, pressure line 805B1 branching off from pressure line 803 is connected to the drive side entry side opposite plate side hydraulic oil chamber 833b of the drive side entry side shift cylinder 833 of both rods, and pressure line 805B2 branching off from pressure line 803 is connected to the operation side entry side plate side hydraulic oil chamber 830a of the operation side entry side shift cylinder 830 of both rods.
 更に、駆動側入側反板側作動油室833bと両ロッドの駆動側出側シフトシリンダ832の駆動側出側反板側作動油室832bとが圧力ライン823で接続され、この駆動側出側反板側作動油室832bと両ロッドの操作側出側シフトシリンダ831の操作側出側板側作動油室831aとが圧力ライン824で接続され、この操作側出側板側作動油室831aと操作側入側板側作動油室830aとが圧力ライン825で接続されている。 Furthermore, the driving side inlet side opposite plate hydraulic oil chamber 833b and the driving side outlet side opposite plate hydraulic oil chamber 832b of the driving side outlet shift cylinder 832 of both rods are connected by a pressure line 823, this driving side outlet side opposite plate hydraulic oil chamber 832b and the operating side outlet plate side hydraulic oil chamber 831a of the operating side outlet shift cylinder 831 of both rods are connected by a pressure line 824, and this operating side outlet plate side hydraulic oil chamber 831a and the operating side inlet plate side hydraulic oil chamber 830a are connected by a pressure line 825.
 なお、作用を説明するため、操作側の板寄りのロッド側と駆動側の反板寄りのロッド側の配管が接続されている場合についてのみ説明しているが、操作側の反板寄りのロッド側(操作側入側反板側作動油室830b、操作側出側反板側作動油室831b)と駆動側の板寄りのロッド側(駆動側入側板側作動油室833a、駆動側出側板側作動油室832a)も配管により同様に接続されている。 In order to explain the operation, only the case where the rod side closest to the plate on the operating side and the rod side closest to the opposite plate on the driving side are connected by piping is explained, but the rod side closest to the opposite plate on the operating side (operating side inlet opposite plate hydraulic oil chamber 830b, operating side outlet opposite plate hydraulic oil chamber 831b) and the rod side closest to the plate on the driving side (drive side inlet plate side hydraulic oil chamber 833a, drive side outlet plate side hydraulic oil chamber 832a) are also connected by piping in the same way.
 図12および図13でも、図8と同様に操作側方向のスラスト力が作用している場合を想定する。 In Figures 12 and 13, we also assume that a thrust force is acting in the direction of the operating side, as in Figure 8.
 図13は、図12において上ワークロール710が圧延材5に対し任意の傾斜角をもった状態を示すものである。板通過位置の板幅のセンタは圧延機のセンタとほぼ同じ位置とし、ここでは圧延機の板幅方向のセンタ位置を中心として傾斜角θを反時計まわりに設けている。 Fig. 13 shows a state in which the upper work roll 710 in Fig. 12 has an arbitrary inclination angle with respect to the rolled material 5. The center of the strip width at the strip passing position is set to be approximately the same position as the center of the rolling mill, and in this case, the inclination angle θc is set counterclockwise around the center position of the rolling mill in the strip width direction.
 図13において、圧延中にパイロットチェック弁821,822が効いた状態で傾斜角θを設けたとき、その圧延機センタ位置からスラスト力作用位置までの距離が操作側と駆動側とで同じ場合は、操作側の入側の支持位置はΔLweだけ板寄りに、また、操作側の出側の支持位置はΔLwdだけ反板寄りに移動する。さらに、駆動側の入側の支持位置はΔLdeだけ反板寄りに、また、駆動側の出側の支持位置はΔLddだけ板寄りに移動する。 In Fig. 13, when the pilot check valves 821, 822 are in operation during rolling and a tilt angle θc is set, if the distance from the rolling mill center position to the thrust force acting position is the same on the operating side and the drive side, the support position on the entry side of the operating side moves toward the plate by ΔLwe , and the support position on the delivery side of the operating side moves toward the opposite side to the plate by ΔLwd . Furthermore, the support position on the entry side of the drive side moves toward the opposite side to the plate by ΔLde , and the support position on the delivery side of the drive side moves toward the plate by ΔLdd .
 これらの移動によって、作動油は圧力ライン805B1,805B2,823,824,825内を移動するが、パイロットチェック弁821,822の出側(2次側)の作動油の総量が変化することはない。 These movements cause hydraulic oil to move through pressure lines 805B1, 805B2, 823, 824, and 825, but the total amount of hydraulic oil on the outlet side (secondary side) of pilot check valves 821 and 822 does not change.
 操作側の反板寄りのロッド側と駆動側の板寄りのロッド側とも同様に圧力ラインで接続されていることから、同様にパイロットチェック弁821,822の出側(2次側)の作動油の総量は変化しない。 Since the rod side opposite the plate on the operating side and the rod side closest to the plate on the drive side are similarly connected by pressure lines, the total amount of hydraulic oil on the outlet side (secondary side) of pilot check valves 821, 822 similarly does not change.
 一方で、上ワークロール710がシフトして色々な位置を取り得ること、シフトしないときでも、その圧延機センタからスラスト力作用位置までの距離が操作側と駆動側とで異なることがある。 On the other hand, the upper work roll 710 can shift to various positions, and even when it does not shift, the distance from the rolling mill center to the thrust force acting position can differ between the operating side and the driving side.
 この場合は、上ワークロール710の傾斜にともない生じる操作側と駆動側の支持位置間距離がわずかに変化する。この変化に対しては、上ワークロール710の熱膨張などによって操作側と駆動側との支持位置間距離が変化したときと同様に、操作側と駆動側間で作動油の流れが生じる。しかし、ΔLwe,ΔLwd,ΔLde,ΔLddの各値は、上ワークロール710の傾斜にともない幾何学的に求めたスラスト力の作用位置とわずかにずれることになるものの、大きな変化はない。 In this case, the distance between the support positions on the operating side and the driving side changes slightly due to the inclination of the upper work roll 710. In response to this change, a flow of hydraulic oil occurs between the operating side and the driving side, similar to when the distance between the support positions on the operating side and the driving side changes due to thermal expansion of the upper work roll 710 or the like. However, although the values of ΔL we , ΔL wd , ΔL de , and ΔL dd deviate slightly from the geometrically determined position of action of the thrust force due to the inclination of the upper work roll 710, there is no significant change.
 このように、ワークロールをシフトするミルにおいて、圧延中に上ワークロール710に傾斜を設ける際に、シフト位置を大きく変化させることなしに、また、傾斜の過程でリリーフ弁811,812設定圧以上に上昇するような過大な負荷を作用させることなしに、傾斜させることが可能となる。 In this way, in a mill that shifts work rolls, when tilting the upper work roll 710 during rolling, it is possible to tilt it without significantly changing the shift position, and without applying excessive load that would increase the pressure above the set pressure of the relief valves 811, 812 during the tilting process.
 更に、傾斜の際、ラインMを中心としたわずかなずれをともなうだけなので、圧延材5と上ワークロール710との間の滑りもほとんどない状態で上ワークロール710を傾斜させることができる。 Furthermore, when tilting, there is only a slight deviation centered on the line M, so the upper work roll 710 can be tilted with almost no slippage between the rolled material 5 and the upper work roll 710.
 上ワークロール710のシフト位置を決めたあと、あるいは、シフトのないミルであっても、本実施例の構成を用いて、上ワークロール710の軸方向位置を決めるようにしたあと、圧延中に傾斜角を変えたとしても、パイロットチェック弁821,822が効いた状態のままとしても、シフト装置に無理な力が作用することはない。 After the shift position of the upper work roll 710 has been determined, or even if the mill does not have a shift, the axial position of the upper work roll 710 is determined using the configuration of this embodiment, no excessive force is applied to the shift device even if the inclination angle is changed during rolling or the pilot check valves 821, 822 remain in their activated state.
 傾斜角変更にともなうロール軸方向のずれは、支持位置間距離の中心と傾斜の中心(圧延機センタ位置)のずれが小さいので、ごく小さな値となる。そのごく小さなずれが生じる際、パイロットチェック弁821,822の2次側の作動油の総量が変化することはない。 The deviation in the roll axis direction caused by changing the tilt angle is very small because the deviation between the center of the distance between the support positions and the center of the tilt (rolling mill center position) is small. When this very small deviation occurs, the total amount of hydraulic oil on the secondary side of the pilot check valves 821 and 822 does not change.
 なお、図11のような他の実施例の形態においても、圧延中にロールが圧延材5に対して傾斜しても、パイロットチェック弁821,822の2次側の作動油の総量が変化しないのであれば、各シリンダの操作側と駆動側の支持力を均等にすることができる。 In addition, even in other embodiments such as that shown in FIG. 11, if the total amount of hydraulic oil on the secondary side of the pilot check valves 821, 822 does not change even if the rolls are tilted relative to the rolled material 5 during rolling, the support force of the operating side and driving side of each cylinder can be made equal.
 その他の構成・動作は前述した実施例1の圧延機及び圧延方法と略同じ構成・動作であり、詳細は省略する。 The rest of the configuration and operation are substantially the same as those of the rolling mill and rolling method of the first embodiment described above, and details are omitted.
 本発明の実施例3の圧延機及び圧延方法においても、前述した実施例1の圧延機及び圧延方法とほぼ同様な効果が得られる。 The rolling mill and rolling method of the third embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
 <実施例4> 
 本発明の実施例4の圧延機及び圧延方法について図14を用いて説明する。図14は実施例4の圧延機のうち、上ワークロール部分の詳細を説明する平面図である。なお、図14では出側のみ示しているが、入側も同様の構造であり、詳細は省略している。
Example 4
A rolling mill and a rolling method according to a fourth embodiment of the present invention will be described with reference to Fig. 14. Fig. 14 is a plan view for explaining the details of the upper work roll portion of the rolling mill according to the fourth embodiment. Note that Fig. 14 shows only the exit side, but the entry side has a similar structure, and the details are omitted.
 図14に示す本実施例の圧延機は、駆動側出側シフトシリンダ935C及び操作側出側シフトシリンダ935Bは片ロッドシリンダである。これら駆動側出側シフトシリンダ935Cのロッド943c及び操作側出側シフトシリンダ935Bのロッド945cの向きが逆であり、それぞれ圧延材5側に配置されている。 In the rolling mill of this embodiment shown in FIG. 14, the driving side exit shift cylinder 935C and the operating side exit shift cylinder 935B are single-rod cylinders. The rod 943c of the driving side exit shift cylinder 935C and the rod 945c of the operating side exit shift cylinder 935B are oriented in opposite directions and are each positioned on the rolling material 5 side.
 更に、片ロッドの第1中間シリンダ971,第2中間シリンダ973を2本備えている。これら第1中間シリンダ971,第2中間シリンダ973は、ダミーシリンダであり、押圧対象が特に存在しないものである。 Furthermore, there are two single-rod intermediate cylinders, a first intermediate cylinder 971 and a second intermediate cylinder 973. These first intermediate cylinder 971 and second intermediate cylinder 973 are dummy cylinders, and there is no particular object to be pressed.
 そのうえで、駆動側出側シフトシリンダ935Cの駆動側出側ロッド側作動油室943aと第1中間シリンダ971のロッド側作動油室971bが中間ロッド圧力ライン807C2で接続され、駆動側出側ヘッド側作動油室943bと第2中間シリンダ973のヘッド側作動油室973aが中間ロッド圧力ライン805C2で接続されている。 In addition, the driving side outlet rod side hydraulic oil chamber 943a of the driving side outlet shift cylinder 935C and the rod side hydraulic oil chamber 971b of the first intermediate cylinder 971 are connected by an intermediate rod pressure line 807C2, and the driving side outlet head side hydraulic oil chamber 943b and the head side hydraulic oil chamber 973a of the second intermediate cylinder 973 are connected by an intermediate rod pressure line 805C2.
 更に、操作側出側シフトシリンダ935Bの操作側出側ロッド側作動油室945aと第2中間シリンダ973のロッド側作動油室973bが中間ロッド圧力ライン805C1で接続され、操作側出側ヘッド側作動油室945bと第1中間シリンダ971のヘッド側作動油室971aが中間ロッド圧力ライン807C1で接続されている。 Furthermore, the operating side outlet rod side hydraulic oil chamber 945a of the operating side outlet shift cylinder 935B and the rod side hydraulic oil chamber 973b of the second intermediate cylinder 973 are connected by an intermediate rod pressure line 805C1, and the operating side outlet head side hydraulic oil chamber 945b and the head side hydraulic oil chamber 971a of the first intermediate cylinder 971 are connected by an intermediate rod pressure line 807C1.
 また、駆動側出側ロッド側作動油室943aと駆動側出側ヘッド側作動油室943bとの作動油の力が付与される方向の断面積の比、操作側出側ロッド側作動油室945aと操作側出側ヘッド側作動油室945bとの作動油の力が付与される方向の断面積の比、ロッド側作動油室971bとヘッド側作動油室971aとの作動油の力が付与される方向の断面積の比、ロッド側作動油室973bとヘッド側作動油室973aとの作動油の力が付与される方向の断面積の比が全てのシリンダで同じとなっている。 In addition, the ratio of the cross-sectional area between the drive side outlet rod side hydraulic oil chamber 943a and the drive side outlet head side hydraulic oil chamber 943b in the direction in which the hydraulic oil force is applied, the ratio of the cross-sectional area between the operation side outlet rod side hydraulic oil chamber 945a and the operation side outlet head side hydraulic oil chamber 945b in the direction in which the hydraulic oil force is applied, the ratio of the cross-sectional area between the rod side hydraulic oil chamber 971b and the head side hydraulic oil chamber 971a in the direction in which the hydraulic oil force is applied, and the ratio of the cross-sectional area between the rod side hydraulic oil chamber 973b and the head side hydraulic oil chamber 973a in the direction in which the hydraulic oil force is applied are the same for all cylinders.
 この場合も、駆動側アーム714Cが残りのガタの半分だけ駆動側に動くと操作側アーム714Bは残りのガタの半分だけ操作側に動き、パイロットチェック弁821,822の2次側の作動油量は変化することがない。 In this case too, when the driving side arm 714C moves to the driving side by half the remaining backlash, the operating side arm 714B moves to the operating side by half the remaining backlash, and the amount of hydraulic oil on the secondary side of the pilot check valves 821 and 822 does not change.
 また、操作側シフトシリンダ935B、駆動側シフトシリンダ935C内の作動油があたる断面積はAwr<Adh、圧力はpwr>pdhとなり、Awr×pwr=Ad×pdhの関係となるので、駆動側アーム714Cと操作側アーム714Bとの支持力は同じとなる。 In addition, the cross-sectional area of the operating side shift cylinder 935B and the driving side shift cylinder 935C that the hydraulic oil hits is Awr < Adh, and the pressure is pwr > pdh , and the relationship is Awr × pwr = Adh × pdh , so the supporting force of the driving side arm 714C and the operating side arm 714B is the same.
 同様に、ロールセット710Aに対し操作側方向のスラスト力が作用した場合は、駆動側のロッド側と操作側のヘッド側に同じ力のスラスト反力が生じることから、本実施例の構成においても、操作側と駆動側のスラスト力の支持力を半分ずつにすることができる。 Similarly, when a thrust force acts on the roll set 710A in the direction of the operating side, a thrust reaction force of the same force is generated on the rod side of the driving side and the head side of the operating side, so even in the configuration of this embodiment, the support force for the thrust force on the operating side and the driving side can be halved.
 その他の構成・動作は前述した実施例1の圧延機及び圧延方法と略同じ構成・動作であり、詳細は省略する。 The rest of the configuration and operation are substantially the same as those of the rolling mill and rolling method of the first embodiment described above, and details are omitted.
 本発明の実施例4の圧延機及び圧延方法おいても、前述した実施例1の圧延機及び圧延方法とほぼ同様な効果が得られる。 The rolling mill and rolling method of the fourth embodiment of the present invention also provide substantially the same effects as those of the rolling mill and rolling method of the first embodiment described above.
 また、本実施例4の構成では、駆動側の油圧シリンダの軸受箱連結部と操作側の油圧シリンダの軸受箱連結部を圧延材5寄りとすることができるので、軸受箱連結部まわりの構造を駆動側と操作側で対称とすることができ、構造の共通化を図ることが可能となり、シンプルな装置とすることができる。 In addition, in the configuration of this embodiment 4, the bearing housing connection part of the hydraulic cylinder on the driving side and the bearing housing connection part of the hydraulic cylinder on the operating side can be located closer to the rolled material 5, so the structure around the bearing housing connection part can be made symmetrical on the driving side and the operating side, making it possible to standardize the structure and resulting in a simple device.
 また、実施例1のような両ロッドの構成に比べて油圧シリンダの長さが短くなるので、シフト装置の操作側のでっぱりを小さくすることができ、ロール組替装置のスペースを確保することが可能となる。 In addition, the length of the hydraulic cylinder is shorter than in the double-rod configuration of Example 1, so the protrusion on the operating side of the shift device can be reduced, making it possible to secure space for the roll changing device.
 なお、第2中間シリンダ973のピストン973dと駆動側出側シフトシリンダ935Cのピストン943d、操作側出側シフトシリンダ935Bのピストン945d、第1中間シリンダ971のピストン971dとが同じ断面積とすることができるが、同じである必要は無く、それぞれのシリンダのピストンのヘッド/ロッド側の断面積の比が同じであればよい。 The piston 973d of the second intermediate cylinder 973, the piston 943d of the driving side output shift cylinder 935C, the piston 945d of the operating side output shift cylinder 935B, and the piston 971d of the first intermediate cylinder 971 can have the same cross-sectional area, but this is not necessary as long as the ratio of the cross-sectional area of the head/rod side of the pistons of each cylinder is the same.
 <その他> 
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Other>
The present invention is not limited to the above-mentioned embodiment, but includes various modified examples. The above-mentioned embodiment has been described in detail to explain the present invention in an easily understandable manner, and the present invention is not necessarily limited to the embodiment having all of the described configurations.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
 例えば、ミルロールがロール軸方向にシフトする圧延機を例に説明したが、例えば軸方向位置を固定する油圧シリンダを備えている圧延機、すなわち軸方向にはシフトしない圧延機も本発明は対象である。 For example, the above description is based on a rolling mill in which the mill rolls shift in the axial direction of the rolls, but the present invention also covers rolling mills that are equipped with hydraulic cylinders that fix the axial position, i.e., rolling mills that do not shift in the axial direction.
1…圧延設備
5…圧延材
30…第1スタンド(圧延機)
40…第2スタンド(圧延機)
50…第3スタンド(圧延機)
60…第4スタンド(圧延機)
70…第5スタンド(圧延機)
80…制御装置
90…油圧装置
700…ハウジング
702…入側固定部材
703…出側固定部材
705A,705B,705E,705F,706C,706D…油圧シリンダ(水平方向アクチュエータ)
710…上ワークロール(ミルロール)
710A…ロールセット
711…下ワークロール(ミルロール)
712…上ワークロール軸受箱
712A…上操作側軸受箱
712A1…シフトブロック
712B…上駆動側軸受箱
712B1…シフトブロック
713…下ワークロール軸受箱
713A,713B…軸受箱
714A,714B…操作側アーム
714C,714D…駆動側アーム
715…シフトシリンダ(油圧シリンダ)
715A,715A1,830…操作側入側シフトシリンダ(油圧シリンダ、操作側油圧シリンダ)
715A2,715B2…伝達部材
715B,715B1,831,935B…操作側出側シフトシリンダ(油圧シリンダ、操作側油圧シリンダ)
715C,715C1,832,935C…駆動側出側シフトシリンダ(油圧シリンダ、駆動側油圧シリンダ)
715D,715D1,833…駆動側入側シフトシリンダ(油圧シリンダ、駆動側油圧シリンダ)
716…位置センサ
717…シフトシリンダ(油圧シリンダ)
720…上中間ロール(ミルロール)
721…下中間ロール(ミルロール)
722…上中間ロール軸受箱
723…下中間ロール軸受箱
730…上補強ロール(ミルロール)
731…下補強ロール(ミルロール)
732…上補強ロール軸受箱
733…下補強ロール軸受箱
740,741,742,743…上ワークロールベンディングシリンダ
744,745,746,747…下ワークロールベンディングシリンダ
750,751…上中間ロールベンディングシリンダ
752,753…下中間ロールベンディングシリンダ
760…上ワークロール軸受箱がた取りシリンダ
762…下ワークロール軸受箱がた取りシリンダ
771…上中間ロール軸受箱がた取りシリンダ
773…下中間ロール軸受箱がた取りシリンダ
780…上補強ロール軸受箱がた取りシリンダ
782…下補強ロール軸受箱がた取りシリンダ
790A,790B…ラジアル軸受
800A,801…圧力ライン
800B,802…タンクライン
803,804…圧力ライン
805…駆動側反板側圧力ライン(配管)
805A,805B,805B1,805B2,823,824,825…圧力ライン(配管)
805C1,805C2…中間ロッド圧力ライン(配管)
806…操作側板側圧力ライン(配管)
807…駆動側板側圧力ライン(配管)
807A,807B…駆動側板側圧力ライン
807C1,807C2…中間ロッド圧力ライン
808…操作側反板側圧力ライン(配管)
810…電磁切換弁
811,812…リリーフ弁
821,822…パイロットチェック弁
830a…操作側入側板側作動油室
830b…操作側入側反板側作動油室
831a…操作側出側板側作動油室
831b…操作側出側反板側作動油室
833a…駆動側入側板側作動油室
833b…駆動側入側反板側作動油室
832a,923a,923a1…駆動側出側板側作動油室(駆動側板側作動油室)
832b,923b,923b1…駆動側出側反板側作動油室(駆動側反板側作動油室)
923c,925c…ロッド
923c1…片ロッド(駆動側油圧シリンダロッド)
923d,923d1,925d,925d1,943d,945d,971d,973d…ピストン
924a…駆動側入側板側作動油室(駆動側板側作動油室)
924b…駆動側入側反板側作動油室(駆動側反板側作動油室)
925a,925a1…操作側出側板側作動油室(操作側板側作動油室)
925b,925b1…操作側出側反板側作動油室(操作側反板側作動油室)
925c1…片ロッド(操作側油圧シリンダロッド)
926a…操作側入側板側作動油室(操作側板側作動油室)
926b…操作側入側反板側作動油室(操作側反板側作動油室)
943a…駆動側出側ロッド側作動油室(駆動側板側作動油室)
943b…駆動側出側ヘッド側作動油室(駆動側反板側作動油室)
943c…ロッド(駆動側油圧シリンダロッド)
945a…操作側出側ロッド側作動油室(操作側板側作動油室)
945b…操作側出側ヘッド側作動油室(操作側反板側作動油室)
945c…ロッド(操作側油圧シリンダロッド)
971…第1中間シリンダ
971a…ヘッド側作動油室
971b…ロッド側作動油室
973…第2中間シリンダ
973a…ヘッド側作動油室
973b…ロッド側作動油室
1...Rolling equipment 5...Rolled material 30...First stand (rolling mill)
40...Second stand (rolling mill)
50...Third stand (rolling mill)
60...4th stand (rolling mill)
70...5th stand (rolling mill)
80... Control device 90... Hydraulic device 700... Housing 702... Inlet side fixed member 703... Outlet side fixed member 705A, 705B, 705E, 705F, 706C, 706D... Hydraulic cylinder (horizontal actuator)
710...Upper work roll (mill roll)
710A...Roll set 711...Lower work roll (mill roll)
712...Upper work roll bearing housing 712A...Upper operation side bearing housing 712A1...Shift block 712B...Upper drive side bearing housing 712B1...Shift block 713...Lower work roll bearing housing 713A, 713B...Bearing housing 714A, 714B... Operation side arm 714C, 714D...Drive side arm 715...Shift cylinder (hydraulic cylinder)
715A, 715A1, 830...operation side entry shift cylinder (hydraulic cylinder, operation side hydraulic cylinder)
715A2, 715B2...Transmission members 715B, 715B1, 831, 935B...Operation side output shift cylinder (hydraulic cylinder, operation side hydraulic cylinder)
715C, 715C1, 832, 935C... Drive side output shift cylinder (hydraulic cylinder, drive side hydraulic cylinder)
715D, 715D1, 833... Drive side entry shift cylinder (hydraulic cylinder, drive side hydraulic cylinder)
716: Position sensor 717: Shift cylinder (hydraulic cylinder)
720...Upper intermediate roll (mill roll)
721...Lower intermediate roll (mill roll)
722...Upper intermediate roll bearing housing 723...Lower intermediate roll bearing housing 730...Upper reinforcement roll (mill roll)
731...Lower reinforcement roll (mill roll)
732 ... Upper backing roll bearing housing 733 ... Lower backing roll bearing housing 740, 741, 742, 743 ... Upper work roll bending cylinder 744, 745, 746, 747 ... Lower work roll bending cylinder 750, 751 ... Upper intermediate roll bending cylinder 752, 753 ... Lower intermediate roll bending cylinder 760 ... Upper work roll bearing housing backlash removal cylinder 762 ... Lower work roll bearing housing backlash removal cylinder 771 ... Upper intermediate roll bearing housing backlash removal cylinder 773 ... Lower intermediate roll bearing housing backlash removal cylinder 780 ... Upper backing roll bearing housing backlash removal cylinder 782 ... Lower backing roll bearing housing backlash removal cylinder 790A, 790B ... Radial bearing 800A, 801 ... Pressure line 800B, 802 ... Tank line 803, 804 ... Pressure line 805 ... Drive side opposite plate side pressure line (piping)
805A, 805B, 805B1, 805B2, 823, 824, 825...Pressure lines (piping)
805C1, 805C2...Intermediate rod pressure line (piping)
806: Operation side plate side pressure line (piping)
807: Drive side plate pressure line (piping)
807A, 807B... Drive side plate side pressure line 807C1, 807C2... Intermediate rod pressure line 808... Operation side opposite plate side pressure line (piping)
810... Solenoid switching valves 811, 812... Relief valves 821, 822...Pilot check valve 830a...Operation side inlet plate side hydraulic oil chamber 830b...Operation side inlet opposite plate side hydraulic oil chamber 831a...Operation side outlet plate side hydraulic oil chamber 831b...Operation side outlet opposite plate side hydraulic oil chamber 833a...Drive side inlet plate side hydraulic oil chamber 833b...Drive side inlet opposite plate side hydraulic oil chamber 832a, 923a, 923a1...Drive side outlet plate side hydraulic oil chamber (drive side plate side hydraulic oil chamber)
832b, 923b, 923b1...driving side, outlet side, opposite plate side hydraulic oil chamber (driving side, opposite plate side hydraulic oil chamber)
923c, 925c...Rod 923c1...Single rod (driving side hydraulic cylinder rod)
923d, 923d1, 925d, 925d1, 943d, 945d, 971d, 973d... piston 924a... drive side inlet plate side hydraulic oil chamber (drive side plate side hydraulic oil chamber)
924b...Drive side inlet side opposite plate side hydraulic oil chamber (drive side opposite plate side hydraulic oil chamber)
925a, 925a1...operation side outlet plate side hydraulic oil chamber (operation side plate side hydraulic oil chamber)
925b, 925b1...operation side, outlet side, opposite plate side hydraulic oil chamber (operation side, opposite plate side hydraulic oil chamber)
925c1... Single rod (operation side hydraulic cylinder rod)
926a...operation side inlet plate side hydraulic oil chamber (operation side plate side hydraulic oil chamber)
926b...operation side inlet side opposite plate side hydraulic oil chamber (operation side opposite plate side hydraulic oil chamber)
943a...Drive side outlet rod side hydraulic oil chamber (drive side plate side hydraulic oil chamber)
943b... Drive side outlet head side hydraulic oil chamber (drive side opposite plate side hydraulic oil chamber)
943c...Rod (driving side hydraulic cylinder rod)
945a...Operation side outlet rod side hydraulic oil chamber (operation side plate side hydraulic oil chamber)
945b...operation side outlet head side hydraulic oil chamber (operation side opposite plate side hydraulic oil chamber)
945c...Rod (operation side hydraulic cylinder rod)
971...first intermediate cylinder 971a...head side hydraulic oil chamber 971b...rod side hydraulic oil chamber 973...second intermediate cylinder 973a...head side hydraulic oil chamber 973b...rod side hydraulic oil chamber

Claims (13)

  1.  ミルロールと、
     前記ミルロールに対してその軸方向の力を付与するように構成された前記ミルロールの駆動側に設けられた駆動側油圧シリンダ、及び前記軸方向の力を付与するように構成された前記ミルロールの操作側に設けられた操作側油圧シリンダを含む複数の油圧シリンダと、
     複数の前記油圧シリンダに作動油を送り、前記駆動側油圧シリンダ及び前記操作側油圧シリンダが前記軸方向に動き、前記ミルロールの前記軸方向の位置を保持するように構成された油圧回路と、を備え、
     前記油圧回路は、前記油圧回路が前記ミルロールの前記軸方向の位置を保持した後に、前記ミルロールが受ける外力により前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちいずれか一方の油圧シリンダだけが前記ミルロールに前記軸方向の力を付与する状態になった場合に前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちもう一方の油圧シリンダが前記一方の油圧シリンダとは反対方向に動くように構成されている
     圧延機。
    Mill rolls and
    a plurality of hydraulic cylinders including a drive side hydraulic cylinder provided on a drive side of the mill roll configured to apply an axial force to the mill roll, and an operation side hydraulic cylinder provided on an operation side of the mill roll configured to apply the axial force;
    a hydraulic circuit configured to supply hydraulic oil to the plurality of hydraulic cylinders, so that the driving hydraulic cylinder and the operating hydraulic cylinder move in the axial direction and maintain the axial position of the mill roll;
    The hydraulic circuit is configured such that, after the hydraulic circuit has maintained the axial position of the mill roll, when an external force received by the mill roll causes only one of the driving side hydraulic cylinder or the operating side hydraulic cylinder to apply the axial force to the mill roll, the other of the driving side hydraulic cylinder or the operating side hydraulic cylinder moves in the opposite direction to the one of the hydraulic cylinders.
  2.  請求項1に記載の圧延機において、
     前記油圧回路は、前記駆動側油圧シリンダと前記操作側油圧シリンダの各々が前記ミルロールに対して同じ方向に力を付与するように、駆動側板側作動油室と操作側反板側作動油室が配管で接続されるとともに、駆動側反板側作動油室と操作側板側作動油室が配管で接続されている
     圧延機。
    2. The rolling mill according to claim 1,
    In the hydraulic circuit, a driving side plate-side hydraulic oil chamber and an operating side opposite-plate-side hydraulic oil chamber are connected by piping, and a driving side opposite-plate-side hydraulic oil chamber and an operating side plate-side hydraulic oil chamber are connected by piping, so that the driving side hydraulic cylinder and the operating side hydraulic cylinder each apply a force in the same direction to the mill roll.
  3.  請求項2に記載の圧延機において、
     前記油圧回路は、前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちいずれか一方の油圧シリンダが所定のストローク動いたとき、連結された前記配管内の油量を変えることなく、前記駆動側油圧シリンダまたは前記操作側油圧シリンダのもう一方の油圧シリンダも前記所定のストローク反対方向に動くように構成されている
     圧延機。
    3. The rolling mill according to claim 2,
    The hydraulic circuit is configured such that, when either one of the driving side hydraulic cylinder or the operating side hydraulic cylinder moves a predetermined stroke, the other of the driving side hydraulic cylinder or the operating side hydraulic cylinder also moves in the opposite direction to the predetermined stroke without changing the amount of oil in the connected piping.
  4.  請求項1に記載の圧延機において、
     前記駆動側油圧シリンダ及び前記操作側油圧シリンダは両ロッドシリンダであり、
     駆動側板側作動油室と駆動側反板側作動油室の作動油の力が付与される方向の断面積が同じであり、
     操作側板側作動油室と操作側反板側作動油室の作動油の力が付与される方向の断面積が同じであり、
     前記駆動側板側作動油室と前記操作側反板側作動油室が配管で接続されるとともに、前記駆動側反板側作動油室と前記操作側板側作動油室が配管で接続されている
     圧延機。
    2. The rolling mill according to claim 1,
    The driving side hydraulic cylinder and the operating side hydraulic cylinder are double rod cylinders,
    The cross-sectional areas of the drive side plate-side hydraulic oil chamber and the drive side opposite plate-side hydraulic oil chamber in the direction in which the hydraulic oil force is applied are the same,
    The cross-sectional areas of the operation side plate-side hydraulic oil chamber and the operation side opposite plate-side hydraulic oil chamber in the direction in which the hydraulic oil force is applied are the same,
    the driving side plate side hydraulic oil chamber and the operation side opposite plate side hydraulic oil chamber are connected by piping, and the driving side opposite plate side hydraulic oil chamber and the operation side plate side hydraulic oil chamber are connected by piping.
  5.  請求項1に記載の圧延機において、
     前記駆動側油圧シリンダ及び前記操作側油圧シリンダは片ロッドシリンダであり、
     駆動側油圧シリンダロッド及び操作側油圧シリンダロッドの向きが同じであり、
     駆動側板側作動油室と操作側反板側作動油室が配管で接続されるとともに、作動油の力が付与される方向の断面積が同じであり、
     駆動側反板側作動油室と操作側板側作動油室が配管で接続されるとともに、作動油の力が付与される方向の断面積が同じである
     圧延機。
    2. The rolling mill according to claim 1,
    The driving side hydraulic cylinder and the operating side hydraulic cylinder are single rod cylinders,
    The driving side hydraulic cylinder rod and the operating side hydraulic cylinder rod are oriented in the same direction.
    The drive side plate-side hydraulic oil chamber and the operation side opposite plate-side hydraulic oil chamber are connected by piping, and the cross-sectional areas in the direction in which the hydraulic oil force is applied are the same.
    A rolling mill in which the drive side, opposite plate side hydraulic oil chamber and the operation side, plate side hydraulic oil chamber are connected by piping and have the same cross-sectional area in the direction in which the hydraulic oil force is applied.
  6.  請求項1に記載の圧延機において、
     前記駆動側油圧シリンダ及び前記操作側油圧シリンダは片ロッドシリンダであり、
     駆動側油圧シリンダロッド及び操作側油圧シリンダロッドの向きが逆であり、
     片ロッドの中間シリンダを2つ以上備え、
     駆動側ロッド側作動油室と第1中間シリンダロッド側作動油室が配管で接続され、
     駆動側ヘッド側作動油室と第2中間シリンダヘッド側作動油室が配管で接続され、
     操作側ロッド側作動油室と第2中間シリンダロッド側作動油室が配管で接続され、
     操作側ヘッド側作動油室と第1中間シリンダヘッド側作動油室が配管で接続され、
     前記駆動側ロッド側作動油室と前記駆動側ヘッド側作動油室との作動油の力が付与される方向の断面積の比、前記操作側ロッド側作動油室と前記操作側ヘッド側作動油室との作動油の力が付与される方向の断面積の比、前記第1中間シリンダロッド側作動油室と前記第1中間シリンダヘッド側作動油室との作動油の力が付与される方向の断面積の比、前記第2中間シリンダロッド側作動油室と前記第2中間シリンダヘッド側作動油室との作動油の力が付与される方向の断面積の比が同じである
     圧延機。
    2. The rolling mill according to claim 1,
    The driving side hydraulic cylinder and the operating side hydraulic cylinder are single rod cylinders,
    The directions of the drive side hydraulic cylinder rod and the operation side hydraulic cylinder rod are reversed,
    Equipped with two or more single rod intermediate cylinders,
    The rod side hydraulic oil chamber of the drive side and the rod side hydraulic oil chamber of the first intermediate cylinder are connected by a pipe.
    The drive-side head-side hydraulic oil chamber and the second intermediate cylinder head-side hydraulic oil chamber are connected by piping,
    The operating side rod side hydraulic oil chamber and the second intermediate cylinder rod side hydraulic oil chamber are connected by piping,
    The operating side head side hydraulic oil chamber and the first intermediate cylinder head side hydraulic oil chamber are connected by piping,
    A rolling mill in which a ratio of cross-sectional areas between the driving side rod side hydraulic oil chamber and the driving side head side hydraulic oil chamber in the direction in which the force of the hydraulic oil is applied, a ratio of cross-sectional areas between the operating side rod side hydraulic oil chamber and the operating side head side hydraulic oil chamber in the direction in which the force of the hydraulic oil is applied, a ratio of cross-sectional areas between the first intermediate cylinder rod side hydraulic oil chamber and the first intermediate cylinder head side hydraulic oil chamber in the direction in which the force of the hydraulic oil is applied, and a ratio of cross-sectional areas between the second intermediate cylinder rod side hydraulic oil chamber and the second intermediate cylinder head side hydraulic oil chamber in the direction in which the force of the hydraulic oil is applied are the same.
  7.  請求項6に記載の圧延機において、
     駆動側油圧シリンダロッド及び操作側油圧シリンダロッドが前記軸方向の外側を向くように構成されている
     圧延機。
    7. The rolling mill according to claim 6,
    A rolling mill configured such that a drive-side hydraulic cylinder rod and an operation-side hydraulic cylinder rod face outward in the axial direction.
  8.  請求項1乃至7のいずれか1項に記載の圧延機において、
     前記駆動側油圧シリンダと前記操作側油圧シリンダの各々は前記圧延機の入側と出側に設けられ、
     前記入側と前記出側で対応する各々の作動油室同士を連結する配管を備える
     圧延機。
    In the rolling mill according to any one of claims 1 to 7,
    the driving side hydraulic cylinder and the operating side hydraulic cylinder are provided on the inlet side and the outlet side of the rolling mill, respectively;
    the rolling mill comprising piping connecting corresponding hydraulic oil chambers on the inlet side and the outlet side.
  9.  請求項1乃至7のいずれか1項に記載の圧延機において、
     複数の前記油圧シリンダの駆動を制御する制御装置を備え、
     前記制御装置は、前記駆動側油圧シリンダと前記操作側油圧シリンダとを駆動して、前記ミルロールを前記軸方向にシフト可能に構成されている
     圧延機。
    In the rolling mill according to any one of claims 1 to 7,
    A control device is provided for controlling the operation of the hydraulic cylinders,
    the control device is configured to drive the drive-side hydraulic cylinder and the operation-side hydraulic cylinder to shift the mill roll in the axial direction.
  10.  請求項1乃至7のいずれか1項に記載の圧延機において、
     前記ミルロールを水平方向に角度調整する水平方向アクチュエータを備える
     圧延機。
    In the rolling mill according to any one of claims 1 to 7,
    A rolling mill comprising a horizontal actuator for adjusting the angle of the mill roll in the horizontal direction.
  11.  ミルロールと、
     前記ミルロールに対してその軸方向の力を付与するように構成された前記ミルロールの駆動側に設けられた駆動側油圧シリンダ、及び前記軸方向の力を付与するように構成された前記ミルロールの操作側に設けられた操作側油圧シリンダを含む複数の油圧シリンダと、
     複数の前記油圧シリンダに作動油を送り、前記駆動側油圧シリンダ及び前記操作側油圧シリンダが前記軸方向に動き、前記ミルロールの前記軸方向の位置を保持するように構成された油圧回路と、を備えた圧延機による圧延材の圧延方法であって、
     前記油圧回路を、前記油圧回路が前記ミルロールの前記軸方向の位置を保持した後に、前記ミルロールが受ける外力により前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちいずれか一方の油圧シリンダだけが前記ミルロールに前記軸方向の力を付与する状態になった場合に前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちもう一方の油圧シリンダが前記一方の油圧シリンダとは反対方向に動くように構成し、
     前記圧延材を圧延する
     圧延方法。
    Mill rolls and
    a plurality of hydraulic cylinders including a drive side hydraulic cylinder provided on a drive side of the mill roll configured to apply an axial force to the mill roll, and an operation side hydraulic cylinder provided on an operation side of the mill roll configured to apply the axial force;
    and a hydraulic circuit configured to supply hydraulic oil to the plurality of hydraulic cylinders, so that the driving hydraulic cylinder and the operating hydraulic cylinder move in the axial direction, and maintain the axial position of the mill roll, comprising:
    the hydraulic circuit is configured such that, after the hydraulic circuit has held the axial position of the mill roll, when an external force applied to the mill roll causes only one of the driving side hydraulic cylinder and the operating side hydraulic cylinder to apply the axial force to the mill roll, the other of the driving side hydraulic cylinder and the operating side hydraulic cylinder moves in a direction opposite to that of the one hydraulic cylinder,
    A rolling method for rolling the rolled material.
  12.  請求項11に記載の圧延方法において、
     前記油圧回路を、前記駆動側油圧シリンダと前記操作側油圧シリンダの各々が前記ミルロールに対して同じ方向に力を付与するように、駆動側板側作動油室と操作側反板側作動油室とを配管で接続し、駆動側反板側作動油室と操作側板側作動油室とを配管で接続するように構成し、前記圧延材を圧延する
     圧延方法。
    The rolling method according to claim 11,
    The hydraulic circuit is configured to connect a driving side plate-side hydraulic oil chamber and an operating side opposite-plate-side hydraulic oil chamber with piping, and to connect the driving side opposite-plate-side hydraulic oil chamber and the operating side plate-side hydraulic oil chamber with piping, so that the driving side hydraulic cylinder and the operating side hydraulic cylinder each apply a force in the same direction to the mill roll, and the rolling method rolls the rolled material.
  13.  請求項12に記載の圧延方法において、
     前記油圧回路を、前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちいずれか一方の油圧シリンダが所定のストローク動いたとき、連結された前記配管内の油量を変えることなく、前記駆動側油圧シリンダまたは前記操作側油圧シリンダのうちもう一方の油圧シリンダも前記所定のストローク反対方向に動かすように構成し、前記圧延材を圧延する
     圧延方法。
    The rolling method according to claim 12,
    The hydraulic circuit is configured so that, when either one of the driving side hydraulic cylinder or the operating side hydraulic cylinder moves a predetermined stroke, the other of the driving side hydraulic cylinder or the operating side hydraulic cylinder is also moved in the opposite direction to the predetermined stroke without changing the amount of oil in the connected piping, thereby rolling the rolled material.
PCT/JP2022/044275 2022-11-30 2022-11-30 Rolling mill and rolling method WO2024116356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044275 WO2024116356A1 (en) 2022-11-30 2022-11-30 Rolling mill and rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044275 WO2024116356A1 (en) 2022-11-30 2022-11-30 Rolling mill and rolling method

Publications (1)

Publication Number Publication Date
WO2024116356A1 true WO2024116356A1 (en) 2024-06-06

Family

ID=91323440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044275 WO2024116356A1 (en) 2022-11-30 2022-11-30 Rolling mill and rolling method

Country Status (1)

Country Link
WO (1) WO2024116356A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529250A (en) * 1998-11-13 2002-09-10 エスエムエス・デマーク・アクチエンゲゼルシャフト Roll stand having backup roll and work roll
JP2018164923A (en) * 2017-03-28 2018-10-25 株式会社神戸製鋼所 Rolling machine and rolling method
WO2022030004A1 (en) * 2020-08-07 2022-02-10 Primetals Technologies Japan 株式会社 Rolling mill, rolling mill control method, and thrust force support method for rolling mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529250A (en) * 1998-11-13 2002-09-10 エスエムエス・デマーク・アクチエンゲゼルシャフト Roll stand having backup roll and work roll
JP2018164923A (en) * 2017-03-28 2018-10-25 株式会社神戸製鋼所 Rolling machine and rolling method
WO2022030004A1 (en) * 2020-08-07 2022-02-10 Primetals Technologies Japan 株式会社 Rolling mill, rolling mill control method, and thrust force support method for rolling mill

Similar Documents

Publication Publication Date Title
US2776586A (en) Construction and control of cold rolling mills
US8127584B2 (en) Prestressed rolling mill housing assembly with improved operational features
US6510721B1 (en) Rolling mill
US4212504A (en) Backing device for a working roll of a roll stand
US7743638B2 (en) Adjusting cylinders in rolling stands, including vertical edging stands
WO2024116356A1 (en) Rolling mill and rolling method
JP2021507163A (en) Rotary fluid flow device
JP4211257B2 (en) Rolling mill, roll bearing box shaving device, rolling method, rolling mill remodeling method, and hot finish tandem rolling mill
JP5054143B2 (en) Rolling mill
US5219447A (en) Axial bearing system intended for a radially mounted shaft
JP7256336B2 (en) Rolling mill, method of controlling rolling mill, and method of supporting thrust force in rolling mill
JP5823653B2 (en) Roll device
RU2311241C2 (en) Apparatus for controlling efforts applied to pressure rollers
EP2260954A1 (en) Plate rolling mill and plate rolling method
RU2218221C2 (en) Roll mill stand
JP6586526B2 (en) Volumetric flow adjustment valve
JP3273312B2 (en) Hydraulic rolling mill
RU2294253C2 (en) Rolling stand for rolling different blanks needing different rolling efforts
RU2534705C1 (en) Stand with integrated bending and shifting devices for loaded working rolls with large opening between them
RU2283196C2 (en) Rolling stand for cold or hot rolling of metal strip material
JP5087646B2 (en) Rolling mill with work rolls arranged in two stages
US20080125297A1 (en) Roll With Rotating Shell
JP2930469B2 (en) Work roll chock position stabilizer for cross roll rolling mill
JPH0688115B2 (en) Pinch roll pressing force control device
AU741638B2 (en) Device for the crossed displacement of the rolling rolls