WO2024116331A1 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
WO2024116331A1
WO2024116331A1 PCT/JP2022/044202 JP2022044202W WO2024116331A1 WO 2024116331 A1 WO2024116331 A1 WO 2024116331A1 JP 2022044202 W JP2022044202 W JP 2022044202W WO 2024116331 A1 WO2024116331 A1 WO 2024116331A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
pulsation rate
target value
allowable
Prior art date
Application number
PCT/JP2022/044202
Other languages
French (fr)
Japanese (ja)
Inventor
広人 石川
伸也 眞戸原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/044202 priority Critical patent/WO2024116331A1/en
Publication of WO2024116331A1 publication Critical patent/WO2024116331A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Patent Document 1 controls an internal combustion engine that has a fuel injection device that supplies fuel to the cylinders and a throttle valve arranged in the intake passage.
  • This conventional engine control device includes a processor, an airflow sensor that is disposed in the intake passage upstream of the throttle valve and detects the intake air flow rate, and a throttle position sensor that detects the throttle opening of the throttle valve.
  • the fuel injection control executed by the processor includes a first fuel injection process and a second fuel injection process.
  • the fuel injection device In the first fuel injection process, the fuel injection device is controlled to inject an amount of fuel corresponding to a first intake air amount based on the intake air flow rate detected by the airflow sensor. In the second fuel injection process, the fuel injection device is controlled to inject an amount of fuel corresponding to a second intake air amount based on the throttle opening detected by the throttle position sensor.
  • the processor selects the first fuel injection process when the pulsation rate, which is the rate of change of the pulsation of the intake air flow rate detected by the air flow sensor, is equal to or lower than the pulsation rate threshold, and selects the second fuel injection process when the pulsation rate is higher than the pulsation rate threshold.
  • the pulsation rate threshold is smaller when the temperature correlation value, which correlates with the temperature of the internal combustion engine, is low than when the temperature correlation value is high (Patent Document 1, paragraph 0008, claim 1, abstract, etc.).
  • a second fuel injection process is selected to inject an amount of fuel corresponding to a second intake air amount based on the throttle opening. Even when the second fuel injection process is selected in this conventional engine control device, a control is being considered in which a pulsation correction value is calculated to correct the intake air flow rate detection value by the airflow sensor, and an amount of fuel is injected corresponding to the corrected flow rate detection value.
  • the pulsation correction value is determined, for example, as follows: The internal combustion engine is operated under reference conditions within a specified temperature range, and when pulsation of the intake air occurs, the intake air volume is detected by the airflow sensor, and the intake air volume is calculated based on the operating conditions, such as the internal combustion engine speed, throttle opening, and exhaust components. The pulsation correction value is then determined so that the intake air volume detected by the airflow sensor matches the intake air volume calculated based on the operating conditions.
  • the present disclosure provides an internal combustion engine control device and control method that can prevent the relationship between the engine speed and the pulsation rate of the intake air from falling outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the engine's operating performance and exhaust components.
  • One aspect of the present disclosure is a control device for an internal combustion engine that controls the internal combustion engine using a flow rate detection value of an air flow sensor that detects the amount of intake air into the internal combustion engine, and includes an operation control unit that controls the operating state of the internal combustion engine based on a control target value of the internal combustion engine, a pulsation rate prediction unit that outputs a predicted pulsation rate that predicts the pulsation rate of the flow rate detection value based on the control target value, an allowable pulsation rate output unit that outputs an allowable pulsation rate that is the maximum value of the pulsation rate that is allowable based on the operating state of the internal combustion engine, and a restriction target value output unit that outputs a restriction target value that changes the control target value so as to reduce the pulsation rate when the predicted pulsation rate exceeds the allowable pulsation rate, and the operation control unit controls the operating state of the internal combustion engine based on the restriction target value when the restriction target value is input.
  • a control device for an internal combustion engine that can prevent the relationship between the rotation speed of the internal combustion engine and the pulsation rate of the intake air from going outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the operating performance of the internal combustion engine and exhaust components.
  • FIG. 1 is a schematic diagram showing a first embodiment of a control device for an internal combustion engine according to the present disclosure
  • FIG. 2 is a functional block diagram of the control device for the internal combustion engine of FIG. 1
  • 3 is a block diagram showing details of a pulsation rate prediction unit and a permissible pulsation rate output unit in FIG. 2
  • 3 is a flow diagram showing a control method using the control device for the internal combustion engine of FIG. 2
  • 5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value.
  • 5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value.
  • FIG. 5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value.
  • FIG. 5 is a flow chart showing a first step of the control method for the internal combustion engine of FIG. 4 .
  • FIG. 4 is a block diagram showing a second embodiment of a control device for an internal combustion engine according to the present disclosure.
  • FIG. 1 is a schematic diagram of an engine system 200 which is an embodiment of an internal combustion engine control device according to the present disclosure.
  • the engine system 200 includes, for example, an internal combustion engine 10, an intake passage 20, an exhaust passage 30, a turbocharger 40, an exhaust gas recirculation (EGR) passage 50, and an internal combustion engine control device 100.
  • the internal combustion engine control device 100 of this embodiment is, for example, an electronic control unit (ECU) including a central processing unit (CPU) and a storage device (ROM, RAM, etc.).
  • an airflow sensor 21s is provided that detects the flow rate of the intake air flowing through the intake flow path 20.
  • the airflow sensor 21s is equipped with a temperature sensor, a pressure sensor, and a humidity sensor, for example, and is configured as a physical quantity detection device that can detect the flow rate, temperature, pressure, and humidity of the intake air.
  • the airflow sensor 21s for example, includes a thermal flow sensor and a bypass passage as a secondary passage that bypasses the air flowing through the intake passage 20 as the main passage.
  • the thermal flow sensor is disposed in the bypass passage, and detects the temperature difference that occurs between the upstream and downstream sides of the heater due to the air flow using a bridge circuit including a resistance temperature sensor, thereby outputting a voltage signal corresponding to the flow rate of air flowing through the bypass passage.
  • the throttle valve 22c is provided downstream of the supercharger temperature sensor 22b and narrows the intake passage 20 to control the amount of air flowing into the combustion chamber of the internal combustion engine 10.
  • the throttle valve 22c is, for example, an electronically controlled butterfly valve whose valve opening can be controlled independently of the amount of depression of the accelerator pedal by the driver.
  • a boost pressure sensor 23a and a flow enhancement valve 23b are provided in the downstream portion 23 of the intake passage 20, for example.
  • the boost pressure sensor 23a is disposed downstream of the throttle valve 22c provided in the midstream portion 22.
  • the flow enhancement valve 23b increases the turbulence in the flow inside the combustion chamber of the internal combustion engine 10 by causing a bias in the intake air.
  • the exhaust flow path 30 has, for example, an upstream section 31, a downstream section 32, and a bypass section 33.
  • the upstream section 31 is an exhaust manifold that connects the internal combustion engine 10 and the turbocharger 40.
  • the downstream section 32 is a flow path that connects the turbocharger 40 and a muffler (not shown).
  • the bypass section 33 is a flow path that connects the upstream section 31 and the downstream section 32 of the exhaust flow path 30.
  • the downstream section 32 of the exhaust flow path 30 is provided with, for example, an air-fuel ratio sensor 32a and an exhaust purification catalyst 32b.
  • the air-fuel ratio sensor 32a is provided downstream of the turbine 42 of the turbocharger 40, and outputs a signal indicating the detected oxygen concentration, i.e., the air-fuel ratio, to the internal combustion engine control device 60.
  • the exhaust purification catalyst 32b is provided downstream of the air-fuel ratio sensor 32a, and purifies harmful exhaust gas components such as carbon monoxide, nitrogen compounds, and unburned hydrocarbons in the exhaust gas through catalytic reactions.
  • the turbocharger 40 is composed of a compressor 41 and a turbine 42, and is equipped with, for example, an air bypass valve 43 provided in the bypass section 24 of the intake passage 20, and a wastegate valve 44 provided in the bypass section 33 of the exhaust passage 30.
  • the compressor 41 has compressor vanes, and the upstream section 21 of the intake passage 20 is connected to the upstream side of the compressor vanes, and the midstream section 22 of the intake passage 20 is connected to the downstream side of the compressor vanes.
  • the air bypass valve 43 under the control of the internal combustion engine control device 100, prevents an excessive increase in pressure from downstream of the compressor 41 to the upstream of the throttle valve 22c.
  • the air bypass valve 43 is opened under the control of the internal combustion engine control device 100, causing the compressed intake air downstream of the compressor 41 to flow back through the bypass section 24 of the intake passage 20 to the upstream of the compressor 41. As a result, it becomes possible to reduce the supercharging pressure.
  • the wastegate valve 44 is an electrically operated valve whose opening can be freely controlled in relation to the boost pressure under the control of the internal combustion engine control device 100.
  • the opening of the wastegate valve 44 is adjusted by the internal combustion engine control device 100 based on the boost pressure detected by the boost pressure sensor 23a provided in the downstream portion 23 of the intake passage 20.
  • the EGR cooler 51 cools the exhaust gas.
  • the EGR valve 52 is provided downstream of the EGR cooler 51 and controls the flow rate of the exhaust gas.
  • the temperature sensor 53 detects the temperature of the exhaust gas upstream of the EGR valve 52.
  • the differential pressure sensor 54 detects the differential pressure between the upstream and downstream sides of the EGR valve 52.
  • the internal combustion engine control device 100 controls each part of the engine system 200 and executes various data processing.
  • the internal combustion engine control device 100 is connected to the various sensors and actuators mentioned above.
  • the various actuators drive, for example, the throttle valve 22c, the fuel injection valve 13, the intake valve 11 and exhaust valve 12 with a variable valve mechanism, and the EGR valve 52.
  • the internal combustion engine control device 100 controls the operation of these various actuators.
  • the internal combustion engine control device 100 also detects the operating state of the internal combustion engine 10 based on signals input from various sensors, and ignites the spark plug 14 at a timing determined according to the operating state.
  • FIG. 2 is a functional block diagram explaining some of the functions of the internal combustion engine control device 100 shown in FIG. 1.
  • the internal combustion engine control device 100 of this embodiment has a restriction target value output unit 110, an operation control unit 120, a pulsation rate prediction unit 130, and an allowable pulsation rate output unit 140.
  • Each of these units of the internal combustion engine control device 100 represents each function of the internal combustion engine control device 100 that is realized, for example, by the CPU executing a program stored in memory.
  • the amount of accelerator pedal operation is detected by an accelerator position sensor and input to the internal combustion engine control device 100.
  • information on the driving route from the current location to the destination is input to the internal combustion engine control device 100 installed in the vehicle, and automatic driving of the vehicle begins.
  • control device 100 of the internal combustion engine generates a control target value CTV of the internal combustion engine 10 according to, for example, the vehicle speed and target speed, the accelerator pedal operation amount, the flow rate detection value of the air flow sensor 21s, and the shift position.
  • the generated control target value CTV is input, for example, to the restriction target value output unit 110, as shown in FIG. 2.
  • the limit target value output unit 110 changes the input control target value CTV and outputs the limit target value CTVr. Furthermore, when the predetermined condition is not satisfied, the limit target value output unit 110 outputs the input control target value CTV as is to the operation control unit 120.
  • the limit target value CTVr includes, for example, a limit valve timing VTr, a limit gear ratio GRr, and a limit throttle opening TPr. The predetermined conditions and the limit target value CTVr determined by the limit target value output unit 110 will be described in detail later.
  • the operation control unit 120 outputs control signals CS1, CS2, and CS3 for controlling the operating state of the internal combustion engine 10 based on the control target value CTV of the internal combustion engine 10 input from the restriction target value output unit 110. More specifically, the control signals CS1, CS2, and CS3 are, for example, control signals for actuators that open and close the intake valve 11 and exhaust valve 12, the automatic transmission, and the electronically controlled throttle valve 22c.
  • the operation control unit 120 controls the operating state of the internal combustion engine 10, for example, by controlling actuators that operate the intake valve 11, the exhaust valve 12, the automatic transmission, and the throttle valve 22c, based on the control target value CTV of the internal combustion engine 10.
  • the operating state of the internal combustion engine 10 includes, for example, the rotation speed of the internal combustion engine 10.
  • the pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe that predicts the pulsation rate of the flow rate detection value of the airflow sensor 21s based on the control target value CTV of the internal combustion engine 10.
  • the pulsation rate is the ratio of the amplitude of the flow rate detection value to the average value of the flow rate detection value of the airflow sensor 21s.
  • the pulsation rate is correlated with the rotation speed and intake air temperature of the internal combustion engine 10. For example, when the intake air temperature is at normal temperature of about 25°C and the rotation speed of the internal combustion engine 10 is a low rotation speed of about 800 to 1000 rpm, the pulsation rate is around 100%.
  • the pulsation rate increases as the rotation speed of the internal combustion engine 10 increases. For example, when the intake air temperature is at normal temperature of about 25°C, the pulsation rate peaks at over 400% when the rotation speed is about 1600 rpm, but gradually decreases as the rotation speed increases further. Furthermore, the peak of the pulsation rate shifts to the lower rotation side of the internal combustion engine 10 as the intake air temperature decreases, and shifts to the higher rotation side of the internal combustion engine 10 as the intake air temperature increases. Furthermore, the peak of the pulsation rate also tends to increase as the intake air temperature decreases.
  • the allowable pulsation rate output unit 140 outputs the allowable pulsation rate PRa, which is the maximum allowable pulsation rate based on the operating state of the internal combustion engine 10. More specifically, the allowable pulsation rate output unit 140 outputs the allowable pulsation rate PRa based on, for example, the rotation speed ES of the internal combustion engine 10.
  • FIG. 3 is a block diagram showing details of the pulsation rate prediction unit 130 and the allowable pulsation rate output unit 140 of the internal combustion engine control device 100 of FIG. 2.
  • the pulsation rate prediction unit 130 has a pulsation rate map 131 that specifies the relationship between the control target value CTV of the internal combustion engine 10 under reference conditions in a predetermined temperature range and the pulsation rate of the flow detection value of the airflow sensor 21s.
  • the pulsation rate map 131 includes, for example, a maximum pulsation rate map 131a and a pulsation rate ratio map 131b.
  • the maximum pulsation rate map 131a is a map that defines, for example, the relationship between the rotation speed ES of the internal combustion engine 10 and the maximum value of the pulsation rate of the flow rate detection value of the air flow sensor 21s. More specifically, the maximum pulsation rate map 131a defines, for example, the relationship between the rotation speed ES of the internal combustion engine 10 and the temperature of the intake air flowing through the intake passage 20, i.e., the intake air temperature IT, and the maximum value of the pulsation rate. The maximum pulsation rate map 131a is defined, for example, for each target valve timing VT.
  • the maximum pulsation rate map 131a When the target valve timing VT and the rotation speed ES of the internal combustion engine 10 are input, the maximum pulsation rate map 131a outputs the maximum pulsation rate that is the maximum value of the pulsation rate at that rotation speed ES. More specifically, when the intake air temperature IT, the target valve timing VT, and the rotation speed ES are input, the maximum pulsation rate map 131a outputs the maximum pulsation rate when those conditions are met.
  • the pulsation rate ratio map 131b is a map that defines the relationship between the rotation speed ES and target throttle opening TP of the internal combustion engine 10 and the ratio to the maximum value of the pulsation rate, i.e., the pulsation rate ratio.
  • the pulsation rate ratio map 131b is defined for each target valve timing VT, for example, in the same way as the maximum pulsation rate map 131a.
  • the pulsation rate ratio map 131b outputs the pulsation rate ratio when the conditions are met.
  • the pulsation rate map 131 estimates the pulsation rate at the input rotation speed ES, for example, by multiplying the maximum pulsation rate output from the maximum pulsation rate map 131a by the pulsation rate ratio output from the pulsation rate ratio map 131b. That is, the pulsation rate map 131 outputs a predicted pulsation rate PRe, which is an estimate of the pulsation rate of the flow rate detection value by the airflow sensor 21s, based on, for example, the intake air temperature IT, the target valve timing VT, and the rotation speed ES of the internal combustion engine 10.
  • the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the rotation speed ES and intake air temperature IT of the internal combustion engine 10 in addition to the control target value CTV including the target throttle opening TP.
  • the target throttle opening TP is the opening of the throttle valve 22c that controls the intake air amount.
  • the pulsation rate prediction unit 130 also outputs the predicted pulsation rate PRe based on the control target value CTV including the target valve timing VT.
  • the target valve timing VT is the opening and closing timing of the intake valve 11 and the exhaust valve 12 of the internal combustion engine 10.
  • the pulsation rate prediction unit 130 may also output the predicted pulsation rate PRe based on the control target value CTV including the target boost pressure of the turbocharger 40 provided in the exhaust flow path 30 and the intake flow path 20 of the internal combustion engine 10.
  • the allowable pulsation rate output unit 140 is provided with, for example, an allowable pulsation rate map 141 that indicates the relationship between the operating state of the internal combustion engine 10 and the allowable pulsation rate PRa, which is the maximum value of the allowable pulsation rate. More specifically, the allowable pulsation rate output unit 140 is provided with, for example, an allowable pulsation rate map 141 that indicates the relationship between the rotation speed ES of the internal combustion engine 10 and the allowable pulsation rate PRa.
  • the allowable pulsation rate map 141 is defined, for example, for each target valve timing VT.
  • the allowable pulsation rate map 141 outputs the allowable pulsation rate PRa when the target valve timing VT and the rotation speed ES, which is the operating state of the internal combustion engine 10, are input, for example.
  • FIG. 4 is a flow diagram showing an internal combustion engine control method ECM using the internal combustion engine control device 100 of FIG. 2 and FIG. 3.
  • ECM internal combustion engine control method
  • the internal combustion engine control device 100 starts the internal combustion engine control method ECM shown in FIG. 4, it first executes a pulsation rate prediction process S1 that outputs a predicted pulsation rate PRe based on the control target value CTV of the internal combustion engine 10.
  • the restriction target value output unit 110 outputs the input control target value CTV as is to the operation control unit 120, for example, as shown in FIG. 2.
  • the pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe, which is a pulsation rate predicted based on the control target value CTV input from the restriction target value output unit 110, using, for example, a pulsation rate map 131 shown in FIG. 3.
  • the target valve timing VT and the target throttle opening TP, the intake air temperature IT detected by the airflow sensor 21s, and the rotation speed ES of the internal combustion engine 10 based on the detection result of the crank angle sensor 16 are input to the pulsation rate map 131.
  • the pulsation rate map 131 outputs a predicted pulsation rate PRe, which is a prediction result of the pulsation rate of the flow rate detection value by the airflow sensor 21s when these conditions are satisfied.
  • the internal combustion engine control device 100 executes an allowable pulsation rate output step S2 for outputting the allowable pulsation rate PRa, as shown in FIG. 4.
  • the allowable pulsation rate output unit 140 uses, for example, an allowable pulsation rate map 141 shown in FIG. 3, and outputs the allowable pulsation rate PRa based on the operating state of the internal combustion engine 10. More specifically, as shown in FIG. 3, for example, the rotation speed ES and the target valve timing VT of the internal combustion engine 10 are input to the allowable pulsation rate map 141.
  • the allowable pulsation rate map 141 outputs the allowable pulsation rate PRa, which is the maximum allowable value of the pulsation rate of the flow rate detection value by the airflow sensor 21s when these conditions are met.
  • the predicted pulsation rate PRe and the allowable pulsation rate PRa output from the pulsation rate prediction unit 130 and the allowable pulsation rate output unit 140, respectively, are input to the restriction target value output unit 110, for example, as shown in FIG. 2.
  • the internal combustion engine control device 100 executes a comparison step S3 in which the predicted pulsation rate PRe is compared with the allowable pulsation rate PRa, as shown in FIG. 4.
  • the restriction target value output unit 110 compares, for example, the predicted pulsation rate PRe and the allowable pulsation rate PRa input in steps S1 and S2.
  • the restriction target value output unit 110 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), it outputs the control target value CTV input to the restriction target value output unit 110 as is to the operation control unit 120.
  • Figures 5 to 7 are graphs showing the relationship between the rotation speed ES of the internal combustion engine 10 and the pulsation rate of the flow rate detection value by the air flow sensor 21s.
  • the solid curve C1 shows the relationship between the rotation speed ES and the pulsation rate when the target throttle opening TP is fully open and the intake air temperature IT is 25°C.
  • the flow rate detection value by the air flow sensor 21s is affected by the pulsation of the intake air flowing through the intake passage 20, for example, and an error occurs.
  • the pulsation correction value for correcting the error in the flow rate detection value of the air flow sensor 21s due to the pulsation of the intake air is determined, for example, by the following procedure.
  • the internal combustion engine 10 is operated under reference conditions in a predetermined temperature range where the intake air temperature IT is 25°C, for example, while changing the rotation speed ES.
  • the flow rate of the intake air flowing through the intake passage 20 is then detected by the air flow sensor 21s, and is also detected by a known method in which the effect of the intake air pulsation on the flow rate detection value is smaller than that of the air flow sensor 21s.
  • the relationship between the rotation speed ES of the internal combustion engine 10, the pulsation rate of the flow rate detection value by the airflow sensor 21s, and the error in the flow rate detection value by the airflow sensor 21s is obtained, and a pulsation correction value is determined so as to correct the error in the flow rate detection value. That is, as shown by the solid lines in Figures 5 to 7, the area on and below curve C1, which shows the relationship between the rotation speed ES and the pulsation rate when the target throttle opening TP is fully open and the intake air temperature IT is 25°C, is the area in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted.
  • this solid curve C1 represent the allowable pulsation rate PRa for each rotation speed ES. Therefore, if the comparison step S3 in Figure 4 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), the predicted pulsation rate PRe is in the region on or below the solid curve C1. As described above, this region is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted, and this is the region in which the flow rate of air flowing through the intake flow path 20 can be accurately detected by the airflow sensor 21s.
  • step S4 in FIG. 4 the restriction target value output unit 110 shown in FIG. 2 outputs the input control target value CTV of the internal combustion engine 10 to the operation control unit 120 without changing it. Then, the operation control unit 120 outputs control signals CS1, CS2, CS3 based on the control target value CTV of the internal combustion engine 10 to, for example, the actuators that open and close the intake valve 11 and exhaust valve 12, the automatic transmission, and the electronically controlled throttle valve 22c.
  • the operating state of the internal combustion engine 10 is controlled based on the control target value CTV. Furthermore, the internal combustion engine control device 100 calculates a new control target value CTV for the internal combustion engine 10, for example, using an adapted flow rate detection value of the air flow sensor 21s that detects the intake air amount of the internal combustion engine 10. Thereafter, the internal combustion engine control device 100 ends the internal combustion engine control method ECM shown in FIG. 4, and repeats it, for example, at a predetermined period.
  • the relationship between the rotation speed of the internal combustion engine 10 and the pulsation rate of the flow detection value of the air flow sensor 21s when the intake air temperature IT is -40°C and the target throttle opening TP is fully open is shown by the dashed curve C2 in Figure 5.
  • the area above the solid curve C1 exceeds the allowable pulsation rate PRa.
  • the region R1 between the dashed curve C2 and the solid curve C1 is a region in which the pulsation correction value for the flow rate detection value of the airflow sensor 21s is not specified, and errors in the flow rate detection value cannot be corrected.
  • the intake air temperature IT is a low temperature of -40°C
  • the restriction target value output unit 110 determines that the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa (NO).
  • the restriction target value output unit 110 outputs a restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate. More specifically, the restriction target value output unit 110 executes step S5 of changing the target throttle opening TP, for example, as shown in FIG. 4. In this step S5, the restriction target value output unit 110 outputs a restriction throttle opening TPr obtained by reducing the target throttle opening TP, instead of the target throttle opening TP shown in FIG. 2.
  • the restriction target value output unit 110 executes step S6 of changing the target gear ratio GR, for example, as shown in FIG. 4.
  • the restriction target value output unit 110 instead of the target gear ratio GR shown in FIG. 2, the restriction target value output unit 110 outputs the restriction gear ratio GRr, which is obtained by increasing or decreasing the target gear ratio GR so as to reduce the predicted pulsation rate PRe.
  • the limiting gear ratio GRr is output to downshift and increase the rotation speed ES of the internal combustion engine 10.
  • the limiting gear ratio GRr is output to upshift and decrease the rotation speed ES of the internal combustion engine 10.
  • the restriction target value output unit 110 executes step S7 of changing the target valve timing VT, for example, as shown in FIG. 4.
  • the restriction target value output unit 110 instead of the target valve timing VT shown in FIG. 2, the restriction target value output unit 110 outputs the restriction valve timing VTr that reduces the amount of air spit back from the combustion chamber to the intake passage 20 during the compression stroke of the internal combustion engine 10 compared to the target valve timing VT.
  • step S1 shown in FIG. 4 the limit valve timing VTr and limit throttle opening TPr, which are the limit target value CTVr, are input to the pulsation rate prediction unit 130 as shown in FIG. 2 and FIG. 3.
  • the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the limit valve timing VTr and limit throttle opening TPr, which are the limit target value CTVr.
  • the allowable pulsation rate output unit 140 takes the restricted valve timing VTr, which is the restricted target value CTVr, as input instead of the target valve timing VT, which is the control target value CTV, and outputs the allowable pulsation rate PRa.
  • the predicted pulsation rate PRe based on the limit throttle opening TPr moves, for example, as shown by arrow A1 in FIG. 5, from region R1 above the solid curve C1 to a region above or below the dashed curve C2', which has a peak below the solid curve C1. Also, due to a change in the rotation speed ES of the internal combustion engine 10 based on the limit gear ratio GRr, the predicted pulsation rate PRe moves, for example, as shown by arrow A2 in FIG. 6, from region R1 above the solid curve C1 to a region below the solid curve C1.
  • the dashed curve C2 based on the target valve timing VT moves, for example, as indicated by arrow A3, to the region above or below dashed curve C2' based on the limit valve timing VTr below curve C2.
  • the limit throttle opening TPr may also be used instead of target throttle opening TP.
  • the predicted pulsation rate PRe moves, for example, as indicated by arrow A3, from region R2 above solid curve C1 to the region above or below dashed curve C2'', which has a peak below solid curve C1.
  • the restriction target value output unit 110 determines in step S3 shown in Figure 4 that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES). Then, the operation control unit 120 executes an operation control step S4 in which the operation state of the internal combustion engine 10 is controlled. In this step S4, when the restriction target value CTVr is input, the operation control unit 120 controls the operation state of the internal combustion engine 10 based on the input restriction target value CTVr.
  • step S3 the restriction target value output unit 110 determines in step S3 shown in FIG. 4 that the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa (NO)
  • steps S5 to S7 are executed again to output the restriction target value CTVr by the restriction target value output unit 110.
  • step S3 the restriction target value output unit 110 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), and the restriction target value output unit 110 executes step S4 to control the operating state of the internal combustion engine 10.
  • the pulsation correction value is determined, and the internal combustion engine 10 is operated in the region below the solid curve C1 shown in Figure 5, to which the flow rate detection value by the airflow sensor 21s is adapted. Therefore, the airflow sensor 21s can accurately detect the flow rate of air flowing through the intake passage 20. As a result, the internal combustion engine control device 100, which controls the internal combustion engine 10 using the flow rate detection value by the airflow sensor 21s, can prevent deterioration of the operability and exhaust components of the internal combustion engine 10.
  • FIG. 8 is a flow diagram showing the pre-process PP of the control method ECM for an internal combustion engine shown in FIG. 4.
  • the pre-process PP of the control method ECM for an internal combustion engine includes, for example, a pulsation rate learning process PP1 and an allowable pulsation rate calibration process PP2.
  • the pulsation rate learning process PP1 is a process for learning the relationship between the control target value CTV and the pulsation rate of the flow detection value of the airflow sensor 21s under the reference conditions of the internal combustion engine 10 described above by machine learning, and generating, for example, a pulsation rate map 131 including a maximum pulsation rate map 131a and a pulsation rate ratio map 131b.
  • the allowable pulsation rate calibration process PP2 is a process for generating the allowable pulsation rate map 141 based on the pulsation rate map 131. More specifically, for example, the maximum pulsation rate when the throttle opening is fully open for each rotation speed of the internal combustion engine 10 is derived from the maximum pulsation rate map 131a, and the maximum pulsation rate for each rotation speed of the internal combustion engine 10 is set as the allowable pulsation rate PRa.
  • the internal combustion engine control device 100 of this embodiment controls the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s that detects the intake air volume of the internal combustion engine 10.
  • the internal combustion engine control device 100 includes an operation control unit 120, a pulsation rate prediction unit 130, an allowable pulsation rate output unit 140, and a restriction target value output unit 110.
  • the operation control unit 120 controls the operating state of the internal combustion engine 10 based on a control target value CTV of the internal combustion engine 10.
  • the pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe that predicts the pulsation rate of the flow rate detection value by the air flow sensor 21s based on the control target value CTV.
  • the allowable pulsation rate output unit 140 outputs an allowable pulsation rate PRa that is the maximum value of the allowable pulsation rate based on the operating state of the internal combustion engine 10.
  • the restriction target value output unit 110 outputs a restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate.
  • the operation control unit 120 controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr.
  • the internal combustion engine control device 100 of this embodiment obtains the predicted pulsation rate PRe and the allowable pulsation rate PRa based on the control target value CTV of the internal combustion engine 10. Then, when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa and enters the region R1, R3 above the solid curve C1 shown in Figures 5 to 7, the restriction target value output unit 110 outputs the restriction target value CTVr. As a result, the operation control unit 120 controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate.
  • the relationship between the pulsation rate of the flow rate detection value of the airflow sensor 21s and the rotation speed of the internal combustion engine 10 moves to the region on or below the solid curve C1.
  • the region on or below this solid curve C1 is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted. Therefore, the internal combustion engine 10 can be prevented from operating in the regions R1 and R3 where the pulsation error cannot be corrected, and the internal combustion engine 10 can be controlled using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected. Therefore, the internal combustion engine control device 100 of this embodiment can prevent deterioration of the operating performance and exhaust components of the internal combustion engine 10.
  • control target value CTV includes a target throttle opening TP, which is a target value for the opening of the throttle valve 22c that controls the intake air amount.
  • limit target value CTVr includes a limit throttle opening TPr that is a reduction of the target throttle opening TP.
  • the dashed curve C2 showing the relationship between the pulsation rate of the flow detection value of the air flow sensor 21s and the rotation speed of the internal combustion engine 10 when the target throttle opening TP is fully open can be moved to the dashed curve C2' below the solid curve C1.
  • the control target value CTV includes a target valve timing VT, which is a target value for the opening and closing timing of the intake valve 11 and exhaust valve 12 of the internal combustion engine 10.
  • the restriction target value CTVr includes a restriction valve timing VTr that reduces the amount of air spit back from the combustion chamber to the intake passage 20 during the compression stroke of the internal combustion engine 10 to less than the control target value CTV.
  • this configuration allows the dashed curve C2, which indicates the relationship between the pulsation rate of the flow detection value of the air flow sensor 21s and the rotation speed of the internal combustion engine 10 when the target throttle opening TP is fully open at an extremely low intake temperature IT of -40°C, to be shifted downward to the dashed curve C2'. Furthermore, by including the limit throttle opening TPr in the restriction target value CTVr, the dashed curve C2' can be shifted downward to the dashed curve C2" below the solid curve C1. In this case, the difference between the target throttle opening TP and the limit throttle opening TPr can be reduced compared to when the restriction target value CTVr includes only the limit throttle opening TPr.
  • control target value CTV includes a target gear ratio GR of the automatic transmission of the vehicle in which the internal combustion engine 10 is mounted.
  • the limit target value CTVr includes a limit gear ratio GRr that is obtained by increasing or decreasing the target gear ratio GR so as to reduce the predicted pulsation rate PRe.
  • the rotation speed of the internal combustion engine 10 can be increased when the intake air temperature IT is extremely low, such as -40°C.
  • the point in region R1 above the solid curve C1 can be moved below the solid curve C1, as shown by arrow A2. This makes it possible to avoid operating the internal combustion engine 10 in region R1 where the pulsation error cannot be corrected, as described above, and to control the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected.
  • the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the rotation speed ES and intake temperature IT of the internal combustion engine 10 in addition to the control target value CTV, which includes the opening degree of the throttle valve 22c that controls the intake air amount. This configuration enables the pulsation rate prediction unit 130 to output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
  • the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on a control target value CTV that includes the opening and closing timing of the intake valve 11 and the exhaust valve 12 of the internal combustion engine 10.
  • the pulsation rate prediction unit 130 is able to output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
  • the pulsation rate prediction unit 130 can output the predicted pulsation rate PRe based on a control target value CTV including a target boost pressure of the turbocharger 40 provided in the intake passage 20 and exhaust passage 30 of the internal combustion engine 10. With this configuration, the pulsation rate prediction unit 130 can output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
  • the pulsation rate prediction unit 130 when the restriction target value CTVr is input, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the restriction target value CTVr.
  • the predicted pulsation rate PRe can be set to be equal to or less than the allowable pulsation rate PRa by repeating steps S1 to S7 shown in FIG. 4.
  • the internal combustion engine control method ECM of this embodiment is a method for controlling the internal combustion engine 10 using a flow rate detection value of the air flow sensor 21s that detects the amount of intake air of the internal combustion engine 10.
  • the internal combustion engine control method ECM has an operation control step S4, a pulsation rate prediction step S1, an allowable pulsation rate output step S2, and a restriction target value output step S5-S7.
  • the operation control step S4 is a step for controlling the operating state of the internal combustion engine 10 based on a control target value CTV of the internal combustion engine 10.
  • the allowable pulsation rate output step S2 is a step for outputting a predicted pulsation rate PRe that predicts the pulsation rate based on the control target value CTV using a pulsation rate map 131 that specifies the relationship between the control target value CTV of the internal combustion engine 10 and the pulsation rate of the flow rate detection value of the air flow sensor 21s under reference conditions in a predetermined temperature range.
  • the allowable pulsation rate output step S2 is a step of outputting the allowable pulsation rate PRa based on the operating state of the internal combustion engine 10 using an allowable pulsation rate map 141 that shows the relationship between the operating state of the internal combustion engine 10 and the allowable pulsation rate PRa, which is the maximum allowable pulsation rate.
  • the restriction target value output steps S5-S7 are steps of outputting a restriction target value CTVr that changes the control target value CTV so as to reduce the pulsation rate when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa.
  • the internal combustion engine control method ECM of this embodiment controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr when the restriction target value CTVr is input in the operation control step S4.
  • the predicted pulsation rate PRe and the allowable pulsation rate PRa are obtained based on the control target value CTV of the internal combustion engine 10. Then, when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa and enters the region R1, R3 above the solid curve C1 shown in Figures 5 to 7, the restriction target value CTVr can be output. As a result, the operating state of the internal combustion engine 10 is controlled based on the restriction target value CTVr in which the control target value CTV is changed so as to reduce the pulsation rate.
  • the relationship between the pulsation rate of the flow rate detection value of the airflow sensor 21s and the rotation speed of the internal combustion engine 10 moves to the region on or below the solid curve C1.
  • the region on or below this solid curve C1 is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted. Therefore, it is possible to avoid operating the internal combustion engine 10 in the regions R1 and R3 where the pulsation error cannot be corrected, and to control the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected. Therefore, according to the internal combustion engine control method ECM of this embodiment, it is possible to prevent deterioration of the operating performance and exhaust components of the internal combustion engine 10.
  • the internal combustion engine control method ECM of this embodiment includes a pulsation rate learning process PP1 and an allowable pulsation rate calibration process PP2 as pre-processes PP.
  • the pulsation rate learning process PP1 is a process for learning the relationship between the control target value CTV and the pulsation rate under the reference conditions of the internal combustion engine 10 to generate a pulsation rate map 131.
  • the allowable pulsation rate calibration process PP2 is a process for generating an allowable pulsation rate map 141 based on the pulsation rate map 131.
  • the internal combustion engine control method ECM of this embodiment can generate the pulsation rate map 131 and the allowable pulsation rate map 141 used in the above-mentioned pulsation rate prediction process S1 and allowable pulsation rate output process S2 by machine learning.
  • this embodiment can provide an internal combustion engine control device 100 and an internal combustion engine control method ECM that can prevent the relationship between the rotation speed of the internal combustion engine 10 and the pulsation rate of the intake air from going outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the operating performance and exhaust components of the internal combustion engine 10.
  • Fig. 9 is a block diagram showing an embodiment of the control device for an internal combustion engine according to the present disclosure, and corresponds to Fig. 2 of the first embodiment.
  • the internal combustion engine control device 100A of this embodiment differs from the internal combustion engine control device 100 of the above-described first embodiment in that it further includes a back calculation unit 150.
  • the other configuration of the internal combustion engine control device 100A of this embodiment is similar to that of the internal combustion engine control device 100 of the above-described first embodiment, so similar parts are given the same reference numerals and descriptions thereof are omitted.
  • the inverse calculation unit 150 shown in FIG. 9 outputs an allowable target value, which is an allowable value of the control target value CTV of the internal combustion engine 10, based on the allowable pulsation rate PRa in the reverse procedure to that of the pulsation rate prediction unit 130. More specifically, the inverse calculation unit 150 shown in FIG. 9 receives, for example, the maximum pulsation rate PRg output from the maximum pulsation rate map 131a of the pulsation rate prediction unit 130 shown in FIG. 3, the rotation speed ES of the internal combustion engine 10, and the allowable pulsation rate PRa output from the allowable pulsation rate output unit 140.
  • the reverse calculation unit 150 is provided with, for example, a throttle opening reverse lookup map (not shown).
  • the throttle opening reverse lookup map takes as input, for example, an allowable pulsation rate ratio obtained by dividing the predicted pulsation rate PRe by the maximum pulsation rate PRg, and outputs a limited throttle opening TPr based on the allowable pulsation rate ratio and the rotation speed ES.
  • the reverse calculation unit 150 outputs the limit throttle opening TPr as an allowable target value that is an allowable value of the control target value CTV of the internal combustion engine 10 based on the maximum pulsation rate PRg according to the operating state of the internal combustion engine 10, in the reverse procedure of the pulsation rate prediction unit 130.
  • the limit throttle opening TPr output from the reverse calculation unit 150 is input to the limit target value output unit 110.
  • the limit target value output unit 110 outputs the limit throttle opening TPr as the allowable target value input from the reverse calculation unit 150 as the limit target value CTVr.
  • the internal combustion engine control device 100A of this embodiment further includes a reverse calculation unit 150 in addition to the components of the internal combustion engine control device 100 of the first embodiment described above.
  • the reverse calculation unit 150 outputs the limit throttle opening TPr as an allowable target value that is an allowable value of the control target value CTV of the internal combustion engine 10, in the reverse procedure of the pulsation rate prediction unit 130, based on the maximum pulsation rate PRg according to the operating state of the internal combustion engine 10.
  • the limit target value output unit 110 outputs the limit throttle opening TPr as an allowable target value input from the reverse calculation unit 150 as the limit target value CTVr.
  • the internal combustion engine control device 100A of this embodiment can output the limit throttle opening angle TPr using the reverse calculation unit 150 without repeatedly executing steps S1 to S7 shown in FIG. 4, as in the internal combustion engine control device 100 of the above-mentioned first embodiment. This makes it possible to reduce the calculation load of the internal combustion engine control device 100A.
  • control device and control method for an internal combustion engine according to the present disclosure have been described above, the control device and control method for an internal combustion engine according to the present disclosure are not limited to the above-described embodiments. Addition, omission, substitution, and other modifications of the configuration are possible within the scope of the spirit of the present disclosure.

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is a control device 100 for an internal combustion engine that controls the internal combustion engine using a flow rate detection value from an airflow sensor that detects the air intake rate of the internal combustion engine, said control device comprising: an operational control unit 120, a ripple factor prediction unit 130, a permissible ripple factor output unit 140, and a limit target value output unit 110. The operational control unit 120 controls the operational state of the internal combustion engine on the basis of a control target value CTV of the internal combustion engine. The ripple factor prediction unit 130 outputs a predicted ripple factor PRe that predicts the ripple factor of the flow rate detection value on the basis of the control target value CTV. The permissible ripple factor output unit 140 outputs a permissible ripple factor PRa on the basis of a rotational speed ES that serves as the operational state of the internal combustion engine. If the predicted ripple factor PRe exceeds the permissible ripple factor PRa, the limit target value output unit 110 outputs a limit target value CTVr produced by changing the control target value CTV so as to lower the ripple factor. If the limit target value CTVr has been input, the limit target value output unit 110 controls the operational state of the internal combustion engine on the basis of the limit target value CTVr.

Description

内燃機関の制御装置および制御方法Control device and control method for internal combustion engine
 本開示は、内燃機関の制御装置および制御方法に関する。 This disclosure relates to a control device and control method for an internal combustion engine.
 従来から火花点火式内燃機関を制御するエンジン制御装置に関する発明が知られている。たとえば、下記特許文献1に記載された従来のエンジン制御装置は、気筒に燃料を供給する燃料噴射装置と、吸気通路に配置されたスロットル弁とを備える内燃機関を制御する。  Inventions relating to engine control devices that control spark ignition internal combustion engines are known. For example, the conventional engine control device described in Patent Document 1 below controls an internal combustion engine that has a fuel injection device that supplies fuel to the cylinders and a throttle valve arranged in the intake passage.
 この従来のエンジン制御装置は、プロセッサと、スロットル弁よりも上流側において吸気通路に配置され、吸入空気流量を検出するエアフローセンサと、スロットル弁のスロットル開度を検出するスロットルポジションセンサと、を備える。上記プロセッサにより実行される燃料噴射制御は、第1燃料噴射処理と、第2燃料噴射処理と、を含む。 This conventional engine control device includes a processor, an airflow sensor that is disposed in the intake passage upstream of the throttle valve and detects the intake air flow rate, and a throttle position sensor that detects the throttle opening of the throttle valve. The fuel injection control executed by the processor includes a first fuel injection process and a second fuel injection process.
 上記第1燃料噴射処理では、エアフローセンサにより検出される吸入空気流量に基づく第1吸入空気量に応じた量の燃料を噴射するように、燃料噴射装置を制御する。上記第2燃料噴射処理では、スロットルポジションセンサにより検出されるスロットル開度に基づく第2吸入空気量に応じた量の燃料を噴射するように、燃料噴射装置を制御する。 In the first fuel injection process, the fuel injection device is controlled to inject an amount of fuel corresponding to a first intake air amount based on the intake air flow rate detected by the airflow sensor. In the second fuel injection process, the fuel injection device is controlled to inject an amount of fuel corresponding to a second intake air amount based on the throttle opening detected by the throttle position sensor.
 上記プロセッサは、エアフローセンサにより検出される吸入空気流量の脈動の変動率である脈動率が脈動率閾値以下の場合には、上記第1燃料噴射処理を選択し、脈動率が脈動率閾値よりも高い場合には、上記第2燃料噴射処理を選択する。脈動率閾値は、内燃機関の温度に相関する温度相関値が低い場合には、温度相関値が高い場合と比べて小さい(特許文献1、第0008段落、請求項1、要約等)。 The processor selects the first fuel injection process when the pulsation rate, which is the rate of change of the pulsation of the intake air flow rate detected by the air flow sensor, is equal to or lower than the pulsation rate threshold, and selects the second fuel injection process when the pulsation rate is higher than the pulsation rate threshold. The pulsation rate threshold is smaller when the temperature correlation value, which correlates with the temperature of the internal combustion engine, is low than when the temperature correlation value is high (Patent Document 1, paragraph 0008, claim 1, abstract, etc.).
特開2021-076040号公報JP 2021-076040 A
 上記従来のエンジン制御装置では、前述のように、吸入空気流量脈動率が脈動率閾値よりも高い場合に、スロットル開度に基づく第2吸入空気量に応じた量の燃料を噴射する第2燃料噴射処理が選択される。この従来のエンジン制御装置において第2燃料噴射処理が選択される場合にも、エアフローセンサによる吸入空気の流量検出値を補正する脈動補正値を求め、補正された流量検出値に応じた量の燃料を噴射する制御が検討されている。 As described above, in the above conventional engine control device, when the intake air flow pulsation rate is higher than the pulsation rate threshold, a second fuel injection process is selected to inject an amount of fuel corresponding to a second intake air amount based on the throttle opening. Even when the second fuel injection process is selected in this conventional engine control device, a control is being considered in which a pulsation correction value is calculated to correct the intake air flow rate detection value by the airflow sensor, and an amount of fuel is injected corresponding to the corrected flow rate detection value.
 上記脈動補正値は、たとえば、次のように決定される。所定の温度範囲の基準条件で内燃機関を運転させ、吸入空気の脈動発生時に、エアフローセンサによって吸入空気量を検出するとともに、内燃機関の回転数、スロットル開度、および排気成分などの運転状態に基づいて吸入空気量を算出する。そして、エアフローセンサによって検出された吸入空気量と、運転状態に基づいて算出された吸入空気量とを適合させるように、脈動補正値を決定する。 The pulsation correction value is determined, for example, as follows: The internal combustion engine is operated under reference conditions within a specified temperature range, and when pulsation of the intake air occurs, the intake air volume is detected by the airflow sensor, and the intake air volume is calculated based on the operating conditions, such as the internal combustion engine speed, throttle opening, and exhaust components. The pulsation correction value is then determined so that the intake air volume detected by the airflow sensor matches the intake air volume calculated based on the operating conditions.
 しかし、たとえば、上記基準条件から外れた極低温時には、吸入空気の共振周波数が低下し、吸入空気の脈動率のピークが内燃機関の低回転数側へシフトする。その結果、内燃機関の回転数と吸入空気の脈動率との関係が、上記脈動補正値が決定された範囲から外れ、エアフローセンサの流量検出値を補正することができなくなり、内燃機関の運転性能および排気成分が悪化するおそれがある。 However, for example, at extremely low temperatures that deviate from the above-mentioned standard conditions, the resonant frequency of the intake air decreases, and the peak of the intake air pulsation rate shifts to the lower rotation speed side of the internal combustion engine. As a result, the relationship between the internal combustion engine rotation speed and the intake air pulsation rate falls outside the range for which the above-mentioned pulsation correction value is determined, making it impossible to correct the flow detection value of the airflow sensor, and there is a risk of deterioration in the operating performance of the internal combustion engine and exhaust components.
 本開示は、内燃機関の回転数と吸入空気の脈動率との関係が、上記脈動補正値が決定された範囲から外れるのを防止して、内燃機関の運転性能および排気成分の悪化を防止できる内燃機関の制御装置および制御方法を提供する。 The present disclosure provides an internal combustion engine control device and control method that can prevent the relationship between the engine speed and the pulsation rate of the intake air from falling outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the engine's operating performance and exhaust components.
 本開示の一態様は、内燃機関の吸入空気量を検出するエアフローセンサの流量検出値を用いて前記内燃機関を制御する内燃機関の制御装置であって、前記内燃機関の制御目標値に基づいて前記内燃機関の動作状態を制御する動作制御部と、前記制御目標値に基づいて前記流量検出値の脈動率を予測した予測脈動率を出力する脈動率予測部と、前記内燃機関の前記動作状態に基づいて許容可能な前記脈動率の最大値である許容脈動率を出力する許容脈動率出力部と、前記予測脈動率が前記許容脈動率を超える場合に前記脈動率を低下させるように前記制御目標値を変更した制限目標値を出力する制限目標値出力部と、を備え、前記動作制御部は、前記制限目標値が入力された場合に前記制限目標値に基づいて前記内燃機関の前記動作状態を制御することを特徴とする内燃機関の制御装置である。 One aspect of the present disclosure is a control device for an internal combustion engine that controls the internal combustion engine using a flow rate detection value of an air flow sensor that detects the amount of intake air into the internal combustion engine, and includes an operation control unit that controls the operating state of the internal combustion engine based on a control target value of the internal combustion engine, a pulsation rate prediction unit that outputs a predicted pulsation rate that predicts the pulsation rate of the flow rate detection value based on the control target value, an allowable pulsation rate output unit that outputs an allowable pulsation rate that is the maximum value of the pulsation rate that is allowable based on the operating state of the internal combustion engine, and a restriction target value output unit that outputs a restriction target value that changes the control target value so as to reduce the pulsation rate when the predicted pulsation rate exceeds the allowable pulsation rate, and the operation control unit controls the operating state of the internal combustion engine based on the restriction target value when the restriction target value is input.
 本開示の一態様によれば、内燃機関の回転数と吸入空気の脈動率との関係が、上記脈動補正値が決定された範囲から外れるのを防止して、内燃機関の運転性能および排気成分の悪化を防止できる内燃機関の制御装置を提供することができる。 According to one aspect of the present disclosure, it is possible to provide a control device for an internal combustion engine that can prevent the relationship between the rotation speed of the internal combustion engine and the pulsation rate of the intake air from going outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the operating performance of the internal combustion engine and exhaust components.
本開示に係る内燃機関の制御装置の実施形態1を示す概略図。1 is a schematic diagram showing a first embodiment of a control device for an internal combustion engine according to the present disclosure; 図1の内燃機関の制御装置の機能ブロック図。FIG. 2 is a functional block diagram of the control device for the internal combustion engine of FIG. 1 . 図2の脈動率予測部と許容脈動率出力部の詳細を示すブロック図。3 is a block diagram showing details of a pulsation rate prediction unit and a permissible pulsation rate output unit in FIG. 2 . 図2の内燃機関の制御装置を用いた制御方法を示すフロー図。3 is a flow diagram showing a control method using the control device for the internal combustion engine of FIG. 2; 内燃機関の回転数と流量検出値の脈動率との関係を示すグラフ。5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value. 内燃機関の回転数と流量検出値の脈動率との関係を示すグラフ。5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value. 内燃機関の回転数と流量検出値の脈動率との関係を示すグラフ。5 is a graph showing the relationship between the rotation speed of an internal combustion engine and the pulsation rate of a detected flow rate value. 図4の内燃機関の制御方法の前工程を示すフロー図。FIG. 5 is a flow chart showing a first step of the control method for the internal combustion engine of FIG. 4 . 本開示に係る内燃機関の制御装置の実施形態2を示すブロック図。FIG. 4 is a block diagram showing a second embodiment of a control device for an internal combustion engine according to the present disclosure.
 以下、図面を参照して本開示に係る内燃機関の制御装置および制御方法の実施形態を説明する。 Below, an embodiment of a control device and a control method for an internal combustion engine according to the present disclosure will be described with reference to the drawings.
[実施形態1]
 図1は、本開示の内燃機関の制御装置の実施形態であるエンジンシステム200の概略図である。エンジンシステム200は、たとえば、内燃機関10と、吸気流路20と、排気流路30と、ターボ過給機40と、排気再循環(Exhausted Gas Recirculation:EGR)流路50と、内燃機関の制御装置100とを備えている。本実施形態の内燃機関の制御装置100は、たとえば、中央処理装置(CPU)および記憶装置(ROM、RAM等)を備えた電子制御ユニット(Electronic Control Unit:ECU)である。
[Embodiment 1]
1 is a schematic diagram of an engine system 200 which is an embodiment of an internal combustion engine control device according to the present disclosure. The engine system 200 includes, for example, an internal combustion engine 10, an intake passage 20, an exhaust passage 30, a turbocharger 40, an exhaust gas recirculation (EGR) passage 50, and an internal combustion engine control device 100. The internal combustion engine control device 100 of this embodiment is, for example, an electronic control unit (ECU) including a central processing unit (CPU) and a storage device (ROM, RAM, etc.).
 内燃機関10は、たとえば、吸気バルブ11と、排気バルブ12と、燃料噴射弁13と、点火プラグ14と、ノックセンサ15と、クランク角度センサ16と、を備えている。内燃機関10は、吸気流路20と排気流路30に接続されている。吸気バルブ11と排気バルブ12は、それぞれ、可変動弁機構を有している。可変動弁機構は、吸気バルブ11と排気バルブ12の開閉位相を検知するセンサ11s,12sを備え、吸気バルブ11と排気バルブ12の位相を連続的に可変とする構成を有している。 The internal combustion engine 10 includes, for example, an intake valve 11, an exhaust valve 12, a fuel injection valve 13, a spark plug 14, a knock sensor 15, and a crank angle sensor 16. The internal combustion engine 10 is connected to an intake passage 20 and an exhaust passage 30. The intake valve 11 and the exhaust valve 12 each have a variable valve mechanism. The variable valve mechanism includes sensors 11s, 12s that detect the opening and closing phases of the intake valve 11 and the exhaust valve 12, and is configured to continuously vary the phases of the intake valve 11 and the exhaust valve 12.
 燃料噴射弁13は、たとえば、内燃機関10のシリンダ内に直接燃料を噴射する直接式の噴射弁である。なお、燃料噴射弁13は、吸気ポートに燃料を噴射するポート噴射方式の噴射弁であってもよい。点火プラグ14は、内燃機関10のシリンダ内に電極部が露出され、スパークによって可燃混合気に引火する。ノックセンサ15は、内燃機関10のシリンダブロックに設けられ、燃焼室内で発生するノックの有無を検出する。クランク角度センサ16は、内燃機関10のクランク軸に設けられ、クランク軸の回転角度に応じた信号を、クランク軸の回転速度を示す信号として、内燃機関の制御装置100へ燃焼周期ごとに出力する。 The fuel injection valve 13 is, for example, a direct injection valve that injects fuel directly into the cylinder of the internal combustion engine 10. The fuel injection valve 13 may also be a port injection type injection valve that injects fuel into an intake port. The spark plug 14 has an electrode portion exposed inside the cylinder of the internal combustion engine 10, and ignites the combustible mixture by a spark. The knock sensor 15 is provided in the cylinder block of the internal combustion engine 10 and detects the presence or absence of knock occurring in the combustion chamber. The crank angle sensor 16 is provided on the crankshaft of the internal combustion engine 10 and outputs a signal corresponding to the rotation angle of the crankshaft as a signal indicating the rotation speed of the crankshaft to the control device 100 of the internal combustion engine for each combustion cycle.
 吸気流路20は、たとえば、上流部21と、中流部22と、下流部23と、バイパス部24とを有している。上流部21は、図示を省略するエアクリーナと、ターボ過給機40とを接続する流路である。中流部22は、ターボ過給機40と吸気流路20の下流部23とを接続する流路である。下流部23は、内燃機関10に接続された吸気マニホールドである。バイパス部24は、上流部21と中流部22とを接続する流路である。 The intake flow path 20 has, for example, an upstream section 21, a midstream section 22, a downstream section 23, and a bypass section 24. The upstream section 21 is a flow path that connects an air cleaner (not shown) and a turbocharger 40. The midstream section 22 is a flow path that connects the turbocharger 40 and the downstream section 23 of the intake flow path 20. The downstream section 23 is an intake manifold connected to the internal combustion engine 10. The bypass section 24 is a flow path that connects the upstream section 21 and the midstream section 22.
 吸気流路20の上流部21には、たとえば、吸気流路20を流れる吸入空気の流量を検出するエアフローセンサ21sが設けられている。エアフローセンサ21sは、たとえば、流量センサの他に、温度センサ、圧力センサ、および湿度センサを備え、吸入空気の流量、温度、圧力、および湿度を検出可能な物理量検出装置として構成されている。 In the upstream portion 21 of the intake flow path 20, for example, an airflow sensor 21s is provided that detects the flow rate of the intake air flowing through the intake flow path 20. In addition to the flow rate sensor, the airflow sensor 21s is equipped with a temperature sensor, a pressure sensor, and a humidity sensor, for example, and is configured as a physical quantity detection device that can detect the flow rate, temperature, pressure, and humidity of the intake air.
 エアフローセンサ21sは、たとえば、熱式流量センサを備え、主通路としての吸気流路20を流れる空気をバイパスさせる副通路としてのバイパス通路を備えている。熱式流量センサは、バイパス通路内に配置され、空気の流れに起因してヒータの上流側と下流側に生じる温度差を、測温抵抗体を含むブリッジ回路によって検出することで、バイパス流路を流れる空気の流量に対応する電圧信号を出力する。 The airflow sensor 21s, for example, includes a thermal flow sensor and a bypass passage as a secondary passage that bypasses the air flowing through the intake passage 20 as the main passage. The thermal flow sensor is disposed in the bypass passage, and detects the temperature difference that occurs between the upstream and downstream sides of the heater due to the air flow using a bridge circuit including a resistance temperature sensor, thereby outputting a voltage signal corresponding to the flow rate of air flowing through the bypass passage.
 吸気流路20の中流部22には、たとえば、インタークーラ22aと、過給温度センサ22bと、スロットル弁22cとが設けられている。インタークーラ22aは、ターボ過給機40のコンプレッサ41によって断熱圧縮されて温度が上昇した空気を冷却して温度を低下させる。過給温度センサ22bは、インタークーラ22aの下流に配置され、インタークーラ22aによって冷却された空気の温度を計測する。 In the midstream portion 22 of the intake passage 20, for example, an intercooler 22a, a supercharger temperature sensor 22b, and a throttle valve 22c are provided. The intercooler 22a cools the air whose temperature has increased due to adiabatic compression by the compressor 41 of the turbocharger 40, thereby lowering the temperature. The supercharger temperature sensor 22b is disposed downstream of the intercooler 22a, and measures the temperature of the air cooled by the intercooler 22a.
 スロットル弁22cは、過給温度センサ22bの下流に設けられ、吸気流路20を絞り、内燃機関10の燃焼室に流入する空気量を制御する。スロットル弁22cは、たとえば、運転手によるアクセルペダルの踏量とは独立して弁開度の制御が可能な電子制御式バタフライ弁により構成される。 The throttle valve 22c is provided downstream of the supercharger temperature sensor 22b and narrows the intake passage 20 to control the amount of air flowing into the combustion chamber of the internal combustion engine 10. The throttle valve 22c is, for example, an electronically controlled butterfly valve whose valve opening can be controlled independently of the amount of depression of the accelerator pedal by the driver.
 吸気流路20の下流部23には、たとえば、過給圧センサ23aと、流動強化弁23bとが設けられている。過給圧センサ23aは、中流部22に設けられたスロットル弁22cの下流側に配置されている。流動強化弁23bは、吸入空気に偏流を生じさせることによって、内燃機関10の燃焼室の内部の流れに生じる乱れを増大させる。 In the downstream portion 23 of the intake passage 20, for example, a boost pressure sensor 23a and a flow enhancement valve 23b are provided. The boost pressure sensor 23a is disposed downstream of the throttle valve 22c provided in the midstream portion 22. The flow enhancement valve 23b increases the turbulence in the flow inside the combustion chamber of the internal combustion engine 10 by causing a bias in the intake air.
 排気流路30は、たとえば、上流部31と、下流部32と、バイパス部33と、を有している。上流部31は、内燃機関10とターボ過給機40とを接続する排気マニホールドである。下流部32は、ターボ過給機40と図示を省略するマフラーとを接続する流路である。バイパス部33は、排気流路30の上流部31と下流部32とを接続する流路である。排気流路30の下流部32には、たとえば、空燃比センサ32aと排気浄化触媒32bとが設けられている。 The exhaust flow path 30 has, for example, an upstream section 31, a downstream section 32, and a bypass section 33. The upstream section 31 is an exhaust manifold that connects the internal combustion engine 10 and the turbocharger 40. The downstream section 32 is a flow path that connects the turbocharger 40 and a muffler (not shown). The bypass section 33 is a flow path that connects the upstream section 31 and the downstream section 32 of the exhaust flow path 30. The downstream section 32 of the exhaust flow path 30 is provided with, for example, an air-fuel ratio sensor 32a and an exhaust purification catalyst 32b.
 空燃比センサ32aは、ターボ過給機40のタービン42の下流に設けられ、検出された酸素濃度、すなわち、空燃比を示す信号を、内燃機関制御装置60へ出力する。排気浄化触媒32bは、空燃比センサ32aの下流に設けられ、排ガス中の一酸化炭素、窒素化合物および未燃炭化水素等の有害排出ガス成分を触媒反応によって浄化する。 The air-fuel ratio sensor 32a is provided downstream of the turbine 42 of the turbocharger 40, and outputs a signal indicating the detected oxygen concentration, i.e., the air-fuel ratio, to the internal combustion engine control device 60. The exhaust purification catalyst 32b is provided downstream of the air-fuel ratio sensor 32a, and purifies harmful exhaust gas components such as carbon monoxide, nitrogen compounds, and unburned hydrocarbons in the exhaust gas through catalytic reactions.
 ターボ過給機40は、コンプレッサ41とタービン42とによって構成され、たとえば、吸気流路20のバイパス部24に設けられたエアバイパス弁43と、排気流路30のバイパス部33に設けられたウェイストゲート弁44とを備えている。コンプレッサ41は、コンプレッサ翼を有し、コンプレッサ翼の上流側に吸気流路20の上流部21が接続され、コンプレッサ翼の下流側に吸気流路20の中流部22が接続されている。 The turbocharger 40 is composed of a compressor 41 and a turbine 42, and is equipped with, for example, an air bypass valve 43 provided in the bypass section 24 of the intake passage 20, and a wastegate valve 44 provided in the bypass section 33 of the exhaust passage 30. The compressor 41 has compressor vanes, and the upstream section 21 of the intake passage 20 is connected to the upstream side of the compressor vanes, and the midstream section 22 of the intake passage 20 is connected to the downstream side of the compressor vanes.
 タービン42は、コンプレッサ翼に連結されたタービン翼を有し、タービン翼の上流側に排気流路30の上流部31が接続され、タービン翼の下流側に排気流路30の下流部32が接続されている。タービン42は、タービン翼によって排気流路30を流れる排気ガスのエネルギを回転エネルギに変換する。コンプレッサ41は、コンプレッサ翼の回転によって、吸気流路20を流れる空気を圧縮する。 The turbine 42 has turbine blades connected to the compressor blades, and the upstream portion 31 of the exhaust passage 30 is connected to the upstream side of the turbine blades, and the downstream portion 32 of the exhaust passage 30 is connected to the downstream side of the turbine blades. The turbine 42 converts the energy of the exhaust gas flowing through the exhaust passage 30 into rotational energy using the turbine blades. The compressor 41 compresses the air flowing through the intake passage 20 by rotating the compressor blades.
 エアバイパス弁43は、内燃機関の制御装置100の制御によって、コンプレッサ41の下流からスロットル弁22cの上流部までの圧力が過剰に上昇することを防止する。過給状態でスロットル弁22cが急激に閉止された場合には、内燃機関の制御装置100の制御に従ってエアバイパス弁43が開かれることにより、コンプレッサ41の下流の圧縮された吸入空気が吸気流路20のバイパス部24を通ってコンプレッサ41の上流に逆流する。その結果、過給圧を低下させることが可能となる。 The air bypass valve 43, under the control of the internal combustion engine control device 100, prevents an excessive increase in pressure from downstream of the compressor 41 to the upstream of the throttle valve 22c. When the throttle valve 22c is suddenly closed in a supercharged state, the air bypass valve 43 is opened under the control of the internal combustion engine control device 100, causing the compressed intake air downstream of the compressor 41 to flow back through the bypass section 24 of the intake passage 20 to the upstream of the compressor 41. As a result, it becomes possible to reduce the supercharging pressure.
 ウェイストゲート弁44は、内燃機関の制御装置100の制御によって、過給圧に対して自由に弁開度が制御可能な電動式の弁である。吸気流路20の下流部23に設けられた過給圧センサ23aによって検知された過給圧に基づいて、内燃機関の制御装置100によってウェイストゲート弁44の開度が調整される。排気の一部が排気流路30のバイパス部33を通過することにより、排気がタービン42に与える仕事を減じることができ、その結果、過給圧を目標圧に保持することができる。 The wastegate valve 44 is an electrically operated valve whose opening can be freely controlled in relation to the boost pressure under the control of the internal combustion engine control device 100. The opening of the wastegate valve 44 is adjusted by the internal combustion engine control device 100 based on the boost pressure detected by the boost pressure sensor 23a provided in the downstream portion 23 of the intake passage 20. By allowing a portion of the exhaust gas to pass through the bypass portion 33 of the exhaust passage 30, the work that the exhaust gas imparts to the turbine 42 can be reduced, and as a result, the boost pressure can be maintained at the target pressure.
 EGR流路50は、一端が排気流路30の下流部32に接続され、他端が吸気流路20の上流部21に接続され、排気浄化触媒32bの下流から排ガスを分流してコンプレッサ41の上流へ還流させる。EGR流路50には、たとえば、EGRクーラ51と、EGR弁52と、温度センサ53と、差圧センサ54とが設けられている。 The EGR flow path 50 has one end connected to the downstream portion 32 of the exhaust flow path 30 and the other end connected to the upstream portion 21 of the intake flow path 20, and diverts exhaust gas from downstream of the exhaust purification catalyst 32b and returns it to the upstream of the compressor 41. The EGR flow path 50 is provided with, for example, an EGR cooler 51, an EGR valve 52, a temperature sensor 53, and a differential pressure sensor 54.
 EGRクーラ51は、排ガスを冷却する。EGR弁52は、EGRクーラ51の下流に設けられ、排ガスの流量を制御する。温度センサ53は、EGR弁52の上流部の排ガスの温度を検出する。差圧センサ54は、EGR弁52の上流側と下流側との差圧を検出する。 The EGR cooler 51 cools the exhaust gas. The EGR valve 52 is provided downstream of the EGR cooler 51 and controls the flow rate of the exhaust gas. The temperature sensor 53 detects the temperature of the exhaust gas upstream of the EGR valve 52. The differential pressure sensor 54 detects the differential pressure between the upstream and downstream sides of the EGR valve 52.
 内燃機関の制御装置100は、エンジンシステム200の各部を制御したり、各種のデータ処理を実行したりする。内燃機関の制御装置100は、前述の各種のセンサと各種のアクチュエータに接続されている。各種のアクチュエータは、たとえば、スロットル弁22c、燃料噴射弁13、可変動弁機構付きの吸気バルブ11と排気バルブ12、EGR弁52を駆動させる。 The internal combustion engine control device 100 controls each part of the engine system 200 and executes various data processing. The internal combustion engine control device 100 is connected to the various sensors and actuators mentioned above. The various actuators drive, for example, the throttle valve 22c, the fuel injection valve 13, the intake valve 11 and exhaust valve 12 with a variable valve mechanism, and the EGR valve 52.
 内燃機関の制御装置100は、このような各種のアクチュエータの動作を制御する。また、内燃機関の制御装置100は、各種のセンサから入力された信号に基づいて、内燃機関10の運転状態を検知して、運転状態に応じて決定したタイミングで点火プラグ14を点火させる。 The internal combustion engine control device 100 controls the operation of these various actuators. The internal combustion engine control device 100 also detects the operating state of the internal combustion engine 10 based on signals input from various sensors, and ignites the spark plug 14 at a timing determined according to the operating state.
 図2は、図1に示す内燃機関の制御装置100が備える機能の一部を説明する機能ブロック図である。本実施形態の内燃機関の制御装置100は、制限目標値出力部110と、動作制御部120と、脈動率予測部130と、許容脈動率出力部140と、を有している。これら内燃機関の制御装置100の各部は、たとえば、メモリに格納されたプログラムをCPUによって実行することで実現される内燃機関の制御装置100の各機能を表している。 FIG. 2 is a functional block diagram explaining some of the functions of the internal combustion engine control device 100 shown in FIG. 1. The internal combustion engine control device 100 of this embodiment has a restriction target value output unit 110, an operation control unit 120, a pulsation rate prediction unit 130, and an allowable pulsation rate output unit 140. Each of these units of the internal combustion engine control device 100 represents each function of the internal combustion engine control device 100 that is realized, for example, by the CPU executing a program stored in memory.
 たとえば、内燃機関の制御装置100が搭載された車両のドライバーがシフトレバーをドライブに入れてアクセルペダルを踏むと、アクセルポジションセンサによってアクセルペダルの操作量が検出されて内燃機関の制御装置100に入力される。または、車両に搭載された内燃機関の制御装置100に現在地から目的地までの走行経路の情報が入力され、車両の自動運転が開始される。 For example, when a driver of a vehicle equipped with an internal combustion engine control device 100 puts the shift lever into drive and depresses the accelerator pedal, the amount of accelerator pedal operation is detected by an accelerator position sensor and input to the internal combustion engine control device 100. Alternatively, information on the driving route from the current location to the destination is input to the internal combustion engine control device 100 installed in the vehicle, and automatic driving of the vehicle begins.
 すると、内燃機関の制御装置100は、たとえば、車両の速度および目標速度、アクセルペダルの操作量、エアフローセンサ21sの流量検出値、ならびにシフトポジションなどに応じて、内燃機関10の制御目標値CTVを生成する。生成された制御目標値CTVは、図2に示すように、たとえば、制限目標値出力部110へ入力される。 Then, the control device 100 of the internal combustion engine generates a control target value CTV of the internal combustion engine 10 according to, for example, the vehicle speed and target speed, the accelerator pedal operation amount, the flow rate detection value of the air flow sensor 21s, and the shift position. The generated control target value CTV is input, for example, to the restriction target value output unit 110, as shown in FIG. 2.
 特に限定はされないが、内燃機関10の制御目標値CTVは、たとえば、目標バルブタイミングVTと、目標変速比GRと、目標スロットル開度TPとを含む。目標バルブタイミングVTは、たとえば、内燃機関10の吸気バルブ11および排気バルブ12の開閉タイミングの目標値である。目標変速比GRは、たとえば、内燃機関10が搭載された車両の自動変速機の変速比の目標値である。目標スロットル開度TPは、たとえば、吸気流路20を流れる吸入空気量を制御するスロットル弁22cの開度の目標値である。 Although not particularly limited, the control target value CTV of the internal combustion engine 10 includes, for example, a target valve timing VT, a target gear ratio GR, and a target throttle opening TP. The target valve timing VT is, for example, a target value for the opening and closing timing of the intake valve 11 and exhaust valve 12 of the internal combustion engine 10. The target gear ratio GR is, for example, a target value for the gear ratio of the automatic transmission of the vehicle in which the internal combustion engine 10 is mounted. The target throttle opening TP is, for example, a target value for the opening of the throttle valve 22c that controls the amount of intake air flowing through the intake passage 20.
 制限目標値出力部110は、たとえば、所定の条件を満たす場合に、入力された制御目標値CTVを変更して制限目標値CTVrを出力する。また、制限目標値出力部110は、その所定の条件を満たさない場合に、入力された制御目標値CTVをそのまま動作制御部120へ出力する。制限目標値CTVrは、たとえば、制限バルブタイミングVTr、制限変速比GRr、および制限スロットル開度TPrを含む。制限目標値出力部110が判定する所定の条件および制限目標値CTVrの詳細は後述する。 For example, when a predetermined condition is satisfied, the limit target value output unit 110 changes the input control target value CTV and outputs the limit target value CTVr. Furthermore, when the predetermined condition is not satisfied, the limit target value output unit 110 outputs the input control target value CTV as is to the operation control unit 120. The limit target value CTVr includes, for example, a limit valve timing VTr, a limit gear ratio GRr, and a limit throttle opening TPr. The predetermined conditions and the limit target value CTVr determined by the limit target value output unit 110 will be described in detail later.
 動作制御部120は、たとえば、制限目標値出力部110から入力された内燃機関10の制御目標値CTVに基づいて内燃機関10の動作状態を制御するための制御信号CS1,CS2,CS3を出力する。より具体的には、制御信号CS1,CS2,CS3は、たとえば、吸気バルブ11および排気バルブ12を開閉するアクチュエータ、自動変速機、および、電子制御式のスロットル弁22cに対する制御信号である。 The operation control unit 120 outputs control signals CS1, CS2, and CS3 for controlling the operating state of the internal combustion engine 10 based on the control target value CTV of the internal combustion engine 10 input from the restriction target value output unit 110. More specifically, the control signals CS1, CS2, and CS3 are, for example, control signals for actuators that open and close the intake valve 11 and exhaust valve 12, the automatic transmission, and the electronically controlled throttle valve 22c.
 すなわち、動作制御部120は、内燃機関10の制御目標値CTVに基づいて、たとえば、吸気バルブ11および排気バルブ12、自動変速機、およびスロットル弁22cを動作させるアクチュエータを制御することで、内燃機関10の動作状態を制御する。ここで、内燃機関10の動作状態は、たとえば、内燃機関10の回転数を含む。 In other words, the operation control unit 120 controls the operating state of the internal combustion engine 10, for example, by controlling actuators that operate the intake valve 11, the exhaust valve 12, the automatic transmission, and the throttle valve 22c, based on the control target value CTV of the internal combustion engine 10. Here, the operating state of the internal combustion engine 10 includes, for example, the rotation speed of the internal combustion engine 10.
 脈動率予測部130は、内燃機関10の制御目標値CTVに基づいてエアフローセンサ21sの流量検出値の脈動率を予測した予測脈動率PReを出力する。ここで、脈動率とは、エアフローセンサ21sの流量検出値の平均値に対する流量検出値の振幅の比率である。脈動率は、内燃機関10の回転数と吸気温に相関がある。たとえば、吸気温が25[℃]程度の常温であり、内燃機関10の回転数が800[rpm]から1000[rpm]程度の低い回転数である場合は、脈動率は100[%]前後である。 The pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe that predicts the pulsation rate of the flow rate detection value of the airflow sensor 21s based on the control target value CTV of the internal combustion engine 10. Here, the pulsation rate is the ratio of the amplitude of the flow rate detection value to the average value of the flow rate detection value of the airflow sensor 21s. The pulsation rate is correlated with the rotation speed and intake air temperature of the internal combustion engine 10. For example, when the intake air temperature is at normal temperature of about 25°C and the rotation speed of the internal combustion engine 10 is a low rotation speed of about 800 to 1000 rpm, the pulsation rate is around 100%.
 脈動率は、内燃機関10の回転数の増加に伴って増加する。たとえば、吸気温が25[℃]程度の常温である場合、脈動率は、回転数が1600[rpm]程度のときに400[%]を超えてピークを迎えるが、さらに回転数が増加すると漸減していく。また、脈動率のピークは、吸気温が低下すると内燃機関10の低回転側にシフトし、吸気温が上昇すると内燃機関10の高回転側にシフトする。また、吸気温が低下すると、脈動率のピークも増大する傾向がある。 The pulsation rate increases as the rotation speed of the internal combustion engine 10 increases. For example, when the intake air temperature is at normal temperature of about 25°C, the pulsation rate peaks at over 400% when the rotation speed is about 1600 rpm, but gradually decreases as the rotation speed increases further. Furthermore, the peak of the pulsation rate shifts to the lower rotation side of the internal combustion engine 10 as the intake air temperature decreases, and shifts to the higher rotation side of the internal combustion engine 10 as the intake air temperature increases. Furthermore, the peak of the pulsation rate also tends to increase as the intake air temperature decreases.
 許容脈動率出力部140は、内燃機関10の動作状態に基づいて許容可能な脈動率の最大値である許容脈動率PRaを出力する。より具体的には、許容脈動率出力部140は、たとえば、内燃機関10の回転数ESに基づいて、許容脈動率PRaを出力する。 The allowable pulsation rate output unit 140 outputs the allowable pulsation rate PRa, which is the maximum allowable pulsation rate based on the operating state of the internal combustion engine 10. More specifically, the allowable pulsation rate output unit 140 outputs the allowable pulsation rate PRa based on, for example, the rotation speed ES of the internal combustion engine 10.
 図3は、図2の内燃機関の制御装置100の脈動率予測部130および許容脈動率出力部140の詳細を示すブロック図である。脈動率予測部130は、所定の温度範囲の基準条件における内燃機関10の制御目標値CTVとエアフローセンサ21sの流量検出値の脈動率との関係が規定された脈動率マップ131を備えている。脈動率マップ131は、たとえば、最大脈動率マップ131aと脈動率比マップ131bとを含む。 FIG. 3 is a block diagram showing details of the pulsation rate prediction unit 130 and the allowable pulsation rate output unit 140 of the internal combustion engine control device 100 of FIG. 2. The pulsation rate prediction unit 130 has a pulsation rate map 131 that specifies the relationship between the control target value CTV of the internal combustion engine 10 under reference conditions in a predetermined temperature range and the pulsation rate of the flow detection value of the airflow sensor 21s. The pulsation rate map 131 includes, for example, a maximum pulsation rate map 131a and a pulsation rate ratio map 131b.
 最大脈動率マップ131aは、たとえば、内燃機関10の回転数ESとエアフローセンサ21sの流量検出値の脈動率の最大値との関係が規定されたマップである。より詳細には、最大脈動率マップ131aは、たとえば、内燃機関10の回転数ESおよび吸気流路20を流れる吸入空気の温度すなわち吸気温ITと、脈動率の最大値との関係が規定されている。最大脈動率マップ131aは、たとえば、各々の目標バルブタイミングVTに対して規定されている。 The maximum pulsation rate map 131a is a map that defines, for example, the relationship between the rotation speed ES of the internal combustion engine 10 and the maximum value of the pulsation rate of the flow rate detection value of the air flow sensor 21s. More specifically, the maximum pulsation rate map 131a defines, for example, the relationship between the rotation speed ES of the internal combustion engine 10 and the temperature of the intake air flowing through the intake passage 20, i.e., the intake air temperature IT, and the maximum value of the pulsation rate. The maximum pulsation rate map 131a is defined, for example, for each target valve timing VT.
 最大脈動率マップ131aは、たとえば、目標バルブタイミングVTおよび内燃機関10の回転数ESが入力されると、その回転数ESにおける脈動率の最大値である最大脈動率を出力する。より詳細には、最大脈動率マップ131aは、たとえば、吸気温IT、目標バルブタイミングVT、および回転数ESが入力されると、その条件を満たす場合の最大脈動率を出力する。 When the target valve timing VT and the rotation speed ES of the internal combustion engine 10 are input, the maximum pulsation rate map 131a outputs the maximum pulsation rate that is the maximum value of the pulsation rate at that rotation speed ES. More specifically, when the intake air temperature IT, the target valve timing VT, and the rotation speed ES are input, the maximum pulsation rate map 131a outputs the maximum pulsation rate when those conditions are met.
 脈動率比マップ131bは、たとえば、内燃機関10の回転数ESおよび目標スロットル開度TPと、脈動率の最大値に対する比率すなわち脈動率比との関係が規定されたマップである。脈動率比マップ131bは、たとえば、最大脈動率マップ131aと同様に、各々の目標バルブタイミングVTに対して規定されている。脈動率比マップ131bは、回転数ESおよび目標スロットル開度TPが入力されると、その条件を満たす場合の脈動率比を出力する。 The pulsation rate ratio map 131b is a map that defines the relationship between the rotation speed ES and target throttle opening TP of the internal combustion engine 10 and the ratio to the maximum value of the pulsation rate, i.e., the pulsation rate ratio. The pulsation rate ratio map 131b is defined for each target valve timing VT, for example, in the same way as the maximum pulsation rate map 131a. When the rotation speed ES and target throttle opening TP are input, the pulsation rate ratio map 131b outputs the pulsation rate ratio when the conditions are met.
 脈動率マップ131は、たとえば、最大脈動率マップ131aから出力された最大脈動率と脈動率比マップ131bから出力された脈動率比とを乗算することで、入力された回転数ESにおける脈動率を推定する。すなわち、脈動率マップ131は、たとえば、吸気温IT、目標バルブタイミングVT、および内燃機関10の回転数ESに基づいて、エアフローセンサ21sによる流量検出値の脈動率の推定値である予測脈動率PReを出力する。 The pulsation rate map 131 estimates the pulsation rate at the input rotation speed ES, for example, by multiplying the maximum pulsation rate output from the maximum pulsation rate map 131a by the pulsation rate ratio output from the pulsation rate ratio map 131b. That is, the pulsation rate map 131 outputs a predicted pulsation rate PRe, which is an estimate of the pulsation rate of the flow rate detection value by the airflow sensor 21s, based on, for example, the intake air temperature IT, the target valve timing VT, and the rotation speed ES of the internal combustion engine 10.
 以上のように、脈動率予測部130は、たとえば、目標スロットル開度TPを含む制御目標値CTVに加えて、内燃機関10の回転数ESおよび吸気温ITに基づいて予測脈動率PReを出力する。ここで、目標スロットル開度TPは、吸入空気量を制御するスロットル弁22cの開度である。また、脈動率予測部130は、たとえば、目標バルブタイミングVTを含む制御目標値CTVに基づいて、予測脈動率PReを出力する。ここで、目標バルブタイミングVTは、内燃機関10の吸気バルブ11および排気バルブ12の開閉タイミングである。なお、脈動率予測部130は、たとえば、内燃機関10の排気流路30と吸気流路20に設けられたターボ過給機40の目標過給圧を含む制御目標値CTV基づいて予測脈動率PReを出力してもよい。 As described above, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the rotation speed ES and intake air temperature IT of the internal combustion engine 10 in addition to the control target value CTV including the target throttle opening TP. Here, the target throttle opening TP is the opening of the throttle valve 22c that controls the intake air amount. The pulsation rate prediction unit 130 also outputs the predicted pulsation rate PRe based on the control target value CTV including the target valve timing VT. Here, the target valve timing VT is the opening and closing timing of the intake valve 11 and the exhaust valve 12 of the internal combustion engine 10. The pulsation rate prediction unit 130 may also output the predicted pulsation rate PRe based on the control target value CTV including the target boost pressure of the turbocharger 40 provided in the exhaust flow path 30 and the intake flow path 20 of the internal combustion engine 10.
 許容脈動率出力部140は、たとえば、内燃機関10の動作状態と許容可能な脈動率の最大値である許容脈動率PRaとの関係を示す許容脈動率マップ141を備えている。より詳細には、許容脈動率出力部140は、たとえば、内燃機関10の回転数ESと許容脈動率PRaとの関係を示す許容脈動率マップ141を備えている。許容脈動率マップ141は、たとえば、各々の目標バルブタイミングVTに対して規定されている。許容脈動率マップ141は、たとえば、目標バルブタイミングVTと内燃機関10の動作状態である回転数ESが入力されると、許容脈動率PRaを出力する。 The allowable pulsation rate output unit 140 is provided with, for example, an allowable pulsation rate map 141 that indicates the relationship between the operating state of the internal combustion engine 10 and the allowable pulsation rate PRa, which is the maximum value of the allowable pulsation rate. More specifically, the allowable pulsation rate output unit 140 is provided with, for example, an allowable pulsation rate map 141 that indicates the relationship between the rotation speed ES of the internal combustion engine 10 and the allowable pulsation rate PRa. The allowable pulsation rate map 141 is defined, for example, for each target valve timing VT. The allowable pulsation rate map 141 outputs the allowable pulsation rate PRa when the target valve timing VT and the rotation speed ES, which is the operating state of the internal combustion engine 10, are input, for example.
 以下、図4を参照して、本実施形態の内燃機関の制御装置100を用いた内燃機関の制御方法を説明する。図4は、図2および図3の内燃機関の制御装置100を用いた内燃機関の制御方法ECMを示すフロー図である。内燃機関の制御装置100は、図4に示す内燃機関の制御方法ECMを開始すると、まず、内燃機関10の制御目標値CTVに基づいて予測脈動率PReを出力する脈動率予測工程S1を実行する。 Below, with reference to FIG. 4, a method for controlling an internal combustion engine using the internal combustion engine control device 100 of this embodiment will be described. FIG. 4 is a flow diagram showing an internal combustion engine control method ECM using the internal combustion engine control device 100 of FIG. 2 and FIG. 3. When the internal combustion engine control device 100 starts the internal combustion engine control method ECM shown in FIG. 4, it first executes a pulsation rate prediction process S1 that outputs a predicted pulsation rate PRe based on the control target value CTV of the internal combustion engine 10.
 この工程S1において、制限目標値出力部110は、たとえば、図2に示すように、入力された制御目標値CTVをそのまま動作制御部120へ出力する。脈動率予測部130は、たとえば、図3に示す脈動率マップ131を用い、制限目標値出力部110から入力された制御目標値CTVに基づいて脈動率を予測した予測脈動率PReを出力する。 In this step S1, the restriction target value output unit 110 outputs the input control target value CTV as is to the operation control unit 120, for example, as shown in FIG. 2. The pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe, which is a pulsation rate predicted based on the control target value CTV input from the restriction target value output unit 110, using, for example, a pulsation rate map 131 shown in FIG. 3.
 より詳細には、図3に示すように、たとえば、目標バルブタイミングVTおよび目標スロットル開度TPと、エアフローセンサ21sにより検出された吸気温ITと、クランク角度センサ16の検出結果に基づく内燃機関10の回転数ESとが、脈動率マップ131へ入力される。その結果、脈動率マップ131は、それらの条件を満たす場合のエアフローセンサ21sによる流量検出値の脈動率の予測結果である予測脈動率PReを出力する。 More specifically, as shown in FIG. 3, for example, the target valve timing VT and the target throttle opening TP, the intake air temperature IT detected by the airflow sensor 21s, and the rotation speed ES of the internal combustion engine 10 based on the detection result of the crank angle sensor 16 are input to the pulsation rate map 131. As a result, the pulsation rate map 131 outputs a predicted pulsation rate PRe, which is a prediction result of the pulsation rate of the flow rate detection value by the airflow sensor 21s when these conditions are satisfied.
 次に、内燃機関の制御装置100は、図4に示すように、許容脈動率PRaを出力する許容脈動率出力工程S2を実行する。この工程S2において、許容脈動率出力部140は、たとえば、図3に示す許容脈動率マップ141を用い、内燃機関10の動作状態に基づいて許容脈動率PRaを出力する。より詳細には、図3に示すように、たとえば、内燃機関10の回転数ESと目標バルブタイミングVTが許容脈動率マップ141へ入力される。 Next, the internal combustion engine control device 100 executes an allowable pulsation rate output step S2 for outputting the allowable pulsation rate PRa, as shown in FIG. 4. In this step S2, the allowable pulsation rate output unit 140 uses, for example, an allowable pulsation rate map 141 shown in FIG. 3, and outputs the allowable pulsation rate PRa based on the operating state of the internal combustion engine 10. More specifically, as shown in FIG. 3, for example, the rotation speed ES and the target valve timing VT of the internal combustion engine 10 are input to the allowable pulsation rate map 141.
 その結果、許容脈動率マップ141は、それらの条件を満たす場合のエアフローセンサ21sによる流量検出値の脈動率の許容可能な最大値である許容脈動率PRaを出力する。工程S1,S2において、それぞれ、脈動率予測部130と許容脈動率出力部140から出力された予測脈動率PReと許容脈動率PRaは、たとえば、図2に示すように、制限目標値出力部110へ入力される。 As a result, the allowable pulsation rate map 141 outputs the allowable pulsation rate PRa, which is the maximum allowable value of the pulsation rate of the flow rate detection value by the airflow sensor 21s when these conditions are met. In steps S1 and S2, the predicted pulsation rate PRe and the allowable pulsation rate PRa output from the pulsation rate prediction unit 130 and the allowable pulsation rate output unit 140, respectively, are input to the restriction target value output unit 110, for example, as shown in FIG. 2.
 次に、内燃機関の制御装置100は、図4に示すように、予測脈動率PReと許容脈動率PRaとを比較する比較工程S3を実行する。この工程S3で、制限目標値出力部110は、たとえば、工程S1,S2において入力された予測脈動率PReと許容脈動率PRaを比較する。この工程S3で、制限目標値出力部110は、予測脈動率PReが許容脈動率PRa以下であること(YES)を判定すると、制限目標値出力部110へ入力された制御目標値CTVをそのまま動作制御部120へ出力する。 Next, the internal combustion engine control device 100 executes a comparison step S3 in which the predicted pulsation rate PRe is compared with the allowable pulsation rate PRa, as shown in FIG. 4. In this step S3, the restriction target value output unit 110 compares, for example, the predicted pulsation rate PRe and the allowable pulsation rate PRa input in steps S1 and S2. In this step S3, if the restriction target value output unit 110 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), it outputs the control target value CTV input to the restriction target value output unit 110 as is to the operation control unit 120.
 図5から図7は、内燃機関10の回転数ESと、エアフローセンサ21sによる流量検出値の脈動率との関係を示すグラフである。図5から図7において、実線で示す曲線C1は、目標スロットル開度TPを全開とし、吸気温ITが25[℃]である場合の回転数ESと脈動率との関係を示している。エアフローセンサ21sによる流量検出値は、たとえば、吸気流路20を流れる吸入空気の脈動の影響を受けて誤差を生じる。 Figures 5 to 7 are graphs showing the relationship between the rotation speed ES of the internal combustion engine 10 and the pulsation rate of the flow rate detection value by the air flow sensor 21s. In Figures 5 to 7, the solid curve C1 shows the relationship between the rotation speed ES and the pulsation rate when the target throttle opening TP is fully open and the intake air temperature IT is 25°C. The flow rate detection value by the air flow sensor 21s is affected by the pulsation of the intake air flowing through the intake passage 20, for example, and an error occurs.
 この吸入空気の脈動によるエアフローセンサ21sの流量検出値の誤差を補正するための脈動補正値は、たとえば、以下の手順によって決定されている。内燃機関10を、たとえば、吸気温ITが25[℃]になる所定の温度範囲の基準条件で、回転数ESを変更しながら運転させる。そして、吸気流路20を流れる吸入空気の流量を、エアフローセンサ21sによって検出するとともに、エアフローセンサ21sよりも流量検出値に対する吸入空気の脈動の影響が小さい公知の方法によって検出する。 The pulsation correction value for correcting the error in the flow rate detection value of the air flow sensor 21s due to the pulsation of the intake air is determined, for example, by the following procedure. The internal combustion engine 10 is operated under reference conditions in a predetermined temperature range where the intake air temperature IT is 25°C, for example, while changing the rotation speed ES. The flow rate of the intake air flowing through the intake passage 20 is then detected by the air flow sensor 21s, and is also detected by a known method in which the effect of the intake air pulsation on the flow rate detection value is smaller than that of the air flow sensor 21s.
 これにより、内燃機関10の回転数ESと、エアフローセンサ21sによる流量検出値の脈動率と、エアフローセンサ21sによる流量検出値の誤差との関係が求められ、その流量検出値の誤差を補正するように脈動補正値が決定される。すなわち、図5から図7に実線で示すように、目標スロットル開度TPが全開で吸気温ITが25℃の場合の回転数ESと脈動率との関係を示す曲線C1上とその下側の領域は、脈動補正値が決定されてエアフローセンサ21sによる流量検出値が適合された領域である。 As a result, the relationship between the rotation speed ES of the internal combustion engine 10, the pulsation rate of the flow rate detection value by the airflow sensor 21s, and the error in the flow rate detection value by the airflow sensor 21s is obtained, and a pulsation correction value is determined so as to correct the error in the flow rate detection value. That is, as shown by the solid lines in Figures 5 to 7, the area on and below curve C1, which shows the relationship between the rotation speed ES and the pulsation rate when the target throttle opening TP is fully open and the intake air temperature IT is 25°C, is the area in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted.
 この実線の曲線C1上の点が、各々の回転数ESに対する許容脈動率PRaを表している。したがって、図4の比較工程S3で予測脈動率PReが許容脈動率PRa以下である(YES)と判定された場合、予測脈動率PReは、実線の曲線C1上またはその下側の領域に入っている。この領域は、前述のように、脈動補正値が決定され、エアフローセンサ21sによる流量検出値が適合された領域であり、エアフローセンサ21sによって吸気流路20を流れる空気の流量を正確に検出できる領域である。 The points on this solid curve C1 represent the allowable pulsation rate PRa for each rotation speed ES. Therefore, if the comparison step S3 in Figure 4 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), the predicted pulsation rate PRe is in the region on or below the solid curve C1. As described above, this region is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted, and this is the region in which the flow rate of air flowing through the intake flow path 20 can be accurately detected by the airflow sensor 21s.
 したがって、工程S3の判定結果が肯定である場合、図4の動作制御工程S4において、図2に示す制限目標値出力部110は、入力された内燃機関10の制御目標値CTVを、変更することなく、そのまま動作制御部120へ出力する。そして、動作制御部120は、内燃機関10の制御目標値CTVに基づく制御信号CS1,CS2,CS3を、たとえば、吸気バルブ11および排気バルブ12を開閉するアクチュエータ、自動変速機、および、電子制御式のスロットル弁22cへ出力する。 Therefore, if the determination result in step S3 is positive, in operation control step S4 in FIG. 4, the restriction target value output unit 110 shown in FIG. 2 outputs the input control target value CTV of the internal combustion engine 10 to the operation control unit 120 without changing it. Then, the operation control unit 120 outputs control signals CS1, CS2, CS3 based on the control target value CTV of the internal combustion engine 10 to, for example, the actuators that open and close the intake valve 11 and exhaust valve 12, the automatic transmission, and the electronically controlled throttle valve 22c.
 これにより、内燃機関10の動作状態が制御目標値CTVに基づいて制御される。さらに、内燃機関の制御装置100は、たとえば、内燃機関10の吸入空気量を検出するエアフローセンサ21sの適合された流量検出値を用いて、内燃機関10の新たな制御目標値CTVを算出する。その後、内燃機関の制御装置100は、図4に示す内燃機関の制御方法ECMを終了させ、たとえば、所定の周期で繰り返す。 As a result, the operating state of the internal combustion engine 10 is controlled based on the control target value CTV. Furthermore, the internal combustion engine control device 100 calculates a new control target value CTV for the internal combustion engine 10, for example, using an adapted flow rate detection value of the air flow sensor 21s that detects the intake air amount of the internal combustion engine 10. Thereafter, the internal combustion engine control device 100 ends the internal combustion engine control method ECM shown in FIG. 4, and repeats it, for example, at a predetermined period.
 一方、たとえば、極低温環境などにおいて、吸気温ITが極端に低下すると、吸入空気の共振周波数が低下する。その結果、図5に実線の曲線C1で示す吸気温ITが25[℃]で目標スロットル開度TPを全開としたときの内燃機関10の回転数とエアフローセンサ21sの流量検出値の脈動率との関係は、低回転数側にシフトする。 On the other hand, when the intake air temperature IT drops drastically, for example in an extremely low temperature environment, the resonant frequency of the intake air drops. As a result, the relationship between the rotation speed of the internal combustion engine 10 and the pulsation rate of the flow detection value of the air flow sensor 21s when the intake air temperature IT is 25°C and the target throttle opening TP is fully open, as shown by the solid curve C1 in Figure 5, shifts to the lower rotation speed side.
 たとえば、吸気温ITが-40[℃]で目標スロットル開度TPを全開としたときの内燃機関10の回転数とエアフローセンサ21sの流量検出値の脈動率との関係を図5に破線の曲線C2で示す。この破線で示す曲線C2上の点とその下側の領域のうち、実線で示す曲線C1の上側の領域は、許容脈動率PRaを超えている。 For example, the relationship between the rotation speed of the internal combustion engine 10 and the pulsation rate of the flow detection value of the air flow sensor 21s when the intake air temperature IT is -40°C and the target throttle opening TP is fully open is shown by the dashed curve C2 in Figure 5. Among the points on this dashed curve C2 and the area below it, the area above the solid curve C1 exceeds the allowable pulsation rate PRa.
 すなわち、破線で示す曲線C2と実線で示す曲線C1との間の領域R1は、エアフローセンサ21sの流量検出値の脈動補正値が規定されていない領域であり、流量検出値の誤差を補正できない。たとえば、吸気温ITが-40[℃]の低温になり、図4に示す工程S3において、制限目標値出力部110が、予測脈動率PReが許容脈動率PRaを超えていること(NO)を判定したとする。 In other words, the region R1 between the dashed curve C2 and the solid curve C1 is a region in which the pulsation correction value for the flow rate detection value of the airflow sensor 21s is not specified, and errors in the flow rate detection value cannot be corrected. For example, assume that the intake air temperature IT is a low temperature of -40°C, and in step S3 shown in Figure 4, the restriction target value output unit 110 determines that the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa (NO).
 すると、図2に示すように、制限目標値出力部110は、脈動率を低下させるように制御目標値CTVを変更した制限目標値CTVrを出力する。より具体的には、制限目標値出力部110は、たとえば、図4に示すように、目標スロットル開度TPを変更する工程S5を実行する。この工程S5において、制限目標値出力部110は、図2に示す目標スロットル開度TPに代えて、目標スロットル開度TPを減少させた制限スロットル開度TPrを出力する。 Then, as shown in FIG. 2, the restriction target value output unit 110 outputs a restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate. More specifically, the restriction target value output unit 110 executes step S5 of changing the target throttle opening TP, for example, as shown in FIG. 4. In this step S5, the restriction target value output unit 110 outputs a restriction throttle opening TPr obtained by reducing the target throttle opening TP, instead of the target throttle opening TP shown in FIG. 2.
 次に、制限目標値出力部110は、たとえば、図4に示すように、目標変速比GRを変更する工程S6を実行する。この工程S6において、制限目標値出力部110は、図2に示す目標変速比GRに代えて、予測脈動率PReが減少するように目標変速比GRを増減させた制限変速比GRrを出力する。 Next, the restriction target value output unit 110 executes step S6 of changing the target gear ratio GR, for example, as shown in FIG. 4. In this step S6, instead of the target gear ratio GR shown in FIG. 2, the restriction target value output unit 110 outputs the restriction gear ratio GRr, which is obtained by increasing or decreasing the target gear ratio GR so as to reduce the predicted pulsation rate PRe.
 より具体的には、吸気温ITが低下して図5に示す実線の曲線C1が破線の曲線C2のように低回転数側にシフトしている場合には、シフトダウンして内燃機関10の回転数ESを増加させる制限変速比GRrを出力する。逆に、吸気温ITが上昇して図5に示す実線の曲線C1が一点鎖線で示す曲線C3のように高回転数側にシフトしている場合には、シフトアップして内燃機関10の回転数ESを減少させる制限変速比GRrを出力する。 More specifically, when the intake air temperature IT drops and the solid curve C1 in FIG. 5 shifts to the lower rotation speed side as shown by the dashed curve C2, the limiting gear ratio GRr is output to downshift and increase the rotation speed ES of the internal combustion engine 10. Conversely, when the intake air temperature IT rises and the solid curve C1 in FIG. 5 shifts to the higher rotation speed side as shown by the dashed curve C3, the limiting gear ratio GRr is output to upshift and decrease the rotation speed ES of the internal combustion engine 10.
 次に、制限目標値出力部110は、たとえば、図4に示すように、目標バルブタイミングVTを変更する工程S7を実行する。この工程S7において、制限目標値出力部110は、図2に示す目標バルブタイミングVTに代えて、内燃機関10の圧縮工程において燃焼室から吸気流路20への吹き返しを目標バルブタイミングVTよりも減少させる制限バルブタイミングVTrを出力する。 Next, the restriction target value output unit 110 executes step S7 of changing the target valve timing VT, for example, as shown in FIG. 4. In this step S7, instead of the target valve timing VT shown in FIG. 2, the restriction target value output unit 110 outputs the restriction valve timing VTr that reduces the amount of air spit back from the combustion chamber to the intake passage 20 during the compression stroke of the internal combustion engine 10 compared to the target valve timing VT.
 その後、図4に示す工程S1において、図2および図3に示すように、脈動率予測部130に制限目標値CTVrである制限バルブタイミングVTrおよび制限スロットル開度TPrが入力される。この場合、脈動率予測部130は、制限目標値CTVrである制限バルブタイミングVTrおよび制限スロットル開度TPrに基づいて予測脈動率PReを出力する。 Then, in step S1 shown in FIG. 4, the limit valve timing VTr and limit throttle opening TPr, which are the limit target value CTVr, are input to the pulsation rate prediction unit 130 as shown in FIG. 2 and FIG. 3. In this case, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the limit valve timing VTr and limit throttle opening TPr, which are the limit target value CTVr.
 また、次の工程S2において、許容脈動率出力部140は、図2および図3に示すように、制御目標値CTVである目標バルブタイミングVTに代えて、制限目標値CTVrである制限バルブタイミングVTrを入力として、許容脈動率PRaを出力する。 In the next step S2, the allowable pulsation rate output unit 140, as shown in Figures 2 and 3, takes the restricted valve timing VTr, which is the restricted target value CTVr, as input instead of the target valve timing VT, which is the control target value CTV, and outputs the allowable pulsation rate PRa.
 制限スロットル開度TPrに基づく予測脈動率PReは、たとえば、図5の矢印A1に示すように、実線の曲線C1よりも上側の領域R1から、実線の曲線C1よりも下側にピークを有する破線の曲線C2’上またはその下側の領域に移動する。また、制限変速比GRrに基づく内燃機関10の回転数ESの変化により、予測脈動率PReは、たとえば、図6の矢印A2に示すように、実線の曲線C1よりも上側の領域R1から、実線の曲線C1よりも下側の領域へ移動する。 The predicted pulsation rate PRe based on the limit throttle opening TPr moves, for example, as shown by arrow A1 in FIG. 5, from region R1 above the solid curve C1 to a region above or below the dashed curve C2', which has a peak below the solid curve C1. Also, due to a change in the rotation speed ES of the internal combustion engine 10 based on the limit gear ratio GRr, the predicted pulsation rate PRe moves, for example, as shown by arrow A2 in FIG. 6, from region R1 above the solid curve C1 to a region below the solid curve C1.
 また、図7に示すように、目標バルブタイミングVTに基づく破線の曲線C2は、たとえば、矢印A3に示すように、曲線C2よりも下側の制限バルブタイミングVTrに基づく破線の曲線C2’上またはその下側の領域へ移動する。しかし、曲線C2´の下側の領域の一部が実線の曲線C1よりも上側にある場合、さらに目標スロットル開度TPに代えて制限スロットル開度TPrを用いてもよい。その結果、予測脈動率PReは、たとえば、矢印A3に示すように、実線の曲線C1よりも上側の領域R2から、実線の曲線C1よりも下側にピークを有する破線の曲線C2”上またはその下側の領域に移動する。 Also, as shown in FIG. 7, the dashed curve C2 based on the target valve timing VT moves, for example, as indicated by arrow A3, to the region above or below dashed curve C2' based on the limit valve timing VTr below curve C2. However, if part of the region below curve C2' is above solid curve C1, the limit throttle opening TPr may also be used instead of target throttle opening TP. As a result, the predicted pulsation rate PRe moves, for example, as indicated by arrow A3, from region R2 above solid curve C1 to the region above or below dashed curve C2'', which has a peak below solid curve C1.
 図5から図7に示すように、予測脈動率PReが実線の曲線C1上または曲線C1よりも下側の領域に移動することで、図4に示す工程S3で制限目標値出力部110により予測脈動率PReが許容脈動率PRa以下であること(YES)が判定される。すると、動作制御部120によって内燃機関10の動作状態を制御する動作制御工程S4が実行される。この工程S4において、動作制御部120は、制限目標値CTVrが入力されると、入力された制限目標値CTVrに基づいて内燃機関10の動作状態を制御する。 As shown in Figures 5 to 7, when the predicted pulsation rate PRe moves onto the solid curve C1 or into the area below the curve C1, the restriction target value output unit 110 determines in step S3 shown in Figure 4 that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES). Then, the operation control unit 120 executes an operation control step S4 in which the operation state of the internal combustion engine 10 is controlled. In this step S4, when the restriction target value CTVr is input, the operation control unit 120 controls the operation state of the internal combustion engine 10 based on the input restriction target value CTVr.
 一方、図4に示す工程S3で制限目標値出力部110により予測脈動率PReが許容脈動率PRaを超えていること(NO)が判定されると、再度、制限目標値出力部110によって制限目標値CTVrを出力する工程S5から工程S7までが実行される。これを繰り返すことで、工程S3で制限目標値出力部110により予測脈動率PReが許容脈動率PRa以下であること(YES)が判定され、制限目標値出力部110によって内燃機関10の動作状態を制御する工程S4が実行される。 On the other hand, if the restriction target value output unit 110 determines in step S3 shown in FIG. 4 that the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa (NO), steps S5 to S7 are executed again to output the restriction target value CTVr by the restriction target value output unit 110. By repeating this process, in step S3, the restriction target value output unit 110 determines that the predicted pulsation rate PRe is equal to or lower than the allowable pulsation rate PRa (YES), and the restriction target value output unit 110 executes step S4 to control the operating state of the internal combustion engine 10.
 これにより、前述のように、脈動補正値が決定され、エアフローセンサ21sによる流量検出値が適合された図5に示す実線の曲線C1の下側の領域において、内燃機関10が運転される。したがって、エアフローセンサ21sによって吸気流路20を流れる空気の流量を正確に検出できる。その結果、エアフローセンサ21sによる流量検出値を用いて内燃機関10を制御する内燃機関の制御装置100によって、内燃機関10の運転性および排気成分の悪化を防止することができる。 As a result, as described above, the pulsation correction value is determined, and the internal combustion engine 10 is operated in the region below the solid curve C1 shown in Figure 5, to which the flow rate detection value by the airflow sensor 21s is adapted. Therefore, the airflow sensor 21s can accurately detect the flow rate of air flowing through the intake passage 20. As a result, the internal combustion engine control device 100, which controls the internal combustion engine 10 using the flow rate detection value by the airflow sensor 21s, can prevent deterioration of the operability and exhaust components of the internal combustion engine 10.
 図8は、図4に示す内燃機関の制御方法ECMの前工程PPを示すフロー図である。内燃機関の制御方法ECMの前工程PPは、たとえば、脈動率学習工程PP1と、許容脈動率較正工程PP2とを含む。脈動率学習工程PP1は、前述の内燃機関10の基準条件で制御目標値CTVとエアフローセンサ21sの流量検出値の脈動率との関係を機械学習によって学習して、たとえば、最大脈動率マップ131aと脈動率比マップ131bを含む脈動率マップ131を生成する工程である。 FIG. 8 is a flow diagram showing the pre-process PP of the control method ECM for an internal combustion engine shown in FIG. 4. The pre-process PP of the control method ECM for an internal combustion engine includes, for example, a pulsation rate learning process PP1 and an allowable pulsation rate calibration process PP2. The pulsation rate learning process PP1 is a process for learning the relationship between the control target value CTV and the pulsation rate of the flow detection value of the airflow sensor 21s under the reference conditions of the internal combustion engine 10 described above by machine learning, and generating, for example, a pulsation rate map 131 including a maximum pulsation rate map 131a and a pulsation rate ratio map 131b.
 許容脈動率較正工程PP2は、脈動率マップ131に基づいて許容脈動率マップ141を生成する工程である。より具体的には、たとえば、内燃機関10の回転数ごとにスロットル開度を全開にしたときの最大脈動率を最大脈動率マップ131aから導出し、その内燃機関10の回転数ごとの最大脈動率を許容脈動率PRaとして設定する。 The allowable pulsation rate calibration process PP2 is a process for generating the allowable pulsation rate map 141 based on the pulsation rate map 131. More specifically, for example, the maximum pulsation rate when the throttle opening is fully open for each rotation speed of the internal combustion engine 10 is derived from the maximum pulsation rate map 131a, and the maximum pulsation rate for each rotation speed of the internal combustion engine 10 is set as the allowable pulsation rate PRa.
 以下、本実施形態の内燃機関の制御装置100および内燃機関の制御方法ECMの作用を説明する。 The operation of the internal combustion engine control device 100 and the internal combustion engine control method ECM of this embodiment will be described below.
 本実施形態の内燃機関の制御装置100は、内燃機関10の吸入空気量を検出するエアフローセンサ21sの流量検出値を用いて内燃機関10を制御する。内燃機関の制御装置100は、動作制御部120と、脈動率予測部130と、許容脈動率出力部140と、制限目標値出力部110とを備えている。動作制御部120は、内燃機関10の制御目標値CTVに基づいて内燃機関10の動作状態を制御する。脈動率予測部130は、制御目標値CTVに基づいてエアフローセンサ21sによる流量検出値の脈動率を予測した予測脈動率PReを出力する。許容脈動率出力部140は、内燃機関10の動作状態に基づいて許容可能な脈動率の最大値である許容脈動率PRaを出力する。制限目標値出力部110は、予測脈動率PReが許容脈動率PRaを超える場合に、脈動率を低下させるように制御目標値CTVを変更した制限目標値CTVrを出力する。また、動作制御部120は、制限目標値CTVrが入力された場合に、制限目標値CTVrに基づいて内燃機関10の動作状態を制御する。 The internal combustion engine control device 100 of this embodiment controls the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s that detects the intake air volume of the internal combustion engine 10. The internal combustion engine control device 100 includes an operation control unit 120, a pulsation rate prediction unit 130, an allowable pulsation rate output unit 140, and a restriction target value output unit 110. The operation control unit 120 controls the operating state of the internal combustion engine 10 based on a control target value CTV of the internal combustion engine 10. The pulsation rate prediction unit 130 outputs a predicted pulsation rate PRe that predicts the pulsation rate of the flow rate detection value by the air flow sensor 21s based on the control target value CTV. The allowable pulsation rate output unit 140 outputs an allowable pulsation rate PRa that is the maximum value of the allowable pulsation rate based on the operating state of the internal combustion engine 10. When the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa, the restriction target value output unit 110 outputs a restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate. In addition, when the restriction target value CTVr is input, the operation control unit 120 controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr.
 このような構成により、本実施形態の内燃機関の制御装置100によれば、内燃機関10の制御目標値CTVに基づいて、予測脈動率PReおよび許容脈動率PRaが得られる。そして、予測脈動率PReが許容脈動率PRaを超え、図5から図7に示す実線の曲線C1よりも上側の領域R1,R3に入る場合に、制限目標値出力部110が制限目標値CTVrを出力する。その結果、動作制御部120により、内燃機関10の動作状態が、脈動率を低下させるように制御目標値CTVを変更した制限目標値CTVrに基づいて制御される。これにより、図5および図6の矢印A1,A2に示すように、エアフローセンサ21sの流量検出値の脈動率と内燃機関10の回転数との関係が、実線の曲線C1上またはその下側の領域に移動する。この実線の曲線C1上またはその下側の領域は、脈動補正値が決定されてエアフローセンサ21sによる流量検出値が適合された領域である。そのため、脈動誤差を補正できない領域R1,R3で内燃機関10が運転されることを回避し、脈動誤差が補正されたエアフローセンサ21sの流量検出値を用いて内燃機関10を制御することができる。したがって、本実施形態の内燃機関の制御装置100によれば、内燃機関10の運転性能および排気成分の悪化を防止することができる。 With this configuration, the internal combustion engine control device 100 of this embodiment obtains the predicted pulsation rate PRe and the allowable pulsation rate PRa based on the control target value CTV of the internal combustion engine 10. Then, when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa and enters the region R1, R3 above the solid curve C1 shown in Figures 5 to 7, the restriction target value output unit 110 outputs the restriction target value CTVr. As a result, the operation control unit 120 controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr obtained by changing the control target value CTV so as to reduce the pulsation rate. As a result, as shown by the arrows A1 and A2 in Figures 5 and 6, the relationship between the pulsation rate of the flow rate detection value of the airflow sensor 21s and the rotation speed of the internal combustion engine 10 moves to the region on or below the solid curve C1. The region on or below this solid curve C1 is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted. Therefore, the internal combustion engine 10 can be prevented from operating in the regions R1 and R3 where the pulsation error cannot be corrected, and the internal combustion engine 10 can be controlled using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected. Therefore, the internal combustion engine control device 100 of this embodiment can prevent deterioration of the operating performance and exhaust components of the internal combustion engine 10.
 また、本実施形態の内燃機関の制御装置100において、制御目標値CTVは、吸入空気量を制御するスロットル弁22cの開度の目標値である目標スロットル開度TPを含む。また、制限目標値CTVrは、目標スロットル開度TPを減少させた制限スロットル開度TPrを含む。 In addition, in the internal combustion engine control device 100 of this embodiment, the control target value CTV includes a target throttle opening TP, which is a target value for the opening of the throttle valve 22c that controls the intake air amount. In addition, the limit target value CTVr includes a limit throttle opening TPr that is a reduction of the target throttle opening TP.
 このような構成により、図5に示すように、たとえば、吸気温ITが-40[℃]の極低温時において、目標スロットル開度TPが全開の場合のエアフローセンサ21sの流量検出値の脈動率と内燃機関10の回転数との関係を示す破線の曲線C2を、実線の曲線C1よりも下側の破線の曲線C2’に移動させることができる。これにより、前述のように、脈動誤差を補正できない領域R1で内燃機関10が運転されることを回避し、脈動誤差が補正されたエアフローセンサ21sの流量検出値を用いて内燃機関10を制御することができる。 With this configuration, as shown in FIG. 5, for example, when the intake air temperature IT is extremely low, such as -40°C, the dashed curve C2 showing the relationship between the pulsation rate of the flow detection value of the air flow sensor 21s and the rotation speed of the internal combustion engine 10 when the target throttle opening TP is fully open can be moved to the dashed curve C2' below the solid curve C1. This makes it possible to avoid operating the internal combustion engine 10 in the region R1 where the pulsation error cannot be corrected, as described above, and to control the internal combustion engine 10 using the flow detection value of the air flow sensor 21s with the pulsation error corrected.
 また、本実施形態の内燃機関の制御装置100において、制御目標値CTVは、内燃機関10の吸気バルブ11および排気バルブ12の開閉タイミングの目標値である目標バルブタイミングVTを含む。また、制限目標値CTVrは、内燃機関10の圧縮工程において燃焼室から吸気流路20への吹き返しを制御目標値CTVよりも減少させる制限バルブタイミングVTrを含む。 Furthermore, in the internal combustion engine control device 100 of this embodiment, the control target value CTV includes a target valve timing VT, which is a target value for the opening and closing timing of the intake valve 11 and exhaust valve 12 of the internal combustion engine 10. Furthermore, the restriction target value CTVr includes a restriction valve timing VTr that reduces the amount of air spit back from the combustion chamber to the intake passage 20 during the compression stroke of the internal combustion engine 10 to less than the control target value CTV.
 このような構成により、図7に示すように、たとえば、吸気温ITが-40[℃]の極低温時において、目標スロットル開度TPが全開の場合のエアフローセンサ21sの流量検出値の脈動率と内燃機関10の回転数との関係を示す破線の曲線C2を、下方側の破線の曲線C2’へ移動させることができる。さらに、制限目標値CTVrが制限スロットル開度TPrを含むことで、破線の曲線C2’を実線の曲線C1よりも下方の破線の曲線C2”へ移動させることができる。この場合、制限目標値CTVrが制限スロットル開度TPrのみを含む場合と比較して、目標スロットル開度TPと制限スロットル開度TPrとの差を小さくすることができる。 As shown in FIG. 7, this configuration allows the dashed curve C2, which indicates the relationship between the pulsation rate of the flow detection value of the air flow sensor 21s and the rotation speed of the internal combustion engine 10 when the target throttle opening TP is fully open at an extremely low intake temperature IT of -40°C, to be shifted downward to the dashed curve C2'. Furthermore, by including the limit throttle opening TPr in the restriction target value CTVr, the dashed curve C2' can be shifted downward to the dashed curve C2" below the solid curve C1. In this case, the difference between the target throttle opening TP and the limit throttle opening TPr can be reduced compared to when the restriction target value CTVr includes only the limit throttle opening TPr.
 また、本実施形態の内燃機関の制御装置100において、制御目標値CTVは、内燃機関10が搭載された車両の自動変速機の目標変速比GRを含む。制限目標値CTVrは、予測脈動率PReが減少するように目標変速比GRを増減させた制限変速比GRrを含む。 In addition, in the internal combustion engine control device 100 of this embodiment, the control target value CTV includes a target gear ratio GR of the automatic transmission of the vehicle in which the internal combustion engine 10 is mounted. The limit target value CTVr includes a limit gear ratio GRr that is obtained by increasing or decreasing the target gear ratio GR so as to reduce the predicted pulsation rate PRe.
 このような構成により、図6に示すように、たとえば、吸気温ITが-40[℃]の極低温時において、内燃機関10の回転数を増加させることができる。その結果、実線の曲線C1の上側の領域R1の点を、矢印A2に示すように、実線の曲線C1の下方側へ移動させることができる。これにより、前述のように、脈動誤差を補正できない領域R1で内燃機関10が運転されることを回避し、脈動誤差が補正されたエアフローセンサ21sの流量検出値を用いて内燃機関10を制御することができる。 With this configuration, as shown in FIG. 6, for example, the rotation speed of the internal combustion engine 10 can be increased when the intake air temperature IT is extremely low, such as -40°C. As a result, the point in region R1 above the solid curve C1 can be moved below the solid curve C1, as shown by arrow A2. This makes it possible to avoid operating the internal combustion engine 10 in region R1 where the pulsation error cannot be corrected, as described above, and to control the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected.
 また、本実施形態の内燃機関の制御装置100において、脈動率予測部130は、吸入空気量を制御するスロットル弁22cの開度を含む制御目標値CTVに加えて、内燃機関10の回転数ESおよび吸気温ITに基づいて予測脈動率PReを出力する。このような構成により、脈動率予測部130は、実際の脈動率に近いより正確な予測脈動率PReを出力することが可能になる。 Furthermore, in the internal combustion engine control device 100 of this embodiment, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the rotation speed ES and intake temperature IT of the internal combustion engine 10 in addition to the control target value CTV, which includes the opening degree of the throttle valve 22c that controls the intake air amount. This configuration enables the pulsation rate prediction unit 130 to output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
 また、本実施形態の内燃機関の制御装置100において、脈動率予測部130は、内燃機関10の吸気バルブ11および排気バルブ12の開閉タイミングを含む制御目標値CTVに基づいて予測脈動率PReを出力する。このような構成により、脈動率予測部130は、実際の脈動率に近いより正確な予測脈動率PReを出力することが可能になる。 Furthermore, in the internal combustion engine control device 100 of this embodiment, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on a control target value CTV that includes the opening and closing timing of the intake valve 11 and the exhaust valve 12 of the internal combustion engine 10. With this configuration, the pulsation rate prediction unit 130 is able to output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
 また、本実施形態の内燃機関の制御装置100において、脈動率予測部130は、内燃機関10の吸気流路20と排気流路30に設けられたターボ過給機40の目標過給圧を含む制御目標値CTVに基づいて予測脈動率PReを出力することができる。このような構成により、脈動率予測部130は、実際の脈動率に近いより正確な予測脈動率PReを出力することが可能になる。 Furthermore, in the internal combustion engine control device 100 of this embodiment, the pulsation rate prediction unit 130 can output the predicted pulsation rate PRe based on a control target value CTV including a target boost pressure of the turbocharger 40 provided in the intake passage 20 and exhaust passage 30 of the internal combustion engine 10. With this configuration, the pulsation rate prediction unit 130 can output a more accurate predicted pulsation rate PRe that is closer to the actual pulsation rate.
 また、本実施形態の内燃機関の制御装置100において、脈動率予測部130は、制限目標値CTVrが入力された場合に、制限目標値CTVrに基づいて予測脈動率PReを出力する。このような構成により、図4に示す工程S1から工程S7を繰り返して予測脈動率PReを許容脈動率PRa以下にすることができる。 In addition, in the internal combustion engine control device 100 of this embodiment, when the restriction target value CTVr is input, the pulsation rate prediction unit 130 outputs the predicted pulsation rate PRe based on the restriction target value CTVr. With this configuration, the predicted pulsation rate PRe can be set to be equal to or less than the allowable pulsation rate PRa by repeating steps S1 to S7 shown in FIG. 4.
 また、本実施形態の内燃機関の制御方法ECMは、内燃機関10の吸入空気量を検出するエアフローセンサ21sの流量検出値を用いて内燃機関10を制御する方法である。内燃機関の制御方法ECMは、動作制御工程S4と、脈動率予測工程S1と、許容脈動率出力工程S2と、制限目標値出力工程S5-S7と、を有している。動作制御工程S4は、内燃機関10の制御目標値CTVに基づいて内燃機関10の動作状態を制御する工程である。許容脈動率出力工程S2は、所定の温度範囲の基準条件における内燃機関10の制御目標値CTVとエアフローセンサ21sの流量検出値の脈動率との関係が規定された脈動率マップ131を用い、制御目標値CTVに基づいて脈動率を予測した予測脈動率PReを出力する工程である。許容脈動率出力工程S2は、内燃機関10の動作状態と許容可能な脈動率の最大値である許容脈動率PRaとの関係を示す許容脈動率マップ141を用い、内燃機関10の動作状態に基づいて許容脈動率PRaを出力する工程である。制限目標値出力工程S5-S7は、予測脈動率PReが許容脈動率PRaを超える場合に脈動率を低下させるように制御目標値CTVを変更した制限目標値CTVrを出力する工程である。本実施形態の内燃機関の制御方法ECMは、動作制御工程S4において、制限目標値CTVrが入力された場合に、制限目標値CTVrに基づいて内燃機関10の動作状態を制御する。 The internal combustion engine control method ECM of this embodiment is a method for controlling the internal combustion engine 10 using a flow rate detection value of the air flow sensor 21s that detects the amount of intake air of the internal combustion engine 10. The internal combustion engine control method ECM has an operation control step S4, a pulsation rate prediction step S1, an allowable pulsation rate output step S2, and a restriction target value output step S5-S7. The operation control step S4 is a step for controlling the operating state of the internal combustion engine 10 based on a control target value CTV of the internal combustion engine 10. The allowable pulsation rate output step S2 is a step for outputting a predicted pulsation rate PRe that predicts the pulsation rate based on the control target value CTV using a pulsation rate map 131 that specifies the relationship between the control target value CTV of the internal combustion engine 10 and the pulsation rate of the flow rate detection value of the air flow sensor 21s under reference conditions in a predetermined temperature range. The allowable pulsation rate output step S2 is a step of outputting the allowable pulsation rate PRa based on the operating state of the internal combustion engine 10 using an allowable pulsation rate map 141 that shows the relationship between the operating state of the internal combustion engine 10 and the allowable pulsation rate PRa, which is the maximum allowable pulsation rate. The restriction target value output steps S5-S7 are steps of outputting a restriction target value CTVr that changes the control target value CTV so as to reduce the pulsation rate when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa. The internal combustion engine control method ECM of this embodiment controls the operating state of the internal combustion engine 10 based on the restriction target value CTVr when the restriction target value CTVr is input in the operation control step S4.
 このような構成により、本実施形態の内燃機関の制御方法ECMによれば、内燃機関10の制御目標値CTVに基づいて、予測脈動率PReおよび許容脈動率PRaが得られる。そして、予測脈動率PReが許容脈動率PRaを超え、図5から図7に示す実線の曲線C1よりも上側の領域R1,R3に入る場合に、制限目標値CTVrを出力することができる。その結果、内燃機関10の動作状態が、脈動率を低下させるように制御目標値CTVを変更した制限目標値CTVrに基づいて制御される。これにより、図5および図6の矢印A1,A2に示すように、エアフローセンサ21sの流量検出値の脈動率と内燃機関10の回転数との関係が、実線の曲線C1上またはその下側の領域に移動する。この実線の曲線C1上またはその下側の領域は、脈動補正値が決定されてエアフローセンサ21sによる流量検出値が適合された領域である。そのため、脈動誤差を補正できない領域R1,R3で内燃機関10が運転されることを回避し、脈動誤差が補正されたエアフローセンサ21sの流量検出値を用いて内燃機関10を制御することができる。したがって、本実施形態の内燃機関の制御方法ECMによれば、内燃機関10の運転性能および排気成分の悪化を防止することができる。 With this configuration, according to the internal combustion engine control method ECM of this embodiment, the predicted pulsation rate PRe and the allowable pulsation rate PRa are obtained based on the control target value CTV of the internal combustion engine 10. Then, when the predicted pulsation rate PRe exceeds the allowable pulsation rate PRa and enters the region R1, R3 above the solid curve C1 shown in Figures 5 to 7, the restriction target value CTVr can be output. As a result, the operating state of the internal combustion engine 10 is controlled based on the restriction target value CTVr in which the control target value CTV is changed so as to reduce the pulsation rate. As a result, as shown by the arrows A1 and A2 in Figures 5 and 6, the relationship between the pulsation rate of the flow rate detection value of the airflow sensor 21s and the rotation speed of the internal combustion engine 10 moves to the region on or below the solid curve C1. The region on or below this solid curve C1 is the region in which the pulsation correction value is determined and the flow rate detection value by the airflow sensor 21s is adapted. Therefore, it is possible to avoid operating the internal combustion engine 10 in the regions R1 and R3 where the pulsation error cannot be corrected, and to control the internal combustion engine 10 using the flow rate detection value of the air flow sensor 21s in which the pulsation error has been corrected. Therefore, according to the internal combustion engine control method ECM of this embodiment, it is possible to prevent deterioration of the operating performance and exhaust components of the internal combustion engine 10.
 また、本実施形態の内燃機関の制御方法ECMは、図8に示すように、前工程PPとして、脈動率学習工程PP1と、許容脈動率較正工程PP2とを備えている。脈動率学習工程PP1は、内燃機関10の基準条件で制御目標値CTVと脈動率との関係を学習して脈動率マップ131を生成する工程である。許容脈動率較正工程PP2は、脈動率マップ131に基づいて許容脈動率マップ141を生成する工程である。 Furthermore, as shown in FIG. 8, the internal combustion engine control method ECM of this embodiment includes a pulsation rate learning process PP1 and an allowable pulsation rate calibration process PP2 as pre-processes PP. The pulsation rate learning process PP1 is a process for learning the relationship between the control target value CTV and the pulsation rate under the reference conditions of the internal combustion engine 10 to generate a pulsation rate map 131. The allowable pulsation rate calibration process PP2 is a process for generating an allowable pulsation rate map 141 based on the pulsation rate map 131.
 このような構成により、本実施形態の内燃機関の制御方法ECMによれば、前述の脈動率予測工程S1と許容脈動率出力工程S2において用いられる脈動率マップ131と許容脈動率マップ141を機械学習によって生成することができる。 With this configuration, the internal combustion engine control method ECM of this embodiment can generate the pulsation rate map 131 and the allowable pulsation rate map 141 used in the above-mentioned pulsation rate prediction process S1 and allowable pulsation rate output process S2 by machine learning.
 以上説明したように、本実施形態によれば、内燃機関10の回転数と吸入空気の脈動率との関係が、脈動補正値が決定された範囲から外れるのを防止して、内燃機関10の運転性能および排気成分の悪化を防止できる内燃機関の制御装置100および内燃機関の制御方法ECMを提供することができる。 As described above, this embodiment can provide an internal combustion engine control device 100 and an internal combustion engine control method ECM that can prevent the relationship between the rotation speed of the internal combustion engine 10 and the pulsation rate of the intake air from going outside the range for which the pulsation correction value is determined, thereby preventing deterioration of the operating performance and exhaust components of the internal combustion engine 10.
[実施形態2]
 以下、前述の実施形態1の図1、図3から図8とともに、新たに図9を参照して本開示に係る内燃機関の制御装置の実施形態2を説明する。図9は、本開示に係る内燃機関の制御装置の実施形態を示す、実施形態1の図2に相当するブロック図である。
[Embodiment 2]
Hereinafter, a second embodiment of the control device for an internal combustion engine according to the present disclosure will be described with reference to Fig. 9 in addition to Fig. 1 and Fig. 3 to Fig. 8 of the first embodiment described above. Fig. 9 is a block diagram showing an embodiment of the control device for an internal combustion engine according to the present disclosure, and corresponds to Fig. 2 of the first embodiment.
 本実施形態の内燃機関の制御装置100Aは、逆算部150をさらに備える点で、前述の実施形態1の内燃機関の制御装置100と異なっている。本実施形態の内燃機関の制御装置100Aのその他の構成は、前述の実施形態1の内燃機関の制御装置100と同様であるので、同様の部分には同一の符号を付して説明を省略する。 The internal combustion engine control device 100A of this embodiment differs from the internal combustion engine control device 100 of the above-described first embodiment in that it further includes a back calculation unit 150. The other configuration of the internal combustion engine control device 100A of this embodiment is similar to that of the internal combustion engine control device 100 of the above-described first embodiment, so similar parts are given the same reference numerals and descriptions thereof are omitted.
 図9に示す逆算部150は、脈動率予測部130と逆の手順で許容脈動率PRaに基づいて内燃機関10の制御目標値CTVの許容値である許容目標値を出力する。より具体的には、図9に示す逆算部150には、たとえば、図3に示す脈動率予測部130の最大脈動率マップ131aから出力される最大脈動率PRgと、内燃機関10の回転数ESと、許容脈動率出力部140から出力される許容脈動率PRaとが入力される。 The inverse calculation unit 150 shown in FIG. 9 outputs an allowable target value, which is an allowable value of the control target value CTV of the internal combustion engine 10, based on the allowable pulsation rate PRa in the reverse procedure to that of the pulsation rate prediction unit 130. More specifically, the inverse calculation unit 150 shown in FIG. 9 receives, for example, the maximum pulsation rate PRg output from the maximum pulsation rate map 131a of the pulsation rate prediction unit 130 shown in FIG. 3, the rotation speed ES of the internal combustion engine 10, and the allowable pulsation rate PRa output from the allowable pulsation rate output unit 140.
 逆算部150は、たとえば、図示を省略するスロットル開度逆引きマップを備えている。スロットル開度逆引きマップは、たとえば、予測脈動率PReを最大脈動率PRgで除した許容脈動率比を入力とし、その許容脈動率比および回転数ESに基づく制限スロットル開度TPrを出力する。 The reverse calculation unit 150 is provided with, for example, a throttle opening reverse lookup map (not shown). The throttle opening reverse lookup map takes as input, for example, an allowable pulsation rate ratio obtained by dividing the predicted pulsation rate PRe by the maximum pulsation rate PRg, and outputs a limited throttle opening TPr based on the allowable pulsation rate ratio and the rotation speed ES.
 換言すると、逆算部150は、脈動率予測部130と逆の手順で、内燃機関10の動作状態に応じた最大脈動率PRgに基づいて、内燃機関10の制御目標値CTVの許容値である許容目標値としての制限スロットル開度TPrを出力する。逆算部150から出力された制限スロットル開度TPrは、制限目標値出力部110へ入力される。制限目標値出力部110は、逆算部150から入力された許容目標値としての制限スロットル開度TPrを、制限目標値CTVrとして出力する。 In other words, the reverse calculation unit 150 outputs the limit throttle opening TPr as an allowable target value that is an allowable value of the control target value CTV of the internal combustion engine 10 based on the maximum pulsation rate PRg according to the operating state of the internal combustion engine 10, in the reverse procedure of the pulsation rate prediction unit 130. The limit throttle opening TPr output from the reverse calculation unit 150 is input to the limit target value output unit 110. The limit target value output unit 110 outputs the limit throttle opening TPr as the allowable target value input from the reverse calculation unit 150 as the limit target value CTVr.
 以上のように、本実施形態の内燃機関の制御装置100Aは、前述の実施形態1の内燃機関の制御装置100の各構成に加えて、逆算部150をさらに備えている。逆算部150は、内燃機関10の動作状態に応じた最大脈動率PRgに基づいて、脈動率予測部130と逆の手順で、内燃機関10の制御目標値CTVの許容値である許容目標値としての制限スロットル開度TPrを出力する。また、制限目標値出力部110は、逆算部150から入力された許容目標値としての制限スロットル開度TPrを制限目標値CTVrとして出力する。 As described above, the internal combustion engine control device 100A of this embodiment further includes a reverse calculation unit 150 in addition to the components of the internal combustion engine control device 100 of the first embodiment described above. The reverse calculation unit 150 outputs the limit throttle opening TPr as an allowable target value that is an allowable value of the control target value CTV of the internal combustion engine 10, in the reverse procedure of the pulsation rate prediction unit 130, based on the maximum pulsation rate PRg according to the operating state of the internal combustion engine 10. In addition, the limit target value output unit 110 outputs the limit throttle opening TPr as an allowable target value input from the reverse calculation unit 150 as the limit target value CTVr.
 このような構成により、本実施形態の内燃機関の制御装置100Aは、前述の実施形態1の内燃機関の制御装置100のように、図4に示す工程S1からS7までを繰り返し実行することなく、逆算部150によって制限スロットル開度TPrを出力することができる。これにより、内燃機関の制御装置100Aの演算負荷を低減することができる。 With this configuration, the internal combustion engine control device 100A of this embodiment can output the limit throttle opening angle TPr using the reverse calculation unit 150 without repeatedly executing steps S1 to S7 shown in FIG. 4, as in the internal combustion engine control device 100 of the above-mentioned first embodiment. This makes it possible to reduce the calculation load of the internal combustion engine control device 100A.
 以上、本開示に係る内燃機関の制御装置および制御方法の実施形態を説明したが、本開示に係る内燃機関の制御装置および制御方法は、前述の実施形態に限定されない。本開示の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。  Although the embodiments of the control device and control method for an internal combustion engine according to the present disclosure have been described above, the control device and control method for an internal combustion engine according to the present disclosure are not limited to the above-described embodiments. Addition, omission, substitution, and other modifications of the configuration are possible within the scope of the spirit of the present disclosure.
10   内燃機関
11   吸気バルブ
12   排気バルブ
20   吸気流路
21s  エアフローセンサ
22c  スロットル弁
30   排気流路
40   ターボ過給機
100  内燃機関の制御装置
100A 内燃機関の制御装置
110  制限目標値出力部
120  動作制御部
130  脈動率予測部
131  脈動率マップ
140  許容脈動率出力部
141  許容脈動率マップ
150  逆算部
CTV  制御目標値
CTVr 制限目標値
ECM  内燃機関の制御方法
ES   回転数(動作状態)
GR   目標変速比
GRr  制限変速比
IT   吸気温
PP1  脈動率学習工程
PP2  許容脈動率較正工程
PRa  許容脈動率
PRe  予測脈動率
PRg  最大脈動率
S1   脈動率予測工程
S2   許容脈動率出力工程
S4   動作制御工程
S5   制限目標値出力工程
S6   制限目標値出力工程
S7   制限目標値出力工程
TP   目標スロットル開度
TPr  制限スロットル開度(許容目標値)
VT   目標バルブタイミング
VTr  制限バルブタイミング
10 Internal combustion engine 11 Intake valve 12 Exhaust valve 20 Intake flow path 21s Air flow sensor 22c Throttle valve 30 Exhaust flow path 40 Turbocharger 100 Internal combustion engine control device 100A Internal combustion engine control device 110 Restriction target value output unit 120 Operation control unit 130 Pulsation rate prediction unit 131 Pulsation rate map 140 Allowable pulsation rate output unit 141 Allowable pulsation rate map 150 Back calculation unit CTV Control target value CTVr Restriction target value ECM Internal combustion engine control method ES Revolution speed (operation state)
GR target gear ratio GRr limit gear ratio IT intake air temperature PP1 pulsation rate learning process PP2 allowable pulsation rate calibration process PRa allowable pulsation rate PRe predicted pulsation rate PRg maximum pulsation rate S1 pulsation rate prediction process S2 allowable pulsation rate output process S4 operation control process S5 limit target value output process S6 limit target value output process S7 limit target value output process TP target throttle opening TPr limit throttle opening (allowable target value)
VT Target valve timing VTr Limit valve timing

Claims (11)

  1.  内燃機関の吸入空気量を検出するエアフローセンサの流量検出値を用いて前記内燃機関を制御する内燃機関の制御装置であって、
     前記内燃機関の制御目標値に基づいて前記内燃機関の動作状態を制御する動作制御部と、
     前記制御目標値に基づいて前記流量検出値の脈動率を予測した予測脈動率を出力する脈動率予測部と、
     前記内燃機関の前記動作状態に基づいて許容可能な前記脈動率の最大値である許容脈動率を出力する許容脈動率出力部と、
     前記予測脈動率が前記許容脈動率を超える場合に前記脈動率を低下させるように前記制御目標値を変更した制限目標値を出力する制限目標値出力部と、を備え、
     前記動作制御部は、前記制限目標値が入力された場合に前記制限目標値に基づいて前記内燃機関の前記動作状態を制御することを特徴とする内燃機関の制御装置。
    A control device for an internal combustion engine that controls an internal combustion engine using a flow rate detection value of an air flow sensor that detects an intake air amount of the internal combustion engine,
    an operation control unit that controls an operation state of the internal combustion engine based on a control target value of the internal combustion engine;
    a pulsation rate prediction unit that predicts the pulsation rate of the flow rate detection value based on the control target value and outputs a predicted pulsation rate;
    an allowable pulsation rate output unit that outputs an allowable pulsation rate that is a maximum value of the pulsation rate that is allowable based on the operating state of the internal combustion engine;
    a restriction target value output unit that outputs a restriction target value obtained by changing the control target value so as to reduce the pulsation rate when the predicted pulsation rate exceeds the allowable pulsation rate,
    The control device for an internal combustion engine, wherein the operation control unit controls the operation state of the internal combustion engine based on the restriction target value when the restriction target value is input.
  2.  前記制御目標値は、前記吸入空気量を制御するスロットル弁の開度の目標値である目標スロットル開度を含み、
     前記制限目標値は、前記目標スロットル開度を減少させた制限スロットル開度を含むことを特徴とする請求項1に記載の内燃機関の制御装置。
    the control target value includes a target throttle opening, which is a target value of an opening of a throttle valve that controls the intake air amount,
    2. The control device for an internal combustion engine according to claim 1, wherein the restriction target value includes a throttle opening limit obtained by reducing the target throttle opening.
  3.  前記制御目標値は、前記内燃機関の吸気バルブおよび排気バルブの開閉タイミングの目標値である目標バルブタイミングを含み、
     前記制限目標値は、前記内燃機関の圧縮工程において燃焼室から吸気流路への吹き返しを前記目標バルブタイミングよりも減少させる制限バルブタイミングを含むことを特徴とする請求項1に記載の内燃機関の制御装置。
    the control target value includes a target valve timing that is a target value of an opening/closing timing of an intake valve and an exhaust valve of the internal combustion engine,
    2. The control device for an internal combustion engine according to claim 1, wherein the restriction target value includes a restriction valve timing that reduces the amount of spit-back from a combustion chamber to an intake passage during a compression stroke of the internal combustion engine to a value less than the target valve timing.
  4.  前記制御目標値は、前記内燃機関が搭載された車両の自動変速機の目標変速比を含み、
     前記制限目標値は、前記予測脈動率が減少するように前記目標変速比を増減させた制限変速比を含むことを特徴とする請求項1に記載の内燃機関の制御装置。
    the control target value includes a target gear ratio of an automatic transmission of a vehicle equipped with the internal combustion engine,
    2. The control device for an internal combustion engine according to claim 1, wherein the limit target value includes a limit speed ratio obtained by increasing or decreasing the target speed ratio so as to reduce the predicted pulsation rate.
  5.  前記脈動率予測部は、前記吸入空気量を制御するスロットル弁の開度を含む前記制御目標値に加えて、前記内燃機関の回転数および吸気温に基づいて前記予測脈動率を出力することを特徴とする請求項1に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, characterized in that the pulsation rate prediction unit outputs the predicted pulsation rate based on the rotation speed and intake air temperature of the internal combustion engine in addition to the control target value including the opening degree of a throttle valve that controls the intake air amount.
  6.  前記脈動率予測部は、前記内燃機関の吸気バルブおよび排気バルブの開閉タイミングを含む前記制御目標値に基づいて前記予測脈動率を出力することを特徴とする請求項5に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 5, characterized in that the pulsation rate prediction unit outputs the predicted pulsation rate based on the control target value including the opening and closing timing of the intake valve and exhaust valve of the internal combustion engine.
  7.  前記脈動率予測部は、前記内燃機関の排気流路と吸気流路に設けられたターボ過給機の目標過給圧を含む前記制御目標値に基づいて前記予測脈動率を出力することを特徴とする請求項5に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 5, characterized in that the pulsation rate prediction unit outputs the predicted pulsation rate based on the control target value including a target boost pressure of a turbocharger provided in the exhaust flow path and the intake flow path of the internal combustion engine.
  8.  前記脈動率予測部は、前記制限目標値が入力された場合に、前記制限目標値に基づいて前記予測脈動率を出力することを特徴とする請求項1に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, characterized in that the pulsation rate prediction unit outputs the predicted pulsation rate based on the restriction target value when the restriction target value is input.
  9.  前記内燃機関の前記動作状態に応じた最大脈動率に基づいて前記脈動率予測部と逆の手順で前記内燃機関の前記制御目標値の許容値である許容目標値を出力する逆算部をさらに備え、
     前記制限目標値出力部は、前記許容目標値を前記制限目標値として出力することを特徴とする請求項1に記載の内燃機関の制御装置。
    a reverse calculation unit that outputs an allowable target value, which is an allowable value of the control target value of the internal combustion engine, in a reverse procedure to that of the pulsation rate prediction unit, based on a maximum pulsation rate corresponding to the operating state of the internal combustion engine;
    2. The control device for an internal combustion engine according to claim 1, wherein the restriction target value output unit outputs the permissible target value as the restriction target value.
  10.  内燃機関の吸入空気量を検出するエアフローセンサの流量検出値を用いて前記内燃機関を制御する内燃機関の制御方法であって、
     前記内燃機関の制御目標値に基づいて前記内燃機関の動作状態を制御する動作制御工程と、
     所定の温度範囲の基準条件における前記内燃機関の前記制御目標値と前記流量検出値の脈動率との関係が規定された脈動率マップを用い、前記制御目標値に基づいて前記脈動率を予測した予測脈動率を出力する脈動率予測工程と、
     前記内燃機関の動作状態と許容可能な前記脈動率の最大値である許容脈動率との関係を示す許容脈動率マップを用い、前記動作状態に基づいて前記許容脈動率を出力する許容脈動率出力工程と、
     前記予測脈動率が前記許容脈動率を超える場合に前記脈動率を低下させるように前記制御目標値を変更した制限目標値を出力する制限目標値出力工程と、を有し、
     前記動作制御工程において、前記制限目標値が入力された場合に、前記制限目標値に基づいて前記内燃機関の前記動作状態を制御することを特徴とする内燃機関の制御方法。
    A method for controlling an internal combustion engine using a flow rate detection value of an air flow sensor that detects an intake air amount of the internal combustion engine, comprising:
    an operation control step of controlling an operation state of the internal combustion engine based on a control target value of the internal combustion engine;
    a pulsation rate prediction step of predicting the pulsation rate based on the control target value of the internal combustion engine by using a pulsation rate map that defines a relationship between the control target value of the internal combustion engine and the pulsation rate of the flow rate detection value under a reference condition in a predetermined temperature range, and outputting a predicted pulsation rate obtained by predicting the pulsation rate based on the control target value;
    an allowable pulsation rate output step of outputting the allowable pulsation rate based on the operating state of the internal combustion engine using an allowable pulsation rate map indicating a relationship between the operating state of the internal combustion engine and an allowable pulsation rate that is a maximum allowable value of the pulsation rate;
    and a restriction target value output step of outputting a restriction target value obtained by changing the control target value so as to reduce the pulsation rate when the predicted pulsation rate exceeds the allowable pulsation rate,
    A method for controlling an internal combustion engine, comprising the steps of: when the restriction target value is input, controlling the operating state of the internal combustion engine based on the restriction target value in the operation control step.
  11.  前記基準条件で前記制御目標値と前記脈動率との関係を学習して前記脈動率マップを生成する脈動率学習工程と、
     前記脈動率マップに基づいて前記許容脈動率マップを生成する許容脈動率較正工程と、を有することを特徴とする請求項10に記載の内燃機関の制御方法。
    a pulsation rate learning step of learning a relationship between the control target value and the pulsation rate under the reference condition to generate the pulsation rate map;
    11. The method according to claim 10, further comprising: a step of calibrating an allowable pulsation rate to generate the allowable pulsation rate map based on the pulsation rate map.
PCT/JP2022/044202 2022-11-30 2022-11-30 Control device and control method for internal combustion engine WO2024116331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044202 WO2024116331A1 (en) 2022-11-30 2022-11-30 Control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044202 WO2024116331A1 (en) 2022-11-30 2022-11-30 Control device and control method for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2024116331A1 true WO2024116331A1 (en) 2024-06-06

Family

ID=91323116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044202 WO2024116331A1 (en) 2022-11-30 2022-11-30 Control device and control method for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2024116331A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256181A (en) * 1992-03-11 1993-10-05 Toyota Motor Corp Thermal type intake air quantity detecting device
JP2007077835A (en) * 2005-09-12 2007-03-29 Hitachi Ltd Device and method for controlling variable valve for internal combustion engine
JP2008075549A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Control device for internal combustion engine
JP2011012593A (en) * 2009-07-01 2011-01-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2021076040A (en) * 2019-11-06 2021-05-20 トヨタ自動車株式会社 Engine control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256181A (en) * 1992-03-11 1993-10-05 Toyota Motor Corp Thermal type intake air quantity detecting device
JP2007077835A (en) * 2005-09-12 2007-03-29 Hitachi Ltd Device and method for controlling variable valve for internal combustion engine
JP2008075549A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Control device for internal combustion engine
JP2011012593A (en) * 2009-07-01 2011-01-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2021076040A (en) * 2019-11-06 2021-05-20 トヨタ自動車株式会社 Engine control device

Similar Documents

Publication Publication Date Title
US7620490B2 (en) Fuel injection control device for internal combustion engine
JP3926522B2 (en) Intake control device for turbocharged engine
JP5043899B2 (en) EGR flow control device for internal combustion engine
US6941929B2 (en) Combustion control system for internal combustion engine
US20050114011A1 (en) Engine control system
US7681442B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
JP5187123B2 (en) Control device for internal combustion engine
JP2005220888A (en) Supercharging pressure presuming device of internal combustion engine with supercharger
JP5397567B1 (en) Control device for internal combustion engine
EP1900929A2 (en) Engine control system
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
WO2012114170A1 (en) Controller and control method for internal combustion engine
EP2211044A1 (en) EGR controller and EGR control method for internal combustion engine
EP1279813A2 (en) Control device for a vehicle and control method thereof
WO2008068574A1 (en) Egr system for internal combustion engine and method for controlling the same
JP4455353B2 (en) Control device for internal combustion engine
JP5076879B2 (en) Fuel injection control system for internal combustion engine
WO2024116331A1 (en) Control device and control method for internal combustion engine
JP5088306B2 (en) Control device for internal combustion engine
US20170363025A1 (en) Control apparatus for internal combustion engine
WO2019198320A1 (en) Internal combustion engine control device and control method
EP2354501B1 (en) Control apparatus for internal combustion engine
JP6825541B2 (en) EGR controller
US11408360B2 (en) Engine device
JP2008019730A (en) Exhaust gas recirculating device of internal combustion engine