WO2024116276A1 - Flight assistance system, flight assistance method, and program - Google Patents

Flight assistance system, flight assistance method, and program Download PDF

Info

Publication number
WO2024116276A1
WO2024116276A1 PCT/JP2022/043952 JP2022043952W WO2024116276A1 WO 2024116276 A1 WO2024116276 A1 WO 2024116276A1 JP 2022043952 W JP2022043952 W JP 2022043952W WO 2024116276 A1 WO2024116276 A1 WO 2024116276A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
movement
operator
ground
control device
Prior art date
Application number
PCT/JP2022/043952
Other languages
French (fr)
Japanese (ja)
Inventor
亨 中村
達哉 飯塚
尚子 小阪
恒子 倉
悠輔 梅宮
正樹 久田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/043952 priority Critical patent/WO2024116276A1/en
Publication of WO2024116276A1 publication Critical patent/WO2024116276A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • This disclosure relates to a flight support system, a flight support method, and a program.
  • UAVs unmanned aerial vehicles
  • visual flight the aircraft's behavior is observed visually from a remote location, and the movement and attitude of the UAV are instructed from an operating device (controller).
  • UAVs As UAVs become more common, there are more opportunities to use them from ships. Such UAVs are used for maritime security surveillance, various measurements, and surveys of coastal areas that are difficult to access by land.
  • a typical outdoor UAV has a built-in GNSS (Global Navigation Satellite System) function.
  • Hovering UAVs specifically multi-rotor or helicopter-type UAVs, can have the ability to stay in the air at the same three-dimensional coordinates relative to the ground even if the operator's hands are removed from the control device.
  • the ease of use of the aircraft stopping in place when the operator's hands are removed greatly reduces the burden on the operator. This easy-to-understand operation is thought to be the driving force behind the spread of small drones today.
  • Non-Patent Document 1 there is technology that uses millimeter wave radar and corner reflectors to detect the landing position so that the UAV can grasp the condition of the landing surface even in poor visibility.
  • Non-Patent Document 2 There is also technology that detects and avoids obstacles.
  • a ship Unless a ship is moored, it becomes a floating body that moves relative to the ground.
  • an operator located on a floating body operates a UAV, it can be difficult to operate the UAV. For example, if a UAV is operated without taking into account that the ship is moving relative to the ground, simply taking off the UAV may result in an obstacle such as hitting an obstacle on the ship that is moving relative to the ground.
  • Non-Patent Document 1 The technology described in Non-Patent Document 1 is limited to use in measuring the relative position of the landing point and the UAV, like an altimeter. Non-Patent Document 1 cannot be applied to cases where floating bodies such as ships are swaying or fluctuating. Furthermore, the technology described in Non-Patent Document 2 is for avoiding obstacles with fixed coordinates on the ground, such as buildings on land. Non-Patent Document 2 does not anticipate cases where it will be operated from floating bodies such as ships.
  • This disclosure has been made in consideration of the above circumstances, and the purpose of this disclosure is to provide technology that can assist an operator located on a floating body such as a ship in controlling the flight of an unmanned aerial vehicle.
  • a flight support system includes a flight control device that controls an aircraft, and an operation device that transmits operation information including the aircraft's movement input by an operator located outside the aircraft to the flight control device.
  • the flight control device includes a flight status acquisition unit that acquires the ground position and movement of the aircraft, and a generation unit that acquires the ground movement of the operator and generates commands to drive the equipment of the aircraft from a movement that combines the movement included in the operation information and the ground movement of the operator.
  • an operating device transmits operation information including the movement of the aircraft input by an operator located outside the aircraft to a flight control device that controls the aircraft, the flight control device acquires the position and movement of the aircraft relative to the ground, the flight control device acquires the movement of the operator relative to the ground, and generates commands to drive equipment of the aircraft from a movement that combines the movement included in the operation information and the movement of the operator relative to the ground.
  • One aspect of the present disclosure is a program that causes a computer to function as the flight control device.
  • This disclosure provides technology that can assist an operator located on a floating body such as a ship in controlling the flight of an unmanned aerial vehicle.
  • FIG. 1 is a diagram illustrating a system configuration of a flight support system according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of an accident that may occur when piloting an unmanned aerial vehicle without taking into account the motion of the hull.
  • FIG. 3 is a diagram illustrating the functions of the flight support system according to the first embodiment.
  • FIG. 4 is a flowchart illustrating the processing of the flight control device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a system configuration of a flight support system according to a second embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating the functions of the flight support system according to the second embodiment.
  • FIG. 7 is a flowchart illustrating the processing of the flight control device according to the second embodiment.
  • FIG. 8 is a diagram for explaining the hardware configuration of a computer used in the flight control device or the operation device.
  • a flight support system 5 includes a flight control device 1, an operation device 2, and a hull management device 3.
  • the flight control device 1, the operation device 2, and the hull management device 3 are connected to each other so that they can communicate with each other via wireless communication.
  • the flight control device 1 and the hull management device 3 acquire terrestrial positions and movements. These terrestrial positions and movements are positions and movements acquired by GNSS or the like.
  • an operator C steers an aircraft D with the operation device 2 without moving on the hull H.
  • the hull management device 3 is installed inside the hull H.
  • the coordinates of the position acquired on the ground are called ground coordinates AG.
  • the coordinates based on a predetermined position of the hull H are called hull coordinates AH.
  • the hull coordinates AH are the same as the operator's coordinates.
  • the flight control device 1 is a computer that controls the operation of the aircraft D.
  • the flight control device 1 is built into the aircraft D.
  • the aircraft D is a small unmanned aircraft with no human on board, such as a drone.
  • a case will be described in which an operator C positioned outside the aircraft D controls the flight of the aircraft D, but this is not limited to this. As long as an operator C positioned outside the aircraft D controls the flight of the aircraft D, the size of the aircraft D and whether or not there is a human on board are not important.
  • the operation device 2 is a computer into which an operator C positioned outside the aircraft D inputs instructions for flying the aircraft D.
  • the operation device 2 includes input devices such as a stick and buttons.
  • the operation device 2 may also include a display device showing the flight status of the aircraft D.
  • the operator C operates the input device to instruct the movement of the aircraft D.
  • the instructions for the movement of the aircraft D input by the operator C are transmitted to the aircraft D.
  • the aircraft D drives the aircraft D according to the instructions input from the operation device 2.
  • the hull management device 3 acquires the ground position and movement of the hull H.
  • the ground position and movement acquired by the hull management device 3 are transmitted to the flight control device 1 directly or indirectly to the flight control device 1 via the operation device 2.
  • an operator C is positioned on a hull H and uses an operating device 2 to operate an aircraft D.
  • the hull H is carried away by ocean or tidal currents, or moves due to engine drive, etc.
  • an accident may occur, such as the aircraft D hitting an obstacle on the hull H.
  • FIG. 2 an example of an accident that occurs when an operator C steers an aircraft D without considering the movement of the hull H will be described.
  • the hull H is moving on the sea surface in the direction of the ocean current.
  • the operator C is located on the hull H.
  • the aircraft D waits on the hull H.
  • the operator C inputs an instruction for the aircraft D to rise vertically in order to take off, in order to make the aircraft D take off.
  • the hull H moves with the ocean current. Therefore, depending on the position of the aircraft D, the shape of the hull H, and the direction and speed of the ocean current, the aircraft D may collide with an obstacle on the hull H.
  • the present disclosure provides support for the operation of operator C, who is located on a floating body such as a ship, so that operator C can intuitively control the flight of aircraft D.
  • the hull management device 3 acquires the hull status using GNSS or the like.
  • the hull status includes the ground position and movement of the hull H. If the operator C does not move on the hull H, the ground position and movement acquired by the hull management device 3 will be the ground position and movement of the operator C.
  • the hull management device 3 notifies the operation device 2 of the hull status of the hull H.
  • the control device 2 transmits operation information, including the movement of the aircraft D, input by the operator C to the flight control device 1.
  • the operation information includes instructions for the movement of the aircraft D, such as the direction and speed at which the aircraft D will move, and instructions to keep the aircraft D in the air. If the control device 2 is not operated by the operator C, the flight control device 1 may keep the aircraft D in the air when an instruction to keep the aircraft D in the air is input.
  • the operation device 2 transmits the hull status of the hull H input from the hull management device 3 to the aircraft D.
  • the hull status is specifically the position and movement of the hull H relative to the ground, and when the operator C does not move on the hull H, it becomes the position and movement of the operator C relative to the ground.
  • the operating device 2 acquires the flight status of the aircraft D from the flight control device 1 of the aircraft D and displays it on a display device (not shown).
  • the flight status is the inclination, position, and movement of the aircraft D.
  • the position and movement of the aircraft D may be displayed using coordinate axes that are easy for the operator C to intuitively understand, or may be displayed using terrestrial GNSS coordinate axes.
  • Aircraft D is equipped with a flight control device 1 and a group of equipment 30.
  • the flight control device 1 controls aircraft D.
  • the flight control device 1 generates commands to drive the group of equipment of aircraft D from the operation information and hull state input from the operation device 2, and inputs these commands to the group of equipment 30.
  • the group of equipment 30 drives according to the commands input from the flight control device 1.
  • the group of equipment 30 includes, for example, a motor, an engine, and a rudder.
  • the flight control device 1 has the functions of a flight state acquisition unit 11, a conversion unit 12, and a generation unit 13, as well as a group of data that is referenced or updated by these functions. Each function is implemented in the CPU 901. Each piece of data is stored in a storage device such as the memory 902 or storage 903.
  • the flight status acquisition unit 11 acquires the position and movement of the aircraft D relative to the ground using GNSS or the like.
  • the flight status acquisition unit 11 may acquire the position and movement of the aircraft D relative to the ground using a method other than GNSS.
  • the flight state acquisition unit 11 may also acquire information necessary for the operator C to operate the operation device 2, such as the inclination of the aircraft D.
  • the flight state acquisition unit 11 may detect the wind direction and speed using a sensor that detects the surrounding wind.
  • the conversion unit 12 converts the ground position and movement of the aircraft D acquired by the flight status acquisition unit 11 into the coordinates of the operator C's viewpoint, specifically the hull coordinates AH, and transmits them to the operation device 2 as the flight status of the aircraft D.
  • the conversion unit 12 For example, if the position of aircraft D relative to the ground is 2 km north of the position of operator C relative to the ground, the conversion unit 12 generates a flight state including the position of aircraft D being 2 km north. Also, if aircraft D moves eastward relative to the ground at a speed of 2 m/sec, while operator C moves westward relative to the ground at a speed of 1 m/sec, the conversion unit 12 generates a flight state including aircraft D moving eastward at a speed of 3 m/sec.
  • the conversion unit 12 transmits the position and movement of the aircraft D converted into the hull coordinates AH, specifically, the relative position and movement of the aircraft D with respect to the hull H, to the operation device 2 as a flight state.
  • the conversion unit 12 informing the operation device 2 of the position and movement of the aircraft D in the hull coordinates AH, the operator C can grasp the position and movement of the aircraft D without having to worry about the movement of the hull H.
  • the generation unit 13 acquires the ground movement of the operator C, and generates a command to drive the group of devices 30 of the aircraft D from a movement that combines the ground movement of the operator and the movement of the aircraft D contained in the operation information of the operation device 2.
  • the operator C can operate the aircraft D without being aware that the operator C himself is moving on the ground, and can therefore operate the aircraft D in the same way as when operating it on the ground.
  • the generation unit 13 regards the operation information input from the operation device 2 as an instruction in the hull coordinate AH and generates a command. For example, assume that the operator C is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13 combines these to generate a command to move westward at a speed of 3 m/sec. The generation unit 13 inputs the generated command to the device group 30 and drives the device group 30 in accordance with the command. The generation unit 13 may also generate a command to realize the movement of the aircraft D input from the operation device 2, taking into account the current flight state of the aircraft D.
  • the generation unit 13 If there is no operation information or if the information does not include movement, the generation unit 13 generates a command from the movement of the operator C relative to the ground. For example, it is known that when the operator C releases his/her hands from the operation device 2, the aircraft D will hover in place by hovering or the like. When the operator C releases his/her hands from the operation device 2, or when the operator C instructs or expects the aircraft D to stop, the operator C expects the aircraft D to hover in the same position relative to the operator C. However, if the operator C is on a floating body such as a ship H, and the aircraft D hovers in place, the position of the aircraft D relative to the operator C will change as the operator C moves, which may result in a collision with an obstacle as shown in FIG. 2.
  • the generation unit 13 when no operation information is input from the operation device 2 or when a stationary command is given, the generation unit 13 generates a command for aircraft D to remain stationary at the hull coordinate AH where the operator C is located, in other words, a command for aircraft D to move in the same manner as the movement of the operator C. For example, when the operator C moves westward relative to the ground at a speed of 1 m/sec, the generation unit 13 generates a command for aircraft D to move westward relative to the ground at a speed of 1 m/sec. As a result, aircraft D moves in the same manner as the operator C, and there is no change in its position relative to the operator C. The operator C can operate aircraft D in the same manner as when operating it on the ground.
  • aircraft D may be easily affected by wind and may be blown away by the wind regardless of the operation from the control device 2. Therefore, when aircraft D detects wind, the generation unit 13 may generate a command by further adding a movement that offsets the direction and speed of the wind.
  • the flight state acquisition unit 11 detects the wind direction and speed using a sensor that detects the surrounding wind.
  • the generation unit 13 generates a command taking into consideration a movement that offsets the wind direction and speed detected by the flight state acquisition unit 11.
  • a movement that offsets the wind direction and speed is a movement that is the same speed as the wind speed in the direction opposite to the wind direction.
  • an instruction to move westward at a speed of 2 m/sec is input as operation information, and a westward wind of 1 m/sec is detected.
  • the generation unit 13 synthesizes an eastward movement of 1 m/sec to offset the westward wind of 1 m/sec, a westward movement of 1 m/sec as the movement of operator C, and a westward movement of 2 m/sec as the operation information.
  • the generation unit 13 generates a command to move westward at a speed of 2 m/sec.
  • aircraft D is driven by commands that take into account operator C's movement over the ground, operation information input by operator C, and also the drift of aircraft D due to the effects of wind.
  • Operator C does not need to take into account the effects of wind on aircraft D when operating the aircraft, and can easily operate aircraft D.
  • FIG. 4 An example of the processing of the flight control device 1 will be described with reference to Figure 4.
  • Figure 4 explains the processing in which the flight control device 1 generates different commands depending on the presence or absence of operation information.
  • step S101 the flight control device 1 acquires the position and movement of the aircraft D in ground coordinates AG.
  • the movement of the aircraft D is specifically the direction and speed at which the aircraft D moves.
  • step S102 the flight control device 1 acquires the position and movement of the hull H in ground coordinates AG.
  • the flight control device 1 also acquires operation information input by the operator C from the operation device 2.
  • the flight control device 1 considers this operation information to be expressed in hull coordinates AH.
  • step S103 the flight control device 1 converts the position and movement of the aircraft D acquired in step S101 from the ground coordinates AG to the hull coordinates AH.
  • the flight control device 1 transmits the position and movement of the aircraft D converted to the hull coordinates AH to the operation device 2 as a flight status.
  • step S104 it is determined whether the operation information input in step S102 includes movement of aircraft D. If the operation information does not include movement, the process proceeds to step S105. If the operation information includes movement, the process proceeds to step S106. If no operation information is input, such as when operator C releases the control device 2, or if the operation information indicates hovering, there is no movement, and the process proceeds to step S105.
  • step S105 the flight control device 1 generates a command for aircraft D to remain stationary at hull coordinate AH.
  • step S105 the flight control device 1 generates a command for achieving an amount of operation that results in the same movement as the ground movement of hull H, where operator C is located.
  • step S106 the flight control device 1 generates a command by adding an operation amount that is the same movement as the ground movement of the hull H to the movement of the aircraft D indicated by the operation information.
  • step S107 the flight control device 1 inputs the generated command to the equipment group 30 and drives the equipment group 30.
  • steps S101 to S107 is repeated until aircraft D stops flying.
  • the flight support system 5 generates commands to be input to the equipment group 30 based on the operation information input by the operator C, taking into account the amount of movement of the hull H, even when the operator C is on the hull H that is moving relative to the ground. This allows the operator C to operate the aircraft D in the same way as if he were on the ground, without being aware that the operator C is moving relative to the ground.
  • the flight support system 5a according to a second embodiment differs from the flight support system 5 according to the first embodiment with reference to Fig. 1 in that an aircraft D takes off and lands from a floating body F1 different from the hull H on which an operator C is located, and that an obstacle that may hinder the flight of the aircraft D is installed on the floating body F2.
  • the coordinates of the position acquired on the ground are called ground coordinates AG.
  • the coordinates based on a predetermined position of the hull H where the operator C is located are called hull coordinates AH.
  • the coordinates based on a predetermined position of the floating body F1 from which the aircraft D takes off and lands are called first floating body coordinates AF1.
  • the coordinates based on a predetermined position of the floating body F2 on which the obstacle is placed are called second floating body coordinates AF2.
  • the operation information input by operator C is regarded as operation information in hull coordinates AH, so that the operator can operate aircraft D without considering the movement of hull H.
  • operator C When taking off or landing, or approaching an obstacle, operator C operates aircraft D while keeping a close eye on its relative position to the float F1 that is the subject of takeoff and landing, or the float F2 on which the obstacle is located.
  • the flight control device 1a assumes that the gaze target will change during flight and reduces the burden on the operator by appropriately changing the coordinate system depending on the situation.
  • the flight control device 1a regards the operation information input from the operation device 2 as operation information input in coordinates based on the gaze target, and drives the aircraft D.
  • a flight support system 5a according to the second embodiment will be described with reference to FIG. 6.
  • the flight support system 5a according to the second embodiment differs from the flight support system 5 according to the first embodiment described with reference to FIG. 3 in the conversion unit 12a and the generation unit 13a.
  • the conversion unit 12a in the second embodiment converts the position and movement of the aircraft D relative to the ground acquired by the flight state acquisition unit 11 into coordinates selected by the generation unit 13a described below, and transmits them to the operation device 2.
  • the conversion unit 12a detects the takeoff or landing of the aircraft D from the float F1, it transmits the position and movement of the aircraft in the first float coordinates AF1 to the operation device 2.
  • the conversion unit 12a detects an obstacle on the float F2
  • the generation unit 13a is triggered by the takeoff or landing of aircraft D from the float F1, the detection of an obstacle on the float F2, etc., and determines that the operation information from the operation device 2 is either the first float coordinate AF1, the second float coordinate AF2, or the hull coordinate AH, and generates a command.
  • the generation unit 13a When aircraft D takes off from or lands on the float F1, the generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F1 relative to the ground.
  • the generation unit 13a When aircraft D is located within a specified distance of an obstacle on the float F2, the generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F2 relative to the ground.
  • the generation unit 13a acquires the ground position and movement of the floating body F1 or F2.
  • the floating body F1 or F2 may be equipped with a floating body status management device capable of acquiring the ground position and movement.
  • the generation unit 13 acquires the ground position and movement of each floating body from the floating body status management device.
  • the generation unit 13a may also acquire the ground position and movement of the floating body F1 or F2 from the fluctuation in the distance from the aircraft D to the floating body F1 or F2 and the ground position and movement of the aircraft D.
  • the generation unit 13a may calculate the distance to an object such as the floating body F1 or F2 using various sensors such as LiDar (Light Detection And Ranging), radar, cameras, and GNSS.
  • LiDar Light Detection And Ranging
  • the generation unit 13a When aircraft D takes off or lands on a floating body F1 different from the hull H on which operator C is located, the generation unit 13a generates a command for the equipment group 30 using the operation information input by the operator as operation information in the first floating body coordinate AF1 based on the floating body F1. For example, when an instruction regarding takeoff or landing is input from the operation device 2, the generation unit 13a determines that the operation information is based on the first floating body coordinate AF1, and generates a command.
  • the generation unit 13a For example, suppose that the float F1 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13a combines these to generate a command to move westward at a speed of 3 m/sec. Also suppose that the float F1 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to hover is input as operation information. The generation unit 13a generates a command to move westward at a speed of 1 m/sec. The generation unit 13a inputs the generated command to the equipment group 30, and drives the equipment group 30 in accordance with the command.
  • the generating unit 13a When aircraft D approaches an obstacle and the obstacle is placed on the floating body F2, the generating unit 13a generates a command for the group of devices 30 using the operation information input by the operator as operation information in the second floating body coordinate AF2 based on the floating body F2.
  • the generation unit 13a monitors whether there is an obstacle within a predetermined range relative to the aircraft D, and when an obstacle on the floating body F2 is detected within the predetermined range, the generation unit 13a determines that the operation information is based on the second floating body coordinates AF2, and generates a command.
  • This predetermined range may be set appropriately depending on the size of the obstacle, and the size, position, and movement of the aircraft D.
  • the generation unit 13a For example, suppose that the float F2 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13a combines these to generate a command to move westward at a speed of 3 m/sec. Also suppose that the float F2 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to hover is input as operation information. The generation unit 13a generates a command to move westward at a speed of 1 m/sec. The generation unit 13a inputs the generated command to the equipment group 30, and drives the equipment group 30 in accordance with the command.
  • the generating unit 13a when the generating unit 13a is within a predetermined range of the float F1 that is the target for takeoff and landing, or the float F2 on which an obstacle is provided, the generating unit 13a regards the operation information input from the operating device 2 as an instruction in the coordinate system of that float. This allows the operator C to operate the aircraft D without having to consider the movement of the float.
  • the flight control device 1a can reduce the operating burden on the operator C.
  • the generating unit 13a may generate a command corresponding to a movement that combines the movement included in the operation information and the ground-relative movement of the floating body F1 or F2 excluding the rotational swaying.
  • the generating unit 13a may include a rotation suppressing unit 14a.
  • Rotational swaying may occur in the floats F1 or F2 depending on the size of the floats F1 or F2 or the size of the waves. If commands are generated in a coordinate system based on these floats according to the fluctuations in position and movement caused by rotational swaying, it is conceivable that the control of the aircraft D may exceed its limits.
  • the rotation suppression unit 14a detects periodic rotational sway of the float F1 or F2, it calculates the movement of the float F1 or F2 by excluding the rotational sway from the movement of the float F1 or F2.
  • the generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F1 or F2 relative to the ground with the rotational sway excluded.
  • step S201 the flight control device 1a acquires the position and movement of the aircraft D in the ground coordinates AG.
  • the movement of the aircraft D is specifically the direction and speed at which the aircraft D moves.
  • step S202 the flight control device 1a acquires the position and movement of the vessel H in ground coordinates AG.
  • the flight control device 1 also acquires the operation information input by the operator C from the operation device 2.
  • step S103 coordinates are assigned based on the status of aircraft D.
  • step S204 the flight control device 1a sets the floating body coordinate system of the floating body F1 that is taking off or landing to the current coordinate system.
  • the flight control device 1a considers that the operation information input in step S202 is expressed in the first floating body coordinates AF1.
  • step S205 the flight control device 1a sets the float coordinate system of the float F2 on which the obstacle is installed to the current coordinate system.
  • the flight control device 1a considers that the operation information input in step S202 is expressed in the second float coordinate AF2.
  • step S206 the flight control device 1a sets the hull coordinate system of the hull H to the current coordinate system.
  • the flight control device 1a considers that the operation information input in step S202 is expressed in the hull coordinate AH.
  • step S207 the flight control device 1a converts the position and movement of the aircraft D acquired in step S101 from the ground coordinates AG to the coordinates of the current coordinate system set in step S204 or step S206. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a calculates the position and movement of the aircraft D relative to the float F1. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a calculates the position and movement of the aircraft D relative to the float F2. If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a calculates the position and movement of the aircraft D relative to the hull H. The flight control device 1a transmits the position and movement of the aircraft D converted to the coordinates of the current coordinate system to the operation device 2 as a flight state.
  • step S208 it is determined whether the operation information input in step S202 includes movement of aircraft D. If the operation information does not include movement, the process proceeds to step S209. If the operation information includes movement, the process proceeds to step S210. If no operation information is input, such as when operator C releases the control device 2, or if the operation information indicates hovering, there is no movement, and the process proceeds to step S209.
  • step S209 the flight control device 1 generates a command for the aircraft D to remain stationary in the current coordinate system. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the float F1. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the float F2. If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the hull H on which the operator C is located.
  • step S106 the flight control device 1 generates a command by adding an operation amount that is the same as the ground movement of the reference of the current coordinate to the movement of the aircraft D indicated by the operation information. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the float F1 to the movement of the aircraft D indicated by the operation information. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the float F2 to the movement of the aircraft D indicated by the operation information.
  • the flight control device 1a If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the hull H on which the operator C is located to the movement of the aircraft D indicated by the operation information.
  • step S211 the flight control device 1 inputs the generated command to the equipment group 30 and drives the equipment group 30.
  • steps S201 to S211 is repeated until aircraft D stops flying.
  • the generation unit 13a may generate a command by regarding the information input from the operation device 2 as terrestrial coordinates.
  • the generation unit 13a generates a command according to the movement input from the operation device 2.
  • the flight support system 5a generates commands to be input to the device group 30, regarding the operation information transmitted from the control device 2 as being based on the object that the operator C is gazing at. This allows the operator C to operate the aircraft D without having to consider the movement of the object that he or she is gazing at.
  • the flight support system 5a can reduce the burden on the operator C.
  • the control device 2 held by the operator C may be equipped with various sensors such as a GNSS, an acceleration sensor, and a gyro sensor, so that the control device 2 can grasp its position and movement relative to the ground. The position and movement of the control device 2 relative to the ground are transmitted to the flight control device 1.
  • the flight control device 1 may use the position and movement received from the operation device 2 instead of the position and movement of the hull H. For example, the flight control device 1 may combine the operation information received from the operation device 2 with the movement of the operator C to generate a command to be input to the equipment group 30.
  • the flight control device 1 may synthesize the operation information received from the operation device 2, the movement of the vessel H, and the movement of the operator C, and generate a command to be input to the equipment group 30.
  • the flight control device 1 and operation device 2 of the present embodiment described above each use, for example, a general-purpose computer system equipped with a CPU (Central Processing Unit, processor) 901, memory 902, storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), communication device 904, input device 905, and output device 906.
  • the CPU 901 executes a program loaded on the memory 902, thereby realizing each function of the flight control device 1 and operation device 2.
  • Flight control device 1 and operation device 2 may each be implemented in one computer, or in multiple computers. Furthermore, flight control device 1 and operation device 2 may each be a virtual machine implemented in a computer.
  • the programs of the flight control device 1 and the operating device 2 can be stored on a computer-readable recording medium such as a HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network.
  • a computer-readable recording medium such as a HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network.
  • the computer-readable recording medium is, for example, a non-transitory recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This flight assistance system 5 comprises: a flight control device 1 that controls an aircraft D; and an operation device 2 that transmits, to the flight control device 1, operation information that includes movement of the aircraft D and is inputted from an operator C positioned outside of the aircraft D. The flight control device 1 is provided with: a flight state acquisition unit 11 that acquires the ground position and movement of the aircraft D; and a generation unit 13 that acquires the ground movement of the operator C and generates, from a combination of the movement included in the operation information and the ground movement of the operator, a command for driving a machinery group 30 in the aircraft D.

Description

飛行支援システム、飛行支援方法およびプログラムFLIGHT SUPPORT SYSTEM, FLIGHT SUPPORT METHOD, AND PROGRAM
 本開示は、飛行支援システム、飛行支援方法およびプログラムに関する。 This disclosure relates to a flight support system, a flight support method, and a program.
 近年、ドローンなどの無人航空機(UAV:Unmanned Aerial Vehicle)が普及している。UAVを人が操縦する場合、目視飛行が多く用いられる。目視飛行は、遠隔で機体の挙動を目視観察して、操作装置(コントローラ)から、UAVの移動や姿勢を指示する。 In recent years, drones and other unmanned aerial vehicles (UAVs) have become popular. When a human pilots a UAV, visual flight is often used. In visual flight, the aircraft's behavior is observed visually from a remote location, and the movement and attitude of the UAV are instructed from an operating device (controller).
 UAVの普及に伴い、船舶上からUAVを利用する機会が増えている。このようなUAVは、海上の保安監視、各種計測、陸路からアクセスしにくい沿岸部の調査などに用いられる。 As UAVs become more common, there are more opportunities to use them from ships. Such UAVs are used for maritime security surveillance, various measurements, and surveys of coastal areas that are difficult to access by land.
 一般的な屋外用のUAVは、GNSS(Global Navigation Satellite System)機能を内蔵する。
ホバリング可能なUAV、具体的にはマルチロータ型またはヘリコプター型のUAVなどは、操作者の手が操作装置から離れても、対地的に同じ3次元座標に滞空する機能を持つ場合がある。手を離したら航空機はその場で止まる、というわかりやすさは、操作者の負担を大幅に軽減する。このようなわかりやすい操作は、今日の小型ドローンの普及を牽引していると考えられる。
A typical outdoor UAV has a built-in GNSS (Global Navigation Satellite System) function.
Hovering UAVs, specifically multi-rotor or helicopter-type UAVs, can have the ability to stay in the air at the same three-dimensional coordinates relative to the ground even if the operator's hands are removed from the control device. The ease of use of the aircraft stopping in place when the operator's hands are removed greatly reduces the burden on the operator. This easy-to-understand operation is thought to be the driving force behind the spread of small drones today.
 UAVの操作を支援する機能もある。例えば、視界不良下においても、UAVから着地面の様子を把握できるように、ミリ波レーダとコーナリフレクタを用いて、着地位置を検出する技術がある(非特許文献1)。また障害物を検知し回避する技術がある(非特許文献2)。 There are also functions to assist in the operation of UAVs. For example, there is technology that uses millimeter wave radar and corner reflectors to detect the landing position so that the UAV can grasp the condition of the landing surface even in poor visibility (Non-Patent Document 1). There is also technology that detects and avoids obstacles (Non-Patent Document 2).
 船舶は係留されない限り対地的に移動する浮体となる。浮体に位置する操作者がUAVを操作する場合、UAVの操作が困難な場合がある。例えば、船舶が対地的に移動していることを考慮せずにUAVを操縦した場合、UAVを離陸しただけで、対地的に移動する船舶上の障害物に当たるなどの障害が発生する場合がある。 Unless a ship is moored, it becomes a floating body that moves relative to the ground. When an operator located on a floating body operates a UAV, it can be difficult to operate the UAV. For example, if a UAV is operated without taking into account that the ship is moving relative to the ground, simply taking off the UAV may result in an obstacle such as hitting an obstacle on the ship that is moving relative to the ground.
 非特許文献1に記載の技術は、高度計のように着地点とUAVの相対位置の計測としての利用に限られている。非特許文献1は、船舶などの浮体が揺れたり変動したりする場合に適用することはできない。また非特許文献2に記載の技術は、陸地上の建築物など、地上に固定した座標を持つ障害物を回避するものである。非特許文献2は、船舶などの浮体から操作する場合を想定していない。 The technology described in Non-Patent Document 1 is limited to use in measuring the relative position of the landing point and the UAV, like an altimeter. Non-Patent Document 1 cannot be applied to cases where floating bodies such as ships are swaying or fluctuating. Furthermore, the technology described in Non-Patent Document 2 is for avoiding obstacles with fixed coordinates on the ground, such as buildings on land. Non-Patent Document 2 does not anticipate cases where it will be operated from floating bodies such as ships.
 本開示は、上記事情に鑑みてなされたものであり、本開示の目的は、船舶などの浮体に位置する操作者による、無人航空機の飛行の操作を支援可能な技術を提供することである。 This disclosure has been made in consideration of the above circumstances, and the purpose of this disclosure is to provide technology that can assist an operator located on a floating body such as a ship in controlling the flight of an unmanned aerial vehicle.
 本開示の一態様の飛行支援システムは、航空機を制御する飛行制御装置と、前記航空機外に位置する操作者から入力された航空機の動きを含む操作情報を、前記飛行制御装置に送信する操作装置を備える。前記飛行制御装置は、前記航空機の対地的な位置および動きを取得する飛行状態取得部と、前記操作者の対地的な動きを取得し、前記操作情報が含む動きと、前記操作者の対地的な動きを結合した動きから、前記航空機の機器群を駆動するコマンドを生成する生成部とを備える。 A flight support system according to one embodiment of the present disclosure includes a flight control device that controls an aircraft, and an operation device that transmits operation information including the aircraft's movement input by an operator located outside the aircraft to the flight control device. The flight control device includes a flight status acquisition unit that acquires the ground position and movement of the aircraft, and a generation unit that acquires the ground movement of the operator and generates commands to drive the equipment of the aircraft from a movement that combines the movement included in the operation information and the ground movement of the operator.
 本開示の一態様の飛行支援方法は、操作装置が、航空機外に位置する操作者から入力された前記航空機の動きを含む操作情報を、前記航空機を制御する飛行制御装置に送信し、前記飛行制御装置が、前記航空機の対地的な位置および動きを取得し、前記飛行制御装置が、前記操作者の対地的な動きを取得し、前記操作情報が含む動きと、前記操作者の対地的な動きを結合した動きから、前記航空機の機器群を駆動するコマンドを生成する。 In one aspect of the flight support method disclosed herein, an operating device transmits operation information including the movement of the aircraft input by an operator located outside the aircraft to a flight control device that controls the aircraft, the flight control device acquires the position and movement of the aircraft relative to the ground, the flight control device acquires the movement of the operator relative to the ground, and generates commands to drive equipment of the aircraft from a movement that combines the movement included in the operation information and the movement of the operator relative to the ground.
 本開示の一態様は、上記飛行制御装置として、コンピュータを機能させるプログラムである。 One aspect of the present disclosure is a program that causes a computer to function as the flight control device.
 本開示によれば、船舶などの浮体に位置する操作者による、無人航空機の飛行の操作を支援可能な技術を提供することができる。 This disclosure provides technology that can assist an operator located on a floating body such as a ship in controlling the flight of an unmanned aerial vehicle.
図1は、本開示の第1の実施の形態に係る飛行支援システムのシステム構成を説明する図である。FIG. 1 is a diagram illustrating a system configuration of a flight support system according to a first embodiment of the present disclosure. 図2は、船体の動きを考慮することなく無人航空機を操縦する場合に発生する事故の一例を説明する図である。FIG. 2 is a diagram illustrating an example of an accident that may occur when piloting an unmanned aerial vehicle without taking into account the motion of the hull. 図3は、第1の実施の形態に係る飛行支援システムの機能を説明する図である。FIG. 3 is a diagram illustrating the functions of the flight support system according to the first embodiment. 図4は、第1の実施の形態に係る飛行制御装置の処理を説明するフローチャートである。FIG. 4 is a flowchart illustrating the processing of the flight control device according to the first embodiment. 図5は、本開示の第2の実施の形態に係る飛行支援システムのシステム構成を説明する図である。FIG. 5 is a diagram illustrating a system configuration of a flight support system according to a second embodiment of the present disclosure. 図6は、第2の実施の形態に係る飛行支援システムの機能を説明する図である。FIG. 6 is a diagram illustrating the functions of the flight support system according to the second embodiment. 図7は、第2の実施の形態に係る飛行制御装置の処理を説明するフローチャートである。FIG. 7 is a flowchart illustrating the processing of the flight control device according to the second embodiment. 図8は、飛行制御装置または操作装置に用いられるコンピュータのハードウエア構成を説明する図である。FIG. 8 is a diagram for explaining the hardware configuration of a computer used in the flight control device or the operation device.
 以下、図面を参照して、本開示の実施の形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Below, an embodiment of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same parts are given the same reference numerals and the description will be omitted.
 (第1の実施の形態)
 本開示の第1の実施の形態に係る飛行支援システム5は、飛行制御装置1、操作装置2および船体管理装置3を備える。飛行制御装置1、操作装置2および船体管理装置3は、無線通信により相互に通信可能に接続される。飛行制御装置1および船体管理装置3は、対地的な位置および動きを取得する。この対地的な位置および動きは、GNSS等によって取得される位置および動きである。第1の実施の形態において、操作者Cは、船体H上で移動せずに操作装置2で航空機Dを操縦する。船体管理装置3は、船体H内に設置される。
(First embodiment)
A flight support system 5 according to a first embodiment of the present disclosure includes a flight control device 1, an operation device 2, and a hull management device 3. The flight control device 1, the operation device 2, and the hull management device 3 are connected to each other so that they can communicate with each other via wireless communication. The flight control device 1 and the hull management device 3 acquire terrestrial positions and movements. These terrestrial positions and movements are positions and movements acquired by GNSS or the like. In the first embodiment, an operator C steers an aircraft D with the operation device 2 without moving on the hull H. The hull management device 3 is installed inside the hull H.
 第1の実施の形態において、対地的に取得される位置の座標は、対地座標AGと称される。船体Hの所定位置を基準とする座標は、船体座標AHと称される。第1の実施の形態において操作者Cは船体H上で移動しないので、船体座標AHは、操作者の座標と同一である。 In the first embodiment, the coordinates of the position acquired on the ground are called ground coordinates AG. The coordinates based on a predetermined position of the hull H are called hull coordinates AH. In the first embodiment, since the operator C does not move on the hull H, the hull coordinates AH are the same as the operator's coordinates.
 飛行制御装置1は、航空機Dの駆動を制御するコンピュータである。飛行制御装置1は、航空機Dに内蔵される。航空機Dは、ドローンなどに代表される、人が搭乗しない小型の無人航空機である。航空機D外に位置する操作者Cが、航空機Dの飛行を操作される場合を説明するがこれに限らない。航空機Dの外側に位置する操作者Cが、航空機Dの飛行を操作されればよく、航空機Dの大きさ、人の搭乗の有無は問わない。 The flight control device 1 is a computer that controls the operation of the aircraft D. The flight control device 1 is built into the aircraft D. The aircraft D is a small unmanned aircraft with no human on board, such as a drone. A case will be described in which an operator C positioned outside the aircraft D controls the flight of the aircraft D, but this is not limited to this. As long as an operator C positioned outside the aircraft D controls the flight of the aircraft D, the size of the aircraft D and whether or not there is a human on board are not important.
 操作装置2は、航空機Dの外に位置する操作者Cが、航空機Dの飛行の指示を入力するコンピュータである。操作装置2は、例えば、スティック、ボタンなどの入力装置を備える。操作装置2は、航空機Dの飛行状態などを示す表示装置を備えても良い。操作者Cは、入力装置を操作して、航空機Dの動きを指示する。操作者Cが入力した航空機Dの動きの指示は、航空機Dに送信される。航空機Dは、操作装置2から入力された指示に従って、航空機Dを駆動する。 The operation device 2 is a computer into which an operator C positioned outside the aircraft D inputs instructions for flying the aircraft D. The operation device 2 includes input devices such as a stick and buttons. The operation device 2 may also include a display device showing the flight status of the aircraft D. The operator C operates the input device to instruct the movement of the aircraft D. The instructions for the movement of the aircraft D input by the operator C are transmitted to the aircraft D. The aircraft D drives the aircraft D according to the instructions input from the operation device 2.
 船体管理装置3は、船体Hの対地的な位置および動き等を取得する。船体管理装置3が取得した対地的な位置および動きは、飛行制御装置1に直接的に、あるいは操作装置2を介して飛行制御装置1に関節的に、送信される。 The hull management device 3 acquires the ground position and movement of the hull H. The ground position and movement acquired by the hull management device 3 are transmitted to the flight control device 1 directly or indirectly to the flight control device 1 via the operation device 2.
 図1に示すように、本開示において操作者Cは、船体Hに位置し、操作装置2を使って、航空機Dを操作する。船体Hは、海流または潮流などによって流されたり、エンジンの駆動などにより移動したりする。一般的に、操作者Cが、船体Hの動きを考慮することなく航空機Dを操縦すると、船体Hの障害物に航空機Dが当たるなどの事故が発生する場合がある。 As shown in FIG. 1, in this disclosure, an operator C is positioned on a hull H and uses an operating device 2 to operate an aircraft D. The hull H is carried away by ocean or tidal currents, or moves due to engine drive, etc. In general, if the operator C steers the aircraft D without taking into consideration the movement of the hull H, an accident may occur, such as the aircraft D hitting an obstacle on the hull H.
 図2を参照して、操作者Cが、船体Hの動きを考慮することなく航空機Dを操縦する場合に発生する事故の一例を説明する。図2に示す例において、船体Hは、海面を海流方向に移動しているとする。図2(a)に示すように、操作者Cは、船体Hに位置する。航空機Dは、船体Hで待機する。操作者Cが、図2(b)に示すように、航空機Dを離陸させようと、航空機Dに垂直方向に上昇する指示を入力する。しかしながら、航空機Dが離陸してから船体Hを離れるまでの間にも、船体Hが海流に乗って移動する。従って、航空機Dの位置、船体Hの形状、海流の方向および速度などによって、航空機Dが船体H上の障害物に衝突する場合がある。 With reference to FIG. 2, an example of an accident that occurs when an operator C steers an aircraft D without considering the movement of the hull H will be described. In the example shown in FIG. 2, the hull H is moving on the sea surface in the direction of the ocean current. As shown in FIG. 2(a), the operator C is located on the hull H. The aircraft D waits on the hull H. As shown in FIG. 2(b), the operator C inputs an instruction for the aircraft D to rise vertically in order to take off, in order to make the aircraft D take off. However, even between when the aircraft D takes off and when it leaves the hull H, the hull H moves with the ocean current. Therefore, depending on the position of the aircraft D, the shape of the hull H, and the direction and speed of the ocean current, the aircraft D may collide with an obstacle on the hull H.
 本開示は、このように、船舶などの浮体に位置する操作者Cが、直感的に航空機Dの飛行を操作できるように、操作者Cの操作を支援する。 In this way, the present disclosure provides support for the operation of operator C, who is located on a floating body such as a ship, so that operator C can intuitively control the flight of aircraft D.
 図3を参照して、第1の実施の形態に係る飛行支援システム5の処理を説明する。 The processing of the flight support system 5 according to the first embodiment will be described with reference to FIG. 3.
 船体管理装置3は、GNSSなどにより、船体状態を取得する。船体状態は、船体Hの対地的な位置および動きを含む。操作者Cが船体Hにおいて移動しない場合、船体管理装置3が取得する対地的な位置および動きは、操作者Cの対地的な位置および動きとなる。船体管理装置3は、船体Hの船体状態を、操作装置2に通知する。 The hull management device 3 acquires the hull status using GNSS or the like. The hull status includes the ground position and movement of the hull H. If the operator C does not move on the hull H, the ground position and movement acquired by the hull management device 3 will be the ground position and movement of the operator C. The hull management device 3 notifies the operation device 2 of the hull status of the hull H.
 操作装置2は、操作者Cから入力された航空機Dの動きを含む操作情報を、飛行制御装置1に送信する。操作情報は、航空機Dが移動する方向および速度などの航空機Dの動きの指示、航空機Dに滞空させる指示などである。操作装置2が操作者Cによって操作されない場合、飛行制御装置1は、航空機Dを滞空させる指示が入力されたと介して、航空機Dを滞空させても良い。 The control device 2 transmits operation information, including the movement of the aircraft D, input by the operator C to the flight control device 1. The operation information includes instructions for the movement of the aircraft D, such as the direction and speed at which the aircraft D will move, and instructions to keep the aircraft D in the air. If the control device 2 is not operated by the operator C, the flight control device 1 may keep the aircraft D in the air when an instruction to keep the aircraft D in the air is input.
 操作装置2は、船体管理装置3から入力された船体Hの船体状態を、航空機Dに送信する。船体状態は、具体的には船体Hの対地的な位置および動きであって、操作者Cが船体Hで動かない場合、操作者Cの対地的な位置および動きとなる。 The operation device 2 transmits the hull status of the hull H input from the hull management device 3 to the aircraft D. The hull status is specifically the position and movement of the hull H relative to the ground, and when the operator C does not move on the hull H, it becomes the position and movement of the operator C relative to the ground.
 操作装置2は、航空機Dの飛行制御装置1から、航空機Dの飛行状態を取得して、表示装置(図示せず)に表示する。飛行状態は、航空機Dの傾き、位置および動きである。航空機Dの位置および動きは、後述するように、操作者Cが直感的に理解しやすい座標軸を用いて表示されても良いし、対地的なGNSS座標軸を用いて表示されても良い。 The operating device 2 acquires the flight status of the aircraft D from the flight control device 1 of the aircraft D and displays it on a display device (not shown). The flight status is the inclination, position, and movement of the aircraft D. As will be described later, the position and movement of the aircraft D may be displayed using coordinate axes that are easy for the operator C to intuitively understand, or may be displayed using terrestrial GNSS coordinate axes.
 航空機Dは、飛行制御装置1と機器群30を備える。飛行制御装置1は、航空機Dを制御する。飛行制御装置1は、操作装置2から入力された操作情報および船体状態から、航空機Dの機器群を駆動するコマンドを生成して、機器群30に入力する。機器群30は、飛行制御装置1から入力されたコマンドに従って駆動する。機器群30は、例えば、モータ、エンジン、舵などである。 Aircraft D is equipped with a flight control device 1 and a group of equipment 30. The flight control device 1 controls aircraft D. The flight control device 1 generates commands to drive the group of equipment of aircraft D from the operation information and hull state input from the operation device 2, and inputs these commands to the group of equipment 30. The group of equipment 30 drives according to the commands input from the flight control device 1. The group of equipment 30 includes, for example, a motor, an engine, and a rudder.
 飛行制御装置1は、飛行状態取得部11、変換部12および生成部13の各機能と、これらの機能で参照または更新されるデータ群を有する。各機能は、CPU901に実装される。各データは、メモリ902またはストレージ903等の記憶装置に記憶される。 The flight control device 1 has the functions of a flight state acquisition unit 11, a conversion unit 12, and a generation unit 13, as well as a group of data that is referenced or updated by these functions. Each function is implemented in the CPU 901. Each piece of data is stored in a storage device such as the memory 902 or storage 903.
 飛行状態取得部11は、GNSSなどで、航空機Dの対地的な位置および動きを取得する。飛行状態取得部11は、GNSS以外の方法で、航空機Dの対地的な位置および動きを取得しても良い。 The flight status acquisition unit 11 acquires the position and movement of the aircraft D relative to the ground using GNSS or the like. The flight status acquisition unit 11 may acquire the position and movement of the aircraft D relative to the ground using a method other than GNSS.
 飛行状態取得部11は、このほか、航空機Dの傾きなど、操作者Cが操作装置2を操作する際に必要な情報を取得しても良い。例えば、飛行状態取得部11は、周囲の風を検知するセンサを使って、風の向きおよび速度を検知しても良い。 The flight state acquisition unit 11 may also acquire information necessary for the operator C to operate the operation device 2, such as the inclination of the aircraft D. For example, the flight state acquisition unit 11 may detect the wind direction and speed using a sensor that detects the surrounding wind.
 変換部12は、飛行状態取得部11が取得した航空機Dの対地的な位置および動きを、操作者C視点の座標、具体的には船体座標AHに変換して、航空機Dの飛行状態として、操作装置2に送信する。 The conversion unit 12 converts the ground position and movement of the aircraft D acquired by the flight status acquisition unit 11 into the coordinates of the operator C's viewpoint, specifically the hull coordinates AH, and transmits them to the operation device 2 as the flight status of the aircraft D.
 例えば、航空機Dの対地的な位置が、操作者Cの対地的な位置の北方向に2km離れている場合、変換部12は、航空機Dの位置として北方向に2km離れていることを含む飛行状態を生成する。また航空機Dが、対地的に東方向に2m/secの速度で移動するのに対し、操作者Cが対地的に西方向に1m/secの早さで移動する場合、変換部12は、航空機Dが東方向に3m/secの速度で移動していることを含む飛行状態を生成する。 For example, if the position of aircraft D relative to the ground is 2 km north of the position of operator C relative to the ground, the conversion unit 12 generates a flight state including the position of aircraft D being 2 km north. Also, if aircraft D moves eastward relative to the ground at a speed of 2 m/sec, while operator C moves westward relative to the ground at a speed of 1 m/sec, the conversion unit 12 generates a flight state including aircraft D moving eastward at a speed of 3 m/sec.
 変換部12は、船体座標AHに変換された航空機Dの位置および動き、具体的には、船体Hに対する航空機Dの相対的な位置および動きを、飛行状態として操作装置2に送信する。変換部12が、船体座標AHにおける航空機Dの位置および動きを操作装置2に知らせることにより、操作者Cは、船体Hの移動を気にすることなく、航空機Dの位置及び動きを把握することができる。 The conversion unit 12 transmits the position and movement of the aircraft D converted into the hull coordinates AH, specifically, the relative position and movement of the aircraft D with respect to the hull H, to the operation device 2 as a flight state. By the conversion unit 12 informing the operation device 2 of the position and movement of the aircraft D in the hull coordinates AH, the operator C can grasp the position and movement of the aircraft D without having to worry about the movement of the hull H.
 生成部13は、操作者Cの対地的な動きを取得し、操作装置2の操作情報が含む航空機Dの動きと、操作者の対地的な動きを結合した動きから、航空機Dの機器群30を駆動するコマンドを生成する。操作者Cは、操作者C自身が対地的に動いていることを意識することなく、航空機Dを操作することができるので、地上で操作する場合と同様に、航空機Dを操作することができる。 The generation unit 13 acquires the ground movement of the operator C, and generates a command to drive the group of devices 30 of the aircraft D from a movement that combines the ground movement of the operator and the movement of the aircraft D contained in the operation information of the operation device 2. The operator C can operate the aircraft D without being aware that the operator C himself is moving on the ground, and can therefore operate the aircraft D in the same way as when operating it on the ground.
 操作者Cが船体H上で移動しない場合、生成部13は、操作装置2から入力された操作情報が、船体座標AHにおける指示であるとみなして、コマンドを生成する。例えば、操作者Cが対地的に西向きに1m/secの速度で移動し、操作情報として、西向きに2m/secの速度で移動する指示が入力されたとする。生成部13は、これらを合成して、西向きに3m/secの速度で移動するためのコマンドを生成する。生成部13は、生成したコマンドを機器群30に入力して、コマンドに従って機器群30を駆動させる。生成部13は、現在の航空機Dの飛行状態も考慮して、操作装置2から入力された航空機Dの動きを実現するためのコマンドを生成しても良い。 If the operator C is not moving on the hull H, the generation unit 13 regards the operation information input from the operation device 2 as an instruction in the hull coordinate AH and generates a command. For example, assume that the operator C is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13 combines these to generate a command to move westward at a speed of 3 m/sec. The generation unit 13 inputs the generated command to the device group 30 and drives the device group 30 in accordance with the command. The generation unit 13 may also generate a command to realize the movement of the aircraft D input from the operation device 2, taking into account the current flight state of the aircraft D.
 生成部13は、操作情報がない、または動きを含まない場合、操作者Cの対地的な動きから、コマンドを生成する。例えば操作者Cが操作装置2から手を離した場合、航空機Dは、ホバリングなどによりその場で滞空することが知られている。操作者Cが操作装置2から手を離した場合、あるいは、航空機Dの静止を指示または期待する場合、操作者Cは、操作者Cに対して相対的に同じ位置での滞空を期待する。しかしながら、操作者Cが船体Hなどの浮体の上にいる場合、航空機Dがその場で滞空してしまうと、操作者Cが移動することに伴って、操作者Cに対する航空機Dの相対的な位置が変化してしまい、図2に示すような障害物との衝突などが発生する場合がある。 If there is no operation information or if the information does not include movement, the generation unit 13 generates a command from the movement of the operator C relative to the ground. For example, it is known that when the operator C releases his/her hands from the operation device 2, the aircraft D will hover in place by hovering or the like. When the operator C releases his/her hands from the operation device 2, or when the operator C instructs or expects the aircraft D to stop, the operator C expects the aircraft D to hover in the same position relative to the operator C. However, if the operator C is on a floating body such as a ship H, and the aircraft D hovers in place, the position of the aircraft D relative to the operator C will change as the operator C moves, which may result in a collision with an obstacle as shown in FIG. 2.
 そこで、操作装置2から操作情報が入力されない、または静止が指示される場合、生成部13は、操作者Cがいる船体座標AHにおいて、航空機Dが無移動となるコマンド、換言すると、操作者Cの動きと同じように、航空機Dが動くようなコマンドを生成する。例えば操作者Cが対地的に西向きに1m/secの速度で移動する場合、生成部13は、航空機Dが対地的に西向きに1m/secの速度で移動するコマンドを生成する。これにより、航空機Dは、操作者Cの動きと同様に動き、操作者Cに対する相対的な位置に変化がない。操作者Cは、地上で操作する場合と同様に、航空機Dを操作することができる。 Therefore, when no operation information is input from the operation device 2 or when a stationary command is given, the generation unit 13 generates a command for aircraft D to remain stationary at the hull coordinate AH where the operator C is located, in other words, a command for aircraft D to move in the same manner as the movement of the operator C. For example, when the operator C moves westward relative to the ground at a speed of 1 m/sec, the generation unit 13 generates a command for aircraft D to move westward relative to the ground at a speed of 1 m/sec. As a result, aircraft D moves in the same manner as the operator C, and there is no change in its position relative to the operator C. The operator C can operate aircraft D in the same manner as when operating it on the ground.
 航空機Dは、その大きさによっては、風の影響を受けやすく、操作装置2からの操作にかかわらず、風の影響で流される場合がある。そこで、航空機Dが風を検知した場合、生成部13は、さらに、風の方向および速度を相殺する動きを加算して、コマンドを生成しても良い。 Depending on its size, aircraft D may be easily affected by wind and may be blown away by the wind regardless of the operation from the control device 2. Therefore, when aircraft D detects wind, the generation unit 13 may generate a command by further adding a movement that offsets the direction and speed of the wind.
 例えば飛行状態取得部11は、周囲の風を検知するセンサを使って、風の向きおよび速度を検知する。生成部13は、飛行状態取得部11が検知した風の向きおよび速度を相殺する動きも考慮して、コマンドを生成する。風の向きおよび速度を相殺する動きとは、風の向きと正反対の方向の風の速度と同じ速度の動きである。 For example, the flight state acquisition unit 11 detects the wind direction and speed using a sensor that detects the surrounding wind. The generation unit 13 generates a command taking into consideration a movement that offsets the wind direction and speed detected by the flight state acquisition unit 11. A movement that offsets the wind direction and speed is a movement that is the same speed as the wind speed in the direction opposite to the wind direction.
 例えば、操作者Cが対地的に西向きに1m/secの速度で移動し、操作情報として、西向きに2m/secの速度で移動する指示が入力され、西向きに1m/secの風が検知される場合を考える。生成部13は、西向き1m/secの風を相殺する動きとして、東向き1m/secの動きと、操作者Cの動きとして、西向き1m/secの動きと、操作情報として、西向き2m/secの動きを合成する。生成部13は、西向きに2m/secの速度で移動するためのコマンドを生成する。 For example, consider a case where operator C is moving westward relative to the ground at a speed of 1 m/sec, an instruction to move westward at a speed of 2 m/sec is input as operation information, and a westward wind of 1 m/sec is detected. The generation unit 13 synthesizes an eastward movement of 1 m/sec to offset the westward wind of 1 m/sec, a westward movement of 1 m/sec as the movement of operator C, and a westward movement of 2 m/sec as the operation information. The generation unit 13 generates a command to move westward at a speed of 2 m/sec.
 これにより航空機Dは、操作者Cの対地的な移動、および操作者Cが入力した操作情報のほか、航空機Dが風の影響で流さることも考慮したコマンドで駆動する。操作者Cは、航空機Dが受ける風の影響を考慮して操作する必要がなく、容易に航空機Dを操作することができる。 As a result, aircraft D is driven by commands that take into account operator C's movement over the ground, operation information input by operator C, and also the drift of aircraft D due to the effects of wind. Operator C does not need to take into account the effects of wind on aircraft D when operating the aircraft, and can easily operate aircraft D.
 図4を参照して、飛行制御装置1の処理の一例を説明する。図4は、操作情報の有無によって、飛行制御装置1が、異なるコマンドを生成する処理を説明する。 An example of the processing of the flight control device 1 will be described with reference to Figure 4. Figure 4 explains the processing in which the flight control device 1 generates different commands depending on the presence or absence of operation information.
 ステップS101において飛行制御装置1は、航空機Dの位置および動きを、対地座標AGで取得する。航空機Dの動きは、具体的には、航空機Dが移動する方向と移動速度である。 In step S101, the flight control device 1 acquires the position and movement of the aircraft D in ground coordinates AG. The movement of the aircraft D is specifically the direction and speed at which the aircraft D moves.
 ステップS102において飛行制御装置1は、船体Hの位置および動きを対地座標AGで取得する。また飛行制御装置1は、操作装置2から操作者Cが入力した操作情報を取得する。飛行制御装置1は、この操作情報は、船体座標AHで表現されているとみなす。 In step S102, the flight control device 1 acquires the position and movement of the hull H in ground coordinates AG. The flight control device 1 also acquires operation information input by the operator C from the operation device 2. The flight control device 1 considers this operation information to be expressed in hull coordinates AH.
 ステップS103において飛行制御装置1は、ステップS101で取得した航空機Dの位置および動きを、対地座標AGから、船体座標AHに変換する。飛行制御装置1は、船体座標AHに変換された航空機Dの位置および動きを、飛行状態として、操作装置2に送信する。 In step S103, the flight control device 1 converts the position and movement of the aircraft D acquired in step S101 from the ground coordinates AG to the hull coordinates AH. The flight control device 1 transmits the position and movement of the aircraft D converted to the hull coordinates AH to the operation device 2 as a flight status.
 ステップS104において、ステップS102で入力された操作情報が、航空機Dの動きを含むか否かを判定する。操作情報が動きを含まない場合、ステップS105に進む。操作情報が動きを含む場合、ステップS106に進む。操作者Cが操作装置2を手放すなど、操作情報が入力されていない場合、および操作情報が滞空を指示する場合、動きなしとしてステップS105に進む。 In step S104, it is determined whether the operation information input in step S102 includes movement of aircraft D. If the operation information does not include movement, the process proceeds to step S105. If the operation information includes movement, the process proceeds to step S106. If no operation information is input, such as when operator C releases the control device 2, or if the operation information indicates hovering, there is no movement, and the process proceeds to step S105.
 ステップS105において飛行制御装置1は、船体座標AHにおいて、航空機Dが無移動となるコマンドを生成する。ステップS105において飛行制御装置1は、操作者Cのいる船体Hの対地移動と同じ移動となる操作量を実現するコマンドを生成する。 In step S105, the flight control device 1 generates a command for aircraft D to remain stationary at hull coordinate AH. In step S105, the flight control device 1 generates a command for achieving an amount of operation that results in the same movement as the ground movement of hull H, where operator C is located.
 ステップS106において飛行制御装置1は、操作情報が示す航空機Dの動きに、船体Hの対地移動と同じ移動となる操作量を加算して、コマンドを生成する。 In step S106, the flight control device 1 generates a command by adding an operation amount that is the same movement as the ground movement of the hull H to the movement of the aircraft D indicated by the operation information.
 ステップS105またはステップS106においてコマンドが生成されると、ステップS107において飛行制御装置1は、生成したコマンドを機器群30に入力し、機器群30を駆動する。 When a command is generated in step S105 or step S106, in step S107 the flight control device 1 inputs the generated command to the equipment group 30 and drives the equipment group 30.
 ステップS101ないしステップS107の処理は、航空機Dが飛行を停止するまで繰り返される。 The processing of steps S101 to S107 is repeated until aircraft D stops flying.
 本開示の実施の形態に係る飛行支援システム5は、操作者Cが対地的に移動する船体Hにいる場合でも、操作者Cが入力した操作情報に、船体Hの移動量を考慮して、機器群30に入力するコマンドを生成する。これにより操作者Cは、操作者Cが対地的に移動していることを意識することなく、地上と同様に航空機Dを操作することができる。 The flight support system 5 according to the embodiment of the present disclosure generates commands to be input to the equipment group 30 based on the operation information input by the operator C, taking into account the amount of movement of the hull H, even when the operator C is on the hull H that is moving relative to the ground. This allows the operator C to operate the aircraft D in the same way as if he were on the ground, without being aware that the operator C is moving relative to the ground.
 (第2の実施の形態)
 図5を参照して、第2の実施の形態に係る飛行支援システム5aを説明する。第2の実施の形態に係る飛行支援システム5aは、図1を参照した第1の実施の形態に係る飛行支援システム5と比べて、操作者Cが位置する船体Hとは異なる浮体F1から、航空機Dが離着陸する点、および航空機Dの飛行の障害になりうる障害物が浮体F2に設置される点が異なる。
Second Embodiment
A flight support system 5a according to a second embodiment will be described with reference to Fig. 5. The flight support system 5a according to the second embodiment differs from the flight support system 5 according to the first embodiment with reference to Fig. 1 in that an aircraft D takes off and lands from a floating body F1 different from the hull H on which an operator C is located, and that an obstacle that may hinder the flight of the aircraft D is installed on the floating body F2.
 第2の実施の形態において、対地的に取得される位置の座標は、対地座標AGと称される。操作者Cがいる船体Hの所定位置を基準とする座標は、船体座標AHと称される。航空機Dが離着陸する浮体F1の所定位置を基準とする座標は、第1の浮体座標AF1と称される。障害物が設置される浮体F2の所定位置を基準とする座標は、第2の浮体座標AF2と称される。 In the second embodiment, the coordinates of the position acquired on the ground are called ground coordinates AG. The coordinates based on a predetermined position of the hull H where the operator C is located are called hull coordinates AH. The coordinates based on a predetermined position of the floating body F1 from which the aircraft D takes off and lands are called first floating body coordinates AF1. The coordinates based on a predetermined position of the floating body F2 on which the obstacle is placed are called second floating body coordinates AF2.
 第1の実施の形態において、操作者Cが船体Hなどの浮体に位置する場合、操作者Cが入力した操作情報を、船体座標AHにおける操作情報とみなすことで、操作者が船体Hの移動を考慮することなく航空機Dを操作できる場合を説明した。 In the first embodiment, when operator C is located on a floating body such as hull H, the operation information input by operator C is regarded as operation information in hull coordinates AH, so that the operator can operate aircraft D without considering the movement of hull H.
 一方、第2の実施の形態において、航空機Dが、操作者Cがいる船体Hとは異なる浮体に注視する場合を説明する。操作者Cがいる船体Hとは異なる浮体とは、航空機Dが離着陸する浮体F1、または障害物が設置される浮体F2である。 On the other hand, in the second embodiment, a case will be described in which aircraft D focuses on a floating body other than the hull H on which operator C is located. The floating body other than the hull H on which operator C is located is the floating body F1 on which aircraft D takes off and lands, or the floating body F2 on which an obstacle is installed.
 離着陸時および障害物に接近した場合、操作者Cは、離着陸の対象となる浮体F1、あるいは障害物が設けられた浮体F2との相対位置を注視して、操作する。離着陸点または障害物に近ければ近いほど、低い速度で航空機Dを移動することにより、航空機Dの機体および離着陸点または障害物へのダメージの抑制が期待できるので、操作者Cは、浮体F1またはF2に対する航空機Dの相対位置に注視して操作するためである。 When taking off or landing, or approaching an obstacle, operator C operates aircraft D while keeping a close eye on its relative position to the float F1 that is the subject of takeoff and landing, or the float F2 on which the obstacle is located. The closer aircraft D is to the takeoff and landing point or obstacle, the slower it can be moved at in order to minimize damage to the fuselage of aircraft D and the takeoff and landing point or obstacle, so operator C operates aircraft D while keeping a close eye on its relative position to the float F1 or F2.
 第2の実施の形態に係る飛行制御装置1aは、飛行中に注視対象が異なることを想定して、場面に応じて適宜座標系を変更することにより、操作者の負担を軽減する。飛行制御装置1aは、操作装置2から入力された操作情報が、注視対象を基準とする座標で入力された操作情報とみなして、航空機Dを駆動する。 The flight control device 1a according to the second embodiment assumes that the gaze target will change during flight and reduces the burden on the operator by appropriately changing the coordinate system depending on the situation. The flight control device 1a regards the operation information input from the operation device 2 as operation information input in coordinates based on the gaze target, and drives the aircraft D.
 図6を参照して、第2の実施の形態に係る飛行支援システム5aを説明する。第2の実施の形態に係る飛行支援システム5aは、図3を参照して説明した第1の実施の形態に係る飛行支援システム5と比べて、変換部12aおよび生成部13aが異なる。 A flight support system 5a according to the second embodiment will be described with reference to FIG. 6. The flight support system 5a according to the second embodiment differs from the flight support system 5 according to the first embodiment described with reference to FIG. 3 in the conversion unit 12a and the generation unit 13a.
 第2の実施の形態に係る変換部12aは、飛行状態取得部11が取得した、航空機Dの対地的な位置および動きを、後述の生成部13aにおいて選択される座標に変換して、操作装置2に送信する。変換部12aは、浮体F1からの航空機Dの離発着を検知すると、第1の浮体座標AF1における航空機の位置および動きを、操作装置2に送信する。変換部12aは、浮体F2の障害物を検知すると、第2の浮体座標AF2における航空機の位置および動きを、操作装置2に送信する。変換部12aは、それ以外の場合、船体座標AHにおける航空機の位置および動きを、操作装置2に送信する。 The conversion unit 12a in the second embodiment converts the position and movement of the aircraft D relative to the ground acquired by the flight state acquisition unit 11 into coordinates selected by the generation unit 13a described below, and transmits them to the operation device 2. When the conversion unit 12a detects the takeoff or landing of the aircraft D from the float F1, it transmits the position and movement of the aircraft in the first float coordinates AF1 to the operation device 2. When the conversion unit 12a detects an obstacle on the float F2, it transmits the position and movement of the aircraft in the second float coordinates AF2 to the operation device 2. In all other cases, the conversion unit 12a transmits the position and movement of the aircraft in the hull coordinates AH to the operation device 2.
 生成部13aは、浮体F1からの航空機Dの離発着、浮体F2の障害物の検知などをトリガーとして、操作装置2からの操作情報が、第1の浮体座標AF1、第2の浮体座標AF2および船体座標AHのいずれかと判定して、コマンドを生成する。航空機Dが、浮体F1から離陸または浮体に着陸する場合、生成部13aは、操作情報が含む動きと、浮体F1の対地的な動きを結合した動きに対応するコマンドを生成する。航空機Dが、浮体F2上の障害物に対して所定距離内に位置する場合、生成部13aは、操作情報が含む動きと、浮体F2の対地的な動きを結合した動きに対応するコマンドを生成する。 The generation unit 13a is triggered by the takeoff or landing of aircraft D from the float F1, the detection of an obstacle on the float F2, etc., and determines that the operation information from the operation device 2 is either the first float coordinate AF1, the second float coordinate AF2, or the hull coordinate AH, and generates a command. When aircraft D takes off from or lands on the float F1, the generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F1 relative to the ground. When aircraft D is located within a specified distance of an obstacle on the float F2, the generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F2 relative to the ground.
 生成部13aは、浮体F1または浮体F2の対地的な位置および動きを取得する。例えば、浮体F1または浮体F2が、対地的な位置および動きを取得可能な浮体状態管理装置を備えても良い。生成部13は、浮体状態管理装置から、各浮体の対地的な位置および動きを取得する。また、生成部13aは、航空機Dからの浮体F1またはF2までの距離の変動と、航空機Dの対地的な位置および動きなどから、生成部13は、浮体F1またはF2の対地的な位置および動きを取得しても良い。生成部13aは、LiDar(Light Detection And Ranging)、レーダ、カメラ、GNSSなどの各種センサを使って、浮体F1または浮体F2などの対象までの距離を算出しても良い。 The generation unit 13a acquires the ground position and movement of the floating body F1 or F2. For example, the floating body F1 or F2 may be equipped with a floating body status management device capable of acquiring the ground position and movement. The generation unit 13 acquires the ground position and movement of each floating body from the floating body status management device. The generation unit 13a may also acquire the ground position and movement of the floating body F1 or F2 from the fluctuation in the distance from the aircraft D to the floating body F1 or F2 and the ground position and movement of the aircraft D. The generation unit 13a may calculate the distance to an object such as the floating body F1 or F2 using various sensors such as LiDar (Light Detection And Ranging), radar, cameras, and GNSS.
 航空機Dが、操作者Cがいる船体Hとは異なる浮体F1に対して離着陸する場合、生成部13aは、操作者が入力した操作情報を、その浮体F1を基準とした第1の浮体座標AF1における操作情報として、機器群30のコマンドを生成する。例えば、操作装置2から離着陸に関する指示が入力されると、生成部13aは、操作情報が第1の浮体座標AF1を基準にしていると判定して、コマンドを生成する。 When aircraft D takes off or lands on a floating body F1 different from the hull H on which operator C is located, the generation unit 13a generates a command for the equipment group 30 using the operation information input by the operator as operation information in the first floating body coordinate AF1 based on the floating body F1. For example, when an instruction regarding takeoff or landing is input from the operation device 2, the generation unit 13a determines that the operation information is based on the first floating body coordinate AF1, and generates a command.
 例えば、浮体F1が対地的に西向きに1m/secの速度で移動し、操作情報として、西向きに2m/secの速度で移動する指示が入力されたとする。生成部13aは、これらを合成して、西向きに3m/secの速度で移動するためのコマンドを生成する。また浮体F1が対地的に西向きに1m/secの速度で移動し、操作情報として、滞空の指示が入力されたとする。生成部13aは、西向きに1m/secの速度で移動するためのコマンドを生成する。生成部13aは、生成したコマンドを機器群30に入力して、コマンドに従って機器群30を駆動させる。 For example, suppose that the float F1 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13a combines these to generate a command to move westward at a speed of 3 m/sec. Also suppose that the float F1 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to hover is input as operation information. The generation unit 13a generates a command to move westward at a speed of 1 m/sec. The generation unit 13a inputs the generated command to the equipment group 30, and drives the equipment group 30 in accordance with the command.
 航空機Dが障害物に接近し、その障害物が浮体F2上に設置される場合、生成部13aは、操作者が入力した操作情報を、その浮体F2を基準とした第2の浮体座標AF2における操作情報として、機器群30のコマンドを生成する。 When aircraft D approaches an obstacle and the obstacle is placed on the floating body F2, the generating unit 13a generates a command for the group of devices 30 using the operation information input by the operator as operation information in the second floating body coordinate AF2 based on the floating body F2.
 生成部13aは、航空機Dに対して所定範囲に障害物があるか否かを監視し、所定範囲内に浮体F2上の障害物を検知すると、生成部13aは、操作情報が第2の浮体座標AF2を基準にしていると判定して、コマンドを生成する。この所定範囲は、障害物の大きさ、航空機Dの大きさ、位置および動きに応じて適宜設定されても良い。 The generation unit 13a monitors whether there is an obstacle within a predetermined range relative to the aircraft D, and when an obstacle on the floating body F2 is detected within the predetermined range, the generation unit 13a determines that the operation information is based on the second floating body coordinates AF2, and generates a command. This predetermined range may be set appropriately depending on the size of the obstacle, and the size, position, and movement of the aircraft D.
 例えば、浮体F2が対地的に西向きに1m/secの速度で移動し、操作情報として、西向きに2m/secの速度で移動する指示が入力されたとする。生成部13aは、これらを合成して、西向きに3m/secの速度で移動するためのコマンドを生成する。また浮体F2が対地的に西向きに1m/secの速度で移動し、操作情報として、滞空の指示が入力されたとする。生成部13aは、西向きに1m/secの速度で移動するためのコマンドを生成する。生成部13aは、生成したコマンドを機器群30に入力して、コマンドに従って機器群30を駆動させる。 For example, suppose that the float F2 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to move westward at a speed of 2 m/sec is input as operation information. The generation unit 13a combines these to generate a command to move westward at a speed of 3 m/sec. Also suppose that the float F2 is moving westward relative to the ground at a speed of 1 m/sec, and an instruction to hover is input as operation information. The generation unit 13a generates a command to move westward at a speed of 1 m/sec. The generation unit 13a inputs the generated command to the equipment group 30, and drives the equipment group 30 in accordance with the command.
 第2の実施の形態において生成部13aは、離着陸の対象となる浮体F1、または障害物が設けられた浮体F2に対して所定範囲内にいる場合、操作装置2から入力される操作情報を、その浮体の座標系における指示とみなす。これにより、操作者Cは、浮体の移動を考慮することなく、航空機Dを操作することができる。飛行制御装置1aは、操作者Cの操作負担を軽減することができる。 In the second embodiment, when the generating unit 13a is within a predetermined range of the float F1 that is the target for takeoff and landing, or the float F2 on which an obstacle is provided, the generating unit 13a regards the operation information input from the operating device 2 as an instruction in the coordinate system of that float. This allows the operator C to operate the aircraft D without having to consider the movement of the float. The flight control device 1a can reduce the operating burden on the operator C.
 浮体F1またはF2の周期的な回転揺れを検出する場合、生成部13aは、操作情報が含む動きと、回転揺れを除外した浮体F1またはF2の対地的な動きを結合した動きに対応するコマンドを生成しても良い。 When detecting periodic rotational swaying of the floating body F1 or F2, the generating unit 13a may generate a command corresponding to a movement that combines the movement included in the operation information and the ground-relative movement of the floating body F1 or F2 excluding the rotational swaying.
 生成部13aは、回転抑制部14aを備えても良い。浮体F1またはF2の大きさまたは波の大きさなどによって、浮体F1またはF2に回転揺れが発生する場合がある。回転揺れに伴う位置および動きの変動に従って、これらの浮体を基準とする座標系でコマンドを生成する場合、航空機Dの制御が限界を超えてしまう場合が想定される。 The generating unit 13a may include a rotation suppressing unit 14a. Rotational swaying may occur in the floats F1 or F2 depending on the size of the floats F1 or F2 or the size of the waves. If commands are generated in a coordinate system based on these floats according to the fluctuations in position and movement caused by rotational swaying, it is conceivable that the control of the aircraft D may exceed its limits.
 そこで回転抑制部14aは、浮体F1またはF2の周期的な回転揺れを検出する場合、浮体F1またはF2の動きから、回転揺れを除外して、浮体F1またはF2の動きを算出する。生成部13aは、操作情報が含む動きと、回転揺れを除外した浮体F1またはF2の対地的な動きを結合した動きに対応するコマンドを生成する。 When the rotation suppression unit 14a detects periodic rotational sway of the float F1 or F2, it calculates the movement of the float F1 or F2 by excluding the rotational sway from the movement of the float F1 or F2. The generation unit 13a generates a command corresponding to a movement that combines the movement included in the operation information and the movement of the float F1 or F2 relative to the ground with the rotational sway excluded.
 これにより生成部13aは、航空機Dが制御可能な範囲内のコマンドを生成することが可能になる。 This enables the generation unit 13a to generate commands within the range in which aircraft D can be controlled.
 図7を参照して、第2の実施の形態に係る飛行制御装置1aの処理を説明する。 The processing of the flight control device 1a according to the second embodiment will be described with reference to FIG. 7.
 ステップS201において飛行制御装置1aは、航空機Dの位置および動きを、対地座標AGで取得する。航空機Dの動きは、具体的には、航空機Dが移動する方向と移動速度である。 In step S201, the flight control device 1a acquires the position and movement of the aircraft D in the ground coordinates AG. The movement of the aircraft D is specifically the direction and speed at which the aircraft D moves.
 ステップS202において飛行制御装置1aは、船体Hの位置および動きを対地座標AGで取得する。また飛行制御装置1は、操作装置2から操作者Cが入力した操作情報を取得する。 In step S202, the flight control device 1a acquires the position and movement of the vessel H in ground coordinates AG. The flight control device 1 also acquires the operation information input by the operator C from the operation device 2.
 ステップS103において、航空機Dの状況により、座標を振り分ける。 In step S103, coordinates are assigned based on the status of aircraft D.
 航空機Dが、浮体F1に対して離着陸する場合、ステップS204に進む。ステップS204において飛行制御装置1aは、離着陸する浮体F1の浮体座標系を、現在の座標系に設定する。飛行制御装置1aは、ステップS202で入力された操作情報は、第1の浮体座標AF1で表現されているとみなす。 If the aircraft D is taking off or landing on the floating body F1, proceed to step S204. In step S204, the flight control device 1a sets the floating body coordinate system of the floating body F1 that is taking off or landing to the current coordinate system. The flight control device 1a considers that the operation information input in step S202 is expressed in the first floating body coordinates AF1.
 航空機Dが、障害物から所定範囲内である場合、ステップS205に進む。ステップS205において飛行制御装置1aは、障害物が設置された浮体F2の浮体座標系を、現在の座標系に設定する。飛行制御装置1aは、ステップS202で入力された操作情報は、第2の浮体座標AF2で表現されているとみなす。 If aircraft D is within a predetermined range from the obstacle, proceed to step S205. In step S205, the flight control device 1a sets the float coordinate system of the float F2 on which the obstacle is installed to the current coordinate system. The flight control device 1a considers that the operation information input in step S202 is expressed in the second float coordinate AF2.
 それ以外の場合、ステップS206に進む。ステップS206において飛行制御装置1aは、船体Hの船体座標系を、現在の座標系に設定する。飛行制御装置1aは、ステップS202で入力された操作情報は、船体座標AHで表現されているとみなす。 Otherwise, proceed to step S206. In step S206, the flight control device 1a sets the hull coordinate system of the hull H to the current coordinate system. The flight control device 1a considers that the operation information input in step S202 is expressed in the hull coordinate AH.
 ステップS207において飛行制御装置1aは、ステップS101で取得した航空機Dの位置および動きを、対地座標AGから、ステップS204ないしステップS206で設定した現在座標系の座標に変換する。例えば、ステップS204において浮体F1の座標系が現在座標系と判定された場合、飛行制御装置1aは、浮体F1に対する航空機Dの位置および動きを算出する。ステップS205において浮体F2の座標系が現在座標系と判定された場合、飛行制御装置1aは、浮体F2に対する航空機Dの位置および動きを算出する。ステップS206において船体Hの座標系が現在座標系と判定された場合、飛行制御装置1aは、船体Hに対する航空機Dの位置および動きを算出する。飛行制御装置1aは、現在座標系の座標に変換された航空機Dの位置および動きを、飛行状態として、操作装置2に送信する。 In step S207, the flight control device 1a converts the position and movement of the aircraft D acquired in step S101 from the ground coordinates AG to the coordinates of the current coordinate system set in step S204 or step S206. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a calculates the position and movement of the aircraft D relative to the float F1. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a calculates the position and movement of the aircraft D relative to the float F2. If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a calculates the position and movement of the aircraft D relative to the hull H. The flight control device 1a transmits the position and movement of the aircraft D converted to the coordinates of the current coordinate system to the operation device 2 as a flight state.
 ステップS208において、ステップS202で入力された操作情報が、航空機Dの動きを含むか否かを判定する。操作情報が動きを含まない場合、ステップS209に進む。操作情報が動きを含む場合、ステップS210に進む。操作者Cが操作装置2を手放すなど、操作情報が入力されていない場合、および操作情報が滞空を指示する場合、動きなしとしてステップS209に進む。 In step S208, it is determined whether the operation information input in step S202 includes movement of aircraft D. If the operation information does not include movement, the process proceeds to step S209. If the operation information includes movement, the process proceeds to step S210. If no operation information is input, such as when operator C releases the control device 2, or if the operation information indicates hovering, there is no movement, and the process proceeds to step S209.
 ステップS209において飛行制御装置1は、現在座標において、航空機Dが無移動となるコマンドを生成する。例えば、ステップS204において浮体F1の座標系が現在座標系と判定された場合、飛行制御装置1aは、浮体F1の対地移動と同じ移動となる操作量を実現するコマンドを生成する。ステップS205において浮体F2の座標系が現在座標系と判定された場合、飛行制御装置1aは、浮体F2の対地移動と同じ移動となる操作量を実現するコマンドを生成する。ステップS206において船体Hの座標系が現在座標系と判定された場合、飛行制御装置1aは、操作者Cのいる船体Hの対地移動と同じ移動となる操作量を実現するコマンドを生成する。 In step S209, the flight control device 1 generates a command for the aircraft D to remain stationary in the current coordinate system. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the float F1. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the float F2. If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a generates a command for realizing an amount of operation that results in the same movement as the ground movement of the hull H on which the operator C is located.
 ステップS106において飛行制御装置1は、操作情報が示す航空機Dの動きに、現在座標の基準の対地移動と同じ移動となる操作量を加算して、コマンドを生成する。例えば、ステップS204において浮体F1の座標系が現在座標系と判定された場合、飛行制御装置1aは、操作情報が示す航空機Dの動きに、浮体F1の対地移動と同じ移動となる操作量を加算して、コマンドを生成する。ステップS205において浮体F2の座標系が現在座標系と判定された場合、操作情報が示す航空機Dの動きに、飛行制御装置1aは、浮体F2の対地移動と同じ移動となる操作量を加算して、コマンドを生成する。ステップS206において船体Hの座標系が現在座標系と判定された場合、飛行制御装置1aは、操作情報が示す航空機Dの動きに、操作者Cのいる船体Hの対地移動と同じ移動となる操作量を加算して、コマンドを生成する。 In step S106, the flight control device 1 generates a command by adding an operation amount that is the same as the ground movement of the reference of the current coordinate to the movement of the aircraft D indicated by the operation information. For example, if the coordinate system of the float F1 is determined to be the current coordinate system in step S204, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the float F1 to the movement of the aircraft D indicated by the operation information. If the coordinate system of the float F2 is determined to be the current coordinate system in step S205, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the float F2 to the movement of the aircraft D indicated by the operation information. If the coordinate system of the hull H is determined to be the current coordinate system in step S206, the flight control device 1a generates a command by adding an operation amount that is the same as the ground movement of the hull H on which the operator C is located to the movement of the aircraft D indicated by the operation information.
 ステップS209またはステップS210においてコマンドが生成されると、ステップS211において飛行制御装置1は、生成したコマンドを機器群30に入力し、機器群30を駆動する。 When a command is generated in step S209 or step S210, in step S211 the flight control device 1 inputs the generated command to the equipment group 30 and drives the equipment group 30.
 ステップS201ないしステップS211の処理は、航空機Dが飛行を停止するまで繰り返される。 The processing of steps S201 to S211 is repeated until aircraft D stops flying.
 なお、ステップS203ないしステップS206における座標の切り替えが、短期間の間に繰り返し実行されると、操作者Cによる状況把握が低下するおそれがある。従って、頻繁に発生されないように、制御されても良い。 Note that if the coordinate switching in steps S203 to S206 is performed repeatedly within a short period of time, there is a risk that operator C's understanding of the situation may be impaired. Therefore, control may be performed so that this does not occur frequently.
 また第2の実施の形態において、障害物が浮体F2上にある場合を説明したが、障害物は、対地的に固定される場合も考えられる。障害物が、例えば、沿岸警備における断崖、海中に固定された風力発電機などである。このように障害物が対地的に固定される場合、生成部13aは、操作装置2から入力された情報を、対地的な座標であるとして、コマンドを生成しても良い。生成部13aは、操作装置2から入力された動きに従って、コマンドを生成する。 In the second embodiment, the case where the obstacle is on the floating body F2 has been described, but the obstacle may also be fixed to the ground. For example, the obstacle may be a cliff in coastal security, or a wind turbine fixed in the sea. In this case where the obstacle is fixed to the ground, the generation unit 13a may generate a command by regarding the information input from the operation device 2 as terrestrial coordinates. The generation unit 13a generates a command according to the movement input from the operation device 2.
 このような第2の実施の形態に係る飛行支援システム5aは、操作装置2から送信される操作情報について、操作者Cが注視する対象が基準であるとみなして、機器群30に入力するコマンドを生成する。これにより操作者Cは、注視する対象の動きを考慮することなく、航空機Dを操作できる。飛行支援システム5aは、操作者Cの負担を軽減することができる。 The flight support system 5a according to the second embodiment generates commands to be input to the device group 30, regarding the operation information transmitted from the control device 2 as being based on the object that the operator C is gazing at. This allows the operator C to operate the aircraft D without having to consider the movement of the object that he or she is gazing at. The flight support system 5a can reduce the burden on the operator C.
 (第3の実施の形態)
 上記実施の形態において、操作者Cは船体Hの上で移動しない場合を説明したが、これに限らない。例えば操作者Cが把持する操作装置2に、GNSS、加速度センサ、ジャイロセンサなどの各種センサを備え、操作装置2が対地的な位置および動きを把握しても良い。操作装置2の対地的な位置および動きは、飛行制御装置1に送信される。
Third Embodiment
In the above embodiment, a case has been described in which the operator C does not move on the hull H, but this is not limiting. For example, the control device 2 held by the operator C may be equipped with various sensors such as a GNSS, an acceleration sensor, and a gyro sensor, so that the control device 2 can grasp its position and movement relative to the ground. The position and movement of the control device 2 relative to the ground are transmitted to the flight control device 1.
 飛行制御装置1は、船体Hの位置および動きの代わりに、操作装置2から受信した位置および動きを用いても良い。例えば、飛行制御装置1は、操作装置2から受信した操作情報と、操作者Cの動きを合成して、機器群30に入力するコマンドを生成しても良い。 The flight control device 1 may use the position and movement received from the operation device 2 instead of the position and movement of the hull H. For example, the flight control device 1 may combine the operation information received from the operation device 2 with the movement of the operator C to generate a command to be input to the equipment group 30.
 あるいは飛行制御装置1は、操作装置2から受信した操作情報と、船体Hの動きと、操作者Cの動きを合成して、機器群30に入力するコマンドを生成しても良い。 Alternatively, the flight control device 1 may synthesize the operation information received from the operation device 2, the movement of the vessel H, and the movement of the operator C, and generate a command to be input to the equipment group 30.
 (第4の実施の形態)
 上記の実施の形態において、操作者Cが船体Hに位置する場合を説明したが、これに限らない。操作者Cは、地上に位置しても良い。本開示の実施の形態に係る飛行支援システム5は、操作者Cが地上で停止する場合、操作者Cが地上で移動する場合、航空機Dが自動車の荷台等から離発着する場合など、地上における様々な状況にも適用することができる。
(Fourth embodiment)
In the above embodiment, the case where the operator C is located on the hull H has been described, but the present invention is not limited to this. The operator C may be located on the ground. The flight support system 5 according to the embodiment of the present disclosure can also be applied to various situations on the ground, such as when the operator C stops on the ground, when the operator C moves on the ground, and when the aircraft D takes off and lands on the bed of a car, etc.
 上記説明した本実施形態の飛行制御装置1および操作装置2はそれぞれ、例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:Hard Disk Drive、SSD:Solid State Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムが用いられる。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされたプログラムを実行することにより、飛行制御装置1および操作装置2の各機能が実現される。 The flight control device 1 and operation device 2 of the present embodiment described above each use, for example, a general-purpose computer system equipped with a CPU (Central Processing Unit, processor) 901, memory 902, storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), communication device 904, input device 905, and output device 906. In this computer system, the CPU 901 executes a program loaded on the memory 902, thereby realizing each function of the flight control device 1 and operation device 2.
 なお、飛行制御装置1および操作装置2はそれぞれ、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また飛行制御装置1および操作装置2はそれぞれ、コンピュータに実装される仮想マシンであっても良い。 Flight control device 1 and operation device 2 may each be implemented in one computer, or in multiple computers. Furthermore, flight control device 1 and operation device 2 may each be a virtual machine implemented in a computer.
 飛行制御装置1および操作装置2のそれぞれのプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。コンピュータ読取り可能な記録媒体は、例えば非一時的な(non-transitory)記録媒体である。 The programs of the flight control device 1 and the operating device 2 can be stored on a computer-readable recording medium such as a HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or can be distributed via a network. The computer-readable recording medium is, for example, a non-transitory recording medium.
 なお、本開示は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that this disclosure is not limited to the above-described embodiments, and many variations are possible within the scope of the gist of the disclosure.
 1 飛行制御装置
 2 操作装置
 3 船体管理装置
 5 飛行支援システム
 11 飛行状態取得部
 12 変換部
 13 生成部
 30 機器群
 901 CPU
 902 メモリ
 903 ストレージ
 904 通信装置
 905 入力装置
 906 出力装置
 C 操作者
 D 航空機
 H 船体
 
 
REFERENCE SIGNS LIST 1 Flight control device 2 Operation device 3 Hull management device 5 Flight support system 11 Flight state acquisition unit 12 Conversion unit 13 Generation unit 30 Equipment group 901 CPU
902 Memory 903 Storage 904 Communication device 905 Input device 906 Output device C Operator D Aircraft H Hull

Claims (7)

  1.  航空機を制御する飛行制御装置と、
     前記航空機外に位置する操作者から入力された航空機の動きを含む操作情報を、前記飛行制御装置に送信する操作装置を備え、
     前記飛行制御装置は、
     前記航空機の対地的な位置および動きを取得する飛行状態取得部と、
     前記操作者の対地的な動きを取得し、前記操作情報が含む動きと、前記操作者の対地的な動きを結合した動きから、前記航空機の機器群を駆動するコマンドを生成する生成部とを備える
     飛行支援システム。
    A flight control device for controlling an aircraft;
    an operation device that transmits operation information including a movement of the aircraft inputted by an operator located outside the aircraft to the flight control device;
    The flight control device includes:
    A flight status acquisition unit that acquires the ground position and movement of the aircraft;
    a generation unit that acquires ground movements of the operator, and generates commands to drive equipment of the aircraft from a movement that combines the movement included in the operation information and the ground movements of the operator.
  2.  前記生成部は、
     前記操作情報がない、または動きを含まない場合、前記操作者の対地的な動きから、コマンドを生成する
     請求項1に記載の飛行支援システム。
    The generation unit is
    The flight support system of claim 1 , wherein if the operation information is absent or does not include movement, a command is generated from the operator's movement relative to the ground.
  3.  前記航空機が風を検知した場合、
     前記生成部は、さらに、風の方向および速度を相殺する動きを加算して、コマンドを生成する
     請求項1に記載の飛行支援システム。
    If the aircraft detects wind,
    The flight support system according to claim 1 , wherein the generation unit further generates a command by adding a motion that offsets a wind direction and a wind speed.
  4.  航空機が、浮体から離陸または浮体に着陸する場合、あるいは航空機が、浮体上の障害物に対して所定距離内に位置する場合、
     前記生成部は、前記操作情報が含む動きと、前記浮体の対地的な動きを結合した動きに対応するコマンドを生成する
     請求項1に記載の飛行支援システム。
    When an aircraft takes off from or lands on a floating body, or when the aircraft is located within a predetermined distance of an obstacle on the floating body,
    The flight support system according to claim 1 , wherein the generation unit generates a command corresponding to a movement that combines the movement included in the operation information and a movement of the floating body relative to the ground.
  5.  前記浮体の周期的な回転揺れを検出する場合、
     前記生成部は、前記操作情報が含む動きと、前記回転揺れを除外した前記浮体の対地的な動きを結合した動きに対応するコマンドを生成する
     請求項4に記載の飛行支援システム。
    When detecting the periodic rotational sway of the floating body,
    The flight support system according to claim 4 , wherein the generation unit generates a command corresponding to a movement that combines the movement included in the operation information and the ground movement of the floating body excluding the rotational sway.
  6.  操作装置が、航空機外に位置する操作者から入力された前記航空機の動きを含む操作情報を、前記航空機を制御する飛行制御装置に送信し、
     前記飛行制御装置が、前記航空機の対地的な位置および動きを取得し、
     前記飛行制御装置が、前記操作者の対地的な動きを取得し、前記操作情報が含む動きと、前記操作者の対地的な動きを結合した動きから、前記航空機の機器群を駆動するコマンドを生成する
     飛行支援方法。
    an operation device transmits operation information including a movement of the aircraft inputted from an operator located outside the aircraft to a flight control device that controls the aircraft;
    the flight control device acquires the position and movement of the aircraft relative to the ground;
    The flight control device acquires ground movements of the operator, and generates commands for driving devices of the aircraft from movements that are a combination of the movements included in the operation information and the ground movements of the operator.
  7.  コンピュータを、請求項1ないし請求項5のいずれか1項に記載の飛行制御装置として機能させるためのプログラム。 A program for causing a computer to function as a flight control device according to any one of claims 1 to 5.
PCT/JP2022/043952 2022-11-29 2022-11-29 Flight assistance system, flight assistance method, and program WO2024116276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043952 WO2024116276A1 (en) 2022-11-29 2022-11-29 Flight assistance system, flight assistance method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043952 WO2024116276A1 (en) 2022-11-29 2022-11-29 Flight assistance system, flight assistance method, and program

Publications (1)

Publication Number Publication Date
WO2024116276A1 true WO2024116276A1 (en) 2024-06-06

Family

ID=91323352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043952 WO2024116276A1 (en) 2022-11-29 2022-11-29 Flight assistance system, flight assistance method, and program

Country Status (1)

Country Link
WO (1) WO2024116276A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138681A (en) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 Control system for unmanned flight vehicle
JP2021062720A (en) * 2019-10-11 2021-04-22 三菱重工業株式会社 Aircraft position control system, aircraft, and aircraft position control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138681A (en) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 Control system for unmanned flight vehicle
JP2021062720A (en) * 2019-10-11 2021-04-22 三菱重工業株式会社 Aircraft position control system, aircraft, and aircraft position control method

Similar Documents

Publication Publication Date Title
US10276051B2 (en) Dynamic collision-avoidance system and method
WO2018218516A1 (en) Unmanned aerial vehicle return route planning method and apparatus
US11092964B2 (en) Collision-avoidance system and method for unmanned aircraft
CN110738872B (en) Flight control system for an air vehicle and related methods
EP2403757B1 (en) Unmanned air vehicle (uav), control system and method
JP6123032B2 (en) Assisted takeoff
EP2673681B1 (en) Flight control laws for constant vector flat turns
CN108701362B (en) Obstacle avoidance during target tracking
CN110192122B (en) System and method for radar control on unmanned mobile platforms
WO2021078167A1 (en) Aerial vehicle return control method and apparatus, aerial vehicle, and storage medium
US11383834B2 (en) Unmanned flying object and method of controlling unmanned flying object
EP3198349B1 (en) Haptic feedback for realtime trajectory constraints
US20200050184A1 (en) Wind velocity force feedback
US20190051192A1 (en) Impact avoidance for an unmanned aerial vehicle
CN103389732A (en) Piloting control method of aircraft
WO2018152748A1 (en) Method and system for simulating movable object states
CN111684384B (en) Unmanned aerial vehicle flight control method and device and unmanned aerial vehicle
EP3761135B1 (en) System and method for controlling an unmanned vehicle in presence of a live object
WO2024116276A1 (en) Flight assistance system, flight assistance method, and program
EP2947008A2 (en) Terrain adaptive flight control
KR20200083787A (en) System for landing indoor precision of drone and method thereof
US20220297821A1 (en) Control device, control method, unmanned aircraft, information processing device, information processing method, and program
WO2024024535A1 (en) Information processing method, information processing device, and movable body control system
WO2024009447A1 (en) Flight control system and flight control method
CN114527783A (en) Control method, device and equipment of unmanned aerial vehicle and computer storage medium