WO2024114812A1 - Encoding method, decoding method, and communication apparatus - Google Patents

Encoding method, decoding method, and communication apparatus Download PDF

Info

Publication number
WO2024114812A1
WO2024114812A1 PCT/CN2023/135998 CN2023135998W WO2024114812A1 WO 2024114812 A1 WO2024114812 A1 WO 2024114812A1 CN 2023135998 W CN2023135998 W CN 2023135998W WO 2024114812 A1 WO2024114812 A1 WO 2024114812A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
code stream
ldpc code
bit
crc
Prior art date
Application number
PCT/CN2023/135998
Other languages
French (fr)
Chinese (zh)
Inventor
林伟
辛岩
蒙托里西·基多
贝勒迪多·塞吉奥
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114812A1 publication Critical patent/WO2024114812A1/en

Links

Abstract

The present application relates to the field of communications, and in particular, to an encoding method, a decoding method, and a communication apparatus. The solution can be applied to a WLAN system, for example, a communication system defined by an 802.11be standard, an 802.11bf standard, a Wi-Fi 8 standard, or another future standard. In the method, an encoding end performs LDPC encoding on a data bit, the data bit comprising an information bit and a CRC bit, so that by introducing a CRC bit, decoding can be assisted on the basis of the CRC bit in a decoding iteration process. In addition, the position of the CRC bit is related to the robustness of the position of at least one data bit, so that the reliability of the CRC bit can be ensured as much as possible, and the probability that a decoding end successfully receives the CRC bit is improved, such that the decoding end can perform assisted decoding on the basis of the CRC bit, thereby improving the decoding efficiency.

Description

编码方法、译码方法以及通信装置Coding method, decoding method and communication device
本申请要求在2022年12月02日提交中国国家知识产权局、申请号为202211534348.X的中国专利申请的优先权,发明名称为“编码方法、译码方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application filed with the State Intellectual Property Office of China on December 2, 2022, with application number 202211534348.X, and the priority of the Chinese patent application with the invention name "Encoding method, decoding method and communication device", all contents of which are incorporated by reference in this application.
技术领域Technical Field
本申请涉及信道编码领域,并且更具体地,涉及一种编码方法、译码方法以及通信装置。The present application relates to the field of channel coding, and more specifically, to a coding method, a decoding method and a communication device.
背景技术Background technique
在信道编码领域,低密度奇偶校验(low density parity check,LDPC)是应用较为成熟和广泛的一种信道编码方案。LDPC码不仅具有逼近香农极限的良好性能,而且译码复杂度低,结构灵活。因此,IEEE的802.11n、802.11ac、802.11ax等协议提出将LDPC作为无线局域网(wireless local area network,WLAN)的标准信道编码方案。如何提高LDPC码的译码效率是值得考虑的问题。In the field of channel coding, low density parity check (LDPC) is a relatively mature and widely used channel coding scheme. LDPC code not only has good performance close to the Shannon limit, but also has low decoding complexity and flexible structure. Therefore, IEEE's 802.11n, 802.11ac, 802.11ax and other protocols propose to use LDPC as the standard channel coding scheme for wireless local area networks (WLAN). How to improve the decoding efficiency of LDPC codes is a question worth considering.
发明内容Summary of the invention
本申请提供一种编码方法、译码方法以及通信装置,以提高译码效率。The present application provides an encoding method, a decoding method and a communication device to improve decoding efficiency.
第一方面,提供了一种编码方法,该方法可以由编码设备执行,或者,也可以由用于编码设备中的部件(例如,芯片、电路或模块等)执行,本申请对此不作限定。On the first aspect, a coding method is provided, which can be executed by a coding device, or can also be executed by a component (for example, a chip, a circuit or a module, etc.) used in the coding device, and the present application does not limit this.
该方法可以包括:对数据比特进行低密度奇偶校验LDPC编码,得到编码后的LDPC码流,其中,所述数据比特包括信息比特和根据信息比特生成的循环冗余校检CRC比特;输出LDPC码流。可选的,CRC比特所在的位置与LDPC码流中数据比特位置的鲁棒性相关。The method may include: performing low-density parity check (LDPC) coding on data bits to obtain a coded LDPC code stream, wherein the data bits include information bits and cyclic redundancy check (CRC) bits generated according to the information bits; and outputting the LDPC code stream. Optionally, the position of the CRC bit is related to the robustness of the data bit position in the LDPC code stream.
第二方面,提供了一种译码方法,该方法可以由译码设备执行,或者,也可以由用于译码设备中的部件(例如,芯片、电路或模块等)执行,本申请对此不作限定。In a second aspect, a decoding method is provided, which may be executed by a decoding device, or may be executed by a component (eg, a chip, a circuit or a module, etc.) used in the decoding device, and the present application does not limit this.
该方法可以包括:获取待译码的低密度奇偶校验LDPC码流,LDPC码流中包括数据比特,所述数据比特包括循环冗余校检CRC比特和信息比特;对LDPC码流进行译码。可选的,CRC比特所在的位置与LDPC码流中数据比特位置的鲁棒性相关。The method may include: obtaining a low-density parity check (LDPC) code stream to be decoded, wherein the LDPC code stream includes data bits, wherein the data bits include cyclic redundancy check (CRC) bits and information bits; and decoding the LDPC code stream. Optionally, the position of the CRC bit is related to the robustness of the data bit position in the LDPC code stream.
基于上述技术方案,通过在LDPC码流中加入CRC比特,可以在译码迭代过程中,基于该CRC比特辅助译码,也即辅助译码端判断译码是否成功。举例来说,译码装置译码出数据比特(或者说信息比特)后,可以进一步使用CRC比特对译码出的信息比特进行校验,若CRC比特校验正确,则认为成功译码出信息比特,即译码正确;否则可以继续进行译码,直到译码正确。此外,CRC比特所在的位置可以与LDPC码流中数据比特所在的位置的鲁棒性相关,这样,可以根据实际需求,选择CRC比特所在的位置。例如,若要提高CRC比特的可靠性,可以优先选择鲁棒性较高的位置作为CRC比特的位置,也即将CRC比特置于鲁棒性较高的位置,这样可以提高CRC比特的可靠性,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。Based on the above technical solution, by adding CRC bits to the LDPC code stream, it is possible to assist in decoding based on the CRC bits during the decoding iteration process, that is, to determine whether the decoding is successful at the auxiliary decoding end. For example, after the decoding device decodes the data bits (or information bits), the CRC bits can be further used to verify the decoded information bits. If the CRC bit verification is correct, it is considered that the information bits are successfully decoded, that is, the decoding is correct; otherwise, the decoding can be continued until the decoding is correct. In addition, the position of the CRC bit can be related to the robustness of the position of the data bit in the LDPC code stream, so that the position of the CRC bit can be selected according to actual needs. For example, if the reliability of the CRC bit is to be improved, the position with higher robustness can be preferentially selected as the position of the CRC bit, that is, the CRC bit is placed at a position with higher robustness, so that the reliability of the CRC bit can be improved, and then the information bits in the LDPC code stream can be assisted in decoding based on the CRC bit.
结合第一方面或第二方面,在某些实现方式中,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:CRC比特所在的位置的鲁棒性高于LDPC码流中至少一个信息比特所在的位置的鲁棒性。In combination with the first aspect or the second aspect, in some implementations, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including: the robustness of the position of the CRC bit is higher than the robustness of the position of at least one information bit in the LDPC code stream.
基于上述技术方案,LDPC码流中CRC比特所在位置的鲁棒性高于至少一个信息比特所在位置的鲁棒性,这样通过优先选择鲁棒性较高的位置作为CRC比特的位置,也即将CRC比特置于鲁棒性较高的位置,可以提高CRC比特的可靠性,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。Based on the above technical solution, the robustness of the position where the CRC bit is located in the LDPC code stream is higher than the robustness of the position where at least one information bit is located. In this way, by preferentially selecting a position with higher robustness as the position of the CRC bit, that is, placing the CRC bit at a position with higher robustness, the reliability of the CRC bit can be improved, and then the information bits in the LDPC code stream can be assisted in decoding based on the CRC bit.
结合第一方面或第二方面,在某些实现方式中,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:LDPC码流中至少两个数据比特位置的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置。In combination with the first aspect or the second aspect, in some implementations, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including: when the robustness of at least two data bit positions in the LDPC code stream is consistent, the position of the CRC bit is located at the front position of the at least two data bits.
基于上述技术方案,在至少两个数据比特位置的鲁棒性一致的情况下,通过将CRC比特置于靠前的位置,可以便于译码端较快地获取到CRC比特,进而可以基于该CRC比特辅助译码LDPC码流中的信 息比特。Based on the above technical solution, when the robustness of at least two data bit positions is consistent, by placing the CRC bit in the front position, the decoding end can quickly obtain the CRC bit, and then the signal in the LDPC code stream can be assisted in decoding based on the CRC bit. Interest bit.
结合第一方面或第二方面,在某些实现方式中,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关,包括以下任一项:In combination with the first aspect or the second aspect, in some implementations, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including any of the following:
在LDPC码流的码长为1944,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1944 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
在LDPC码流的码长为1944,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4; or,
在LDPC码流的码长为1944,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6; or,
在LDPC码流的码长为1944,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10; or,
在LDPC码流的码长为1296,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1296 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
在LDPC码流的码长为1296,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3; or,
在LDPC码流的码长为1296,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7; or,
在LDPC码流的码长为1296,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第13列、第14列、第15列、第16列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 13, column 14, column 15, column 16; or,
在LDPC码流的码长为648,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第5列、第9列;或者,When the code length of the LDPC code stream is 648 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 5, column 9; or,
在LDPC码流的码长为648,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 648 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3; or,
在LDPC码流的码长为648,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列;或者,When the code length of the LDPC code stream is 648 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5; or,
在LDPC码流的码长为648,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第14列、第15列、第16列、第17列、第18列、第19列、第20列。When the code length of the LDPC code stream is 648 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 14, column 15, column 16, column 17, column 18, column 19, and column 20.
第三方面,提供了一种译码方法,该方法可以由译码设备执行,或者,也可以由用于译码设备中的部件(例如,芯片、电路或模块等)执行,本申请对此不作限定。On the third aspect, a decoding method is provided, which can be executed by a decoding device, or can also be executed by a component (for example, a chip, a circuit or a module, etc.) used in the decoding device, and the present application does not limit this.
该方法可以包括:获取待译码的低密度奇偶校验LDPC码;基于维度为M×N的校验矩阵,对LDPC码进行译码,得到LDPC码字,其中,M为校验节点数,N为变量节点数,M、N为大于1的整数;根据LDPC码字,以及M1个校验方程和/或N1个变量节点,判断是否停止译码,基于校验矩阵得到的M个校验方程包括M1个校验方程,校验矩阵中的N个变量节点包括N1个变量节点,N1为小于N的正整数,M1为小于M的正整数。The method may include: obtaining a low-density parity check (LDPC) code to be decoded; decoding the LDPC code based on a check matrix with a dimension of M×N to obtain an LDPC codeword, wherein M is the number of check nodes, N is the number of variable nodes, and M and N are integers greater than 1; judging whether to stop decoding based on the LDPC codeword, and M1 check equations and/or N1 variable nodes, wherein the M check equations obtained based on the check matrix include M1 check equations, the N variable nodes in the check matrix include N1 variable nodes, N1 is a positive integer less than N, and M1 is a positive integer less than M.
基于上述技术方案,通过判定一定比例的校验方程是否正确,而不是所有的校验方程;或者,通过判定一定比例的变量节点是否满足可靠性条件,而不是所有的变量节点,从而可以降低译码开销。Based on the above technical solution, by determining whether a certain proportion of the check equations are correct instead of all the check equations; or by determining whether a certain proportion of the variable nodes meet the reliability conditions instead of all the variable nodes, the decoding overhead can be reduced.
结合第三方面,在第三方面的某些实现方式中,M1=M·f1,f1大于0且小于1。In combination with the third aspect, in some implementations of the third aspect, M1=M·f1, and f1 is greater than 0 and less than 1.
结合第三方面,在第三方面的某些实现方式中,根据LDPC码字以及M1个校验方程判断是否停止译码,包括:根据LDPC码字,计算根据M1个校验方程与N个变量节点得到的伴随式向量;若伴随式向量为全零向量,则判断停止译码;或者,若伴随式向量不为全零向量,则判断不停止译码,并且继续进行译码迭代;或者,若伴随式向量不为全零向量,且达到最大译码迭代次数,则判断停止译码,并且确定译码错误。In combination with the third aspect, in certain implementations of the third aspect, determining whether to stop decoding is performed based on the LDPC codeword and M1 check equations, including: calculating, based on the LDPC codeword, a companion vector obtained based on M1 check equations and N variable nodes; if the companion vector is an all-zero vector, determining to stop decoding; or, if the companion vector is not an all-zero vector, determining not to stop decoding, and continuing decoding iterations; or, if the companion vector is not an all-zero vector and the maximum number of decoding iterations is reached, determining to stop decoding, and determining a decoding error.
结合第三方面,在第三方面的某些实现方式中,若伴随式向量为全零向量则判断停止译码,方法还 包括:输出LDPC码字。In conjunction with the third aspect, in certain implementations of the third aspect, if the syndrome vector is an all-zero vector, then it is determined that decoding is stopped. The method further Includes: outputting LDPC codewords.
结合第三方面,在第三方面的某些实现方式中,N1=N·f2,f2大于0且小于1。In combination with the third aspect, in some implementations of the third aspect, N1=N·f2, and f2 is greater than 0 and less than 1.
结合第三方面,在第三方面的某些实现方式中,根据LDPC码字以及N1个变量节点判断是否停止译码,包括:根据LDPC码字,确定N1个变量节点是否满足可靠性条件;若N1个变量节点满足可靠性条件,则判断停止译码。In combination with the third aspect, in certain implementations of the third aspect, determining whether to stop decoding is based on the LDPC codeword and N1 variable nodes, including: determining whether the N1 variable nodes meet the reliability conditions based on the LDPC codeword; if the N1 variable nodes meet the reliability conditions, determining to stop decoding.
结合第三方面,在第三方面的某些实现方式中,可靠性条件为:与N1个变量节点相连的所有校验节点上一轮译码迭代反馈的关于N1个变量节点的符号相同。In combination with the third aspect, in certain implementations of the third aspect, the reliability condition is that the signs of the N1 variable nodes fed back by all check nodes connected to the N1 variable nodes in the previous decoding iteration are the same.
结合第三方面,在第三方面的某些实现方式中,LDPC码流中包括循环冗余校检CRC比特。In combination with the third aspect, in certain implementations of the third aspect, the LDPC code stream includes cyclic redundancy check CRC bits.
关于LDPC码流中CRC比特的相关设计,可参考第一方面和第二方面中的描述。For the relevant design of CRC bits in the LDPC code stream, please refer to the description in the first aspect and the second aspect.
第四方面,提供一种通信装置,该装置用于执行上述第一方面至第三方面中任一方面提供的方法。具体地,该装置可以包括用于执行第一方面至第三方面中任一方面的上述任一种实现方式提供的方法的单元和/或模块,如处理单元和/或通信单元。In a fourth aspect, a communication device is provided, the device being used to execute the method provided in any one of the first to third aspects. Specifically, the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method provided in any one of the above implementations of any one of the first to third aspects.
在一种实现方式中,该装置为设备(如编码设备,又如译码设备)。当该装置为设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。In one implementation, the apparatus is a device (such as an encoding device or a decoding device). When the apparatus is a device, the communication unit may be a transceiver or an input/output interface; the processing unit may be at least one processor. Optionally, the transceiver may be a transceiver circuit. Optionally, the input/output interface may be an input/output circuit.
在另一种实现方式中,该装置为用于设备中的芯片、电路或模块等。当该装置为用于终端设备中的芯片、电路或模块时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。In another implementation, the device is a chip, circuit or module used in a device. When the device is a chip, circuit or module used in a terminal device, the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit; the processing unit may be at least one processor, processing circuit or logic circuit.
第五方面,提供一种通信装置,包括处理器,用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面至第三方面的任一方面,或这些方面的任一可能的实现方式中的方法。In a fifth aspect, a communication device is provided, comprising a processor for calling and running a computer program stored in a memory, and controlling a transceiver to send and receive signals, so that the communication device executes a method as in any aspect of the first to third aspects, or any possible implementation of these aspects.
可选地,所述通信装置还可以包括所述存储器,用于存储所述计算机程序,所述通信装置还可以包括所述收发器。Optionally, the communication device may further include the memory for storing the computer program, and the communication device may further include the transceiver.
在一种实现方式中,该装置为设备(如编码设备,又如译码设备)。In one implementation, the apparatus is a device (such as an encoding device or a decoding device).
在另一种实现方式中,该装置为用于设备中的芯片、电路或模块。In another implementation, the apparatus is a chip, a circuit or a module used in a device.
第六方面,提供一种通信装置,包括处理器,所述处理器用于处理数据和/或信息,以使得如第一方面至第三方面的任一方面,或这些方面的任一可能的实现方式中的方法被执行。In a sixth aspect, a communication device is provided, comprising a processor, wherein the processor is used to process data and/or information so that a method as in any aspect of the first to third aspects, or any possible implementation of these aspects, is executed.
可选地,所述通信装置还可以包括通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器。可选地,所述通信接口还用于输出经处理器处理之后的数据和/或信息。Optionally, the communication device may further include a communication interface, the communication interface being used to receive data and/or information and transmit the received data and/or information to the processor. Optionally, the communication interface is also used to output the data and/or information processed by the processor.
在一种实现方式中,该装置为设备(如编码设备,又如译码设备)。In one implementation, the apparatus is a device (such as an encoding device or a decoding device).
在另一种实现方式中,该装置为用于设备中的芯片、电路或模块。In another implementation, the apparatus is a chip, a circuit or a module used in a device.
第七方面,提供一种芯片,包括处理器,所述处理器用于运行程序或指令,以使得所述芯片执行如第一方面至第三方面的任一方面,或这些方面的任一可能的实现方式中的方法。可选地,所述芯片还可以包括存储器,所述存储器用于存储程序或指令。可选地,所述芯片还可以包括所述收发器。In a seventh aspect, a chip is provided, comprising a processor, the processor being used to run a program or an instruction, so that the chip executes the method in any one of the first to third aspects, or any possible implementation of these aspects. Optionally, the chip may also include a memory, the memory being used to store the program or the instruction. Optionally, the chip may also include the transceiver.
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,该计算机指令用于实现如第一方面至第三方面的任一方面,或这些方面的任一可能的实现方式中的方法。In an eighth aspect, a computer-readable storage medium is provided, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to implement a method as in any aspect of the first to third aspects, or any possible implementation of these aspects.
第九方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,所述计算机程序代码用于实现如第一方面至第三方面的任一方面,或这些方面中的任一方面的任一可能的实现方式中的方法。In a ninth aspect, a computer program product is provided, the computer program product comprising a computer program code, the computer program code being used to implement a method as in any aspect of the first to third aspects, or any possible implementation of any aspect of these aspects.
第十方面,提供一种无线通信系统,包括编码设备和译码设备。In a tenth aspect, a wireless communication system is provided, comprising an encoding device and a decoding device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是适用于本申请实施例的系统架构的示意图。FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
图2是LDPC的校验矩阵的示意图。FIG2 is a schematic diagram of a check matrix of LDPC.
图3是校验矩阵对应的Tanner图的示意图。FIG3 is a schematic diagram of a Tanner graph corresponding to a check matrix.
图4是LDPC编码步骤的示意图。FIG4 is a schematic diagram of the LDPC encoding steps.
图5是本申请实施例提供的一种译码方法500的示意图。FIG. 5 is a schematic diagram of a decoding method 500 provided in an embodiment of the present application.
图6-图13是采用CRC译码停止准则时,各种判决事件的事件概率与CRC的比特数之间的关系。 6-13 show the relationship between the event probabilities of various decision events and the number of CRC bits when the CRC decoding stop criteria is adopted.
图14-图17是采用已知的译码停止准则和CRC译码停止准则时,各种判决事件的事件概率和额外迭代次数的比较的示意图。14-17 are schematic diagrams showing comparisons of event probabilities and additional iteration times of various decision events when using known decoding stop criteria and CRC decoding stop criteria.
图18是本申请实施例提供的一种译码方法1800的示意图。FIG18 is a schematic diagram of a decoding method 1800 provided in an embodiment of the present application.
图19-图22是采用校验节点准则(checknoderule,CNR)译码停止准则时,各种判决事件的事件概率与f1之间的关系的示意图。19 to 22 are schematic diagrams showing the relationship between the event probabilities of various decision events and f1 when the check node rule (CNR) decoding stop rule is adopted.
图23-图26是采用变量节点准则(variable node rule,VNR)译码停止准则时,各种判决事件的事件概率与f2之间的关系的示意图。Figures 23 to 26 are schematic diagrams of the relationship between the event probability of various decision events and f2 when the variable node rule (VNR) decoding stop criterion is adopted.
图27是本申请实施例提供的一种通信装置2700的示意性框图。FIG. 27 is a schematic block diagram of a communication device 2700 provided in an embodiment of the present application.
图28是本申请实施例提供另一种通信装置2800的示意图。FIG. 28 is a schematic diagram of another communication device 2800 provided according to an embodiment of the present application.
图29是本申请实施例提供一种芯片系统2900的示意图。FIG. 29 is a schematic diagram of a chip system 2900 provided according to an embodiment of the present application.
具体实施方式Detailed ways
下面将结合附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below in conjunction with the accompanying drawings.
本申请提供的技术方案可以适用于无线局域网(wireless local area network,WLAN)系统,例如,可以适用于IEEE 802.11相关标准,例如802.11ax标准、802.11be标准、802.11bf标准、Wi-Fi 8标准或未来的其它标准所定义的通信系统中。The technical solution provided in this application can be applicable to wireless local area network (WLAN) systems. For example, it can be applicable to communication systems defined by IEEE 802.11 related standards, such as the 802.11ax standard, the 802.11be standard, the 802.11bf standard, the Wi-Fi 8 standard, or other future standards.
本申请实施例主要以部署WLAN网络,尤其是应用IEEE 802.11系统标准的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,高性能无线局域网(high performance radio local area network,HIPERLAN)、无线广域网(wireless wide area network,WWAN)、无线个人区域网(wireless personal area network,WPAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。The embodiments of the present application are mainly described by taking the deployment of WLAN networks, especially networks using the IEEE 802.11 system standard as an example. It is easy for those skilled in the art to understand that the various aspects involved in the present application can be extended to other networks that adopt various standards or protocols, such as high performance radio local area networks (HIPERLAN), wireless wide area networks (WWAN), wireless personal area networks (WPAN) or other networks now known or developed later. Therefore, regardless of the coverage range and wireless access protocol used, the various aspects provided in the present application can be applied to any suitable wireless network.
本申请实施例还可以适用于物联网(internet of things,IoT)网络或车联网(Vehicle to X,V2X)等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统,以及未来的第六代(6th generation,6G)通信系统等。The embodiments of the present application may also be applicable to wireless local area network systems such as the Internet of Things (IoT) network or the Vehicle to X (V2X). Of course, the embodiments of the present application may also be applicable to other possible communication systems, such as the Long Term Evolution (LTE) system, the LTE frequency division duplex (FDD) system, the LTE time division duplex (TDD) system, the universal mobile telecommunication system (UMTS), the worldwide interoperability for microwave access (WiMAX) communication system, the fifth generation (5G) communication system, and the future sixth generation (6G) communication system.
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。The above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this. A unified description is given here and no further elaboration is given below.
参见图1,图1是适用于本申请实施例的系统架构的示意图。See FIG. 1 , which is a schematic diagram of a system architecture applicable to an embodiment of the present application.
本申请提供的技术方案适用于接入点(access point,AP)与至少一个站点(station,STA)之间的数据通信。如图1中的(a)所示,本申请提供的技术方案适用于AP与单个STA之间的数据通信,如AP1与STA1之间的数据通信。如图1中的(b)所示,本申请提供的技术方案还适用于AP与多个STA之间的数据通信,如AP1与STA1、STA2、STA3之间的数据通信。作为示例,AP与多个STA之间的数据通信,可以包括:AP同时给多个STA发送信号的下行传输,以及多个STA同时发送信号给AP的上行传输。The technical solution provided in the present application is applicable to data communication between an access point (AP) and at least one station (STA). As shown in (a) of Figure 1, the technical solution provided in the present application is applicable to data communication between an AP and a single STA, such as data communication between AP1 and STA1. As shown in (b) of Figure 1, the technical solution provided in the present application is also applicable to data communication between an AP and multiple STAs, such as data communication between AP1 and STA1, STA2, and STA3. As an example, data communication between an AP and multiple STAs may include: downlink transmission in which an AP sends signals to multiple STAs at the same time, and uplink transmission in which multiple STAs send signals to an AP at the same time.
本申请提供的技术方案还可适用于AP与AP之间的数据通信,如图1中的(a)所示,本申请提供的技术方案适用于AP1与AP2之间的数据通信。本申请提供的技术方案还可适用于STA与STA之间的数据通信,如图1中的(b)所示,本申请提供的技术方案适用于STA2与STA3之间的数据通信。The technical solution provided by the present application can also be applied to data communication between APs, as shown in (a) of Figure 1, the technical solution provided by the present application is applicable to data communication between AP1 and AP2. The technical solution provided by the present application can also be applied to data communication between STAs, as shown in (b) of Figure 1, the technical solution provided by the present application is applicable to data communication between STA2 and STA3.
其中,接入点可以为终端(例如,手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。Among them, the access point can be the access point for the terminal (for example, mobile phone) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and parks, with a typical coverage radius of tens to hundreds of meters. Of course, it can also be deployed outdoors. The access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
作为示例,接入点可以是带有Wi-Fi芯片的终端或者网络设备,该网络设备可以为路由器、中继站、车载设备、可穿戴设备、5G网络中的网络设备以及未来6G网络中的网络设备或者公用陆地移动通信网络(public land mobile network,PLMN)中的网络设备等,本申请实施例并不限定。接入点还可以为支持802.11be制式的设备。接入点也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。本申请中的接入点可以是高效(high  efficient,HE)AP或极高吞吐量(extremely high throughput,EHT)AP,还可以是适用未来某代Wi-Fi标准的接入点。As an example, an access point may be a terminal or network device with a Wi-Fi chip, and the network device may be a router, a relay station, a vehicle-mounted device, a wearable device, a network device in a 5G network, a network device in a future 6G network, or a network device in a public land mobile network (PLMN), etc., and the embodiments of the present application are not limited thereto. The access point may also be a device that supports the 802.11be standard. The access point may also be a device that supports multiple WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation. The access point in this application may be a high efficiency (high It can also be an access point that is applicable to a future generation of Wi-Fi standards.
其中,站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。Among them, the site can be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and can also be called a user, user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
作为示例,站点可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机、支持Wi-Fi通讯功能的IoT节点、传感器等,支持Wi-Fi通讯功能的智慧家居,如智能摄像头、智能遥控器、智能水表电表、以及智慧城市中的传感器等。可选地,站点可以支持802.11be制式。站点也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种WLAN制式。As an example, the site can be a mobile phone supporting Wi-Fi communication function, a tablet supporting Wi-Fi communication function, a set-top box supporting Wi-Fi communication function, a smart TV supporting Wi-Fi communication function, a smart wearable device supporting Wi-Fi communication function, a vehicle-mounted communication device supporting Wi-Fi communication function, a computer supporting Wi-Fi communication function, an IoT node supporting Wi-Fi communication function, a sensor, etc., a smart home supporting Wi-Fi communication function, such as a smart camera, a smart remote control, a smart water meter, and a sensor in a smart city. Optionally, the site can support the 802.11be standard. The site can also support multiple WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
可以理解,图1仅为便于理解而示例的简化示意图,该系统架构中还可以包括其他AP或者还可以包括其他STA,图1中未予以画出。It can be understood that FIG1 is only a simplified schematic diagram for ease of understanding, and the system architecture may further include other APs or other STAs, which are not shown in FIG1 .
为便于理解本申请实施例,对本申请中涉及到的术语做简单说明。To facilitate understanding of the embodiments of the present application, a brief description of the terms involved in the present application is given.
1、混合自动重传请求(hybrid automatic repeat request,HARQ):在传输数据的过程中,可能会出现传输比特出错或者丢包的情况,通过HARQ机制可以提高数据传输的鲁棒性。HARQ是一种结合前向纠错码(forward error correction,FEC)和自动重传请求(automatic repeat request,ARQ)的重传机制。FEC:是一种差错控制方式,指信号在被送入传输信道之前,发送端预先按照算法进行编码处理,加入带有信号本身特征的冗码;接收端按照相应算法对接收到的信号进行解码,从而找出在传输过程中产生的错误码并将其纠正的技术。ARQ:是指接收端通过循环冗余校检(cyclic redundancy check,CRC)校验信息来判断接收到的数据是否正确,并将判断结果反馈给发送端;如果接收错误,发送端收到反馈信息后重新发送数据,直到接收端正确接收。1. Hybrid automatic repeat request (HARQ): In the process of data transmission, transmission bit errors or packet loss may occur. The robustness of data transmission can be improved through the HARQ mechanism. HARQ is a retransmission mechanism that combines forward error correction (FEC) and automatic repeat request (ARQ). FEC: It is an error control method, which means that before the signal is sent to the transmission channel, the sender pre-encodes it according to the algorithm and adds redundant codes with the characteristics of the signal itself; the receiver decodes the received signal according to the corresponding algorithm to find out the error code generated during the transmission process and correct it. ARQ: It means that the receiver determines whether the received data is correct by checking the information through cyclic redundancy check (CRC), and feeds back the judgment result to the sender; if the reception is wrong, the sender resends the data after receiving the feedback information until the receiver receives it correctly.
接收端如果收到错误数据,会请求重传。虽然这些错误数据包不能够独立地正确译码,但是它们依然包含一些有用的信息,因此,HARQ机制中提出了软合并。软合并是指:接收端将接收到的错误数据包保存在一个HARQ缓存(buffer)中,并与后续接收到的重传数据包进行合并,然后对合并后的数据包进行译码,如果还是译码失败,则再请求重传,再进行数据包合并,从而得到一个比单独译码更可靠的数据包。通过软合并可以获得两种增益:1)重传相同编码比特时获得的信号能量增益,2)重传时发送额外的校验比特获得的编码增益。根据重传的比特信息与初传的比特信息是否相同,软合并还可分为追逐合并(chase combining,CC)和增量冗余(incremental redundancy,IR),其中,追逐合并中重传的比特信息与初传的比特信息相同,增量冗余中重传的比特信息不需要与初传的比特信息相同。If the receiving end receives erroneous data, it will request retransmission. Although these erroneous data packets cannot be correctly decoded independently, they still contain some useful information. Therefore, soft combining is proposed in the HARQ mechanism. Soft combining means that the receiving end saves the received erroneous data packets in a HARQ buffer and combines them with the retransmitted data packets received subsequently, and then decodes the combined data packets. If the decoding still fails, it requests retransmission again and then combines the data packets to obtain a more reliable data packet than decoding alone. Two gains can be obtained through soft combining: 1) signal energy gain obtained when retransmitting the same coded bits, and 2) coding gain obtained by sending additional check bits during retransmission. According to whether the bit information of the retransmission is the same as the bit information of the initial transmission, soft combining can also be divided into chase combining (CC) and incremental redundancy (IR). In chase combining, the bit information of the retransmission is the same as the bit information of the initial transmission, and in incremental redundancy, the bit information of the retransmission does not need to be the same as the bit information of the initial transmission.
在追逐合并中,发送端将原始信息比特加上CRC后通过编码产生编码比特集,无论初传还是重传都发送这个编码比特集。每次重传的比特信息都与初传的比特信息相同,可以提升信噪比。In chase combining, the sender adds CRC to the original information bits and generates a coded bit set through encoding. This coded bit set is sent regardless of the initial transmission or retransmission. The bit information of each retransmission is the same as the bit information of the initial transmission, which can improve the signal-to-noise ratio.
在增量冗余中,每一次重传的比特信息可以与初传的比特信息不同。发送端可以生成多个编码比特集,每个编码比特集都携带相同的信息。每当需要重传时,通常会传输与前一次不同的编码比特集,接收端会把重传的数据与前一次传输的数据进行合并。每次重传的编码比特集可称为一个冗余版本(redundancy version,RV)。在增量冗余中,发送端通过重传来发送额外的冗余信息,随着重传次数的增加,冗余信息不断累积,从而获得更好的译码效果。In incremental redundancy, the bit information of each retransmission can be different from the bit information of the initial transmission. The sender can generate multiple sets of coded bits, each of which carries the same information. Whenever a retransmission is required, a different set of coded bits is usually transmitted, and the receiver merges the retransmitted data with the previously transmitted data. Each retransmitted set of coded bits is called a redundancy version (RV). In incremental redundancy, the sender sends additional redundant information through retransmission. As the number of retransmissions increases, the redundant information accumulates, thereby obtaining better decoding results.
2、编码码率:在信道编码过程中,用于表示数据比特(如信息比特)占编码比特的比率。例如,数据比特的长度为k,编码比特的长度为n,则编码码率为k/n。编码码率可简称为码率。2. Coding rate: In the channel coding process, it is used to indicate the ratio of data bits (such as information bits) to coding bits. For example, if the length of data bits is k and the length of coding bits is n, then the coding rate is k/n. The coding rate can be referred to as the code rate.
3、低密度奇偶校验(low density parity check,LDPC)码:一类具有稀疏校验矩阵的线性分组码,即校验矩阵中零元素的个数远远多于非零元素的个数,或者说,校验矩阵的行重和列重与LDPC的码长相比是很小的数。一个[n,k]线性分组码,可理解为将长度为k的数据比特,通过编码得到码长为N的编码比特。数据比特的长度等于k、码长等于n的LDPC码,可以由其校验矩阵唯一确定。3. Low density parity check (LDPC) code: a type of linear block code with a sparse check matrix, that is, the number of zero elements in the check matrix is much greater than the number of non-zero elements, or the row and column weights of the check matrix are very small compared to the code length of the LDPC. An [n, k] linear block code can be understood as encoding data bits of length k to obtain coded bits of length N. An LDPC code with a data bit length equal to k and a code length equal to n can be uniquely determined by its check matrix.
LDPC的校验矩阵可用Tanner图表示。Tanner图包含两类节点:一类节点代表码字比特,可称为变量节点;另一类节点代表校验节点,代表校验约束关系,每个校验节点代表一个校验约束关系。下面结合图2和图3进行说明。The check matrix of LDPC can be represented by a Tanner graph. The Tanner graph contains two types of nodes: one type of node represents codeword bits, which can be called variable nodes; the other type of node represents check nodes, which represent check constraint relationships, and each check node represents a check constraint relationship. The following is an explanation in conjunction with Figures 2 and 3.
参见图2,图2是LDPC的校验矩阵的示意图。图2中,{Vi}表示变量节点集,{Cj}表示校验节点集。校验矩阵的每行代表一个校验方程,每列代表一个码字比特。图2中,变量节点为8个,如 i=1,2,…,8;校验节点为4个,如j=1,2,3,4。如果一个码字比特包含在相应的校验方程中,就用一条连线将所涉及的比特节点和校验节点连起来,得到Tanner图。See Figure 2, which is a schematic diagram of the LDPC check matrix. In Figure 2, {V i } represents a variable node set, and {C j } represents a check node set. Each row of the check matrix represents a check equation, and each column represents a codeword bit. In Figure 2, there are 8 variable nodes, such as i = 1, 2, ..., 8; there are 4 check nodes, such as j = 1, 2, 3, 4. If a code word bit is included in the corresponding check equation, a line is used to connect the bit node and the check node involved to obtain a Tanner graph.
参见图3,图3是校验矩阵对应的Tanner图的示意图。如图3所示,Tanner图表示的即是LDPC的校验矩阵。例如,对于大小为m行n列的校验矩阵H,Tanner图中包含两类节点,分别为n个变量节点和m个校验节点,图3中每个圆形节点为变量节点,每个方形节点为校验节点。其中,n个变量节点分别和校验矩阵H的n个列对应,m个校验节点分别和校验矩阵H的m个行对应。Tanner图中的循环是由互相连接在一起的顶点组成,循环以这群顶点中的一个顶点同时作为起点和终点,且只经过每个节点一次。Tanner图中的变量节点对应校验矩阵H的每一列,也即对应LDPC的每一码字比特。Tanner图中的校验节点分别对应校验矩阵H的每一行,也即对应LDPC的校验比特。两类节点之间的连接情况对应H矩阵中元素的取值。若第i个校验节点与第j个变量节点之间存在连接,则代表校验矩阵H中的元素(i,j)的取值为1,若无连接,则对应的元素为0。See FIG. 3, which is a schematic diagram of the Tanner graph corresponding to the check matrix. As shown in FIG. 3, the Tanner graph represents the check matrix of the LDPC. For example, for a check matrix H of size m rows and n columns, the Tanner graph contains two types of nodes, namely n variable nodes and m check nodes. Each circular node in FIG. 3 is a variable node, and each square node is a check node. Among them, the n variable nodes correspond to the n columns of the check matrix H, respectively, and the m check nodes correspond to the m rows of the check matrix H, respectively. The cycle in the Tanner graph is composed of vertices connected to each other. The cycle uses one vertex in this group of vertices as both the starting point and the end point, and only passes through each node once. The variable nodes in the Tanner graph correspond to each column of the check matrix H, that is, to each codeword bit of the LDPC. The check nodes in the Tanner graph correspond to each row of the check matrix H, that is, to the check bits of the LDPC. The connection between the two types of nodes corresponds to the values of the elements in the H matrix. If there is a connection between the i-th check node and the j-th variable node, the value of the element (i, j) in the check matrix H is 1. If there is no connection, the corresponding element is 0.
如上文所述,LDPC码是一种线性分组码,线性分组码是将待编码的数据比特以k个比特为单位划分成组,再由编码器对这k个数据比特进行线性运算,得到m个校验比特,接着将这k个数据比特与m个校验比特合并,得到长度n=k+m的码组。从k比特的数据到长度为n比特的码组的映射关系,通常由一个对应的校验矩阵H来表示。根据校验矩阵H可相应地生成编码比特完成编码过程,编码比特通过信道传输之后,由接收端对接收到的信号进行相应地译码,判决出原有的数据比特。As mentioned above, LDPC code is a linear block code. The linear block code divides the data bits to be encoded into groups of k bits, and then the encoder performs linear operations on the k data bits to obtain m check bits. Then, the k data bits are combined with the m check bits to obtain a code group of length n = k + m. The mapping relationship from k-bit data to a code group of length n bits is usually represented by a corresponding check matrix H. According to the check matrix H, the coding bits can be generated accordingly to complete the coding process. After the coding bits are transmitted through the channel, the receiving end decodes the received signal accordingly to determine the original data bits.
在码长较长的情况下,LDPC的校验矩阵H会十分庞大,因此通常将H分块表示:完整的校验矩阵H视作由多个z×z的子矩阵生成。具体地,完整的校验矩阵H可由一个基矩阵Hb表示,Hb中的每个元素对应一个z×z的子矩阵,每个子矩阵均可以由循环移位的位数表示,由此,完整的校验矩阵H所需的存储空间极大减小。In the case of long code length, the LDPC check matrix H will be very large, so H is usually represented in blocks: the complete check matrix H is regarded as generated by multiple z×z sub-matrices. Specifically, the complete check matrix H can be represented by a base matrix Hb , each element in Hb corresponds to a z×z sub-matrix, and each sub-matrix can be represented by the number of cyclic shift bits, thereby greatly reducing the storage space required for the complete check matrix H.
作为示例,本申请实施例可以采用802.11ac或802.11ax标准中的校验矩阵,支持码长1944,1296以及648,这3种码长均支持码率为1/2,基于802.11ac或802.11ax标准给出的基矩阵Hb以及扩展因子z,可以将基矩阵扩展为完整的校验矩阵用于编码或者译码。As an example, the embodiment of the present application can adopt the check matrix in the 802.11ac or 802.11ax standard, supporting code lengths of 1944, 1296 and 648. These three code lengths all support a code rate of 1/2. Based on the base matrix H b and the expansion factor z given by the 802.11ac or 802.11ax standard, the base matrix can be expanded to a complete check matrix for encoding or decoding.
其中,IEEE 802.11ac以及802.11ax标准中采用的LDPC为准循环低密度奇偶校验(quasi-cyclic low density parity check,QC-LDPC)码。QC-LDPC码是一类结构化的LDPC。由于其校验矩阵的独特结构,编码时可以利用简单的反馈移位寄存器实现,降低LDPC的编码复杂度。Among them, the LDPC used in the IEEE 802.11ac and 802.11ax standards is the quasi-cyclic low density parity check (QC-LDPC) code. QC-LDPC code is a type of structured LDPC. Due to the unique structure of its check matrix, it can be encoded using a simple feedback shift register, reducing the coding complexity of LDPC.
IEEE 802.11ac和802.11ax共采纳了12个LDPC的校验矩阵,其中支持3种码长,该3种码长分别为648、1296和1944。每种码长均支持4种不同的码率,分别为1/2,2/3,3/4和5/6。其中,所述12个校验矩阵的校验比特部分都具有相同的结构。IEEE 802.11ac and 802.11ax adopt a total of 12 LDPC check matrices, which support three code lengths, namely 648, 1296 and 1944. Each code length supports four different code rates, namely 1/2, 2/3, 3/4 and 5/6. The check bit parts of the 12 check matrices have the same structure.
例如,802.11ac中码长为1944,码率为5/6的LDPC的校验矩阵H如下所示:
For example, the check matrix H of the LDPC with a code length of 1944 and a code rate of 5/6 in 802.11ac is as follows:
可以看出,校验矩阵H的大小为4行24列,校验矩阵H中的每个元素表示一个z=N/24阶的方阵,校验矩阵H中的元素0表示一个大小为z×z的全零方阵,元素表示循环置换矩阵,i表示循环移位值,其中,0≤i≤z-1,i为整数。另外,矩阵中的“-”表示全零矩阵,“0”表示单位矩阵。It can be seen that the size of the check matrix H is 4 rows and 24 columns. Each element in the check matrix H represents a square matrix of order z = N/24. The element 0 in the check matrix H represents a square matrix of size z×z with all zeros. represents a cyclic permutation matrix, i represents a cyclic shift value, where 0≤i≤z-1, i is an integer. In addition, "-" in the matrix represents an all-zero matrix, and "0" represents a unit matrix.
例如,如下所示:
For example, As follows:
WLAN中进行LDPC的编码时,发送端根据目标码长和目标码率,在上述12个校验矩阵中选择相应 的校验矩阵。其中,12个校验矩阵互不相同。When LDPC encoding is performed in WLAN, the transmitter selects the corresponding check matrix from the above 12 check matrices according to the target code length and target code rate. Among them, 12 check matrices are different from each other.
4、LDPC编码:按照WLAN标准(例如,IEEE 802.11n/ac标准),由于采用正交复用(orthogonal frequency division multiplexing,OFDM)技术,LDPC编码模块需要将数据比特经编码后放入整数个OFDM符号中,且这些编码后比特可放入整数个LDPC码字中。具体来说,首先确定本次传输所需的最少OFDM符号数目,如记为NSYM;然后根据NSYM和当前编码调制方案确定所有OFDM符号中可放的总编码比特数目,即NTCB=NCBPS·NSYM,其中,NCBPS表示每个OFDM符号可放的编码比特数;最后根据以上所得结果确定当前传输所采用的LDPC码长和所需的码字数目。在上述过程中,对于大多数的待编码数据比特长度和编码调制方案组合,数据比特可能不能填满LDPC码字中的信息比特部分,因此在生成校验比特之前,还可以进行缩短操作。缩短操作,是指在LDPC编码生成校验比特之前,在信息比特部分填入一定数目的0比特,编码生成校验比特之后再将这些0比特删除。4. LDPC coding: According to the WLAN standard (e.g., IEEE 802.11n/ac standard), due to the use of orthogonal frequency division multiplexing (OFDM) technology, the LDPC coding module needs to encode the data bits and put them into an integer number of OFDM symbols, and these encoded bits can be placed in an integer number of LDPC codewords. Specifically, first determine the minimum number of OFDM symbols required for this transmission, such as N SYM ; then determine the total number of coded bits that can be placed in all OFDM symbols based on N SYM and the current coding and modulation scheme, that is, N TCB = N CBPS · N SYM , where N CBPS represents the number of coded bits that can be placed in each OFDM symbol; finally, determine the LDPC code length and the number of codewords required for the current transmission based on the above results. In the above process, for most combinations of the length of the data bit to be encoded and the coding and modulation scheme, the data bits may not fill the information bit part in the LDPC codeword, so a shortening operation can be performed before generating the check bits. The shortening operation refers to filling a certain number of 0 bits in the information bit part before the LDPC code generates the check bits, and then deleting these 0 bits after the code generates the check bits.
参见图4,图4是LDPC编码步骤的示意图。作为示例,如图4所示,LDPC可包括如下步骤。步骤1:确定载荷(payload)比特,也即确定待编码的数据比特。步骤2:确定LDPC码字的长度和码字数目。步骤3:缩短操作,也即对数据比特进行缩短操作,添加缩短0比特(shortening zero bit)。步骤4:生成校验比特,也即利用数据比特和缩短0比特生成校验比特,如奇偶校验位(parity)比特。生成校验比特后,将步骤3中添加的缩短0比特删除,校验比特如为奇偶校验位(parity)比特。Referring to FIG. 4 , FIG. 4 is a schematic diagram of the LDPC encoding steps. As an example, as shown in FIG. 4 , LDPC may include the following steps. Step 1: Determine the payload bit, that is, determine the data bit to be encoded. Step 2: Determine the length of the LDPC codeword and the number of codewords. Step 3: Shortening operation, that is, shortening the data bit, adding a shortening zero bit. Step 4: Generate check bits, that is, generate check bits using data bits and shortening zero bits, such as parity bits. After the check bits are generated, the shortening zero bits added in step 3 are deleted, and the check bits are such as parity bits.
5、LDPC码译码停止准则:可用于结束译码器的译码迭代,还可用于基于码字重传的HARQ传输。一般地,对LDPC码引入译码停止准则的目的包括:5. LDPC code decoding stop criteria: can be used to end the decoding iteration of the decoder, and can also be used for HARQ transmission based on codeword retransmission. Generally, the purpose of introducing decoding stop criteria for LDPC codes includes:
1)数据验证:译码停止准则对传输的数据包提供了一个可靠性指示,该可靠性指示可用于向数据传输的上层反馈该数据包是否正确接收,或者用于产生HARQ传输的控制信息(例如,确认(acknowledgement,ACK)信息或否定(negative acknowledgement,NACK));1) Data verification: The decoding stop criterion provides a reliability indication for the transmitted data packet, which can be used to provide feedback to the upper layer of the data transmission whether the data packet is received correctly, or to generate control information for HARQ transmission (e.g., acknowledgment (ACK) information or negative acknowledgment (NACK));
2)能量和时延的节省:译码停止准则可通过避免不必要的冗余迭代次数从而避免译码能耗及译码时延的浪费。其中,不必要的冗余迭代表示:在当前码字无法被正确译码的情况下,或者当前码字已经被正确恢复的情况下,的迭代。2) Saving energy and delay: The decoding stop criterion can avoid the waste of decoding energy and decoding delay by avoiding unnecessary redundant iterations. Unnecessary redundant iterations refer to iterations when the current codeword cannot be decoded correctly or when the current codeword has been correctly recovered.
一般情况,译码停止准则可分为A型停止准则和B型停止准则。Generally speaking, decoding stopping criteria can be divided into type A stopping criteria and type B stopping criteria.
其中,A型停止准则:用于判断译码器是否正确判断当前码字已译码正确,即提供关于当前码字是否已正确恢复的可靠性指示。Among them, the type A stopping criterion is used to determine whether the decoder correctly determines that the current codeword has been decoded correctly, that is, to provide a reliability indication as to whether the current codeword has been correctly recovered.
其中,B型停止准则:用于判断当前码字是否不可恢复,即尽早反馈错误不可恢复,从而避免不必要的译码迭代以降低能耗和节省时间。Among them, the B-type stopping criterion is used to determine whether the current codeword is unrecoverable, that is, to feedback the unrecoverable error as early as possible, thereby avoiding unnecessary decoding iterations to reduce energy consumption and save time.
由上可知,好的译码停止准则可有效地提早结束译码器的译码迭代,从而达到降低能耗和译码时延的目的。From the above, it can be seen that a good decoding stop criterion can effectively end the decoding iteration of the decoder early, thereby achieving the purpose of reducing energy consumption and decoding delay.
6、判决事件:采用译码停止准则时,在译码过程中可能出现的判决事件。6. Judgment events: Judgment events that may occur during the decoding process when the decoding stop criteria is adopted.
在给出各种判决事件之前,首先介绍完美译码停止准则(genie aided stopping rule),也就是译码判断的理想情况。该完美译码停止准则一般不存在,此处主要用于与本申请提出的各种译码停止准则进行比较。完美译码停止准则指:每次迭代译码结束后均比较本轮迭代译码得到的信息比特和真实传输的信息比特,若二者相同则停止译码迭代。Before giving various judgment events, we first introduce the genie aided stopping rule, which is the ideal situation for decoding judgment. This genie aided stopping rule generally does not exist, and is mainly used here to compare with the various decoding stopping rules proposed in this application. The genie aided stopping rule means that after each iterative decoding, the information bits obtained by the iterative decoding are compared with the information bits actually transmitted, and if the two are the same, the decoding iteration is stopped.
作为示例,表1列出了采用译码停止准则时可能出现的判决事件。在介绍表1之前,先进行以下说明。As an example, Table 1 lists possible decision events when the decoding stop criterion is adopted. Before introducing Table 1, the following description is made first.
1)可靠性指示:用于指示译码端是否正确译码。可靠性指示可表示为:可靠包指示(如用c表示)或不可靠包指示(如用w表示)。1) Reliability indication: used to indicate whether the decoding end has decoded correctly. The reliability indication can be expressed as: reliable packet indication (such as indicated by c) or unreliable packet indication (such as indicated by w).
例如,若正确的信息比特在nMAX次迭代内恢复,则译码端反馈一个可靠包指示,该可靠包指示可用于指示译码端成功接收数据。作为示例,译码端还可反馈所需的最小迭代次数。其中,nMAX表示最大迭代次数。For example, if the correct information bit is recovered within n MAX iterations, the decoding end feeds back a reliable packet indication, which can be used to indicate that the decoding end has successfully received the data. As an example, the decoding end can also feed back the minimum number of iterations required, where n MAX represents the maximum number of iterations.
再例如,若当前码字错误且不可恢复,则译码端立即停止译码迭代,并且反馈一个不可靠包指示,该不可靠包指示可用于指示译码端未成功接收数据。For another example, if the current codeword is erroneous and unrecoverable, the decoding end immediately stops decoding iterations and feeds back an unreliable packet indication, which may be used to indicate that the decoding end has not successfully received data.
为区分,用ed表示采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时的可靠性指示,eg表示采用完美译码停止准则时的可靠性指示。ed∈[c,w],eg∈[c,w]。To distinguish, ed is used to represent the reliability indication when a general decoding stop criterion (i.e., a decoding stop criterion other than the perfect decoding stop criterion) is adopted, and e g is used to represent the reliability indication when the perfect decoding stop criterion is adopted. ed ∈[c,w], e g ∈[c,w].
2)所需的译码迭代次数:表示译码端对接收到的码字进行译码时所需要的译码迭代次数。2) Number of decoding iterations required: indicates the number of decoding iterations required by the decoding end to decode the received codeword.
为区分,用nd表示采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时所需的 译码迭代次数,ng表示采用完美译码停止准则时所需的译码迭代次数。nd∈[0,nMAX],ng∈[0,nMAX]。To distinguish, n d is used to represent the number of seconds required when using a general decoding stop criterion (i.e., a decoding stop criterion other than the perfect decoding stop criterion). The number of decoding iterations, n g represents the number of decoding iterations required when the perfect decoding stopping criterion is adopted. n d ∈[0,n MAX ], n g ∈[0,n MAX ].
3)‘真实’可靠指示:表示当采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时,译码端反馈的信息比特的真实状况。为简洁,用true表示‘真实’可靠指示,true∈[c,w]。其中,c表示译码端反馈的信息比特正确,w表示译码端反馈的信息比特错误。3) ‘True’ reliable indication: indicates the true status of the information bit fed back by the decoder when the general decoding stop criteria (i.e., the decoding stop criteria other than the perfect decoding stop criteria) are adopted. For simplicity, true is used to represent the ‘true’ reliable indication, true∈[c,w]. Where c indicates that the information bit fed back by the decoder is correct, and w indicates that the information bit fed back by the decoder is wrong.
表1
Table 1
如表1所示,ed为c,eg为c,true为c,nd≥ng时,判决事件的事件名称为成功正确检测(detected correct,DC)。成功正确检测:译码端宣告没有错误发生,也即采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时,译码端反馈的HARQ是正确的。在该情况下,译码端反馈ACK,表示成功接收数据,其中,译码端反馈的ACK是正确的。在该情况下,译码端还可反馈一个非负的迭代次数的浪费次数(如称为额外迭代次数):Δ=(nd-ng)。As shown in Table 1, when ed is c, e g is c, true is c, and n d ≥ n g , the event name of the decision event is detected correct (DC). Successful and correct detection: The decoding end declares that no error occurs, that is, when the general decoding stop criterion (that is, the decoding stop criterion other than the perfect decoding stop criterion) is adopted, the HARQ fed back by the decoding end is correct. In this case, the decoding end feeds back ACK, indicating that the data is successfully received, wherein the ACK fed back by the decoding end is correct. In this case, the decoding end can also feed back a non-negative number of wasted iterations (such as called the extra iteration number): Δ = (n d - n g ).
如表1所示,ed为c,eg为w,true为c,nd≥ng时,判决事件的事件名称为虚警(false alarm,FA)。FA:码字信息比特部分没有错误,但译码端宣告译码错误,也即采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时,译码端反馈的HARQ是错误的。在该情况下,译码端反馈一个错误NACK(wrong NACK),其中,译码端反馈的NACK是错误的,因此会造成不必要的重传。As shown in Table 1, when ed is c, e g is w, true is c, and n d ≥ n g , the event name of the judgment event is false alarm (FA). FA: There is no error in the codeword information bit part, but the decoding end declares a decoding error, that is, when the general decoding stop criterion (that is, the decoding stop criterion other than the perfect decoding stop criterion) is adopted, the HARQ fed back by the decoding end is wrong. In this case, the decoding end feeds back a wrong NACK, wherein the NACK fed back by the decoding end is wrong, thus causing unnecessary retransmission.
如表1所示,ed为c,eg为w,true为w,nd<ng时,判决事件的事件名称为虚假的错误检测(false detected error,FDE)。FDE:译码端宣告存在不可恢复的错误,但实际该错误可恢复(比如通过增加译码迭代次数可恢复错误)。在该情况下,译码端反馈非必要的NACK(not necessary NACK,Not nec.NACK),可能会增加检测到的误帧率(frame error rate,FER)和真实的FER。As shown in Table 1, when ed is c, e g is w, true is w, and nd < ng , the event name of the judgment event is false detected error (FDE). FDE: The decoder declares that there is an unrecoverable error, but the error is actually recoverable (for example, the error can be recovered by increasing the number of decoding iterations). In this case, the decoder feeds back a not necessary NACK (Not nec. NACK), which may increase the detected frame error rate (FER) and the actual FER.
如表1所示,ed为w,eg为c,true为w,nd≥0=ng时,判决事件的事件名称为漏检错误(undetected error,UE)。漏检错误:译码端宣告没有错误,但实际存在不可恢复的错误,也即采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时,译码端反馈的HARQ是错误的。在该情况下,译码端反馈一个错误ACK(wrong ACK),其中,译码端反馈的ACK是错误的,这样可能会降低检测到的FER,不改变真实的FER。As shown in Table 1, when ed is w, e g is c, true is w, and n d ≥0= ng , the event name of the judgment event is undetected error (UE). Undetected error: The decoding end declares that there is no error, but there is actually an unrecoverable error, that is, when the general decoding stop criterion (that is, the decoding stop criterion other than the perfect decoding stop criterion) is adopted, the HARQ fed back by the decoding end is wrong. In this case, the decoding end feeds back a wrong ACK, wherein the ACK fed back by the decoding end is wrong, which may reduce the detected FER but does not change the real FER.
如表1所示,ed为c,eg为c,true为w,nd<ng时,判决事件的事件名称为虚假的漏检错误(false undetected error,FUE)。FUE:译码端宣告没有错误,但实际存在可恢复的错误,也即采用一般译码停止准则(也即完美译码停止准则之外的译码停止准则)时,译码端反馈的HARQ是错误的。在该情况下,译码端反馈一个wrong NACK和非必要的ACK(not necessary ACK,Not nec.ACK),其中,译码端反馈的NACK是错误的。FUE相比漏检错误更有害,因为FUE可能会增加真实的FER,但不改变检测到的 FER。As shown in Table 1, when ed is c, e g is c, true is w, and nd < ng , the event name of the judgment event is false undetected error (FUE). FUE: The decoder declares that there is no error, but there is actually a recoverable error, that is, when the general decoding stop criterion (that is, the decoding stop criterion other than the perfect decoding stop criterion) is adopted, the HARQ fed back by the decoder is wrong. In this case, the decoder feeds back a wrong NACK and a non-necessary ACK (not necessary ACK, Not nec.ACK), where the NACK fed back by the decoder is wrong. FUE is more harmful than undetected error because FUE may increase the actual FER but does not change the detected FER. FER.
如表1所示,ed为w,eg为w,true为w,nd≥0时,判决事件的事件名称为成功错误检测(detected error,DE)。成功错误检测:译码端正确地宣告不可恢复的错误。As shown in Table 1, ed is w, e g is w, true is w, and when n d ≥ 0, the event name of the decision event is successfully error detected (DE). Successful error detection: The decoding end correctly declares an unrecoverable error.
可以理解,上述表1为示例性说明,对此不予限制。It can be understood that the above Table 1 is for illustrative purposes only and is not intended to be limiting.
现有技术中,译码停止准则是按照LDPC码的校验矩阵和当前译码码字结果,计算校验矩阵中包含的所有校验方程是否满足,若满足则宣布译码正确,否则进入下一次译码迭代。数学表达如式1。
H·cT=sT
In the prior art, the decoding stop criterion is to calculate whether all the check equations contained in the check matrix are satisfied according to the check matrix of the LDPC code and the current decoding codeword result. If satisfied, the decoding is declared correct, otherwise it enters the next decoding iteration. The mathematical expression is as shown in Formula 1.
H·c T =s T
                        式1 Formula 1
其中,H表示LDPC码的校验矩阵。c表示本次译码迭代后的译码判决码字序列,c=[c1,c2,…,cN]。s表示校验矩阵和当前判决相乘得到的伴随式向量,s=[s1,s2,…,sM]。上角标T表示转置,如cT表示矩阵(或向量)c的转置。若s为全0向量,则当前译码判决正确,译码迭代可停止,且当前判决码字即可作为译码结果输出。Where H represents the check matrix of the LDPC code. c represents the decoding decision codeword sequence after the current decoding iteration, c = [c 1 ,c 2 ,…,c N ]. s represents the syndrome vector obtained by multiplying the check matrix and the current decision, s = [s 1 ,s 2 ,…,s M ]. The superscript T represents the transpose, such as c T represents the transpose of the matrix (or vector) c. If s is an all-zero vector, the current decoding decision is correct, the decoding iteration can be stopped, and the current decision codeword can be output as the decoding result.
上述译码停止准则需要判断校验矩阵中包含的所有校验方程正确,才可停止译码迭代,这样可能会出现信息码字已译码正确但是由于部分校验方程不正确,导致无法及早结束译码,从而造成功耗的浪费以及译码时延的增加。此外,接收端仅需要信息比特即可,由于上述译码停止准则需要判断校验矩阵中包含的所有校验方程正确才宣布译码正确,这样若错误仅存在于校验比特部分,译码器也会宣告译码失败,从而造成不必要的重传。The above decoding stop criteria need to determine that all the check equations included in the check matrix are correct before the decoding iteration can be stopped. In this way, the information codeword may be decoded correctly, but due to the incorrectness of some check equations, the decoding cannot be ended early, resulting in waste of power consumption and increased decoding delay. In addition, the receiving end only needs the information bit. Since the above decoding stop criteria need to determine that all the check equations included in the check matrix are correct before declaring the decoding correct, if the error only exists in the check bit part, the decoder will also declare the decoding failed, resulting in unnecessary retransmission.
有鉴于此,本申请提供一种方案,可以降低由于额外迭代次数和不必要重传带来的功耗浪费和时延增加。In view of this, the present application provides a solution that can reduce the power consumption waste and delay increase caused by additional iterations and unnecessary retransmissions.
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。此外,上文关于术语的说明,仅是为便于理解做的说明,其对本申请实施例的保护范围不造成限定。The above briefly describes the terms involved in this application, which will not be repeated in the following embodiments. In addition, the above description of terms is only for ease of understanding and does not limit the protection scope of the embodiments of this application.
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It can be understood that the term "and/or" in this article is only a description of the association relationship of the associated objects, indicating that there can be three relationships. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
下文将结合附图详细说明本申请实施例提供的方法。本申请提供的实施例可以适用于发送端设备(如编码设备)和接收端设备(如译码设备)通信的任何通信场景,如可以应用于上述图1所示的通信系统中。The method provided by the embodiment of the present application will be described in detail below in conjunction with the accompanying drawings. The embodiment provided by the present application can be applied to any communication scenario in which a transmitting device (such as an encoding device) and a receiving device (such as a decoding device) communicate, such as being applied to the communication system shown in Figure 1 above.
在下文实施例中,以编码装置和译码装置之间的交互为例进行说明。其中,编码装置可以是编码设备或编码设备的组成部件(例如芯片、电路或模块等),译码装置可以是译码设备或译码设备的组成部件(例如芯片、电路或模块等)。In the following embodiments, the interaction between the encoding device and the decoding device is taken as an example for description. The encoding device may be an encoding device or a component of an encoding device (such as a chip, circuit or module, etc.), and the decoding device may be a decoding device or a component of a decoding device (such as a chip, circuit or module, etc.).
参见图5,图5是本申请实施例提供的一种编码方法500的示意图。方法500可以包括如下步骤。Referring to Fig. 5, Fig. 5 is a schematic diagram of an encoding method 500 provided in an embodiment of the present application. The method 500 may include the following steps.
510,编码装置对数据比特进行LDPC编码,得到编码后的LDPC码流,数据比特包括信息比特和根据信息比特生成的CRC比特。510. The encoding device performs LDPC encoding on the data bits to obtain an encoded LDPC code stream, where the data bits include information bits and CRC bits generated according to the information bits.
具体来说,编码装置对待编码的比特(即数据比特)进行LDPC编码,得到编码后的LDPC码流,其中,待编码的比特包括待编码的信息比特和CRC比特。CRC比特可以是根据全部或者部分信息比特生成的,因此为便于描述,该CRC比特也可称为该信息比特的CRC比特。Specifically, the encoding device performs LDPC encoding on the bits to be encoded (i.e., data bits) to obtain an encoded LDPC code stream, wherein the bits to be encoded include information bits to be encoded and CRC bits. The CRC bits can be generated based on all or part of the information bits, so for ease of description, the CRC bits can also be referred to as CRC bits of the information bits.
可选地,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关。基于此,可以根据LDPC码流中至少一个数据比特位置的鲁棒性,确定CRC比特所在的位置;或者说,CRC比特所在的位置是鲁棒性满足一定条件的位置。举例来说,若某个位置的鲁棒性满足一定条件,则该位置可以是CRC比特的位置,也即在该位置放置CRC比特。Optionally, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream. Based on this, the position of the CRC bit can be determined according to the robustness of at least one data bit position in the LDPC code stream; in other words, the position of the CRC bit is a position where the robustness meets certain conditions. For example, if the robustness of a certain position meets certain conditions, then the position can be the position of the CRC bit, that is, the CRC bit is placed at this position.
其中,数据比特位置的鲁棒性,也就是说数据比特所在位置的鲁棒性,可以反映数据比特在信道传输过程中受噪声影响的程度。下文为便于简洁,将数据比特位置的鲁棒性简称为数据比特的鲁棒性。示例性地,一个容易受到噪声影响的数据比特的鲁棒性,低于一个不容易受到噪声影响的数据比特的鲁棒性。也可以说,越容易受到噪声影响的数据比特对噪声越敏感,其鲁棒性越低;反之,越不容易受到噪声影响的数据比特,对噪声越不敏感,其鲁棒性越高。可替换地,鲁棒性,也可称为置信度或者可靠度等。 Among them, the robustness of the data bit position, that is, the robustness of the position where the data bit is located, can reflect the degree to which the data bit is affected by noise during channel transmission. For the sake of simplicity, the robustness of the data bit position is referred to as the robustness of the data bit below. Exemplarily, the robustness of a data bit that is easily affected by noise is lower than the robustness of a data bit that is not easily affected by noise. It can also be said that the more susceptible the data bit is to noise, the more sensitive it is to noise, and the lower its robustness; conversely, the less susceptible the data bit is to noise, the less sensitive it is to noise, and the higher its robustness. Alternatively, robustness can also be referred to as confidence or reliability, etc.
作为示例,对数似然比(likelihood rate,LLR)可表征数据比特的鲁棒性。具体来说,绝对值|LLR|可作为鲁棒性特征,确定数据比特的鲁棒性排序,其中,|LLR|越小,则表示该|LLR|对应的比特位置越敏感,鲁棒性越低。As an example, the log-likelihood ratio (LLR) can characterize the robustness of a data bit. Specifically, the absolute value |LLR| can be used as a robustness feature to determine the robustness ranking of the data bits, where the smaller the |LLR|, the more sensitive the bit position corresponding to the |LLR| is and the lower the robustness is.
可以理解,用LLR来表征数据比特的鲁棒性仅是一种示例性说明,对此不予限制。例如,也可以用数据比特本身的结构来表征数据比特的鲁棒性。It is understandable that using LLR to characterize the robustness of data bits is only an exemplary description and is not limiting. For example, the structure of the data bits themselves may also be used to characterize the robustness of the data bits.
可选地,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:CRC比特所在的位置的鲁棒性高于LDPC码流中至少一个信息比特所在位置的鲁棒性。基于该方式,LDPC码流中CRC比特所在位置的鲁棒性高于至少一个信息比特所在位置的鲁棒性,这样通过优先选择鲁棒性较高的位置作为CRC比特的位置,也即将CRC比特置于鲁棒性较高的位置,可以提高CRC比特的可靠性,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。Optionally, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including: the robustness of the position of the CRC bit is higher than the robustness of the position of at least one information bit in the LDPC code stream. Based on this method, the robustness of the position of the CRC bit in the LDPC code stream is higher than the robustness of the position of at least one information bit, so that by preferentially selecting a position with higher robustness as the position of the CRC bit, that is, placing the CRC bit at a position with higher robustness, the reliability of the CRC bit can be improved, and then the information bit in the LDPC code stream can be assisted in decoding based on the CRC bit.
举例来说,LDPC码流中包括X个数据比特,该X个数据比特中至少两个信息比特的鲁棒性不同,那么CRC比特所在的位置的鲁棒性高于该X个信息比特中至少一个信息比特的鲁棒性,也就是说,在X个数据比特中,CRC比特所在的位置的鲁棒性不是最低的。For example, the LDPC code stream includes X data bits, and at least two information bits among the X data bits have different robustness. Then the robustness of the position where the CRC bit is located is higher than the robustness of at least one information bit among the X information bits. That is to say, among the X data bits, the robustness of the position where the CRC bit is located is not the lowest.
一种可能的实现方式,CRC比特所在的位置的鲁棒性最高,也即CRC比特所在的位置是LDPC码流中数据比特的鲁棒性最高的位置。可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特所在的位置是LDPC码流中数据比特的鲁棒性次高的位置。In one possible implementation, the position where the CRC bit is located has the highest robustness, that is, the position where the CRC bit is located is the position where the data bit in the LDPC code stream has the highest robustness. It can be understood that the above implementation is an exemplary description and is not limited to this. For example, the position where the CRC bit is located is the position where the data bit in the LDPC code stream has the second highest robustness.
可选地,CRC比特所在的位置与LDPC码流中至少一个数据比特的鲁棒性相关,包括:LDPC码流中的至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置。基于该方式,在至少两个数据比特的鲁棒性一致的情况下,通过将CRC比特置于靠前的位置,可以便于译码端较快地获取到CRC比特,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。Optionally, the position of the CRC bit is related to the robustness of at least one data bit in the LDPC code stream, including: when the robustness of at least two data bits in the LDPC code stream is consistent, the position of the CRC bit is located at a front position in the at least two data bits. Based on this method, when the robustness of at least two data bits is consistent, by placing the CRC bit at a front position, it is convenient for the decoding end to obtain the CRC bit more quickly, and then the information bit in the LDPC code stream can be assisted in decoding based on the CRC bit.
举例来说,假设两个数据比特的鲁棒性一致,且第一个数据比特的位置靠前,第二个数据比特的位置靠后,如第一个数据比特位于校验矩阵的第a1列,第二个数据比特位于校验矩阵的第a2列,a1小于a2,那么CRC比特可以位于第一个数据比特的位置,即CRC比特可以位于校验矩阵的第a1列。For example, assuming that the robustness of two data bits is consistent, and the first data bit is located in the front and the second data bit is located in the back, such as the first data bit is located in the a1th column of the check matrix and the second data bit is located in the a2th column of the check matrix, and a1 is less than a2, then the CRC bit can be located in the position of the first data bit, that is, the CRC bit can be located in the a1th column of the check matrix.
其中,数据比特的鲁棒性一致,表示数据比特的鲁棒性相同或者相似。举例来说,若至少两个数据比特的鲁棒性相同,则可认为该至少两个数据比特的鲁棒性一致。再举例来说,若至少两个数据比特的鲁棒性的差值位于预设范围,则也可认为该至少两个数据比特的鲁棒性一致。其中,至少两个数据比特的鲁棒性的差值位于预设范围,即表示至少两个数据比特的鲁棒性相差不大,如至少两个数据比特的LLR的绝对值|LLR|的差值位于预设范围。其中,预设范围可以是具体的数值,或者也可以是数值范围,对此不予限制。预设范围可以是预定义的,如标准预定义的;或者也可以是预配置的;或者也可以是根据历史情况估计的,不予限制。Wherein, the robustness of the data bits is consistent, indicating that the robustness of the data bits is the same or similar. For example, if the robustness of at least two data bits is the same, it can be considered that the robustness of the at least two data bits is consistent. For another example, if the difference in the robustness of at least two data bits is within a preset range, it can also be considered that the robustness of the at least two data bits is consistent. Wherein, the difference in the robustness of at least two data bits is within a preset range, which means that the robustness of at least two data bits is not much different, such as the difference in the absolute value |LLR| of the LLR of at least two data bits is within a preset range. Wherein, the preset range can be a specific value, or it can also be a numerical range, which is not limited. The preset range can be predefined, such as predefined by a standard; or it can also be preconfigured; or it can also be estimated based on historical circumstances, which is not limited.
可选地,关于CRC比特的参数不予限制。其中,CRC比特的参数例如包括:CRC比特数和/或生成多项式(generator polynomial)。作为示例,表2示出了CRC比特数的示例。Optionally, the parameters of the CRC bits are not limited. The parameters of the CRC bits include, for example: the number of CRC bits and/or a generator polynomial. As an example, Table 2 shows an example of the number of CRC bits.
表2

Table 2

可以理解,上述表2为示例性说明,对此不予限制。It can be understood that the above Table 2 is for illustrative purposes only and is not intended to be limiting.
520,编码装置向译码装置发送LDPC码流。相应地,译码装置接收LDPC码流。520, the encoding device sends the LDPC code stream to the decoding device. Correspondingly, the decoding device receives the LDPC code stream.
可选地,方法500还包括步骤530。Optionally, method 500 also includes step 530 .
530,译码装置对LDPC码进行译码。530, the decoding device decodes the LDPC code.
译码装置对LDPC进行译码,可以得到相应的信息比特。The decoding device decodes the LDPC to obtain corresponding information bits.
在本申请实施例中,通过在LDPC码流中加入CRC比特,可以在译码迭代过程中,基于该CRC比特辅助译码,也即辅助译码端判断译码是否成功。举例来说,译码装置译码出数据比特(或者说信息比特)后,可以进一步使用CRC比特对译码出的信息比特进行校验,若CRC比特校验正确,则认为成功译码出信息比特,即译码正确;否则可以继续进行译码,直到译码正确。此外,CRC比特所在的位置可以与LDPC码流中数据比特的鲁棒性相关,这样,可以根据实际需求,选择CRC比特所在的位置。例如,若要提高CRC比特的可靠性,可以优先选择鲁棒性较高的位置作为CRC比特的位置,也即将CRC比特置于鲁棒性较高的位置,这样可以提高CRC比特的可靠性,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。In an embodiment of the present application, by adding CRC bits to the LDPC code stream, auxiliary decoding can be performed based on the CRC bits during the decoding iteration process, that is, the auxiliary decoding end determines whether the decoding is successful. For example, after the decoding device decodes the data bits (or information bits), the CRC bits can be further used to verify the decoded information bits. If the CRC bit verification is correct, it is considered that the information bits are successfully decoded, that is, the decoding is correct; otherwise, the decoding can continue until the decoding is correct. In addition, the position of the CRC bit can be related to the robustness of the data bits in the LDPC code stream, so that the position of the CRC bit can be selected according to actual needs. For example, if the reliability of the CRC bit is to be improved, the position with higher robustness can be preferentially selected as the position of the CRC bit, that is, the CRC bit is placed in a position with higher robustness, so that the reliability of the CRC bit can be improved, and then the information bits in the LDPC code stream can be assisted in decoding based on the CRC bit.
在不同码长和码率下,CRC比特所在的位置可能不同。Under different code lengths and code rates, the positions of the CRC bits may be different.
作为示例,下面结合表3至表14示出了在不同码长和码率下,CRC比特可能的位置。在下面的示例中,以LLR的绝对值|LLR|表征鲁棒性为例进行示例性说明。其中,关于计算LLR的具体方式不予限制,例如可以采用已知的或未知的方式来进行计算。As an example, the possible positions of CRC bits under different code lengths and code rates are shown below in combination with Tables 3 to 14. In the following example, the absolute value of LLR |LLR| is used as an example to characterize robustness. The specific method for calculating LLR is not limited, for example, it can be calculated in a known or unknown manner.
示例1,在LDPC码流的码长为1944,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的第1列所对应的数据比特位置。Example 1: When the code length of the LDPC code stream is 1944 and the code rate is 1/2, the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream.
举例来说,码率为1/2,数据比特的长度为972,码长为1944的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其可靠性排序可以如表3所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 1/2, a data bit length of 972, and a code length of 1944 and their reliability ranking can be shown in Table 3.
表3
table 3
其中,表3的第1行“鲁棒性排序”,每个元素a(b)表示校验矩阵的第a列,且第a列的列重为b。第a列对应的|LLR|表示第a列对应的数据比特的LLR的绝对值,可以反映该列对应的数据比特的鲁棒性,其中|LLR|越大,鲁棒性越高;反之,|LLR|越小,鲁棒性越低。In the first row of Table 3, "Robustness Sorting", each element a(b) represents the ath column of the check matrix, and the column weight of the ath column is b. The |LLR| corresponding to the ath column represents the absolute value of the LLR of the data bit corresponding to the ath column, which can reflect the robustness of the data bit corresponding to the column, wherein the larger the |LLR|, the higher the robustness; conversely, the smaller the |LLR|, the lower the robustness.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表3所示的示例为例,CRC比特位于LLR的绝对值最大的位置,即CRC比特可位于校验矩阵中的第1列,即1(11)的位置,作为示例该位置的LLR的绝对值为126.7955。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 3 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, that is, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (11). As an example, the absolute value of the LLR at this position is 126.7955.
另一种可能的实现方式,CRC比特位于鲁棒性次高的位置。以表3所示的示例为例,CRC比特可位于LLR的绝对值次大的位置,即CRC比特可位于校验矩阵中的第9列,即9(11)的位置,作为示例该位置的LLR的绝对值为126.7682。 In another possible implementation, the CRC bit is located at the position with the second highest robustness. Taking the example shown in Table 3 as an example, the CRC bit can be located at the position with the second largest absolute value of the LLR, that is, the CRC bit can be located at the 9th column in the check matrix, that is, the position 9 (11), and as an example, the absolute value of the LLR at this position is 126.7682.
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置,如CRC比特也可位于校验矩阵中的第5列,即5(11)的位置。It can be understood that the above implementation is for illustrative purposes only and is not intended to limit this. For example, the CRC bit may also be located at other positions, such as the CRC bit may also be located at the 5th column in the check matrix, that is, position 5(11).
示例2,在LDPC码流的码长为1944,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列。Example 2: When the code length of the LDPC code stream is 1944 and the code rate is 2/3, the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4.
举例来说,码率为2/3,数据比特的长度为1296,码长为1944的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表4所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 2/3, a data bit length of 1296, and a code length of 1944 and their robustness ranking can be shown in Table 4.
表4
Table 4
关于表4中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 4, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表4所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(8)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(8)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(8)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(8)的位置。作为示例,上述位置的LLR的绝对值为147.9562。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(8)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 4 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (8); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (8); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4 (8). As an example, the absolute value of the LLR at the above position is 147.9562. Optionally, if the position of the CRC bit is located at the front position of at least two data bits under the condition that the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8).
另一种可能的实现方式,CRC比特位于鲁棒性次高的位置。以表4所示的示例为例,CRC比特可位于校验矩阵中的第5列,即5(6)的位置。In another possible implementation, the CRC bit is located at a position with the second highest robustness. Taking the example shown in Table 4 as an example, the CRC bit may be located at the fifth column in the check matrix, that is, position 5(6).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例3,在LDPC码流的码长为1944,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列。Example 3, when the code length of the LDPC code stream is 1944 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6.
举例来说,码率为3/4,数据比特的长度为1458,码长为1944的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表5所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 3/4, a data bit length of 1458, and a code length of 1944 and their robustness ranking can be shown in Table 5.
表5
table 5
关于表5中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 5, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表5所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(6)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(6)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(6)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(6)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(6)的位置;或者,CRC比特可位于校验矩阵中的第6列,即6(6)的位置。作为示例,上述位置的LLR的绝对值为81.8940。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(6)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 5 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (6); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (6); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4 (6); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5 (6); or, the CRC bit can be located in the sixth column of the check matrix, that is, the position of 6 (6). As an example, the absolute value of the LLR at the above position is 81.8940. Optionally, if the position of the CRC bit is located at the front position of at least two data bits under the condition that the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于或者其它位置。 It can be understood that the above implementation is an exemplary description and is not limited to this. For example, the CRC bit can also be located at or other positions.
示例4,在LDPC码流的码长为1944,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列。Example 4: When the code length of the LDPC code stream is 1944 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, and column 10.
举例来说,码率为5/6,数据比特的长度为1620,码长为1944的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表6所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 5/6, a data bit length of 1620, and a code length of 1944 and their robustness ranking can be shown in Table 6.
表6
Table 6
关于表6中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 6, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表6所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(4)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(4)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(4)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(4)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(4)的位置;或者,CRC比特可位于校验矩阵中的第6列,即6(4)的位置;或者,CRC比特可位于校验矩阵中的第7列,即7(4)的位置;或者,CRC比特可位于校验矩阵中的第8列,即8(4)的位置;或者,CRC比特可位于校验矩阵中的第9列,即9(4)的位置;或者,CRC比特可位于校验矩阵中的第10列,即10(4)的位置。作为示例,上述位置的LLR的绝对值为111.6094。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(4)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 6 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (4); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (4); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (4); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4 (4); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5 (4); or, the CRC bit can be located in the sixth column of the check matrix, that is, the position of 6 (4); or, the CRC bit can be located in the seventh column of the check matrix, that is, the position of 7 (4); or, the CRC bit can be located in the eighth column of the check matrix, that is, the position of 8 (4); or, the CRC bit can be located in the ninth column of the check matrix, that is, the position of 9 (4); or, the CRC bit can be located in the tenth column of the check matrix, that is, the position of 10 (4). As an example, the absolute value of the LLR at the above position is 111.6094. Optionally, if the position of the CRC bit is located at the front position of the at least two data bits when the robustness of the at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1(4).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例5,在LDPC码流的码长为1296,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的第1列所对应的数据比特位置。Example 5: When the code length of the LDPC code stream is 1296 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream.
举例来说,码率为1/2,数据比特的长度为648,码长为1296的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表7所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 1/2, a data bit length of 648, and a code length of 1296 and their robustness ranking can be shown in Table 7.
表7
Table 7
关于表7中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 7, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表7所示的示例为例,CRC比特位于LLR的绝对值最大的位置,即CRC比特可位于校验矩阵中的第1列,即1(11)的位置,作为示例该数据比特的LLR的绝对值为144.4487。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 7 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, that is, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (11). As an example, the absolute value of the LLR of the data bit is 144.4487.
另一种可能的实现方式,CRC比特位于鲁棒性次高的位置。以表7所示的示例为例,CRC比特可位于LLR的绝对值次大的位置,即CRC比特可位于校验矩阵中的第9列,即9(11)的位置,作为示例该数据比特的LLR的绝对值为144.3379。 In another possible implementation, the CRC bit is located at the position with the second highest robustness. Taking the example shown in Table 7 as an example, the CRC bit can be located at the position with the second largest absolute value of the LLR, that is, the CRC bit can be located at the 9th column in the check matrix, that is, the position 9 (11). As an example, the absolute value of the LLR of the data bit is 144.3379.
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置,如CRC比特也可位于校验矩阵中的第5列,即5(11)的位置。It can be understood that the above implementation is for illustrative purposes only and is not intended to limit this. For example, the CRC bit may also be located at other positions, such as the CRC bit may also be located at the 5th column in the check matrix, that is, position 5(11).
示例6,在LDPC码流的码长为1296,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列。Example 6, when the code length of the LDPC code stream is 1296 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3.
举例来说,码率为2/3,数据比特的长度为864,码长为1296的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表8所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 2/3, a data bit length of 864, and a code length of 1296 and their robustness ranking can be shown in Table 8.
表8
Table 8
关于表8中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 8, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表8所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(8)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(8)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(8)的位置。作为示例,上述位置的LLR的绝对值为147.3210。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(8)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 8 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (8); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (8). As an example, the absolute value of the LLR at the above position is 147.3210. Optionally, if the position of the CRC bit is located at the front position of at least two data bits when the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8).
另一种可能的实现方式,CRC比特位于鲁棒性次高的位置。以表8所示的示例为例,CRC比特可位于LLR的绝对值次大的位置,即CRC比特可位于校验矩阵中的第5列,即5(7)的位置。In another possible implementation, the CRC bit is located at the position with the second highest robustness. Taking the example shown in Table 8 as an example, the CRC bit can be located at the position with the second largest absolute value of the LLR, that is, the CRC bit can be located at the 5th column in the check matrix, that is, position 5(7).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例7,在LDPC码流的码长为1296,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列。Example 7, when the code length of the LDPC code stream is 1296 and the code rate is 3/4, the position of the CRC bit is located in the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7.
举例来说,码率为3/4,数据比特的长度为972,码长为1296的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表9所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 3/4, a data bit length of 972, and a code length of 1296 and their robustness ranking can be shown in Table 9.
表9
Table 9
关于表9中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 9, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表9所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(6)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(6)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(6)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(6)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(6)的位置;或者,CRC比特可位于校验矩阵中的第6列,即6(6)的位置;或者,CRC比特可位于校验矩阵中的第7列,即7(6)的位置。作为示例,上述位置的LLR的绝对值为81.9962。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(6)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 9 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (6); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (6); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4 (6); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5 (6); or, the CRC bit can be located in the sixth column of the check matrix, that is, the position of 6 (6); or, the CRC bit can be located in the seventh column of the check matrix, that is, the position of 7 (6). As an example, the absolute value of the LLR at the above position is 81.9962. Optionally, if the position of the CRC bit is located at the front position of the at least two data bits under the condition that the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于或者其它位置。It can be understood that the above implementation is an exemplary description and is not limited to this. For example, the CRC bit can also be located at or other positions.
示例8,在LDPC码流的码长为1296,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第13列、第14列、第15列、第16列。 Example 8. When the code length of the LDPC code stream is 1296 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 13, column 14, column 15, and column 16.
举例来说,码率为5/6,数据比特的长度为1080,码长为1296的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表10所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 5/6, a data bit length of 1080, and a code length of 1296 and their robustness ranking can be shown in Table 10.
表10
Table 10
关于表10中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 10, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表10所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(3)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(3)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(3)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(3)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(3)的位置;或者,CRC比特可位于校验矩阵中的第6列,即6(3)的位置;或者,CRC比特可位于校验矩阵中的第7列,即7(4)的位置;或者,CRC比特可位于校验矩阵中的第8列,即8(4)的位置;或者,CRC比特可位于校验矩阵中的第9列,即9(4)的位置;或者,CRC比特可位于校验矩阵中的第10列,即10(4)的位置;或者,CRC比特可位于校验矩阵中的第11列,即11(4)的位置;或者,CRC比特可位于校验矩阵中的第12列,即12(4)的位置;或者,CRC比特可位于校验矩阵中的第13列,即13(4)的位置;或者,CRC比特可位于校验矩阵中的第14列,即14(4)的位置;或者,CRC比特可位于校验矩阵中的第15列,即15(4)的位置;或者,CRC比特可位于校验矩阵中的第16列,即16(4)的位置。作为示例,上述位置的LLR的绝对值为53.5355。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(3)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 10 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1(3); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2(3); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3(3); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4(3); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5(3); or, the CRC bit can be located in the sixth column of the check matrix, that is, the position of 6(3); or, the CRC bit can be located in the seventh column of the check matrix, that is, the position of 7(4); or, the CRC bit can be located in the eighth column of the check matrix, that is, 8(4); or, the CRC bit may be located at the 9th column in the check matrix, i.e., the 9(4) position; or, the CRC bit may be located at the 10th column in the check matrix, i.e., the 10(4) position; or, the CRC bit may be located at the 11th column in the check matrix, i.e., the 11(4) position; or, the CRC bit may be located at the 12th column in the check matrix, i.e., the 12(4) position; or, the CRC bit may be located at the 13th column in the check matrix, i.e., the 13(4) position; or, the CRC bit may be located at the 14th column in the check matrix, i.e., the 14(4) position; or, the CRC bit may be located at the 15th column in the check matrix, i.e., the 15(4) position; or, the CRC bit may be located at the 16th column in the check matrix, i.e., the 16(4) position. As an example, the absolute value of the LLR at the above position is 53.5355. Optionally, if the CRC bit is located at a front position in the at least two data bits when the robustness of at least two data bits is consistent, the CRC bit may be located in the first column of the check matrix, that is, position 1(3).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例9,在LDPC码流的码长为648,码率为1/2的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第5列、第9列。Example 9, when the code length of the LDPC code stream is 648 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 5, column 9.
举例来说,码率为1/2,数据比特的长度为324,码长为648的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表11所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 1/2, a data bit length of 324, and a code length of 648 and their robustness ranking can be shown in Table 11.
表11
Table 11
关于表11中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 11, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表11所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(12)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(12)的位置;或者,CRC比特可位于校验矩阵中的第9列,即9(12)的位置。作为示例,上述位置的LLR的绝对值为199.0153。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(12)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 11 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (12); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5 (12); or, the CRC bit can be located in the ninth column of the check matrix, that is, the position of 9 (12). As an example, the absolute value of the LLR at the above position is 199.0153. Optionally, if the position of the CRC bit is located at the front position of at least two data bits when the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (12).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。 It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例10,在LDPC码流的码长为648,码率为2/3的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列。Example 10, when the code length of the LDPC code stream is 648 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3.
举例来说,码率为2/3,数据比特的长度为456,码长为648的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表12所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 2/3, a data bit length of 456, and a code length of 648 and their robustness ranking can be shown in Table 12.
表12
Table 12
关于表12中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 12, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表12所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(8)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(8)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(8)的位置。作为示例,上述位置的LLR的绝对值为140.6811。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(8)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 12 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (8); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (8). As an example, the absolute value of the LLR at the above position is 140.6811. Optionally, if the position of the CRC bit is located at the front position of at least two data bits when the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (8).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
示例11,在LDPC码流的码长为648,码率为3/4的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列。Example 11, when the code length of the LDPC code stream is 648 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5.
举例来说,码率为3/4,数据比特的长度为486,码长为648的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表13所示。For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 3/4, a data bit length of 486, and a code length of 648 and their robustness ranking can be shown in Table 13.
表13
Table 13
关于表13中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 13, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表13所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(6)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(6)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(6)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(6)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(6)的位置。作为示例,上述位置的LLR的绝对值为113.0070。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(6)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 13 as an example, the CRC bit is located at the position with the largest absolute value of the LLR, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2 (6); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3 (6); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4 (6); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5 (6). As an example, the absolute value of the LLR at the above position is 113.0070. Optionally, if the position of the CRC bit is located at the front position of at least two data bits under the condition that the robustness of at least two data bits is consistent, the CRC bit can be located in the first column of the check matrix, that is, the position of 1 (6).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于或者其它位置。It can be understood that the above implementation is an exemplary description and is not limited to this. For example, the CRC bit can also be located at or other positions.
示例12,在LDPC码流的码长为648,码率为5/6的情况下,CRC比特所在的位置位于LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第14列、第15列、第16列、第17列、第18列、第19列、第20列。Example 12, when the code length of the LDPC code stream is 648 and the code rate is 5/6, the position of the CRC bit is located in the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 14, column 15, column 16, column 17, column 18, column 19, and column 20.
举例来说,码率为5/6,数据比特的长度为540,码长为648的LDPC码字对应的校验矩阵中的数据比特的LLR的绝对值|LLR|及其鲁棒性排序可以如表14所示。 For example, the absolute value of LLR of the data bits in the check matrix corresponding to the LDPC codeword with a code rate of 5/6, a data bit length of 540, and a code length of 648 and their robustness ranking can be shown in Table 14.
表14
Table 14
关于表14中各元素的含义可以参考表3中的描述,此处不再赘述。For the meaning of each element in Table 14, please refer to the description in Table 3, which will not be repeated here.
一种可能的实现方式,CRC比特位于鲁棒性最高的位置。以表14所示的示例为例,CRC比特位于LLR的绝对值最大的位置,如CRC比特可位于校验矩阵中的第1列,即1(3)的位置;或者,CRC比特可位于校验矩阵中的第2列,即2(3)的位置;或者,CRC比特可位于校验矩阵中的第3列,即3(3)的位置;或者,CRC比特可位于校验矩阵中的第4列,即4(3)的位置;或者,CRC比特可位于校验矩阵中的第5列,即5(3)的位置;或者,CRC比特可位于校验矩阵中的第6列,即6(4)的位置;或者,CRC比特可位于校验矩阵中的第7列,即7(4)的位置;或者,CRC比特可位于校验矩阵中的第8列,即8(4)的位置;或者,CRC比特可位于校验矩阵中的第9列,即9(4)的位置;或者,CRC比特可位于校验矩阵中的第10列,即10(4)的位置;或者,CRC比特可位于校验矩阵中的第11列,即11(4)的位置;或者,CRC比特可位于校验矩阵中的第12列,即12(4)的位置;或者,CRC比特可位于校验矩阵中的第14列,即14(4)的位置;或者,CRC比特可位于校验矩阵中的第15列,即15(4)的位置;或者,CRC比特可位于校验矩阵中的第16列,即16(4)的位置;或者,CRC比特可位于校验矩阵中的第17列,即17(4)的位置;或者,CRC比特可位于校验矩阵中的第18列,即18(4)的位置;或者,CRC比特可位于校验矩阵中的第19列,即19(4)的位置;或者,CRC比特可位于校验矩阵中的第20列,即20(4)的位置。作为示例,上述位置的LLR的绝对值为73.4420。可选地,若按照在至少两个数据比特的鲁棒性一致的情况下,CRC比特所在的位置位于至少两个数据比特中位置靠前的位置,则CRC比特可位于校验矩阵中的第1列,即1(3)的位置。In a possible implementation, the CRC bit is located at the position with the highest robustness. Taking the example shown in Table 14 as an example, the CRC bit is located at the position where the absolute value of the LLR is the largest, such as the CRC bit can be located in the first column of the check matrix, that is, the position of 1(3); or, the CRC bit can be located in the second column of the check matrix, that is, the position of 2(3); or, the CRC bit can be located in the third column of the check matrix, that is, the position of 3(3); or, the CRC bit can be located in the fourth column of the check matrix, that is, the position of 4(3); or, the CRC bit can be located in the fifth column of the check matrix, that is, the position of 5(3); or, the CRC bit can be located in the sixth column of the check matrix, that is, the position of 6(4); or, the CRC bit can be located in the seventh column of the check matrix, that is, the position of 7(4); or, the CRC bit can be located in the eighth column of the check matrix, that is, the position of 8(4); or, the CRC bit can be located in the ninth column of the check matrix, that is, the position of 9(4); or, The CRC bit may be located at the 10th column, i.e., position 10(4) in the check matrix; or, the CRC bit may be located at the 11th column, i.e., position 11(4) in the check matrix; or, the CRC bit may be located at the 12th column, i.e., position 12(4) in the check matrix; or, the CRC bit may be located at the 14th column, i.e., position 14(4) in the check matrix; or, the CRC bit may be located at the 15th column, i.e., position 15(4) in the check matrix; or, the CRC bit may be located at the 16th column, i.e., position 16(4) in the check matrix; or, the CRC bit may be located at the 17th column, i.e., position 17(4) in the check matrix; or, the CRC bit may be located at the 18th column, i.e., position 18(4) in the check matrix; or, the CRC bit may be located at the 19th column, i.e., position 19(4) in the check matrix; or, the CRC bit may be located at the 20th column, i.e., position 20(4) in the check matrix. As an example, the absolute value of the LLR at the above position is 73.4420. Optionally, if the CRC bit is located at a front position in the at least two data bits when the robustness of at least two data bits is consistent, the CRC bit may be located in the first column of the check matrix, that is, position 1(3).
可以理解,上述实现方式为示例性说明,对此不予限制。例如,CRC比特也可以位于其它位置。It is understood that the above implementation is for exemplary purposes only and is not intended to limit this. For example, the CRC bits may also be located at other positions.
在上述任一示例中,通过优先选择鲁棒性较高的位置(如最高的位置或次高的位置)作为CRC比特的位置,也即将CRC比特置于鲁棒性较高的位置,可以提高CRC比特的可靠性,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。此外,在至少两个数据比特的鲁棒性一致的情况下,通过将CRC比特置于靠前的位置,可以便于译码端较快地获取到CRC比特,进而可以基于该CRC比特辅助译码LDPC码流中的信息比特。In any of the above examples, by preferentially selecting a position with higher robustness (such as the highest position or the second highest position) as the position of the CRC bit, that is, placing the CRC bit at a position with higher robustness, the reliability of the CRC bit can be improved, and then the information bits in the LDPC code stream can be assisted in decoding based on the CRC bit. In addition, when the robustness of at least two data bits is consistent, by placing the CRC bit at a front position, it is convenient for the decoding end to obtain the CRC bit more quickly, and then the information bits in the LDPC code stream can be assisted in decoding based on the CRC bit.
可以理解,上述表3至表14为示例性说明,对此不予限制,属于表3至表14的变形,都适用于本申请实施例。例如,CRC比特可以位于鲁棒性较高的前X个位置,X为大于1或等于1的整数。再例如,CRC比特可以位于鲁棒性排序为第Y的位置,Y为大于1或等于1的整数,Y例如可以是预定义的,如标准预定义的。再例如,表3至表14中所要表达的信息也可以采用其它变化形式来记录。再例如,表3至表14中的数据比特的LLR的绝对值可替换为能够表征鲁棒性的其它指标。再例如,表3至表14中的数据比特的LLR的绝对值可能是其它数值。再例如,表3至表14中各列的列重可以是其它值。It can be understood that the above Tables 3 to 14 are exemplary illustrations and are not limited thereto. The variations of Tables 3 to 14 are applicable to the embodiments of the present application. For example, the CRC bit may be located at the first X positions with higher robustness, where X is an integer greater than 1 or equal to 1. For another example, the CRC bit may be located at the Yth position in the robustness ranking, where Y is an integer greater than 1 or equal to 1, and Y may be predefined, such as predefined by the standard. For another example, the information to be expressed in Tables 3 to 14 may also be recorded in other variations. For another example, the absolute value of the LLR of the data bit in Tables 3 to 14 may be replaced by other indicators that can characterize robustness. For another example, the absolute value of the LLR of the data bit in Tables 3 to 14 may be other values. For another example, the column weight of each column in Tables 3 to 14 may be other values.
可选地,在本申请实施例中,根据可能发生的判决事件,确定CRC的比特数。若CRC的比特数较小,即码字信息比特部分加入较少数量的CRC比特,那么在译码迭代中,可能会出现如表1所示的一些判决事件,影响译码性能;若CRC的比特数较大,即码字信息比特部分加入较多数量的CRC比特,那么会增加开销。因此,可以根据采用CRC译码停止准则时可能发生的判决事件确定CRC的比特数,以使得尽可能地在性能以及加入CRC比特带来的开销之间达到平衡。为便于描述,下面将方法500提出的方法,即LDPC码流中包括CRC比特的方法,记为CRC译码停止准则。Optionally, in an embodiment of the present application, the number of bits of CRC is determined according to possible decision events. If the number of bits of CRC is small, that is, a small number of CRC bits are added to the codeword information bit part, then in the decoding iteration, some decision events as shown in Table 1 may occur, affecting the decoding performance; if the number of bits of CRC is large, that is, a large number of CRC bits are added to the codeword information bit part, then the overhead will be increased. Therefore, the number of bits of CRC can be determined according to the decision events that may occur when the CRC decoding stop criterion is adopted, so as to achieve a balance between performance and the overhead caused by adding CRC bits as much as possible. For ease of description, the method proposed by method 500, that is, the method including CRC bits in the LDPC code stream, is denoted as the CRC decoding stop criterion.
参见图6-图13,图6-图13为采用CRC译码停止准则时,各种判决事件的事件概率与CRC的比特数之间的关系。作为示例,图6-图13中以以下判决事件为例进行示例性说明:漏检错误(UE)、虚假的漏检错误(FUE)、成功错误检测(DE)。采用CRC译码停止准则时,虚警(FA)和虚假的错误检测(FDE)概率均趋于0,因此图6-图13所示的仿真曲线中没有给出这两条曲线。 Referring to Fig. 6-Fig. 13, Fig. 6-Fig. 13 are the relations between the event probabilities of various decision events and the number of bits of CRC when the CRC decoding stopping criteria is adopted. As an example, Fig. 6-Fig. 13 takes the following decision events as examples for exemplary description: missed detection error (UE), false missed detection error (FUE), successful error detection (DE). When the CRC decoding stopping criteria is adopted, the false alarm (FA) and false error detection (FDE) probabilities are both close to 0, so these two curves are not given in the simulation curves shown in Fig. 6-Fig. 13.
图6-图13中,横坐标为CRC的比特数,纵坐标为事件概率(event probability)和额外迭代次数(excess iterations),曲线表示各种判决事件的事件概率随CRC的比特数的变化,以及FER和迭代次数随CRC的比特数的变化。其中,额外迭代次数表示相比于完美译码停止准则,采用CRC译码停止准则时迭代次数的浪费次数。举例来说,若采用完美译码停止准则时迭代次数为ng,采用CRC译码停止准则时迭代次数为nd,则额外迭代次数Δit=nd-ng。为简洁,作为示例,事件概率的取值用带“E”的格式表示,以1.E-05为例,其表示:1·10-5。图6-图13中的曲线还表示完美译码停止准则时的平均迭代次数随CRC的比特数的变化(用it GA表示)。In FIG. 6 to FIG. 13 , the horizontal axis is the number of bits of CRC, and the vertical axis is the event probability (event probability) and the number of excess iterations (excess iterations). The curves represent the change of the event probability of various decision events with the number of bits of CRC, and the change of FER and the number of iterations with the number of bits of CRC. Among them, the number of excess iterations represents the number of iterations wasted when the CRC decoding stop criterion is adopted compared with the perfect decoding stop criterion. For example, if the number of iterations when the perfect decoding stop criterion is adopted is ng , and the number of iterations when the CRC decoding stop criterion is adopted is nd , then the number of excess iterations Δit = nd - ng . For simplicity, as an example, the value of the event probability is represented by a format with "E", taking 1.E-05 as an example, which represents: 1· 10-5 . The curves in FIG. 6 to FIG. 13 also represent the change of the average number of iterations when the perfect decoding stop criterion is adopted with the number of bits of CRC (represented by itGA).
图6中码长N=648,码率R=1/2,最大迭代次数nMAX=50,FER约为1E-1。In FIG6 , the code length N=648, the code rate R=1/2, the maximum number of iterations n MAX =50, and the FER is approximately 1E-1.
图7中码长N=648,码率R=2/3,最大迭代次数nMAX=50,FER约为1E-1。In FIG7 , the code length N=648, the code rate R=2/3, the maximum number of iterations n MAX =50, and the FER is approximately 1E-1.
图8中码长N=648,码率R=3/4,最大迭代次数nMAX=50,FER约为1E-1。In FIG8 , the code length N=648, the code rate R=3/4, the maximum number of iterations n MAX =50, and the FER is approximately 1E-1.
图9中码长N=648,码率R=5/6,最大迭代次数nMAX=50,FER约为1E-1。In FIG9 , the code length N=648, the code rate R=5/6, the maximum number of iterations n MAX =50, and the FER is approximately 1E-1.
图10中码长N=648,码率R=1/2,最大迭代次数nMAX=50,FER约为1E-2。In FIG10 , the code length N=648, the code rate R=1/2, the maximum number of iterations n MAX =50, and the FER is approximately 1E-2.
图11中码长N=648,码率R=2/3,最大迭代次数nMAX=50,FER约为1E-2。In FIG11 , the code length N=648, the code rate R=2/3, the maximum number of iterations n MAX =50, and the FER is approximately 1E-2.
图12中码长N=648,码率R=3/4,最大迭代次数nMAX=50,FER约为1E-2。In FIG12 , the code length N=648, the code rate R=3/4, the maximum number of iterations n MAX =50, and the FER is approximately 1E-2.
图13中码长N=648,码率R=5/6,最大迭代次数nMAX=50,FER约为1E-2。In FIG13 , the code length N=648, the code rate R=5/6, the maximum number of iterations n MAX =50, and the FER is about 1E-2.
从图6-图13中的示例可看出,不同判决事件的事件概率与CRC的比特数相关。举例来说,漏检错误(UE)和虚假的漏检错误(FUE)发生的概率随着CRC比特数目的增加会降低。从图6-图13可看出,CRC比特数为16比特时,漏检错误(UE)和虚假的漏检错误(FUE)发生的概率低于10-4,CRC比特所造成的额外开销大约为1.2%到4.8%,因此CRC的比特数为16时,可在性能和开销之间达到较好的平衡。若将CRC译码停止准则与下文所述的CNR译码停止准则或VNR译码停止准则结合,则CRC的比特数小于16时(如CRC的比特数为8比特或10比特),也可在性能和开销之间达到较好的平衡。关于CNR译码停止准则和VNR译码停止准则,后面结合图18详细说明。As can be seen from the examples in Figures 6 to 13, the event probabilities of different decision events are related to the number of CRC bits. For example, the probability of missed detection errors (UE) and false missed detection errors (FUE) will decrease as the number of CRC bits increases. As can be seen from Figures 6 to 13, when the number of CRC bits is 16 bits, the probability of missed detection errors (UE) and false missed detection errors (FUE) is less than 10-4 , and the additional overhead caused by the CRC bits is approximately 1.2% to 4.8%. Therefore, when the number of CRC bits is 16, a better balance can be achieved between performance and overhead. If the CRC decoding stop criterion is combined with the CNR decoding stop criterion or the VNR decoding stop criterion described below, when the number of CRC bits is less than 16 (such as the number of CRC bits is 8 bits or 10 bits), a better balance can also be achieved between performance and overhead. The CNR decoding stop criterion and the VNR decoding stop criterion will be described in detail later in conjunction with Figure 18.
参见图14-图17,图14-图17为采用已知的译码停止准则(如前面所述的按照LDPC码的校验矩阵和当前译码码字结果,计算校验矩阵中包含的所有校验方程是否满足)和CRC译码停止准则时,各种判决事件的事件概率和额外迭代次数的比较。为简洁,图14-17中将已知的译码停止准则记为CXR。作为示例,图14-图17中以以下判决事件为例进行示例性说明:漏检错误(UE)、虚假的漏检错误(FUE)、虚警(FA)。Referring to FIG. 14-FIG. 17, FIG. 14-FIG. 17 are comparisons of event probabilities and additional iteration times of various decision events when using known decoding stop criteria (such as calculating whether all check equations contained in the check matrix are satisfied according to the check matrix of the LDPC code and the current decoding codeword result as described above) and CRC decoding stop criteria. For simplicity, the known decoding stop criteria are denoted as CXR in FIG. 14-17. As an example, FIG. 14-FIG. 17 takes the following decision events as examples for exemplary description: missed detection error (UE), false missed detection error (FUE), and false alarm (FA).
图14-图17中,横坐标为Es/N0,单位如为dB,Es/N0表示信噪比(signal noise ratio,SNR),纵坐标为事件概率和额外迭代次数,曲线表示采用已知的译码停止准则和CRC译码停止准则时,各种事件的事件概率随Es/N0的变化,以及FER和额外迭代次数Δit随Es/N0的变化。图14-图17中的曲线还表示完美译码停止准则时的平均迭代次数随Es/N0的变化(用it GA表示)。In FIG. 14 to FIG. 17 , the horizontal axis is Es / N0 , the unit is dB, Es / N0 represents the signal noise ratio (SNR), the vertical axis represents the event probability and the additional number of iterations, and the curves represent the change of the event probability of various events with Es / N0 when the known decoding stop criteria and the CRC decoding stop criteria are adopted, and the change of FER and the additional number of iterations Δit with Es / N0 . The curves in FIG. 14 to FIG. 17 also represent the change of the average number of iterations with Es / N0 when the perfect decoding stop criteria are adopted (represented by itGA).
图14中码长N=1944,码率R=1/2,迭代次数为50。In FIG14 , the code length N=1944, the code rate R=1/2, and the number of iterations is 50.
图15中码长N=1944,码率R=5/6,迭代次数为50。In FIG15 , the code length N=1944, the code rate R=5/6, and the number of iterations is 50.
图16中码长N=648,码率R=1/2,迭代次数为50。In FIG16 , the code length N=648, the code rate R=1/2, and the number of iterations is 50.
图17中码长N=648,码率R=5/6,迭代次数为50。In FIG17 , the code length N=648, the code rate R=5/6, and the number of iterations is 50.
从图14-图17中的示例可看出,采用已知的译码停止准则或CRC译码停止准则时,漏检错误(UE)发生的概率随着SNR增加会降低,且采用已知的译码停止准则时漏检错误(UE)发生的概率更低。例如,对于R=1/2的场景,采用已知的译码停止准则和CRC译码停止准则时,漏检错误(UE)发生的概率大约相差一个数量级。虚假的漏检错误(FUE)发生的概率相对于SNR几乎恒定,且相比于CRC译码停止准则,采用已知的译码停止准则时,虚假的漏检错误(FUE)发生的概率大约低两个数量级。采用已知的译码停止准则时虚警(FA)发生的概率相比FER大约低两个数量级。采用已知的译码停止准则或CRC译码停止准则的主要区别在于,采用CRC译码停止准则时虚警(FA)发生的概率几乎为0,采用已知的译码停止准则时虚警(FA)发生的概率相比FER大约低两个数量级。可以看出,如果两种译码停止准则结合起来,则可以降低各种判决事件的事件概率。As can be seen from the examples in Figures 14 to 17, when the known decoding stop criteria or the CRC decoding stop criteria are used, the probability of missed detection errors (UE) will decrease as the SNR increases, and the probability of missed detection errors (UE) is lower when the known decoding stop criteria are used. For example, for the scenario of R=1/2, the probability of missed detection errors (UE) is about one order of magnitude different when the known decoding stop criteria and the CRC decoding stop criteria are used. The probability of false missed detection errors (FUE) is almost constant relative to the SNR, and the probability of false missed detection errors (FUE) is about two orders of magnitude lower when the known decoding stop criteria are used compared to the CRC decoding stop criteria. The probability of false alarms (FA) when the known decoding stop criteria are used is about two orders of magnitude lower than the FER. The main difference between using the known decoding stop criteria or the CRC decoding stop criteria is that the probability of false alarms (FA) is almost 0 when the CRC decoding stop criteria are used, and the probability of false alarms (FA) is about two orders of magnitude lower when the known decoding stop criteria are used compared to the FER. It can be seen that if the two decoding stop criteria are combined, the event probabilities of various decision events can be reduced.
上文结合图5介绍了CRC译码停止准则,下面结合图18介绍本申请提出的其它译码停止准则。下面提供的译码准则可以与上面的CRC译码停止准则结合使用,也可以单独使用,不予限制。The CRC decoding stop criteria are introduced above in conjunction with Figure 5, and other decoding stop criteria proposed by the present application are introduced below in conjunction with Figure 18. The decoding criteria provided below can be used in conjunction with the above CRC decoding stop criteria, or can be used alone without limitation.
参见图18,图18是本申请实施例提供的一种译码方法1800的示意图。方法1800可以包括如下步骤。Referring to Fig. 18, Fig. 18 is a schematic diagram of a decoding method 1800 provided in an embodiment of the present application. The method 1800 may include the following steps.
1810,译码装置获取待译码的LDPC码流。如译码装置从编码装置接收待译码的LDPC码流。相应 地,编码装置发送该LDPC码流。1810, the decoding device obtains the LDPC code stream to be decoded. For example, the decoding device receives the LDPC code stream to be decoded from the encoding device. Specifically, the encoding device sends the LDPC code stream.
具体来说,编码装置对数据比特进行LDPC编码,得到编码后的LDPC码流。可选地,数据比特包括信息比特和根据信息比特生成的CRC比特。进一步可选地,CRC比特所在的位置可以与LDPC码流中的至少一个数据比特的鲁棒性相关。关于CRC比特的相关方案可以参考方法500中的相关描述,此处不予赘述。Specifically, the encoding device performs LDPC encoding on the data bits to obtain an encoded LDPC code stream. Optionally, the data bits include information bits and CRC bits generated according to the information bits. Further optionally, the position of the CRC bit can be related to the robustness of at least one data bit in the LDPC code stream. For the relevant scheme of the CRC bit, reference can be made to the relevant description in method 500, which will not be repeated here.
1820,译码装置基于维度为M×N的校验矩阵,对LDPC码进行译码,得到LDPC码字。1820. A decoding device decodes the LDPC code based on a check matrix of dimension M×N to obtain an LDPC codeword.
其中,M为校验节点数,N为变量节点数,M、N为大于1的整数。Wherein, M is the number of check nodes, N is the number of variable nodes, and M and N are integers greater than 1.
1830,根据LDPC码字,以及M1个校验方程和/或N1个变量节点,判断是否停止译码。1830 , determine whether to stop decoding according to the LDPC codeword, and the M1 check equations and/or the N1 variable nodes.
基于校验矩阵得到的M个校验方程包括M1个校验方程,校验矩阵中的N个变量节点包括N1个变量节点,N1为小于N的正整数,M1为小于M的正整数。The M check equations obtained based on the check matrix include M1 check equations, the N variable nodes in the check matrix include N1 variable nodes, N1 is a positive integer less than N, and M1 is a positive integer less than M.
其中,步骤1830可以包括以下三种方案。Among them, step 1830 may include the following three solutions.
方案1,根据LDPC码字,以及M1个校验方程,判断是否停止译码。基于该方案,通过判定一定比例的校验方程是否正确,而不是所有的校验方程,可以降低译码开销。为便于描述,下面将该方案1称为CNR译码停止准则。Scheme 1, based on the LDPC codeword and M1 check equations, determines whether to stop decoding. Based on this scheme, by determining whether a certain proportion of check equations are correct, rather than all check equations, the decoding overhead can be reduced. For ease of description, Scheme 1 is referred to as the CNR decoding stop criterion below.
可选地,M1=M·f1,f1大于0且小于1。这样,通过引入一个比例值f1,实际进行译码判断时,取所有校验方程(如M个)中比例为f1的校验方程参与验证,也即f1·M个校验方程是否满足校验关系。Optionally, M1=M·f1, f1 is greater than 0 and less than 1. In this way, by introducing a ratio value f1, when actually performing decoding judgment, the check equations with a ratio of f1 among all the check equations (such as M) are taken to participate in the verification, that is, whether the f1·M check equations satisfy the check relationship.
一种可能的实现方式,计算根据f1·M个校验方程与N个变量节点得到的伴随式向量。A possible implementation manner is to calculate a syndrome vector obtained based on f1·M check equations and N variable nodes.
例如,若根据f1·M个校验方程与N个变量节点得到的伴随式向量为全零向量,则判定译码正确。可选地,在该情况下,译码端反馈当前译码迭代的输出码字,并宣告译码成功。For example, if the syndrome vector obtained according to the f1·M check equations and the N variable nodes is an all-zero vector, the decoding is determined to be correct. Optionally, in this case, the decoding end feeds back the output codeword of the current decoding iteration and declares the decoding successful.
再例如,若根据f1·M个校验方程与N个变量节点得到的伴随式向量不为全零向量,则判断不停止译码。可选地,在该情况下,继续进行译码迭代。For another example, if the syndrome vector obtained according to the f1·M check equations and the N variable nodes is not an all-zero vector, it is determined not to stop decoding. Optionally, in this case, the decoding iteration is continued.
再例如,若根据f1·M个校验方程与N个变量节点得到的伴随式向量不为全零向量,且达到最大译码迭代次数,则判断停止译码,并且确定译码错误。For another example, if the syndrome vector obtained according to the f1·M check equations and the N variable nodes is not an all-zero vector and the maximum number of decoding iterations is reached, it is determined to stop decoding and determine that a decoding error has occurred.
可选地,f1与判决事件的概率相关,也即可以根据可能发生的判决事件的概率确定f1。Optionally, f1 is related to the probability of a decision event, that is, f1 can be determined according to the probability of a possible decision event.
由于CNR译码停止准则是通过判断一定比例(即f1)的校验方程是否满足校验关系进行译码判断的,因此可能会对性能造成一定损失。考虑到各种判决事件与f1的取值相关,因此可以根据采用CNR译码停止准则时可能发生的判决事件,确定f1的取值,以使得尽可能地在性能以及译码带来的功耗方面达到平衡。Since the CNR decoding stop criterion is to make a decoding judgment by judging whether a certain proportion (i.e., f1) of the check equations satisfies the check relationship, it may cause a certain loss in performance. Considering that various decision events are related to the value of f1, the value of f1 can be determined according to the decision events that may occur when the CNR decoding stop criterion is adopted, so as to achieve a balance between performance and power consumption caused by decoding as much as possible.
参见图19-图22,图19-图22为采用CNR译码停止准则时,各种判决事件的事件概率与f1之间的关系。作为示例,图19-图22中以以下判决事件为例进行示例性说明:漏检错误(UE)、虚假的漏检错误(FUE)、虚警(FA)、成功错误检测(DE)。Referring to FIG. 19 to FIG. 22, FIG. 19 to FIG. 22 show the relationship between the event probability of various decision events and f1 when the CNR decoding stop criterion is adopted. As an example, FIG. 19 to FIG. 22 take the following decision events as examples for exemplary description: missed detection error (UE), false missed detection error (FUE), false alarm (FA), successful error detection (DE).
图19-图22中,横坐标为f1,纵坐标为事件概率和额外迭代次数,曲线表示各种判决事件的事件概率随f1取值的变化,以及FER和额外迭代次数Δit随f1取值的变化。In Figures 19 to 22, the horizontal axis is f1, the vertical axis is event probability and additional number of iterations, and the curves represent the changes in event probability of various decision events with the value of f1, as well as the changes in FER and additional number of iterations Δit with the value of f1.
图19中码长N=1944,码率R=1/2,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为6.89。In FIG19 , the code length N=1944, the code rate R=1/2, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 6.89.
图20中码长N=1944,码率R=2/3,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为5.12。In FIG20 , the code length N=1944, the code rate R=2/3, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 5.12.
图21中码长N=1944,码率R=3/4,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为4.71。In FIG21 , the code length N=1944, the code rate R=3/4, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 4.71.
图22中码长N=1944,码率R=5/6,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为3.36。In FIG. 22 , the code length N=1944, the code rate R=5/6, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 3.36.
从图19-图22中的示例可看出,不同判决事件的事件概率与f1的取值相关。举例来说,f1的取值越小,额外迭代次数Δit越小,虚警FA的概率也会降低,漏检错误(UE)和虚假的漏检错误(FUE)的概率可能会增加。此外,从图19-图22中的示例还可看出,FER基本为恒定值水平线,且几乎和成功错误检测(DE)的曲线重合。As can be seen from the examples in Figures 19 to 22, the event probabilities of different decision events are related to the value of f1. For example, the smaller the value of f1, the smaller the number of additional iterations Δit , the lower the probability of false alarm FA, and the probability of missed detection error (UE) and false missed detection error (FUE) may increase. In addition, it can be seen from the examples in Figures 19 to 22 that FER is basically a constant value horizontal line and almost coincides with the curve of successful error detection (DE).
方案2,根据LDPC码字,以及N1个变量节点,判断是否停止译码。基于该方案,通过判定一定比例的变量节点是否满足可靠性条件,而不是所有的变量节点,来降低译码开销。为便于描述,下面将该方案2称为VNR译码停止准则。 Scheme 2 determines whether to stop decoding based on the LDPC codeword and N1 variable nodes. Based on this scheme, the decoding overhead is reduced by determining whether a certain proportion of variable nodes meet the reliability condition instead of all variable nodes. For ease of description, Scheme 2 is referred to as the VNR decoding stop criterion below.
可选地,N1=N·f2,f2大于0且小于1。这样,引入一个比例值f2,实际进行译码判断时,取所有变量节点(如N个)中比例为f2的变量节点参与验证,也即f2·N个变量节点是否满足可靠性条件。Optionally, N1=N·f2, f2 is greater than 0 and less than 1. In this way, a ratio value f2 is introduced, and when actually performing decoding judgment, variable nodes with a ratio of f2 among all variable nodes (such as N) are selected to participate in verification, that is, whether f2·N variable nodes meet the reliability condition.
一种可能的实现方式,变量节点的可靠性条件为:与该变量节点相连的所有相邻校验节点上一轮译码迭代反馈的关于该变量节点的符号均相同,即均反馈为正或者负,从而所有相邻校验节点对该变量节点的外信息反馈均指示该变量节点为0或者1。In one possible implementation, the reliability condition of a variable node is that all adjacent check nodes connected to the variable node have the same sign as the variable node in the previous decoding iteration feedback, that is, they are all fed back as positive or negative, so that all adjacent check nodes' external information feedback on the variable node indicates that the variable node is 0 or 1.
可选地,f2与判决事件的概率相关,也即可以根据可能发生的判决事件确定f2。Optionally, f2 is related to the probability of a decision event, that is, f2 may be determined according to a possible decision event.
由于VNR译码停止准则是通过判断一定比例(即f2)的变量节点是否满足可靠性条件进行译码判断的,因此可能会对性能造成一定损失。考虑到各种判决事件与f2的取值相关,因此可以根据采用VNR译码停止准则时可能发生的判决事件,确定f2的取值,以使得尽可能地在性能以及译码带来的功耗方面达到平衡。Since the VNR decoding stop criterion is to make a decoding judgment by judging whether a certain proportion (i.e., f2) of the variable nodes meet the reliability condition, it may cause a certain loss in performance. Considering that various decision events are related to the value of f2, the value of f2 can be determined according to the decision events that may occur when the VNR decoding stop criterion is adopted, so as to achieve a balance between performance and power consumption caused by decoding as much as possible.
参见图23-图26,图23-图26为采用VNR译码停止准则时,各种判决事件的事件概率与f2之间的关系。作为示例,图23-图26中以以下判决事件为例进行示例性说明:漏检错误(UE)、虚假的漏检错误(FUE)、虚警(FA)、成功错误检测(DE)。Referring to Fig. 23-Fig. 26, Fig. 23-Fig. 26 show the relationship between the event probability of various decision events and f2 when the VNR decoding stop criterion is adopted. As an example, Fig. 23-Fig. 26 takes the following decision events as examples for exemplary description: missed detection error (UE), false missed detection error (FUE), false alarm (FA), successful error detection (DE).
图23-图26中,横坐标为f2,纵坐标为事件概率和额外迭代次数,曲线表示各种判决事件的事件概率随f2取值的变化,以及FER和额外迭代次数Δit随f2取值的变化。In Figures 23-26, the horizontal axis is f2, the vertical axis is event probability and additional number of iterations, and the curves represent the changes in event probability of various decision events with the value of f2, as well as the changes in FER and additional number of iterations Δit with the value of f2.
图23中码长N=1944,码率R=1/2,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为7.53。In FIG23 , the code length N=1944, the code rate R=1/2, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 7.53.
图24中码长N=1944,码率R=2/3,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为5.12。In FIG. 24 , the code length N=1944, the code rate R=2/3, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 5.12.
图25中码长N=1944,码率R=3/4,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为4.21。In FIG. 25 , the code length N=1944, the code rate R=3/4, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 4.21.
图26中码长N=1944,码率R=5/6,最大迭代次数nMAX=25,完美译码停止准则时的平均迭代次数为3.36。In FIG26 , the code length N=1944, the code rate R=5/6, the maximum number of iterations n MAX =25, and the average number of iterations when the perfect decoding stop criterion is 3.36.
从图23-图26中的示例可看出,不同判决事件的事件概率与f2的取值相关。举例来说,f2的取值越小,额外迭代次数Δit越小,虚警FA的概率也会降低,漏检错误(UE)和虚假的漏检错误(FUE)的概率可能会增加。此外,从图23-图26中的示例还可看出,FER基本为恒定值水平线,且几乎和成功错误检测(DE)的曲线重合。As can be seen from the examples in Figures 23 to 26, the event probabilities of different decision events are related to the value of f2. For example, the smaller the value of f2, the smaller the number of additional iterations Δit , the lower the probability of false alarm FA, and the probability of missed detection error (UE) and false missed detection error (FUE) may increase. In addition, it can be seen from the examples in Figures 23 to 26 that FER is basically a constant value horizontal line and almost coincides with the curve of successful error detection (DE).
方案3,根据LDPC码字,以及M1个校验方程和N1个变量节点,判断是否停止译码。基于该方案,通过判定一定比例的校验方程是否正确,而不是所有的校验方程,以及判定一定比例的变量节点是否满足可靠性条件,而不是所有的变量节点,来降低译码开销。方案3可以理解为是方案1和方案2的结合,此处不予赘述。Solution 3 determines whether to stop decoding based on the LDPC codeword, M1 check equations, and N1 variable nodes. Based on this solution, the decoding overhead is reduced by determining whether a certain proportion of check equations are correct, rather than all check equations, and determining whether a certain proportion of variable nodes meet the reliability conditions, rather than all variable nodes. Solution 3 can be understood as a combination of Solution 1 and Solution 2, and will not be described in detail here.
上文结合图18介绍了CNR译码准则和VNR译码准则。可以理解,CNR译码准则和/或VNR译码准则,可以与方法500中所述的CRC译码准则结合使用,也可以单独使用,不予限制。The CNR decoding criterion and the VNR decoding criterion are introduced above in conjunction with Figure 18. It can be understood that the CNR decoding criterion and/or the VNR decoding criterion can be used in combination with the CRC decoding criterion described in method 500, or can be used alone without limitation.
可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。It can be understood that some optional features in the embodiments of the present application may not depend on other features in some scenarios, and may also be combined with other features in some scenarios, without limitation.
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。It can also be understood that the solutions in the various embodiments of the present application can be used in reasonable combination, and the explanations or descriptions of the various terms appearing in the embodiments can be mutually referenced or explained in the various embodiments, without limitation.
以上,结合图5至图26详细说明了本申请实施例提供的方法。以下,结合图27至图29详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不予赘述。The method provided by the embodiment of the present application is described in detail above in conjunction with Figures 5 to 26. The device provided by the embodiment of the present application is described in detail below in conjunction with Figures 27 to 29. It should be understood that the description of the device embodiment corresponds to the description of the method embodiment. Therefore, the content not described in detail can be referred to the method embodiment above, and for the sake of brevity, it will not be repeated here.
参见图27,图27是本申请实施例提供的一种通信装置2700的示意性框图。该装置2700包括收发单元2710和处理单元2720。收发单元2710可以用于实现相应的通信功能。收发单元2710还可以称为通信接口或通信单元。处理单元2720可以用于进行处理,如进行编码或译码。Referring to FIG. 27 , FIG. 27 is a schematic block diagram of a communication device 2700 provided in an embodiment of the present application. The device 2700 includes a transceiver unit 2710 and a processing unit 2720. The transceiver unit 2710 can be used to implement corresponding communication functions. The transceiver unit 2710 can also be referred to as a communication interface or a communication unit. The processing unit 2720 can be used to perform processing, such as encoding or decoding.
可选地,该装置2700还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2720可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。Optionally, the device 2700 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 2720 may read the instructions and/or data in the storage unit so that the device implements the aforementioned method embodiment.
作为一种设计,该装置2700用于执行上文方法实施例中编码装置执行的步骤或者流程,收发单元2710用于执行上文方法实施例中编码装置侧的收发相关的操作,处理单元2720用于执行上文方法实施例中编码装置侧的处理相关的操作。一种可能的实现方式,该装置2700用于执行如图5或图18所示实施例 中编码装置执行的步骤或者流程。As a design, the device 2700 is used to execute the steps or processes executed by the encoding device in the above method embodiment, the transceiver unit 2710 is used to execute the transceiver-related operations on the encoding device side in the above method embodiment, and the processing unit 2720 is used to execute the processing-related operations on the encoding device side in the above method embodiment. In a possible implementation, the device 2700 is used to execute the embodiment shown in FIG. 5 or FIG. 18 The steps or processes performed by the encoding device in .
可选地,处理单元2720,用于对数据比特进行低密度奇偶校验LDPC编码,得到编码后的LDPC码流,其中,数据比特包括信息比特和根据信息比特生成的CRC比特;收发单元2710,用于输出LDPC码流。进一步可选地,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关。Optionally, the processing unit 2720 is used to perform low-density parity check LDPC encoding on the data bits to obtain an encoded LDPC code stream, wherein the data bits include information bits and CRC bits generated according to the information bits; the transceiver unit 2710 is used to output the LDPC code stream. Further optionally, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream.
作为另一种设计,该装置2700用于执行上文方法实施例中译码装置执行的步骤或者流程,收发单元2710用于执行上文方法实施例中译码装置侧的收发相关的操作,处理单元2720用于执行上文方法实施例中译码装置侧的处理相关的操作。一种可能的实现方式,该装置2700用于执行如图5或图18所示实施例中译码装置执行的步骤或者流程。As another design, the device 2700 is used to execute the steps or processes executed by the decoding device in the above method embodiment, the transceiver unit 2710 is used to execute the transceiver-related operations on the decoding device side in the above method embodiment, and the processing unit 2720 is used to execute the processing-related operations on the decoding device side in the above method embodiment. In a possible implementation, the device 2700 is used to execute the steps or processes executed by the decoding device in the embodiment shown in Figure 5 or Figure 18.
可选地,收发单元2710,用于获取待译码的低密度奇偶校验LDPC码流,LDPC码流中包括数据比特,该数据比特包括信息比特和该信息比特的CRC比特;处理单元2720,用于对LDPC码流进行译码。进一步可选地,CRC比特所在的位置与LDPC码流中至少一个数据比特位置的鲁棒性相关。Optionally, the transceiver unit 2710 is used to obtain a low-density parity check LDPC code stream to be decoded, the LDPC code stream includes data bits, the data bits include information bits and CRC bits of the information bits; the processing unit 2720 is used to decode the LDPC code stream. Further optionally, the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream.
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。It should be understood that the specific process of each unit executing the above corresponding steps has been described in detail in the above method embodiment, and for the sake of brevity, it will not be repeated here.
还应理解,这里的装置2700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置2700可以具体为上述实施例中的通信装置(如编码装置,又如译码装置),可以用于执行上述各方法实施例中与通信装置对应的各个流程和/或步骤,为避免重复,在此不再赘述。It should also be understood that the device 2700 here is embodied in the form of a functional unit. The term "unit" here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit and/or other suitable components that support the described functions. In an optional example, those skilled in the art can understand that the device 2700 can be specifically a communication device (such as an encoding device, and also a decoding device) in the above-mentioned embodiments, and can be used to execute the various processes and/or steps corresponding to the communication device in the above-mentioned method embodiments. To avoid repetition, it will not be repeated here.
上述各个方案的装置2700具有实现上述方法中通信装置(如编码装置,又如译码装置)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。The device 2700 of each of the above schemes has the function of implementing the corresponding steps performed by the communication device (such as an encoding device, and also such as a decoding device) in the above method. The function can be implemented by hardware, or by hardware executing the corresponding software implementation. The hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
此外,上述收发单元2710还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。In addition, the above-mentioned transceiver unit 2710 can also be a transceiver circuit (for example, can include a receiving circuit and a sending circuit), and the processing unit can be a processing circuit.
需要指出的是,图27中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。It should be noted that the device in FIG. 27 may be the device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC). The transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
参见图28,图28是本申请实施例提供另一种通信装置2800的示意图。该装置2800包括处理器2810,处理器2810与存储器2820耦合,存储器2820用于存储计算机程序或指令和/或数据,处理器2810用于执行存储器2820存储的计算机程序或指令,或读取存储器2820存储的数据,以执行上文各方法实施例中的方法。Referring to FIG. 28 , FIG. 28 is a schematic diagram of another communication device 2800 provided in an embodiment of the present application. The device 2800 includes a processor 2810, the processor 2810 is coupled to a memory 2820, the memory 2820 is used to store computer programs or instructions and/or data, and the processor 2810 is used to execute the computer program or instructions stored in the memory 2820, or read the data stored in the memory 2820, so as to execute the methods in the above method embodiments.
可选地,处理器2810为一个或多个。Optionally, there are one or more processors 2810 .
可选地,存储器2820为一个或多个。Optionally, memory 2820 is one or more.
可选地,该存储器2820与该处理器2810集成在一起,或者分离设置。Optionally, the memory 2820 is integrated with the processor 2810 or provided separately.
可选地,如图28所示,该装置2800还包括收发器2830,收发器2830用于信号的接收和/或发送。例如,处理器2810用于控制收发器2830进行信号的接收和/或发送。Optionally, as shown in Fig. 28, the device 2800 further includes a transceiver 2830, and the transceiver 2830 is used for receiving and/or sending signals. For example, the processor 2810 is used to control the transceiver 2830 to receive and/or send signals.
作为示例,处理器2810可以具有图27中所示的处理单元2720的功能,存储器2820可以具有存储单元的功能,收发器2830可以具有图27中所示的收发单元2710的功能。As an example, the processor 2810 may have the function of the processing unit 2720 shown in Figure 27, the memory 2820 may have the function of the storage unit, and the transceiver 2830 may have the function of the transceiver unit 2710 shown in Figure 27.
作为一种方案,该装置2800用于实现上文各个方法实施例中由通信装置(如编码装置,又如译码装置)执行的操作。As a solution, the device 2800 is used to implement the operations performed by the communication device (such as the encoding device or the decoding device) in the above method embodiments.
例如,处理器2810用于执行存储器2820存储的计算机程序或指令,以实现上文各个方法实施例中通信装置(如编码装置,又如译码装置)的相关操作。For example, the processor 2810 is used to execute the computer program or instructions stored in the memory 2820 to implement the relevant operations of the communication device (such as the encoding device, and also such as the decoding device) in the above various method embodiments.
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处 理器也可以是任何常规的处理器等。It should be understood that the processor mentioned in the embodiments of the present application can be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor can be a microprocessor or a processor. The processor may also be any conventional processor, etc.
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。It should also be understood that the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory. Among them, the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory. The volatile memory may be a random access memory (RAM). For example, a RAM may be used as an external cache. By way of example and not limitation, RAM includes the following forms: static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。It should be noted that when the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。It should also be noted that the memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
参见图29,图29是本申请实施例提供一种芯片系统2900的示意图。该芯片系统2900(或者也可以称为处理系统)包括逻辑电路2910以及输入/输出接口(input/output interface)2920。Referring to FIG. 29 , FIG. 29 is a schematic diagram of a chip system 2900 provided in an embodiment of the present application. The chip system 2900 (or also referred to as a processing system) includes a logic circuit 2910 and an input/output interface 2920.
其中,逻辑电路2910可以为芯片系统2900中的处理电路。逻辑电路2910可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统2900可以实现本申请各实施例的方法和功能。输入/输出接口2920,可以为芯片系统2900中的输入输出电路,将芯片系统2900处理好的信息输出,或将待处理的数据或信令信息输入芯片系统2900进行处理。Among them, the logic circuit 2910 can be a processing circuit in the chip system 2900. The logic circuit 2910 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 2900 can implement the methods and functions of each embodiment of the present application. The input/output interface 2920 can be an input/output circuit in the chip system 2900, outputting information processed by the chip system 2900, or inputting data or signaling information to be processed into the chip system 2900 for processing.
具体地,例如,若编码装置安装了该芯片系统2900,逻辑电路2910可用于对数据比特进行LDPC编码,逻辑电路2910与输入/输出接口2920耦合,逻辑电路2910可通过输入/输出接口2920向解码装置发送编码后的LDPC码流。又如,若译码装置安装了该芯片系统2900,逻辑电路2910与输入/输出接口2920耦合,输入/输出接口2920可将来自编码装置的LDPC码输入至逻辑电路2910进行处理。Specifically, for example, if the chip system 2900 is installed in the encoding device, the logic circuit 2910 can be used to perform LDPC encoding on the data bits, the logic circuit 2910 is coupled to the input/output interface 2920, and the logic circuit 2910 can send the encoded LDPC code stream to the decoding device through the input/output interface 2920. For another example, if the chip system 2900 is installed in the decoding device, the logic circuit 2910 is coupled to the input/output interface 2920, and the input/output interface 2920 can input the LDPC code from the encoding device to the logic circuit 2910 for processing.
作为一种方案,该芯片系统2900用于实现上文各个方法实施例中由通信装置(如编码装置,又如译码装置)执行的操作。As a solution, the chip system 2900 is used to implement the operations performed by the communication device (such as the encoding device or the decoding device) in the above method embodiments.
例如,逻辑电路2910用于实现上文方法实施例中由通信装置(如编码装置,又如译码装置)执行的处理相关的操作;输入/输出接口2920用于实现上文方法实施例中由通信装置(如编码装置,又如译码装置)执行的发送和/或接收相关的操作。For example, the logic circuit 2910 is used to implement the processing-related operations performed by the communication device (such as an encoding device, or a decoding device) in the above method embodiments; the input/output interface 2920 is used to implement the sending and/or receiving-related operations performed by the communication device (such as an encoding device, or a decoding device) in the above method embodiments.
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由通信装置(如编码装置,又如译码装置)执行的方法的计算机指令。An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the methods executed by a communication device (such as an encoding device or a decoding device) in the above-mentioned method embodiments are stored.
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由通信装置(如编码装置,又如译码装置)执行的方法。For example, when the computer program is executed by a computer, the computer can implement the method performed by a communication device (such as an encoding device or a decoding device) in each embodiment of the above method.
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由通信装置(如编码装置,又如译码装置)执行的方法。An embodiment of the present application also provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a communication device (such as an encoding device or a decoding device) in the above-mentioned method embodiments.
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的编码装置和译码装置。例如,该系统包含图5所示实施例中的编码装置和译码装置。再例如,该系统包含图18所示实施例中的编码装置和译码装置。The embodiment of the present application also provides a communication system, which includes the encoding device and decoding device in the above embodiments. For example, the system includes the encoding device and decoding device in the embodiment shown in Figure 5. For another example, the system includes the encoding device and decoding device in the embodiment shown in Figure 18.
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。The explanation of the relevant contents and beneficial effects of any of the above-mentioned devices can be referred to the corresponding method embodiments provided above, which will not be repeated here.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed devices and methods can be implemented in other ways. For example, the device embodiments described above are only schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或 功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。In the above embodiments, all or part of the embodiments may be implemented by software, hardware, firmware, or any combination thereof. When implemented by software, all or part of the embodiments may be implemented in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or instructions described in the embodiments of the present application are generated. Function. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device. For example, the computer may be a personal computer, a server, or a network device. The computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from one website, computer, server, or data center to another website, computer, server, or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means. The computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated. The available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD), etc. For example, the aforementioned available medium includes, but is not limited to, various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。 The above is only a specific implementation of the present application, but the protection scope of the present application is not limited thereto. Any person skilled in the art who is familiar with the present technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (14)

  1. 一种编码方法,其特征在于,包括:A coding method, characterized by comprising:
    对数据比特进行低密度奇偶校验LDPC编码,得到编码后的LDPC码流,其中,所述数据比特包括信息比特和根据所述信息比特生成的循环冗余校检CRC比特,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关;Performing low-density parity check (LDPC) encoding on data bits to obtain an encoded LDPC code stream, wherein the data bits include information bits and cyclic redundancy check (CRC) bits generated according to the information bits, and a position of the CRC bits is related to the robustness of at least one data bit position in the LDPC code stream;
    输出所述LDPC码流。Output the LDPC code stream.
  2. 根据权利要求1所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:The method according to claim 1, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, comprising:
    所述CRC比特所在的位置的鲁棒性高于所述LDPC码流中至少一个信息比特所在的位置的鲁棒性。The robustness of the position where the CRC bit is located is higher than the robustness of the position where at least one information bit in the LDPC code stream is located.
  3. 根据权利要求1或2所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:The method according to claim 1 or 2, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, comprising:
    所述LDPC码流中至少两个数据比特位置的鲁棒性一致的情况下,所述CRC比特所在的位置位于所述至少两个数据比特中位置靠前的位置。When the robustness of at least two data bit positions in the LDPC code stream is consistent, the position of the CRC bit is located at a front position of the at least two data bits.
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括以下任一项:The method according to any one of claims 1 to 3, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including any of the following:
    在所述LDPC码流的码长为1944,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1944 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
    在所述LDPC码流的码长为1944,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 2/3, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, and the fourth column; or,
    在所述LDPC码流的码长为1944,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 3/4, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, and the sixth column; or,
    在所述LDPC码流的码长为1944,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, the seventh column, the eighth column, the ninth column, and the tenth column; or,
    在所述LDPC码流的码长为1296,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1296 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
    在所述LDPC码流的码长为1296,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, and the third column; or,
    在所述LDPC码流的码长为1296,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, and the seventh column; or,
    在所述LDPC码流的码长为1296,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第13列、第14列、第15列、第16列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, the seventh column, the eighth column, the ninth column, the tenth column, the eleventh column, the twelfth column, the thirteenth column, the fourteenth column, the fifteenth column, and the sixteenth column; or,
    在所述LDPC码流的码长为648,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第5列、第9列;或者,When the code length of the LDPC code stream is 648 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the fifth column, and the ninth column; or,
    在所述LDPC码流的码长为648,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 648 and the code rate is 2/3, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, and the third column; or,
    在所述LDPC码流的码长为648,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列;或者,When the code length of the LDPC code stream is 648 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, and the fifth column; or,
    在所述LDPC码流的码长为648,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第14列、第15列、第16列、第17列、第18列、第19列、第20列。 When the code length of the LDPC code stream is 648 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 14, column 15, column 16, column 17, column 18, column 19, and column 20.
  5. 一种译码方法,其特征在于,包括:A decoding method, characterized by comprising:
    获取待译码的低密度奇偶校验LDPC码流,所述LDPC码流中包括数据比特,所述数据比特包括信息比特和所述信息比特的循环冗余校检CRC比特,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关;Acquire a low-density parity check (LDPC) code stream to be decoded, wherein the LDPC code stream includes data bits, the data bits include information bits and cyclic redundancy check (CRC) bits of the information bits, and the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream;
    对所述LDPC码流进行译码。The LDPC code stream is decoded.
  6. 根据权利要求5所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:The method according to claim 5, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, comprising:
    所述CRC比特所在的位置的鲁棒性高于所述LDPC码流中至少一个信息比特所在的位置的鲁棒性。The robustness of the position where the CRC bit is located is higher than the robustness of the position where at least one information bit in the LDPC code stream is located.
  7. 根据权利要求5或6所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括:The method according to claim 5 or 6, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including:
    所述LDPC码流中至少两个数据比特位置的鲁棒性一致的情况下,所述CRC比特所在的位置位于所述至少两个数据比特中位置靠前的位置。When the robustness of at least two data bit positions in the LDPC code stream is consistent, the position of the CRC bit is located at a front position of the at least two data bits.
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述CRC比特所在的位置与所述LDPC码流中至少一个数据比特位置的鲁棒性相关,包括以下任一项:The method according to any one of claims 5 to 7, characterized in that the position of the CRC bit is related to the robustness of at least one data bit position in the LDPC code stream, including any of the following:
    在所述LDPC码流的码长为1944,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1944 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
    在所述LDPC码流的码长为1944,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 2/3, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, and the fourth column; or,
    在所述LDPC码流的码长为1944,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 3/4, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, and the sixth column; or,
    在所述LDPC码流的码长为1944,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列;或者,When the code length of the LDPC code stream is 1944 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, the seventh column, the eighth column, the ninth column, and the tenth column; or,
    在所述LDPC码流的码长为1296,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的第1列所对应的数据比特位置;或者,When the code length of the LDPC code stream is 1296 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to the first column in the check matrix of the LDPC code stream; or,
    在所述LDPC码流的码长为1296,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 2/3, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, and the third column; or,
    在所述LDPC码流的码长为1296,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, and the seventh column; or,
    在所述LDPC码流的码长为1296,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第13列、第14列、第15列、第16列;或者,When the code length of the LDPC code stream is 1296 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, the fifth column, the sixth column, the seventh column, the eighth column, the ninth column, the tenth column, the eleventh column, the twelfth column, the thirteenth column, the fourteenth column, the fifteenth column, and the sixteenth column; or,
    在所述LDPC码流的码长为648,码率为1/2的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第5列、第9列;或者,When the code length of the LDPC code stream is 648 and the code rate is 1/2, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the fifth column, and the ninth column; or,
    在所述LDPC码流的码长为648,码率为2/3的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列;或者,When the code length of the LDPC code stream is 648 and the code rate is 2/3, the position of the CRC bit is located at a data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, and the third column; or,
    在所述LDPC码流的码长为648,码率为3/4的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列;或者,When the code length of the LDPC code stream is 648 and the code rate is 3/4, the position of the CRC bit is located at the data bit position corresponding to any of the following columns in the check matrix of the LDPC code stream: the first column, the second column, the third column, the fourth column, and the fifth column; or,
    在所述LDPC码流的码长为648,码率为5/6的情况下,所述CRC比特所在的位置位于所述LDPC码流的校验矩阵中的以下任一列所对应的数据比特位置:第1列、第2列、第3列、第4列、第5列、第6列、第7列、第8列、第9列、第10列、第11列、第12列、第14列、第15列、第16列、第17列、第18列、第19列、第20列。When the code length of the LDPC code stream is 648 and the code rate is 5/6, the position of the CRC bit is located at the data bit position corresponding to any one of the following columns in the check matrix of the LDPC code stream: column 1, column 2, column 3, column 4, column 5, column 6, column 7, column 8, column 9, column 10, column 11, column 12, column 14, column 15, column 16, column 17, column 18, column 19, and column 20.
  9. 一种通信装置,其特征在于,包括:用于执行如权利要求1至8中任一项所述的方法的单元或模块。 A communication device, characterized by comprising: a unit or a module for executing the method according to any one of claims 1 to 8.
  10. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至8中任一项所述的方法。A communication device, characterized in that it comprises a processor, wherein the processor is used to execute a computer program or instruction stored in a memory so that the device executes the method according to any one of claims 1 to 8.
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,The device according to claim 10, characterized in that the device further comprises the memory and/or the communication interface, wherein the communication interface is coupled to the processor,
    所述通信接口,用于输入和/或输出信息。The communication interface is used to input and/or output information.
  12. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至8中任一项所述的方法的指令。A computer-readable storage medium, characterized in that it is used to store a computer program, wherein the computer program includes instructions for implementing the method according to any one of claims 1 to 8.
  13. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至8中任一项所述的方法。A chip, characterized in that it comprises: a processor and an interface, used to call and run a computer program stored in a memory from the memory to execute the method as claimed in any one of claims 1 to 8.
  14. 一种计算机程序产品,其特征在于,包括计算机程序代码,所述计算机程序代码用于实现如权利要求1至8中任一项所述的方法。 A computer program product, characterized in that it comprises computer program code, wherein the computer program code is used to implement the method according to any one of claims 1 to 8.
PCT/CN2023/135998 2022-12-02 2023-12-02 Encoding method, decoding method, and communication apparatus WO2024114812A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211534348.X 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024114812A1 true WO2024114812A1 (en) 2024-06-06

Family

ID=

Similar Documents

Publication Publication Date Title
EP3335321B1 (en) Rate-compatible polar codes
EP4109794A1 (en) Rate matching method for ldpc code, and communication device
Hamidi-Sepehr et al. Analysis of 5G LDPC codes rate-matching design
US20120166914A1 (en) Ldpc encoding and decoding of packets of variable sizes
JP2004112800A (en) Method and apparatus for adaptive hybrid automatic retransmission request
US11881870B2 (en) LDPC code encoding method and communication apparatus
WO2006070836A1 (en) Data retransmission method
CN113273084B (en) Data retransmission in wireless networks
US20240030941A1 (en) Encoding and decoding method and apparatus
US11695435B2 (en) Data transmission method, apparatus, and system
WO2008023790A1 (en) Wireless communication device and error detection coding method
TWI676371B (en) Device and method of decoding a raptor code
US20230208555A1 (en) Permutated extension and shortened low density parity check codes for hybrid automatic repeat request
EP4156522A1 (en) Rate matching method for ldpc code, and communication device
WO2024114812A1 (en) Encoding method, decoding method, and communication apparatus
WO2023273995A1 (en) Data processing method and apparatus
WO2021136539A1 (en) Convolutional code rate matching method and wireless communication apparatus
WO2024041194A1 (en) Rate matching method and communication apparatus
CN118138189A (en) Encoding method, decoding method, and communication device
WO2024067350A1 (en) Method for encoding and decoding concatenated code, and communication apparatus
WO2023216991A1 (en) Ldpc coding and decoding method and related device
US12009920B2 (en) Polar code retransmission method and apparatus
Mutlu et al. Performance analyses of hybrid-ARQ in fifth generation new radio
WO2023051170A1 (en) Retransmission method and apparatus
US20220123862A1 (en) Polar code retransmission method and apparatus