WO2024114686A1 - 获取训练数据的方法和通信装置 - Google Patents
获取训练数据的方法和通信装置 Download PDFInfo
- Publication number
- WO2024114686A1 WO2024114686A1 PCT/CN2023/135116 CN2023135116W WO2024114686A1 WO 2024114686 A1 WO2024114686 A1 WO 2024114686A1 CN 2023135116 W CN2023135116 W CN 2023135116W WO 2024114686 A1 WO2024114686 A1 WO 2024114686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication device
- time domain
- domain units
- reference signal
- indication information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 475
- 238000000034 method Methods 0.000 title claims abstract description 148
- 238000012549 training Methods 0.000 title claims abstract description 71
- 238000005259 measurement Methods 0.000 claims abstract description 271
- 238000004590 computer program Methods 0.000 claims description 23
- 230000004044 response Effects 0.000 claims description 5
- 238000013473 artificial intelligence Methods 0.000 description 73
- 230000006870 function Effects 0.000 description 40
- 238000012545 processing Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 25
- 238000007726 management method Methods 0.000 description 19
- 238000013507 mapping Methods 0.000 description 17
- 238000010801 machine learning Methods 0.000 description 16
- 230000011664 signaling Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000013480 data collection Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/086—Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present application relates to the field of communication technology, and more specifically, to a method for acquiring training data and a communication device.
- AI artificial intelligence
- a set of suitable beam pairs can be established and maintained between network devices and terminal devices.
- the network side For downlink transmission, the network side needs to select a suitable transmit beam, and the terminal side needs to select a suitable receive beam to form a set of beam pairs to maintain a good wireless connection.
- the above beam selection process can also be called service beam selection.
- beam selection is mainly completed through reference signals and corresponding beam measurements.
- the AI model is used in beam management, such as for beam selection, some training data needs to be collected to select a suitable beam. The accuracy of the training data obtained based on the current training data acquisition method is not high enough, and a better way to obtain training data is urgently needed.
- the present application provides a method and a communication device for obtaining training data, so as to transmit a reference signal on multiple time domain units (such as multiple second time domain units within a first time domain unit), thereby obtaining multiple measurement results of the reference signal and reporting the measurement results, which can be used as training data for the AI model.
- a method for obtaining training data is provided, which can be performed by a communication device.
- the communication device can be a communication device (such as a terminal device), or can be a component (such as a chip or circuit) in a communication device, without limitation.
- the following is an example of a first communication device for illustration.
- the method may include: a first communication device receives a reference signal from a second communication device, the reference signal occupies X second time domain units within a first time domain unit, and X is an integer greater than 1; the first communication device performs measurement based on the reference signal to obtain a measurement result of the reference signal; the first communication device sends m measurement results to the second communication device, the measurement result of the reference signal includes the m measurement results, and the m measurement results are used for training an artificial intelligence AI model, where m is an integer greater than 1 and less than X or equal to X.
- X is greater than 4.
- the reference signal can occupy more than 4 small time domain units (i.e., the second time domain unit) in a large time domain unit (i.e., the first time domain unit), so that the first communication device can receive more than 4 reference signals in a shorter time (e.g., within one first time domain unit), and further obtain the measurement results of the more than 4 reference signals.
- m is greater than 4.
- m is greater than 4.
- the solution of the present application can obtain a large amount of training data, and then train the AI model based on a large amount of training data, thereby improving the performance of the AI model.
- the m measurement results are any of the following: M measurement results, any m measurement results among the M measurement results, and specific m measurement results among the M measurement results.
- the reference signal occupies multiple second time domain units in one first time domain unit, so that the first communication device can perform measurements based on multiple reference signals received in the first time domain unit to obtain multiple measurement results, and then the first communication device can The multiple measurement results or some of the multiple measurement results are reported for the second communication device to train the AI model.
- the second communication device can obtain the training data (i.e., m measurement results) of the AI model collected by the first communication device in a relatively short period of time (i.e., on multiple second time domain units within one time domain unit), and then train the AI model.
- the method also includes: the first communication device receives first indication information from the second communication device, and the first indication information is used to trigger the first communication device to send the m measurement results; the first communication device sends the m measurement results to the second communication device, including: in response to the first indication information, the first communication device sends the m measurement results to the second communication device.
- the first communication device can determine whether to report according to the reporting mode of reporting m measurement results based on the triggering of the second communication device, so that the specific reporting mode can be determined according to actual needs.
- the m is determined by the first communication device based on second indication information or predefined, wherein the second indication information is received by the first communication device from the second communication device side.
- the first communication device receives second indication information from the second communication device, and the second indication information indicates m. Based on this example, the first communication device can determine m, that is, the number of reported measurement results, based on the indication of the second communication device.
- m is predefined. Based on this example, the first communication device can determine m, that is, the number of reported measurement results, by itself.
- the m measurement results are determined by the first communication device based on third indication information or predefined, wherein the third indication information is received by the first communication device from the second communication device side.
- the first communication device receives third indication information from the second communication device, and the third indication information indicates to report m measurement results. Based on this example, the first communication device can determine the m measurement results, that is, which measurement results to report, based on the indication of the second communication device.
- the m measurement results are predefined, such as predefined arbitrary m measurement results, predefined specific m measurement results, or predefined all measurement results.
- the first communication device can determine the m measurement results by itself, that is, which measurement results to report.
- an interval between two adjacent second time domain units in the X second time domain units is T1 second time domain units, and T1 is an integer greater than 0 or equal to 0; or, the X second time domain units include at least two groups of second time domain units, and an interval between two adjacent groups of second time domain units in the at least two groups of second time domain units is T2 second time domain units, wherein each group of second time domain units in the at least two groups of second time domain units includes at least two second time domain units, and at least two second time domain units in each group of second time domain units are continuous, and T2 is an integer greater than 0.
- the first time domain unit and the second time domain unit are units in the time domain, and the first time domain unit includes at least one of the second time domain units.
- the first time domain unit is a time slot or a mini time slot.
- the second time domain unit is an orthogonal frequency division multiplexing OFDM symbol.
- the method further includes: the first communication device receives fourth indication information from the second communication device, and the fourth indication information indicates a time domain position occupied by the reference signal.
- the fourth indication information is a bit map of at least two bits; or, the fourth indication information includes one or more of the following: the starting position of the reference signal in one of the first time domain units, the number of the second time domain units occupied by the reference signal in one of the first time domain units, the interval between two adjacent second time domain units of the reference signal in one of the first time domain units, or the ending position of the reference signal in one of the first time domain units.
- the fourth indication information indicates part of the above-mentioned multiple information, then for other information in the multiple information, it can be default, such as determined based on a protocol predefined or pre-stored setting. In this way, the first communication device can determine the time domain position of the reference signal based on the content indicated by the fourth indication information and the default content.
- the first communication device sends m measurement results to the second communication device, including: the first communication device sends m quantized measurement results to the second communication device, wherein the m quantized measurement results are obtained by the first communication device quantizing the m measurement results using X1 bits, wherein X1 is determined by the first communication device based on fifth indication information or predefined, and the fifth indication information is received by the first communication device from the second communication device side.
- the fifth indication information indicates X1, or the fifth indication information indicates that the first communications apparatus reports the measurement result of the reference signal according to the X1 bit.
- each measurement result can be quantized according to the X1 bit, and the solution is simple and easy to implement.
- the sixth indication information indicates X2 and/or X3, or the sixth indication information indicates that the first communication device reports m1 measurement results according to the X2 bit and/or reports m2 measurement results according to the X3 bit.
- the sixth indication information indicates X2 or X3, X2 and X3 may be associated, so that the first communication device can determine the other one according to X2 or X3 indicated by the sixth indication information and the association between X2 and X3.
- the reference signal corresponds to a beam direction in each second time domain unit of the X second time domain units, and the beam directions corresponding to the reference signal in at least two second time domain units of the X second time domain units are different.
- the beam directions of the reference signal in each second time domain unit are different. In this way, fast beam traversal at multiple angles in the spatial domain can be achieved, which is conducive to improving the speed of training data collection.
- the beam directions of the reference signal on each group of second time domain units in the at least two groups of second time domain units are different. In this way, fast beam traversal of multiple angles in the spatial domain can be achieved, which is conducive to improving the speed of training data collection.
- the beams of the reference signal on each second time domain unit can be designed to be different or partially different according to actual needs, thereby achieving rapid beam traversal at multiple angles in the spatial domain, which is beneficial to improving the speed of training data collection.
- the AI model is an AI model for beam management.
- the AI model is an AI model for beam management.
- the solution described in this application can be used to collect training data of the AI model for beam management, and then select a suitable beam.
- the reference signal occupies one frequency domain unit in the frequency domain; or, the reference signal occupies multiple frequency domain units in the frequency domain, and the interval between two adjacent frequency domain units in the multiple frequency domain units is T3 frequency domain units, and T3 is an integer greater than 0 or equal to 0; or, the reference signal occupies multiple frequency domain units in the frequency domain, and the multiple frequency domain units include at least two groups of frequency domain units, and the interval between two adjacent groups of frequency domain units in the at least two groups of frequency domain units is T4 time domain units, wherein each group of the at least two groups of frequency domain units includes at least two frequency domain units, and at least two frequency domain units in each group of frequency domain units are continuous, and T4 is an integer greater than 0.
- the method further includes: the first communication device receives sixth indication information from the second communication device, and the sixth indication information indicates a frequency domain position occupied by the reference signal.
- the sixth indication information is a bitmap of at least two bits, or the sixth indication information indicates an index of a frequency domain unit occupied by the reference signal.
- the method further includes: the first communication device receives seventh indication information from the second communication device, and the seventh indication information indicates a pattern of the reference signal.
- the N values of the seventh indication information correspond to N patterns, N is an integer greater than 1, and the method also includes: the first communication device determines the pattern of the reference signal based on the corresponding relationship and the value of the seventh indication information.
- a method for obtaining training data is provided, which can be performed by a communication device.
- the communication device can be a communication device (such as a network device), or can be a component of a communication device (such as a chip or circuit), without limitation.
- the following is an example of a second communication device.
- the method may include: a second communication device sends a reference signal to a first communication device, the reference signal occupies X second time domain units within a first time domain unit, and X is an integer greater than 1; the second communication device receives m measurement results of the reference signal from the first communication device, and the m measurement results are used for training an artificial intelligence AI model, where m is an integer greater than 1 and less than X or equal to X.
- X is greater than 4.
- m is greater than 4.
- the m measurement results are any of the following: M measurement results, any m measurement results among the M measurement results, and specific m measurement results among the M measurement results.
- the reference signal occupies multiple second time domain units in a first time domain unit, so that the first communication device can perform measurements based on the multiple reference signals received in the first time domain unit to obtain multiple measurement results, and then the first communication device can report the multiple measurement results or part of the multiple measurement results for the second communication device to train the AI model.
- the second communication device obtains the training data (i.e., m measurement results) of the AI model collected by the first communication device in a shorter time (i.e., on multiple second time domain units in a time domain unit), it can train the AI model according to actual needs.
- the method further includes: the second communication device sending first indication information to the first communication device, where the first indication information is used to trigger the first communication device to send the m measurement results.
- the second communication device sends second indication information to the first communication device, where the second indication information indicates the m.
- the second communication device sends third indication information to the first communication device, where the third indication information indicates the m measurement results.
- an interval between two adjacent second time domain units in the X second time domain units is T1 second time domain units, and T1 is an integer greater than 0 or equal to 0; or, the X second time domain units include at least two groups of second time domain units, and an interval between two adjacent groups of second time domain units in the at least two groups of second time domain units is T2 second time domain units, wherein each group of second time domain units in the at least two groups of second time domain units includes at least two second time domain units, and at least two second time domain units in each group of second time domain units are continuous, and T2 is an integer greater than 0.
- the first time domain unit is a time slot or a mini time slot.
- the second time domain unit is an orthogonal frequency division multiplexing OFDM symbol.
- the method further includes: the second communication device sends fourth indication information to the first communication device, and the fourth indication information indicates a time domain position occupied by the reference signal.
- the second communication device receives m measurement results of the reference signal from the first communication device, including: the second communication device receives m quantized measurement results from the first communication device, wherein the m quantized measurement results are obtained by the first communication device quantizing the m measurement results using X1 bits, wherein X1 is determined by the first communication device based on fifth indication information or predefined, and the fifth indication information is sent by the second communication device to the first communication device;
- the reference signal corresponds to a beam direction in each of the X second time domain units, and the reference signal corresponds to different beam directions in at least two of the X second time domain units.
- the AI model is an AI model for beam management.
- the reference signal occupies one frequency domain unit in the frequency domain; or, the reference signal occupies multiple frequency domain units in the frequency domain, and the interval between two adjacent frequency domain units in the multiple frequency domain units is T3 frequency domain units, where T3 is an integer greater than 0 or equal to 0; or, the reference signal occupies multiple frequency domain units in the frequency domain, and the multiple frequency domain units include at least two groups of frequency domain units, and the interval between two adjacent groups of frequency domain units in the at least two groups of frequency domain units is T4 time domain units, wherein the at least two groups Each group of frequency domain units in the frequency domain units includes at least two frequency domain units, and at least two frequency domain units in each group of frequency domain units are continuous, and T4 is an integer greater than 0.
- the method further includes: the second communication device sends sixth indication information to the first communication device, where the sixth indication information indicates a frequency domain position occupied by the reference signal.
- the sixth indication information is a bitmap of at least two bits, or the sixth indication information indicates the index of the frequency domain unit occupied by the reference signal.
- the method further includes: the second communication device sends seventh indication information to the first communication device, and the seventh indication information indicates a pattern of the reference signal.
- the N values of the seventh indication information correspond to the N patterns, and N is an integer greater than 1.
- a communication device is provided, the device being used to execute the method provided in the first aspect or the second aspect.
- the device may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method provided in any one of the above implementations of any one of the first aspect or the second aspect.
- the communication device may be a first communication device, or may also be a second communication device.
- the apparatus is a communication device.
- the communication unit may be a transceiver, or an input/output interface;
- the processing unit may be at least one processor.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- the device is a chip, a chip system or a circuit used in a communication device.
- the communication unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit;
- the processing unit may be at least one processor, a processing circuit or a logic circuit.
- a communication device comprising: at least one processor coupled to at least one memory, the at least one processor being configured to execute a computer program or instruction stored in the at least one memory to execute the method provided in any one of the implementations of any one of the first aspect or the second aspect.
- the communication device may be a first communication device, or may also be a second communication device.
- the communication device may also include input/output circuitry.
- the device includes at least one memory as mentioned above.
- the apparatus is a communication device.
- the apparatus is a chip, a chip system or a circuit used in a communication device.
- the present application provides a processor for executing the methods provided in the above aspects.
- a computer-readable storage medium which stores a program code for execution by a device, and the program code includes a method provided by any one of the above-mentioned implementations of any one of the above-mentioned first aspect or second aspect.
- a computer program product comprising instructions is provided.
- the computer program product is run on a computer, the computer is enabled to execute the method provided by any one of the above-mentioned implementations of any one of the above-mentioned first aspect or second aspect.
- a chip including a processor and a communication interface, the processor reads instructions stored in a memory through the communication interface, and executes a method provided by any one of the above-mentioned implementation modes of any one of the above-mentioned first aspect or second aspect.
- the chip also includes a memory, in which a computer program or instruction is stored, and the processor is used to execute the computer program or instruction stored in the memory.
- the processor is used to execute the method provided in any one of the above-mentioned implementation methods of any one of the first aspect or the second aspect.
- a communication system comprising the aforementioned first communication device and/or second communication device.
- FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
- FIG. 2 is a schematic diagram of a wide beam and a narrow beam applicable to an embodiment of the present application.
- FIG. 3 is a schematic diagram of a method 300 for acquiring training data provided in an embodiment of the present application.
- FIG. 4 is a schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG5 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG6 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG. 7 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG8 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG. 9 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- FIG. 10 is a schematic diagram of a communication device 1000 provided in an embodiment of the present application.
- FIG. 11 is a schematic diagram of another communication device 1100 provided according to an embodiment of the present application.
- FIG. 12 is a schematic diagram of a chip system 1200 provided in accordance with an embodiment of the present application.
- the technical solution provided in the present application can be applied to various communication systems, such as: the fifth generation (5G) or new radio (NR) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, wireless local area network (WLAN) system, satellite communication system, future communication system, such as the sixth generation mobile communication system, or a fusion system of multiple systems.
- the technical solution provided in the present application can also be applied to device (D2D) communication, vehicle to everything (V2X) communication, machine to machine (M2M) communication, machine type communication (MTC), and Internet of things (IoT) communication system or other communication systems.
- D2D device to device
- V2X vehicle to everything
- M2M machine to machine
- MTC machine type communication
- IoT Internet of things
- a communication device in a communication system may send a signal to another communication device or receive a signal from another communication device.
- the signal may include information, signaling, or data, etc.
- the communication device may also be replaced by a network element, an entity, a network entity, a device, a communication device, a communication module, a node, a communication node, etc., and the present disclosure is described by taking the communication device as an example.
- the communication system may include at least one first communication device and at least one second communication device.
- the second communication device may send a reference signal to the first communication device. It can be understood that, as an example, the first communication device in the present disclosure may be replaced by a terminal device, and the second communication device may be replaced by a network device, and the two perform the corresponding methods in the present disclosure.
- the terminal devices in the embodiments of the present application include various devices with wireless communication functions, which can be used to connect people, objects, machines, etc.
- the terminal devices can be widely used in various scenarios, such as: cellular communication, D2D, V2X, peer to peer (P2P), M2M, MTC, IoT, virtual reality (VR), augmented reality (AR), industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city drones, robots, remote sensing, passive sensing, positioning, navigation and tracking, autonomous delivery, etc.
- the terminal device can be a terminal in any of the above scenarios, such as an MTC terminal, an IoT terminal, etc.
- the terminal device can be a user equipment (UE), terminal, fixed device, mobile station device or mobile device of the third generation partnership project (3GPP) standard, subscriber unit, handheld device, vehicle-mounted device, wearable device, cellular phone, smart phone, session initialization protocol (SIP) phone, wireless data card, personal digital assistant (PDA)
- PDA personal digital assistant
- the present invention relates to a personal digital assistant (PDA), a computer, a tablet computer, a notebook computer, a wireless modem, a handheld device (handset), a laptop computer, a computer with wireless transceiver function, a smart book, a vehicle, a satellite, a global positioning system (GPS) device, a target tracking device, an aircraft (such as a drone, a helicopter, a multi-copter, a quadcopter, or an airplane, etc.), a ship, a remote control device, a smart home device, an industrial device, or a device built into the above device (for example, a communication module, a modem or
- the UE can also be used to act as a base station.
- the UE can act as a scheduling entity that provides sidelink signals between UEs in scenarios such as V2X, D2D or P2P.
- the device for realizing the function of the terminal device can be the terminal device, or it can be a device that can support the terminal device to realize the function, such as a chip system or a chip, which can be installed in the terminal device.
- the chip system can be composed of a chip, or it can include a chip and other discrete devices.
- the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
- the network device in the embodiment of the present application may refer to a radio access network (RAN) node (or device) that connects a terminal device to a wireless network.
- RAN radio access network
- a base station may broadly cover the following various The term "base station” refers to a node or a network element, or is replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmission point (TRP), transmission point (TP), master station, auxiliary station, multi-standard wireless (motor slide retainer, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
- NodeB evolved NodeB
- gNB next generation NodeB
- relay station access point
- TRP transmission point
- TRP transmission point
- TP transmission point
- master station auxiliary station
- MSR multi-standard wireless (motor slide retainer, MSR) node
- home base station network controller, access no
- the base station can be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
- the base station can also refer to a communication module, a modem or a chip used to be arranged in the aforementioned device or apparatus.
- the base station can also be a mobile switching center and a device that performs the base station function in D2D, V2X, and M2M communications, a network-side device in a 6G network, or a device that performs the base station function in a future communication system.
- the base station can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific device form used by the network device.
- a base station can be fixed or mobile.
- a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
- a helicopter or drone can be configured to act as a device that communicates with another base station.
- the device for realizing the function of the network device can be a network device, or a device capable of supporting the network device to realize the function, such as a chip system or a chip, which can be installed in the network device.
- the chip system can be composed of a chip, or can include a chip and other discrete devices.
- Network devices and terminal devices can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on aircraft, balloons and satellites in the air.
- the scenarios in which network devices and terminal devices are located are not limited in the embodiments of the present application.
- terminal devices and network devices can be hardware devices, or they can be software functions running on dedicated hardware, software functions running on general-purpose hardware, such as virtualization functions instantiated on a platform (e.g., a cloud platform), or entities including dedicated or general-purpose hardware devices and software functions.
- a platform e.g., a cloud platform
- the present application does not limit the specific forms of terminal devices and network devices.
- FIG1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
- the wireless communication system includes a wireless access network 100.
- the wireless access network 100 may be a next generation (e.g., 6G or higher) wireless access network, or a traditional (e.g., 5G, 4G, 3G, or 2G) wireless access network.
- One or more terminal devices 120a-120j, collectively referred to as 120
- FIG1 is only a schematic diagram, and other devices may also be included in the wireless communication system, such as core network devices, wireless relay devices, and/or wireless backhaul devices, which are not shown in FIG1 .
- the wireless communication system may include multiple network devices (also called access network devices) at the same time, and may also include multiple terminal devices at the same time, without limitation.
- a network device may serve one or more terminal devices at the same time.
- a terminal device may also access one or more network devices at the same time.
- the embodiment of the present application does not limit the number of terminal devices and network devices included in the wireless communication system.
- Artificial intelligence It is to enable machines to learn, accumulate experience, and solve problems that humans can solve through experience, such as natural language understanding, image recognition, and chess. Artificial intelligence can be understood as the intelligence displayed by machines made by humans. Usually artificial intelligence refers to the technology that presents human intelligence through computer programs. The goals of artificial intelligence include understanding intelligence by building computer programs with symbolic reasoning or inference.
- Machine learning It is a way to implement artificial intelligence. Machine learning can be divided into supervised learning, unsupervised learning, and reinforcement learning.
- Supervised learning uses machine learning algorithms to learn the mapping relationship from sample values to sample labels based on the collected sample values and sample labels, and uses machine learning models to express the learned mapping relationship.
- the process of training a machine learning model is the process of learning this mapping relationship. For example, in signal detection, a noisy received signal is a sample, and the real constellation point corresponding to the signal is a label. Machine learning expects to learn the mapping relationship between samples and labels through training, that is, to make the machine learning model learn a signal detector. During training, the model parameters are optimized by calculating the error between the model's predicted value and the real label. Once the mapping relationship is learned, the learned mapping relationship can be used to predict the sample label of each new sample.
- the mapping relationship learned by supervised learning can include linear mapping and nonlinear mapping. According to the type of label, the learning task can be divided into classification task and regression task.
- Unsupervised learning uses algorithms to discover the inherent patterns of samples based on the collected sample values.
- One type of algorithm in unsupervised learning uses the samples themselves as supervisory signals, that is, the model learns the mapping relationship from sample to sample, which is called self-supervised learning. The error between the predicted value of the model and the sample itself is used to optimize the model parameters.
- Self-supervised learning can be used for signal compression and decompression and recovery applications.
- Common algorithms include autoencoders and adversarial generative networks.
- Reinforcement learning is different from supervised learning. It is a type of algorithm that learns problem-solving strategies by interacting with the environment. Unlike supervised learning and unsupervised learning, reinforcement learning problems do not have clear "correct" action label data.
- the algorithm needs to interact with the environment to obtain reward signals from the environment, and then adjust the decision-making actions to obtain a larger reward signal value. For example, in downlink power control, the reinforcement learning model adjusts the downlink transmission power of each user according to the total system throughput fed back by the wireless network, and then expects to obtain a higher system throughput.
- the goal of reinforcement learning is also to learn the mapping relationship between the state of the environment and the optimal decision action. However, because the label of the "correct action" cannot be obtained in advance, the network cannot be optimized by calculating the error between the action and the "correct action”. Reinforcement learning training is achieved through iterative interaction with the environment.
- Deep learning is also an important branch of machine learning. Deep learning relies on the above learning algorithm and uses a neural network architecture to establish a mapping relationship between input data and network output. According to the universal approximation theorem, neural networks can theoretically approximate any continuous function, so that neural networks have the ability to learn any mapping.
- Traditional communication systems require rich expert knowledge to design communication modules, while communication systems based on deep learning can automatically discover implicit pattern structures from large data sets, establish mapping relationships between data, and obtain performance that is superior to traditional modeling methods.
- Deep learning algorithms can generally be divided into two main stages, namely the training stage and the inference stage.
- the training stage requires a large amount of data to allow the network to learn the mapping relationship between input and output, so the quality of the training data will directly affect the performance of the AI algorithm.
- the deep learning algorithm will be used in the inference stage to infer the corresponding output results through the input data.
- AI model an algorithm or computer program that can realize AI functions.
- the AI model characterizes the mapping relationship between the input and output of the model, or the AI model is a function model that maps input of a certain dimension to output of a certain dimension, and the parameters of the function model can be obtained through machine learning training.
- a and b are the parameters of the AI model, and a and b can be obtained through machine learning training.
- the AI models mentioned in the embodiments below of the present application are not limited to neural networks, linear regression models, decision tree models, support vector machines (SVM), Bayesian networks, Q learning models or other machine learning (ML) models.
- AI model design mainly includes data collection (e.g., collecting training data and/or inference data), model training and model inference. It can also include inference result application.
- the data source is used to provide training data sets and inference data.
- the AI model is obtained by analyzing or training the training data provided by the data source. Learning the AI model through the model training node is equivalent to learning the mapping relationship between the input and output of the AI model using the training data.
- the AI model trained through the model training is used to perform inference based on the inference data provided by the data source to obtain the inference result.
- This link can also be understood as: inputting the inference data into the AI model, and obtaining the output through the AI model, which is the inference result.
- the inference result can indicate: the configuration parameters used (executed) by the execution object, and/or the operation performed by the execution object.
- the inference result application link the inference result is published, for example, the inference result can be uniformly planned by the execution (actor) entity, for example, the execution entity can send the inference result to one or more execution objects (e.g., core network equipment, access network equipment, or terminal equipment, etc.) for execution.
- the execution entity can also provide feedback on the performance of the AI model to the data source, facilitating subsequent update and training of the AI model.
- the implementation of the AI model can be a hardware circuit, or software, or a combination of software and hardware, without limitation.
- Non-limiting examples of software include: program code, program, subroutine, instruction, instruction set, code, code segment, software module, application, or software application, etc.
- an AI model may also be described as one or more of an ML model, a model, a function (such as an AI function, an ML function), a feature, or an algorithm.
- Training data set Data used for model training, model verification, or model testing in machine learning. The quantity and quality of the data will affect the effect of machine learning. Training data can include the input of the AI model, or the input and target output of the AI model. The target output is the target value of the output of the AI model, which can also be called the output true value, comparison true value, label or label sample.
- Model training The process of selecting a suitable loss function and using an optimization algorithm to train the model parameters so that the value of the loss function is less than the threshold, or the value of the loss function meets the target requirements.
- the loss function is used to measure the difference between the model's predicted value and the true value.
- Channel or wireless channel, is a description of the path between the sender and the receiver in wireless communication. For radio waves, there is no tangible connection between the sender and the receiver, and there may be more than one propagation path. In order to vividly describe the work between the sender and the receiver, we can imagine that there is an invisible link between the two, which is called a channel.
- Cell A wireless coverage area identified by a base station identification code or a global cell identification code.
- a cell is not a fixed spatial location concept, but a virtual spatial concept, indicating the spatial range that receives the same base station identification code.
- Resources Data or information can be carried by resources.
- resources can include one or more frequency domain units.
- a frequency domain unit can be a resource element (RE), a resource block (RB), a subchannel, a resource pool, a bandwidth, a bandwidth part (BWP), a carrier, a channel, or an interlace RB, etc.
- Antenna surface that is, the antenna array surface. In principle, it is an antenna array system composed of several identical antennas arranged in a certain pattern. It is mainly used to enhance the directivity of the antenna, improve the antenna gain coefficient, or to obtain the required directional characteristics.
- Beam It is a communication resource.
- the embodiment of beam in NR protocol can be spatial filter, or spatial filter or spatial parameters.
- the beam used to send signals can be called transmission beam (Tx beam), can be called spatial domain transmit filter or spatial transmit parameter;
- the beam used to receive signals can be called reception beam (Rx beam), can be called spatial domain receive filter or spatial receive parameter.
- the transmit beam may refer to the distribution of signal strength in different directions of space after the signal is transmitted by the antenna
- the receive beam may refer to the distribution of signal strength in different directions of space of the wireless signal received from the antenna.
- the beam may be a wide beam, a narrow beam, or other types of beams.
- the technology for forming the beam may be a beamforming technology or other technologies.
- the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams may be considered as different resources. The same information or different information may be sent through different beams.
- the signal when using a low frequency band or a medium frequency band, the signal can be sent omnidirectionally or through a wider angle; when using a high frequency band, thanks to the smaller carrier wavelength of the high frequency communication system, an antenna array consisting of many antenna elements can be arranged at the transmitting and receiving ends.
- the transmitting end sends the signal with a certain beamforming weight so that the transmitted signal forms a beam with spatial directivity.
- the receiving end uses an antenna array with a certain beamforming weight for reception, which can increase the received power of the signal at the receiving end and combat path loss.
- FIG2 is a schematic diagram of a wide beam and a narrow beam applicable to an embodiment of the present application.
- the network device and the terminal device can communicate via a wide beam or a narrow beam.
- the narrow beam has a spotlight effect, which focuses the limited transmission energy in a narrow direction, thereby greatly improving the coverage of the network device.
- Beam management Establish and maintain a set of appropriate beam pairs between network devices and terminal devices. For downlink transmission, the network side needs to select a suitable transmit beam, and the terminal side needs to select a suitable receive beam. Together, they form a set of beam pairs to maintain a good wireless connection.
- the above beam selection process is also called service beam selection.
- the selection of beams is mainly completed through reference signals and corresponding beam measurements.
- the network side configures reference signal resources for the terminal side according to user capabilities and network resources. After the configuration is completed, the network side sends the reference signal to the terminal side according to the configuration. The terminal side measures the reference signal and feeds back the measurement results to the network side. The network side configures the transmission beam according to the measurement results reported by the terminal.
- the AI model When the AI model is used for beam management, a large amount of training data needs to be collected. That is, the network side needs to configure a large number of reference signals for the terminal side to measure.
- the reference signals currently used for beam management mainly include synchronization signal block (SSB) and channel status information reference signal (CSI-RS).
- SSB synchronization signal block
- CSI-RS channel status information reference signal
- SSB is a cell broadcast signal, including the primary synchronization signal (PSS), the secondary synchronization signal (SSS), the physical broadcast channel (PBCH) and the demodulation reference signal (DMRS).
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PBCH physical broadcast channel
- DMRS demodulation reference signal
- Network equipment broadcasts SSB periodically (such as a period of 20 milliseconds).
- the function of SSB is not limited to beam management.
- the functions of SSB also include cell search, initial access, time and frequency synchronization, and carrying system broadcast information.
- SSB can be considered as a wide beam signal. If the network side sends SSB frequently and the terminal side frequently measures SSB, it will cause a large measurement overhead. At the same time, the fixed period will cause the time required for data collection to be longer, which is not conducive to the collection of neural network training data.
- CSI-RS is a user-level signal.
- the network side configures one or more groups of CSI-RS resources for the user based on the actual situation, such as the number of antenna ports and the number of users.
- the function of CSI-RS is not limited to beam management, but also includes channel quality measurement.
- CSI-RS can It is considered to be a narrow beam signal. Since the configuration of CSI-RS is limited by the number of antenna ports and the number of users, CSI-RS cannot be configured densely in the time domain. In addition, the configuration capability of the CSI-RS resource set (ResourceSet) is limited.
- the network side can configure a maximum of 16 CSI-RS ResourceSets, each CSI-RS ResourceSet contains a maximum of 64 CSI-RSs, and the total number of CSI-RS resources configured on the network side does not exceed 128.
- the network side has a large antenna, the possible beam directions of the CSI-RS will exceed the maximum number of CSI-RS configurations currently supported, resulting in some beam directions being unable to be measured, which in turn affects the performance of the AI model.
- the present application proposes a method that is beneficial to solving or improving the above-mentioned problems.
- indication may include direct indication, indirect indication, explicit indication, or implicit indication.
- the indication information carries A, which can be a direct indication of A, or an indirect indication of A.
- indirect indication can refer to directly indicating B through the indication information, and the correspondence between B and A, so as to achieve the purpose of indicating A through the indication information.
- the correspondence between B and A can be predefined by the protocol, pre-stored, or obtained through configuration between communication devices.
- the information indicated by the indication information is referred to as the information to be indicated.
- the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
- the information to be indicated can also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other parts of the information to be indicated are known or agreed in advance.
- the indication of specific information can also be achieved by means of the arrangement order of each information agreed in advance (for example, specified by the protocol), thereby reducing the indication overhead to a certain extent.
- the information to be indicated can be sent together as a whole, or it can be divided into multiple sub-information and sent separately, and the sending period and/or sending time of these sub-information can be the same or different.
- At least one (item) involved in this application indicates one (item) or more (items). More than one (item) refers to two (items) or more than two (items).
- "And/or" describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. The character “/” generally indicates that the objects associated before and after are in an "or” relationship.
- first, second, etc. may be used to describe each object in this application, these objects should not be limited to these terms. These terms are only used to distinguish objects from each other.
- Fig. 3 is a schematic diagram of a method 300 for acquiring training data provided by an embodiment of the present application.
- the method 300 shown in Fig. 3 may include the following steps.
- a first communication device receives a reference signal from a second communication device, where the reference signal occupies X second time domain units within one first time domain unit.
- X is an integer greater than 1.
- X is greater than 4.
- the second time domain unit may be considered as a time domain unit within the first time domain unit.
- the first time domain unit may include multiple second time domain units, and the X second time domain units may be some or all of the multiple second time domain units.
- a first time domain unit is a time slot
- a second time domain unit is a symbol, such as an orthogonal frequency division multiplexing (OFDM) symbol.
- a first time domain unit is a mini-time slot
- a second time domain unit is a symbol, such as an OFDM symbol.
- first time domain unit can be considered as a large time domain unit
- second time domain unit can be considered as a small time domain unit in the large time domain unit.
- the embodiment of the present application does not limit the specific form or specific naming of the first time domain unit and the second time domain unit.
- one reference signal occupies one second time domain unit in the time domain, in other words, one reference signal is transmitted in one second time domain unit.
- the first communication device receives a reference signal from the second communication device, and the reference signal occupies X second time domain units in one first time domain unit, which can be replaced by: the first communication device receives X reference signals from the second communication device, and the X reference signals occupy X second time domain units in one first time domain unit.
- the first communication device is a terminal device or a component in the terminal device, such as a chip or a circuit
- the second communication device is a network device or a component in the network device, such as a chip or a circuit.
- the first communication device performs measurement based on the reference signal to obtain a measurement result of the reference signal.
- the first communication device performs measurement based on the reference signal and obtains M measurement results.
- M is greater than 4.
- the first communication device receives X reference signals, and the first communication device performs measurement based on the X reference signals. Measure to obtain M measurement results, where M may be less than X, that is, the first communication device may perform measurements based on part of the received reference signals to obtain M measurement results, and M may be less than X; or M may be equal to X, that is, the first communication device may perform measurements based on all the received reference signals to obtain X measurement results. It can be understood that the embodiments of the present application do not limit whether the terminal device measures part of the X reference signals or all of the reference signals. For the convenience of description below, the first communication device performs measurements based on the reference signals to obtain M measurement results as an example for exemplary description.
- a measurement result of a reference signal may, for example, include one or more of the following: reference signal receiving power (reference signal receiving power, RSRP) (or RSRP measurement value), or received signal strength indicator (received signal strength indicator, RSSI) (or RSSI measurement value), or signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) (or SINR measurement value).
- reference signal receiving power reference signal receiving power
- RSSI received signal strength indicator
- SINR signal to interference plus noise ratio
- the first communication device sends m measurement results to the second communication device, where the measurement results of the reference signal include m measurement results, and the m measurement results are used for training the AI model.
- n is an integer greater than 1 and less than X or equal to X.
- m is greater than 4.
- the training of the AI model is deployed on the second communication device side.
- the second communication device obtains the training data (e.g., one or more measurement results of the reference signal) obtained by the first communication device measuring the reference signal, and uses the training data obtained from the first communication device side for the training of the AI model.
- the training data e.g., one or more measurement results of the reference signal
- the AI model is an AI model for beam management.
- the label of the AI model may be, for example, information of a reference signal corresponding to the m measurement results or information of m beams corresponding to the m measurement results, exemplarily, m beam IDs.
- the reference signal is a reference signal dedicated to beam management.
- the reference signal can be a newly designed reference signal, such as different from the existing reference signal (such as CSI-RS, SSB, etc.); or it can also be a new type of reference signal added on the basis of the existing reference signal, such as a new CSI-RS, which is dedicated to beam management.
- the reference signal is dedicated to beam management, so that the second communication device can send the reference signal according to actual needs, such as making the reference signal denser in the time domain according to actual needs and the actual communication environment, and then can be based on the reference signal that is denser in the time domain. Measurement is performed, which is conducive to the collection of AI model training data.
- the application scenarios of the AI model in addition to beam management, can also be used in other scenarios, such as channel status information (CSI) feedback or CSI prediction based on the AI model, positioning based on the AI model, etc.
- CSI channel status information
- the embodiments of the present application do not limit the specific application scenarios of the AI model.
- the method 300 further includes: the first communication device receives first indication information from the second communication device, the first indication information is used to trigger the first communication device to send m measurement results; the first communication device sends the m measurement results to the second communication device, including: in response to the first indication information, the first communication device sends the m measurement results to the second communication device. Based on this, the first communication device can determine to report the m measurement results to the second communication device based on the indication of the second communication device. In other words, the first communication device can determine to report the m measurement results to the second communication device based on the triggering of the second communication device.
- the first communication device can determine which reporting mode to adopt according to the instruction of the second communication device.
- the reporting mode of the first communication device can indicate how many measurement results the first communication device specifically reports.
- mode #1 indicates that the first communication device reports m measurement results
- another reporting model indicates that the first communication device reports z measurement results (z is an integer greater than 1 or equal to 1 and less than m).
- the reporting mode is mode #1
- the first communication device reports m measurement results
- the reporting mode #2 the first communication device reports z measurement results.
- the first indication information can be implemented by one or more bits. For example, assuming that 1 bit is used to indicate whether the first communication device adopts mode #1 for reporting, if the bit is set to "0", it means that the first communication device adopts mode #1 for reporting; if the bit is set to "1", it means that the first communication device does not adopt mode #1 for reporting. In the case where there are multiple reporting modes, that is, the value of m is variable, multiple bits can be used to indicate the specific value of m. It should be understood that the above is only an exemplary description and is not limiting.
- the first indication information is a special field
- the first communication device can determine the reporting mode according to whether the special field is received. For example, if the first communication device receives the special field (i.e., the first indication information), it is determined to use mode #1 for reporting; if the first communication device does not receive the special field (i.e., the first indication information), it is determined not to use mode #1 for reporting. It should be understood that the above is only an exemplary description and is not limiting.
- the first communication device may also determine by default, such as based on a predefined or pre-stored setting of the protocol, whether to use mode #1 for reporting.
- the method for determining m includes the following two implementation methods.
- the first communication device determines m according to an instruction of the second communication device. For example, the second communication device sends second instruction information to the first communication device, the second instruction information indicates m; the first communication device determines m according to the second instruction information, and then the first communication device reports m measurement results.
- the first communication device determines by default, such as based on a predefined or pre-stored setting of the protocol, the value of m, and then the first communication device reports m measurement results.
- the method for determining the m measurement results includes the following two implementation methods.
- the first communication device determines m measurement results according to an instruction of the second communication device. For example, the second communication device sends third indication information to the first communication device, and the third indication information indicates m measurement results; the first communication device determines m measurement results according to the third indication information, and then the first communication device reports the m measurement results.
- the third indication information indicates that the m measurement results are specific m measurement results.
- the third indication information indicates that the m measurement results are any m measurement results. It can be understood that which m measurement results the m measurement results are specifically can be determined by the first communication device based on its needs.
- the third indication information indicates that the m measurement results are all measurement results, that is, M measurement results.
- the first communication device defaults, such as determining based on a protocol predefined or pre-stored setting, m measurement results, and then the first communication device reports the m measurement results.
- the m measurement results are any of the following: M measurement results, any m measurement results among the M measurement results, and specific m measurement results among the M measurement results.
- specific m measurement results please refer to the previous description, which will not be repeated here.
- the specific reporting method may include the following two implementation methods.
- the first communication device reports m measurement results.
- the first communication device can report the measurement results of each reference signal in accordance with a preset rule, such as in sequence based on the index of the reference signal, such as in sequence from low to high or from high to low.
- the second communication device defaults, such as determined based on a protocol predefined or pre-stored setting, that the first communication device reports in sequence according to the index of the reference signal, such as in sequence from low to high or from high to low.
- the first communication device sends m measurement results to the second communication device through channel state information (CSI) report (CSI report), and the measurement result is RSRP.
- CSI report channel state information report
- the measurement result is RSRP.
- the first communication device reports m measurement results and the index of the reference signal corresponding to the m measurement results (such as the identifier of the reference signal resource (RS resource indicator)).
- the reference signal corresponding to the measurement result can be directly obtained based on the index of the reference signal, that is, the measurement results of the reference signals reported by the first communication device are known.
- the m measurement results and the index of the reference signal corresponding to the m measurement results can be carried in the same message, such as the same CSI report.
- the first communication device sends m measurement results and the RS resource indicator corresponding to the m measurement results to the second communication device through a CSI report, and the measurement result is RSRP.
- the CSI report is shown in Table 2.
- the measurement result reported by the first communication device may be a quantized measurement result. Two possible implementations are described below.
- the first communication device receives fifth indication information, the fifth indication information indicates X1 or the fifth indication information indicates that the first communication device reports the measurement result of the reference signal according to the X1 bit; in response to the fifth indication information, the first communication device sends m quantized measurement results, wherein the m quantized measurement results are obtained by the first communication device quantizing the m measurement results using the X1 bit.
- the specific manner in which the communication device quantizes the measurement results is not limited, and reference may be made to the existing manner.
- the specific value of X1 can be configured according to actual training requirements.
- the above-mentioned knowing that quantization is performed according to the X1 bit through the fifth indication information is an exemplary description and is not limited thereto.
- the first communication device may also perform quantization according to the X1 bit according to a default, such as a setting predefined or pre-stored based on a protocol.
- part of the m measurement results are reported according to the X2 bit, and the rest of the m measurement results are reported according to the X3 bit.
- the first communication device receives sixth indication information, which indicates X2 and/or X3, or the sixth indication information indicates that the first communication device reports m1 measurement results according to the X2 bit and/or reports m2 measurement results according to the X3 bit; in response to the sixth indication information, the first communication device sends m1 quantized measurement results and m2 quantized measurement results, wherein the m1 quantized measurement results are obtained by the first communication device quantizing the m1 measurement results using the X2 bit, and the m2 quantized measurement results are obtained by the first communication device quantizing the m2 measurement results using the X3 bit.
- the specific manner in which the communication device quantizes the measurement results is not limited, and reference may be made to the existing manner.
- the sixth indication information indicates that the first communication device reports m1 measurement results according to the X2 bit and m2 measurement results according to the X3 bit, and the first communication device determines X2 and X3 according to the sixth indication information.
- the sixth indication information indicates that the first communication device reports m1 measurement results according to the X2 bit, the first communication device determines X2 according to the sixth indication information, and X2 is associated with X3, so the first communication device can obtain X3 based on X2, that is, the first communication device determines to report the measurement results other than the m1 measurement results (i.e., the m2 measurement results) among the m measurement results according to the X3 bit associated with X2.
- the sixth indication information indicates that the first communication device reports m2 measurement results according to the X3 bit, the first communication device determines X3 according to the sixth indication information, and X3 is associated with X2, so the first communication device can obtain X2 based on X3, that is, the first communication device determines to report the measurement results other than the m2 measurement results (i.e., the m1 measurement results) among the m measurement results according to the X2 bit associated with X3.
- the m1 measurement results may be, for example, the highest RSRP or multiple higher RSRPs; the m2 measurement results may be, for example, the RSRPs other than the m1 RSRPs among the m RSRPs.
- the m1 measurement result may be the highest RSRP, and the m2 measurement result may be, for example, the difference between the remaining RSRPs and the highest RSRP among the m RSRPs, in which case X2 may be greater than X3.
- X2 and/or X3 can be configured according to actual training requirements.
- the sixth indication information is used to learn that m1 measurement results are reported according to the X2 bit and m2 measurement results are reported according to the X3 bit for exemplary purposes and is not intended to limit this.
- the first communication device may also determine, by default, such as based on a protocol predefined or pre-stored setting, that m1 measurement results are reported according to the X2 bit and m2 measurement results are reported according to the X3 bit.
- the above describes a specific scheme for reporting.
- the following takes a first time domain unit as a time slot and a second time domain unit as an OFDM symbol as an example to introduce the time-frequency domain position of the reference signal. It can be understood that the reporting scheme described above and the scheme for the time-frequency domain position of the reference signal described below can be used in combination or separately without limitation.
- the time domain position of the reference signal may include the following two schemes.
- T1 second time domain units are located between two adjacent second time domain units in X second time domain units, and T1 is greater than 0 or equal to An integer greater than 0.
- T1 second time domain units are located between two adjacent second time domain units among the X second time domain units” may also be expressed as “two adjacent second time domain units among the X second time domain units are separated by T1 second time domain units”.
- T1 is equal to 0.
- the reference signal occupies a plurality of second time domain units within the first time domain unit, and the plurality of second time domain units are continuous.
- FIG4 is a schematic diagram of a reference signal provided according to an embodiment of the present application.
- a first time domain unit is a time slot
- a second time domain unit is an OFDM symbol
- a time slot includes 14 OFDM symbols.
- one reference signal occupies one OFDM symbol in the time domain, wherein each reference signal occupies one subcarrier in the frequency domain, i.e., subcarrier 6.
- the first communication device can receive 14 reference signals in one time slot, and the 14 reference signals occupy 14 OFDM symbols in the time domain.
- the 14 OFDM symbols are: OFDM symbol 0, OFDM symbol 1, OFDM symbol 2, OFDM symbol 3, OFDM symbol 4, OFDM symbol 5, OFDM symbol 6, OFDM symbol 7, OFDM symbol 8, OFDM symbol 9, OFDM symbol 10, OFDM symbol 11, OFDM symbol 12, OFDM symbol 13. It can be seen that the 14 OFDM symbols are continuous OFDM symbols.
- T1 is greater than 0.
- the reference signal occupies multiple time domain units in the time domain, and two adjacent time domain units in the multiple time domain units are spaced apart by T1 time domain units.
- FIG5 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- a first time domain unit is a time slot
- a second time domain unit is an OFDM symbol
- a time slot includes 14 OFDM symbols.
- one reference signal occupies one OFDM symbol in the time domain, wherein each reference signal occupies one subcarrier in the frequency domain, i.e., subcarrier 6.
- the first communication device can receive seven reference signals in one time slot, and the seven reference signals occupy seven OFDM symbols in the time domain.
- the above scheme 1 is an exemplary description and is not limited to it.
- the variations of the above scheme are applicable to the embodiments of the present application.
- some adjacent second time domain units in multiple second time domain units are separated by T1 second time domain units, and some adjacent second time domain units are separated by T1' second time domain units, T1' is an integer greater than 0 or equal to 0, and T1 is not equal to T1'.
- a time slot may include a greater or lesser number of OFDM symbols.
- the starting position of multiple second time domain units may be OFDM symbol 0, or it may be other positions (such as a certain OFDM symbol in the middle), without limitation.
- X second time domain units include at least two groups of second time domain units, and T2 second time domain units are located between two adjacent groups of second time domain units in the at least two groups of second time domain units, wherein at least one group of second time domain units in the at least two groups of second time domain units includes at least two second time domain units, and the at least two second time domain units are continuous, and T2 is an integer greater than 0.
- second time domain units that are consecutive in the time domain can be considered as a group of second time domain units, and the reference signal occupies at least two groups of second time domain units within one first time domain unit, and the time interval between two adjacent groups of second time domain units in the at least two groups of second time domain units is T2 second time domain units.
- FIG6 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- a first time domain unit is a time slot
- a second time domain unit is an OFDM symbol
- a time slot includes 14 OFDM symbols.
- 1 reference signal occupies 1 OFDM symbol in the time domain
- the first communication device can receive 10 reference signals (or 5 groups of reference signals, each group of reference signals including 2 reference signals) in 1 time slot, wherein each reference signal occupies 1 subcarrier in the frequency domain, that is, subcarrier 6, and the 10 reference signals occupy 5 groups of OFDM symbols in the time domain
- the 5 groups of OFDM symbols are: a group of OFDM symbols including OFDM symbol 0 and OFDM symbol 1, a group of OFDM symbols including OFDM symbol 3 and OFDM symbol 4, a group of OFDM symbols including OFDM symbol 6 and OFDM symbol 7, a group of OFDM symbols including OFDM symbol 9 and OFDM symbol 10, and a group of OFDM symbols including OFDM symbol 12 and OFDM symbol 13. It can be seen that
- the above scheme 2 is an exemplary description and is not limited to this.
- T2 second time domain units some adjacent groups of second time domain units are separated by T2 second time domain units, and some adjacent groups of second time domain units are separated by T2' second time domain units
- T2' is an integer greater than 0, and T2 is not equal to T2'.
- the number of second time domain units in each group of at least two groups of second time domain units is not all equal.
- a time slot may include a greater or lesser number of OFDM symbols.
- the starting position of at least two groups of second time domain units may be OFDM symbol 0, or it may be other positions (such as a certain OFDM symbol in the middle), without limitation.
- the frequency domain position of the reference signal may include the following three schemes.
- the reference signal occupies one frequency domain unit in the frequency domain.
- the reference signal occupies a plurality of second time domain units in one first time domain unit and occupies one frequency domain unit in the frequency domain.
- 14 reference signals occupy 14 OFDM symbols in one time slot, and the 14 reference signals In the frequency domain, 7 reference signals occupy 7 OFDM symbols in 1 time slot, and the 7 reference signals occupy one subcarrier in the frequency domain, that is, subcarrier 6.
- 7 reference signals occupy 7 OFDM symbols in 1 time slot, and the 7 reference signals occupy one subcarrier in the frequency domain, that is, subcarrier 6.
- 10 reference signals occupy 10 OFDM symbols in 1 time slot, and the 10 reference signals occupy one subcarrier in the frequency domain, that is, subcarrier 6.
- the reference signal occupies multiple frequency domain units in the frequency domain, and two adjacent frequency domain units in the multiple frequency domain units are separated by T3 frequency domain units, where T3 is an integer greater than or equal to 0.
- the reference signal occupies multiple second time domain units in one first time domain unit and occupies multiple frequency domain units in the frequency domain, and the frequency domain units occupied by two adjacent reference signals in the reference signal are spaced by T3 time domain units.
- the position of the reference signal in the time domain is the same.
- T3 is equal to 0.
- the reference signal occupies a plurality of frequency domain units in the frequency domain, and the plurality of frequency domain units are continuous frequency domain units.
- Figure 7 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- the first communication device can receive 7 reference signals in 1 time slot, and the 7 reference signals occupy 7 OFDM symbols in the time domain, wherein each reference signal occupies 2 subcarriers in the frequency domain, namely subcarrier 0 and subcarrier 1.
- subcarrier 0 and subcarrier 1 are continuous subcarriers.
- the position of the reference signal in the time domain is the same, such as on subcarrier 0 and subcarrier 1, the position of the reference signal in the time domain is: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- T3 is greater than 0.
- the reference signal occupies a plurality of frequency domain units in the frequency domain, and two adjacent frequency domain units in the plurality of frequency domain units are spaced apart by T3 frequency domain units.
- FIG8 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- the positions of the reference signals in the time domain are the same, such as on subcarrier 0, subcarrier 4, and subcarrier 8, the positions of the reference signals in the time domain are all: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, and OFDM symbol 12.
- T3 frequency domain units some adjacent two frequency domain units in the plurality of frequency domain units are separated by T3 frequency domain units, and some adjacent two frequency domain units are separated by T3' frequency domain units, where T3' is an integer greater than 0 or equal to 0, and T3 is not equal to T3'.
- the reference signal occupies multiple frequency domain units in the frequency domain, the multiple frequency domain units include at least two groups of frequency domain units, and the interval between two adjacent groups of frequency domain units in the at least two groups of frequency domain units is T4 frequency domain units, wherein each group of frequency domain units in the at least two groups of frequency domain units includes at least two frequency domain units, and at least two frequency domain units in each group of frequency domain units are continuous, and T4 is an integer greater than 0.
- continuous frequency domain units in the frequency domain can be considered as a group of frequency domain units, and the reference signal occupies at least two groups of frequency domain units in the frequency domain.
- the time interval between two adjacent groups of frequency domain units in the at least two groups of frequency domain units is T4 frequency domain units.
- FIG9 is another schematic diagram of a reference signal provided according to an embodiment of the present application.
- T4 frequency domain units some adjacent groups of frequency domain units in at least two groups of frequency domain units are separated by T4 frequency domain units, and some adjacent groups of frequency domain units are separated by T4' frequency domain units, T4' is an integer greater than 0, and T4 is not equal to T4'.
- T4' is an integer greater than 0
- T4 is not equal to T4'.
- the number of frequency domain units in each group of at least two groups of frequency domain units is not all equal.
- the above describes the time-frequency domain position of the reference signal.
- the following describes how to determine the time-frequency domain resources.
- the first communication device may acquire the time-frequency domain resources of the reference signal through any of the following schemes.
- the first communication device receives indication information #1 (ie, fourth indication information) and indication information #2 from the second communication device, wherein indication information #1 indicates the time domain position occupied by the reference signal, and indication information #2 indicates the frequency domain position occupied by the reference signal.
- indication information #1 indicates the time domain position occupied by the reference signal
- indication information #2 indicates the frequency domain position occupied by the reference signal.
- the first communication device can obtain the time domain resources and frequency domain resources occupied by the reference signal through indication information #1 and indication information #2.
- the indication information #1 and the indication information #2 may be carried in the same signaling, or may be carried in different signalings, without limitation.
- the indication information #1 and the indication information #2 are carried in the same signaling, such as radio resource control (RRC). Signaling.
- RRC radio resource control
- the fifth indication information and indication information #1 and/or indication information #2 may be carried in the same signaling, or may be carried in different signalings, without limitation.
- the sixth indication information and indication information #1 and/or indication information #2 may be carried in the same signaling, or may be carried in different signalings, without limitation.
- the indication information #1 is a bitmap of at least two bits. Assuming that the bit value corresponding to the second time domain unit is "1", it indicates that there is a reference signal on the second time domain unit, and the bit value corresponding to the second time domain unit is "0", it indicates that there is no reference signal on the second time domain unit.
- the indication information #1 can be expressed by a 14-bit bitmap, and the 14-bit bitmap is expressed as "11111111111111”.
- the indication information #1 can be expressed by a 14-bit bitmap, and the 14-bit bitmap is expressed as "10101010101010.
- the indication information #1 can be expressed by a 14-bit bitmap, and the 14-bit bitmap is expressed as "11011011011011". It can be understood that the above examples are illustrative descriptions, and the embodiments of the present application are not limited thereto.
- indication information #1 includes any one of the following: the starting position of a reference signal in a first time domain unit, the number of second time domain units occupied by a reference signal in a first time domain unit, the interval between two adjacent second time domain units of a reference signal in a first time domain unit, or the ending position of a reference signal in a first time domain unit.
- Example 1 indication information #1 includes a starting position of a reference signal in a first time domain unit.
- the number of second time domain units occupied by the reference signal in a first time domain unit and the interval between two adjacent second time domain units of the reference signal in a first time domain unit may be defaulted (such as determined based on protocol predefined or pre-stored settings).
- the time domain resources occupied by the reference signal may be known by indicating the starting position of the reference signal in a first time domain unit in information #1, as well as the default number of second time domain units occupied by the reference signal in a first time domain unit and the interval between two adjacent second time domain units of the reference signal in a first time domain unit.
- indication information #1 indicates that the starting position of the reference signal in a time slot is the position of OFDM symbol 0, and the default number of OFDM symbols occupied by the reference signal in a time slot is 7, and the interval between the reference signal in two adjacent OFDM symbols is 1 OFDM symbol, then it can be known that the time domain resources occupied by the reference signal are: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- the starting position of the reference signal in a first time domain unit may be OFDM symbol 0, or may be other positions (such as a certain OFDM symbol in the middle), without limitation.
- Example 2 indication information #1 includes the number of second time domain units occupied by the reference signal in one first time domain unit.
- the starting position or ending position of the reference signal in a first time domain unit, and the interval between two adjacent second time domain units of the reference signal in a first time domain unit may be defaulted (such as determined based on protocol predefined or pre-stored settings).
- the time domain resources occupied by the reference signal may be known by indicating the number of second time domain units occupied by the reference signal in a first time domain unit in information #1, as well as the default starting position or ending position of the reference signal in a first time domain unit, and the interval between two adjacent second time domain units of the reference signal in a first time domain unit.
- indication information #1 indicates that the number of OFDM symbols occupied by the reference signal in a time slot is 7, and the default starting position of the reference signal in a time slot is OFDM symbol 0, and the interval between the reference signal in two adjacent OFDM symbols is 1 OFDM symbol, then it can be known that the time domain resources occupied by the reference signal are: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- Example 3 indication information #1 includes an interval between two adjacent second time domain units of a reference signal within a first time domain unit.
- the starting position or ending position of the reference signal in a first time domain unit and the number of second time domain units occupied by the reference signal in a first time domain unit may be defaulted (such as determined based on protocol predefined or pre-stored settings).
- the time domain resources occupied by the reference signal may be known by indicating the number of second time domain units occupied by the reference signal in a first time domain unit in information #1, as well as the default starting position or ending position of the reference signal in a first time domain unit and the number of second time domain units occupied by the reference signal in a first time domain unit.
- indication information #1 indicates that the interval between two adjacent OFDM symbols of the reference signal is 1 OFDM symbol, and the default starting position of the reference signal in a time slot is OFDM symbol 0, and the number of OFDM symbols occupied by the reference signal in a time slot is 7, then it can be known that the time domain resources occupied by the reference signal are: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- Example 4 indication information #1 includes an end position of a reference signal in a first time domain unit.
- the number of second time domain units occupied by the reference signal in a first time domain unit and the interval between two adjacent second time domain units of the reference signal in a first time domain unit may be defaulted (such as determined based on protocol predefined or pre-stored settings).
- the time domain resources occupied by the reference signal may be known by indicating the end position of the reference signal in a first time domain unit in information #1, as well as the default number of second time domain units occupied by the reference signal in a first time domain unit and the interval between two adjacent second time domain units of the reference signal in a first time domain unit.
- indication information #1 indicates that the end position of the reference signal in a time slot is OFDM symbol 12, and the default number of OFDM symbols occupied by the reference signal in a time slot is 7, and the interval between the reference signal in two adjacent OFDM symbols is 1 OFDM symbol, then it can be known that the time domain resources occupied by the reference signal are: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- indication information #1 includes the starting position of the reference signal in a first time domain unit, the interval between two adjacent second time domain units of the reference signal in a first time domain unit, and the number of second time domain units occupied by the reference signal in a first time domain unit.
- the time domain resources occupied by the reference signal can be known.
- indication information #1 indicates that the starting position of the reference signal in a time slot is OFDM symbol 0, the number of OFDM symbols occupied by the reference signal in a time slot is 7, and the interval between the reference signal in two adjacent OFDM symbols is 1 OFDM symbol, then it can be known that the time domain resources occupied by the reference signal are: OFDM symbol 0, OFDM symbol 2, OFDM symbol 4, OFDM symbol 6, OFDM symbol 8, OFDM symbol 10, OFDM symbol 12.
- indication information #1 indicates the time domain position.
- multiple time domain positions of the pre-configured reference signal such as the time domain positions shown in Figures 4 to 6, have a corresponding relationship with the value of indication information #1 (such as recorded as corresponding relationship #1).
- the first communication device can obtain the time domain position of the reference signal based on the value of indication information #1 and the corresponding relationship #1.
- the corresponding relationship #1 can exist in the form of a table, function, text, or string, such as storage or transmission.
- Table 3 is an example of presenting the corresponding relationship #1 in table form.
- indication information #1 is implemented by 2 bits, where the value of indication information #1 can be different bit values, such as W1 is bit “00”, W2 is bit “01”, and W3 is bit "10".
- the first communication device can know that the time domain position of the reference signal is time domain position #1 based on the indication information #1, such as the time domain position shown in Figure 4; if the value of indication information #1 is W2, such as "01", then the first communication device can know that the time domain position of the reference signal is time domain position #2 based on the indication information #1, such as the time domain position shown in Figure 5; if the value of indication information #1 is W3, such as "10", then the first communication device can know that the time domain position of the reference signal is time domain position #3 based on the indication information #1, such as the time domain position shown in Figure 6.
- Table 3 is only an exemplary description and is not limiting.
- the value of indication information #1 may also be replaced by other parameters as long as different time domain positions can be distinguished.
- Table 3 may also include a greater number of time domain positions.
- the indication information #2 is a bitmap of at least two bits. Assuming that the bit value corresponding to the frequency domain unit is "1", it indicates that there is a reference signal on the frequency domain unit, and the bit value corresponding to the frequency domain unit is "0", it indicates that there is no reference signal on the frequency domain unit.
- the indication information #2 can be expressed by a 12-bit bitmap, and the 12-bit bitmap is expressed as "000000100000”.
- the indication information #2 can be expressed by a 12-bit bitmap, and the 12-bit bitmap is expressed as "110000000000”.
- the indication information #2 can be expressed by a 12-bit bitmap, and the 12-bit bitmap is expressed as "100010001000”.
- the indication information #2 can be expressed by a 12-bit bitmap, and the 12-bit bitmap is expressed as "110000110000". It is understood that the above examples are examples The embodiments of the present application are not limited thereto.
- indication information #2 indicates the index of the frequency domain unit occupied by the reference signal.
- the frequency domain unit occupied by the reference signal is subcarrier 6, so indication information #2 may indicate the index of subcarrier 6, such as the binary of 6, i.e., 0110.
- indication information #2 includes any one of the following: the starting position of the reference signal in the frequency domain, the number of frequency domain units occupied by the reference signal in the frequency domain, the interval between two adjacent frequency domain units of the reference signal, or the ending position of the reference signal in the frequency domain. This method is similar to the second possible implementation method of indication information #1 described above, and is not described in detail here.
- a fourth possible implementation manner is to preconfigure several possible frequency domain positions of the reference signal, and the indication information #2 indicates the frequency domain position. This manner is similar to the third possible implementation manner of the indication information #1, and will not be described in detail here.
- Solution 2 The time domain position occupied by the reference signal is preconfigured, and the first communication device receives indication information #2, which indicates the frequency domain position occupied by the reference signal.
- indication information #2 reference may be made to the relevant description in the first possible manner, which will not be repeated here.
- the first communication device can obtain the frequency domain position occupied by the reference signal based on indication information #2, and because the time domain position occupied by the reference signal is preconfigured, the first communication device can also obtain the time domain position occupied by the reference signal.
- Solution 3 The frequency domain position occupied by the reference signal is preconfigured, and the first communication device receives indication information #1, which indicates the time domain position occupied by the reference signal.
- indication information #1 reference may be made to the relevant description in the first possible manner, which will not be repeated here.
- the first communication device can obtain the time domain position occupied by the reference signal based on indication information #1, and because the frequency domain position occupied by the reference signal is preconfigured, the first communication device can also obtain the frequency domain position occupied by the reference signal.
- the time-frequency domain position occupied by the reference signal is preconfigured.
- the pattern of the reference signal is preconfigured, so that the first communication device can directly obtain the time-frequency domain position of the reference signal based on the preconfigured pattern.
- the first communication device receives indication information #4, and the indication information #4 indicates the pattern of the reference signal.
- multiple patterns of reference signals can be pre-configured, such as the patterns shown in Figures 4 to 9, and the patterns have a corresponding relationship with the value of indication information #4 (such as recorded as corresponding relationship #2).
- the first communication device can obtain the pattern of the reference signal based on the value of indication information #4 and the corresponding relationship #2, and then obtain the time-frequency domain position of the reference signal.
- the corresponding relationship #2 can exist in the form of a table, function, text, or string, such as storage or transmission.
- Table 4 is an example of presenting the corresponding relationship #2 in table form.
- the indication information #3 is implemented by 2 bits, where the value of the indication information #3 can be different bit values, such as N1 is bit “00”, N2 is bit “01”, N3 is bit “10”, and N4 is bit "11".
- the first communication device can know that the pattern of the reference signal is pattern #1 based on the indication information #3; if the value of indication information #3 is N2, such as "01”, then the first communication device can know that the pattern of the reference signal is pattern #2 based on the indication information #3; if the value of indication information #3 is N3, such as "10", then the first communication device can know that the pattern of the reference signal is pattern #3 based on the indication information #3; if the value of indication information #3 is N4, such as "11", then the first communication device can know that the pattern of the reference signal is pattern #4 based on the indication information #3.
- Table 4 is only an exemplary description and is not limiting.
- the value of indication information #3 can also be replaced by other parameters as long as different patterns can be distinguished.
- Table 4 can also include a larger number of patterns.
- different patterns in Table 4 can exist in the form of different parameters.
- the above introduces the time-frequency domain position of the reference signal.
- the following introduces the beam direction of the reference signal.
- each second time domain unit of the reference signal in the X second time domain units corresponds to a beam direction, and the reference signal in the X The corresponding beam directions on at least two of the second time domain units are different.
- the reference signal occupies X second time domain units in one first time domain unit, and the beam directions of the reference signal on the X second time domain units are all different. Taking a time slot including 14 OFDM symbols as an example, if the reference signal is transmitted on all 14 OFDM symbols, and the beam directions of the reference signal on the 14 OFDM symbols can be different, then in one time slot, the first communication device can receive reference signals in 14 directions.
- the reference signal occupies at least two groups of second time domain units in one first time domain unit, and the beam directions of the reference signal on each group of second time domain units are different.
- the reference signal occupies 5 groups of OFDM symbols in one time slot, and the beam directions of the reference signal on each group of OFDM symbols in the 5 groups of OFDM symbols are different, so that in one time slot, the first communication device can receive reference signals in 5 directions.
- method 300 also includes: the first communication device receives configuration information of at least one reference signal resource set from the second communication device.
- Each reference signal resource set (RS ResourceSet) includes resources of at least two reference signals.
- the number of antenna ports and/or the frequency domain position of the reference signals in the same reference signal resource set are the same.
- the number of antenna ports and/or the frequency domain position of the reference signals in different reference signal resource sets may be different or the same without limitation.
- sending information is mentioned multiple times.
- a sending information to B may include A sending information directly to B, or may include A sending information to B through other devices or network elements, and there is no limitation on this.
- predefined is mentioned multiple times, which may represent protocol predefined or pre-stored settings or defaults, etc.
- the reference signal occupies X second time domain units in one first time domain unit as an example for illustrative description, and this is not limited.
- the reference signal may also occupy Y first time domain units, where Y is an integer greater than 1, wherein the number and/or position of the second time domain units occupied by the reference signal in each first time domain unit in the Y first time domain units may be all the same, or may be partially the same, or may be completely different, and this is not limited.
- the second time domain unit Take the first time domain unit as a time slot, the second time domain unit as an OFDM symbol, and one reference signal occupying one OFDM symbol in the time domain as an example.
- the second communication device sends 14 reference signals to the first communication device, and the 14 reference signals occupy 2 time slots.
- the OFDM symbols occupied by the reference signals in each of the 2 time slots are the same, such as the pattern of the reference signals in each time slot is shown in Figure 5.
- the second communication device sends 15 reference signals to the first communication device, and the 15 reference signals occupy 3 time slots, and the OFDM symbols occupied by the reference signals in 2 of the 3 time slots (such as the first 2 time slots) are the same, such as the pattern of the reference signals in the 2 time slots is shown in Figure 5, and the reference signal occupies one OFDM symbol in the remaining one of the 3 time slots (such as the last time slot), and the one OFDM symbol can be any OFDM symbol.
- the sending/receiving of the reference signal may be periodic, and the above description is for a periodic scheme.
- the sending/receiving of the reference signal may be repeated with the period, and the specific period configuration may be based on the configuration of the network device or the protocol pre-defined, which is not limited here.
- the sending/receiving of the reference signal may be single-triggered, that is, non-periodic, and the above description is for the scheme involved in the single trigger.
- the specific triggering method may be based on the signaling of the network device, such as RRC layer signaling, media access control (MAC) layer signaling, or physical layer signaling, such as one or more of downlink control information (DCI), which is not limited here.
- DCI downlink control information
- the configuration of each time slot can be achieved by configuring the time slot occupied by the reference signal and the pattern of a time slot.
- the methods and operations implemented by the device can also be implemented by components (such as chips or circuits) of the device without limitation.
- FIG10 is a schematic diagram of a communication device 1000 provided in an embodiment of the present application.
- the device 1000 includes a transceiver unit 1010 and a processing unit 1011.
- the transceiver unit 1010 may be used to implement corresponding communication functions.
- the transceiver unit 1010 may also be referred to as a communication interface or a communication unit.
- the processing unit 1020 may be used to perform processing, such as performing measurement based on a reference signal.
- the device 1000 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 1020 may read the instructions and/or data in the storage unit so that the device implements the aforementioned method embodiment.
- a storage unit which may be used to store instructions and/or data
- the processing unit 1020 may read the instructions and/or data in the storage unit so that the device implements the aforementioned method embodiment.
- the device 1000 is used to execute the steps or processes performed by the first communication device in the above method embodiment
- the transceiver unit 1010 is used to execute the transceiver-related operations on the first communication device side in the above method embodiment
- the processing unit 1020 is used to execute the processing-related operations on the first communication device side in the above method embodiment.
- the device 1000 is used to execute the steps or processes executed by the first communication device in the embodiment shown in Figure 3.
- the transceiver unit 1010 is used to receive a reference signal from a second communication device, the reference signal occupies X second time domain units in a first time domain unit, and X is an integer greater than 1;
- the processing unit 1020 is used to perform measurements based on the reference signal to obtain a measurement result of the reference signal;
- the transceiver unit 1010 is also used to send m measurement results to the second communication device, the m measurement results are all or part of the measurement results of the reference signal, and the m measurement results are used for training an artificial intelligence AI model, and m is an integer greater than 1 and less than X or equal to X.
- the device 1000 is used to execute the steps or processes performed by the second communication device in the above method embodiment
- the transceiver unit 1010 is used to execute the transceiver related operations on the second communication device side in the above method embodiment
- the processing unit 1020 is used to execute the processing related operations on the second communication device side in the above method embodiment.
- the device 1000 is used to execute the steps or processes executed by the second communication device in the embodiment shown in Figure 3.
- the transceiver unit 1010 is used to send a reference signal to the first communication device, the reference signal occupies X second time domain units in one first time domain unit, and X is an integer greater than 1; the transceiver unit 1010 is also used to receive m measurement results of the reference signal from the first communication device, the m measurement results are used for training the artificial intelligence AI model and the m measurement results are all or part of the measurement results of the reference signal, and m is an integer greater than 1 and less than X or equal to X.
- the device 1000 here is embodied in the form of a functional unit.
- the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a combined logic circuit and/or other suitable components that support the described functions.
- ASIC application specific integrated circuit
- the device 1000 can be specifically a communication device (such as a first communication device, and also such as a second communication device) in the above-mentioned embodiments, and can be used to execute the various processes and/or steps corresponding to the communication device in the above-mentioned method embodiments. To avoid repetition, it will not be repeated here.
- the device 1000 of each of the above-mentioned schemes has the function of implementing the corresponding steps performed by the communication device (such as the first communication device, and the second communication device, etc.) in the above-mentioned method.
- the function can be implemented by hardware, or by hardware executing the corresponding software implementation.
- the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor, respectively performing the sending and receiving operations and related processing operations in each method embodiment.
- transceiver unit 1010 can also be a transceiver circuit (for example, can include a receiving circuit and a sending circuit), and the processing unit can be a processing circuit.
- the device in FIG. 10 may be the device in the aforementioned embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
- the transceiver unit may be an input and output circuit or a communication interface; the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
- the device 1100 includes a processor 1110, the processor 1110 is coupled to a memory 1120, the memory 1120 is used to store computer programs or instructions and/or data, and the processor 1110 is used to execute the computer programs or instructions stored in the memory 1120, or read the data stored in the memory 1120, so as to execute the methods in the above method embodiments.
- processors 1110 there are one or more processors 1110 .
- the memory 1120 is one or more.
- the memory 1120 is integrated with the processor 1110 or provided separately.
- the device 1100 further includes a transceiver 1130, and the transceiver 1130 is used for receiving and/or sending signals.
- the processor 1110 is used for controlling the transceiver 1130 to receive and/or send signals.
- the processor 1110 may have the function of the processing unit 1020 shown in FIG. 10
- the memory 1120 may have the function of a storage unit
- the transceiver 1130 may have the function of the transceiver unit 1010 shown in FIG. 10 .
- the device 1100 is used to implement the operations performed by the communication device (such as the first communication device, the second communication device, etc.) in the above various method embodiments.
- the communication device such as the first communication device, the second communication device, etc.
- the processor 1110 is used to execute the computer program or instructions stored in the memory 1120 to implement relevant operations of the communication device (such as the first communication device, the second communication device, etc.) in the above various method embodiments.
- the communication device such as the first communication device, the second communication device, etc.
- processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- DSP digital signal processors
- ASIC application-specific integrated circuits
- FPGA field programmable gate arrays
- a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
- the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM).
- a RAM may be used as an external cache.
- RAM includes the following forms: static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).
- SRAM static RAM
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced SDRAM
- SLDRAM synchronous link DRAM
- DR RAM direct rambus RAM
- the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
- memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
- FIG12 is a schematic diagram of a chip system 1200 provided in an embodiment of the present application.
- the chip system 1200 (or also referred to as a processing system) includes a logic circuit 1210 and an input/output interface 1220.
- the logic circuit 1210 can be a processing circuit in the chip system 1200.
- the logic circuit 1210 can be coupled to the storage unit and call the instructions in the storage unit so that the chip system 1200 can implement the methods and functions of each embodiment of the present application.
- the input/output interface 1220 can be an input/output circuit in the chip system 1200, outputting information processed by the chip system 1200, or inputting data or signaling information to be processed into the chip system 1200 for processing.
- the logic circuit 1210 is coupled to the input/output interface 1220, and the input/output interface 1220 can input the reference signal to the logic circuit 1210 for processing, such as measuring the reference signal to obtain the measurement result of the reference signal.
- the logic circuit 1210 is coupled to the input/output interface 1220, and the input/output interface 1220 can input the measurement result of the reference signal from the first communication device to the logic circuit 1210 for processing.
- the chip system 1200 is used to implement the operations performed by the communication device (such as the first communication device, the second communication device, etc.) in the above method embodiments.
- the logic circuit 1210 is used to implement the processing-related operations performed by the communication device (such as the first communication device, and also the second communication device) in the above method embodiments;
- the input/output interface 1220 is used to implement the sending and/or receiving-related operations performed by the communication device (such as the first communication device, and also the second communication device) in the above method embodiments.
- An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the methods executed by a communication device (such as a first communication device or a second communication device) in the above-mentioned method embodiments are stored.
- a communication device such as a first communication device or a second communication device
- the computer when the computer program is executed by a computer, the computer can implement the method performed by the communication device (such as the first communication device, and also such as the second communication device) in each embodiment of the above method.
- the communication device such as the first communication device, and also such as the second communication device
- An embodiment of the present application further provides a computer program product, comprising instructions, which, when executed by a computer, implement the methods performed by a communication device (such as a first communication device or a second communication device) in the above-mentioned method embodiments.
- a communication device such as a first communication device or a second communication device
- the present application also provides a communication system, which includes the first communication device and/or the second communication device in the above embodiments.
- the system includes the first communication device and/or the second communication device in the embodiment shown in FIG3 .
- the disclosed devices and methods can be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer can be a personal computer, a server, or a network device, etc.
- the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
- the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media integrations.
- the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)).
- the aforementioned available medium includes, but is not limited to, various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种获取训练数据的方法和通信装置,应用于AI与无线网络结合的场景,尤其是用于波束管理的AI模型与无线网络结合的场景。方法包括:第一通信装置接收来自第二通信装置的参考信号,参考信号在一个时隙内占多个符号;第一通信装置基于参考信号进行测量,得到多个测量结果;第一通信装置向第二通信装置发送该多个测量结果中的全部或部分测量结果,该全部或部分测量结果用于AI模型的训练。这样,第一通信装置可以在较短时间内采集到多个训练数据,即基于一个时隙内收到的多个参考信号进行测量的测量结果,从而可以基于该多个训练数据进行AI模型的训练。
Description
本申请要求在2022年12月01日提交中国国家知识产权局、申请号为202211530929.6的中国专利申请的优先权,发明名称为“获取训练数据的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,并且更具体地,涉及一种获取训练数据的方法和通信装置。
在通信网络中使用人工智能(artificial intelligence,AI)模型时,AI模型的训练数据如何收集是值得考虑的问题。
以波束管理为例,在网络设备和终端设备之间可以建立和维护一组合适的波束对。对于下行传输来说,网络侧需要选择一个合适的发射波束,终端侧需要选择一个合适的接收波束,联合起来形成一组波束对以保持一个良好的无线连接,上述进行波束选择的过程也可称为服务波束选择。目前,波束的选择主要是通过参考信号和对应的波束测量来完成的。当AI模型用于波束管理中,如用于波束的选择中,那么需要收集一些训练数据,进而选择出合适的波束。基于当前训练数据获取的方式所获取的训练数据的准确性不够高,亟需一种更优的训练数据的获取方式。
发明内容
本申请提供一种获取训练数据的方法和通信装置,以期通过在多个时域单元(如一个第一时域单元内的多个第二时域单元)上传输参考信号,进而可以得到参考信号的多个测量结果,并上报该测量结果,该测量结果可作为AI模型的训练数据。
第一方面,提供了一种获取训练数据的方法,该方法可以由通信装置执行。该通信装置可以是通信设备(如终端设备),或者也可以是通信设备中的组成部件(如芯片或电路),对此不予限制。下面以第一通信装置为例进行说明。
该方法可以包括:第一通信装置接收来自第二通信装置的参考信号,所述参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;所述第一通信装置基于所述参考信号进行测量,得到所述参考信号的测量结果;所述第一通信装置向所述第二通信装置发送m个测量结果,所述参考信号的测量结果包括所述m个测量结果,所述m个测量结果用于人工智能AI模型的训练,m为大于1且小于X或等于X的整数。
可选地,X大于4。这样,参考信号在一个大的时域单元(即第一时域单元)内可以占4个以上的小的时域单元(即第二时域单元),从而第一通信装置可以在较短时间内(如一个第一时域单元内)接收到4个以上的参考信号,进而可以得到该4个以上的参考信号的测量结果。
可选地,m大于4。这样,相当于有4个以上的测量结果可用于AI模型的训练,进而可以实现基于较多数量的测量结果进行AI模型的训练。相比于现有的基于一个测量结果或4个以下的测量结果进行AI模型的训练,本申请的方案可以实现获取大量的训练数据,进而基于大量的训练数据进行AI模型的训练,提高AI模型的性能。
可选地,假设所述第一通信装置基于所述参考信号进行测量,得到M个测量结果(M为小于或等于X的整数),那么m个测量结果为以下任一项:M个测量结果、M个测量结果中的任意m个测量结果、M个测量结果中的特定的m个测量结果。以测量结果为RSRP为例,M个测量结果中的特定的m个测量结果例如可以是较大的m个RSRP;或者也可以包括较大的m’个RSRP以及较小的m”个RSRP,m’和m”为大于0或等于0且小于m或等于m的整数,且m’+m”=m。
基于上述技术方案,参考信号在一个第一时域单元内占多个第二时域单元,这样,第一通信装置可以基于在第一时域单元内接收到的多个参考信号进行测量,得到多个测量结果,进而第一通信装置可以
上报该多个测量结果或该多个测量结果中的部分测量结果,用于第二通信装置进行AI模型的训练。这样,可以使得第二通信装置获取到第一通信装置在较短时间内(即一个时域单元内的多个第二时域单元上)采集到的AI模型的训练数据(即m个测量结果),进而进行AI模型的训练。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第一指示信息,所述第一指示信息用于触发所述第一通信装置发送所述m个测量结果;所述第一通信装置向所述第二通信装置发送m个测量结果,包括:响应于所述第一指示信息,所述第一通信装置向所述第二通信装置发送所述m个测量结果。
基于上述技术方案,第一通信装置可以基于第二通信装置的触发,确定是否按照上报m个测量结果的上报模式进行上报,这样可以根据实际需求确定具体的上报模式。
结合第一方面,在第一方面的某些实现方式中,所述m是所述第一通信装置基于第二指示信息或预定义确定的,其中,所述第二指示信息是所述第一通信装置从所述第二通信装置侧接收到的。
一示例,第一通信装置接收来自第二通信装置的第二指示信息,第二指示信息指示m。基于该示例,第一通信装置可以基于第二通信装置的指示确定m,即上报的测量结果的个数。
另一示例,m是预定义的。基于该示例,第一通信装置可以自身确定m,即上报的测量结果的个数。
结合第一方面,在第一方面的某些实现方式中,所述m个测量结果是所述第一通信装置基于第三指示信息或预定义确定的,其中,所述第三指示信息是所述第一通信装置从所述第二通信装置侧接收到的。
一示例,第一通信装置接收来自第二通信装置的第三指示信息,第三指示信息指示上报m个测量结果。基于该示例,第一通信装置可以基于第二通信装置的指示确定m个测量结果,即上报哪些测量结果。
另一示例,m个测量结果是预定义的,如预定义的任意的m个测量结果,又如预定义的特定的m个测量结果,又如预定义的全部的测量结果。基于该示例,第一通信装置可以自身确定m个测量结果,即上报哪些测量结果。
结合第一方面,在第一方面的某些实现方式中,所述X个第二时域单元中相邻两个第二时域单元间隔为T1个第二时域单元,T1为大于0或等于0的整数;或者,所述X个第二时域单元包括至少两组第二时域单元,所述至少两组第二时域单元中相邻两组第二时域单元间隔为T2个第二时域单元,其中,所述至少两组第二时域单元中的每组第二时域单元包括至少两个第二时域单元,且每组第二时域单元中的至少两个第二时域单元连续,T2为大于0的整数。
结合第一方面,在第一方面的某些实现方式中,所述第一时域单元和所述第二时域单元为时域上的单元,所述第一时域单元中包括至少一个所述第二时域单元。
结合第一方面,在第一方面的某些实现方式中,所述第一时域单元为时隙或迷你时隙。
结合第一方面,在第一方面的某些实现方式中,所述第二时域单元为正交频分复用OFDM符号。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第四指示信息,所述第四指示信息指示所述参考信号所占的时域位置。
结合第一方面,在第一方面的某些实现方式中,所述第四指示信息为至少两比特的比特位图;或者,所述第四指示信息包括以下一项或多项:所述参考信号在一个所述第一时域单元内的起始位置、所述参考信号在一个所述第一时域单元内所占的所述第二时域单元数、所述参考信号在一个所述第一时域单元内的相邻两个第二时域单元上的间隔、或、所述参考信号在一个所述第一时域单元内的结束位置。
可选地,若第四指示信息指示上述多项信息中的部分信息,那么对于该多项信息中的其他信息,可以是默认的,如基于协议预定义或预存储的设置确定。这样,第一通信装置可以基于第四指示信息指示的内容以及默认的内容,确定参考信号的时域位置。
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置向所述第二通信装置发送m个测量结果,包括:所述第一通信装置向所述第二通信装置发送m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X1比特对所述m个测量结果进行量化得到,其中,所述X1是所述第一通信装置基于第五指示信息或预定义确定的,所述第五指示信息是所述第一通信装置从所述第二通信装置侧接收到。
示例地,第五指示信息指示X1,或者第五指示信息指示第一通信装置按照X1比特上报参考信号的测量结果。
基于上述技术方案,第一通信装置上报m个测量结果时,可以按照X1比特对各个测量结果进行量化,方案简单易行。
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置向所述第二通信装置发送m个测量结果,包括:所述第一通信装置向所述第二通信装置发送m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X2比特对所述m个测量结果中的m1个测量结果进行量化、并采用X3比特对所述m个测量结果中的m2个测量结果进行量化得到,m1和m2均为大于1或等于1的整数,且m1+m2=m,其中,所述X2和/或X3是所述第一通信装置基于第六指示信息或预定义确定的,所述第六指示信息是所述第一通信装置从所述第二通信装置侧接收到。
示例地,第六指示信息指示X2和/或X3,或者第六指示信息指示第一通信装置按照X2比特上报m1个测量结果和/或按照X3比特上报m2个测量结果。举例来说,若第六指示信息指示X2或X3,则X2和X3可以是具有关联关系的,这样,第一通信装置可以根据第六指示信息指示的X2或X3,以及X2和X3之间的关联关系,确定出另一个。
结合第一方面,在第一方面的某些实现方式中,所述参考信号在所述X个第二时域单元中的每个第二时域单元对应一个波束方向,且所述参考信号在所述X个第二时域单元中的至少两个第二时域单元上对应的波束方向不同。
可选地,参考信号在各个第二时域单元上的波束方向均不同。这样,可以实现空域多个角度的快速波束遍历,有利于提升训练数据收集速度。
可选地,若X个时域单元包括至少两组第二时域单元,则参考信号在该至少两组第二时域单元中的各组第二时域单元上的波束方向均不同。这样,可以实现空域多个角度的快速波束遍历,有利于提升训练数据收集速度。
基于上述技术方案,若在一个第一时域单元内的多个第二时域单元上发送参考信号时,可以根据实际需求设计该参考信号在各个第二时域单元上的波束都不同或部分不同,进而可以实现空域多个角度的快速波束遍历,有利于提升训练数据收集速度。
结合第一方面,在第一方面的某些实现方式中,所述AI模型为用于波束管理的AI模型。
基于上述技术方案,AI模型为用于波束管理的AI模型,这样可以实现在波束管理中,利用本申请所述的方案收集用于波束管理的AI模型的训练数据,进而选择出合适的波束。
结合第一方面,在第一方面的某些实现方式中,所述参考信号在频域上占一个频域单元;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元中相邻两个频域单元间隔为T3个频域单元,T3为大于0或等于0的整数;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元包括至少两组频域单元,所述至少两组频域单元中相邻两组频域单元间隔为T4个时域单元,其中,所述至少两组频域单元中的每组频域单元包括至少两个频域单元,且每组频域单元中的至少两个频域单元连续,T4为大于0的整数。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第六指示信息,所述第六指示信息指示所述参考信号所占的频域位置。
结合第一方面,在第一方面的某些实现方式中,所述第六指示信息为至少两比特的比特位图,或者,所述第六指示信息指示所述参考信号所占的频域单元的索引。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第七指示信息,所述第七指示信息指示所述参考信号的图样pattern。
结合第一方面,在第一方面的某些实现方式中,第七指示信息的N个取值与N个pattern具有对应关系,N为大于1的整数,所述方法还包括:所述第一通信装置根据所述对应关系和所述第七指示信息的取值,确定所述参考信号的pattern。
第二方面,提供了一种获取训练数据的方法,该方法可以由通信装置执行。该通信装置可以是通信设备(如网络设备),或者也可以是通信设备中的组成部件(如芯片或电路),对此不予限制。下面以第二通信装置为例进行说明。
该方法可以包括:第二通信装置向第一通信装置发送参考信号,所述参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;所述第二通信装置接收来自所述第一通信装置的所述参考信号的m个测量结果,所述m个测量结果用于人工智能AI模型的训练,m为大于1且小于X或等于X的整数。
可选地,X大于4。
可选地,m大于4。
可选地,假设所述第一通信装置基于所述参考信号进行测量,得到M个测量结果(M为小于或等于X的整数),那么m个测量结果为以下任一项:M个测量结果、M个测量结果中的任意m个测量结果、M个测量结果中的特定的m个测量结果。以测量结果为RSRP为例,M个测量结果中的特定的m个测量结果例如可以是较大的m个RSRP;或者也可以包括较大的m’个RSRP以及较小的m”个RSRP,m’和m”为大于0或等于0且小于m或等于m的整数,且m’+m”=m。
基于上述技术方案,参考信号在一个第一时域单元内占多个第二时域单元,这样,第一通信装置可以基于在第一时域单元内接收到的多个参考信号进行测量,得到多个测量结果,进而第一通信装置可以上报该多个测量结果或该多个测量结果中的部分测量结果,用于第二通信装置进行AI模型的训练。第二通信装置获取到第一通信装置在较短时间内(即一个时域单元内的多个第二时域单元上)采集到的AI模型的训练数据(即m个测量结果)后,可以根据实际需要进行AI模型的训练。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于触发所述第一通信装置发送所述m个测量结果。
结合第二方面,在第二方面的某些实现方式中,所述第二通信装置向所述第一通信装置发送第二指示信息,所述第二指示信息指示所述m。
结合第二方面,在第二方面的某些实现方式中,述第二通信装置向所述第一通信装置发送第三指示信息,所述第三指示信息指示所述m个测量结果。
结合第二方面,在第二方面的某些实现方式中,所述X个第二时域单元中相邻两个第二时域单元间隔为T1个第二时域单元,T1为大于0或等于0的整数;或者,所述X个第二时域单元包括至少两组第二时域单元,所述至少两组第二时域单元中相邻两组第二时域单元间隔为T2个第二时域单元,其中,所述至少两组第二时域单元中的每组第二时域单元包括至少两个第二时域单元,且每组第二时域单元中的至少两个第二时域单元连续,T2为大于0的整数。
结合第二方面,在第二方面的某些实现方式中,所述第一时域单元为时隙或迷你时隙。
结合第二方面,在第二方面的某些实现方式中,所述第二时域单元为正交频分复用OFDM符号。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第四指示信息,所述第四指示信息指示所述参考信号所占的时域位置。
结合第二方面,在第二方面的某些实现方式中,所述第四指示信息为至少两比特的比特位图;或者,所述第四指示信息包括以下一项或多项:所述参考信号在一个所述第一时域单元内的起始位置、所述参考信号在一个所述第一时域单元内所占的所述第二时域单元数、所述参考信号在一个所述第一时域单元内的相邻两个第二时域单元上的间隔、或、所述参考信号在一个所述第一时域单元内的结束位置。
结合第二方面,在第二方面的某些实现方式中,所述第二通信装置接收来自所述第一通信装置的所述参考信号的m个测量结果,包括:所述第二通信装置接收来自所述第一通信装置的m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X1比特对所述m个测量结果进行量化得到,其中,所述X1是所述第一通信装置基于第五指示信息或预定义确定的,所述第五指示信息是所述第二通信装置发送给所述第一通信装置的;
结合第二方面,在第二方面的某些实现方式中,所述第二通信装置接收来自所述第一通信装置的所述参考信号的m个测量结果,包括:所述第二通信装置接收来自所述第一通信装置的m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X2比特对所述m个测量结果中的m1个测量结果进行量化、并采用X3比特对所述m个测量结果中的m2个测量结果进行量化得到,m1和m2均为大于1或等于1的整数,且m1+m2=m,其中,所述X2和/或X3是所述第一通信装置基于第六指示信息或预定义确定的,所述第六指示信息是所述第二通信装置发送给所述第一通信装置的。
结合第二方面,在第二方面的某些实现方式中,所述参考信号在所述X个第二时域单元中的每个第二时域单元对应一个波束方向,且所述参考信号在所述X个第二时域单元中的至少两个第二时域单元上对应的波束方向不同。
结合第二方面,在第二方面的某些实现方式中,所述AI模型为用于波束管理的AI模型。
结合第二方面,在第二方面的某些实现方式中,所述参考信号在频域上占一个频域单元;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元中相邻两个频域单元间隔为T3个频域单元,T3为大于0或等于0的整数;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元包括至少两组频域单元,所述至少两组频域单元中相邻两组频域单元间隔为T4个时域单元,其中,所述至少两组
频域单元中的每组频域单元包括至少两个频域单元,且每组频域单元中的至少两个频域单元连续,T4为大于0的整数。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第六指示信息,所述第六指示信息指示所述参考信号所占的频域位置。
结合第二方面,在第二方面的某些实现方式中,所述第六指示信息为至少两比特的比特位图,或者,所述第六指示信息指示所述参考信号所占的频域单元的索引。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二通信装置向所述第一通信装置发送第七指示信息,所述第七指示信息指示所述参考信号的图样pattern。
结合第二方面,在第二方面的某些实现方式中,第七指示信息的N个取值与N个pattern具有对应关系,N为大于1的整数。
关于第二方面的有益效果,可以参考第一方面中的相关描述,此处不再赘述。
第三方面,提供一种通信装置,该装置用于执行上述第一方面或第二方面提供的方法。具体地,该装置可以包括用于执行第一方面或第二方面中任一方面的上述任一种实现方式提供的方法的单元和/或模块,如处理单元和/或通信单元。该通信装置可以为第一通信装置,或者也可以为第二通信装置。
在一种实现方式中,该装置为通信设备。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于通信设备中的芯片、芯片系统或电路。当该装置为用于终端设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第四方面,提供一种通信装置,该装置包括:至少一个处理器,与至少一个存储器耦合,该至少一个处理器用于执行该至少一个存储器存储的计算机程序或指令,以执行上述第一方面或第二方面中任一方面的上述任一种实现方式提供的方法。该通信装置可以为第一通信装置,或者也可以为第二通信装置。
该通信设备还可以包括输入/输出电路。
可选的,该装置包括上述至少一个存储器。
在一种实现方式中,该装置为通信设备。
在另一种实现方式中,该装置为用于通信设备中的芯片、芯片系统或电路。
第五方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第六方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面中任一方面的上述任一种实现方式提供的方法。
第七方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一方面的上述任一种实现方式提供的方法。
第八方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面中任一方面的上述任一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面中任一方面的上述任意一种实现方式提供的方法。
第九方面,提供一种通信系统,包括前述的第一通信装置和/或第二通信装置。
图1是适用于本申请实施例的无线通信系统100的示意图。
图2是适用于本申请实施例的宽波束和窄波束的示意图。
图3是本申请实施例提供的一种获取训练数据的方法300的示意图。
图4是根据本申请实施例提供的参考信号的一示意图。
图5是根据本申请实施例提供的参考信号的另一示意图。
图6是根据本申请实施例提供的参考信号的另一示意图。
图7是根据本申请实施例提供的参考信号的另一示意图。
图8是根据本申请实施例提供的参考信号的另一示意图。
图9是根据本申请实施例提供的参考信号的另一示意图。
图10是本申请实施例提供的一种通信装置1000的示意图。
图11是本申请实施例提供另一种通信装置1100的示意图。
图12是本申请实施例提供一种芯片系统1200的示意图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、无线局域网(wireless local area network,WLAN)系统、卫星通信系统、未来的通信系统,如第六代移动通信系统,或者,多种系统的融合系统等。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其它通信系统。
通信系统中的一个通信装置可以向另一个通信装置发送信号或从另一个通信装置接收信号。其中信号可以包括信息、信令或者数据等。其中,通信装置也可以被替换为网元、实体、网络实体、设备、通信设备、通信模块、节点、通信节点等等,本公开中以通信装置为例进行描述。例如,通信系统可以包括至少一个第一通信装置和至少一个第二通信装置。第二通信装置可以向第一通信装置发送参考信号。可以理解的是,作为示例,本公开中的第一通信装置可以替换为终端设备,第二通信装置可以替换为网络设备,二者执行本公开中相应的方法。
本申请实施例中的终端设备包括各种具有无线通信功能的设备,其可用于连接人、物、机器等。终端设备可以广泛应用于各种场景,例如:蜂窝通信,D2D,V2X,端到端(peer to peer,P2P),M2M,MTC,IoT,虚拟现实(virtual reality,VR),增强现实(augmented reality,AR),工业控制,自动驾驶,远程医疗,智能电网,智能家具,智能办公,智能穿戴,智能交通,智慧城市无人机,机器人,遥感,被动传感,定位,导航与跟踪,自主交付等场景。终端设备可以是上述任一场景下的终端,如MTC终端、IoT终端等。终端设备可以是第三代合作伙伴项目(3rd generation partnership project,3GPP)标准的用户设备(user equipment,UE)、终端(terminal)、固定设备、移动台(mobile station)设备或者说移动设备、用户单元(subscriber unit)、手持设备、车载设备、可穿戴设备、蜂窝电话(cellular phone)、智能电话(smart phone)、会话初始协议(session initialization protocol,SIP)电话、无线数据卡、个人数字助理(personal digital assistant,PDA)、电脑、平板电脑、笔记本电脑、无线调制解调器、手持设备(handset)、膝上型电脑(laptop computer)、具有无线收发功能的计算机、智能书、车辆、卫星、全球定位系统(global positioning system,GPS)设备、目标跟踪设备、飞行器(例如无人机、直升机、多直升机、四直升机、或飞机等)、船只、遥控设备智能家居设备、工业设备,或者内置于上述设备中的装置(例如,上述设备中的通信模块、调制解调器或芯片等),或者连接到无线调制解调器的其它处理设备。为了描述方便,下文将终端设备以终端或UE为例来描述。
应理解,在某些场景下,UE还可以用于充当基站。例如,UE可以充当调度实体,其在V2X、D2D或P2P等场景中的UE之间提供侧行链路信号。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其它分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种
名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站、辅站、多制式无线(motor slide retainer,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其它示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其它分立器件。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。此外,终端设备和网络设备可以是硬件设备,也可以是在专用硬件上运行的软件功能,通用硬件上运行的软件功能,比如,是平台(例如,云平台)上实例化的虚拟化功能,又或者,是包括专用或通用硬件设备和软件功能的实体,本申请对于终端设备和网络设备的具体形态不作限定。
首先简单介绍适用于本申请实施例的通信系统,如下。
图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统包括无线接入网100。无线接入网100可以是下一代(例如6G或更高版本)无线接入网,或传统(例如5G、4G、3G或2G)无线接入网。一个或多个终端设备(120a-120j,统称为120)可以相互连接或连接到无线接入网100中的一个或多个网络设备(110a、110b,统称为110)。图1只是示意图,该无线通信系统中还可以包括其它设备,如还可以包括核心网设备、无线中继设备和/或无线回传设备等,在图1中未画出。
在实际应用中,该无线通信系统可以同时包括多个网络设备(也称为接入网设备),也可以同时包括多个终端设备,不予限制。一个网络设备可以同时服务于一个或多个终端设备。一个终端设备也可以同时接入一个或多个网络设备。本申请实施例对该无线通信系统中包括的终端设备和网络设备的数量不予限制。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、人工智能(artificial intelligence,AI):就是让机器具有学习能力,能积累经验,解决人类通过经验可以解决的诸如自然语言理解、图像识别和下棋等问题。人工智能,可以理解为由人制造出来的机器所表现出来的智能。通常人工智能是指通过计算机程序来呈现人类智能的技术。人工智能的目标包括通过构建具有象征意义的推理或推理的计算机程序来理解智能。
2、机器学习(machine learning):是人工智能的一种实现方式。机器学习可以分为监督学习、非监督学习、强化学习。
监督学习依据已采集到的样本值和样本标签,利用机器学习算法学习样本值到样本标签的映射关系,并用机器学习模型来表达学到的映射关系。训练机器学习模型的过程就是学习这种映射关系的过程。例如信号检测中,含噪声的接收信号即为样本,该信号对应的真实星座点即为标签。机器学习期望通过训练学习到样本与标签之间的映射关系,即,使机器学习模型学到一种信号检测器。在训练时,通过计算模型的预测值与真实标签的误差来优化模型参数。一旦映射关系学习完成,就可以利用学到的映射关系来预测每一个新样本的样本标签。监督学习学到的映射关系可以包括线性映射、非线性映射。根据标签的类型可将学习的任务分为分类任务和回归任务。
无监督学习依据采集到的样本值,利用算法自行发掘样本的内在模式。无监督学习中有一类算法将样本自身作为监督信号,即模型学习从样本到样本的映射关系,称为自监督学习。训练时,通过计算模
型的预测值与样本本身之间的误差来优化模型参数。自监督学习可用于信号压缩及解压恢复的应用,常见的算法包括自编码器和对抗生成型网络等。
强化学习不同于监督学习,是一类通过与环境进行交互来学习解决问题的策略的算法。与监督学习、无监督学习不同,强化学习问题并没有明确的“正确的”动作标签数据,算法需要与环境进行交互,获取环境反馈的奖励信号,进而调整决策动作以获得更大的奖励信号数值。如下行功率控制中,强化学习模型根据无线网络反馈的系统总吞吐率,调整各个用户的下行发送功率,进而期望获得更高的系统吞吐率。强化学习的目标也是学习环境状态与最优决策动作之间的映射关系。但因为无法事先获得“正确动作”的标签,所以不能通过计算动作与“正确动作”之间的误差来优化网络。强化学习的训练是通过与环境的迭代交互而实现的。
此外,深度学习也是机器学习中的一个重要分支。深度学习依托上述学习算法,采用神经网络架构实现输入数据和网络输出的映射关系建立。根据通用近似定理,神经网络理论上可以逼近任意连续函数,从而使得神经网络具备学习任意映射的能力。传统通信系统需要借助丰富的专家知识来设计通信模块,而基于深度学习的通信系统可以从大量的数据集中自动发现隐含的模式结构,建立数据之间的映射关系,获得优于传统建模方法的性能。
深度学习算法一般可以被分为两个主要阶段,即训练阶段和推理阶段。训练阶段需要依托大量的数据,让网络对输入和输出之间的映射关系进行学习,因此训练数据的质量会直接影响AI算法的性能。训练完成后,深度学习算法将被用于推理阶段,通过输入数据,推理相应的输出结果。
3、AI模型:是能实现AI功能的算法或者计算机程序,AI模型表征了模型的输入和输出之间的映射关系,或者说AI模型是将一定维度的输入映射到一定维度的输出的函数模型,函数模型的参数可通过机器学习训练得到。例如,f(x)=ax2+b是一个二次函数模型,它可以看做一个AI模型,a和b为该AI模型的参数,a和b可以通过机器学习训练得到。示例性地,本申请下文实施例中提及的AI模型不限于为神经网络、线性回归模型、决策树模型、支持向量机(support vector machine,SVM)、贝叶斯网络、Q学习模型或者其它机器学习(machine learning,ML)模型。
AI模型设计主要包括数据收集环节(例如,收集训练数据和/或推理数据)、模型训练环节以及模型推理环节。进一步地还可以包括推理结果应用环节。在前述数据收集环节中,数据源(data source)用于提供训练数据集和推理数据。在模型训练环节中,通过对数据源提供的训练数据(training data)进行分析或训练,得到AI模型。通过模型训练节点学习得到AI模型,相当于利用训练数据学习得到AI模型的输入和输出之间的映射关系。在模型推理环节中,使用经由模型训练环节训练后的AI模型,基于数据源提供的推理数据进行推理,得到推理结果。该环节还可以理解为:将推理数据输入到AI模型,通过AI模型得到输出,该输出即为推理结果。该推理结果可以指示:由执行对象使用(执行)的配置参数、和/或由执行对象执行的操作。在推理结果应用环节中进行推理结果的发布,例如推理结果可以由执行(actor)实体统一规划,例如执行实体可以发送推理结果给一个或多个执行对象(例如,核心网设备、接入网设备、或终端设备等)去执行。又如执行实体还可以反馈AI模型的性能给数据源,便于后续实施AI模型的更新训练。
可以理解,AI模型的实现可以是硬件电路,也可以是软件,或者也可以是软件和硬件结合的方式,不予限制。软件的非限制性示例包括:程序代码、程序、子程序、指令、指令集、代码、代码段、软件模块、应用程序、或软件应用程序等。
本申请中,AI模型也可以被描述为ML模型,模型,功能(如AI功能,ML功能),特性或算法中的一项或多项。
4、训练数据集:机器学习中用于模型训练、模型验证、或模型测试的数据,数据的数量和质量将影响到机器学习的效果。训练数据可以包括AI模型的输入,或者包括AI模型的输入和目标输出。其中,目标输出即为AI模型的输出的目标值,也可以称为输出真值、比较真值、标签或者标签样本。
5、模型训练:通过选择合适的损失函数,利用优化算法对模型参数进行训练,使得损失函数的取值小于门限,或者使得损失函数的取值满足目标需求的过程。损失函数用于衡量模型的预测值和真实值之间的差别。
6、信道:或者称无线信道,是对无线通信中发送端和接收端之间通路的一种描述。对于无线电波而言,它从发送端传送到接收端,其间没有一个有形的连接,它的传播路径也有可能不只一条,为了形象地描述发送端与接收端之间的工作,可以想象两者之间有一个看不见的链接通道,该衔接通道称为信道。
7、小区:采用基站识别码或全球小区识别码进行标识的无线覆盖的区域。无线通信中,小区不是一个固定的空间位置概念,而是一个虚拟的空间概念,表示接收到相同基站识别码的空间范围。
8、资源:数据或信息可以通过资源来承载。
在频域上,资源可以包括一个或多个频域单元。一个频域单元可以是一个资源单元(resource element,RE),或者一个资源块(resource block,RB),或者一个子信道(subchannel),或者一个资源池(resource pool),或者一个带宽(bandwidth),或者一个带宽部分(bandwidth part,BWP),或者一个载波(carrier),或者一个信道(channel),或者一个交错(interlace)RB等。
9、天面:即天线阵面,原理上是将若干个相同的天线按一定规律排列起来组成的天线阵列系统,主要用来增强天线的方向性,提高天线的增益系数,或者为了得到所需的方向特性。
10、波束:是一种通信资源。波束在NR协议中的体现可以是空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发射波束(transmission beam,Tx beam),可以称为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter)。
发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
作为示例,在使用低频频段或中频频段时,可以全向发送信号或者通过一个较宽的角度来发送信号;在使用高频频段时,得益于高频通信系统较小的载波波长,可以在发送端和接收端布置很多天线阵子构成的天线阵列,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束,同时在接收端用天线阵列以一定波束赋形权值进行接收,可以提高信号在接收端的接收功率,对抗路径损耗。
图2是适用于本申请实施例的宽波束和窄波束的示意图。如图2(a)所示,网络设备与终端设备之间可以通过宽波束通信,也可以通过窄波束通信。如图2(b)所示,窄波束具有类似聚光灯效应,把有限的传输能量汇聚在一个较窄的方向,从而可以大幅提升网络设备的覆盖范围。
11、波束管理:在网络设备和终端设备之间建立和维护一组合适的波束对,对于下行传输来说,网络侧需要选择一个合适的发射波束,终端侧需要选择一个合适的接收波束,联合起来形成一组波束对以保持一个良好的无线连接,上述进行波束选择的过程也可称为服务波束选择。
目前,波束的选择主要是通过参考信号和对应的波束测量来完成的。具体来说,网络侧根据用户能力和网络资源给终端侧配置参考信号资源,配置完成后,网络侧按照配置向终端侧发送参考信号,终端侧对该参考信号进行测量并将测量结果反馈给网络侧,网络侧根据终端上报的测量结果进行传输波束配置。
当AI模型用于波束管理中,那么需要收集大量的训练数据,也就是说,网络侧要配置大量的参考信号给终端侧进行测量。
当前用于波束管理的参考信号主要有同步信号块(synchronization signal block,SSB)和信道状态信息参考信号(channel status information reference signal,CSI-RS)两种。
其中,SSB为小区广播信号,包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信道(physical broadcast channel,PBCH)和解调参考信号(demodulation reference signal,DMRS)。网络设备周期性的(如周期为20毫秒)广播SSB。SSB的功能不仅限于波束管理,SSB的功能还包括小区搜索、初始接入、时频同步、承载系统广播信息等。SSB可认为是宽波束信号。如果网络侧频繁的发送SSB,终端侧频繁的测量SSB,会造成较大的测量开销,同时固定的周期会导致数据收集所需的时间较长,不利于神经网络训练数据的收集。
其中,CSI-RS为用户级信号,网络侧根据实际情况,如天线端口数和用户数等,给用户配置一组或多组CSI-RS资源。CSI-RS的功能不仅限于波束管理,CSI-RS的功能还包括信道质量测量等。CSI-RS可
认为是窄波束信号。由于CSI-RS的配置受限于天线端口数和用户数等,因此CSI-RS也无法做到时域密集的配置。此外,CSI-RS资源集(ResourceSet)的配置能力受限,网络侧最多能够配置16个CSI-RS ResourceSet,每个CSI-RS ResourceSet最多包含64个CSI-RS,网络侧总共配置的CSI-RS资源数不超过128。当网络侧天面较大时,CSI-RS的可能波束方向将会超过当前支持的CSI-RS最大配置数,从而导致部分波束方向没有办法被测量,进而影响AI模型的性能。
有鉴于此,本申请提出一种方法,有益于上述问题的解决或改善。
需要说明的是,在本申请中,“指示”可以包括直接指示、间接指示、显式指示、或隐式指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A,其可以为直接指示A,或间接指示A。其中,间接指示可以指通过该指示信息直接指示B,以及B和A之间的对应关系,来达到通过该指示信息指示A的目的。其中,B和A之间的对应关系可以是协议预定义的,预存储的,或者,通过通信装置间的配置获得的。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其它信息来间接指示待指示信息,其中该其它信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其它部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。此外,待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。
还需要说明的是,本申请中涉及的至少一个(项),指示一个(项)或多个(项)。多个(项),是指两个(项)或两个(项)以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本申请中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
下文将结合附图详细说明本申请实施例提供的方法。本申请提供的实施例可以应用于上述图1所示的通信系统中,不作限定。
图3是本申请实施例提供的一种获取训练数据的方法300的示意图。图3所示的方法300可以包括如下步骤。
310,第一通信装置接收来自第二通信装置的参考信号,参考信号在一个第一时域单元内占X个第二时域单元。
其中,X为大于1的整数。可选地,X大于4。
其中,第二时域单元可认为是第一时域单元内的时域单元。具体来说,第一时域单元内可包括多个第二时域单元,该X个第二时域单元可以为该多个第二时域单元中的部分第二时域单元或全部第二时域单元。
一示例,一个第一时域单元为一个时隙,一个第二时域单元为一个符号,如一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。另一示例,一个第一时域单元为一个迷你时隙,一个第二时域单元为一个符号,如一个OFDM符号。
可以理解,第一时域单元可认为是一个大的时域单元,第二时域单元可认为是该大的时域单元中的一个小的时域单元,对于第一时域单元和第二时域单元的具体形式或具体命名,本申请实施例不予限制。
还可以理解,在本申请实施例中,一个参考信号在时域上占一个第二时域单元,换句话说,在一个第二时域单元上传输一个参考信号。在步骤310中,第一通信装置接收来自第二通信装置的参考信号,该参考信号在一个第一时域单元内占X个第二时域单元,其可以替换为:第一通信装置接收来自第二通信装置的X个参考信号,该X个参考信号在一个第一时域单元内占X个第二时域单元。关于一个参考信号在频域上所占的频域单元的数量不予限制。
作为示例,第一通信装置为终端设备或终端设备中的组成部件,如芯片或电路;第二通信装置为网络设备或网络设备中的组成部件,如芯片或电路。
320,第一通信装置基于参考信号进行测量,得到参考信号的测量结果。
为便于描述,假设第一通信装置基于参考信号进行测量,得到M个测量结果。可选地,M大于4。具体来说,在步骤X310中,第一通信装置收到X个参考信号,第一通信装置基于该X个参考信号进行
测量,得到M个测量结果,其中,M可以小于X,也即第一通信装置可以基于收到的部分参考信号进行测量进而得到M个测量结果,M小于X;或者M也可以等于X,也即第一通信装置可以基于收到的全部参考信号进行测量,进而得到X个测量结果。可以理解,本申请实施例对于终端设备是对X个参考信号中的部分参考信号还是全部参考信号进行测量,不予限制。下文为便于描述,主要以第一通信装置基于参考信号进行测量,得到M个测量结果为例进行示例性说明。
其中,参考信号的一个测量结果例如可以包括以下一项或多项:参考信号接收功率(reference signal receiving power,RSRP)(或者说RSRP测量值),或者也可以为接收信号强度指示(received signal strength indicator,RSSI)(或者说RSSI测量值)、或、信干噪比(signal to interference plus noise ratio,SINR)(或者说SINR测量值)。
330,第一通信装置向第二通信装置发送m个测量结果,参考信号的测量结果包括m个测量结果,m个测量结果用于AI模型的训练。
其中,m为大于1且小于X或等于X的整数。可选地,m大于4。
作为示例,AI模型的训练部署在第二通信装置侧。第二通信装置通过获取第一通信装置测量参考信号获得的训练数据(例如,参考信号的一个或多个测量结果),并将从第一通信装置侧获取的训练数据用于AI模型的训练。
可选地,AI模型为用于波束管理的AI模型。在该场景下,AI模型的标签例如可以是m个测量结果对应的参考信号的信息或者可以为该m个测量结果对应的m个波束的信息,示例性地,为m个波束ID。
以AI模型用于波束管理为例,在该场景下,作为示例,参考信号是专用于进行波束管理的参考信号。其中,参考信号,可以是新设计的一种参考信号,如不同于现有参考信号(如CSI-RS,SSB等);或者也可以是在现有参考信号的基础上新增的一类型的参考信号,如新增一种CSI-RS,该CSI-RS专用于进行波束管理。基于此,参考信号专用于进行波束管理,这样,第二通信装置可以根据实际需求发送该参考信号,如可以根据实际需求以及实际通信环境使得该参考信号在时域上较为密集,进而可以基于时域上较为密集的参考信号进行测量,利于AI模型训练数据的收集。
可以理解,AI模型的应用场景除了波束管理,还可以用于其他的场景,如基于AI模型的信道状态信息(channel status information,CSI)反馈或CSI预测、基于AI模型的定位等。本申请实施例对于AI模型的具体应用场景不予限制。
可选地,方法300还包括:第一通信装置接收来自第二通信装置的第一指示信息,第一指示信息用于触发第一通信装置发送m个测量结果;第一通信装置向第二通信装置发送m个测量结果,包括:响应于第一指示信息,第一通信装置向第二通信装置发送m个测量结果。基于此,第一通信装置可以基于第二通信装置的指示,确定向第二通信装置上报m个测量结果,换句话说第一通信装置可以基于第二通信装置的触发,确定向第二通信装置上报m个测量结果。
举例来说,第一通信装置的上报模式有多种,如本申请提供的上报m个测量结果的上报模式(如记为模式#1)以及其他一种或多种上报模式,第一通信装置可以根据第二通信装置的指示确定采用哪种上报模式。其中,第一通信装置的上报模式可以表示第一通信装置具体上报多少个测量结果。举例来说,模式#1表示第一通信装置上报m个测量结果,其他一种上报模型(如记为模式#2)表示第一通信装置上报z个测量结果(z为大于1或等于1,且小于m的整数),换句话说,若上报模式为模式#1,则第一通信装置上报m个测量结果;若上报模式为模式#2,则第一通信装置上报z个测量结果。
一示例,第一指示信息可以通过一个或多个比特来实现。例如,假设通过1比特来指示第一通信装置是否采用模式#1进行上报,若该比特设置为“0”,则表示第一通信装置采用模式#1进行上报;若该比特设置为“1”,则表示第一通信装置不采用模式#1进行上报。在存在多种上报模式,即m的取值可变的情况下,可以通过多个比特来指示具体的m的取值。应理解,上述仅是一种示例性说明,不予限制。
另一示例,第一指示信息为一特殊字段,第一通信装置可以根据是否收到该特殊字段确定上报模式。例如,若第一通信装置收到了该特殊字段(即第一指示信息),则确定采用模式#1进行上报;若第一通信装置没有收到该特殊字段(即第一指示信息),则确定不采用模式#1进行上报。应理解,上述仅是一种示例性说明,不予限制。
上述为示例性说明,对此不予限制。例如,第一通信装置也可以默认,如基于协议预定义或预存储的设置确定,是否采用模式#1进行上报。
可选地,关于m的确定方式,包括如下两种实现方式。
一种可能的实现方式,第一通信装置根据第二通信装置的指示确定m。示例地,第二通信装置向第一通信装置发送第二指示信息,第二指示信息指示m;第一通信装置根据该第二指示信息确定m,进而第一通信装置上报m个测量结果。
另一种可能的实现方式,第一通信装置默认,如基于协议预定义或预存储的设置确定,m的取值,进而第一通信装置上报m个测量结果。
可选地,关于m个测量结果的确定方式,包括如下两种实现方式。
一种可能的实现方式,第一通信装置根据第二通信装置的指示确定m个测量结果。示例地,第二通信装置向第一通信装置发送第三指示信息,第三指示信息指示m个测量结果;第一通信装置根据该第三指示信息确定m个测量结果,进而第一通信装置上报m个测量结果。
例如,第三指示信息指示m个测量结果为特定的m个测量结果。其中,以测量结果为RSRP为例,特定的m个测量结果例如可以是较大的m个RSRP;或者也可以包括较大的m’个RSRP以及较小的m”个RSRP,m’和m”为大于0或等于0且小于m或等于m的整数,且m’+m”=m。
再例如,第三指示信息指示m个测量结果为任意m个测量结果。可以理解的是,该m个测量结果具体为哪m个测量结果可以为第一通信装置基于其需求而确定。
再例如,第三指示信息指示m个测量结果为所有的测量结果,即M个测量结果。
另一种可能的实现方式,第一通信装置默认,如基于协议预定义或预存储的设置确定,m个测量结果,进而第一通信装置上报m个测量结果。假设第一通信装置基于参考信号进行测量,得到M个测量结果,可选地,m个测量结果为以下任一项:M个测量结果、M个测量结果中的任意m个测量结果、M个测量结果中的特定的m个测量结果。关于特定的m个测量结果,可以参考前面的描述,此处不予赘述。
可选地,关于具体的上报方式可以包括如下两种实现方式。
一种可能的实现方式,第一通信装置上报m个测量结果。
举例来说,若第一通信装置上报所有的测量结果,那么第一通信装置可以按照预设规则,比如基于参考信号的索引(index)依次进行,上报各参考信号的测量结果,如按照index由低到高或者由高到低依次上报。相应地,第二通信装置默认,如基于协议预定义或预存储的设置确定,第一通信装置是按照参考信号的index依次进行上报的,如按照index由低到高或者由高到低依次上报的。
假设第一通信装置将m个测量结果通过信道状态信息(channel state information,CSI)上报(CSI report)发送给第二通信装置,且测量结果为RSRP,基于该实现方式,CSI report如表1所示。
表1
另一种可能的实现方式,第一通信装置上报m个测量结果以及该m个测量结果对应的参考信号的索引(如参考信号资源的标识(RS resource indicator))。这样,可以直接基于参考信号的索引获知该测量结果对应的参考信号,也即获知第一通信装置上报的是哪些参考信号的测量结果。其中,作为示例,该m个测量结果和m个测量结果对应的参考信号的索引,可以携带于同一消息,比如同一CSI报告中。
假设第一通信装置将m个测量结果以及该m个测量结果对应的RS resource indicator通过CSI report发送给第二通信装置,且测量结果为RSRP,基于该实现方式,CSI report如表2所示。
表2
在本申请实施例中,考虑到信令开销,第一通信装置上报的测量结果可以是量化后的测量结果。下面介绍两种可能的实现方式。
第一种可能的实现方式,按照X1比特上报m个测量结果中的所有测量结果。
示例地,第一通信装置接收第五指示信息,该第五指示信息指示X1或者第五指示信息指示第一通信装置按照X1比特上报参考信号的测量结果;响应于该第五指示信息,第一通信装置发送m个量化后的测量结果,其中,m个量化后的测量结果是第一通信装置采用X1比特对m个测量结果进行量化得到。其中,关于通信装置对测量结果进行量化的具体方式不予限制,如可参考现有的方式。
作为示例,X1的具体取值,可以根据实际的训练需求进行配置。
上述通过第五指示信息获知按照X1比特进行量化为示例性说明,对此不予限制。例如第一通信装置你也可以根据默认,如基于协议预定义或预存储的设置确定,按照X1比特进行量化。
第二种可能的实现方式,按照X2比特上报m个测量结果中的部分测量结果,按照X3比特上报m个测量结果中的其余部分测量结果。
示例地,第一通信装置接收第六指示信息,该第六指示信息指示X2和/或X3,或者第六指示信息指示第一通信装置按照X2比特上报m1个测量结果和/或按照X3比特上报m2个测量结果;响应于该第六指示信息,第一通信装置发送m1个量化后的测量结果和m2个量化后的测量结果,其中,m1个量化后的测量结果是第一通信装置采用X2比特对m1个测量结果进行量化得到,m2个量化后的测量结果是第一通信装置采用X3比特对m2个测量结果进行量化得到。其中,m个测量结果包括m1个测量结果和m2个测量结果,m1和m2均为大于1或等于1的整数,且m1+m2=m。其中,关于通信装置对测量结果进行量化的具体方式不予限制,如可参考现有的方式。
举例来说,第六指示信息指示第一通信装置按照X2比特上报m1个测量结果和按照X3比特上报m2个测量结果,第一通信装置根据第六指示信息确定X2和X3。再举例来说,第六指示信息指示第一通信装置按照X2比特上报m1个测量结果,第一通信装置根据第六指示信息确定X2,且X2与X3关联,因此,第一通信装置基于X2可获知X3,也就是说,第一通信装置确定按照与X2关联的X3比特上报m个测量结果中除m1个测量结果以外的测量结果(即m2个测量结果)。再举例来说,第六指示信息指示第一通信装置按照X3比特上报m2个测量结果,第一通信装置根据第六指示信息确定X3,且X3与X2关联,因此,第一通信装置基于X3可获知X2,也就是说,第一通信装置确定按照与X3关联的X2比特上报m个测量结果中除m2个测量结果以外的测量结果(即m1个测量结果)。
其中,m1个测量结果,例如可以为最高的一个RSRP或者较高的多个RSRP;m2个测量结果,例如可以为m个RSRP中除m1个RSRP之外的RSRP。或者,m1个测量结果可以为最高的一个RSRP,m2个测量结果例如可以为m个RSRP中剩余RSRP与最高RSRP之间的差值,此时X2可以大于X3。
作为示例,X2和/或X3的具体取值,可以根据实际的训练需求进行配置。
上述通过第六指示信息获知按照X2比特上报m1个测量结果,按照X3比特上报m2个测量结果为示例性说明,对此不予限制。例如第一通信装置你也可以根据默认,如基于协议预定义或预存储的设置确定,按照X2比特上报m1个测量结果,按照X3比特上报m2个测量结果。
上面介绍了关于上报的具体方案,下面以一个第一时域单元为一个时隙,一个第二时域单元为一个OFDM符号为例,介绍参考信号的时频域位置。可以理解,上面所述的上报的方案与下面所述的参考信号的时频域位置的方案可以结合使用,也可以单独使用,不予限制。
可选地,参考信号的时域位置可以包括如下两种方案。
方案1,T1个第二时域单元位于X个第二时域单元中相邻两个第二时域单元之间,T1为大于0或等
于0的整数。本申请中“T1个第二时域单元位于X个第二时域单元中相邻两个第二时域单元之间”也可以表述为“X个第二时域单元中相邻两个第二时域单元间隔T1个第二时域单元”。
下面结合两种情况进行说明。
情况1,T1等于0。在该情况下,参考信号在第一时域单元内占多个第二时域单元,且该多个第二时域单元连续。
图4是根据本申请实施例提供的参考信号的一示意图。假设一个第一时域单元为时隙,一个第二时域单元为OFDM符号,且一个时隙内包括14个OFDM符号。如图4所示,1个参考信号在时域上占1个OFDM符号,其中,每个参考信号在频域上占1个子载波,即子载波6,第一通信装置在1个时隙内可以接收14个参考信号,该14个参考信号在时域上占14个OFDM符号,该14个OFDM符号为:OFDM符号0、OFDM符号1、OFDM符号2、OFDM符号3、OFDM符号4、OFDM符号5、OFDM符号6、OFDM符号7、OFDM符号8、OFDM符号9、OFDM符号10、OFDM符号11、OFDM符号12、OFDM符号13。可以看出,该14个OFDM符号为连续的OFDM符号。
情况2,T1大于0。在该情况下,参考信号在时域上占多个时域单元,且该多个时域单元中相邻两个时域单元之间间隔T1个时域单元。
图5是根据本申请实施例提供的参考信号的另一示意图。假设一个第一时域单元为时隙,一个第二时域单元为OFDM符号,且一个时隙内包括14个OFDM符号。如图5所示,1个参考信号在时域上占1个OFDM符号,其中,每个参考信号在频域上占1个子载波,即子载波6,第一通信装置在1个时隙内可以接收7个参考信号,该7个参考信号在时域上占7个OFDM符号,该7个OFDM符号为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。可以看出,该7个OFDM符号中每相邻两个OFDM符号之间间隔1个OFDM符号,即T1=1。
可以理解,上述方案1为示例性说明,对此不予限制,属于上述方案的变形,都适用于本申请实施例。例如,多个第二时域单元中部分相邻两个第二时域单元间隔T1个第二时域单元,部分相邻两个第二时域单元间隔T1’个第二时域单元,T1’为大于0或等于0的整数,T1与T1’不相等。再例如,一个时隙内可以包括更多或更少数量的OFDM符号。再例如,多个第二时域单元的起始位置可以为OFDM符号0,或者也可以是其他位置(如中间的某个OFDM符号),不予限制。
方案2,X个第二时域单元包括至少两组第二时域单元,T2个第二时域单元位于至少两组第二时域单元中相邻两组第二时域单元之间,其中,至少两组第二时域单元中的至少一组第二时域单元包括至少两个第二时域单元,且该至少两个第二时域单元连续,T2为大于0的整数。
基于该方案,为便于描述,时域上连续的第二时域单元可认为是一组第二时域单元,参考信号在1个第一时域单元内占至少两组第二时域单元,该至少两组第二时域单元中相邻两组第二时域单元之间的时间间隔为T2个第二时域单元。
图6是根据本申请实施例提供的参考信号的另一示意图。假设一个第一时域单元为时隙,一个第二时域单元为OFDM符号,且一个时隙内包括14个OFDM符号。如图6所示,1个参考信号在时域上占1个OFDM符号,第一通信装置在1个时隙内可以接收10个参考信号(或者说5组参考信号,每组参考信号中包括2个参考信号),其中,每个参考信号在频域上占1个子载波,即子载波6,该10个参考信号在时域上占5组OFDM符号,该5组OFDM符号为:包含OFDM符号0和OFDM符号1的一组OFDM符号、包含OFDM符号3和OFDM符号4的一组OFDM符号、包含OFDM符号6和OFDM符号7的一组OFDM符号、包含OFDM符号9和OFDM符号10的一组OFDM符号、包含OFDM符号12和OFDM符号13的一组OFDM符号。可以看出,相邻两组OFDM符号之间间隔1个OFDM符号,即T2=1。
可以理解,上述方案2为示例性说明,对此不予限制。例如,至少两组第二时域单元中部分相邻两组第二时域单元间隔T2个第二时域单元,部分相邻两组第二时域单元间隔T2’个第二时域单元,T2’为大于0的整数,T2与T2’不相等。再例如,至少两组第二时域单元中各组第二时域单元的数量不全都相等。再例如,一个时隙内可以包括更多或更少数量的OFDM符号。再例如,至少两组第二时域单元的起始位置可以为OFDM符号0,或者也可以是其他位置(如中间的某个OFDM符号),不予限制。
可选地,参考信号的频域位置可以包括如下三种方案。
方案1,参考信号在频域上占一个频域单元。
基于该方案,参考信号在一个第一时域单元内占多个第二时域单元,且在频域上占一个频域单元。
例如,以图4所示的示例为例,14个参考信号在1个时隙内占14个OFDM符号,且该14个参考信
号在频域上占一个子载波,即子载波6。再例如,以图5所示的示例为例,7个参考信号在1个时隙内占7个OFDM符号,且该7个参考信号在频域上占一个子载波,即子载波6。再例如,以图6所示的示例为例,10个参考信号在1个时隙内占10个OFDM符号,且该10个参考信号在频域上占一个子载波,即子载波6。
方案2,参考信号在频域上占多个频域单元,多个频域单元中相邻两个频域单元间隔T3个频域单元,T3为大于0或等于0的整数。
基于该方案,参考信号在一个第一时域单元内占多个第二时域单元,且在频域上占多个频域单元,且该参考信号中相邻两个参考信号所占的频域单元间隔T3个时域单元。
可选地,在该多个频域单元的各个频域单元上,参考信号在时域上的位置相同。
情况1,T3等于0。在该情况下,参考信号在频域上占多个频域单元,且该多个频域单元为连续的频域单元。
图7是根据本申请实施例提供的参考信号的另一示意图。如图7所示,第一通信装置在1个时隙内可以接收7个参考信号,该7个参考信号在时域上占7个OFDM符号,其中,每个参考信号在频域上占2个子载波,即子载波0和子载波1。可以看出,该子载波0和子载波1为连续的子载波。此外,作为示例,在子载波0和子载波1上,参考信号在时域上的位置相同,如在子载波0和子载波1上,参考信号在时域上的位置均为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
情况2,T3大于0。在该情况下,参考信号在频域上占多个频域单元,且该多个频域单元中相邻两个频域单元之间间隔T3个频域单元。
图8是根据本申请实施例提供的参考信号的另一示意图。如图8所示,第一通信装置在1个时隙内可以接收7个参考信号,该7个参考信号在时域上占7个OFDM符号,其中,每个参考信号在频域上占3个子载波,即子载波0、子载波4、子载波8。可以看出,该3个子载波中每相邻两个子载波之间间隔3个子载波,即T3=3。此外,作为示例,在子载波0、子载波4、子载波8上,参考信号在时域上的位置相同,如在子载波0、子载波4、子载波8上,参考信号在时域上的位置均为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
可以理解,上述方案2为示例性说明,对此不予限制。例如,多个频域单元中部分相邻两个频域单元间隔T3个频域单元,部分相邻两个频域单元间隔T3’个频域单元,T3’为大于0或等于0的整数,T3与T3’不相等。
方案3,参考信号在频域上占多个频域单元,多个频域单元包括至少两组频域单元,至少两组频域单元中相邻两组频域单元间隔为T4个频域单元,其中,至少两组频域单元中的每组频域单元包括至少两个频域单元,且每组频域单元中的至少两个频域单元连续,T4为大于0的整数。
基于该方案,为便于描述,频域上连续的频域单元可认为是一组频域单元,参考信号在频域上占至少两组频域单元,该至少两组频域单元中相邻两组频域单元之间的时间间隔为T4个频域单元。
图9是根据本申请实施例提供的参考信号的另一示意图。如图9所示,第一通信装置在1个时隙内可以接收7个参考信号,该7个参考信号在时域上占7个OFDM符号,其中,每个参考信号在频域上占2组子载波,该2组子载波为:包含子载波0和子载波1的一组子载波、包含子载波6和子载波7的一组子载波。可以看出,相邻两组子载波之间间隔4个子载波,即T4=4。
可以理解,上述方案3为示例性说明,对此不予限制。例如,至少两组频域单元中部分相邻两组频域单元间隔T4个频域单元,部分相邻两组频域单元间隔T4’个频域单元,T4’为大于0的整数,T4与T4’不相等。再例如,至少两组频域单元中各组频域单元的数量不全都相等。
上文介绍了参考信号的时频域位置,下面介绍时频域资源的确定方式。
可选地,第一通信装置可以通过如下任一方案,获知参考信号的时频域资源。
方案1,第一通信装置接收来自第二通信装置的指示信息#1(即第四指示信息)和指示信息#2,该指示信息#1指示参考信号所占的时域位置,该指示信息#2指示参考信号所占的频域位置。
基于该方案,第一通信装置可通过指示信息#1和指示信息#2获知参考信号所占的时域资源和频域资源。
其中,指示信息#1和指示信息#2可以携带于同一信令中,或者也可以携带于不同信令中,不予限制。作为示例,指示信息#1和指示信息#2携带于同一信令中,如无线资源控制(radio resource control,RRC)
信令。下面介绍指示信息#1和指示信息#2的实现方式。
可选地,第五指示信息与指示信息#1和/或指示信息#2可以携带于同一信令中,或者也可以携带于不同信令中,不予限制。可选地,第六指示信息与指示信息#1和/或指示信息#2可以携带于同一信令中,或者也可以携带于不同信令中,不予限制。
1)指示信息#1
第一种可能的实现方式,指示信息#1为至少两比特的bitmap。假设第二时域单元对应的比特取值为“1”表示该第二时域单元上有参考信号,第二时域单元对应的比特取值为“0”表示该第二时域单元上没有参考信号。例如,以图4所示的示例为例,指示信息#1可通过14比特的bitmap,且该14比特的bitmap表示为“11111111111111”。再例如,以图5所示的示例为例,指示信息#1可通过14比特的bitmap,且该14比特的bitmap表示为“10101010101010”。再例如,以图6所示的示例为例,指示信息#1可通过14比特的bitmap,且该14比特的bitmap表示为“11011011011011”。可以理解,上述例子为示例性说明,本申请实施例不限于此。
第二种可能的实现方式,指示信息#1包括以下任一项:参考信号在一个第一时域单元内的起始位置、参考信号在一个第一时域单元内所占的第二时域单元数、参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔、或、参考信号在一个第一时域单元内的结束位置。
示例1,指示信息#1包括参考信号在一个第一时域单元内的起始位置。
举例来说,可以默认(如基于协议预定义或预存储的设置确定)参考信号在一个第一时域单元内所占的第二时域单元数和参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,这样,通过指示信息#1中的参考信号在一个第一时域单元内的起始位置,以及默认的参考信号在一个第一时域单元内所占的第二时域单元数和参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,可以获知参考信号所占的时域资源。
以图5为例进行示例性说明。例如,假设指示信息#1指示参考信号在一个时隙内的起始位置为OFDM符号0的位置,且默认参考信号在一个时隙内所占的OFDM符号数为7,参考信号在相邻两个OFDM符号上的间隔为1个OFDM符号,那么可以获知参考信号所占的时域资源为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
可以理解,参考信号在一个第一时域单元内的起始位置可以为OFDM符号0,或者也可以是其他位置(如中间的某个OFDM符号),不予限制。
示例2,指示信息#1包括参考信号在一个第一时域单元内所占的第二时域单元数。
举例来说,可以默认(如基于协议预定义或预存储的设置确定)参考信号在一个第一时域单元内的起始位置或结束位置,以及参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,这样,通过指示信息#1中的参考信号在一个第一时域单元内所占的第二时域单元数,以及默认的参考信号在一个第一时域单元内的起始位置或结束位置,以及参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,可以获知参考信号所占的时域资源。
以图5为例进行示例性说明。例如,假设指示信息#1指示参考信号在一个时隙内所占的OFDM符号数为7,且默认参考信号在一个时隙内的起始位置为OFDM符号0,参考信号在相邻两个OFDM符号上的间隔为1个OFDM符号,那么可以获知参考信号所占的时域资源为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
示例3,指示信息#1包括参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔。
举例来说,可以默认(如基于协议预定义或预存储的设置确定)参考信号在一个第一时域单元内的起始位置或结束位置,以及参考信号在一个第一时域单元内所占的第二时域单元数,这样,通过指示信息#1中的参考信号在一个第一时域单元内所占的第二时域单元数,以及默认的参考信号在一个第一时域单元内的起始位置或结束位置,以及参考信号在一个第一时域单元内所占的第二时域单元数,可以获知参考信号所占的时域资源。
以图5为例进行示例性说明。例如,假设指示信息#1指示参考信号在相邻两个OFDM符号上的间隔为1个OFDM符号,且默认参考信号在一个时隙内的起始位置为OFDM符号0,参考信号在一个时隙内所占的OFDM符号数为7,那么可以获知参考信号所占的时域资源为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
示例4,指示信息#1包括参考信号在一个第一时域单元内的结束位置。
举例来说,可以默认(如基于协议预定义或预存储的设置确定)参考信号在一个第一时域单元内所占的第二时域单元数和参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,这样,通过指示信息#1中的参考信号在一个第一时域单元内的结束位置,以及默认的参考信号在一个第一时域单元内所占的第二时域单元数和参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔,可以获知参考信号所占的时域资源。
以图5为例进行示例性说明。例如,假设指示信息#1指示参考信号在一个时隙内的结束位置为OFDM符号12,且默认参考信号在一个时隙内所占的OFDM符号数为7,参考信号在相邻两个OFDM符号上的间隔为1个OFDM符号,那么可以获知参考信号所占的时域资源为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
上述单独描述了各个信息,可以理解,上述各信息也可以结合使用,下面列举一具体示例。
示例5,指示信息#1包括参考信号在一个第一时域单元内的起始位置、参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔、以及参考信号在一个第一时域单元内所占的第二时域单元数。
这样,通过指示信息#1中的参考信号在一个第一时域单元内的起始位置、参考信号在一个第一时域单元内的相邻两个第二时域单元上的间隔、以及参考信号在一个第一时域单元内所占的第二时域单元数,可以获知参考信号所占的时域资源。
以图5为例进行示例性说明。例如,假设指示信息#1指示参考信号在一个时隙内的起始位置为OFDM符号0,参考信号在一个时隙内所占的OFDM符号数为7,参考信号在相邻两个OFDM符号上的间隔为1个OFDM符号,那么可以获知参考信号所占的时域资源为:OFDM符号0、OFDM符号2、OFDM符号4、OFDM符号6、OFDM符号8、OFDM符号10、OFDM符号12。
第三种可能的实现方式,预配置参考信号几种可能的时域位置,指示信息#1指示时域位置。
举例来说,预配置参考信号的多个时域位置,如图4至图6中所示的时域位置,时域位置与指示信息#1的取值具有对应关系(如记为对应关系#1),这样,第一通信装置基于指示信息#1的取值,以及该对应关系#1,可以获知参考信号的时域位置。
其中,对应关系#1可以以表格,函数,文本,或,字符串的形式存在,如存储或传输,如下表3为以表格形式呈现对应关系#1的示例。
表3
以表3为例,假设预配置3个时域位置,即时域位置#1、时域位置#2、时域位置#3,指示信息#1通过2比特来实现,其中指示信息#1的取值可以是不同的比特值,如W1为比特“00”,W2为比特“01”,W3为比特“10”。
举例来说,若指示信息#1的取值为W1,如“00”,那么第一通信装置基于该指示信息#1可获知参考信号的时域位置是时域位置#1,如图4所示的时域位置;若指示信息#1的取值为W2,如“01”,那么第一通信装置基于该指示信息#1可获知参考信号的时域位置是时域位置#2,如图5所示的时域位置;若指示信息#1的取值为W3,如“10”,那么第一通信装置基于该指示信息#1可获知参考信号的时域位置是时域位置#3,如图6所示的时域位置。
可以理解,表3仅是示例性说明,对此不予限制。例如指示信息#1的取值还可以替换为其他参数,只要可以区分不同的时域位置。再例如,表3中还可以包括更多数量的时域位置。
2)指示信息#2
第一种可能的实现方式,指示信息#2为至少两比特的bitmap。假设频域单元对应的比特取值为“1”表示该频域单元上有参考信号,频域单元对应的比特取值为“0”表示该频域单元上没有参考信号。例如,以图4或图5或图6所示的示例为例,指示信息#2可通过12比特的bitmap,且该12比特的bitmap表示为“000000100000”。再例如,以图7所示的示例为例,指示信息#2可通过12比特的bitmap,且该12比特的bitmap表示为“110000000000”。再例如,以图8所示的示例为例,指示信息#2可通过12比特的bitmap,且该12比特的bitmap表示为“100010001000”。再例如,以图9所示的示例为例,指示信息#2可通过12比特的bitmap,且该12比特的bitmap表示为“110000110000”。可以理解,上述例子为示例
性说明,本申请实施例不限于此。
第二种可能的实现方式,指示信息#2指示参考信号所占的频域单元的索引。例如,以图4或图5或图6所示的示例为例,参考信号所占的频域单元为子载波6,因此指示信息#2可以指示子载波6的索引,如6的二进制,即0110。
第三种可能的实现方式,指示信息#2包括以下任一项:参考信号在频域上的起始位置、参考信号在频域上所占的频域单元数、参考信号在相邻两个频域单元上的间隔、或、参考信号在频域上的结束位置。该方式与上述关于指示信息#1的第二种可能的实现方式类似,此处不予赘述。
第四种可能的实现方式,预配置参考信号几种可能的频域位置,指示信息#2指示频域位置。该方式与上述关于指示信息#1的第三种可能的实现方式类似,此处不予赘述。
方案2,参考信号所占的时域位置是预配置的,第一通信装置接收指示信息#2,该指示信息#2指示参考信号所占的频域位置。其中,关于指示信息#2可以参考第一种可能的方式中的相关描述,此处不予赘述。
基于该方案,第一通信装置可基于指示信息#2获知参考信号所占的频域位置,且由于参考信号所占的时域位置是预配置的,因此第一通信装置也可获知参考信号所占的时域位置。
方案3,参考信号所占的频域位置是预配置的,第一通信装置接收指示信息#1,该指示信息#1指示参考信号所占的时域位置。其中,关于指示信息#1可以参考第一种可能的方式中的相关描述,此处不予赘述。
基于该方案,第一通信装置可基于指示信息#1获知参考信号所占的时域位置,且由于参考信号所占的频域位置是预配置的,因此第一通信装置也可获知参考信号所占的频域位置。
方案4,参考信号所占的时频域位置是预配置的。
例如,参考信号的图样(pattern)是预配置的,这样,第一通信装置可直接基于预配置的pattern获知参考信号的时频域位置。
方案5,预配置参考信号的多个pattern,第一通信装置接收指示信息#4,该指示信息#4指示参考信号的pattern。
举例来说,可以预配置参考信号的多个pattern,如图4至图9中所示的pattern,pattern与指示信息#4的取值具有对应关系(如记为对应关系#2),这样,第一通信装置基于指示信息#4的取值,以及该对应关系#2,可以获知参考信号的pattern,进而可获知参考信号的时频域位置。
其中,对应关系#2可以以表格,函数,文本,或,字符串的形式存在,如存储或传输,如下表4为以表格形式呈现对应关系#2的示例。
表4
以表4为例,假设预配置4个pattern,即pattern#1、pattern#2、pattern#3、pattern#4,指示信息#3通过2比特来实现,其中指示信息#3的取值可以是不同的比特值,如N1为比特“00”,N2为比特“01”,N3为比特“10”,N4为比特“11”。
举例来说,若指示信息#3的取值为N1,如“00”,那么第一通信装置基于该指示信息#3可获知参考信号的pattern是pattern#1;若指示信息#3的取值为N2,如“01”,那么第一通信装置基于该指示信息#3可获知参考信号的pattern是pattern#2;若指示信息#3的取值为N3,如“10”,那么第一通信装置基于该指示信息#3可获知参考信号的pattern是pattern#3;若指示信息#3的取值为N4,如“11”,那么第一通信装置基于该指示信息#3可获知参考信号的pattern是pattern#4。
可以理解,表4仅是示例性说明,对此不予限制。例如指示信息#3的取值还可以替换为其他参数,只要可以区分不同的pattern。再例如,表4中还可以包括更多数量的pattern。此外,表4中的不同pattern可以以不同参数的形式存在。
上文介绍了参考信号的时频域位置,下面介绍一下参考信号的波束方向。
可选地,参考信号在X个第二时域单元中的每个第二时域单元对应一个波束方向,且参考信号在X
个第二时域单元中的至少两个第二时域单元上对应的波束方向不同。通过该方案,若在多个时域单元上发送参考信号时,可以根据实际需求设计该参考信号在各个时域单元上的波束都不同,进而可以实现空域全角度的快速波束遍历,有利于提升AI波束管理场景下的训练数据收集速度。
一示例,参考信号在一个第一时域单元内占X个第二时域单元,且该参考信号在该X个第二时域单元上的波束方向均不同。以一个时隙包括14个OFDM符号为例,若参考信号在14个OFDM符号上都进行传输,且参考信号在该14个OFDM符号上的波束方向可以均不同,这样在一个时隙中,第一通信装置可以接收到14个方向的参考信号。
另一示例,参考信号在一个第一时域单元内占至少两组第二时域单元,且该参考信号在该各组第二时域单元上的波束方向均不同。以图6所示的示例为例,参考信号在一个时隙内占5组OFDM符号,参考信号在该5组OFDM符号中各组OFDM符号上的波束方向均不同,这样在一个时隙中,第一通信装置可以接收到5个方向的参考信号。
可选地,方法300还包括:第一通信装置接收来自第二通信装置的至少一个参考信号资源集的配置信息。其中,每个参考信号资源集(RS ResourceSet)中包括至少两个参考信号的资源。同一个参考信号资源集中参考信号的天线端口数相同和/或频域位置相同。不同参考信号资源集中参考信号的天线端口数和/或频域位置可以不同,也可以相同,不予限制。
可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,在上述一些实施例中,多次提及发送信息。以A向B发送信息为例,A向B发送信息,可以包括A直接向B发送信息,也可以包括A通过其他设备或网元向B发送信息,对此不予限制。
还可以理解,在上述一些实施例中,多次提及预定义,其可以表示协议预定义或预存储的设置或者默认等。
还可以理解,在上述一些实施例中,主要以参考信号在一个第一时域单元内占X个第二时域单元为例进行了示例性说明,对此不予限制。例如,参考信号也可以占Y个第一时域单元,Y为大于1的整数,其中,参考信号在Y个第一时域单元中的各个第一时域单元上所占的第二时域单元的数量和/或位置,可以是全都相同的,或者也可以是部分相同的,或者也可以是完全不同的,不予限制。
以第一时域单元为时隙,第二时域单元为OFDM符号,1个参考信号在时域上占1个OFDM符号为例。例如,第二通信装置向第一通信装置发送14个参考信号,该14个参考信号占2个时隙,参考信号在2个时隙的每个时隙上所占的OFDM符号是相同的,如参考信号在各个时隙上的pattern都如图5所示。再例如,第二通信装置向第一通信装置发送15个参考信号,该15个参考信号占3个时隙,且参考信号在该3个时隙中的2个时隙上(如前2个时隙上)所占的OFDM符号是相同的,如参考信号在该2个时隙上的pattern都如图5所示,参考信号在该3个时隙的剩余一个时隙上(如最后一个时隙上)占一个OFDM符号,该一个OFDM符号可以是任意一个OFDM符号。
可选的,参考信号的发送/接收可以是周期性的,以上描述针对的是一个周期的方案,该参考信号的发送/接收可以以该周期进行重复,具体的周期的配置可以基于网络设备的配置或者协议预定义,在此不予限定,或者,参考信号的发送/接收可以是单次触发的,即,非周期的,则以上描述针对的是该单次触发所涉及的方案,具体的触发方式可以基于网络设备的信令,比如,RRC层信令,媒体接入控制(medium access control,MAC)层信令,或,物理层信令,如下行控制信息(downlink control information,DCI),中的一项或多项,在此不予限定。
可选的,配置时,如参考信号在各个时隙上的pattern相同,则可以通过配置参考信号所占用的时隙以及一个时隙的pattern来实现该各个时隙的配置。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,上述各个方法实施例中,由设备实现的方法和操作,也可以由可由设备的组成部件(例如芯片或者电路)来实现,不作限定。
以上,结合图3至图9详细说明了本申请实施例提供的方法。以下,结合图10至图12详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不予赘述。
图10是本申请实施例提供的一种通信装置1000的示意图。该装置1000包括收发单元1010和处理单
元1020。收发单元1010可以用于实现相应的通信功能。收发单元1010还可以称为通信接口或通信单元。处理单元1020可以用于进行处理,如基于参考信号进行测量。
可选地,该装置1000还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1020可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
作为一种设计,该装置1000用于执行上文方法实施例中第一通信装置执行的步骤或者流程,收发单元1010用于执行上文方法实施例中第一通信装置侧的收发相关的操作,处理单元1020用于执行上文方法实施例中第一通信装置侧的处理相关的操作。
一种可能的实现方式,该装置1000用于执行如图3所示实施例中第一通信装置执行的步骤或者流程。可选地,收发单元1010,用于接收来自第二通信装置的参考信号,参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;处理单元1020,用于基于参考信号进行测量,得到参考信号的测量结果;收发单元1010,还用于向第二通信装置发送m个测量结果,m个测量结果为参考信号的测量结果的全部或部分,m个测量结果用于人工智能AI模型的训练,m为大于1且小于X或等于X的整数。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,该装置1000用于执行上文方法实施例中第二通信装置执行的步骤或者流程,收发单元1010用于执行上文方法实施例中第二通信装置侧的收发相关的操作,处理单元1020用于执行上文方法实施例中第二通信装置侧的处理相关的操作。
一种可能的实现方式,该装置1000用于执行如图3所示实施例中第二通信装置执行的步骤或者流程。可选地,收发单元1010,用于向第一通信装置发送参考信号,参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;收发单元1010,还用于接收来自第一通信装置的参考信号的m个测量结果,m个测量结果用于人工智能AI模型的训练且m个测量结果为参考信号的测量结果中的全部或部分,m为大于1且小于X或等于X的整数。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1000可以具体为上述实施例中的通信装置(如第一通信装置,又如第二通信装置),可以用于执行上述各方法实施例中与通信装置对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1000具有实现上述方法中通信装置(如第一通信装置,又如第二通信装置等)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图10中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图11是本申请实施例提供另一种通信装置1100的示意图。该装置1100包括处理器1110,处理器1110与存储器1120耦合,存储器1120用于存储计算机程序或指令和/或数据,处理器1110用于执行存储器1120存储的计算机程序或指令,或读取存储器1120存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器1110为一个或多个。
可选地,存储器1120为一个或多个。
可选地,该存储器1120与该处理器1110集成在一起,或者分离设置。
可选地,如图11所示,该装置1100还包括收发器1130,收发器1130用于信号的接收和/或发送。例如,处理器1110用于控制收发器1130进行信号的接收和/或发送。
作为示例,处理器1110可以具有图10中所示的处理单元1020的功能,存储器1120可以具有存储单元的功能,收发器1130可以具有图10中所示的收发单元1010的功能。
作为一种方案,该装置1100用于实现上文各个方法实施例中由通信装置(如第一通信装置,又如第二通信装置等)执行的操作。
例如,处理器1110用于执行存储器1120存储的计算机程序或指令,以实现上文各个方法实施例中通信装置(如第一通信装置,又如第二通信装置等)的相关操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是本申请实施例提供一种芯片系统1200的示意图。该芯片系统1200(或者也可以称为处理系统)包括逻辑电路1210以及输入/输出接口(input/output interface)1220。
其中,逻辑电路1210可以为芯片系统1200中的处理电路。逻辑电路1210可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统1200可以实现本申请各实施例的方法和功能。输入/输出接口1220,可以为芯片系统1200中的输入输出电路,将芯片系统1200处理好的信息输出,或将待处理的数据或信令信息输入芯片系统1200进行处理。
具体地,例如,若第一通信装置安装了该芯片系统1200,逻辑电路1210与输入/输出接口1220耦合,输入/输出接口1220可将参考信号输入至逻辑电路1210进行处理,如对参考信号进行测量得到参考信号的测量结果。又如,若第二通信装置安装了该芯片系统1200,逻辑电路1210与输入/输出接口1220耦合,输入/输出接口1220可将来自第一通信装置的参考信号的测量结果输入至逻辑电路1210进行处理。
作为一种方案,该芯片系统1200用于实现上文各个方法实施例中由通信装置(如第一通信装置,又如第二通信装置等)执行的操作。
例如,逻辑电路1210用于实现上文方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的处理相关的操作;输入/输出接口1220用于实现上文方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由通信装置(如第一通信装置,又如第二通信装置)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的第一通信装置和/或第二通信装置。例如,该系统包含图3所示实施例中的第一通信装置和/或第二通信装置。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处
不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (39)
- 一种获取训练数据的方法,其特征在于,包括:第一通信装置接收来自第二通信装置的参考信号,所述参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;所述第一通信装置基于所述参考信号进行测量,得到所述参考信号的测量结果;所述第一通信装置向所述第二通信装置发送m个测量结果,所述m个测量结果为所述参考信号的测量结果的全部或部分,所述m个测量结果用于模型的训练,m为大于1且小于X或等于X的整数。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第一指示信息,所述第一指示信息用于触发所述第一通信装置发送所述m个测量结果;所述第一通信装置向所述第二通信装置发送m个测量结果,包括:响应于所述第一指示信息,所述第一通信装置向所述第二通信装置发送所述m个测量结果。
- 根据权利要求1或2所述的方法,其特征在于,所述m是所述第一通信装置基于第二指示信息或预定义确定的,其中,所述第二指示信息是所述第一通信装置从所述第二通信装置侧接收到的。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述m个测量结果是所述第一通信装置基于第三指示信息或预定义确定的,其中,所述第三指示信息是所述第一通信装置从所述第二通信装置侧接收到的。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述X个第二时域单元中相邻两个第二时域单元间隔为T1个第二时域单元,T1为大于0或等于0的整数;或者,所述X个第二时域单元包括至少两组第二时域单元,所述至少两组第二时域单元中相邻两组第二时域单元间隔为T2个第二时域单元,其中,所述至少两组第二时域单元中的每组第二时域单元包括至少两个第二时域单元,且每组第二时域单元中的至少两个第二时域单元连续,T2为大于0的整数。
- 根据权利要求5所述的方法,其特征在于,所述第一时域单元为时隙和/或所述第二时域单元为正交频分复用OFDM符号。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第四指示信息,所述第四指示信息指示所述参考信号所占的时域位置。
- 根据权利要求7所述的方法,其特征在于,所述第四指示信息为至少两比特的比特位图;或者,所述第四指示信息包括以下一项或多项:所述参考信号在一个所述第一时域单元内的起始位置、所述参考信号在一个所述第一时域单元内所占的所述第二时域单元数、所述参考信号在一个所述第一时域单元内的相邻两个第二时域单元上的间隔、或、所述参考信号在一个所述第一时域单元内的结束位置。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一通信装置向所述第二通信装置发送m个测量结果,包括:所述第一通信装置向所述第二通信装置发送m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X1比特对所述m个测量结果进行量化得到,其中,所述X1是所述第一通信装置基于第五指示信息或预定义确定的,所述第五指示信息是所述第一通信装置从所述第二通信装置侧接收到;或者,所述m个量化后的测量结果是所述第一通信装置采用X2比特对所述m个测量结果中的m1个测量结果进行量化、并采用X3比特对所述m个测量结果中的m2个测量结果进行量化得到,m1和m2均为大于1或等于1的整数,且m1+m2=m,其中,所述X2和/或X3是所述第一通信装置基于第六指示信息或预定义确定的,所述第六指示信息是所述第一通信装置从所述第二通信装置侧接收到。
- 根据权利要求1至9中任一项所述的方法,其特征在于,所述参考信号在所述X个第二时域单元中的每个第二时域单元对应一个波束方向,且所述参考信号在所述X个第二时域单元中的至少两个第二时域单元上对应的波束方向不同。
- 根据权利要求1至10中任一项所述的方法,其特征在于,所述模型为用于波束管理的模型。
- 根据权利要求1至11中任一项所述的方法,其特征在于,所述参考信号在频域上占一个频域单元;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元中相邻两个频域单元间隔为T3个频域单元,T3为大于0或等于0的整数;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元包括至少两组频域单元,所述至少两组频域单元中相邻两组频域单元间隔为T4个时域单元,其中,所述至少两组频域单元中的每组频域单元包括至少两个频域单元,且每组频域单元中的至少两个频域单元连续,T4为大于0的整数。
- 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第七指示信息,所述第七指示信息指示所述参考信号所占的频域位置。
- 根据权利要求13所述的方法,其特征在于,所述第七指示信息为至少两比特的比特位图,或者,所述第七指示信息指示所述参考信号所占的频域单元的索引。
- 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:所述第一通信装置接收来自所述第二通信装置的第八指示信息,所述第八指示信息指示所述参考信号的图样pattern。
- 根据权利要求15所述的方法,其特征在于,所述第八指示信息的N个取值与N个pattern具有对应关系,N为大于1的整数,所述方法还包括:所述第一通信装置根据所述对应关系和所述第八指示信息的取值,确定所述参考信号的pattern。
- 一种获取训练数据的方法,其特征在于,包括:第二通信装置向第一通信装置发送参考信号,所述参考信号在一个第一时域单元内占X个第二时域单元,X为大于1的整数;所述第二通信装置接收来自所述第一通信装置的m个测量结果,所述m个测量结果用于模型的训练且所述m个测量结果为所述参考信号的测量结果中的全部或部分,m为大于1且小于X或等于X的整数。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第一指示信息,所述第一指示信息用于触发所述第一通信装置发送所述m个测量结果。
- 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第二指示信息,所述第二指示信息指示所述m。
- 根据权利要求17至19中任一项所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第三指示信息,所述第三指示信息指示所述m个测量结果。
- 根据权利要求17至20中任一项所述的方法,其特征在于,所述X个第二时域单元中相邻两个第二时域单元间隔为T1个第二时域单元,T1为大于0或等于0的整数;或者,所述X个第二时域单元包括至少两组第二时域单元,所述至少两组第二时域单元中相邻两组第二时域单元间隔为T2个第二时域单元,其中,所述至少两组第二时域单元中的每组第二时域单元包括至少两个第二时域单元,且每组第二时域单元中的至少两个第二时域单元连续,T2为大于0的整数。
- 根据权利要求21所述的方法,其特征在于,所述第一时域单元为时隙和/或所述第二时域单元为正交频分复用OFDM符号。
- 根据权利要求17至22中任一项所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第四指示信息,所述第四指示信息指示所述参考信号所占的时域位置。
- 根据权利要求23所述的方法,其特征在于,所述第四指示信息为至少两比特的比特位图;或者,所述第四指示信息包括以下一项或多项:所述参考信号在一个所述第一时域单元内的起始位置、所述参考信号在一个所述第一时域单元内所占的所述第二时域单元数、所述参考信号在一个所述第一时域单元内的相邻两个第二时域单元上的间隔、或、所述参考信号在一个所述第一时域单元内的结束位置。
- 根据权利要求17至24中任一项所述的方法,其特征在于,所述第二通信装置接收来自所述第一通信装置的m个测量结果,包括:所述第二通信装置接收来自所述第一通信装置的m个量化后的测量结果,其中,所述m个量化后的测量结果是所述第一通信装置采用X1比特对所述m个测量结果进行量化得到,其中,所述X1是所述第一通信装置基于第五指示信息或预定义确定的,所述第五指示信息是所述第二通信装置发给所述第一通信装置的;或者,所述m个量化后的测量结果是所述第一通信装置采用X2比特对所述m个测量结果中的m1个测量结果进行量化、并采用X3比特对所述m个测量结果中的m2个测量结果进行量化得到,m1和m2均为大于1或等于1的整数,且m1+m2=m,其中,所述X2和/或X3是所述第一通信装置基于第六指示信息或预定义确定的,所述第六指示信息是所述第二通信装置发给所述第一通信装置的。
- 根据权利要求17至25中任一项所述的方法,其特征在于,所述参考信号在所述X个第二时域单元中的每个第二时域单元对应一个波束方向,且所述参考信号在所述X个第二时域单元中的至少两个第二时域单元上对应的波束方向不同。
- 根据权利要求17至26中任一项所述的方法,其特征在于,所述模型为用于波束管理的模型。
- 根据权利要求17至27中任一项所述的方法,其特征在于,所述参考信号在频域上占一个频域单元;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元中相邻两个频域单元间隔为T3个频域单元,T3为大于0或等于0的整数;或者,所述参考信号在频域上占多个频域单元,所述多个频域单元包括至少两组频域单元,所述至少两组频域单元中相邻两组频域单元间隔为T4个时域单元,其中,所述至少两组频域单元中的每组频域单元包括至少两个频域单元,且每组频域单元中的至少两个频域单元连续,T4为大于0的整数。
- 根据权利要求17至28中任一项所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第七指示信息,所述第七指示信息指示所述参考信号所占的频域位置。
- 根据权利要求29所述的方法,其特征在于,所述第七指示信息为至少两比特的比特位图,或者,所述第七指示信息指示所述参考信号所占的频域单元的索引。
- 根据权利要求17至30中任一项所述的方法,其特征在于,所述方法还包括:所述第二通信装置向所述第一通信装置发送第八指示信息,所述第八指示信息指示所述参考信号的图样pattern。
- 根据权利要求31所述的方法,其特征在于,所述第八指示信息的N个取值与N个pattern具有对应关系,N为大于1的整数。
- 一种通信装置,其特征在于,包括用于执行权利要求1至32中任一项所述的方法的模块或单元。
- 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至32中任一项所述的方法。
- 根据权利要求34所述的装置,其特征在于,所述装置还包括所述存储器和/或通信接口,所述通信接口与所述处理器耦合,所述通信接口,用于输入和/或输出信息。
- 根据权利要求33至35中任一项所述的装置,其特征在于,所述装置为通信设备,或电路,或芯片。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在通信装置上运行时,使得所述通信装置执行如权利要求1至32中任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至32中任一项所述的方法的计算机程序或指令。
- 一种通信系统,其特征在于,包括第一通信装置和第二通信装置,所述第一通信装置用于执行如权利要求1至16中任一项所述的方法;所述第二通信装置用于执行如权利要求17至32中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211530929.6 | 2022-12-01 | ||
CN202211530929.6A CN118138088A (zh) | 2022-12-01 | 2022-12-01 | 获取训练数据的方法和通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024114686A1 true WO2024114686A1 (zh) | 2024-06-06 |
Family
ID=91232462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/135116 WO2024114686A1 (zh) | 2022-12-01 | 2023-11-29 | 获取训练数据的方法和通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118138088A (zh) |
WO (1) | WO2024114686A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190207722A1 (en) * | 2017-08-11 | 2019-07-04 | Zte Corporation | Method and apparatus for information reporting, and method and apparatus for information transmission |
CN110831125A (zh) * | 2018-08-10 | 2020-02-21 | 华为技术有限公司 | 发送和接收寻呼消息的方法以及通信装置 |
CN113852583A (zh) * | 2021-09-18 | 2021-12-28 | 江苏亨鑫众联通信技术有限公司 | 一种解调参考信号动态配置方法 |
US20220044091A1 (en) * | 2020-08-04 | 2022-02-10 | Qualcomm Incorporated | Neural network functions for positioning of a user equipment |
CN115085778A (zh) * | 2021-03-10 | 2022-09-20 | 英特尔公司 | 用于基于ai的mimo操作的装置和方法 |
WO2022208671A1 (ja) * | 2021-03-30 | 2022-10-06 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
-
2022
- 2022-12-01 CN CN202211530929.6A patent/CN118138088A/zh active Pending
-
2023
- 2023-11-29 WO PCT/CN2023/135116 patent/WO2024114686A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190207722A1 (en) * | 2017-08-11 | 2019-07-04 | Zte Corporation | Method and apparatus for information reporting, and method and apparatus for information transmission |
CN110831125A (zh) * | 2018-08-10 | 2020-02-21 | 华为技术有限公司 | 发送和接收寻呼消息的方法以及通信装置 |
US20220044091A1 (en) * | 2020-08-04 | 2022-02-10 | Qualcomm Incorporated | Neural network functions for positioning of a user equipment |
CN115085778A (zh) * | 2021-03-10 | 2022-09-20 | 英特尔公司 | 用于基于ai的mimo操作的装置和方法 |
WO2022208671A1 (ja) * | 2021-03-30 | 2022-10-06 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN113852583A (zh) * | 2021-09-18 | 2021-12-28 | 江苏亨鑫众联通信技术有限公司 | 一种解调参考信号动态配置方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118138088A (zh) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12081481B2 (en) | Signaling sending method and device, and signaling receiving method and device | |
CN114982177B (zh) | Prts到dmrs端口关联 | |
CN111587553B (zh) | Rrc和mac中用于周期性和半持续参考信号假设的pdsch资源映射的信令 | |
WO2018095305A1 (zh) | 一种波束训练方法及装置 | |
US20230006913A1 (en) | Method and apparatus for channel environment classification | |
US11894901B2 (en) | Method for transmitting and receiving CSI in wireless communication system and device therefor | |
WO2022227081A1 (en) | Techniques for channel state information and channel compression switching | |
CN117480805A (zh) | 用以实现机器学习和非机器学习相关任务之间的联邦学习和切换的用户装备信令和能力 | |
WO2023155170A1 (en) | Methods, devices, and computer readable medium for communication | |
US20230199519A1 (en) | Radio resource model management in a wireless network | |
WO2023206056A1 (en) | Systems and methods for user equipment initiated link management | |
WO2024114686A1 (zh) | 获取训练数据的方法和通信装置 | |
CN117356050A (zh) | 神经网络辅助的通信技术 | |
CN117121537A (zh) | 增强型交叉链路干扰测量和管理 | |
CN114666812A (zh) | 信息处理的方法和装置 | |
WO2024178692A1 (en) | Methods, apparatuses, and devices for configuring reference signal patterns | |
WO2024169710A1 (zh) | 通信方法和通信装置 | |
US12074670B2 (en) | Methods for beam coordination in a near-field operation with multiple transmission and reception points (TRPS) | |
WO2024187484A1 (en) | Systems and methods for supporting data transmission in a wireless network | |
WO2023206245A1 (en) | Configuration of neighboring rs resource | |
WO2023097564A1 (en) | Method and apparatus for transmit and receive beam determination | |
US20240348314A1 (en) | Systems and methods for beam alignment for analog beamforming | |
WO2023173297A1 (en) | System and method for joint sensing of interference in a wireless network | |
WO2024007248A1 (en) | Layer 1 report enhancement for base station aided beam pair prediction | |
US20240267106A1 (en) | Cross-beam coupling reporting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23896830 Country of ref document: EP Kind code of ref document: A1 |