WO2024114610A1 - 电弧信号处理电路及方法、电器设备 - Google Patents

电弧信号处理电路及方法、电器设备 Download PDF

Info

Publication number
WO2024114610A1
WO2024114610A1 PCT/CN2023/134575 CN2023134575W WO2024114610A1 WO 2024114610 A1 WO2024114610 A1 WO 2024114610A1 CN 2023134575 W CN2023134575 W CN 2023134575W WO 2024114610 A1 WO2024114610 A1 WO 2024114610A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
arc
threshold voltage
band
value
Prior art date
Application number
PCT/CN2023/134575
Other languages
English (en)
French (fr)
Inventor
王帮乐
蔡友锋
施建新
卓莉
王庆
Original Assignee
上海正泰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海正泰智能科技有限公司 filed Critical 上海正泰智能科技有限公司
Publication of WO2024114610A1 publication Critical patent/WO2024114610A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present application relates to the technical field of electrical equipment, and in particular to an arc signal processing circuit and method, and electrical equipment.
  • Arc fault is a common fault that may occur in electrical equipment. There are many reasons for this fault. For example, when the contact of the electrical contacts is poor or the insulating material in the electrical circuit is damaged, the arc in the circuit will fail, causing the electrical appliance to spontaneously combust. In more serious cases, it can also cause a fire. Therefore, if the faulty electrical appliance can be disconnected from the circuit when an arc fault occurs, safety can be greatly improved. Therefore, how to identify whether the arc in the circuit has failed has become the key to the problem.
  • a single fixed-frequency signal is usually used as the basis for judging arc faults.
  • a single fault arc signal has the characteristics of strong randomness and unclear features, and this method will be interfered by the load working noise, resulting in inaccurate arc fault judgment of electrical equipment.
  • the present application provides an arc signal processing circuit and method, and an electrical device to improve the accuracy of arc fault judgment of the electrical device.
  • an arc signal processing circuit comprising:
  • An amplifier module the input end of which is connected to the arc signal, and the amplifier module is used to amplify the arc signal and then output an amplified signal;
  • a bandpass filter amplification module the input end of the bandpass filter amplification module is electrically connected to the output end of the amplification module, and the bandpass filter amplification module is used to filter and amplify the amplified signal output by the amplification module and then output a high-frequency signal of a preset frequency band;
  • the main control module is electrically connected to the output end of the amplifier module, and the main control module is electrically connected to the output end of the bandpass filter amplifier module.
  • the output ends of the modules are electrically connected, and the main control module is used to receive the amplified signal output by the amplification module and the high-frequency signal output by the bandpass filtering amplification module.
  • the main control module includes:
  • a high threshold voltage calculation unit the input end of the high threshold voltage calculation unit is electrically connected to the output end of the bandpass filter amplification module, and the high threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the high threshold voltage threshold in the high frequency signal output by the bandpass filter amplification module;
  • a low threshold voltage calculation unit wherein the input end of the low threshold voltage calculation unit is electrically connected to the output end of the band-pass filter amplification module, and the low threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the low threshold voltage threshold in the high frequency signal output by the band-pass filter amplification module; the high threshold voltage threshold is greater than the low threshold voltage threshold;
  • the main control module calculates the arc energy value of the high-frequency signal based on the count value of the signal whose voltage value in the high-frequency signal is greater than the high threshold voltage threshold, the count value of the signal whose voltage value in the high-frequency signal is greater than the low threshold voltage threshold, and the energy coefficient k, where k is the energy coefficient of the count value of the signal whose voltage value in the high-frequency signal is greater than the high threshold voltage threshold.
  • the amplification module includes:
  • the high-pass filter amplifier circuit has an input end electrically connected to an output end of the amplifier circuit, and an output end of the high-pass filter amplifier circuit is electrically connected to an input end of the band-pass filter amplifier module and a main control module respectively.
  • the output end of the amplifier circuit is electrically connected to the main control module.
  • the bandpass filtering and amplification module includes:
  • a first band-pass filter amplifier circuit wherein the input end of the first band-pass filter amplifier circuit is electrically connected to the output end of the amplifier module, and the output end of the first band-pass filter amplifier circuit is electrically connected to the main control module;
  • a second band-pass filter amplifier circuit wherein the input end of the second band-pass filter amplifier circuit is electrically connected to the output end of the amplifier module, and the output end of the second band-pass filter amplifier circuit is electrically connected to the main control module;
  • the center frequency of the first band-pass filter amplifier circuit is less than the center frequency of the second band-pass filter amplifier circuit.
  • the high threshold voltage calculation unit includes:
  • a first high threshold voltage calculation unit wherein the input end of the first high threshold voltage calculation unit is electrically connected to the output end of the first band-pass filter amplifier circuit, and the first high threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the first high threshold voltage threshold value in the high frequency signal output by the first band-pass filter amplifier circuit;
  • a second high threshold voltage calculation unit wherein the input end of the second high threshold voltage calculation unit is electrically connected to the output end of the second band-pass filter amplifier circuit, and the second high threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the second high threshold voltage threshold value in the high frequency signal output by the second band-pass filter amplifier circuit;
  • the low threshold voltage calculation unit includes:
  • a first low threshold voltage calculation unit wherein the input end of the first low threshold voltage calculation unit is electrically connected to the output end of the first band-pass filter amplifier circuit, and the first low threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the first low threshold voltage threshold value in the high frequency signal output by the first band-pass filter amplifier circuit;
  • a second low threshold voltage calculation unit wherein the input end of the second low threshold voltage calculation unit is electrically connected to the output end of the second band-pass filter amplifier circuit, and the second low threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the second low threshold voltage threshold value in the high frequency signal output by the second band-pass filter amplifier circuit;
  • the first high threshold voltage threshold is greater than the first low threshold voltage threshold
  • the second high threshold voltage threshold is greater than the second low threshold voltage threshold
  • the bandpass filtering and amplification module further includes:
  • a third band-pass filter amplifier circuit wherein the input end of the third band-pass filter amplifier circuit is electrically connected to the output end of the amplifier module, and the output end of the third band-pass filter amplifier circuit is electrically connected to the main control module;
  • the center frequency of the third band-pass filter amplifier circuit is greater than the center frequency of the second band-pass filter amplifier circuit.
  • the high threshold voltage calculation unit further includes:
  • a third high threshold voltage calculation unit wherein the input end of the third high threshold voltage calculation unit is electrically connected to the output end of the third band-pass filter amplifier circuit, and the third high threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the third high threshold voltage threshold value in the high frequency signal output by the third band-pass filter amplifier circuit;
  • the low threshold voltage calculation unit also includes:
  • a third low threshold voltage calculation unit wherein the input end of the third low threshold voltage calculation unit is electrically connected to the output end of the third band-pass filter amplifier circuit, and the third low threshold voltage calculation unit is used to calculate the count value of the signal whose voltage value is greater than the third low threshold voltage threshold value in the high frequency signal output by the third band-pass filter amplifier circuit;
  • the third high threshold voltage threshold is greater than the third low threshold voltage threshold.
  • the high threshold voltage calculation unit includes:
  • a first comparator wherein a first input terminal of the first comparator is connected to a signal of a high threshold voltage threshold, and a second input terminal of the first comparator is electrically connected to an output terminal of the bandpass filter amplification module;
  • the first timer has an input terminal electrically connected to an output terminal of the first comparator.
  • the low threshold voltage calculation unit includes:
  • a second comparator wherein a first input terminal of the second comparator is connected to a signal of a low threshold voltage threshold, and a second input terminal of the second comparator is electrically connected to an output terminal of the bandpass filter amplification module;
  • the second timer has an input terminal electrically connected to the output terminal of the second comparator.
  • the arc signal processing circuit further includes:
  • a voltage sampling circuit wherein the input end of the voltage sampling circuit is electrically connected to a loop of an electrical device generating an arc signal, the voltage sampling circuit is used to collect a voltage signal of the loop generating the arc signal, and the output end of the voltage sampling circuit is electrically connected to a main control module.
  • the present application also provides an arc signal processing method, which includes:
  • the amplitude of the half-wave signal is obtained according to the amplified signal
  • the arc energy value of the high-frequency signal is calculated
  • the step of calculating the arc energy value of the high-frequency signal includes:
  • the arc energy value of the high-frequency signal is calculated based on x, y and the energy coefficient k, where k is the energy coefficient of x.
  • the step of filtering and amplifying the amplified signal to obtain a high-frequency signal of the half-wave signal in a preset frequency band includes:
  • the steps of calculating the arc energy value of the high frequency signal include:
  • the arc signal includes a valid zero-crossing arc signal.
  • N N+1, N is the number of valid zero-crossing arc signals, and the initial value of N is zero.
  • the step of calculating the arc energy value of the high-frequency signal includes:
  • the count value x of the signal whose voltage value is greater than the high threshold voltage threshold value in the high frequency signal of each preset frequency band is calculated,
  • the count value y of the signal whose voltage value is greater than the low threshold voltage threshold in the high frequency signal of each preset frequency band is calculated, and the high threshold voltage threshold is greater than the low threshold voltage threshold.
  • the arc energy values of the high-frequency signals in at least two preset frequency bands are calculated according to x, y and the energy coefficient k, where k is the energy coefficient of x.
  • the step of amplifying the arc signal to obtain an amplified signal includes:
  • the steps of performing high-pass filtering and amplification processing on the amplified signal to obtain a filtered amplified signal; and filtering and amplifying the amplified signal to obtain a high-frequency signal of the half-wave signal in a preset frequency band include:
  • the filtered and amplified signal is filtered and amplified to obtain a high-frequency signal of the half-wave signal in a preset frequency band.
  • the present application also provides an electrical device, which includes the above-mentioned arc signal processing circuit.
  • the present application provides an arc signal processing circuit and method, and an electrical device, wherein the arc signal processing circuit includes: an amplifier module, the input end of the amplifier module is connected to the arc signal, and the amplifier module is used to amplify the arc signal and then output the amplified signal; a bandpass filter amplifier module, the input end of the bandpass filter amplifier module is electrically connected to the output end of the amplifier module, and the bandpass filter amplifier module is used to filter and amplify the amplified signal output by the amplifier module and then output a high-frequency signal of a preset frequency band; a main control module, the main control module is electrically connected to the output end of the amplifier module, the main control module is electrically connected to the output end of the bandpass filter amplifier module, and the main control module is used to receive the amplified signal output by the amplifier module and the high-frequency signal output by the bandpass filter amplifier module.
  • the present application obtains the amplitude of the half-wave signal and the arc energy value of the high-frequency signal of the half-wave signal in the preset frequency band through the main control module, and then compares the amplitude of the half-wave signal and the arc energy value of the high-frequency signal with the corresponding threshold value, and identifies whether the arc signal is faulty according to the comparison result, thereby improving the accuracy of arc fault judgment of the electrical device.
  • FIG1 is a schematic diagram of a first structure of an arc signal processing circuit provided by the present application.
  • FIG2 is a current waveform diagram of an AC signal and a voltage schematic diagram of the AC signal at a zero-crossing point;
  • FIG3 is a schematic diagram of a second structure of an arc signal processing circuit provided by the present application.
  • FIG4 is a schematic diagram of a third structure of an arc signal processing circuit provided by the present application.
  • FIG. 5 is a schematic diagram of a fourth structure of an arc signal processing circuit provided by the present application.
  • FIG. 7 is a schematic diagram of a sixth structure of an arc signal processing circuit provided by the present application.
  • FIG8 is a schematic diagram of a seventh structure of an arc signal processing circuit provided by the present application.
  • FIG9 is a flow chart of a first embodiment of an arc signal processing method provided by the present application.
  • step S50 of the arc signal processing method provided by the present application is a flow chart of a first embodiment of step S50 of the arc signal processing method provided by the present application.
  • step S50 of the arc signal processing method provided by the present application is a flow chart of a second embodiment of step S50 of the arc signal processing method provided by the present application.
  • FIG. 12 is a flow chart of a second embodiment of an arc signal processing method provided by the present application.
  • FIG. 13 is a flow chart of a third embodiment of an arc signal processing method provided in the present application.
  • Arc is a gas discharge phenomenon, an instantaneous spark produced by current passing through some insulating medium (such as air).
  • Arc is a self-sustaining gas conduction (electrical conduction in ionized gas), and most of its carriers are electrons generated by primary electron emission. Electrons escape from the metal surface of the contact due to primary electron emission (thermal ion emission, field emission or photoemission), and gas atoms or molecules in the gap will produce electrons and ions due to ionization (impact ionization, photoionization and thermal ionization). In addition, electrons or ions bombarding the emission surface will cause Secondary electron emission. When the ion concentration in the gap is large enough, the gap is electrically broken down and an arc occurs.
  • Arc fault refers to an electrical fault in which an arc occurs in a live line without human intention. Specifically, according to the connection relationship between the arc and the circuit when the arc fault occurs, the arc fault (AF) can be divided into series arc fault (SAF), parallel arc fault (PAF), grounding arc fault (GAF), etc.
  • SAF series arc fault
  • PAF parallel arc fault
  • GAF grounding arc fault
  • the present application provides an arc signal processing circuit and method, and an electrical device, which are described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments of the present application.
  • FIG1 is a schematic diagram of a first structure of an arc signal processing circuit 100 provided by the present application.
  • the present application provides an arc signal processing circuit 100 , which includes an amplification module 10 , a bandpass filter amplification module 20 and a main control module 30 .
  • the input end of the amplifier module 10 is connected to the arc signal; the input end of the bandpass filter amplifier module 20 is electrically connected to the output end of the amplifier module 10, and the bandpass filter amplifier module 20 is used to filter and amplify the amplified signal output by the amplifier module 10 and then output a high-frequency signal of a preset frequency band; the main control module 30 is electrically connected to the output end of the amplifier module 10, and the main control module 30 is electrically connected to the output end of the bandpass filter amplifier module 20, and the main control module 30 is used to receive the amplified signal output by the amplifier module 10 and the high-frequency signal output by the bandpass filter amplifier module 20.
  • the switch disconnects the circuit, the voltage and current reach a certain value, and the contacts are just separated, a strong white light will be generated between the contacts, and an arc will be generated.
  • the arc signal processing circuit 100 can be connected to the switch of the electrical appliance. Therefore, the connection structure between the amplification module 10 and the device that generates the arc signal is not shown in FIG1. In specific circumstances, the corresponding connection can be made according to the device that sends the arc signal, and this is not limited here.
  • the frequency of the high frequency signal is greater than 500 kHz.
  • the present application uses the amplifier module 10 to obtain the amplified signal of the arc signal, and then transmits the amplified signal to the bandpass filter amplifier module 20 and the main control module 30 respectively.
  • the bandpass filter amplifier module 20 filters and amplifies the amplified signal to obtain a high-frequency signal of the half-wave signal in a preset frequency band.
  • the high-frequency information generated by the arc will be transmitted to the circuit under test through the power line, while the low-frequency information generated by the arc will not be transmitted to the circuit under test in large quantities. Therefore, by obtaining the high-frequency signal of the preset frequency band of the arc signal, the fault information of the arc signal can be obtained more accurately.
  • the present application After obtaining the high-frequency signal of the amplified signal and the half-wave signal in the preset frequency band, the present application obtains the amplitude of the half-wave signal and the arc energy value of the high-frequency signal through the main control module 30, and then compares the amplitude of the half-wave signal and the arc energy value of the high-frequency signal with the corresponding threshold value, and identifies whether the arc signal is faulty according to the comparison result, thereby improving the accuracy of arc fault judgment of electrical equipment.
  • the present application uses the amplitude of the half-wave signal as a criterion for determining whether there is an arc fault.
  • the energy of the arc signal of a fault is large in the high-frequency band, so the present application uses the arc energy value of the high-frequency signal as another criterion for determining whether there is an arc fault, thereby improving the accuracy of arc fault judgment of electrical equipment.
  • Figure 2 is a current waveform diagram of an AC signal and a voltage diagram of an AC signal at a zero-crossing point.
  • the actual current will generate an arc signal at the zero-crossing point, in which the voltage amplitude of some arc signals will be greater than the first threshold, and the voltage amplitude of some arc signals will be greater than the second threshold and less than the first threshold.
  • the first threshold and the second threshold are determined by the current of the loop generating the arc signal.
  • the main control module 30 can obtain the current value by obtaining the amplified signal to determine the first threshold and the second threshold.
  • the main control module 30 can also obtain the arc signal by accessing the arc signal, or it can be obtained indirectly.
  • the relationship between the current value and the threshold value is determined by the preset corresponding relationship table, and the first threshold value of the number of arc signal waveforms can be determined to be 50, and the second threshold value is 30; if the actual current of the loop generating the arc signal is 6A, the first threshold value can be 40 and the second threshold value can be 25, etc., so as to achieve the purpose that the larger the arc current, the faster the action time.
  • the arc signal waveform is a sine or cosine shape, so there will be 2 zero-crossing signals (intersections with the Y axis) in each actual current cycle of the AC signal, that is, there will be at most 2 arc signal waveforms in each cycle of the actual current, that is, two waveforms correspond to 2 zero-crossing arc signals.
  • whether the arc signal waveform is valid can be determined according to the magnitude of the current change near the zero crossing of the waveform. For example, for a 3A electrical appliance, when working normally, the current changes as a sine wave, but when there is an arc, there will be a flat shoulder phenomenon near the zero crossing point of the current, that is, the change in the current is reduced.
  • the main control module 30 detects that the change in the current is lower than the set threshold, it can be determined that the arc of the corresponding cycle is abnormal, otherwise it is normal.
  • the current in the current loop is 3A, if there are 30 valid zero-crossing arc signals in 50 continuous half-wave signals, it is determined that an arc fault has occurred, and a fault alarm is issued or the loop generating the arc signal is disconnected; otherwise, it is determined that no arc fault exists.
  • the main control module 30 may include a microcontroller chip or other control chips.
  • FIG3 is a schematic diagram of a second structure of the arc signal processing circuit 100 provided in the present application.
  • the arc signal is generated by an electrical device, and the embodiment of FIG3 is different from the arc signal processing circuit 100 provided in FIG1 in that the arc signal processing circuit 100 further includes:
  • the voltage sampling circuit 40 has an input end electrically connected to a circuit that generates an arc signal of an electrical device.
  • the voltage sampling circuit 40 is used to collect a voltage signal of the circuit that generates the arc signal.
  • the output end of the voltage sampling circuit 40 is electrically connected to the main control module 30.
  • the present application obtains the voltage signal of the circuit that generates the arc signal through the voltage sampling circuit 40, and the main control module 30 obtains the voltage frequency F through the voltage signal, so that it can be known that under normal circumstances, the arc signal will have two zero crossing points every 1/F second.
  • FIG. 4 is a schematic diagram of a third structure of the arc signal processing circuit 100 provided in the present application.
  • the embodiment of FIG. 4 is different from the arc signal processing circuit 100 provided in FIG. 1 in that: the main control module 30 include:
  • a high threshold voltage calculation unit 31 the input end of the high threshold voltage calculation unit 31 is electrically connected to the output end of the bandpass filter amplification module 20, and the high threshold voltage calculation unit 31 is used to calculate the count value of the signal whose voltage value is greater than the high threshold voltage threshold in the high frequency signal output by the bandpass filter amplification module 20;
  • a low threshold voltage calculation unit 32 the input end of the low threshold voltage calculation unit 32 is electrically connected to the output end of the bandpass filter amplification module 20, and the low threshold voltage calculation unit 32 is used to calculate the count value of the signal whose voltage value is greater than the low threshold voltage threshold in the high frequency signal output by the bandpass filter amplification module 20; the high threshold voltage threshold is greater than the low threshold voltage threshold;
  • the main control module calculates the arc energy value of the high-frequency signal based on the count value of the signal whose voltage value in the high-frequency signal is greater than the high threshold voltage threshold, the count value of the signal whose voltage value in the high-frequency signal is greater than the low threshold voltage threshold, and the energy coefficient k, where k is the energy coefficient of the count value of the signal whose voltage value in the high-frequency signal is greater than the high threshold voltage threshold.
  • the present application obtains the count value x of the signal whose voltage value is greater than the high threshold voltage threshold in the high frequency signal output by the bandpass filter amplification module 20 through the high threshold voltage calculation unit 31, obtains the count value y of the signal whose voltage value is greater than the low threshold voltage threshold in the high frequency signal output by the bandpass filter amplification module 20 through the low threshold voltage calculation unit 32, and then calculates the arc energy value W of the high frequency signal according to x, y and energy coefficient k, k is the energy coefficient of x, specifically, the arc energy value W of the high frequency signal can be obtained by multiplying x, y and k.
  • the energy coefficient can be obtained by querying the relationship table between the energy coefficient and the frequency range through the preset frequency, or it can be calculated according to the preset frequency.
  • the high threshold voltage calculation unit 31 and the low threshold voltage calculation unit 32 may be arranged inside the microcontroller chip, or may be arranged outside the microcontroller chip and electrically connected to the microcontroller chip.
  • FIG5 is a schematic diagram of a fourth structure of the arc signal processing circuit 100 provided in the present application.
  • the embodiment of FIG5 is different from the arc signal processing circuit 100 provided in FIG4 in that the high threshold voltage calculation unit 31 includes:
  • a first comparator 311, a first input terminal of the first comparator 311 is connected to a signal of a high threshold voltage threshold, and a second input terminal of the first comparator 311 is electrically connected to an output terminal of the bandpass filter amplification module 20;
  • the first timer 312 has an input terminal electrically connected to the output terminal of the first comparator 311 .
  • the output end of the first comparator 311 outputs a signal to the input end of the first timer 312, and the first timer 312 calculates plus 1 until the voltage value in the high-frequency signal output by the bandpass filter amplification module 20 is greater than the count value x of the signal of the high threshold voltage threshold.
  • the low threshold voltage calculation unit 32 includes:
  • a second comparator 321, a first input terminal of the second comparator 321 is connected to a signal of a low threshold voltage threshold, and a second input terminal of the second comparator 321 is electrically connected to an output terminal of the bandpass filter amplification module 20;
  • the second timer 322 has an input terminal electrically connected to the output terminal of the second comparator 321 .
  • the output end of the second comparator 321 outputs a signal to the input end of the second timer 322, and the second timer 322 calculates plus 1 until the count value y of the signal whose voltage value is greater than the lower threshold voltage threshold in the high-frequency signal output by the bandpass filter amplification module 20.
  • FIG6 is a schematic diagram of a fifth structure of the arc signal processing circuit 100 provided in the present application.
  • the embodiment of FIG6 is different from the arc signal processing circuit 100 provided in FIG1 in that: the amplification module 10 includes:
  • the high-pass filter amplifier circuit 12 has its input end electrically connected to the output end of the amplifier circuit 11 , and its output end electrically connected to the input end of the band-pass filter amplifier module 20 and the main control module 30 .
  • the amplifier circuit 11 is used to amplify the arc signal to obtain an amplified signal, and then the high-pass filter amplifier circuit 12 filters and amplifies the amplified signal to obtain a filtered amplified signal, and transmits the filtered amplified signal to the bandpass filter amplifier module 20 and the main control circuit respectively.
  • the detection accuracy can be more effectively improved.
  • the number of amplifications can be set to 3 times, that is, the amplification circuit 11, the high-pass filter amplification circuit 12 and the band-pass filter amplification module 20 are set to amplify three times.
  • a certain cost can be saved while meeting the effective detection accuracy.
  • modern electrical appliances will try their best to reduce the size of the appliances for portability. For example, televisions are getting thinner and thinner, humidifiers are getting smaller and smaller, and so on. At this time, the space left for the circuit board inside the appliance is getting smaller and smaller.
  • the more modules are integrated on the smaller the circuit board, the higher the technical difficulty and the increase in the number of integrated modules.
  • the corresponding cost of electrical appliances, therefore integrating the three-stage amplification module can effectively avoid the increase in costs.
  • the output end of the amplifier circuit 11 is electrically connected to the main control module 30 .
  • the present application obtains the amplified signal of the amplifier circuit 11 through the main control module 30.
  • the main control module 30 can obtain the actual current of the circuit that generates the arc signal.
  • the main control module 30 can determine the relationship between the current value and the threshold through a preset corresponding relationship table based on the actual current of the circuit that generates the arc signal, and can determine the first threshold and the second threshold of the number of arc signal waveforms.
  • FIG. 7 is a schematic diagram of a sixth structure of the arc signal processing circuit 100 provided in the present application.
  • the embodiment of FIG. 7 is different from the arc signal processing circuit 100 provided in FIG. 1 in that: the bandpass filter amplification module 20 includes:
  • a first band-pass filter amplifier circuit 21 wherein the input end of the first band-pass filter amplifier circuit 21 is electrically connected to the output end of the amplifier module 10, and the output end of the first band-pass filter amplifier circuit 21 is electrically connected to the main control module 30;
  • a second band-pass filter amplifier circuit 22 wherein the input end of the second band-pass filter amplifier circuit 22 is electrically connected to the output end of the amplifier module 10, and the output end of the second band-pass filter amplifier circuit 22 is electrically connected to the main control module 30;
  • the center frequency of the first band-pass filter amplifier circuit 21 is smaller than the center frequency of the second band-pass filter amplifier circuit 22 .
  • the bandpass filter amplifier module 20 of the present application is provided with two bandpass filter amplifier circuits 11, namely, the first bandpass filter amplifier circuit 21 and the second bandpass filter amplifier circuit 22. Therefore, the amplified signal output by the amplifier module 10 passes through the first bandpass filter amplifier circuit 21 and the second bandpass filter amplifier circuit 22 respectively, and obtains the high-frequency signal of the half-wave signal in the first preset frequency band and the high-frequency signal of the half-wave signal in the second preset frequency band.
  • the main control module 30 After the main control module 30 obtains the high-frequency signal of the half-wave signal in the first preset frequency band and the high-frequency signal of the half-wave signal in the second preset frequency band, the first arc energy value of the high-frequency signal of the half-wave signal in the first preset frequency band and the second arc energy value of the high-frequency signal of the half-wave signal in the second preset frequency band are calculated respectively. Then, the amplitude of the half-wave signal, the first arc energy value and the second arc energy value are compared with the corresponding threshold value, and the arc signal is identified according to the comparison result whether it is faulty, thereby improving the accuracy of arc fault judgment of electrical equipment.
  • the first energy threshold of the high-frequency signal of the half-wave signal in the first preset frequency band and the half-wave signal in the second preset frequency band are
  • the second energy thresholds of the high-frequency signals of the frequency band can be set in the same manner or in different manners.
  • the specific setting method can be more practical.
  • the bandpass frequency range of the first bandpass filter amplifier circuit 21 is 500kHz to 2MHz, and the bandpass frequency range of the second bandpass filter amplifier circuit 22 is 3MHz to 6MHz. That is, the center frequency of the first bandpass filter amplifier circuit 21 is 1.25MHz, and the center frequency of the second bandpass filter amplifier circuit 22 is 4.5MHz.
  • the high threshold voltage calculation unit 31 includes:
  • a first high threshold voltage calculation unit 301 the input end of the first high threshold voltage calculation unit 301 is electrically connected to the output end of the first band-pass filter amplifier circuit 21, and the first high threshold voltage calculation unit 301 is used to calculate the count value of the signal whose voltage value is greater than the first high threshold voltage threshold value in the high frequency signal output by the first band-pass filter amplifier circuit 21;
  • a second high threshold voltage calculation unit 303 the input end of the second high threshold voltage calculation unit 303 is electrically connected to the output end of the second band-pass filter amplifier circuit 22, and the second high threshold voltage calculation unit 301 is used to calculate the count value of the signal whose voltage value is greater than the second high threshold voltage threshold value in the high frequency signal output by the second band-pass filter amplifier circuit 21;
  • the low threshold voltage calculation unit 32 includes:
  • a first low threshold voltage calculation unit 302 the input end of the first low threshold voltage calculation unit 302 is electrically connected to the output end of the first band-pass filter amplifier circuit 21, and the first low threshold voltage calculation unit 302 is used to calculate the count value of the signal whose voltage value is greater than the first low threshold voltage threshold value in the high frequency signal output by the first band-pass filter amplifier circuit 21;
  • a second low threshold voltage calculation unit 304 the input end of the second low threshold voltage calculation unit 304 is electrically connected to the output end of the second band-pass filter amplifier circuit 22, and the second low threshold voltage calculation unit 304 is used to calculate the count value of the signal whose voltage value is greater than the second low threshold voltage threshold value in the high frequency signal output by the second band-pass filter amplifier circuit 22;
  • the first high threshold voltage threshold is greater than the first low threshold voltage threshold; the second high threshold voltage threshold is greater than the second low threshold voltage threshold.
  • the first high threshold voltage calculation unit 301 calculates the count value x1 of the signal whose voltage value is greater than the first high threshold voltage threshold in the high frequency signal output by the first band-pass filter amplifier circuit 21, and the first low threshold voltage calculation unit 302 is used to calculate the count value x1 of the high frequency signal output by the first band-pass filter amplifier circuit 21.
  • the main control module 30 calculates the arc energy value W1 of the high-frequency signal of the first preset frequency band according to x1, y1 and the energy coefficient k1, k1 is the energy coefficient of x1, specifically, the arc energy value W1 of the high-frequency signal of the first preset frequency band can be obtained by multiplying x1, y1 and k1; the second high threshold voltage calculation unit 303 calculates the count value x2 of the signal whose voltage value is greater than the second high threshold voltage threshold in the high-frequency signal output by the second band-pass filter amplifier circuit 22, the second low threshold voltage calculation unit 304 is used to calculate the count value y2 of the signal whose voltage value is greater than the second low threshold voltage threshold in the high-frequency signal output by the second band-pass filter amplifier circuit 22, the main control module 30 calculates the arc energy value W2 of the high-frequency signal of the second preset frequency band according to x2, y2 and the energy coefficient k2, k2 is the energy coefficient of x2, specifically, the arc energy value
  • FIG8 is a schematic diagram of the seventh structure of the arc signal processing circuit 100 provided in the present application.
  • the embodiment of FIG8 is different from the arc signal processing circuit 100 provided in FIG7 in that: the bandpass filter amplification module 20 further includes:
  • a third band-pass filter amplifier circuit 23 wherein the input end of the third band-pass filter amplifier circuit 23 is electrically connected to the output end of the amplifier module 10, and the output end of the third band-pass filter amplifier circuit 23 is electrically connected to the main control module 30;
  • the center frequency of the third band-pass filter amplifier circuit 23 is greater than the center frequency of the second band-pass filter amplifier circuit 22 .
  • the bandpass filter amplifier module 20 of the present application is provided with a third bandpass filter amplifier circuit 23 on the basis of setting the first bandpass filter amplifier circuit 21 and the second bandpass filter amplifier circuit 22. Therefore, the amplified signal output by the amplifier module 10 is passed through the third bandpass filter amplifier circuit 23 to obtain a high-frequency signal of the preset frequency band of the third bandpass filter amplifier circuit 23.
  • the main control module 30 obtains the high-frequency signal of the half-wave signal in the third preset frequency band and calculates the third arc energy value of the high-frequency signal of the half-wave signal in the third preset frequency band.
  • the amplitude of the half-wave signal, the first arc energy value, the second arc energy value and the third arc energy value are compared with the corresponding threshold value, and the arc signal is identified according to the comparison result to improve the accuracy of arc fault judgment of the electrical equipment.
  • the present application obtains high-frequency signals of three different preset frequency bands, so the stability of the obtained arc energy value can be further guaranteed, that is, if the arc signal has high-frequency signals in multiple frequency bands, the probability of arc fault is particularly high.
  • the bandpass frequency range of the third bandpass filter amplifier circuit 23 is 8MHz to 12MHz, that is, the center frequency of the third band-pass filter amplifier circuit 23 is 10MHz.
  • the high threshold voltage calculation unit 31 also includes:
  • a third high threshold voltage calculation unit 305 the input end of the third high threshold voltage calculation unit 305 is electrically connected to the output end of the third band-pass filter amplifier circuit 23, and the third high threshold voltage calculation unit 305 is used to calculate the count value of the signal whose voltage value is greater than the third high threshold voltage threshold value in the high frequency signal output by the third band-pass filter amplifier circuit 23;
  • the low threshold voltage calculation unit 32 further includes:
  • a third low threshold voltage calculation unit 306 the input end of the third low threshold voltage calculation unit 306 is electrically connected to the output end of the third band-pass filter amplifier circuit 23, and the third low threshold voltage calculation unit 306 is used to calculate the count value of the signal whose voltage value is greater than the third low threshold voltage threshold value in the high frequency signal output by the third band-pass filter amplifier circuit 23;
  • the third high threshold voltage threshold is greater than the third low threshold voltage threshold.
  • the third high threshold voltage calculation unit 305 is used to calculate the count value x3 of the signal whose voltage value is greater than the third high threshold voltage threshold in the high-frequency signal output by the third band-pass filter amplifier circuit 23, and the third low threshold voltage calculation unit 306 is used to calculate the count value y3 of the signal whose voltage value is greater than the third low threshold voltage threshold in the high-frequency signal output by the third band-pass filter amplifier circuit 23.
  • the main control module 30 then calculates the arc energy value W3 of the high-frequency signal of the third preset frequency band according to x3, y3 and the energy coefficient k3, where k3 is the energy coefficient of x3.
  • the arc energy value W3 of the high-frequency signal of the first preset frequency band can be obtained by multiplying x3, y3 and k3.
  • the bandpass filter amplifier module not only includes the first bandpass filter amplifier circuit, the second bandpass filter amplifier circuit, and the third bandpass filter amplifier circuit, but also can be provided with several bandpass filter amplifier circuits according to actual needs, and no specific limitation is made here.
  • Figure 9 is a flow chart of the first embodiment of the arc signal processing method provided by the present application.
  • the embodiment of the present application also provides an arc signal processing method, which includes the following steps:
  • N is greater than or equal to the second threshold, the first threshold is greater than the second threshold, if yes, perform the preset operation; if not, obtain the next half-wave signal of the arc signal, that is, perform step S10.
  • the preset operation may be to issue a fault alarm or disconnect the circuit that generates the arc signal.
  • the first threshold and the second threshold are determined by the current of the circuit generating the arc signal, and the first threshold and the second threshold can be determined by obtaining the current value obtained by obtaining the amplified signal.
  • step S50 includes:
  • the present application obtains the count value x of the signal in the high-frequency signal whose voltage value is greater than the high threshold voltage threshold, obtains the count value y of the signal in the high-frequency signal whose voltage value is greater than the low threshold voltage threshold, and then calculates the arc energy value W of the high-frequency signal according to x, y and the energy coefficient k, where k is the energy coefficient of x.
  • the arc energy value W of the high-frequency signal can be obtained by multiplying x, y and k.
  • FIG. 11 is a second embodiment of step S50 of the arc signal processing method provided by the present application.
  • the S40 step includes:
  • Step S50 includes:
  • Step S60 includes:
  • the arc signal includes a valid zero-crossing arc signal.
  • N N+1, N is the number of valid zero-crossing arc signals, and the initial value of N is zero.
  • the present application obtains a high-frequency signal of a half-wave signal in at least two preset frequency bands by filtering and amplifying the amplified signal, and at least two preset frequency bands do not overlap each other.
  • the energy thresholds of the high-frequency signals in at least two preset frequency bands can be set in the same way or in different ways. The specific setting method can be more practical.
  • the present application can calculate the arc energy value of the high-frequency signal in at least two preset frequency bands, and then compare the amplitude of the half-wave signal and the arc energy value of the high-frequency signal in at least two preset frequency bands with the corresponding threshold value, and identify whether the arc signal has a fault according to the comparison result, thereby improving the accuracy of arc fault judgment of the electrical equipment.
  • the present application obtains high-frequency signals of the half-wave signal in three preset frequency bands by filtering and amplifying the amplified signal, and the three preset frequency bands do not overlap with each other.
  • the arc energy values of the high-frequency signals of the half-wave signal in the three preset frequency bands are calculated, which are the first arc energy value, the second arc energy value and the third arc energy value respectively. Then, the amplitude of the half-wave signal, the first arc energy value, the second arc energy value and the third arc energy value are compared with the corresponding threshold value.
  • the arc signal When the amplitude of the half-wave signal, the first arc energy value, the second arc energy value and the third arc energy value are all greater than the corresponding threshold value, the arc signal includes a valid zero-crossing arc signal.
  • N N+1, N is the number of valid zero-crossing arc signals, and the initial value of N is zero. Whether the arc signal is faulty is identified based on the comparison result, thereby improving the accuracy of arc fault judgment of electrical equipment.
  • Step S50 includes:
  • FIG12 is a flow chart of a second embodiment of the arc signal processing method provided by the present application.
  • the difference between this embodiment and the arc signal processing method provided by FIG9 is that:
  • the arc signal processing method further includes:
  • Whether a series fault arc or a parallel fault arc occurs can be determined based on the current rise rate. For example, a parallel fault arc is similar to a short circuit, and the slope of the current is very large. When a parallel fault arc occurs, the current rise rate is greater than or equal to the rise threshold. Since the parallel fault arc is more dangerous, a fault alarm is issued or the circuit that generates the arc signal is disconnected, thereby improving the safety performance of the electrical equipment.
  • FIG13 is a flow chart of the third embodiment of the arc signal processing method provided by the present application.
  • the difference between this embodiment and the arc signal processing method provided in FIG9 is that:
  • Step S20 includes:
  • Step S40 includes:
  • the filtered and amplified signal is filtered and amplified to obtain a high-frequency signal of the half-wave signal in a preset frequency band.
  • the amplified signal can be processed by high-pass filtering to more effectively improve the detection accuracy, thereby ensuring the accuracy of high-frequency signals.
  • the present application also provides an electrical device, which includes the above-mentioned arc signal processing circuit 100.
  • the beneficial effects of the electrical equipment provided by the embodiment of the present application are the same as the beneficial effects of the arc signal processing circuit 100 provided by the above technical solution, which will not be elaborated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)

Abstract

本申请提供一种电弧信号处理电路及方法、电器设备,其中电弧信号处理电路包括:放大模块,放大模块的输入端接入电弧信号,放大模块用于对所述电弧信号进行放大后输出放大信号;带通滤波放大模块,带通滤波放大模块的输入端与放大模块的输出端电连接,带通滤波放大模块用于对放大模块输出的放大信号进行滤波放大后输出预设频段的高频信号;主控模块,主控模块与放大模块的输出端电连接,主控模块与带通滤波放大模块的输出端电连接。本申请通过将半波信号的幅值以及所述半波信号在高频信号的电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。

Description

电弧信号处理电路及方法、电器设备
本申请要求于2022年11月29日在中国专利局提交的、申请号为202211516509.2、申请名称为“电弧信号处理电路及方法、电器设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电器设备技术领域,具体涉及一种电弧信号处理电路及方法、电器设备。
背景技术
电弧故障为电器设备中可能出现的一种常见故障,具体该故障产生的原因包括多种,例如电器触头的接触不良或者电器电路中的绝缘材质发生损坏时,电路中的电弧便出现故障,导致该电器发生自燃,更严重时,还能导致火灾的发生。因此,若电弧出现故障时,能够将故障的电器从电路中断开,则能极大的提高安全性。由此可见,如何识别电路中的电弧是否发生故障,就成了问题的关键。
技术问题
在以往的电弧信号采样技术中,通常采用单一固定频点的信号作为电弧故障的判断依据,但是单一的故障电弧信号具有随机性强以及特征不明显的特点,而且这种方式会受到负载工作噪声的干扰,从而导致电器设备的电弧故障判断不准确。
技术解决方案
本申请提供一种电弧信号处理电路及方法、电器设备,以提高电器设备的电弧故障判断准确性。
第一方面,本申请提供一种电弧信号处理电路,其包括:
放大模块,放大模块的输入端接入电弧信号,放大模块用于对电弧信号进行放大后输出放大信号;
带通滤波放大模块,带通滤波放大模块的输入端与放大模块的输出端电连接,带通滤波放大模块用于对放大模块输出的放大信号进行滤波放大后输出预设频段的高频信号;
主控模块,主控模块与放大模块的输出端电连接,主控模块与带通滤波放大 模块的输出端电连接,主控模块用于接收放大模块输出的放大信号和带通滤波放大模块输出的高频信号。
可选的,在本申请一些实施例中,主控模块包括:
高门限电压计算单元,高门限电压计算单元的输入端与带通滤波放大模块的输出端电连接,高门限电压计算单元用于计算得到带通滤波放大模块输出的高频信号中电压值大于高门限电压阈值的信号的计数值;
低门限电压计算单元,低门限电压计算单元的输入端与带通滤波放大模块的输出端电连接,低门限电压计算单元用于计算得到带通滤波放大模块输出的高频信号中电压值大于低门限电压阈值的信号的计数值;高门限电压阈值大于低门限电压阈值;
主控模块根据高频信号中电压值大于高门限电压阈值的信号的计数值、高频信号中电压值大于低门限电压阈值的信号的计数值以及能量系数k计算得到高频信号的电弧能量值,k为高频信号中电压值大于高门限电压阈值的信号的计数值的能量系数。
可选的,在本申请一些实施例中,放大模块包括:
放大电路,放大电路的输入端接入电弧信号;
高通滤波放大电路,高通滤波放大电路的输入端与放大电路的输出端电连接,高通滤波放大电路的输出端分别与带通滤波放大模块的输入端、主控模块电连接。
可选的,在本申请一些实施例中,放大电路的输出端与主控模块电连接。
可选的,在本申请一些实施例中,带通滤波放大模块包括:
第一带通滤波放大电路,第一带通滤波放大电路的输入端与放大模块的输出端电连接,第一带通滤波放大电路的输出端与主控模块电连接;
第二带通滤波放大电路,第二带通滤波放大电路的输入端与放大模块的输出端电连接,第二带通滤波放大电路的输出端与主控模块电连接;
第一带通滤波放大电路的中心频率小于第二带通滤波放大电路的中心频率。
可选的,在本申请一些实施例中,高门限电压计算单元包括:
第一高门限电压计算单元,第一高门限电压计算单元的输入端与第一带通滤波放大电路的输出端电连接,第一高门限电压计算单元用于计算得到第一带通滤波放大电路输出的高频信号中电压值大于第一高门限电压阈值的信号的计数值;
第二高门限电压计算单元,第二高门限电压计算单元的输入端与第二带通滤波放大电路的输出端电连接,第二高门限电压计算单元用于计算得到第二带通滤波放大电路输出的高频信号中电压值大于第二高门限电压阈值的信号的计数值;
低门限电压计算单元包括:
第一低门限电压计算单元,第一低门限电压计算单元的输入端与第一带通滤波放大电路的输出端电连接,第一低门限电压计算单元用于计算得到第一带通滤波放大电路输出的高频信号中电压值大于第一低门限电压阈值的信号的计数值;
第二低门限电压计算单元,第二低门限电压计算单元的输入端与第二带通滤波放大电路的输出端电连接,第二低门限电压计算单元用于计算得到第二带通滤波放大电路输出的高频信号中电压值大于第二低门限电压阈值的信号的计数值;
第一高门限电压阈值大于第一低门限电压阈值,第二高门限电压阈值大于第二低门限电压阈值。
可选的,在本申请一些实施例中,带通滤波放大模块还包括:
第三带通滤波放大电路,第三带通滤波放大电路的输入端与放大模块的输出端电连接,第三带通滤波放大电路的输出端与主控模块电连接;
第三带通滤波放大电路的中心频率大于第二带通滤波放大电路的中心频率。
可选的,在本申请一些实施例中,高门限电压计算单元还包括:
第三高门限电压计算单元,第三高门限电压计算单元的输入端与第三带通滤波放大电路的输出端电连接,第三高门限电压计算单元用于计算得到第三带通滤波放大电路输出的高频信号中电压值大于第三高门限电压阈值的信号的计数值;
低门限电压计算单元还包括:
第三低门限电压计算单元,第三低门限电压计算单元的输入端与第三带通滤波放大电路的输出端电连接,第三低门限电压计算单元用于计算得到第三带通滤波放大电路输出的高频信号中电压值大于第三低门限电压阈值的信号的计数值;
第三高门限电压阈值大于第三低门限电压阈值。
可选的,在本申请一些实施例中,高门限电压计算单元包括:
第一比较器,第一比较器的第一输入端接入高门限电压阈值的信号,第一比较器的第二输入端与带通滤波放大模块的输出端电连接;
第一定时器,第一定时器的输入端与第一比较器的输出端电连接。
可选的,在本申请一些实施例中,低门限电压计算单元包括:
第二比较器,第二比较器的第一输入端接入低门限电压阈值的信号,第二比较器的第二输入端与带通滤波放大模块的输出端电连接;
第二定时器,第二定时器的输入端与第二比较器的输出端电连接。
可选的,在本申请一些实施例中,电弧信号处理电路还包括:
电压采样电路,电压采样电路的输入端与电器设备产生电弧信号的回路电连接,电压采样电路用于采集产生电弧信号的回路的电压信号,电压采样电路的输出端与主控模块电连接。
第二方面,本申请还提供一种电弧信号处理方法,其包括:
获取电弧信号的半波信号,令M=M+1,M为半波信号的个数,M的初始值为零;
对电弧信号进行放大处理得到放大信号;
根据放大信号得到半波信号的幅值;
对放大信号进行滤波放大得到半波信号在预设频段的高频信号;
计算得到高频信号的电弧能量值;
判断半波信号的幅值是否大于幅值阈值,高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零;
判断M是否大于或等于第一阈值,如果否则获取电弧信号的下一个半波信号,如果是则执行下一步骤;
判断N是否大于或等于第二阈值,第一阈值大于第二阈值,如果是则执行预设操作,如果否则获取电弧信号的下一个半波信号。
可选的,在本申请一些实施例中,计算得到高频信号的电弧能量值的步骤,包括:
计算得到高频信号中电压值大于高门限电压阈值的信号的计数值x;
计算得到高频信号中电压值大于低门限电压阈值的信号的计数值y,高门限电压阈值大于低门限电压阈值;
根据x、y以及能量系数k计算得到高频信号的电弧能量值,k为x的能量系数。
可选的,在本申请一些实施例中,对放大信号进行滤波放大得到半波信号在预设频段的高频信号的步骤,包括:
对放大信号进行滤波放大得到半波信号在至少两个预设频段的高频信号,至少两个预设频段相互不重叠;
计算得到高频信号的电弧能量值的步骤,包括:
计算得到至少两个预设频段的高频信号的电弧能量值;
判断半波信号的幅值是否大于幅值阈值,高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零的步骤,包括:
判断半波信号的幅值是否大于幅值阈值,每个预设频段的高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零。
可选的,在本申请一些实施例中,计算得到高频信号的电弧能量值的步骤,包括:
计算得到每个预设频段的高频信号中电压值大于高门限电压阈值的信号的计数值x,
计算得到每个预设频段的高频信号中电压值大于低门限电压阈值的信号的计数值y,高门限电压阈值大于低门限电压阈值,
根据x、y以及能量系数k计算得到至少两个预设频段的高频信号的电弧能量值,k为x的能量系数。
可选的,在本申请一些实施例中,在判断半波信号的幅值是否大于幅值阈值,高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零的步骤之前,电弧信号处理方法还包括:
根据放大信号得到放大信号的电流上升率;
判断电流上升率是否大于或等于上升阈值,如果否则执行下一个步骤,如果是则执行预设操作。
可选的,在本申请一些实施例中,对电弧信号进行放大处理得到放大信号的步骤,包括:
对电弧信号进行放大处理得到放大信号;
对放大信号进行高通滤波放大处理得到滤波放大信号;对放大信号进行滤波放大得到半波信号在预设频段的高频信号的步骤,包括:
对滤波放大信号进行滤波放大得到半波信号在预设频段的高频信号。
第三方面,本申请还提供一种电器设备,其包括上述的电弧信号处理电路。
有益效果
本申请提供一种电弧信号处理电路及方法、电器设备,其中电弧信号处理电路包括:放大模块,放大模块的输入端接入电弧信号,放大模块用于对电弧信号进行放大后输出放大信号;带通滤波放大模块,带通滤波放大模块的输入端与放大模块的输出端电连接,带通滤波放大模块用于对放大模块输出的放大信号进行滤波放大后输出预设频段的高频信号;主控模块,主控模块与放大模块的输出端电连接,主控模块与带通滤波放大模块的输出端电连接,主控模块用于接收放大模块输出的放大信号和带通滤波放大模块输出的高频信号。本申请通过主控模块获得半波信号的幅值以及半波信号在预设频段的高频信号的电弧能量值,再将半波信号的幅值以及高频信号的电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的电弧信号处理电路的第一结构的示意图;
图2是交流信号的电流波形图以及交流信号在过零点处的电压示意图;
图3是本申请提供的电弧信号处理电路的第二结构的示意图;
图4是本申请提供的电弧信号处理电路的第三结构的示意图;
图5是本申请提供的电弧信号处理电路的第四结构的示意图;
图6是本申请提供的电弧信号处理电路的第五结构的示意图;
图7是本申请提供的电弧信号处理电路的第六结构的示意图;
图8是本申请提供的电弧信号处理电路的第七结构的示意图;
图9是本申请提供的电弧信号处理方法的第一实施例的流程图;
图10是本申请提供的电弧信号处理方法的S50步骤的第一实施例的流程图;
图11是本申请提供的电弧信号处理方法的S50步骤的第二实施例的流程图;
图12是本申请提供的电弧信号处理方法的第二实施例的流程图;
图13是本申请提供的电弧信号处理方法的第三实施例的流程图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“一种”、“一个”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“一种”、“一个”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
下面首先对本申请实施例中涉及到的一些基本概念进行介绍:
电弧:电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子。触头金属表面因一次电子发射(热离子发射、场致发射或光电发射)导致电子逸出,间隙中气体原子或分子会因电离(碰撞电离、光电离和热电离)而产生电子和离子。另外,电子或离子轰击发射表面又会引起 二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧。
电弧故障:电弧故障是指带电线路中出现非人类意愿电弧的一种电气故障,具体可以按照电弧故障发生时电弧与电路连接关系,可将电弧故障(Arc Fault,AF)分为串联电弧故障(Series Arc Fault,SAF)、并联电弧故障(Parallel Arc Fault,PAF)、接地电弧故障(Grounding Arc Fault,GAF)等。
本申请提供一种电弧信号处理电路及方法、电器设备,以下进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。
请参阅图1,图1是本申请提供的电弧信号处理电路100的第一结构的示意图。本申请提供一种电弧信号处理电路100,其包括放大模块10、带通滤波放大模块20和主控模块30。
放大模块10的输入端接入电弧信号;带通滤波放大模块20的输入端与放大模块10的输出端电连接,带通滤波放大模块20用于对放大模块10输出的放大信号进行滤波放大后输出预设频段的高频信号;主控模块30与放大模块10的输出端电连接,主控模块30与带通滤波放大模块20的输出端电连接,主控模块30用于接收放大模块10输出的放大信号和带通滤波放大模块20输出的高频信号。
获取电弧信号的半波信号,主控模块令M=M+1,M为半波信号的个数,M的初始值为零;主控模块根据放大信号得到半波信号的幅值、根据高频信号得到半波信号在预设频段的高频信号的电弧能量;在半波信号的幅值大于幅值阈值且高频信号的电弧能量值大于能量阈值时,主控模块令N=N+1,N为有效过零电弧信号的个数,N的初始值为零;当M大于或等于第一阈值时,主控模块判断N是否大于或等于第二阈值,第一阈值大于第二阈值,如果N大于或等于第二阈值则主控模块执行预设操作,如果N小于第二阈值则主控模块获取电弧信号的下一个半波信号。
其中,在实际情况中,产生电弧信号的设备或者电器件为多种,例如:当开关电器开断电路,电压和电流达到一定值时,触头刚刚分离后,触头之间就会产生强力的白光则会产生电弧,此时将该电弧信号处理电路100与电器的开关连接即可。因此,图1中未示出放大模块10与产生电弧信号的设备的连接结构,具体情况可以根据发送电弧信号的设备进行相应的连接,此处不做限定。
而且,在一些实施例中,高频信号的频率大于500kHz。
本申请利用放大模块10获得电弧信号的放大信号,然后将放大信号分别输送至带通滤波放大模块20和主控模块30,带通滤波放大模块20对放大信号进行滤波放大得到半波信号在预设频段的高频信号,当设备的旁路发生电弧故障时,电弧产生的高频信息会通过电力线传导至被测电路,而电弧产生的低频信息则不会大量的传导至被测电路,因此通过获得电弧信号的预设频段的高频信号,从而更加准确获得电弧信号的故障信息。本申请在获得放大信号和半波信号在预设频段的高频信号后,通过主控模块30获得半波信号的幅值以及高频信号的电弧能量值,再将半波信号的幅值以及高频信号的电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。
由于故障的电弧信号的幅值会较大,因此本申请采用半波信号的幅值作为判断是否存在电弧故障的一个判据,而故障的电弧信号在高频段的能量较大,因此本申请采用高频信号的电弧能量值作为判断是否存在电弧故障的另一个判据,从而提高电器设备的电弧故障判断准确性。
请参考图2,图2是交流信号的电流波形图以及交流信号在过零点处的电压示意图。交流信号每个实际电流一周期内会存在2个过零信号(与Y轴的交点),即实际电流的每个周期最多会有2个电弧信号波形,即两个波形对应2个过零电弧信号。而实际电流在过零点处则会产生电弧信号,其中有些电弧信号的电压幅值会大于第一阈值,而有些电弧信号的电压幅值会大于第二阈值且小于第一阈值。在通常情况下,电弧越剧烈,电弧信号的幅值越大,电弧信号的连续性越差,则相对于正常电弧信号,故障的电弧信号中电压值大于第一阈值的信号的数量增加,而电压值大于第二阈值的信号的数量减少。
具体地,获取电弧信号的半波信号后,主控模块30令M=M+1,M为半波信号的个数,M的初始值为零;当半波信号的幅值大于幅值阈值,且高频信号的电弧能量值大于能量阈值,则电弧信号包括有效过零电弧信号,主控模块30令N=N+1,N为有效过零电弧信号的个数,N的初始值为零;当M大于或等于第一阈值,且N大于或等于第二阈值,第一阈值大于第二阈值,主控模块30则判定为发生电弧故障,并发出故障警报或断开产生电弧信号的回路。其中第一阈 值和第二阈值是由产生电弧信号的回路的电流决定,主控模块30可以通过获得放大信号而得到电流值从而确定第一阈值和第二阈值。另外主控模块30也可以通过接入电弧信号,而获得电弧信号,也可以通过间接方式获得。
例如:产生电弧信号的回路的实际电流为3A时,通过预设的对应关系表格确定电流值与阈值的关系,则可以确定电弧信号波形个数的第一阈值则为50,而第二阈值为30;若为产生电弧信号的回路的实际电流为6A时,第一阈值可以为40而第二阈值为25等等,达到一个电弧电流越大,动作时间越快的目的。其中,电弧信号波形为正弦或余弦形状,因此交流信号每个实际电流一周期内会存在2个过零信号(与Y轴的交点),即实际电流的每个周期最多会有2个电弧信号波形,即两个波形对应2个过零电弧信号。此外,电弧信号波形是否有效,可以根据波形的过零附近电流变化量的大小进行确定,例如3A的电器,正常工作时,电流是正弦波变化的,但存在电弧时电流的过零点附近会存在平肩现象,即电流的变化量降低,如果主控模块30检测到该电流的变化量低于设定阈值时,则可以确定对应周期的电弧出现了异常,反之则正常。综上,例如:当电流回路中电流为3A时,若50个持续的半波信号中存在30个有效过零电弧信号时,则判定为发生电弧故障,并发出故障警报或断开产生电弧信号的回路,反之则判定为不存在电弧故障。
其中,主控模块30可以包括微控制芯片,或者其他控制芯片。
请参阅图3,图3是本申请提供的电弧信号处理电路100的第二结构的示意图。电弧信号由电器设备产生,图3的实施例与图1提供的电弧信号处理电路100不同的是:电弧信号处理电路100还包括:
电压采样电路40,电压采样电路40的输入端与电器设备产生电弧信号的回路电连接,电压采样电路40用于采集产生电弧信号的回路的电压信号,电压采样电路40的输出端与主控模块30电连接。
本申请通过电压采样电路40获得产生电弧信号的回路的电压信号,主控模块30通过电压信号得到电压频率F,从而可以得知在正常情况下,电弧信号在每1/F秒会有两个过零点。
请参阅图4,图4是本申请提供的电弧信号处理电路100的第三结构的示意图。图4的实施例与图1提供的电弧信号处理电路100不同的是:主控模块30 包括:
高门限电压计算单元31,高门限电压计算单元31的输入端与带通滤波放大模块20的输出端电连接,高门限电压计算单元31用于计算得到带通滤波放大模块20输出的高频信号中电压值大于高门限电压阈值的信号的计数值;
低门限电压计算单元32,低门限电压计算单元32的输入端与带通滤波放大模块20的输出端电连接,低门限电压计算单元32用于计算得到带通滤波放大模块20输出的高频信号中电压值大于低门限电压阈值的信号的计数值;高门限电压阈值大于低门限电压阈值;
主控模块根据高频信号中电压值大于高门限电压阈值的信号的计数值、高频信号中电压值大于低门限电压阈值的信号的计数值以及能量系数k计算得到高频信号的电弧能量值,k为高频信号中电压值大于高门限电压阈值的信号的计数值的能量系数。
因此本申请通过高门限电压计算单元31获得带通滤波放大模块20输出的高频信号中电压值大于高门限电压阈值的信号的计数值x,通过低门限电压计算单元32获得带通滤波放大模块20输出的高频信号中电压值大于低门限电压阈值的信号的计数值y,再根据x、y以及能量系数k计算得到高频信号的电弧能量值W,k为x的能量系数,具体地,高频信号的电弧能量值W可以通过x、y以及k相乘而得到。其中能量系数可以通过预设频率查询能量系数与频率范围的关系表获得,也可以根据预设频率进行计算得到。
进一步地,高门限电压计算单元31和低门限电压计算单元32可以设置在微控制芯片的内部,可以设置在微控制芯片的外部并与微控制芯片电连接。
请参阅图5,图5是本申请提供的电弧信号处理电路100的第四结构的示意图。图5的实施例与图4提供的电弧信号处理电路100不同的是:高门限电压计算单元31包括:
第一比较器311,第一比较器311的第一输入端接入高门限电压阈值的信号,第一比较器311的第二输入端与带通滤波放大模块20的输出端电连接;
第一定时器312,第一定时器312的输入端与第一比较器311的输出端电连接。
也即是,当带通滤波放大模块20输出的高频信号中出现电压值大于高门限 电压阈值的信号时,第一比较器311的输出端向第一定时器312的输入端输出一个信号,第一定时器312计算加1,直到带通滤波放大模块20输出的高频信号中电压值大于高门限电压阈值的信号的计数值x。
低门限电压计算单元32包括:
第二比较器321,第二比较器321的第一输入端接入低门限电压阈值的信号,第二比较器321的第二输入端与带通滤波放大模块20的输出端电连接;
第二定时器322,第二定时器322的输入端与第二比较器321的输出端电连接。
也即是,当带通滤波放大模块20输出的高频信号中出现电压值大于低门限电压阈值的信号时,第二比较器321的输出端向第二定时器322的输入端输出一个信号,第二定时器322计算加1,直到带通滤波放大模块20输出的高频信号中电压值大于低门限电压阈值的信号的计数值y。
请参阅图6,图6是本申请提供的电弧信号处理电路100的第五结构的示意图。图6的实施例与图1提供的电弧信号处理电路100不同的是:放大模块10包括:
放大电路11,放大电路11的输入端接入电弧信号;
高通滤波放大电路12,高通滤波放大电路12的输入端与放大电路11的输出端电连接,高通滤波放大电路12的输出端分别与带通滤波放大模块20的输入端、主控模块30电连接。
放大电路11用于对电弧信号进行放大处理得到放大信号,然后高通滤波放大电路12对放大信号进行滤波放大处理得到滤波放大信号,并将滤波放大信号分别传输至该带通滤波放大模块20和主控电路。
根据上述实施例可得,将电弧信号进行多次放大后,能够更有效的提高检测精确度,但是受制于电路板本身的搭载能力以及相应的制作成本的限制,可以将放大次数设置为3次,即设置为放大电路11、高通滤波放大电路12和带通滤波放大模块20进行三次放大,这样可以在满足有效的检测的精确度下,节省一定的成本。例如:现代电器为了使用的便携性均会尽力的减小电器的体积,例如电视越来越薄,加湿器越来越小等等,此时电器的内部留给电路板空间也越来越小。在越小的电路板上集成越多的模块,技术难度以及被集成模块的增多,均会增加 电器相应的成本,因此集成三级放大模块可以有效避免成本的上升。
进一步地,在一些实施例中,放大电路11的输出端与主控模块30电连接。
本申请通过主控模块30获得放大电路11的放大信号,主控模块30可以得到产生电弧信号的回路的实际电流,主控模块30根据产生电弧信号的回路的实际电流可以通过预设的对应关系表格确定电流值与阈值的关系,则可以确定电弧信号波形个数的第一阈值以及第二阈值。
请参阅图7,图7是本申请提供的电弧信号处理电路100的第六结构的示意图。图7的实施例与图1提供的电弧信号处理电路100不同的是:带通滤波放大模块20包括:
第一带通滤波放大电路21,第一带通滤波放大电路21的输入端与放大模块10的输出端电连接,第一带通滤波放大电路21的输出端与主控模块30电连接;
第二带通滤波放大电路22,第二带通滤波放大电路22的输入端与放大模块10的输出端电连接,第二带通滤波放大电路22的输出端与主控模块30电连接;
第一带通滤波放大电路21的中心频率小于第二带通滤波放大电路22的中心频率。
本申请的带通滤波放大模块20通过设置有两个带通滤波放大电路11,即是第一带通滤波放大电路21和第二带通滤波放大电路22,因此放大模块10输出的放大信号分别经过第一带通滤波放大电路21和第二带通滤波放大电路22,得到半波信号在第一预设频段的高频信号和半波信号在第二预设频段的高频信号,主控模块30获得半波信号在第一预设频段的高频信号和半波信号在第二预设频段的高频信号后,分别计算得到半波信号在第一预设频段的高频信号的第一电弧能量值和半波信号在第二预设频段的高频信号的第二电弧能量值。再将半波信号的幅值、第一电弧能量值以及第二电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。因为只有单一预设频段的高频信号,可能会存在电弧信号出现异常的情况,从而导致电弧故障判断出现误判,而增加了不同预设频段的高频信号,因此可以保证所得到电弧能量值的稳定性,也即是如果电弧信号在多个频段出现高频信号,则产生电弧故障的几率特别大。
半波信号在第一预设频段的高频信号的第一能量阈值和半波信号在第二预 设频段的高频信号的第二能量阈值可以采用相同的设置,也可以采用不同的设置。具体设置方式可以更加实际需求。
进一步地,在一些实施例中,第一带通滤波放大电路21的带通频率范围为500kHz至2MHz,第二带通滤波放大电路22的带通频率范围为3MHz至6MHz。也即是第一带通滤波放大电路21的中心频率为1.25MHz,第二带通滤波放大电路22的中心频率为4.5MHz。
进一步地,在一些实施例中,高门限电压计算单元31包括:
第一高门限电压计算单元301,第一高门限电压计算单元301的输入端与第一带通滤波放大电路21的输出端电连接,第一高门限电压计算单元301用于计算得到第一带通滤波放大电路21输出的高频信号中电压值大于第一高门限电压阈值的信号的计数值;
第二高门限电压计算单元303,第二高门限电压计算单元303的输入端与第二带通滤波放大电路22的输出端电连接,第二高门限电压计算单元301用于计算得到第二带通滤波放大电路21输出的高频信号中电压值大于第二高门限电压阈值的信号的计数值;
低门限电压计算单元32包括:
第一低门限电压计算单元302,第一低门限电压计算单元302的输入端与第一带通滤波放大电路21的输出端电连接,第一低门限电压计算单元302用于计算得到第一带通滤波放大电路21输出的高频信号中电压值大于第一低门限电压阈值的信号的计数值;
第二低门限电压计算单元304,第二低门限电压计算单元304的输入端与第二带通滤波放大电路22的输出端电连接,第二低门限电压计算单元304用于计算得到第二带通滤波放大电路22输出的高频信号中电压值大于第二低门限电压阈值的信号的计数值;
第一高门限电压阈值大于第一低门限电压阈值;第二高门限电压阈值大于第二低门限电压阈值。
也即是,通过第一高门限电压计算单元301计算得到第一带通滤波放大电路21输出的高频信号中电压值大于第一高门限电压阈值的信号的计数值x1,通过第一低门限电压计算单元302用于计算得到第一带通滤波放大电路21输出的高 频信号中电压值大于第一低门限电压阈值的信号的计数值y1,主控模块30再根据x1、y1以及能量系数k1计算得到第一预设频段的高频信号的电弧能量值W1,k1为x1的能量系数,具体地,第一预设频段的高频信号的电弧能量值W1可以通过x1、y1以及k1相乘而得到;通过第二高门限电压计算单元303计算得到第二带通滤波放大电路22输出的高频信号中电压值大于第二高门限电压阈值的信号的计数值x2,通过第二低门限电压计算单元304用于计算得到第二带通滤波放大电路22输出的高频信号中电压值大于第二低门限电压阈值的信号的计数值y2,主控模块30再根据x2、y2以及能量系数k2计算得到第二预设频段的高频信号的电弧能量值W2,k2为x2的能量系数,具体地,第二预设频段的高频信号的电弧能量值W2可以通过x2、y2以及k2相乘而得到。
请参阅图8,图8是本申请提供的电弧信号处理电路100的第七结构的示意图。图8的实施例与图7提供的电弧信号处理电路100不同的是:带通滤波放大模块20还包括:
第三带通滤波放大电路23,第三带通滤波放大电路23的输入端与放大模块10的输出端电连接,第三带通滤波放大电路23的输出端与主控模块30电连接;
第三带通滤波放大电路23的中心频率大于第二带通滤波放大电路22的中心频率。
本申请的带通滤波放大模块20在设置第一带通滤波放大电路21和第二带通滤波放大电路22的基础上,再设有第三带通滤波放大电路23,因此放大模块10输出的放大信号经过第三带通滤波放大电路23得到第第三带通滤波放大电路23预设频段的高频信号,主控模块30获得半波信号在第三预设频段的高频信号后计算得到半波信号在第三预设频段的高频信号的第三电弧能量值。再将半波信号的幅值、第一电弧能量值、第二电弧能量值以及第三电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。因为只有单一预设频段的高频信号,可能会存在电弧信号出现异常的情况,从而导致电弧故障判断出现误判,而本申请通过获得三个不同预设频段的高频信号,因此可以进一步保证所得到电弧能量值的稳定性,也即是如果电弧信号在多个频段出现高频信号,则产生电弧故障的几率特别大。
进一步地,在一些实施例中,第三带通滤波放大电路23的带通频率范围为 8MHz至12MHz,也即是第三带通滤波放大电路23的中心频率为10MHz。进一步地,高门限电压计算单元31还包括:
第三高门限电压计算单元305,第三高门限电压计算单元305的输入端与第三带通滤波放大电路23的输出端电连接,第三高门限电压计算单元305用于计算得到第三带通滤波放大电路23输出的高频信号中电压值大于第三高门限电压阈值的信号的计数值;
低门限电压计算单元32还包括:
第三低门限电压计算单元306,第三低门限电压计算单元306的输入端与第三带通滤波放大电路23的输出端电连接,第三低门限电压计算单元306用于计算得到第三带通滤波放大电路23输出的高频信号中电压值大于第三低门限电压阈值的信号的计数值;
第三高门限电压阈值大于第三低门限电压阈值。
也即是,通过第三高门限电压计算单元305计算得到第三带通滤波放大电路23输出的高频信号中电压值大于第三高门限电压阈值的信号的计数值x3,通过第三低门限电压计算单元306用于计算得到第三带通滤波放大电路23输出的高频信号中电压值大于第三低门限电压阈值的信号的计数值y3,主控模块30再根据x3、y3以及能量系数k3计算得到第三预设频段的高频信号的电弧能量值W3,k3为x3的能量系数,具体地,第一预设频段的高频信号的电弧能量值W3可以通过x3、y3以及k3相乘而得到。
当然,带通滤波放大模块不仅只包括第一带通滤波放大电路、第二带通滤波放大电路、第三带通滤波放大电路,可以根据实际需要设置几个带通滤波放大电路,在此不做具体限制。
请参阅图9,图9是本申请提供的电弧信号处理方法的第一实施例的流程图。对应地,本申请实施例还提供一种电弧信号处理方法,其包括以下步骤:
S10、获取电弧信号的半波信号,令M=M+1,M为半波信号的个数,M的初始值为零;也即是每次获取电弧信号的一个半波信号,都使得M的数值自动增加1。
S20、对电弧信号进行放大处理得到放大信号。
S30、根据放大信号得到半波信号的幅值。
S40、对放大信号进行滤波放大得到半波信号在预设频段的高频信号。
S50、计算得到高频信号的电弧能量值。
S60、判断半波信号的幅值是否大于幅值阈值,高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零。
S70、判断M是否大于或等于第一阈值,如果否则获取电弧信号的下一个半波信号,也即是执行步骤S10;如果是,则执行下一步骤,也即是执行步骤S80。
S80、判断N是否大于或等于第二阈值,第一阈值大于第二阈值,如果是则执行预设操作;如果否则获取电弧信号的下一个半波信号,也即是执行步骤S10。其中执行预设操作可以为发出故障警报或断开产生电弧信号的回路。
本申请在获取电弧信号后,令M=M+1,M为半波信号的个数,M的初始值为零;当半波信号的幅值大于幅值阈值,且高频信号的电弧能量值大于能量阈值,则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零;当M大于或等于第一阈值,且N大于或等于第二阈值,第一阈值大于第二阈值,则判定为发生电弧故障,并发出故障警报或断开产生电弧信号的回路。其中第一阈值和第二阈值是由产生电弧信号的回路的电流决定,可以通过获得放大信号而得到电流值从而确定第一阈值和第二阈值。
请参阅图10,图10是本申请提供的电弧信号处理方法的S50步骤的第一实施例的流程图。在本实施例中,S50步骤,包括:
S51、计算得到高频信号中电压值大于高门限电压阈值的信号的计数值x;
S52、计算得到高频信号中电压值大于低门限电压阈值的信号的计数值y,高门限电压阈值大于低门限电压阈值;
S53、根据x、y以及能量系数k计算得到高频信号的电弧能量值,k为x的能量系数。
因此,本申请通过获得高频信号中电压值大于高门限电压阈值的信号的计数值x,通过获得高频信号中电压值大于低门限电压阈值的信号的计数值y,再根据x、y以及能量系数k计算得到高频信号的电弧能量值W,k为x的能量系数,具体地,高频信号的电弧能量值W可以通过x、y以及k相乘而得到。
请参阅图11,图11是本申请提供的电弧信号处理方法的S50步骤的第二实 施例的流程图。本实施例与图9提供的电弧信号处理方法不同的是:
S40步骤包括:
对放大信号进行滤波放大得到半波信号在至少两个预设频段的高频信号,至少两个预设频段相互不重叠;
S50步骤,包括:
计算得到至少两个预设频段的高频信号的电弧能量值;
S60步骤,包括:
判断半波信号的幅值是否大于幅值阈值,每个预设频段的高频信号的电弧能量值是否大于能量阈值,如果是则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零。
也即是,本申请通过对放大信号进行滤波放大得到半波信号在至少两个预设频段的高频信号,至少两个预设频段相互不重叠,至少两个预设频段的高频信号的能量阈值可以采用相同的设置,也可以采用不同的设置,具体设置方式可以更加实际需求。因此本申请可以计算得到至少两个预设频段的高频信号的电弧能量值,再将半波信号的幅值、至少两个预设频段的高频信号的电弧能量值与对应阈值进行对比,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。因为只有单一预设频段的高频信号,可能会存在电弧信号出现异常的情况,从而导致电弧故障判断出现误判,而获得至少两个预设频段的高频信号,而且至少两个预设频段相互不重叠,因此可以保证所得到电弧能量值的稳定性,也即是如果电弧信号在多个频段出现高频信号,则产生电弧故障的几率特别大。
在一些实施例中,本申请通过对放大信号进行滤波放大得到半波信号在三个预设频段的高频信号,三个预设频段相互不重叠,计算得到半波信号在三个预设频段的高频信号的电弧能量值,分别为第一电弧能量值、第二电弧能量值以及第三电弧能量值,再将半波信号的幅值、第一电弧能量值、第二电弧能量值以及第三电弧能量值与对应阈值进行对比,当半波信号的幅值、第一电弧能量值、第二电弧能量值以及第三电弧能量值都大于对应阈值时,则电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零,根据对比结果来识别电弧信号是否发生故障,从而提高电器设备的电弧故障判断准确性。
S50步骤,包括:
S54、计算得到每个预设频段的高频信号中电压值大于高门限电压阈值的信号的计数值x,
S55、计算得到每个预设频段的高频信号中电压值大于低门限电压阈值的信号的计数值y,高门限电压阈值大于低门限电压阈值,
S56、根据x、y以及能量系数k计算得到至少两个预设频段的高频信号的电弧能量值,k为x的能量系数。
请参阅图12,图12是本申请提供的电弧信号处理方法的第二实施例的流程图。本实施例与图9提供的电弧信号处理方法不同的是:
在S60步骤之前,电弧信号处理方法还包括:
S502、根据放大信号得到放大信号的电流上升率;
S504、判断电流上升率是否大于或等于上升阈值,如果否则执行下一个步骤,如果是则发出故障警报或断开产生电弧信号的回路。
可以根据电流上升率判定是发生串联故障电弧还是并联故障电弧,例如:并联故障电弧类似于短路,电流的斜率非常大。当发生并联故障电弧时,此时电流上升率大于或等于上升阈值,由于并联故障电弧危险性较高,因此则发出故障警报或断开产生电弧信号的回路,从而提高电器设备的安全性能。
请参阅图13,图13是本申请提供的电弧信号处理方法的第三实施例的流程图。本实施例与图9提供的电弧信号处理方法不同的是:
S20步骤,包括:
S21、对电弧信号进行放大处理得到放大信号;
S22、对放大信号进行高通滤波放大处理得到滤波放大信号;
S40步骤,包括:
对滤波放大信号进行滤波放大得到半波信号在预设频段的高频信号。
放大信号经过高通滤波放大处理能够更有效的提高检测精确度,从而可以保证高频信号的准确性。
此外,本申请还提供一种电器设备,其包括上述的电弧信号处理电路100。
与现有技术相比,本申请实施例提供的电器设备的有益效果与上述技术方案提供的电弧信号处理电路100的有益效果相同,在此不做赘述。
以上对本申请实施例所提供的一种电弧信号处理电路及电器设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种电弧信号处理电路,其特征在于,包括:
    放大模块,所述放大模块的输入端接入电弧信号,所述放大模块用于对所述电弧信号进行放大后输出放大信号;
    带通滤波放大模块,所述带通滤波放大模块的输入端与所述放大模块的输出端电连接,所述带通滤波放大模块用于对所述放大模块输出的放大信号进行滤波放大后输出预设频段的高频信号;
    主控模块,所述主控模块与所述放大模块的输出端电连接,所述主控模块与所述带通滤波放大模块的输出端电连接,所述主控模块用于接收所述放大模块输出的放大信号和所述带通滤波放大模块输出的高频信号。
  2. 根据权利要求1所述的电弧信号处理电路,其特征在于,所述主控模块包括:
    高门限电压计算单元,所述高门限电压计算单元的输入端与所述带通滤波放大模块的输出端电连接,所述高门限电压计算单元用于计算得到所述带通滤波放大模块输出的高频信号中电压值大于高门限电压阈值的信号的计数值;
    低门限电压计算单元,所述低门限电压计算单元的输入端与所述带通滤波放大模块的输出端电连接,所述低门限电压计算单元用于计算得到所述带通滤波放大模块输出的高频信号中电压值大于低门限电压阈值的信号的计数值;所述高门限电压阈值大于所述低门限电压阈值;
    所述主控模块根据所述高频信号中电压值大于高门限电压阈值的信号的计数值、所述高频信号中电压值大于低门限电压阈值的信号的计数值以及能量系数k计算得到所述高频信号的电弧能量值,k为所述高频信号中电压值大于高门限电压阈值的信号的计数值的能量系数。
  3. 根据权利要求1所述的电弧信号处理电路,其特征在于,所述放大模块包括:
    放大电路,所述放大电路的输入端接入所述电弧信号;
    高通滤波放大电路,所述高通滤波放大电路的输入端与所述放大电路的输出端电连接,所述高通滤波放大电路的输出端分别与所述带通滤波放大模块的输入端、所述主控模块电连接。
  4. 根据权利要求3所述的电弧信号处理电路,其特征在于,所述放大电路的输出端与所述主控模块电连接。
  5. 根据权利要求2所述的电弧信号处理电路,其特征在于,所述带通滤波放大模块包括:
    第一带通滤波放大电路,所述第一带通滤波放大电路的输入端与所述放大模块的输出端电连接,所述第一带通滤波放大电路的输出端与所述主控模块电连接;
    第二带通滤波放大电路,所述第二带通滤波放大电路的输入端与所述放大模块的输出端电连接,所述第二带通滤波放大电路的输出端与所述主控模块电连接;
    所述第一带通滤波放大电路的中心频率小于所述第二带通滤波放大电路的中心频率。
  6. 根据权利要求5所述的电弧信号处理电路,其特征在于,所述高门限电压计算单元包括:
    第一高门限电压计算单元,所述第一高门限电压计算单元的输入端与所述第一带通滤波放大电路的输出端电连接,所述第一高门限电压计算单元用于计算得到所述第一带通滤波放大电路输出的高频信号中电压值大于第一高门限电压阈值的信号的计数值;
    第二高门限电压计算单元,所述第二高门限电压计算单元的输入端与所述第二带通滤波放大电路的输出端电连接,所述第二高门限电压计算单元用于计算得到所述第二带通滤波放大电路输出的高频信号中电压值大于第二高门限电压阈值的信号的计数值;
    所述低门限电压计算单元包括:
    第一低门限电压计算单元,所述第一低门限电压计算单元的输入端与所述第一带通滤波放大电路的输出端电连接,所述第一低门限电压计算单元用于计算得到所述第一带通滤波放大电路输出的高频信号中电压值大于第一低门限电压阈值的信号的计数值;
    第二低门限电压计算单元,所述第二低门限电压计算单元的输入端与所述第二带通滤波放大电路的输出端电连接,所述第二低门限电压计算单元用于计算得到所述第二带通滤波放大电路输出的高频信号中电压值大于第二低门限电压阈值的信号的计数值;
    所述第一高门限电压阈值大于所述第一低门限电压阈值;所述第二高门限电压阈值大于所述第二低门限电压阈值。
  7. 根据权利要求6所述的电弧信号处理电路,其特征在于,所述带通滤波放大模块还包括:
    第三带通滤波放大电路,所述第三带通滤波放大电路的输入端与所述放大模块的输出端电连接,所述第三带通滤波放大电路的输出端与所述主控模块电连接;
    所述第三带通滤波放大电路的中心频率大于所述第二带通滤波放大电路的中心频率。
  8. 根据权利要求7所述的电弧信号处理电路,其特征在于,所述高门限电压计算单元还包括:
    第三高门限电压计算单元,所述第三高门限电压计算单元的输入端与所述第三带通滤波放大电路的输出端电连接,所述第三高门限电压计算单元用于计算得到所述第三带通滤波放大电路输出的高频信号中电压值大于第三高门限电压阈值的信号的计数值;
    所述低门限电压计算单元还包括:
    第三低门限电压计算单元,所述第三低门限电压计算单元的输入端与所述第三带通滤波放大电路的输出端电连接,所述第三低门限电压计算单元用于计算得到所述第三带通滤波放大电路输出的高频信号中电压值大于第三低门限电压阈值的信号的计数值;
    所述第三高门限电压阈值大于所述第三低门限电压阈值。
  9. 根据权利要求2或6所述的电弧信号处理电路,其特征在于,所述高门限电压计算单元包括:
    第一比较器,所述第一比较器的第一输入端接入高门限电压阈值的信号,所述第一比较器的第二输入端与所述带通滤波放大模块的输出端电连接;
    第一定时器,所述第一定时器的输入端与所述第一比较器的输出端电连接。
  10. 根据权利要求2或6所述的电弧信号处理电路,所述低门限电压计算单元包括:
    第二比较器,所述第二比较器的第一输入端接入低门限电压阈值的信号,所述第二比较器的第二输入端与所述带通滤波放大模块的输出端电连接;
    第二定时器,所述第二定时器的输入端与所述第二比较器的输出端电连接。
  11. 根据权利要求1所述的电弧信号处理电路,其特征在于,所述电弧信号处理电路还包括:
    电压采样电路,所述电压采样电路的输入端与电器设备产生电弧信号的回路电连接,所述电压采样电路用于采集产生所述电弧信号的回路的电压信号,所述电压采样电路的输出端与所述主控模块电连接。
  12. 一种电弧信号处理方法,其特征在于,包括:
    获取电弧信号的半波信号,令M=M+1,M为半波信号的个数,M的初始值为零;
    对所述电弧信号进行放大处理得到放大信号;
    根据所述放大信号得到所述半波信号的幅值;
    对所述放大信号进行滤波放大得到所述半波信号在预设频段的高频信号;
    计算得到所述高频信号的电弧能量值;
    判断所述半波信号的幅值是否大于幅值阈值,所述高频信号的电弧能量值是否大于能量阈值,如果是则所述电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零;
    判断所述M是否大于或等于第一阈值,如果否则获取所述电弧信号的下一个半波信号,如果是则执行下一步骤;
    判断所述N是否大于或等于第二阈值,所述第一阈值大于所述第二阈值,如果是则执行预设操作,如果否获取所述电弧信号的下一个半波信号。
  13. 根据权利要求12所述的电弧信号处理方法,其特征在于,所述计算得到所述高频信号的电弧能量值的步骤,包括:
    计算得到所述高频信号中电压值大于高门限电压阈值的信号的计数值x;
    计算得到所述高频信号中电压值大于低门限电压阈值的信号的计数值y,所述高门限电压阈值大于所述低门限电压阈值;
    根据x、y以及能量系数k计算得到所述高频信号的电弧能量值,k为x的能量系数。
  14. 根据权利要求12所述的电弧信号处理方法,其特征在于,所述对所述放大信号进行滤波放大得到所述半波信号在预设频段的高频信号的步骤,包括:
    对所述放大信号进行滤波放大得到所述半波信号在至少两个预设频段的高频信号,至少两个所述预设频段相互不重叠;
    所述计算得到所述高频信号的电弧能量值的步骤,包括:
    计算得到至少两个预设频段的所述高频信号的电弧能量值;
    所述判断所述半波信号的幅值是否大于幅值阈值,所述高频信号的电弧能量值是否大于能量阈值,如果是则所述电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零的步骤,包括:
    判断所述半波信号的幅值是否大于幅值阈值,每个预设频段的所述高频信号的电弧能量值是否大于能量阈值,如果是则所述电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零。
  15. 根据权利要求14所述的电弧信号处理方法,其特征在于,所述计算得到所述高频信号的电弧能量值的步骤,包括:
    计算得到每个预设频段的所述高频信号中电压值大于高门限电压阈值的信号的计数值x,
    计算得到每个预设频段的所述高频信号中电压值大于低门限电压阈值的信号的计数值y,所述高门限电压阈值大于所述低门限电压阈值,
    根据x、y以及能量系数k计算得到至少两个预设频段的所述高频信号的电弧能量值,k为x的能量系数。
  16. 根据权利要求12所述的电弧信号处理方法,其特征在于,在所述判断所述半波信号的幅值是否大于幅值阈值,所述高频信号的电弧能量值是否大于能量阈值,如果是则所述电弧信号包括有效过零电弧信号,令N=N+1,N为有效过零电弧信号的个数,N的初始值为零的步骤之前,所述电弧信号处理方法还包括:
    根据所述放大信号得到所述放大信号的电流上升率;
    判断所述电流上升率是否大于或等于上升阈值,如果否则执行下一个步骤,如果是则发出故障警报或断开产生电弧信号的回路。
  17. 根据权利要求12所述的电弧信号处理方法,其特征在于,所述对所述电弧信号进行放大处理得到放大信号的步骤,包括:
    对所述电弧信号进行放大处理得到放大信号;
    对所述放大信号进行高通滤波放大处理得到滤波放大信号;所述对所述放大信号进行滤波放大得到所述半波信号在预设频段的高频信号的步骤,包括:
    对所述滤波放大信号进行滤波放大得到所述半波信号在预设频段的高频信号。
  18. 一种电器设备,其特征在于,包括权利要求1至11任一所述的电弧信号处理电路。
PCT/CN2023/134575 2022-11-29 2023-11-28 电弧信号处理电路及方法、电器设备 WO2024114610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211516509.2A CN115754624A (zh) 2022-11-29 2022-11-29 电弧信号处理电路及方法、电器设备
CN202211516509.2 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024114610A1 true WO2024114610A1 (zh) 2024-06-06

Family

ID=85340904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134575 WO2024114610A1 (zh) 2022-11-29 2023-11-28 电弧信号处理电路及方法、电器设备

Country Status (2)

Country Link
CN (1) CN115754624A (zh)
WO (1) WO2024114610A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115754624A (zh) * 2022-11-29 2023-03-07 上海正泰智能科技有限公司 电弧信号处理电路及方法、电器设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466071A (en) * 1981-09-28 1984-08-14 Texas A&M University System High impedance fault detection apparatus and method
CN102375107A (zh) * 2011-09-20 2012-03-14 上海交通大学 基于时频综合分析的故障电弧检测方法及其装置
US20120098672A1 (en) * 2010-10-26 2012-04-26 Cooper Technologies Company ARC Fault Detection Method and Apparatus
CN104614608A (zh) * 2015-03-04 2015-05-13 刘岩 一种低压并联电弧故障检测装置及方法
US20160187407A1 (en) * 2014-12-29 2016-06-30 Eaton Corporation Arc fault detection system and method and circuit interrupter employing same
CN112154334A (zh) * 2018-05-22 2020-12-29 施耐德电气美国股份有限公司 利用跳频技术改进电弧故障检测
CN217332705U (zh) * 2022-04-24 2022-08-30 上海正泰智能科技有限公司 电弧信号处理电路及电器设备
KR20220145582A (ko) * 2021-04-22 2022-10-31 한국전자통신연구원 화재 위험도 예측을 위한 아크 감지기 및 이의 동작 방법
CN115754624A (zh) * 2022-11-29 2023-03-07 上海正泰智能科技有限公司 电弧信号处理电路及方法、电器设备
CN218995560U (zh) * 2022-11-29 2023-05-09 上海正泰智能科技有限公司 电弧信号处理电路及电器设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466071A (en) * 1981-09-28 1984-08-14 Texas A&M University System High impedance fault detection apparatus and method
US20120098672A1 (en) * 2010-10-26 2012-04-26 Cooper Technologies Company ARC Fault Detection Method and Apparatus
CN102375107A (zh) * 2011-09-20 2012-03-14 上海交通大学 基于时频综合分析的故障电弧检测方法及其装置
US20160187407A1 (en) * 2014-12-29 2016-06-30 Eaton Corporation Arc fault detection system and method and circuit interrupter employing same
CN104614608A (zh) * 2015-03-04 2015-05-13 刘岩 一种低压并联电弧故障检测装置及方法
CN112154334A (zh) * 2018-05-22 2020-12-29 施耐德电气美国股份有限公司 利用跳频技术改进电弧故障检测
KR20220145582A (ko) * 2021-04-22 2022-10-31 한국전자통신연구원 화재 위험도 예측을 위한 아크 감지기 및 이의 동작 방법
CN217332705U (zh) * 2022-04-24 2022-08-30 上海正泰智能科技有限公司 电弧信号处理电路及电器设备
CN115754624A (zh) * 2022-11-29 2023-03-07 上海正泰智能科技有限公司 电弧信号处理电路及方法、电器设备
CN218995560U (zh) * 2022-11-29 2023-05-09 上海正泰智能科技有限公司 电弧信号处理电路及电器设备

Also Published As

Publication number Publication date
CN115754624A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024114610A1 (zh) 电弧信号处理电路及方法、电器设备
US10535987B2 (en) Arc detection apparatus using electrical energy
US8054592B2 (en) Arc fault detection using fuzzy logic
CN105093082A (zh) 一种直流故障电弧检测方法
CN108809255B (zh) 一种光伏发电系统直流侧电弧故障综合检测方法与系统
CN218995560U (zh) 电弧信号处理电路及电器设备
KR101823600B1 (ko) 아크 검출 장치 및 아크 검출 장치를 이용한 병렬 아크 검출 방법
CN105445587A (zh) 串联故障电弧检测电路
CN205193210U (zh) 一种直流故障电弧检测装置
CN106771898A (zh) 基于高阶累积量识别的串联故障电弧检测装置及其方法
TW201939049A (zh) 電弧檢測裝置及其控制方法、以及非暫時性電腦可讀取的記錄媒體
CN217332705U (zh) 电弧信号处理电路及电器设备
CN110632472A (zh) 直流系统放电故障检测方法及系统
KR102519681B1 (ko) 아크 노이즈 신호의 가중 누적 합계를 사용하는 아크 사고 검출 장치 및 방법
KR101802160B1 (ko) 아크 검출 장치 및 아크 검출 장치를 이용한 접지 아크 검출 방법
WO2022118901A1 (ja) 放電検出装置
JP2019184475A (ja) 放電事故検出構造
TWI618934B (zh) 局部放電偵測裝置以及局部放電偵測方法
JP2005283523A (ja) 部分放電の発生を検知する装置
CN109901025A (zh) 用电设备及其拉弧检测方法和装置
JP2019184475A5 (zh)
CN108899869B (zh) 故障电弧保护电路
KR102453122B1 (ko) 주파수 분할법을 이용한 비정상 아크 검출 장치 및 이를 이용한 비정상 아크 검출 방법
JP2008003059A (ja) 湿潤劣化検出装置及び検出方法
US20230115022A1 (en) Single-phase fault arc detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896759

Country of ref document: EP

Kind code of ref document: A1