WO2024114126A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024114126A1
WO2024114126A1 PCT/CN2023/124509 CN2023124509W WO2024114126A1 WO 2024114126 A1 WO2024114126 A1 WO 2024114126A1 CN 2023124509 W CN2023124509 W CN 2023124509W WO 2024114126 A1 WO2024114126 A1 WO 2024114126A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
frequency combining
combining coefficient
frequency
coefficient
Prior art date
Application number
PCT/CN2023/124509
Other languages
English (en)
French (fr)
Inventor
蔡世杰
廉晋
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114126A1 publication Critical patent/WO2024114126A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication method and device.
  • Precoding technology is a technology in which the transmitting device processes the transmitted signal with the help of a precoding matrix that matches the channel resources when the channel state is known, so that the precoded signal to be transmitted is adapted to the channel, thereby reducing the complexity of the receiving device in eliminating the influence between channels.
  • a network device receives an uplink reference signal, such as a sounding reference signal (SRS), sent by a terminal device, performs channel estimation based on the uplink reference signal to obtain uplink channel state information (CSI), and then obtains downlink CSI based on the mutual difference between the uplink channel and the downlink channel in combination with the uplink CSI, so that the network device can perform downlink precoding based on the downlink CSI.
  • an uplink reference signal such as a sounding reference signal (SRS)
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • network devices acquire downlink CSI periodically, after acquiring downlink CSI once, it takes an acquisition cycle to update the downlink CSI. During this cycle, if the terminal device moves or the scattering environment changes, the downlink channel will change. At this time, the network device can only use the most recently acquired downlink CSI for downlink precoding, which will cause the downlink precoding to mismatch with the current downlink channel, and thus impair the performance of the terminal device.
  • the embodiments of the present application provide a communication method and apparatus, which can solve the problem of terminal equipment performance being impaired due to aging of downlink channel information.
  • a communication method which can be executed by a terminal device, or by a component of the terminal device, such as a processor, chip, or chip system of the terminal device, or by a logic module or software that can realize all or part of the functions of the terminal device.
  • the following is an example of the method being executed by a terminal device.
  • the communication method includes: the terminal device receives J first reference signals from a network device. Wherein, J is a positive integer greater than 1.
  • the terminal device determines J sets of space-frequency combining coefficients according to the J first reference signals.
  • each set of space-frequency combining coefficients in the J sets of space-frequency combining coefficients includes the values of K space-frequency combining coefficients, and the K space-frequency combining coefficients in each set of space-frequency combining coefficients are in the same position in the J space-frequency combining coefficient matrix, and K is a positive integer.
  • the terminal device subtracts the values of the space-frequency combining coefficients located at the same position in the J space-frequency combining coefficient matrix in the adjacent space-frequency combining coefficient sets in the J space-frequency combining coefficient sets, and obtains J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the adjacent space-frequency combining coefficient sets are determined based on two first reference signals received continuously.
  • the terminal device determines the downlink channel change information according to the J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the terminal device sends the downlink channel change information to the network device.
  • the downlink channel change information is used by the network device to determine the precoding matrix.
  • the terminal device can obtain multiple space-frequency combining coefficient matrices based on multiple first reference signals sent by the same network device to construct multiple space-frequency combining coefficient sets with the same number of elements and positions, and use the difference obtained by pairwise difference of the space-frequency combining coefficients at the same position in the multiple space-frequency combining coefficient sets to determine the downlink channel change information within the downlink channel information acquisition period, so that the network device can use the feedback downlink channel change information for precoding, which can solve the problem of channel mismatch caused by aging of downlink channel information within the downlink channel information acquisition period (such as SRS sending period or PMI feedback period), thereby causing the terminal
  • the problem of impaired device performance is solved by improving the coverage of the transmitted signal, which in turn can improve the receiving performance of the terminal device in the mobility scenario.
  • the space-frequency combining coefficient difference may be the space-frequency combining coefficient modulus difference obtained by subtracting the modulus values of the space-frequency combining coefficients at the same position, or may be the space-frequency combining coefficient phase difference obtained by subtracting the phase values of the space-frequency combining coefficients at the same position, or may be the space-frequency combining coefficient modulus difference and phase difference obtained by subtracting the modulus values and phase values of the space-frequency combining coefficients at the same position, respectively, or may be the modulus value and/or phase value corresponding to the complex value difference of the space-frequency combining coefficients at the same position obtained by subtracting the complex values of the space-frequency combining coefficients at the same position, without specific limitation.
  • the downlink channel change information may include K downlink channel change rates.
  • the terminal device may feed back the K downlink channel change rates to the network device, so that the network device may calculate the change amount of the space-frequency combining coefficients of the K positions corresponding to the K downlink channel change rates within the downlink channel information acquisition period based on the K downlink channel change rates and the downlink channel information acquisition period of the network device (such as the SRS transmission period or the PMI feedback period), so that the network device may perform precoding design for downlink channel prediction based on the change amount of the space-frequency combining coefficients within the downlink channel information acquisition period, so as to improve the coverage range of the transmitted signal.
  • the K downlink channel change rates are obtained by dividing the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients by the first time difference.
  • the first time difference is the time interval for the terminal device to determine two space-frequency combining coefficient matrices according to two continuously received first reference signals.
  • the downlink channel change rate is used to characterize the change of the space-frequency combining coefficient per millisecond or per time slot.
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets.
  • each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and S is a positive integer.
  • the terminal device can divide the K space-frequency combining coefficient differences into several parts, and feed back a maximum space-frequency combining coefficient difference in the space-frequency combining coefficient difference of each part to characterize the changes of all the space-frequency combining coefficients of the part in the downlink channel information acquisition period (such as SRS sending period or PMI feedback period), so as to facilitate the network device to perform downlink precoding calculations.
  • the downlink channel information acquisition period such as SRS sending period or PMI feedback period
  • the downlink channel change information may include S first space-frequency combining coefficient standard deviations.
  • the sth first space-frequency combining coefficient standard deviation among the S first space-frequency combining coefficient standard deviations is obtained by the terminal device calculating the standard deviation of the space-frequency combining coefficient difference in the sth space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference value sets, and each space-frequency combining coefficient difference value set in the S space-frequency combining coefficient difference value sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, s, S are positive integers, 1 ⁇ s ⁇ S.
  • the terminal device can also divide the K space-frequency combining coefficient differences into several parts, and feed back a space-frequency combining coefficient standard deviation in the space-frequency combining coefficient difference of each part to characterize the changes of all space-frequency combining coefficients in the part in the downlink channel information acquisition period (such as SRS sending period or PMI feedback period), so as to facilitate the network device to perform downlink precoding calculations.
  • the downlink channel information acquisition period such as SRS sending period or PMI feedback period
  • the downlink channel change information includes the maximum space-frequency combining coefficient difference among the J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the terminal device can use the space-frequency combining coefficient at each position to feedback a maximum space-frequency combining coefficient difference, which is used to characterize the change of the downlink channel within the SRS period or the PMI feedback period.
  • the downlink channel change information includes K second space-frequency combining coefficient standard deviations.
  • the kth second space-frequency combining coefficient standard deviation is obtained by calculating the standard deviation of the J-1 space-frequency combining coefficient differences corresponding to the kth space-frequency combining coefficient among the K space-frequency combining coefficients by the terminal device, and k is a positive integer, 1 ⁇ k ⁇ K.
  • the terminal device may also use the space-frequency combining coefficient at each position to feedback a second space-frequency combining coefficient standard deviation corresponding to the space-frequency combining coefficient, so as to characterize the change of the downlink channel within the SRS period or the PMI feedback period.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix that are in the same position as the first K elements in the first matrix after the elements are sorted from large to small according to their energies, and the sum of the energies of the first K elements in the first matrix after the elements are sorted from large to small according to their energies is the sum of the preset energies.
  • the first matrix is a matrix that combines the J space-frequency combining coefficients corresponding to the J first reference signals.
  • the energy of each element in the first matrix is obtained by adding the squares of the moduli of the space-frequency combining coefficients at the same position in the matrix of the J first reference signals, where j is a positive integer, and 1 ⁇ j ⁇ J. That is, the energy of each element in the first matrix is the sum of the squares of the moduli of the J space-frequency combining coefficients at the same position in the matrix of the J space-frequency combining coefficients corresponding to the J first reference signals (which may be referred to as the moduli square sum for short).
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix, which are at the same position as the element whose energy in the first matrix is greater than or equal to a preset energy, and the first matrix is obtained by adding the squares of the moduli of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals.
  • the communication method provided in the embodiment of the present application further includes: the terminal device sends a spatial basis and/or a frequency domain basis to the multiple network devices.
  • the spatial basis and/or frequency domain basis corresponding to the multiple network devices are partially the same.
  • a communication method which can be executed by a network device, or by a component of the network device, such as a processor, a chip, or a chip system of the network device, or by a logic module or software that can implement all or part of the functions of the network device.
  • the following is an example of the method being executed by a network device.
  • the communication method includes: the network device sends J first reference signals to a terminal device, where J is a positive integer greater than 1.
  • the network device receives downlink channel change information from the terminal device.
  • the downlink channel change information is determined according to the difference of J-1 space-frequency combining coefficients corresponding to each of the K space-frequency combining coefficients, the difference of J-1 space-frequency combining coefficients corresponding to each of the K space-frequency combining coefficients is obtained by the terminal device making a difference between the values of space-frequency combining coefficients located at the same position in the J space-frequency combining coefficient matrix in the adjacent space-frequency combining coefficient sets in the J space-frequency combining coefficient sets, the adjacent space-frequency combining coefficient sets are determined according to two first reference signals received continuously, the J space-frequency combining coefficient sets are determined according to the J first reference signals, each space-frequency combining coefficient set in the J space-frequency combining coefficient sets includes the values of K space-frequency combining coefficients, the K space-frequency combining coefficients in each space-frequency combining coefficient set are at the same position in the J space-frequency combining coefficient matrix, and K is a positive integer.
  • the network device determines the precoding matrix according to the downlink information change information.
  • the downlink channel change information may include K downlink channel change rates.
  • the K downlink channel change rates are obtained by dividing the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients by the first time difference, wherein the first time difference is the time interval for the terminal device to determine two space-frequency combining coefficient matrices according to two continuously received first reference signals.
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets.
  • Each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and S is a positive integer.
  • the downlink channel change information may include S first space-frequency combining coefficient standard deviations.
  • the sth first space-frequency combining coefficient standard deviation is obtained by the terminal device calculating the standard deviation of the space-frequency combining coefficient difference in the sth space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference value sets, and each space-frequency combining coefficient difference value set in the S space-frequency combining coefficient difference value sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and s and S are positive integers, and 1 ⁇ s ⁇ S.
  • the downlink channel change information includes a maximum space-frequency combining coefficient difference among J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient among the K space-frequency combining coefficients.
  • the downlink channel change information includes K second space-frequency combining coefficient standard deviations.
  • the kth second space-frequency combining coefficient standard deviation is obtained by calculating the standard deviation of the J-1 space-frequency combining coefficient differences corresponding to the kth space-frequency combining coefficient among the K space-frequency combining coefficients by the terminal device, and k is a positive integer, 1 ⁇ k ⁇ K.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix that are in the same position as the first K elements in the first matrix after sorting the energy of the elements from large to small, and the sum of the energies of the first K elements in the first matrix after sorting the energy of the elements from large to small is the sum of the preset energies.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals, j is a positive integer, 1 ⁇ j ⁇ J.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix, which are at the same position as the element whose energy in the first matrix is greater than or equal to a preset energy, and the first matrix is obtained by adding the squares of the moduli of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals.
  • the communication method provided in the embodiment of the present application further includes: the network device receives a spatial basis and/or a frequency domain basis from the terminal device.
  • the spatial basis and/or frequency domain basis corresponding to the multiple network devices are partially the same.
  • the technical effects of the communication method described in the second aspect can refer to the technical effects of the communication method described in the first aspect, and will not be repeated here.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the above-mentioned first aspect, or a device including the above-mentioned terminal device, or a device included in the above-mentioned terminal device, such as a chip.
  • the communication device includes a corresponding module, unit, or means for implementing the method described in the above-mentioned first aspect, and the module, unit, or means may be implemented by hardware, software, or by executing the corresponding software implementation by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the communication device includes: a processing module and a transceiver module.
  • the transceiver module is used to receive J first reference signals from a network device.
  • J is a positive integer greater than 1.
  • the processing module is used to determine J sets of space-frequency combining coefficients according to the J first reference signals.
  • Each of the J sets of space-frequency combining coefficients includes K values of space-frequency combining coefficients, and the K space-frequency combining coefficients in each set of space-frequency combining coefficients are in the same position in the J space-frequency combining coefficient matrix, and K is a positive integer.
  • the processing module is also used to subtract the values of the space-frequency combining coefficients in the adjacent space-frequency combining coefficient sets in the J sets of space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrix, and obtain J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the adjacent space-frequency combining coefficient sets are determined according to two first reference signals received continuously.
  • the processing module is also used to determine the downlink channel change information according to the J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the transceiver module is also used to send downlink channel change information to the network device, wherein the downlink channel change information is used by the network device to determine the precoding matrix.
  • the downlink channel change information may include K downlink channel change rates.
  • the K downlink channel change rates are obtained by dividing the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients by the first time difference, wherein the first time difference is the time interval for the terminal device to determine two space-frequency combining coefficient matrices according to two continuously received first reference signals.
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets.
  • Each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and S is a positive integer.
  • the downlink channel change information may include S first space-frequency combining coefficient standard deviations.
  • the sth first space-frequency combining coefficient standard deviation is obtained by the terminal device calculating the standard deviation of the space-frequency combining coefficient difference in the sth space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference value sets, and each space-frequency combining coefficient difference value set in the S space-frequency combining coefficient difference value sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and s and S are positive integers, and 1 ⁇ s ⁇ S.
  • the downlink channel change information includes a maximum space-frequency combining coefficient difference among J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient among the K space-frequency combining coefficients.
  • the downlink channel change information includes K second space-frequency combining coefficient standard deviations.
  • the kth second space-frequency combining coefficient standard deviation is obtained by calculating the standard deviation of the J-1 space-frequency combining coefficient differences corresponding to the kth space-frequency combining coefficient among the K space-frequency combining coefficients by the terminal device, and k is a positive integer, 1 ⁇ k ⁇ K.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix that are in the same position as the first K elements in the first matrix after sorting the elements in descending order by energy, and the first K elements in the first matrix after sorting the elements in descending order by energy are The sum of the energies of is the sum of the preset energies.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals, j is a positive integer, 1 ⁇ j ⁇ J.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix, which are at the same position as the element whose energy in the first matrix is greater than or equal to a preset energy, and the first matrix is obtained by adding the squares of the moduli of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals.
  • the transceiver module is further used to send spatial domain bases and/or frequency domain bases to the multiple network devices, wherein the spatial domain bases and/or frequency domain bases corresponding to the multiple network devices are partially the same.
  • the transceiver module may include a receiving module and a sending module, wherein the sending module is used to implement the sending function of the communication device described in the third aspect, and the receiving module is used to implement the receiving function of the communication device described in the third aspect.
  • the communication device described in the third aspect may further include a storage module, wherein the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the communication device described in the third aspect may execute the communication method described in the first aspect.
  • the technical effects of the communication device described in the third aspect can refer to the technical effects of the communication method described in the first aspect, and will not be repeated here.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the network device in the above-mentioned second aspect, or a device including the above-mentioned network device, or a device included in the above-mentioned network device, such as a chip.
  • the communication device includes a corresponding module, unit, or means for implementing the method described in the above-mentioned second aspect, and the module, unit, or means may be implemented by hardware, software, or by hardware executing the corresponding software implementation.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the communication device includes: a processing module and a transceiver module.
  • the transceiver module is used to send J first reference signals to the terminal device, where J is a positive integer greater than 1.
  • the transceiver module is also used to receive downlink channel change information from the terminal device.
  • the downlink channel change information is determined according to the difference of J-1 space-frequency combining coefficients corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients, and the difference of J-1 space-frequency combining coefficients corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients is obtained by the terminal device subtracting the values of space-frequency combining coefficients located at the same position in the J space-frequency combining coefficient matrix in the adjacent space-frequency combining coefficient set in the J space-frequency combining coefficient set, the adjacent space-frequency combining coefficient set is determined according to two first reference signals received continuously, the J space-frequency combining coefficient set is determined according to the J first reference signals, each space-frequency combining coefficient set in the J space-frequency combining coefficient set includes the values of K space-frequency combining coefficients, and the K space-frequency combining coefficients in each space-frequency combining coefficient set are in the same position in the J space-frequency combining coefficient matrix, and M is a positive integer.
  • the processing module is used to determine the pre
  • the downlink channel change information may include K downlink channel change rates.
  • the K downlink channel change rates are obtained by dividing the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients by the first time difference, wherein the first time difference is the time interval for the terminal device to determine two space-frequency combining coefficient matrices according to two continuously received first reference signals.
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets.
  • Each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and S is a positive integer.
  • the downlink channel change information may include S first space-frequency combining coefficient standard deviations.
  • the sth first space-frequency combining coefficient standard deviation is obtained by the terminal device calculating the standard deviation of the space-frequency combining coefficient difference in the sth space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference value sets, and each space-frequency combining coefficient difference value set in the S space-frequency combining coefficient difference value sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and s and S are positive integers, and 1 ⁇ s ⁇ S.
  • the downlink channel change information includes a maximum space-frequency combining coefficient difference among J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient among the K space-frequency combining coefficients.
  • the downlink channel change information includes K second space-frequency combining coefficient standard deviations.
  • the kth second space-frequency combining coefficient standard deviation among the K second space-frequency combining coefficient standard deviations is calculated by the terminal device on the standard deviation of J-1 space-frequency combining coefficient differences corresponding to the kth space-frequency combining coefficient among the K space-frequency combining coefficients, where k is a positive integer, 1 ⁇ k ⁇ K.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix that are in the same position as the first K elements in the first matrix after sorting the energy of the elements from large to small, and the sum of the energies of the first K elements in the first matrix after sorting the energy of the elements from large to small is the sum of the preset energies.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals, j is a positive integer, 1 ⁇ j ⁇ J.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix, which are at the same position as the element whose energy in the first matrix is greater than or equal to a preset energy, and the first matrix is obtained by adding the squares of the moduli of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals.
  • the transceiver module is further used to receive the spatial domain basis and/or frequency domain basis from the terminal device, wherein the spatial domain basis and/or frequency domain basis corresponding to the multiple network devices are partially the same.
  • the transceiver module may include a receiving module and a sending module, wherein the sending module is used to implement the sending function of the communication device described in the fourth aspect, and the receiving module is used to implement the receiving function of the communication device described in the fourth aspect.
  • the communication device described in the fourth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device described in the fourth aspect may execute the communication method described in the second aspect.
  • the technical effects of the communication device described in the fourth aspect can refer to the technical effects of the communication method described in the first aspect, and will not be repeated here.
  • a communication device comprising: a processor, the processor being coupled to a memory, the processor being configured to execute a computer program stored in the memory, so that the communication device executes the method described in any possible implementation manner in the first aspect to the second aspect.
  • the communication device described in the fifth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the fifth aspect to communicate with other communication devices.
  • the communication device described in the fifth aspect may be the terminal device in the first aspect or the network device in the second aspect, or a chip (system) or other parts or components that may be arranged in the terminal device or network device, or a device including the terminal device or network device.
  • a communication device comprising: a processor and a communication interface; the communication interface is used to communicate with a module outside the communication device; the processor is used to execute a computer program or instruction so that the communication device executes the method described in any of the above aspects.
  • the communication device can be the terminal device in the above first aspect, or a device including the above terminal device, or a device included in the above terminal device, such as a chip; or the communication device can be the network device in the above second aspect, or a device including the above network device, or a device included in the above network device.
  • a communication device comprising: at least one processor; the processor is used to execute a computer program or instruction stored in a memory, so that the communication device performs the method described in any of the above aspects.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the terminal device in the above first aspect, or a device including the above terminal device, or a device included in the above terminal device, such as a chip; or the communication device may be the network device in the above second aspect, or a device including the above network device, or a device included in the above network device.
  • the technical effects of the fifth to seventh aspects can refer to the technical effects of the method described in any one of the implementation methods of the first to second aspects, and will not be repeated here.
  • a communication system in an eighth aspect, includes a terminal device and a network device.
  • the terminal device is used to execute the communication method described in the first aspect
  • the network device is used to execute the communication method described in the second aspect.
  • a computer-readable storage medium stores a computer program or instruction, and when the computer program or instruction is executed on a computer, the computer executes the method described in any possible implementation of the first aspect to the second aspect.
  • a computer program product which includes: a computer program or instructions, which, when executed on a computer, causes the computer to execute the method described in any possible implementation of the first aspect to the second aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a CJT transmission scenario provided in an embodiment of the present application.
  • FIG3 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a structure of periodic transmission of a first reference signal provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a space-frequency combining coefficient matrix provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • CJT Coherent joint transmission
  • the CJT is a method in which multiple network devices transmit data to a terminal device through coherent transmission.
  • the multiple network devices serving the terminal device all know the data information to be transmitted to the terminal device, and each network device must know the CSI between itself, other network devices and the terminal device.
  • the CSI may include at least one of the CSI-RS resource indicator (CSI-RS resource indicator, CRI), rank indicator (rank indicator, RI), precoding matrix indicator (precoding matrix indicator, PMI) and channel quality indicator (channel quality indicator, CQI). Therefore, these multiple network devices are like distributed multiple antenna arrays, which can precode the same layer of data to be transmitted together, which is equivalent to a large network device.
  • coherent transmission means that multiple network devices can jointly transmit a certain data stream, so that the transmission signals of multiple network devices can be superimposed in the same direction when they reach the terminal device, thereby doubling the power of the received signal and greatly reducing interference.
  • coherent transmission can turn the interference between multiple network devices into useful signals, which can significantly improve data transmission performance, such as significantly improving the signal to interference plus noise ratio (SINR).
  • SINR signal to interference plus noise ratio
  • the terminal device In order to enable CJT transmission, the terminal device needs to report the correct CQI.
  • the network equipment determines the modulation coding scheme (MCS) based on the CQI measured and reported by the terminal device and performs good link adaptation. Therefore, whether the CQI reported by the terminal device can correctly reflect the SINR during actual data transmission is very critical to the data demodulation performance.
  • MCS modulation coding scheme
  • the transmitting device (such as a network device) can process the signal to be transmitted by means of a precoding matrix matching the channel resources when the channel state is known, so that the precoded signal to be transmitted is adapted to the channel, thereby reducing the complexity of the receiving device to eliminate the influence between channels.
  • a precoding matrix matching the channel resources when the channel state is known
  • the quality of the received signal (such as SINR, etc.) can be improved. Therefore, by adopting the precoding technology, it is possible to realize that the transmitting device and multiple receiving devices transmit signals on the same time-frequency resources, that is, to realize multiple user multiple input multiple output (MU-MIMO).
  • MU-MIMO multiple user multiple input multiple output
  • the transmitting device can also perform precoding in other ways. For example, when the channel information (such as but not limited to the channel matrix) cannot be obtained, a pre-set precoding matrix or a weighted processing method is used for precoding, etc. For the sake of brevity, the specific content is not repeated in this article.
  • the precoding matrix may be, for example, a precoding matrix determined by a terminal device based on a channel matrix of each frequency domain unit (e.g., the frequency domain width of a frequency domain unit may be a resource block (RB), or a subband, or R times the frequency domain subband, R ⁇ 1, and the value of R may be 1 or 1/2).
  • the channel matrix may be determined by the terminal device through channel estimation or other methods or based on channel reciprocity.
  • the precoding matrix may be obtained by performing singular value decomposition (SVD) on a channel matrix or a covariance matrix of a channel matrix, or may be obtained by performing eigenvalue decomposition (EVD) on a covariance matrix of a channel matrix.
  • SVD singular value decomposition
  • EVD eigenvalue decomposition
  • the network device can determine the spatial basis vectors, frequency basis vectors and spatial-frequency combining coefficients of the spatial-frequency vector pair used to construct the precoding vector based on the feedback of the terminal device, and then determine the precoding matrix corresponding to each frequency domain unit.
  • the precoding matrix can be used directly for downlink data transmission; or it can be subjected to some beamforming methods, such as zero forcing (ZF), regularized zero-forcing (RZF), minimum mean-squared error (MMSE), maximization of signal-to-leakage-and-noise (SLNR), etc., to obtain the final precoding matrix for downlink data transmission. This application is not limited to this.
  • the precoding matrix determined by the terminal device can be understood as the precoding matrix to be fed back.
  • the terminal device can indicate the precoding matrix to be fed back through the PMI, so that the network device can restore the precoding matrix based on the PMI.
  • the precoding matrix restored by the network device based on the PMI can be the same as or similar to the precoding matrix to be fed back.
  • a spatial domain vector may also be called a spatial domain component vector, a beam vector, a spatial domain beam basis vector, a spatial domain basis vector, or a spatial domain basis.
  • a spatial domain vector may correspond to a beam or a beam direction.
  • a spatial domain vector may be one of the vectors used to construct a channel matrix.
  • Each element in a spatial domain vector may represent the weight of each antenna port. Based on the weights of each antenna port represented by each element in the spatial domain vector, the signals of each antenna port are linearly superimposed to form an area with a strong signal in a certain direction of space.
  • the spatial vector is recorded as u.
  • the length of the spatial vector u can be the number of transmitting antenna ports in a polarization direction Ns , where Ns ⁇ 1 and is an integer.
  • the spatial vector can be, for example, a column vector or a row vector of length Ns . This application does not limit this.
  • the spatial domain vector is any one of the following vectors: a discrete Fourier transform (DFT) vector, a conjugate transpose vector of a DFT vector, an oversampled DFT vector, a conjugate transpose vector of an oversampled DFT vector, or a wavelet transform (WT) vector.
  • the DFT vector may refer to a vector in a DFT matrix
  • the DFT conjugate transpose vector may refer to a column vector in a conjugate transpose matrix of a DFT matrix
  • the oversampled DFT vector may refer to a vector in an oversampled DFT matrix
  • the WT vector may refer to a column vector in a WT matrix.
  • the spatial matrix may be a matrix consisting of one or more spatial vectors selected from the spatial vector set.
  • the spatial vector set may be pre-configured; or, the spatial vector set may be negotiated between the terminal device and the network device; or, the spatial vector set may be agreed upon by a protocol, which is not specifically limited in the embodiment of the present application.
  • the set of spatial domain vectors can be a complete orthogonal basis matrix, such as a DFT matrix, a conjugate transposed matrix of a DFT matrix, an oversampled DFT matrix, or a conjugate transposed matrix of an oversampled DFT matrix, etc., which is not specifically limited in the embodiments of the present application.
  • the dimension of the spatial vector set may be pre-configured, or negotiated between the terminal device and the network device, or agreed upon by a protocol, and this embodiment of the present application does not specifically limit this.
  • the number of spatial vectors in the spatial matrix may be pre-configured or negotiated between the terminal device and the network device, and this embodiment of the present application does not impose any specific limitation on this.
  • the spatial domain vector may be, for example, a two-dimensional (2D)-DFT vector v lm defined in a type II codebook in NR protocol 38.214 version 15 (release 15, R15).
  • the spatial domain vector may be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • 2D-DFT vector For the sake of brevity, a detailed description of the 2D-DFT vector is omitted here.
  • Frequency domain vectors can also be called frequency domain component vectors, frequency domain basis vectors, or frequency domain basis, etc., and can be used to represent the changing pattern of the channel in the frequency domain.
  • a frequency domain vector can correspond to a delay path or a delay domain path.
  • Each frequency domain vector can represent a changing pattern.
  • Multipath delay causes frequency selective fading, which is the change of the frequency domain channel. Therefore, different frequency domain vectors can be used to represent the changing pattern of the channel in the frequency domain caused by delays on different transmission paths.
  • the length of the frequency domain vector u f can be recorded as N f , where N f is a positive integer.
  • the frequency domain vector can be, for example, a column vector or a row vector with a length of N f .
  • the length of the frequency domain vector can be determined by the number of frequency domain units to be reported that are preconfigured in the reporting bandwidth, or can be determined by the reporting bandwidth.
  • the length of the reporting bandwidth is determined by the length of the reporting bandwidth, and can also be a predefined value of the protocol. This application does not limit the length of the frequency domain vector.
  • the reporting bandwidth can, for example, refer to the CSI reporting bandwidth (CSI-ReportingBand) carried in the CSI reporting pre-configuration in the high-level signaling (such as the radio resource control (RRC) message).
  • the frequency domain vector or frequency domain basis may be a DFT basis related to at least one of the bandwidth of the downlink reference signal and the frequency domain granularity size of the downlink reference signal, or may be a delay value basis based on M bits of quantization, or may be a basis based on cyclic shift (Cycling Shift).
  • Each of the delay value basis of the M bits of quantized delay value basis corresponds to a delay path or a delay domain path, such as 10 nanoseconds (ns), which can be quantized into an M-bit delay value, i.e., a delay value basis, by predefinition or by a network device notifying a terminal device, or by a terminal device notifying a network device.
  • the basis based on cyclic shift may be a basis composed of N cyclic shift sequences, each of which is a cyclic shift sequence, and each cyclic shift sequence corresponds to a cyclic shift mode of a delay path or a frequency domain basis.
  • each frequency domain basis corresponds to an index
  • each index can be used to determine a frequency domain basis. For example, when there are a total of N frequency domain basis, one possible way is to index the frequency domain basis from 1 to N; another possible way is to use the value of the frequency domain basis as an index, for example, when the frequency domain basis is a delay value basis, the index of the frequency domain basis corresponding to 10ns can be 10.
  • the frequency domain vector is any one of the following vectors: a DFT vector, a conjugate transpose vector of a DFT vector, an oversampled DFT vector, a conjugate transpose vector of an oversampled DFT vector, a discrete cosine transform (DCT) vector, a conjugate transpose vector of a DCT vector, an oversampled DCT vector, or a conjugate transpose vector of an oversampled DCT vector.
  • the frequency domain vector may be a DFT vector defined in type II in 3rd generation partnership project (3GPP) technical specification (TS) 38.214.
  • the frequency domain matrix may be a matrix consisting of one or more frequency domain vectors selected from the frequency domain vector set.
  • the frequency domain vector set may be pre-configured; or, the frequency domain vector set may be negotiated between the terminal device and the network device; or, the frequency domain vector set may be agreed upon by a protocol, which is not specifically limited in the embodiment of the present application.
  • the frequency domain vector set can be a complete orthogonal basis matrix, such as a DFT matrix, a conjugate transposed matrix of a DFT matrix, an oversampled DFT matrix, or a conjugate transposed matrix of an oversampled DFT matrix, etc., which is not specifically limited in the embodiments of the present application.
  • the dimension of the frequency domain vector set and the number of frequency domain vectors may be pre-configured, or negotiated between the terminal device and the network device, or agreed upon by a protocol, and the embodiment of the present application does not specifically limit this.
  • the number of frequency domain vectors in the frequency domain matrix may be pre-configured or negotiated between the terminal device and the network device, and this embodiment of the present application does not specifically limit this.
  • a space-frequency vector pair can also be called a space-frequency component vector.
  • a space-domain vector and a frequency-domain vector can be combined to obtain a space-frequency vector pair.
  • a space-frequency vector pair can include a space-domain vector and a frequency-domain vector.
  • a space-frequency component matrix can be obtained from the space-domain vector and the frequency-domain vector in a space-frequency vector pair.
  • a space-frequency component matrix can be obtained by multiplying a space-domain vector with the conjugate transpose of a frequency-domain vector.
  • the space-frequency component matrix described here is relative to the space-frequency matrix described below. Since a space-frequency matrix can be obtained by weighted summation of multiple space-frequency component matrices, each item used for weighting can be called a component of a space-frequency matrix, i.e., the space-frequency component matrix mentioned here.
  • the space-frequency matrix can be understood as an intermediate quantity used to determine the channel matrix corresponding to each frequency domain unit.
  • the space-frequency matrix can be determined by the channel matrix corresponding to each frequency domain unit.
  • the space-frequency matrix can be obtained by the weighted sum of multiple space-frequency component matrices to restore the channel matrix.
  • the space-frequency matrix can be denoted as H, Among them, w 0 to There are N f column vectors corresponding to N f frequency domain units, each column vector may be a channel vector or a channel matrix corresponding to each frequency domain unit, and the length of each column vector may be N s .
  • the N f column vectors correspond to the channel vectors of the N f frequency domain units respectively. That is, the space-frequency matrix can be regarded as a joint matrix composed of the channel vectors corresponding to the N f frequency domain units.
  • the space-frequency matrix may correspond to a receiving antenna port.
  • the space-frequency matrix is said to correspond to a receiving antenna port because the terminal device can feedback a frequency domain vector, a space domain vector, and a combining coefficient based on each receiving antenna port.
  • the space-frequency matrix determined by the access network device based on the feedback of the terminal device is the space-frequency matrix corresponding to the receiving antenna port.
  • the space-frequency matrix is only a form of expression for determining the channel matrix and should not constitute any limitation to the present application.
  • a vector with a length of Ns ⁇ Nf can also be obtained, which can be called a space-frequency vector.
  • the dimensions of the space-frequency matrix and the space-frequency vector shown above are only examples and should not constitute any limitation to the present application.
  • the space-frequency matrix may also be a matrix with a dimension of Nf ⁇ Ns .
  • Each row vector may correspond to a frequency domain unit to determine the channel vector of the corresponding frequency domain unit.
  • the dimension of the space-frequency matrix can be further expanded.
  • the dimension of the space-frequency matrix can be 2Ns ⁇ Nf or Nf ⁇ 2Ns . It should be understood that the present application does not limit the number of polarization directions of the transmitting antenna.
  • the space-frequency matrix corresponding to a receiving antenna port can also be expressed as
  • One or more spatial domain vectors may constitute a matrix W 1 , and each column vector in W 1 corresponds to a spatial domain vector.
  • One or more frequency domain vectors may constitute a matrix W 3 , and each column vector in W 3 corresponds to a frequency domain vector.
  • the spatial domain vectors used by each receiving antenna port may not be exactly the same, that is, each receiving antenna port uses an independent spatial domain vector; the spatial domain vectors used by each receiving antenna port may also be the same, that is, multiple receiving antenna ports share L spatial domain vectors.
  • the frequency domain vectors used by each receiving antenna port may not be exactly the same, that is, each receiving antenna port uses an independent frequency domain vector; the frequency domain vectors used by each receiving antenna port may also be the same, that is, multiple receiving antenna ports share M frequency domain vectors.
  • the channel vector corresponding to each frequency domain unit on the i-th receiving antenna port may be constructed based on the above L spatial domain vectors and Mi frequency domain vectors.
  • L spatial vectors can be selected for each polarization direction. Then, the dimension of W1 can be 2Ns ⁇ 2L. In a possible implementation, the two polarization directions can use the same L spatial vectors. At this time, W1 can be expressed as:
  • Each column vector in W3 can be a frequency domain vector.
  • each spatial domain vector in W1 and each frequency domain vector in W3 can constitute a spatial frequency vector pair, and each spatial frequency vector pair can correspond to a merging coefficient.
  • the 2L ⁇ M i spatial frequency vector pairs constructed by the 2L spatial domain vectors and the M i frequency domain vectors can correspond to the 2L ⁇ M i merging coefficients one by one.
  • the i-th receive antenna port can be a merging coefficient matrix composed of the above 2L ⁇ M i merging coefficients, and its dimension can be 2L ⁇ M i .
  • the lth row in may correspond to the lth spatial vector in the first polarization direction among the 2L spatial vectors.
  • the combined coefficient matrix The L+lth row in may correspond to the lth spatial vector in the second polarization direction among the 2L spatial vectors.
  • the m-th (0 ⁇ m ⁇ M i -1 and m is an integer) column in can correspond to the m-th frequency domain vector among the M i frequency domain vectors.
  • the position of the space-frequency vector pair used to construct the space-frequency matrix specifically refers to the position of the space-domain vector used to construct the space-frequency matrix in the space-domain vector reported by the terminal device and the position of the frequency-domain vector used to construct the space-frequency matrix in the frequency-domain vector reported by the terminal device. Since each space-frequency vector pair corresponds to a non-zero merging coefficient (referred to as a non-zero coefficient), the position of the space-frequency vector pair used to construct the space-frequency matrix is also the position of the non-zero coefficient.
  • the space-frequency combining coefficient can also be called a combining coefficient or a weighting coefficient.
  • Each combining coefficient may correspond to a space-domain vector and a frequency-domain vector, or in other words, each combining coefficient may correspond to a space-frequency vector pair.
  • Each combining coefficient is a weighting coefficient of the space-frequency component matrix constructed by the space-frequency vector pair to which it corresponds.
  • a combining coefficient corresponds to a space-domain vector and a frequency-domain vector.
  • the combining coefficient matrix The element in the i-th row and j-th column is the combining coefficient corresponding to the space-frequency vector pair formed by the i-th space-domain vector and the j-th frequency-domain vector. For dual-polarized antennas, i ⁇ 1,2,...,2L ⁇ , the length of each space-domain vector is 2N s .
  • each combining coefficient includes an amplitude and a phase.
  • the combining coefficient can be expressed as ae j ⁇ , where a is the amplitude of the combining coefficient and ⁇ is the phase of the combining coefficient.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as the 4th generation (4G) mobile communication system, such as the long term evolution (LTE) system, the universal mobile telecommunication system (UMTS), the world-wide interoperability for microwave access (WiMAX) communication system, the fifth generation (5G) mobile communication system, such as the new radio (NR) system, and future communication systems, such as the sixth generation (6G) mobile communication system.
  • 4G mobile communication system such as the long term evolution (LTE) system, the universal mobile telecommunication system (UMTS), the world-wide interoperability for microwave access (WiMAX) communication system
  • 5G fifth generation mobile communication system
  • NR new radio
  • future communication systems such as the sixth generation (6G) mobile communication system.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the communication system includes: a network device 101, a network device 102, and a terminal device 103.
  • the network device 101 and the network device 102 can provide wireless communication services for the terminal device 103, and the network device 101 and the network device 102 can communicate with each other, and the network device 101 or the network device 102 and the terminal device 103 can also communicate with each other.
  • Figure 1 shows an example of 2 network devices and 1 terminal device, and the embodiment of the present application does not limit the number of network devices and terminal devices.
  • the transmission mechanism adopted between each network device and the terminal device may be single-station transmission, such as any one of the network device 101 and the network device 102 may provide services for the terminal device 103, and when the terminal device moves to the service range of other network devices, a cell switching is required.
  • the transmission mechanism adopted between each network device and the terminal device may also be CJT, such as the network device 101 and the network device 102 provide services for the terminal device 103 at the same time, and transmit data to the terminal device 103 by coherent transmission.
  • each communication device such as network devices 101-102 or terminal device 103
  • each communication device also additionally includes a transmitter chain and a receiver chain. It can be understood by those skilled in the art that they can include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, demodulators, demultiplexers or antennas, etc.). Therefore, network devices 101-102 and terminal device 103 can communicate through multi-antenna technology.
  • the above-mentioned network equipment is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function, or a chip or chip system that can be set in the device.
  • the network equipment includes but is not limited to: access points (AP) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB ), baseband unit (BBU), wireless relay node, wireless backhaul node, transmitting/receiving node or transmission point (TRP or transmitting point, TP), etc.
  • AP access points
  • WiFi wireless fidelity
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base
  • It can also be 5G, such as gNB in new radio (NR) system, or, transmitting/receiving node or transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or, a distributed unit (DU), a road side unit (RSU) with base station function, etc.
  • NR new radio
  • TRP or TP transmitting/receiving node or transmission point
  • TRP or TP transmitting/receiving node or transmission point
  • TRP or TP transmitting/receiving node or transmission point
  • TRP or TP transmitting/receiving node or transmission point
  • TRP or TP transmitting/receiving node or transmission point
  • TRP or TP transmitting/receiving node or transmission point
  • DU distributed unit
  • the terminal device is a terminal that accesses the communication system and has a wireless transceiver function or a chip or chip system that can be set in the terminal.
  • the terminal device can also be called user equipment (UE), user device, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device Equipment, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle terminal, an RSU with terminal function, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device of the present application can also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into the vehicle as one or more components or units, and the vehicle can implement the communication method provided by the present application through the built-in vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit.
  • FIG1 is only a simplified schematic diagram for ease of understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG1 .
  • the network device needs to obtain downlink CSI for downlink precoding before sending a signal to the terminal device.
  • the transmitted signal is processed through precoding, thereby reducing the complexity of the terminal device to eliminate the influence between channels and improving the receiving performance of the terminal device.
  • the network device can obtain the downlink CSI by receiving an uplink reference signal (such as SRS) or sending a downlink reference signal (such as CSI-RS).
  • an uplink reference signal such as SRS
  • CSI-RS downlink reference signal
  • the network device receives the SRS sent by the terminal device, performs channel estimation based on the SRS to obtain the uplink CSI, and then obtains the downlink CSI based on the reciprocity of the uplink channel and the downlink channel in combination with the uplink CSI, so that the network device can perform downlink precoding on the transmitted signal according to the downlink CSI.
  • the network device can send a CSI-RS to the terminal device, and the terminal device can perform channel estimation based on the received CSI-RS to obtain the downlink CSI and feed it back to the network device, so that the network device can perform downlink precoding on the transmitted signal according to the downlink CSI fed back by the terminal device.
  • the network equipment since the network equipment obtains the downlink CSI periodically, it is necessary to wait for at least one cycle to update the downlink CSI. However, during this cycle, if the terminal device moves or the scattering environment changes, the downlink channel will change. At this time, the network device can only use the most recently obtained downlink CSI for downlink precoding, which will cause the downlink precoding to mismatch with the current downlink channel, which will in turn impair the performance of the terminal device.
  • the signals pre-coded by multiple network devices are constructively superimposed at the terminal device, that is, the phases of the transmitted signals are the same, which can improve the performance gain of the terminal device compared to single-station transmission.
  • the terminal device moves, that is, in the scenario where the terminal device is not stationary, similar to single-station transmission, multiple network devices can only use the aged downlink CSI to pre-code the transmitted signal, so that the signals pre-coded by multiple network devices change from constructive to destructive at the terminal device, and the terminal device not only fails to obtain gain, but also suffers from performance impairment.
  • the signal sent by TRP1 after precoding processing received by the UE is The signal sent after TRP2 precoding processing received by the UE is The signals sent by TRP1 and TRP2 are constructively superimposed at the UE, so that the UE can obtain approximately twice the single-station transmission gain compared to TRP1 or TRP2.
  • the UE moves, that is, when the UE is not stationary, the UE moves (average is 1 wavelength), then after TRP1 and TRP2 use the most recently acquired downlink CSI to perform downlink precoding on the transmitted signal, the power of the transmitted signal is in, At this time, the two signals received by the UE change from constructive to destructive. Not only does the UE fail to obtain twice the gain, but its performance is also impaired.
  • the embodiment of the present application provides a communication method, which can solve the problem that the downlink channel information aging causes the terminal device performance to be impaired.
  • the communication method provided by the embodiment of the present application will be specifically described below in conjunction with Figures 3 to 5.
  • FIG3 is a flow chart of a communication method provided in an embodiment of the present application.
  • the communication method can be applied to The communication system shown in Figure 1.
  • the communication method includes the following steps:
  • a network device sends J first reference signals to a terminal device.
  • the terminal device receives the J first reference signals from the network device.
  • the first reference signal may be a reference signal for downlink channel measurement, such as the first reference signal may be CSI-RI, and J first reference signals may be periodically sent by the network device, that is, the terminal device may periodically obtain J first reference signals.
  • the network device sends the first first reference signal to the terminal device at time t X1 , and after T1 (i.e., the sending period of the first reference signal), the second first reference signal is sent to the terminal device at time t X2 , and so on, and the Jth first reference signal is sent to the terminal device after J-1 T1 time intervals.
  • the first reference signal may also be called a pilot signal or a reference sequence, etc.
  • the first reference signals listed above are only examples and should not constitute any limitation to the present application. The embodiments of the present application do not exclude the possibility of defining other reference signals in future protocols to achieve the same or similar functions.
  • each network device can periodically send a first reference signal to the terminal device.
  • the periods at which multiple network devices send the first reference signal can be the same or different.
  • multiple network devices can send the first reference signal on channels of the same frequency band or on channels of different frequency bands, which is not specifically limited in the embodiments of the present application.
  • the terminal device determines J sets of space-frequency combining coefficients according to J first reference signals.
  • each of the J space-frequency combining coefficient sets includes the values of K space-frequency combining coefficients, and the K space-frequency combining coefficients in each space-frequency combining coefficient set are in the same position in the J space-frequency combining coefficient matrices.
  • the J space-frequency combining coefficient sets are composed of the same number of space-frequency combining coefficients, and the space-frequency combining coefficients in each set are located at the same position in different space-frequency combining coefficient matrices.
  • the J space-frequency combining coefficient matrices correspond to the J first reference signals, that is, one first reference signal determines one space-frequency combining coefficient matrix.
  • the three first reference signals correspond to three space-frequency combining coefficient matrices, each of which includes 100 space-frequency combining coefficients, and the terminal device selects 60 space-frequency combining coefficients with the same position in the three space-frequency combining coefficient matrices, thereby forming three space-frequency combining coefficient sets.
  • the 60 space-frequency combining coefficients in the three space-frequency combining coefficient sets are located at the same position in the three space-frequency combining coefficient matrices.
  • the terminal device uses J first reference signals received at different times to perform channel estimation, and obtains corresponding downlink channel information, which may include a spatial basis, a frequency domain basis, and a space-frequency combining coefficient determined based on the first reference signals received at different times.
  • downlink channel information may also include RI, CQI or CRI, etc.
  • the terminal device uses the second first reference signal received at time t R2 to perform channel estimation, and obtains the spatial domain matrix W space2 , the frequency domain matrix W freq2 , and the space-frequency combining coefficient matrix
  • the terminal device uses the Jth first reference signal received at time t RJ to perform channel estimation, and obtains the spatial domain matrix W spaceJ , the frequency domain matrix W freqJ , and the space-frequency combining coefficient matrix
  • the terminal device may determine J sets of space-frequency combining coefficients based on the determined J space-frequency combining coefficient matrices.
  • the K space-frequency combining coefficients of each space-frequency combining coefficient matrix may be determined in the following two ways:
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are the space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix that are in the same position as the first K elements in the first matrix after sorting the energy of the elements from large to small, and the sum of the energies of the first K elements in the first matrix after sorting the energy of the elements from large to small is the sum of the preset energies.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals, j is a positive integer, 1 ⁇ j ⁇ J.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices. That is, each of the first matrix
  • the energy of an element i.e., the value of the element
  • the addition of the squares of the moduli of the J space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices can also be called the square sum of the moduli of the J space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices.
  • the first matrix is the modulus square sum matrix corresponding to the J space-frequency combining coefficient matrices, so the first matrix can also be called the space-frequency combining coefficient modulus square sum matrix, which is not limited in the embodiment of the present application.
  • the terminal device sorts the energy of each element in the first matrix from large to small, and then adds them in order starting from the element with the largest energy until the sum of the added energies is equal to the sum of the preset energies, and determines the positions of the first K elements whose sum of the added energies is equal to the sum of the preset energies in the first matrix. Furthermore, the terminal device selects K space-frequency combining coefficients whose positions are the same as the first K elements whose sum of the added energies is equal to the sum of the preset energies in each of the J space-frequency combining coefficient matrices, to form J space-frequency combining coefficient sets.
  • the space-frequency combining coefficient matrix corresponding to the first reference signal is:
  • the space-frequency combining coefficient matrix corresponding to the second first reference signal is:
  • the space-frequency combining coefficient matrix corresponding to the third first reference signal is:
  • the first matrix is:
  • the space-frequency combining coefficient is expressed in the form of Ae j ⁇ , but it can also be expressed in the form of a+jb. Therefore, the modulus of the space-frequency combining coefficient is also the amplitude or amplitude of the space-frequency combining coefficient, and the phase of the space-frequency combining coefficient is also the angular size of the space-frequency combining coefficient.
  • the 9 elements are sorted from large to small according to energy, they are added starting from the element with the largest energy.
  • the elements whose energy sum is the preset energy sum are ⁇
  • 2
  • 2
  • 2 ⁇ , that is, K 6, then the first space-frequency combining coefficient set is The second set of space-frequency combining coefficients The third set of space-frequency combining coefficients It can be seen that the positions of the space-frequency combining coefficients in the three sets of space-frequency combining coefficients are the same as the positions of the elements selected from the first matrix, and the space-frequency combining coefficients in the three sets of space
  • the sum of the energies of the K elements in the first matrix can also be replaced by the energy proportion of the K elements, that is, the proportion of the sum of the energies of the K elements in the sum of the energies of all elements in the first matrix. It is understandable that when the energy proportion is known, the sum of the energies can be determined, or when the sum of the energies is known, the energy proportion can be determined.
  • the K space-frequency combining coefficients in the j-th space-frequency combining coefficient set in the J space-frequency combining coefficient sets are space-frequency combining coefficients in the j-th space-frequency combining coefficient matrix, which are in the same position as the element whose energy in the first matrix is greater than or equal to the preset energy.
  • the first matrix is obtained by adding the squares of the modulus values of the space-frequency combining coefficients at the same position in the J space-frequency combining coefficient matrices corresponding to the J first reference signals.
  • each element in the first matrix The energy of the first matrix is compared with the preset energy, and the element whose energy is greater than or equal to the preset energy is determined. Then, the terminal device selects the space-frequency combining coefficient at the same position as the element whose energy is greater than or equal to the preset energy in the first matrix from each of the J space-frequency combining coefficient matrices to form a space-frequency combining coefficient matrix.
  • the first matrix The elements whose energy is greater than or equal to the energy modulus are ⁇
  • 2 ⁇ , that is, K 6, then the first space-frequency combining coefficient set is The second set of space-frequency combining coefficients The third set of space-frequency combining coefficients It can be seen that the positions of the space-frequency combining coefficients in the three sets of space-frequency combining coefficients are the same as the positions of the elements selected from the first matrix, and the space-frequency combining coefficients in the three sets of space-frequency combining coefficients are located at the same position in the three space-frequency
  • the square of the modulus of the space-frequency combining coefficient can also be called the energy of the space-frequency combining coefficient.
  • the terminal device can update the K space-frequency combining coefficients in the space-frequency combining coefficient set. For example, the terminal device currently uses the three received first reference signals to determine the K space-frequency combining coefficients in the three space-frequency combining coefficient sets, and the terminal device can increase the number of received first reference signals to update the elements in the space-frequency combining coefficient set. Correspondingly, the number of space-frequency combining coefficient sets will increase.
  • the obtained downlink channel information can be fed back to the network device.
  • the terminal device uses the first reference signal to perform channel estimation, and feeds back the downlink channel information obtained by the channel estimation to the network device, which is used by the network device to perform downlink precoding under the current channel state.
  • the downlink channel information feedback is the state of the downlink channel in the process from the network device sending the first reference signal to the terminal device receiving the first reference signal.
  • the terminal device subtracts the values of space-frequency combining coefficients located at the same position in the J space-frequency combining coefficient matrices in adjacent space-frequency combining coefficient sets in the J space-frequency combining coefficient sets, and obtains J-1 space-frequency combining coefficient difference values corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the adjacent space-frequency combining coefficient set is determined according to two first reference signals received continuously.
  • the two first reference signals received continuously may be two first reference signals periodically and continuously sent by the network device and received by the terminal device, such as the network device periodically and continuously sends two first reference signals at time t X1 and time t X2 , respectively, and the terminal device receives the two first reference signals sent at time t X1 and time t X2 at time t R1 and time t R2 , respectively.
  • the two first reference signals received continuously may be two first reference signals received continuously by the terminal device, and the two first reference signals received continuously are not two first reference signals periodically and continuously sent by the network device, such as the network device periodically and continuously sends three first reference signals at time t X1 , time t X2 , and time t X3 , and the terminal device receives two first reference signals continuously at time t R1 and time t R3 .
  • the terminal device receives the three first reference signals periodically and continuously sent by the network device at time t X1 , time t X2 , and time t X3 , respectively, at time t R1, time t R2 , and time t R3 , and it only uses the two first reference signals received at time t R1 and time t R3 .
  • the terminal device makes a difference between the values of the space-frequency combining coefficients at the same position in the first space-frequency combining coefficient set and the second space-frequency combining coefficient set, makes a difference between the values of the space-frequency combining coefficients at the same position in the second space-frequency combining coefficient set and the third space-frequency combining coefficient set, ..., makes a difference between the values of the space-frequency combining coefficients at the same position in the J-1th space-frequency combining coefficient set and the J-th space-frequency combining coefficient set.
  • a space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient can be obtained.
  • J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient can be obtained.
  • the difference between the space-frequency combining coefficients at the same position may be the difference in the modulus of the space-frequency combining coefficients, and the corresponding difference in the space-frequency combining coefficients may be the difference in the modulus of the space-frequency combining coefficients; it may also be the difference in the phase of the space-frequency combining coefficients, and the corresponding difference in the space-frequency combining coefficients may be the difference in the phase of the space-frequency combining coefficients; it may also be the difference in the modulus and phase of the space-frequency combining coefficients, and the corresponding difference in the space-frequency combining coefficients may be the difference in the modulus and phase of the space-frequency combining coefficients; it may also be the difference in the space-frequency combining coefficients in complex value form, and the corresponding difference in the space-frequency combining coefficients may be the complex difference of the space-frequency combining coefficients.
  • the corresponding modulus value, or the phase value corresponding to the complex difference of the space-frequency combining coefficient, or the modulus value and phase value corresponding to the complex difference of the space-frequency combining coefficient are not limited in the embodiments of the present application.
  • the complex difference of the space-frequency combining coefficient is the difference between the two space-frequency combining coefficients in the form of complex values, and the complex difference of the space-frequency combining coefficient can also be called the space-frequency complex combining coefficient difference.
  • the second set of space-frequency combining coefficients The third set of space-frequency combining coefficients
  • the space-frequency combining coefficient difference is the modulus value difference of the space-frequency combining coefficient.
  • the modulus values of the space-frequency combining coefficients at the same position in two adjacent space-frequency combining coefficient sets in the three space-frequency combining coefficient sets are subtracted to obtain the modulus value difference of two space-frequency combining coefficients corresponding to each space-frequency combining coefficient.
  • the modulus value difference of the two space-frequency combining coefficients corresponding to the first space-frequency combining coefficient is ⁇ b11 - a11 , c11 - b11 ⁇
  • the modulus value difference of the two space-frequency combining coefficients corresponding to the second space-frequency combining coefficient is ⁇ b12 - a12 , c12 - b12 ⁇
  • the modulus value difference of the two space-frequency combining coefficients corresponding to the sixth space-frequency combining coefficient is ⁇ b33 - a33 , c33-b33 ⁇ .
  • the space-frequency combining coefficient difference is the modulus value corresponding to the complex difference of the space-frequency combining coefficients.
  • the complex values of the space-frequency combining coefficients at the same position in two adjacent space-frequency combining coefficient sets in the three space-frequency combining coefficient sets are subtracted to obtain the complex difference of two space-frequency combining coefficients corresponding to each space-frequency combining coefficient.
  • the modulus value corresponding to the complex difference of two space-frequency combining coefficients corresponding to each space-frequency combining coefficient is determined as the difference of two space-frequency combining coefficients corresponding to each space-frequency combining coefficient.
  • the difference of two space-frequency combining coefficients corresponding to the first space-frequency combining coefficient is The difference between the two space-frequency combining coefficients corresponding to the second space-frequency combining coefficient is
  • the difference between the two space-frequency combining coefficients corresponding to the sixth space-frequency combining coefficient is It can be understood that the space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient can be used to characterize the downlink channel change within the SRS period or the PMI feedback period.
  • the terminal device determines downlink channel change information according to J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the downlink channel change information may be:
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets.
  • each space-frequency combining coefficient difference set in the S space-frequency combining coefficient difference sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, and S is a positive integer.
  • the S space-frequency combining coefficient difference sets can be obtained by the terminal device according to the position division of the K space-frequency combining coefficients.
  • each of the K space-frequency combining coefficients corresponds to one space-frequency combining coefficient difference.
  • the K space-frequency combining coefficients correspond to K space-frequency combining coefficient differences.
  • the terminal device can divide the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients into S space-frequency combining coefficient difference sets according to the positions of the K space-frequency combining coefficients, thereby determining a maximum space-frequency combining coefficient difference in each space-frequency combining coefficient difference set as the downlink channel change information, that is, the downlink channel change information includes S maximum space-frequency combining coefficient differences. It should be understood that S is less than or equal to K.
  • the type of the maximum space-frequency combining coefficient difference is determined according to the type of the space-frequency combining coefficient difference. That is, the maximum space-frequency combining coefficient difference can be the maximum space-frequency combining coefficient modulus difference, the maximum space-frequency combining coefficient phase difference, the maximum space-frequency combining coefficient modulus difference and phase difference, the maximum modulus corresponding to the complex difference of the space-frequency combining coefficient, the maximum phase value corresponding to the complex difference of the space-frequency combining coefficient, or the maximum modulus and maximum phase value corresponding to the complex difference of the space-frequency combining coefficient.
  • the space-frequency combining coefficient difference obtained by subtracting two space-frequency combining coefficients may be a positive number or a negative number
  • the maximum space-frequency combining coefficient difference referred to in the embodiment of the present application may be the space-frequency combining coefficient difference with the largest difference (distinguishing the maximum difference between positive and negative numbers) in each space-frequency combining coefficient difference set.
  • a space-frequency combining coefficient difference set is ⁇ 2, -5, 3 ⁇ , and the maximum space-frequency combining coefficient difference is 3; or, the maximum space-frequency combining coefficient difference may also be the space-frequency combining coefficient difference with the largest absolute value (not distinguishing the maximum difference between positive and negative numbers) in each space-frequency combining coefficient difference set.
  • a space-frequency combining coefficient difference set is ⁇ 2, -5, 3 ⁇ , and the absolute value of -5 is the largest, and the maximum space-frequency combining coefficient difference is -5.
  • the embodiment of the present application does not make any specific limitation on this.
  • the space-frequency combining coefficient difference when the space-frequency combining coefficient difference is the space-frequency combining coefficient modulus difference, the space-frequency combining coefficient phase difference, or the phase value corresponding to the complex difference of the space-frequency combining coefficient, the space-frequency combining coefficient difference may be both positive and negative.
  • the maximum space-frequency combining coefficient difference may be the space-frequency combining coefficient difference with the largest difference or the space-frequency combining coefficient difference with the largest absolute value.
  • the difference between the 6 space-frequency combining coefficients is the modulus value corresponding to the complex difference between the 6 space-frequency combining coefficients, that is,
  • the 6 space-frequency combining coefficient differences are divided into 3 space-frequency combining coefficient difference sets, such as and
  • the terminal device determines the maximum modulus value of the modulus values corresponding to the complex differences of the space-frequency combining coefficients in the three sets of space-frequency combining coefficient differences (i.e., the maximum modulus value corresponding to the complex differences of the space-frequency combining coefficients) as the downlink channel change information, such as the maximum modulus values of the modulus values corresponding to the complex differences of the space-frequency combining coefficients in the three sets of space-frequency combining coefficient differences are respectively and That is, the downlink channel change information is ⁇ i max1 , ⁇ i max2 , ⁇ i max3 ⁇ .
  • a space-frequency combining coefficient difference value set includes only one space-frequency combining coefficient difference value, then the maximum space-frequency combining coefficient difference value in the space-frequency combining coefficient difference value set is the only space-frequency combining coefficient difference value.
  • the downlink channel change information may include S first space-frequency combining coefficient standard deviations.
  • the sth first space-frequency combining coefficient standard deviation is obtained by the terminal device calculating the standard deviation of the space-frequency combining coefficient difference in the sth space-frequency combining coefficient difference value set, wherein each space-frequency combining coefficient difference value set in the S space-frequency combining coefficient difference value sets includes one or more of the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients, s and S are positive integers, and 1 ⁇ s ⁇ S.
  • the first space-frequency combining coefficient standard deviation can be the standard deviation of the space-frequency combining coefficient modulus difference, the standard deviation of the space-frequency combining coefficient phase difference, the standard deviation of the space-frequency combining coefficient modulus difference and the standard deviation of the phase difference, the standard deviation of the modulus value corresponding to the complex difference of the space-frequency combining coefficients, the standard deviation of the phase value corresponding to the complex difference of the space-frequency combining coefficients, or the standard deviation of the modulus value and the standard deviation of the phase value corresponding to the complex difference of the space-frequency combining coefficients.
  • the 6 space-frequency combining coefficient differences are 6 space-frequency combining coefficient modulus differences, namely ⁇ b11 - a11 , b12 - a12 , b22 - a22 , b23-a23 , b32 - a23 , b33 - a33 ⁇ , and the 6 space-frequency combining coefficient differences are divided into 3 space-frequency combining coefficient difference sets, such as ⁇ b11 - a11 , b12 - a12 ⁇ , ⁇ b22 - a22 , b23- a23 ⁇ and ⁇ b32 -a23 ⁇ .
  • the terminal device calculates the standard deviation of the modulus difference of the two space-frequency combining coefficients in ⁇ b 11 -a 11 , b 12 -a 12 ⁇ to obtain a first space-frequency combining coefficient standard deviation
  • the standard deviation of the modulus difference of the two space-frequency combining coefficients in ⁇ b 22 -a 22 , b 23 -a 23 ⁇ is calculated to obtain a first space-frequency combining coefficient standard deviation:
  • the standard deviation of the modulus difference of the two space-frequency combining coefficients in ⁇ b 32 -a 32 , b 33 -a 33 ⁇ is calculated to obtain a first space-frequency combining coefficient standard deviation
  • the three first space-frequency combining coefficient standard deviations are determined as the downlink channel change information, that is, the downlink channel change information is
  • the difference between the six space-frequency combining coefficients is the modulus value corresponding to the complex difference between the six space-frequency combining coefficients, that is, The six space-frequency combining coefficient differences are divided into three space-frequency combining coefficient difference sets, such as and The terminal device will The standard deviation of the modulus corresponding to the complex difference of the two space-frequency combination coefficients in is calculated to obtain a first space-frequency combination coefficient standard deviation Will The standard deviation of the modulus value corresponding to the complex difference of the two space-frequency combination coefficients Calculate the standard deviation of the first space-frequency combination coefficient Will The standard deviation of the modulus corresponding to the complex difference of the two space-frequency combination coefficients in is calculated to obtain a first space-frequency combination coefficient standard deviation
  • the three first space-frequency combining coefficient standard deviations are determined as the downlink channel change information, that is, the downlink channel change information is
  • the downlink channel change information may only include a maximum space-frequency combining coefficient difference or a space-frequency combining coefficient standard deviation.
  • the terminal device can use two first reference signals to determine the downlink channel change information.
  • the terminal device can use the space-frequency combining coefficients at multiple positions to uniformly feedback a maximum space-frequency combining coefficient difference or a first space-frequency combining coefficient standard deviation, which is used to characterize the changes in the downlink channel within the SRS period or the PMI feedback period.
  • the downlink channel change information may be:
  • the downlink channel change information may include the maximum space-frequency combining coefficient difference among the J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients.
  • the downlink channel change information includes K maximum space-frequency combining coefficient differences, and each space-frequency combining coefficient in the K space-frequency combining coefficients corresponds to 1 maximum space-frequency combining coefficient difference.
  • the space-frequency combining coefficient difference is the modulus value difference of the space-frequency combining coefficient
  • the modulus value difference of two space-frequency combining coefficients corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients for example, the modulus value difference of two space-frequency combining coefficients corresponding to the first space-frequency combining coefficient is ⁇ b11 - a11 , c11 - b11 ⁇
  • the modulus value difference of two space-frequency combining coefficients corresponding to the second space-frequency combining coefficient is ⁇ b12 - a12 , c12 - b12 ⁇
  • the modulus value difference of two space-frequency combining coefficients corresponding to the third space-frequency combining coefficient is ⁇ b22 - a22 , c22 - b22 ⁇
  • the modulus value difference of two space-frequency combining coefficients corresponding to the fourth space-frequency combining coefficient is ⁇ b23 - a23
  • the space-frequency combining coefficient difference is the modulus value corresponding to the complex difference of the space-frequency combining coefficient
  • the modulus value corresponding to the complex difference of the two space-frequency combining coefficients corresponding to each space-frequency combining coefficient in the K space-frequency combining coefficients such as the modulus value corresponding to the complex difference of the two space-frequency combining coefficients corresponding to the first space-frequency combining coefficient
  • the modulus of the complex difference of the two space-frequency combining coefficients corresponding to the second space-frequency combining coefficient is
  • the modulus of the complex difference of the two space-frequency combining coefficients corresponding to the third space-frequency combining coefficient is
  • the modulus of the complex difference of the two space-frequency combining coefficients corresponding to the fourth space-frequency combining coefficient is
  • the modulus of the complex difference of the two space-frequency combining coefficients corresponding to the fifth space-frequency combining coefficient is The modulus of the complex difference of the two space-frequency combining coefficients corresponding to the sixth space-frequency
  • the downlink channel change information may include K second space-frequency combining coefficient standard deviations.
  • the kth second space-frequency combining coefficient standard deviation among the K second space-frequency combining coefficient standard deviations is the value of the terminal device for the K space-frequency combining coefficients.
  • the standard deviation of the J-1 space-frequency combining coefficient differences corresponding to the k-th space-frequency combining coefficient in the number is calculated, where k is a positive integer, 1 ⁇ k ⁇ K.
  • the terminal device calculates the standard deviation of the two space-frequency combining coefficient modulus differences ⁇ b 11 -a 11 , c 11 -b 11 ⁇ corresponding to the first space-frequency combining coefficient, and obtains the second space-frequency combining coefficient standard deviation corresponding to the first space-frequency combining coefficient
  • the terminal device calculates the standard deviation of the two space-frequency combining coefficient modulus differences ⁇ b 12 -a 12 , c 12 -b 12 ⁇ corresponding to the second space-frequency combining coefficient to obtain a second space-frequency combining coefficient standard deviation corresponding to the second space-frequency combining coefficient
  • the terminal device calculates the standard deviation of the modulus difference ⁇ b 22 -a 22 , c 22 -b 22 ⁇ of the two space-frequency combining coefficients corresponding to the third space-frequency combining coefficient, and obtains the standard deviation of the second space-frequency combining coefficient corresponding to the third space-frequency combining coefficient
  • the terminal device calculates the standard deviation of the modulus difference ⁇ b 33 -a 33 , c 33 -b 33 ⁇ of the two space-frequency combining coefficients corresponding to the sixth space-frequency combining coefficient, and obtains the standard deviation of the second space-frequency combining coefficient corresponding to the sixth space-frequency combining coefficient. Then, the terminal device determines the 6 second space-frequency combining coefficient standard deviations corresponding to the 6 space-frequency combining coefficients as the downlink channel change information. For example, the downlink channel change information is
  • the space-frequency combining coefficient difference is the modulus value corresponding to the complex difference of the space-frequency combining coefficient
  • the terminal device receives the modulus value corresponding to the complex difference of the two space-frequency combining coefficients corresponding to the first space-frequency combining coefficient.
  • the terminal device calculates the modulus value corresponding to the complex difference of the two space-frequency combining coefficients corresponding to the sixth space-frequency combining coefficient.
  • the terminal device determines the 6 second space-frequency combining coefficient standard deviations corresponding to the 6 space-frequency combining coefficients as the downlink channel change information.
  • the downlink channel change information is
  • ⁇ i max11 is used to feed back the change value of the space-frequency combining coefficient at the first row and first column (1,1) in the space-frequency combining coefficient matrix
  • ⁇ i max12 is used to feed back the change value of the space-frequency combining coefficient at the first row and second column (1,2) in the space-frequency combining coefficient matrix
  • ⁇ i max22 is used to feed back the change value of the space-frequency combining coefficient at the second row and second column (2,2) in the space-frequency combining coefficient matrix
  • ⁇ i max23 is used to feed back the change value of the space-frequency combining coefficient at the second row and third column (2,3) in the space-frequency combining coefficient matrix
  • ⁇ i max32 is used to feed back the change value of the space-frequency combining coefficient at the third row and second column (3,2) in the space-frequency combining coefficient matrix
  • ⁇ i max33 is used to feed back the change value of the space-frequency combining coefficient at the third row and third column (3,3) in the space-frequency combining coefficient matrix. That
  • the terminal device can use the first reference signal received more than twice to determine the downlink channel change information.
  • the terminal device can use the space-frequency combining coefficient at each position to feedback a maximum space-frequency combining coefficient difference or a second space-frequency combining coefficient standard deviation, which is used to characterize the changes in the downlink channel within the SRS period or the PMI feedback period.
  • the downlink channel change information may include K downlink channel change rates.
  • the K downlink channel change rates are obtained by dividing the K space-frequency combining coefficient differences corresponding to the K space-frequency combining coefficients by the first time difference, and the first time difference is the time interval for the terminal device to determine two space-frequency combining coefficient matrices according to two continuously received first reference signals.
  • Each downlink channel change rate can be used to feedback the change amount of the space-frequency combining coefficient per time slot (slot) or per millisecond (millisecond, ms).
  • the downlink channel information can also be called the space-frequency combining coefficient change rate, which can be the change rate of the space-frequency combining coefficient angle (or phase) and/or the change rate of the space-frequency combining coefficient amplitude (or modulus), or the space-frequency combining coefficient change rate (i.e., the change rate including the angle and amplitude).
  • the space-frequency combining coefficient change rate can be the change rate of the space-frequency combining coefficient angle (or phase) and/or the change rate of the space-frequency combining coefficient amplitude (or modulus), or the space-frequency combining coefficient change rate (i.e., the change rate including the angle and amplitude).
  • the terminal device determines two sets of space-frequency combining coefficients based on two first reference signals, the space-frequency combining coefficient sets include K space-frequency combining coefficients, and the space-frequency combining coefficients at the same position in the two sets of space-frequency combining coefficients are subtracted to obtain K space-frequency combining coefficient differences, and then according to the time interval between each space-frequency combining coefficient difference in the K space-frequency combining coefficient differences and the two received first reference signals, the change amount of the space-frequency combining coefficient at the corresponding position in each slot or each ms can be determined. In other words, each space-frequency combining coefficient in the space-frequency combining coefficient set feeds back a change rate.
  • K 6 and the complex differences of the 6 space-frequency combining coefficients corresponding to the 6 space-frequency combining coefficients are According to each complex difference of space-frequency combining coefficients, the modulus value corresponding to the complex difference of the space-frequency combining coefficients and the phase value corresponding to the complex difference of the space-frequency combining coefficients can be determined, so that the modulus value change rate of the space-frequency combining coefficients can be determined according to the modulus value corresponding to the complex difference of the space-frequency combining coefficients, and the phase change rate of the space-frequency combining coefficients can be determined according to the phase value corresponding to the complex difference of the space-frequency combining coefficients, to constitute the space-frequency combining coefficient change rate, then the space-frequency combining coefficient change rate per ms or per slot calculated corresponding to the 6 space-frequency combining coefficients is expressed as ⁇ i′ 11 , ⁇ i′ 12 , ⁇ i′ 22 , ⁇ i′ 23 , ⁇ i′ 32 , ⁇ i′ 33
  • K 6
  • the modulus differences of the six space-frequency combining coefficients corresponding to the six space-frequency combining coefficients are ⁇ b11 - a11 , b12 - a12 , b22 - a22 , b23 - a23 , b32 - a32 , b33 - a33 ⁇ .
  • the modulus change rate of the space-frequency combining coefficient can be determined according to the modulus difference of each space-frequency combining coefficient.
  • the modulus change rate of the space-frequency combining coefficient per ms or per slot calculated corresponding to the six space-frequency combining coefficients is expressed as ⁇ ⁇ i′11 , ⁇ i′12 , ⁇ i′22 , ⁇ i′23 , ⁇ i′32 , ⁇ i′33 ⁇ .
  • the terminal device can determine the downlink channel change rate based on two first reference signals received twice adjacently, and can also determine the downlink channel change rate based on two first reference signals received twice non-adjacently. For example, if the terminal device receives the first reference signals at three times t R1 , t R2 , and t R3 respectively, the downlink channel change rate can be determined by using the first reference signal received at time t R1 and the first reference signal received at time t R3 .
  • S305 The terminal device sends downlink channel change information to the network device.
  • the network device receives the downlink channel change information from the terminal device.
  • the terminal device when it feeds back downlink channel change information to the network device, it will also feed back a spatial domain basis and/or a frequency domain basis to the network device.
  • the fed back spatial domain basis and/or frequency domain basis is used by the network device to determine the position of the fed back downlink information change information, that is, the position corresponding to the fed back maximum space-frequency combining coefficient difference or the space-frequency combining coefficient change rate.
  • the fed back spatial domain basis and/or frequency domain basis can be determined by the terminal device based on any one of the J first reference signals.
  • the downlink channel change information may include a spatial domain basis and/or a frequency domain basis.
  • the terminal device can send downlink channel change information, spatial basis and/or frequency domain basis to multiple network devices respectively.
  • the downlink channel change information fed back to each network device can be determined based on the above S301-S304.
  • the spatial basis and/or frequency domain basis corresponding to multiple network devices are partially the same. In other words, multiple network devices have partially the same spatial basis and/or frequency domain basis.
  • the terminal device can feed back the same spatial basis and/or frequency domain basis to multiple network devices, as well as the spatial basis and/or frequency domain basis specific to each network device.
  • the network device determines a precoding matrix according to the downlink channel change information.
  • the network device when the network device sends data to the terminal device within a period of acquiring downlink channel information, the network device may perform robust precoding based on the downlink channel change information.
  • the precoding matrix design criterion is: Among them, W1 is the precoding matrix corresponding to the network device, To determine the channel matrix of W1 , ⁇ 1 is the change value of the channel matrix within the SRS period or the PMI feedback period, H 1 is the channel matrix most recently acquired by the network device, and [H 1 ,H 1 + ⁇ 1 ] is the change range of the channel within the SRS period or the PMI feedback period. H 1 may be obtained by the network device based on the SRS, or may be obtained by the network device based on the CSI-RS, which is not specifically limited in the embodiments of the present application.
  • the network device may determine a change value of the channel matrix within an SRS period or a PMI period according to the fed-back downlink channel change rate.
  • the downlink information change rate is ⁇ i′ 11 , ⁇ i′ 12 , ⁇ i′ 22 , ⁇ i′ 23 , ⁇ i′ 32 , ⁇ i′ 33 ⁇ , which respectively represent the change rate of the space-frequency combining coefficients of the six positions per ms.
  • the SRS period is 20 ms.
  • the latest channel matrix obtained by the network device based on the SRS is Based on this, the network device multiplies the change rate of the space-frequency combining coefficient at each position by the SRS period, and the change value of the space-frequency combining coefficient within the SRS period can be obtained as ⁇ 20 ⁇ i′ 11 , 20 ⁇ i′ 12 , 20 ⁇ i′ 22 , 20 ⁇ i′ 23 , 20 ⁇ i′ 32 , 20 ⁇ i′ 33 ⁇ , so that The range of variation within an SRS cycle is Then By multiplying W space and W freq , that is, multiplying the change value of each space-frequency combining coefficient by the corresponding space-domain basis and frequency-domain basis, the change value of the channel matrix within the SRS period can be obtained, such as As a result, network devices can Medium value Determine W 1 .
  • the downlink channel change information is the maximum space-frequency combining coefficient difference corresponding to each space-frequency combining coefficient difference set in S space-frequency combining coefficient difference sets
  • the downlink channel change information is ⁇ i max1 , ⁇ i max2 , ⁇ i max3 ⁇ , that is,
  • the range of variation within an SRS cycle is Network equipment will By multiplying W space and W freq , that is, multiplying the change value of each space-frequency combining coefficient by the corresponding space-domain basis and frequency-domain basis, the change value of the channel matrix within the SRS period or the PMI feedback period can be obtained, such as Therefore, the network device can take values from H 1 to H 1 + ⁇ 1 Determine W 1 .
  • the network device can take values from H 1 to H 1 + ⁇ 1 Determine W 1 .
  • the downlink channel change information is the maximum space-frequency combining coefficient difference among the J-1 space-frequency combining coefficient differences corresponding to each space-frequency combining coefficient among the K space-frequency combining coefficients
  • the downlink channel change information is ⁇ i max11 , ⁇ i max12 , ⁇ i max22 , ⁇ i max23 , ⁇ i max32 , ⁇ i max33 ⁇ , that is,
  • the range of variation within an SRS cycle is Network equipment will By multiplying W space and W freq , that is, multiplying the change value of each space-frequency combining coefficient by the corresponding space-domain basis and frequency-domain basis, the change value of the channel matrix within the SRS period or the PMI feedback period can be obtained, such as Therefore, the network device can take values from H 1 to H 1 + ⁇ 1 Determine W 1 .
  • the downlink channel change information is K second space-frequency combining coefficient standard deviations
  • the change value ⁇ 1 of the channel matrix corresponding to different downlink channel change information may be different, and the change value ⁇ 1 of the channel matrix is used to characterize the downlink channel change within the SRS period or the PMI feedback period.
  • the network device can determine a downlink channel change range based on the feedback downlink channel change information and the downlink channel information most recently acquired, and increase the coverage range of the transmitted signal through the above-mentioned precoding design, so that the signal coverage range is greater than the moving distance of the terminal device within the SRS period or the PMI feedback period, so that the terminal device can achieve the best receiving performance when the channel state is the worst in the downlink channel change range.
  • each network device can also determine the precoding matrix based on the above process.
  • the precoding matrix design criteria of two network devices are: Where W1 is the precoding matrix corresponding to network device 1, and W2 is the precoding matrix corresponding to network device 1.
  • the precoding matrix corresponding to 1 H i represents the channel matrix most recently obtained by the ith network device, ⁇ i represents the change value of the channel matrix corresponding to the ith network device in the SRS cycle or the PMI feedback cycle, i is a positive integer, i ⁇ [1,2], To determine the channel matrix of W1 , To determine the channel matrix of W 2.
  • network device 1 and network device 2 determine W 1 and W 2 respectively, which can make the terminal device have the worst channel variation range in [H 1 ,H 1 + ⁇ 1 ] and [H 2 ,H 2 + ⁇ 2 ]. and That is to say, based on the above precoding design, multiple network devices can make the signals sent by multiple network devices overlap at the terminal device, and the signal coverage range is greater than the moving distance of the terminal device in the SRS period or the PMI feedback period, thereby improving the receiving performance of the terminal device.
  • the terminal device can obtain multiple space-frequency combining coefficient matrices based on multiple first reference signals sent by the same network device to construct multiple space-frequency combining coefficient sets with the same number of elements and positions, and use the difference obtained by pairwise difference of the space-frequency combining coefficients at the same position in the multiple space-frequency combining coefficient sets to determine the downlink channel change information within the downlink channel information acquisition period, so that the network device can use the feedback downlink channel change information for precoding, which can solve the problem of channel mismatch caused by aging of downlink channel information within the downlink channel information acquisition period, thereby causing damage to the terminal device performance, improve the coverage range of the transmitted signal, and further improve the receiving performance of the terminal device in the mobility scenario.
  • the methods and/or steps implemented by the terminal device can also be implemented by components that can be used for the terminal device (such as a processor, chip, chip system, circuit, logic module, or software); the methods and/or steps implemented by the network device can also be implemented by components used for the network device (such as a processor, chip, chip system, circuit, logic module, or software).
  • the above mainly introduces the scheme provided by the present application. Accordingly, the present application also provides a communication device, which is used to implement various methods in the above method embodiments.
  • the communication device can be a terminal device in the above method embodiments, or a device including a terminal device, or a component that can be used for a terminal device, such as a chip or a chip system.
  • the communication device can be a network device in the above method embodiments, or a device including a network device, or a component that can be used for a network device, such as a chip or a chip system.
  • the communication device includes hardware structures and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the embodiment of the present application can divide the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG6 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 600 includes: a processing module 601 and a transceiver module 602.
  • the processing module 601 is used to perform the processing function of the terminal device or the network device in the above method embodiment.
  • the transceiver module 602 is used to perform the transceiver function of the terminal device or the network device in the above method embodiment.
  • the transceiver module 602 may include a receiving module and a sending module (not shown in FIG. 6 ).
  • the transceiver module is used to implement the sending function and the receiving function of the communication device 600 .
  • the communication device 600 may further include a storage module (not shown in FIG. 6 ), which stores a program or instruction.
  • the processing module 601 executes the program or instruction, the communication device 600 may perform the functions of the terminal device or network device in the communication method shown in FIG. 3 .
  • the processing module 601 involved in the communication device 600 can be implemented by a processor or a processor-related circuit component, which can be a processor or a processing unit;
  • the transceiver module 602 can be implemented by a transceiver or a transceiver-related circuit component, which can be a transceiver or a transceiver unit.
  • the communication device 600 provided in this embodiment can execute the above communication method, the technical effects that can be obtained can refer to the above method embodiments and will not be repeated here.
  • FIG7 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • the communication device may be a terminal device or a network device, or may be a chip (system) or other components or assemblies that may be provided in a terminal device or a network device.
  • a communication device 700 may include a processor 701.
  • the communication device 700 may further include a memory 702 and/or a transceiver 703.
  • the processor 701 is coupled to the memory 702 and the transceiver 703, such as by a communication bus.
  • the processor 701 is the control center of the communication device 700, which can be a processor or a general term for multiple processing elements.
  • the processor 701 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • CPUs central processing units
  • ASIC application specific integrated circuit
  • integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • the processor 701 may perform various functions of the communication device 700 by running or executing a software program stored in the memory 702 , and calling data stored in the memory 702 .
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 7 .
  • the communication device 700 may also include multiple processors, such as the processor 701 and the processor 704 shown in FIG7 .
  • processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the memory 702 is used to store the software program for executing the solution of the present application, and the execution is controlled by the processor 701.
  • the specific implementation method can refer to the above method embodiment, which will not be repeated here.
  • the memory 702 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 702 may be integrated with the processor 701, or may exist independently and be coupled to the processor 701 through an interface circuit (not shown in FIG. 7 ) of the communication device 700, which is not specifically limited in the embodiments of the present application.
  • the transceiver 703 is used for communication with other communication devices. For example, if the communication device 700 is a terminal device, the transceiver 703 can be used to communicate with a network device, or with another terminal device. For another example, if the communication device 700 is a network device, the transceiver 703 can be used to communicate with a terminal device, or with another network device.
  • the transceiver 703 may include a receiver and a transmitter (not shown separately in FIG7 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.
  • the transceiver 703 may be integrated with the processor 701, or may exist independently and be coupled to the processor 701 via an interface circuit (not shown in FIG. 7 ) of the communication device 700 , which is not specifically limited in the embodiment of the present application.
  • the structure of the communication device 700 shown in FIG. 7 does not constitute a limitation on the communication device, and an actual communication device may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
  • the technical effects of the communication device 700 can refer to the technical effects of the communication method described in the above method embodiment, and will not be repeated here.
  • the embodiment of the present application provides a communication system.
  • the communication system includes the above-mentioned terminal device and network device.
  • the present application also provides a computer-readable storage medium on which a computer program or instruction is stored.
  • a computer program or instruction is stored on which a computer program or instruction is stored.
  • the embodiment of the present application also provides a computer program product, which implements the functions of the above method embodiment when executed by a computer.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,能够解决下行信道老化导致终端设备性能受损的问题,可应用于FDD和TDD系统中。该方法包括:终端设备接收来自网络设备的J个第一参考信号,根据该J个第一参考信号确定J个空频合并系数集合,将该J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差,得到K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值,并根据该K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定下行信道变化信息,并向网络设备发送下行信道变化信息,J为大于1的正整数,K为正整数。

Description

通信方法及装置
本申请要求于2022年11月28日提交国家知识产权局、申请号为202211501901.X、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
预编码(precoding)技术是发送设备在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。
在时分双工(time division duplex,TDD)系统中,网络设备接收终端设备发送的上行参考信号,如探测参考信号(sounding reference signal,SRS),根据上行参考信号进行信道估计获得上行信道状态信息(channel state information,CSI),再根据上行信道和下行信道的互异性,结合上行CSI获取下行CSI,从而网络设备可以根据下行CSI做下行预编码。另外,在频分双工(frequency division duplex,FDD)系统中,网络设备可以向终端设备发送下行参考信号,如信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备可以根据接收的下行参考信号进行信道估计获取下行CSI并反馈给网络设备,从而网络设备可以根据终端设备反馈的下行CSI做下行预编码。
然而,在TDD系统和FDD系统中,由于网络设备获取下行CSI是周期性的,在获取到一次下行CSI之后,需要经过一个获取周期才能对下行CSI进行更新,在该周期内,若终端设备移动或散射环境发生变化,则下行信道会发生变化。此时,网络设备只能使用最近一次获取的下行CSI做下行预编码,会导致下行预编码与当前下行信道失配,进而会使得终端设备性能受损。
发明内容
本申请实施例提供一种通信方法及装置,能够解决下行信道信息老化导致终端设备性能受损的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。以下以该方法由终端设备执行为例进行说明。该通信方法包括:终端设备接收来自网络设备的J个第一参考信号。其中,J为大于1的正整数。终端设备根据J个第一参考信号确定J个空频合并系数集合。其中,J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,K为正整数。终端设备将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差,得到K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值。其中,相邻空频合并系数集合为根据连续接收的两个第一参考信号确定的。终端设备根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定下行信道变化信息。终端设备向网络设备发送下行信道变化信息。其中,下行信道变化信息用于网络设备确定预编码矩阵。
基于该通信方法,终端设备可以基于同一网络设备发送的多个第一参考信号得到多个空频合并系数矩阵,来构建元素个数以及位置相同的多个空频合并系数集合,并利用多个空频合并系数集合中同一位置的空频合并系数两两作差得到的差值,确定下行信道信息获取周期内的下行信道变化信息,以便于网络设备利用反馈的下行信道变化信息做预编码,可以解决在下行信道信息获取周期内(如SRS发送周期或PMI反馈周期)下行信道信息老化导致信道不匹配,从而造成终端 设备性能受损的问题,提高了发送信号的覆盖范围,进而可以提高终端设备在移动性场景下的接收性能。
本申请实施例中,空频合并系数差值可以为同一位置的空频合并系数的模值两两作差得到的空频合并系数模值差,也可以为同一位置的空频合并系数的相位值两两作差得到的空频合并系数相位差,还可以为同一位置的空频合并系数的模值和相位值分别两两作差得到的空频合并系数模值差和相位差,还可以为同一位置的空频合并系数的复数值两两作差得到空频合并系数复数差对应的模值和/或相位值,对此不做具体限定。
一种可能的设计方案中,J=2;下行信道变化信息可以包括K个下行信道变化率。如此,终端设备可以向网络设备反馈的K个下行信道变化率,使得网络设备可以基于K个下行信道变化率以及网络设备的下行信道信息获取周期(如SRS发送周期或PMI反馈周期),进而可以计算K个下行信道变化率对应的K个位置的空频合并系数在下行信道信息获取周期内的变化量,从而网络设备可以基于下行信道信息获取周期内的空频合并系数的变化量对下行信道预测来进行预编码设计,以提高发送信号的覆盖范围。
进一步的,K个下行信道变化率为K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到。其中,第一时间差为终端设备分别根据两个连续接收的第一参考信号确定两个空频合并系数矩阵的时间间隔。本申请实施例中,下行信道变化率用于表征每毫秒或每时隙的空频合并系数变化情况。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值。其中,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。如此,终端设备可以通过将K个空频合并系数差值划分为几部分,每个部分的空频合并系数差值中反馈一个最大空频合并系数差值来表征该部分所有空频合并系数在下行信道信息获取周期(如SRS发送周期或PMI反馈周期)的变化情况,以便于网络设备进行下行预编码计算。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个第一空频合并系数标准差。其中,S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。如此,终端设备还可以通过将K个空频合并系数差值划分为几部分,每个部分的空频合并系数差值中反馈一个空频合并系数标准差,来表征该部分所有空频合并系数在下行信道信息获取周期(如SRS发送周期或PMI反馈周期)的变化情况,以便于网络设备进行下行预编码计算。
一种可能的设计方案中,J>2;下行信道变化信息包括K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。如此,终端设备可以采用每个位置的空频合并系数对应反馈一个最大空频合并系数差值,用于表征在SRS周期内或PMI反馈周期内的下行信道的变化情况。
一种可能的设计方案中,J>2;下行信道变化信息包括K个第二空频合并系数标准差。其中,K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为终端设备对K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
如此,终端设备也可以采用每个位置的空频合并系数对应反馈一个第二空频合并系数标准差,用于表征在SRS周期内或PMI反馈周期内的下行信道的变化情况。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按照元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且第一矩阵中按照元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系 数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。也就是说,第一矩阵中的每个元素的能量为J个第一参考信号对应的J个空频合并系数矩阵中同一位置的J个空频合并系数的模值的平方之和(可以简称为模方和)。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
一种可能的设计方案中,在多个网络设备服务终端设备的情况下,本申请实施例提供的通信方法还包括:终端设备向多个网络设备发送空域基底和/或频域基底。其中,多个网络设备对应的空域基底和/或频域基底部分相同。
第二方面,提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。以下以该方法由网络设备执行为例进行说明。该通信方法包括:网络设备向终端设备发送J个第一参考信号,J为大于1的正整数。网络设备接收来自终端设备的下行信道变化信息。其中,下行信道变化信息根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定,K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值为终端设备将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差得到,相邻空频合并系数集合为根据连续接收的两个第一参考信号确定的,J个空频合并系数集合根据J个第一参考信号确定,J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,K为正整数。网络设备根据下行信息变化信息确定预编码矩阵。
一种可能的设计方案中,J=2;下行信道变化信息可以包括K个下行信道变化率。
进一步的,K个下行信道变化率为K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到。其中,第一时间差为终端设备分别根据两个连续接收的第一参考信号确定两个空频合并系数矩阵的时间间隔。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值。其中,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个第一空频合并系数标准差。其中,S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
一种可能的设计方案中,J>2;下行信道变化信息包括K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。
一种可能的设计方案中,J>2;下行信道变化信息包括K个第二空频合并系数标准差。其中,K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为终端设备对K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且第一矩阵中按元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
一种可能的设计方案中,在多个网络设备服务终端设备的情况下,本申请实施例提供的通信方法还包括:网络设备接收来自终端设备的空域基底和/或频域基底。其中,多个网络设备对应的空域基底和/或频域基底部分相同。
其中,第二方面所述的通信方法的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片。所述通信装置包括实现上述第一方面所述方法的相应模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置包括:处理模块和收发模块。其中,收发模块,用于接收来自网络设备的J个第一参考信号。其中,J为大于1的正整数。处理模块,用于根据J个第一参考信号确定J个空频合并系数集合。其中,J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,K为正整数。处理模块,还用于将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差,得到K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值。其中,相邻空频合并系数集合为根据连续接收的两个第一参考信号确定的。处理模块,还用于根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定下行信道变化信息。收发模块,还用于向网络设备发送下行信道变化信息。其中,下行信道变化信息用于网络设备确定预编码矩阵。
一种可能的设计方案中,J=2;下行信道变化信息可以包括K个下行信道变化率。
进一步的,K个下行信道变化率为K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到。其中,第一时间差为终端设备分别根据两个连续接收的第一参考信号确定两个空频合并系数矩阵的时间间隔。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值。其中,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个第一空频合并系数标准差。其中,S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
一种可能的设计方案中,J>2;下行信道变化信息包括K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。
一种可能的设计方案中,J>2;下行信道变化信息包括K个第二空频合并系数标准差。其中,K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为终端设备对K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且第一矩阵中按元素能量从大到小排序后的排在前K个的元素 的能量之和为预设能量之和。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
一种可能的设计方案中,在多个网络设备服务终端设备的情况下,收发模块,还用于向多个网络设备发送空域基底和/或频域基底。其中,多个网络设备对应的空域基底和/或频域基底部分相同。
可选的,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现第三方面所述的通信装置的发送功能,接收模块用于实现第三方面所述的通信装置的接收功能。
可选的,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的通信装置可以执行第一方面所述的通信方法。
其中,第三方面所述的通信装置的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,比如芯片。所述通信装置包括实现上述第二方面所述方法的相应模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置包括:处理模块和收发模块。其中,收发模块,用于向终端设备发送J个第一参考信号,J为大于1的正整数。收发模块,还用于接收来自终端设备的下行信道变化信息。其中,下行信道变化信息根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定,K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值为终端设备将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差得到,相邻空频合并系数集合为根据连续接收的两个第一参考信号确定的,J个空频合并系数集合根据J个第一参考信号确定,J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,M为正整数。处理模块,用于根据下行信息变化信息确定预编码矩阵。
一种可能的设计方案中,J=2;下行信道变化信息可以包括K个下行信道变化率。
进一步的,K个下行信道变化率为K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到。其中,第一时间差为终端设备分别根据两个连续接收的第一参考信号确定两个空频合并系数矩阵的时间间隔。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值。其中,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。
一种可能的设计方案中,J=2;下行信道变化信息可以包括S个第一空频合并系数标准差。其中,S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,S个空频合并系数差值集合中每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
一种可能的设计方案中,J>2;下行信道变化信息包括K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。
一种可能的设计方案中,J>2;下行信道变化信息包括K个第二空频合并系数标准差。其中, K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为终端设备对K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且第一矩阵中按元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
一种可能的设计方案中,J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
一种可能的设计方案中,在多个网络设备服务终端设备的情况下,收发模块,还用于接收来自终端设备的空域基底和/或频域基底。其中,多个网络设备对应的空域基底和/或频域基底部分相同。
可选的,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现第四方面所述的通信装置的发送功能,接收模块用于实现第四方面所述的通信装置的接收功能。
可选的,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的通信装置可以执行第二方面所述的通信方法。
其中,第四方面所述的通信装置的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第五方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第五方面所述的通信装置可以为第一方面中的终端设备或第二方面中的网络设备,或者可设置于该终端设备或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
第六方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
第七方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为上述第一方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置。
其中,第五方面至第七方面的技术效果可以参考第一方面至第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第八方面,提供一种通信系统。该通信系统包括终端设备和网络设备。其中,终端设备用于执行上述第一方面所述的通信方法,网络设备用于执行上述第二方面所述的通信方法。
第九方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
第十方面,提供一种计算机程序产品。该计算机程序产品包括:计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种CJT传输的场景示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种第一参考信号周期性传输的结构示意图;
图5为本申请实施例提供的一种空频合并系数矩阵的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为便于理解,下面先介绍本申请实施例所涉及的技术术语。
1、相干联合传输(coherent joint transmission,CJT)
CJT是多个网络设备通过相干传输的方式为终端设备传输数据。为终端设备服务的多个网络设备均知道要传输给该终端设备的数据信息,并且,每个网络设备都要知道自己和其他网络设备与终端设备之间的CSI,该CSI可以包括CSI-RS资源指示(CSI-RS resource indicator,CRI)、秩指示(rank indicator,RI)、预编码矩阵指示(precoding matrix indicator,PMI)以及信道质量指示(channel quality indicator,CQI)中的至少一个。因此,这多个网络设备就像是分布式的多个天线阵列,可以一起对要传输的同一层数据做预编码,等效于一个大网络设备。所谓“相干传输”,指的是多个网络设备可以共同传输某个数据流,使得多个网络设备的发送信号在到达终端设备的时候能够同向叠加,从而成倍的提升接收信号的功率,并大幅度降低干扰。换句话说,相干传输可以将多个网络设备之间的干扰变成有用信号,可以显著提升数据传输性能,如可以显著提升信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
为了使能CJT传输,需要终端设备上报正确的CQI,网络设备根据终端设备测量并上报的CQI来确定调制编码策略(modulation coding scheme,MCS),做良好的链路自适应,因此,终端设备上报的CQI能否正确的反映实际数据传输时的SINR对数据的解调性能非常关键。
2、预编码(Precoding)技术
发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。其中,通过对待发送信号的预编码处理,接收信号质量(例如SINR等)可以得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输信号,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
3、PMI
PMI可用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,一个频域单元的频域宽度可以是资源块(resource block,RB),或子带,或频域子带的R倍,R≤1,R的取值可以为1或1/2)的信道矩阵确定的预编码矩阵。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
需要说明的是,网络设备可以基于终端设备的反馈确定用于构建预编码向量的空域基向量、频域基向量以及空频向量对的空频合并系数,进而确定与各频域单元对应的预编码矩阵。该预编码矩阵可以直接用于下行数据传输;也可以经过一些波束成形方法,例如包括迫零(zero forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,以得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。
可以理解的是,终端设备所确定的预编码矩阵可以理解为待反馈的预编码矩阵。终端设备可以通过PMI指示待反馈的预编码矩阵,以便于网络设备基于PMI恢复该预编码矩阵。可以理解,网络设备基于PMI恢复出的预编码矩阵可以与上述待反馈的预编码矩阵相同或相近。
在下行信道测量中,网络设备根据PMI确定出的预编码矩阵与终端设备所确定的预编码矩阵的近似度越高,其确定出的用于数据传输的预编码矩阵也就越能够与信道状态相适配,因此也就能够提高信号的接收质量。
4、空域向量(spatial domain vector)
空域向量也可以称为空域分量向量、波束(beam)向量、空域波束基向量、空域基向量、或者空域基底(spatial domain basis)等。一个空域向量可以对应一个波束(beam)或一个波束方向。空域向量可以是用于构建信道矩阵的向量之一。空域向量中的各个元素可以表示各个天线端口(antenna port)的权重。基于空域向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。
下文中为方便说明,假设空域向量记作u。空域向量u的长度可以为一个极化方向上的发射天线端口数Ns,Ns≥1且为整数。空域向量例如可以为长度为Ns的列向量或行向量。本申请对此不作限定。
可选地,空域向量是以下向量中的任意一种:离散傅里叶变换(discrete fourier transform,DFT)向量、DFT向量的共轭转置向量、过采样DFT向量、过采样DFT向量的共轭转置向量、或者小波变换(wavelet transform,WT)向量。其中,DFT向量可以是指DFT矩阵中的向量,DFT共轭转置向量可以是指DFT矩阵的共轭转置矩阵中的列向量,过采样DFT向量可以是指过采样DFT矩阵中的向量,WT向量可以是指WT矩阵中的列向量。
可选地,本申请实施例中,空域矩阵可以是在空域向量集合中选择一个或多个空域向量构成的矩阵。其中,空域向量集合可以是预先配置的;或者,空域向量集合可以是终端设备与网络设备协商的;或者,空域向量集合可以是协议约定的,本申请实施例对此不作具体限定。
示例性的,空域向量集合可以是完备正交基矩阵,例如DFT矩阵、DFT矩阵的共轭转置矩阵、过采样DFT矩阵、或者过采样DFT矩阵的共轭转置矩阵等,本申请实施例对此不作具体限定。
可选地,本申请实施例中,空域向量集合的维度可以是预先配置的,或者终端设备与网络设备协商的,或者协议约定的,本申请实施例对此不作具体限定。
可选地,空域矩阵中空域向量的个数可以是预先配置的,或者终端设备与网络设备协商的,本申请实施例对此不作具体限定。
一种实现方式中,该空域向量例如可以是NR协议38.214版本15(release 15,R15)中类型II(type II)码本中定义的二维(2 dimensions,2D)-DFT向量vl.m。换句话说,空域向量可以是2D-DFT向量或过采样2D-DFT向量。为了简洁,这里省略对2D-DFT向量的详细说明。
5、频域向量(frequency domain vector)
频域向量也可以称为频域分量向量、频域基向量、或者频域基底(frequency domain basis)等,可用于表示信道在频域的变化规律。一个频域向量可以对应一个时延径(delay path)或一个时延域径。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
频域向量uf的长度可以记作Nf,Nf为正整数,频域向量例如可以是长度为Nf的列向量或行向量。频域向量的长度可以由在上报带宽中预配置的待上报的频域单元的数量确定,也可以由该上 报带宽的长度确定,还可以是协议预定义值。本申请对于频域向量的长度不做限定。其中,所述上报带宽例如可以是指通过高层信令(如无线资源控制(radio resource control,RRC)消息)中的CSI上报预配置中携带的CSI上报带宽(CSI-ReportingBand)。
举例来说,频域向量或频域基底可以是与下行参考信号的带宽和下行参考信号的频域粒度大小中的至少一项相关的DFT基底,也可以是基于M个比特量化的时延值基底,也可以是基于循环移位(Cycling Shift)构成的基底。所述M个比特量化的时延值基底中的每个时延值基底对应一个时延径或一个时延域径,例如10纳秒(nanosecond,ns),可以通过预定义或者网络设备通知终端设备,或者终端设备通知网络设备,来量化成为一个M个比特的时延值,也即一个时延值基底。所述基于循环移位构成的基底,可以是由N个循环移位序列构成的基底,每个基底为一个循环移位序列,每个循环移位序列对应一种时延径或频域基底的循环移位方式。
当确定了频域基底或频域向量后,可以确定全部的频域基底对应的索引,每个频域基底对应一个索引,每个索引可用于确定一个频域基底。例如,总共有N个频域基底的情况下,一种可能的方式是对频域基底进行从1到N的编号进行索引;一种可能的方式是利用频域基底的值作为索引,例如频域基底为时延值基底时,10ns对应的频域基底的索引可以为10。
可选地,频域向量是以下向量中的任意一种:DFT向量、DFT向量的共轭转置向量、过采样DFT向量、过采样DFT向量的共轭转置向量、离散余弦变化(discrete cosine transform,DCT)向量、DCT向量的共轭转置向量、过采样DCT向量、或者过采样DCT向量的共轭转置向量。例如,频域向量可以是第三代合作伙伴计划(3rd generation partnership project,3GPP)技术规范(technical specification,TS)38.214中类型II中定义的DFT向量。
可选地,本申请实施例中,频域矩阵可以是在频域向量集合中选择一个或多个频域向量构成的矩阵。其中,频域向量集合可以是预先配置的;或者,频域向量集合可以是终端设备与网络设备协商的;或者,频域向量集合可以是协议约定的,本申请实施例对此不作具体限定。
示例性的,频域向量集合可以是完备正交基矩阵,例如DFT矩阵、DFT矩阵的共轭转置矩阵、过采样DFT矩阵、或者过采样DFT矩阵的共轭转置矩阵等,本申请实施例对此不作具体限定。
可选地,本申请实施例中,频域向量集合的维度与频域向量的个数可以是预先配置的,或者终端设备与网络设备协商的,或者协议约定的,本申请实施例对此不作具体限定。
可选地,本申请实施例中,频域矩阵中频域向量的个数可以是预先配置的,或者终端设备与网络设备协商的,本申请实施例对此不作具体限定。
6、空频向量对
空频向量对也可以称为空频分量向量,一个空域向量和一个频域向量可以组合得到一个空频向量对。换句话说,一个空频向量对可以包括一个空域向量和一个频域向量。由一个空频向量对中的空域向量和频域向量可以得到一个空频分量矩阵。例如,将一个空域向量与一个频域向量的共轭转置相乘,可以得到一个空频分量矩阵。这里所述的空频分量矩阵是相对于下文所述的空频矩阵而言的。由于对多个空频分量矩阵加权求和可以得到空频矩阵。因此用于加权的每一项可以称为一个空频矩阵的分量,即这里所说的空频分量矩阵。
7、空频矩阵
在本申请实施例中,空频矩阵可以理解为是用于确定每个频域单元对应的信道矩阵的一个中间量。对于终端设备来说,空频矩阵可以由每个频域单元对应的信道矩阵确定。对于接入网设备来说,空频矩阵可以是由多个空频分量矩阵的加权和得到,以用于恢复信道矩阵。
例如,空频矩阵可以记作H,其中,w0是与Nf个频域单元对应的Nf个列向量,每个列向量可以是每个频域单元对应的信道向量或信道矩阵,各列向量的长度均可以为Ns。该Nf个列向量分别对应Nf个频域单元的信道向量。即空频矩阵可以视为将Nf个频域单元对应的信道向量组合构成的联合矩阵。
在一种可能的设计中,空频矩阵可以与接收天线端口对应。之所以称该空频矩阵与接收天线端口对应,是由于终端设备可以基于每个接收天线端口反馈频域向量、空域向量和合并系数。接入网设备基于终端设备的反馈确定的空频矩阵也就是与接收天线端口对应的空频矩阵。
应理解,空频矩阵仅为用于确定信道矩阵的一种表现形式,不应对本申请构成任何限定。例如,将空频矩阵中的各列向量按从左至右的顺序依次首位相接,或者按照其他预定义的规则排列,也可以得到长度为Ns×Nf的向量,该向量可以称为空频向量。
还应理解,上文所示的空频矩阵和空频向量的维度仅为示例,不应对本申请构成任何限定。例如,该空频矩阵也可以是维度为Nf×Ns的矩阵。其中,每个行向量可对应于一个频域单元,以用于确定所对应的频域单元的信道向量。
此外,当发射天线配置有多个极化方向时,该空频矩阵的维度还可以进一步扩展。如,对于双极化方向天线,该空频矩阵的维度可以为2Ns×Nf或Nf×2Ns。应理解,本申请对于发射天线的极化方向数不作限定。
进一步的,一个接收天线端口对应的空频矩阵还可以表示为
其中,一个或多个空域向量可以构成矩阵W1,W1中的每一个列向量对应一个空域向量。一个或多个频域向量可以构成矩阵W3,W3中的每一个列向量对应一个频域向量。
当接收天线端口数量大于1时,各个接收天线端口所使用的空域向量可以是不完全相同的,即,各接收天线端口使用独立的空域向量;各个接收天线端口所使用的空域向量也可以是相同的,即,多个接收天线端口共用L个空域向量。
当接收天线端口数量大于1时,各个接收天线端口所使用的频域向量可以是不完全相同的,即,各接收天线端口使用独立的频域向量;各个接收天线端口所使用的频域向量也可以是相同的,即,多个接收天线端口共用M个频域向量。
在这种情况下,第i个接收天线端口上各频域单元对应的信道向量可以是基于上述L个空域向量和Mi个频域向量构建的。
若采用双极化方向的发射天线,每个极化方向可以选择L个空域向量。则,W1的维度可以是2Ns×2L。在一种可能的实现方式中,两个极化方向可以采用相同的L个空域向量 此时,W1可以表示为:
其中,表示选择的L个空域向量中的第i个空域向量,i=0,1,…,L-1。
对于第i个接收天线端口,的维度可以为Mi×Nf。W3中的每一个列向量可以是一个频域向量。此时W1中的每个空域向量和W3中的每个频域向量可以构成一个空频向量对,每个空频向量对可以对应一个合并系数,则有2L个空域向量和Mi个频域向量所构建的2L×Mi个空频向量对可以与2L×Mi个合并系数一一对应。
对于第i个接收天线端口,可以是由上述2L×Mi个合并系数构成的合并系数矩阵,其维度可以为2L×Mi。该合并系数矩阵中的第l行可以对应2L个空域向量中第一极化方向上的第l个空域向量,该合并系数矩阵中的第L+l行可以对应2L个空域向量中第二极化方向上的第l个空域向量。该合并系数矩阵中的第m(0≤m≤Mi-1且m为整数)个列可以对应Mi个频域向量中的第m个频域向量。
其中用来构建空频矩阵的空频向量对的位置具体是指,用来构建的空频矩阵的空域向量在终端设备所上报的空域向量中的位置以及用来构建的空频矩阵的频域向量在终端设备所上报的频域向量中的位置。由于每个空频向量对对应一个非零的合并系数(简称非零系数),故用来构建空频矩阵的空频向量对的位置也就是非零系数的位置。
8、空频合并系数:
空频合并系数也可以称为合并系数或者加权系数等。每个合并系数可对应一个空域向量和一个频域向量,或者说,每个合并系数可对应一个空频向量对。每个合并系数是其所对应的空频向量对所构建的空频分量矩阵的加权系数。一个合并系数与一个空域向量和一个频域向量对应。具体地,合并系数矩阵中第i行第j列的元素为第i个空域向量与第j个频域向量构成的空频向量对所对应的合并系数。对于双极化方向天线,上述i∈{1,2,…,2L},每个空域向量的长度为2Ns
本申请实施例中,每个合并系数包括幅度和相位,例如合并系数可以表示为ae,a为合并系数的幅度,θ为合并系数的相位。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统,通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
参见图1,为本申请实施例提供的一种通信系统的架构示意图。如图1所示,该通信系统包括:网络设备101、网络设备102和终端设备103。其中,网络设备101和网络设备102可以为终端设备103提供无线通信服务,并且网络设备101与网络设备102之间可以通信、网络设备101或网络设备102与终端设备103之间也可以通信。图1示例的示出了2个网络设备和1个终端设备,本申请实施例并不限定网络设备和终端设备的数量。
本申请实施例中,各网络设备和终端设备之间采用的传输机制可以是单站传输,如网络设备101和网络设备102中的任意一个可以为终端设备103提供服务,当终端设备移动到其他网络设备的服务范围时,需要进行小区切换。各网络设备和终端设备之间采用的传输机制也可以是CJT,如网络设备101和网络设备102同时为终端设备103提供服务,通过相干传输的方式为终端设备103传输数据。
本申请实施例中,各通信设备,如网络设备101~102或终端设备103,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备101~102与终端设备103可通过多天线技术通信。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、发送/接收节点或传输点(transmit/receiving point,TRP或transmit point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,发送/接收节点或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
上述终端设备为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端设备也可以称为用户设备(user equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设 备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的通信方法。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
需要说明的是,本申请实施例提供的通信方法,可以适用于图1所示的终端设备与网络设备之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
目前,在图1示出的通信系统中,无论单站传输还是CJT,网络设备在向终端设备发送信号之前,需要获取下行CSI做下行预编码,通过预编码对发送信号进行处理,从而可以使得终端设备消除信道间影响的复杂度降低,提高终端设备的接收性能。
其中,网络设备获取下行CSI可以通过接收上行参考信号(如SRS)或发送下行参考信号(如CSI-RS)实现。例如,在TDD系统中,网络设备接收终端设备发送的SRS,根据SRS进行信道估计获得上行CSI,再根据上行信道和下行信道的互异性,结合上行CSI获取下行CSI,从而网络设备可以根据下行CSI对发送信号做下行预编码。又例如,在FDD系统中,网络设备可以向终端设备发送CSI-RS,终端设备可以根据接收的CSI-RS进行信道估计获取下行CSI并反馈给网络设备,从而网络设备可以根据终端设备反馈的下行CSI对发送信号做下行预编码。
在上述TDD系统和FDD系统中,由于网络设备获取下行CSI是周期性的,因此对下行CSI进行更新也需要等待至少一个周期时长。然而,在该周期内,若终端设备移动或散射环境发生变化,则下行信道会发生变化。此时,网络设备只能使用最近一次获取的下行CSI做下行预编码,从而会导致下行预编码与当前下行信道失配,进而会使得终端设备性能受损。
其中,多个网络设备在对终端设备进行CJT时,在终端设备准静止的场景下,多个网络设备预编码处理后的信号在终端设备处相长叠加,即发送信号的相位相同,相比于单站传输,可以提高终端设备性能增益。在CJT场景下,在获取下行CSI的周期内,若终端设备移动,即在终端设备非静止的场景下,与单站传输类似,多个网络设备也只能使用老化的下行CSI对发送信号做预编码处理,使得多个网络设备预编码处理后的信号在终端设备处由相长变为相消,终端设备不仅得不到增益,还会使得终端设备性能受损。
以网络设备为TRP,终端设备为UE为例进行说明,如图2中的(a)所示,UE接收的TRP1预编码处理后发送的信号为UE接收的TRP2预编码处理后发送的信号为TRP1和TRP2发送的信号在UE处相长叠加,从而使得UE可以获得约相比于TRP1或TRP2进行单站传输增益的两倍。
如图2中的(b)所示,UE发生移动,即在UE非静止的情况下,UE移动(平均为1个波长),则TRP1和TRP2分别使用最近一次获取的下行CSI对发送信号做下行预编码后,发送的信号的功率分别为其中,此时,UE接收到的两个信号由相长变为相消,UE不仅得不到两倍的增益,还会使其性能受损。
为此,本申请实施例提供一种通信方法,可以解决上述下行信道信息老化导致终端设备性能受损的问题。下面将结合图3-图5对本申请实施例提供的通信方法进行具体阐述。
示例性地,图3为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于 图1所示的通信系统。
如图3所示,该通信方法包括如下步骤:
S301、网络设备向终端设备发送J个第一参考信号。相应的,终端设备接收来自网络设备的J个第一参考信号。
其中,J为大于1的正整数。第一参考信号可以是用于下行信道测量的参考信号,如第一参考信号可以为CSI-RI,J个第一参考信号可以为网络设备周期性发送的,也即终端设备可以周期性的获取J个第一参考信号。如图4所示,网络设备在tX1时刻向终端设备发送第1个第一参考信号,在经过T1(即第一参考信号的发送周期)后,再在tX2时刻向终端设备发送第2个第一参考信号,以此类推,经过J-1个T1时间间隔后向终端设备发送第J个第一参考信号。
应理解,第一参考信号也可以称为导频信号或参考序列等,上述列举的第一参考信号仅为示例,不应对本申请构成任何限定,本申请实施例并不排除在未来协议中定义其他参考信号以实现相同或相似功能的可能。
可以理解的是,在多个网络设备服务终端设备的场景下,如CJT场景下,每个网络设备可以分别向终端设备周期性的发送第一参考信号。其中,多个网络设备发送第一参考信号的周期可以相同,也可以不同。另外,多个网络设备可以在相同频段的信道上发送第一参考信号,也可以在不同频段的信道上发送第一参考信号,本申请实施例对此不做具体限定。
S302、终端设备根据J个第一参考信号确定J个空频合并系数集合。
其中,J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,且每个空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同。换言之,J个空频合并系数集合均由相同数量的空频合并系数,且每个集合中的空频合并系数位于不同空频合并系数矩阵中的相同位置。该J个空频合并系数矩阵与J个第一参考信号对应,也就是一个第一参考信号确定一个空频合并系数矩阵。
如图5所示,J=3,3个第一参考信号分别对应3个空频合并系数矩阵,每个空频合并系数矩阵包括100个空频合并系数,终端设备在3个空频合并系数矩阵中选择了位置相同的60个空频合并系数,从而构成了3个空频合并系数集合。换言之,3个空频合并系数集合中的60个空频合并系数位于3个空频合并系数矩阵中的相同位置。
示例性的,终端设备分别利用不同时刻接收的J个第一参考信号进行信道估计,得到对应的下行信道信息,该下行信道信息可以包括基于不同时刻接收的第一参考信号确定的空域基底、频域基底和空频合并系数。其中,每个第一参考信号对应的空域基底和频域基底有一个或多个,分别构成空域矩阵和频域矩阵,并且一个空频合并系数对应一个空域基底和一个频域基底,进而多个空频合并系数构成空频合并系数矩阵。应理解,下行信道信息还可以包括RI、CQI或CRI等。上述信道估计的具体实现过程可以参见现有实现方式中的相关描述,本申请实施例对此不再赘述。
例如,终端设备在经过Δt1时间间隔后,在tR1=tX1+Δt1时刻接收到第1个第一参考信号,利用第1个第一参考信号进行信道估计,得到空域矩阵为Wspace1、频域矩阵为Wfreq1、空频合并系数矩阵为终端设备利用在tR2时刻接收的第2个第一参考信号进行信道估计,得到空域矩阵为Wspace2、频域矩阵为Wfreq2、空频合并系数矩阵为以此类推,终端设备利用在tRJ时刻接收的第J个第一参考信号进行信道估计,得到空域矩阵为WspaceJ、频域矩阵为WfreqJ、空频合并系数矩阵为
进一步地,终端设备可以基于确定的J个空频合并系数矩阵确定J个空频合并系数集合。其中,每个空频合并系数矩阵的K个空频合并系数可以通过如下两种方式确定:
方式一、J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且第一矩阵中按元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
示例性的,终端设备在根据J个第一参考信号确定J个空频合并系数矩阵后,将J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到第一矩阵,即该第一矩阵中的每个 元素的能量(也即元素的值)为将J个空频合并系数矩阵中同一位置的J个空频合并系数的模值的平方相加得到。其中,J个空频合并系数矩阵中同一位置的J个空频合并系数的模值的平方相加也可以称为J个空频合并系数矩阵中同一位置的J个空频合并系数的模方和。
应理解,该第一矩阵为J个空频合并系数矩阵对应的模方和矩阵,因此第一矩阵也可以称为空频合并系数模方和矩阵,本申请实施例对此不做限定。
进一步的,终端设备将第一矩阵中的每个元素的能量按照从大到小排序后,从能量最大的元素开始按排序依次相加,直至相加得到的能量之和等于预设能量之和,并确定相加得到的能量之和等于预设能量之和的前K个元素在第一矩阵中的位置。进而,终端设备从J个空频合并系数矩阵中的每个空频合并系数矩阵中,选择位置与第一矩阵中相加得到的能量之和等于预设能量之和的前K个元素相同的K个空频合并系数,以构成J个空频合并系数集合。
为便于说明,本申请实施例中以3×3大小的矩阵进行说明,例如:第1个第一参考信号对应的空频合并系数矩阵为:
第2个第一参考信号对应的空频合并系数矩阵为:
第3个第一参考信号对应的空频合并系数矩阵为:
则,第一矩阵为:
本申请实施例中,为便于说明,空频合并系数以Ae的形式表示,但其也可以以a+jb的形式表示,因此,空频合并系数的模值也即空频合并系数的幅值或幅度大小,空频合并系数的相位也即空频合并系数的角度大小。
中9个元素按照能量从大到小排序后,从能量最大的元素开始相加,得到的能量和为预设能量之和的元素为{|a11|2+|b11|2+|c11|2,|a12|2+|b12|2+|c12|2,|a22|2+|b22|2+|c22|2,|a23|2+|b23|2+|c23|2,|a32|2+|b32|2+|c32|2,|a33|2+|b33|2+|c33|2},即K=6,则第1个空频合并系数集合第2个空频合并系数集合 第3个空频合并系数集合 由此可见,3个空频合并系数集合中的空频合并系数的位置与从第一矩阵选择出的元素的位置相同,且3个空频合并系数集合中的空频合并系数位于3个空频合并系数矩阵中的同一位置,即第1行第1列(1,1)、第1行第2列(1,2)、第2行第2列(2,2)、第2行第3列(2,3)、第3行第2列(3,2)和第3行第3列(3,3)。
值得说明的是,第一矩阵中的K个元素的能量之和也可以替换为K个元素的能量占比,也即K个元素的能量之和在第一矩阵中全部元素的能量和中的占比。可以理解的是,在已知能量占比的情况下,可以确定能量之和,或在已知能量之和的情况下,可以确定能量占比。
方式二、J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数。其中,第一矩阵为将J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
示例性的,终端设备基于上述方式一的相关描述确定第一矩阵后,将第一矩阵中的每个元素 的能量与预设能量相比,将能量大于或者等于预设能量的元素确定出来。进而,终端设备从J个空频合并系数矩阵中每个空频合并系数矩阵中,选择与第一矩阵中能量大于或等于预设能量的元素相同位置的空频合并系数,以构成空频合并系数矩阵。
例如,第一矩阵中能量大于或等于能量模值的元素为{|a11|2+|b11|2+|c11|2,|a12|2+|b12|2+|c12|2,|a22|2+|b22|2+|c22|2,|a23|2+|b23|2+|c23|2,|a32|2+|b32|2+|c32|2,|a33|2+|b33|2+|c33|2},即K=6,则第1个空频合并系数集合 第2个空频合并系数集合第3个空频合并系数集合由此可见,由此可见,3个空频合并系数集合中的空频合并系数的位置与从第一矩阵选择出的元素的位置相同,且3个空频合并系数集合中的空频合并系数位于3个空频合并系数矩阵中的同一位置,即第1行第1列(1,1)、第1行第2列(1,2)、第2行第2列(2,2)、第2行第3列(2,3)、第3行第2列(3,2)和第3行第3列(3,3)。
值得说明的是,空频合并系数的模值的平方大小也可以称为空频合并系数的能量大小。
可以理解的是,对于空频合并系数集合中K个空频合并系数,终端设备可以对其进行更新。例如,终端设备当前利用接收的3个第一参考信号确定3个空频合并系数集合中的K个空频合并系数,则终端设备可以增加接收的第一参考信号个数来更新空频合并系数集合中的元素。对应的,空频合并系数集合的个数会增加。
可以理解的是,终端设备对J个第一参考信号分别进行信道估计后,可以将得到的下行信道信息反馈给网络设备。换言之,终端设备在接收到一个第一参考信号后,就利用该第一参考信号进行信道估计,并将信道估计得到下行信道信息反馈给网络设备,用于网络设备在当前信道状态下做下行预编码。其中,该下行信道信息反馈的是网络设备发送第一参考信号到终端设备接收第一参考信号过程中下行信道的状态。
S303、终端设备将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差,得到K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值。
其中,相邻空频合并系数集合为根据连续接收的两个第一参考信号确定的。
一种可能的设计方案中,连续接收的两个第一参考信号可以为终端设备接收的网络设备周期性连续发送的两个第一参考信号,如网络设备分别在tX1时刻和tX2时刻周期性连续发送了两个第一参考信号,终端设备在tR1时刻和tR2时刻分别对应接收了tX1时刻和tX2时刻发送的两个第一参考信号。另一种可能的设计方案中,连续接收的两个第一参考信号可以为终端设备连续接收的两个第一参考信息,其连续接收的两个第一参考信号不是网络设备周期性连续发送的两个第一参考信号,如网络设备在tX1时刻、tX2时刻和tX3时刻周期性连续发送了三个第一参考信号,而终端设备在tR1时刻和tR3时刻连续接收了两个第一参考信号。也可以理解为,终端设备在tR1时刻、tR2时刻和tR3时刻分别接收了网络设备在tX1时刻、tX2时刻和tX3时刻周期性连续发送的三个第一参考信号,而其仅使用了tR1时刻和tR3时刻接收的两个第一参考信号。
示例性的,终端设备将第1个空频合并系数集合与第2个空频合并系数集合中同一位置的空频合并系数的值作差、第2个空频合并系数集合与第3个空频合并系数集合中同一位置的空频合并系数的值作差、…、第J-1个空频合并系数集合与第J个空频合并系数集合中同一位置的空频合并系数的值作差。由此,相邻两个空频合并系数集合作差,可以得到每个空频合并系数对应的一个空频合并系数差值。也就是说,J个空频合并系数集合相邻两两作差,可以得到每个空频合并系数对应的J-1个空频合并系数差值。
值得说明的是,本申请实施例中相同位置的空频合并系数两两作差可以是对空频合并系数的模值作差,则对应得到的空频合并系数差值为空频合并系数模值差;也可以是对空频合并系数的相位作差,则对应得到的空频合并系数差值为空频合并系数相位差;还可以是对空频合并系数的模值和相位作差,则对应得到的空频合并系数差值为空频合并系数模值差和相位差;还可以是对复数值形式的空频合并系数作差,则对应得到的空频合并系数差值可以为空频合并系数复数差对 应的模值、或者空频合并系数复数差对应的相位值、或者空频合并系数复数差对应的模值和相位值,本申请实施例对此不做限定。其中,空频合并系数复数差也即两两空频合并系数以复数值的形式作差,空频合并系数复数差也可以称为空频复合并系数差。
例如,J=3,K=6,第1个空频合并系数集合 第2个空频合并系数集合第3个空频合并系数集合空频合并系数差值为空频合并系数模值差,则将3个空频合并系数集合中相邻两个空频合并系数集合中同一位置的空频合并系数的模值作差,可以得到每个空频合并系数对应的2个空频合并系数模值差,如第1个空频合并系数对应的2个空频合并系数模值差为{b11-a11,c11-b11},第2个空频合并系数对应的2个空频合并系数模值差为{b12-a12,c12-b12},以此类推,第6个空频合并系数对应的2个空频合并系数模值差为{b33-a33,c33-b33}。
又例如,J=3,K=6,第1个空频合并系数集合 第2个空频合并系数集合第3个空频合并系数集合空频合并系数差值为空频合并系数复数差对应的模值,则将3个空频合并系数集合中相邻两个空频合并系数集合中同一位置的空频合并系数的复数值作差,可以得到每个空频合并系数对应的2个空频合并系数复数差,进而将每个空频合并系数对应的2个空频合并系数复数差对应的模值确定为每个空频合并系数对应的2个空频合并系数差值,如第1个空频合并系数对应的2个空频合并系数差值为第2个空频合并系数对应的2个空频合并系数差值为以此类推,第6个空频合并系数对应的2个空频合并系数差值为可以理解的是,每个空频合并系数对应的空频合并系数差值可以用于表征在SRS周期内或PMI反馈周期内的下行信道变化情况。
S304、终端设备根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定下行信道变化信息。
在J=2的情况下,下行信道变化信息可以为:
一种可能的设计方案中,下行信道变化信息可以包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值。其中,S个空频合并系数差值集合中的每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。本申请实施例中,S个空频合并系数差值集合可以为终端设备根据K个空频合并系数的位置划分得到。
示例性的,在J=2的情况下,K个空频合并系数中的每个空频合并系数对应1个空频合并系数差值,换言之,K个空频合并系数对应K个空频合并系数差值。由此,终端设备可以将K个空频合并系数对应的K个空频合并系数差值根据K个空频合并系数的位置划分为S个空频合并系数差值集合,从而在每个空频合并系数差值集合中确定一个最大空频合并系数差值作为下行信道变化信息,即下行信道变化信息包括S个最大空频合并系数差值。应理解,S小于或者等于K。
可以理解的是,最大空频合并系数差值的类型根据空频合并系数差值的类型确定。也就是说,最大空频合并系数差值可以为最大空频合并系数模值差、最大空频合并系数相位差、最大空频合并系数模值差和相位差、空频合并系数复数差对应的最大模值、空频合并系数复数差对应的最大相位值、或者空频合并系数复数差对应的最大模值和最大相位值。
值得说明的是,两个空频合并系数作差得到的空频合并系数差值,可能有正数也有负数,而本申请实施例中所指的最大空频合并系数差值可以为每个空频合并系数差值集合中的差值最大(区分正负数中的最大差值)的空频合并系数差值,例如,一个空频合并系数差值集合为{2,-5,3},则最大空频合并系数差值为3;或者,最大空频合并系数差值也可以为每个空频合并系数差值集合中的差值绝对值最大(不区分正负数的最大差值)的空频合并系数差值,例如,一个空频合并系数差值集合为{2,-5,3},-5的绝对值最大,则最大空频合并系数差值为-5,本申请实施例对此不做具体限定。
应理解,在空频合并系数差值为空频合并系数模值差、空频合并系数相位差、或空频合并系数复数差对应的相位值的情况下,空频合并系数差值均可能有正数也有负数,对应的,最大空频合并系数差值可以为差值最大的空频合并系数差值或者差值绝对值最大的空频合并系数差值。
例如,K=6,6个空频合并系数差值为6个空频合并系数模值差,即{b11-a11,b12-a12,b22-a22,b23-a23,b32-a23,b33-a33},并将该6个空频合并系数差值划分为3个空频合并系数差值集合,如{b11-a11,b12-a12},{b22-a22,b23-a23}和{b32-a32,b33-a33},进而终端设备分别将3个空频合并系数差值集合中的最大空频合并系数模值差确定为下行信道变化信息,也就是将每个空频合并系数差值集合中差值最大的空频合并系数模值差或者模值差绝对值最大的空频合并系数模值差确定为下行信道变化信息,如3个空频合并系数差值集合中的最大空频合并系数模值差分别为Δimax1=b11-a11,Δimax2=b22-a22和Δimax3=b32-a32,即下行信道变化信息为{Δimax1,Δimax2,Δimax3}。
又例如,K=6,6个空频合并系数差值为6个空频合并系数复数差对应的模值,即 |b33ejα33-a33ejθ33|},将该6个空频合并系数差值划分为3个空频合并系数差值集合,如 终端设备分别将3个空频合并系数差值集合中的空频合并系数复数差对应的模值中的最大模值(即空频合并系数复数差对应的最大模值)确定为下行信道变化信息,如3个空频合并系数差值集合中的空频合并系数复数差对应的模值中的最大模值分别为 即下行信道变化信息为{Δimax1,Δimax2,Δimax3}。
可以理解的是,若一个空频合并系数差值集合中仅包括一个空频合并系数差值,则该空频合并系数差值集合中的最大空频合并系数差值就是唯一的一个空频合并系数差值。
另一种可能的设计方案中,下行信道变化信息可以包括S个第一空频合并系数标准差。其中,S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为终端设备对第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,其中,S个空频合并系数差值集合中的每个空频合并系数差值集合中包括K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
可以理解的是,与上述最大空频合并系数差值的类型相似,第一空频合并系数标准差可以为空频合并系数模值差的标准差、空频合并系数相位差的标准差、空频合并系数模值差的标准差和相位差的标准差、空频合并系数复数差对应的模值的标准差、空频合并系数复数差对应的相位值的标准差、或者空频合并系数复数差对应的模值的标准差和相位值的标准差。
示例性的,在J=2的情况下,K=6,6个空频合并系数差值为6个空频合并系数模值差,即{b11-a11,b12-a12,b22-a22,b23-a23,b32-a23,b33-a33},将该6个空频合并系数差值划分为3个空频合并系数差值集合,如{b11-a11,b12-a12},{b22-a22,b23-a23}和 则终端设备将{b11-a11,b12-a12}中的2个空频合并系数模值差进行标准差计算得到1个第一空频合并系数标准差将{b22-a22,b23-a23}中的2个空频合并系数模值差进行标准差计算得到1个第一空频合并系数标准差将{b32-a32,b33-a33}中的2个空频合并系数模值差进行标准差计算得到1个第一空频合并系数标准差从而将3个第一空频合并系数标准差确定为下行信道变化信息,即下行信道变化信息为
又示例性的,在J=2的情况下,K=6,6个空频合并系数差值为6个空频合并系数复数差对应的模值,即 将该6个空频合并系数差值划分为3个空频合并系数差值集合,如则终端设备将中的2个空频合并系数复数差对应的模值进行标准差计算得到1个第一空频合并系数标准差中的2个空频合并系数复数差对应的模值进行标准差 计算得到1个第一空频合并系数标准差中的2个空频合并系数复数差对应的模值进行标准差计算得到1个第一空频合并系数标准差从而将3个第一空频合并系数标准差确定为下行信道变化信息,即下行信道变化信息为
在上述J=2的情况下,用于反馈空频合并系数矩阵中位置为第1行第1列(1,1)和第1行第2列(1,2)的空频合并系数的变化值,用于反馈空频合并系数矩阵中位置为第2行第2列(2,2)和第2行第3列(2,3)的空频合并系数的变化值,用于反馈空频合并系数矩阵中位置为第3行第2列(3,2)和第3行第3列(3,3)的空频合并系数的变化值。
在一些可能的情形中,S=1,在此情况下,下行信道变化信息可以仅包括一个最大空频合并系数差值或一个空频合并系数标准差。
本申请实施例中,上述J=2即终端设备可以利用两次第一参考信号确定下行信道变化信息,在此情况下,终端设备可以采用多个位置的空频合并系数统一反馈一个最大空频合并系数差值或第一空频合并系数标准差,用于表征在SRS周期内或PMI反馈周期内的下行信道的变化情况。
在J>2的情况下,下行信道变化信息可以为:
一种可能的设计方案中,下行信道变化信息可以包括K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。换言之,下行信道变化信息包括K个最大空频合并系数差值,K个空频合并系数中每个空频合并系数对应1个最大空频合并系数差值。其中,最大空频系数差值的具体描述可以参见上述J=2中的相关描述,此处不再赘述。
例如,J=3,K=6,空频合并系数差值为空频合并系数模值差,则K个空频合并系数中每个空频合并系数对应的2个空频合并系数模值差,如第1个空频合并系数对应的2个空频合并系数模值差为{b11-a11,c11-b11},第2个空频合并系数对应的2个空频合并系数模值差为{b12-a12,c12-b12},第3个空频合并系数对应的2个空频合并系数模值差为{b22-a22,c22-b22},第4个空频合并系数对应的2个空频合并系数模值差为{b23-a23,c23-b23},第5个空频合并系数对应的2个空频合并系数模值差为{b32-a32,c32-b32},第6个空频合并系数对应的2个空频合并系数模值差为{b33-a33,c33-b33}。进而,终端设备将每个空频合并系数对应的2个空频合并系数模值差中的差值最大的空频合并系数差值、或者2个空频合并系数模值差中差值绝对值最大的空频合并系数差值确定为下行信道变化信息,如下行信道变化信息为{Δimax11=b11-a11,Δimax12=c12-b12,Δimax22=c22-b22,Δimax23=b23-a23,Δimax32=b32-a32,Δimax33=c33-b33},即该下行信道变化信息包括6个空频合并系数中每个空频合并系数对应的2个空频合并系数模值差中的差值最大的空频合并系数差值、或者2个空频合并系数模值差中差值绝对值最大的空频合并系数差值。
又例如,J=3,K=6,空频合并系数差值为空频合并系数复数差对应的模值,则K个空频合并系数中每个空频合并系数对应的2个空频合并系数复数差对应的模值,如第1个空频合并系数对应的2个空频合并系数复数差对应的模值为第2个空频合并系数对应的2个空频合并系数复数差对应的模值为 第3个空频合并系数对应的2个空频合并系数复数差对应的模值为 第4个空频合并系数对应的2个空频合并系数复数差对应的模值为第5个空频合并系数对应的2个空频合并系数复数差对应的模值为第6个空频合并系数对应的2个空频合并系数复数差对应的模值为进而,终端设备将每个空频合并系数对应的2个空频合并系数复数差对应的模值中的最大值确定为下行信道变化信息,如下行信道变化信息为 该下行信道变化信息包括6个空频合并系数中每个空频合并系数对应的2个空频合并系数复数差对应的模值中的最大值。
另一种可能的设计方案中,下行信道变化信息可以包括K个第二空频合并系数标准差。其中,K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为终端设备对K个空频合并系 数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
例如,J=3,K=6,空频合并系数差值为空频合并系数模值差,则终端设备对第1个空频合并系数对应的2个空频合并系数模值差{b11-a11,c11-b11}进行标准差计算,得到第1个空频合并系数对应的第二空频合并系数标准差终端设备对第2个空频合并系数对应的2个空频合并系数模值差{b12-a12,c12-b12}进行标准差计算,得到第2个空频合并系数对应的第二空频合并系数标准差终端设备对第3个空频合并系数对应的2个空频合并系数模值差{b22-a22,c22-b22}进行标准差计算,得到第3个空频合并系数对应的第二空频合并系数标准差以此类推,终端设备对第6个空频合并系数对应的2个空频合并系数模值差{b33-a33,c33-b33}进行标准差计算,得到第6个空频合并系数对应的第二空频合并系数标准差进而,终端设备将6个空频合并系数对应的6个第二空频合并系数标准差确定为下行信道变化信息,如该下行信道变化信息为
又例如,J=3,K=6,空频合并系数差值为空频合并系数复数差对应的模值,终端设备对第1个空频合并系数对应的2个空频合并系数复数差对应的模值 进行标准差计算,得到第1个空频合并系数对应的第二空频合并系数标准差终端设备对第2个空频合并系数对应的2个空频合并系数复数差对应的模值 进行标准差计算,得到第2个空频合并系数对应的第二空频合并系数标准差终端设备对第3个空频合并系数对应的2个空频合并系数复数差对应的模值 进行标准差计算,得到第3个空频合并系数对应的第二空频合并系数标准差以此类推,终端设备对第6个空频合并系数对应的2个空频合并系数复数差对应的模值进行标准差计算,得到第6个空频合并系数对应的第二空频合并系数标准差进而,终端设备将6个空频合并系数对应的6个第二空频合并系数标准差确定为下行信道变化信息,如该下行信道变化信息为
在上述J>2的情况下,Δimax11用于反馈空频合并系数矩阵中位置为第1行第1列(1,1)的空频合并系数的变化值,Δimax12用于反馈空频合并系数矩阵中位置为第1行第2列(1,2)的空频合并系数的变化值,Δimax22用于反馈空频合并系数矩阵中位置为第2行第2列(2,2)的空频合并系数的变化值,Δimax23用于反馈空频合并系数矩阵中位置为第2行第3列(2,3)的空频合并系数的变化值,Δimax32用于反馈空频合并系数矩阵中位置为第3行第2列(3,2)的空频合并系数的变化值,Δimax33用于反馈空频合并系数矩阵中位置为第3行第3列(3,3)的空频合并系数的变化值。也就是说,选择出来的同一位置的空频合并系数反馈一个变化量。
本申请实施例中,上述J>2即终端设备可以利用超过两次接收的第一参考信号确定下行信道变化信息,在此情况下,终端设备可以采用每个位置的空频合并系数对应反馈一个最大空频合并系数差值或第二空频合并系数标准差,用于表征在SRS周期内或PMI反馈周期内的下行信道的变化情况。
又一种可能的设计方案中,J=2;下行信道变化信息可以包括K个下行信道变化率。其中,K个下行信道变化率为K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到,第一时间差为终端设备分别根据两个连续接收的第一参考信号确定两个空频合并系数矩阵的时间间隔。每个下行信道变化率可以用于反馈每时隙(slot)或每毫秒(millisecond,ms)的空频合并系数变化量,该下行信道信息也可以称为空频合并系数变化率,其可以是空频合并系数角度(或相位)的变化率和/或空频合并系数幅度(或模值)的变化率、或空频复合并系数变化率(即包括角度和幅度的变化率)。
示例性的,终端设备基于2个第一参考信号确定2个空频合并系数集合,该空频合并系数集合包括K个空频合并系数,并将2个空频合并系数集合中同一位置的空频合并系数作差,得到K个空频合并系数差值,进而根据K个空频合并系数差值中的每个空频合并系数差值与接收的2个第一参考信号的时间间隔,可以确定对应位置的空频合并系数在每slot或每ms内的变化量。也就是说,空频合并系数集合中每个空频合并系数反馈一个变化率。
例如,K=6,6个空频合并系数对应的6个空频合并系数复数差为 根据每个空频合并系数复数差可以确定空频合并系数复数差对应的模值以及空频合并系数复数差对应的相位值,从而可以根据该空频合并系数复数差对应的模值确定空频复合并系数的模值变化率,以及根据空频合并系数复数差对应的相位值确定空频复合并系数的相位变化率,来构成空频复合并系数变化率,则6个空频合并系数对应计算得到的每ms或每slot的空频复合并系数变化率表示为{Δi′11,Δi′12,Δi′22,Δi′23,Δi′32,Δi′33}。
又例如,K=6,6个空频合并系数对应的6个空频合并系数模值差为{b11-a11,b12-a12,b22-a22,b23-a23,b32-a32,b33-a33},根据每个空频合并系数模值差可以确定空频合并系数的模值变化率,则6个空频合并系数对应计算得到的每ms或每slot的空频合并系数模值变化率表示为{Δi′11,Δi′12,Δi′22,Δi′23,Δi′32,Δi′33}。
值得说明的是,终端设备可以基于相邻两次接收的2个第一参考信号确定下行信道变化率,也可以基于不相邻接收的两次接收的2个第一参考信号确定下行信道变化率,如终端设备分别在tR1、tR2、tR3三个时刻接收了第一参考信号,可以利用tR1时刻接收的第一参考信号与tR3时刻接收的第一参考信号确定下行信道变化率。
S305、终端设备向网络设备发送下行信道变化信息。相应的,网络设备接收来自终端设备的下行信道变化信息。
可以理解的是,终端设备向网络设备反馈下行信道变化信息时,也会向网络设备反馈空域基底和/或频域基底,反馈的空域基底和/或频域基底用于网络设备确定反馈的下行信息变化信息的位置,即反馈的最大空频合并系数差值或空频合并系数变化率对应的位置,反馈的空域基底和/或频域基底可以是终端设备基于J个第一参考信号中任意一个第一参考信号确定的。
可选的,下行信道变化信息可以包括空域基底和/或频域基底。
在多个网络设备服务终端设备的情况下,终端设备可以向多个网络设备分别发送下行信道变化信息、空域基底和/或频域基底。其中,反馈给每个网络设备的下行信道变化信息均可以基于上述S301-S304确定。并且,多个网络设备对应的空域基底和/或频域基底部分相同,换言之,多个网络设备具有部分相同的空域基底和/或频域基底,终端设备可以向多个网络设备反馈相同的空域基底和/或频域基底,以及每个网络设备特定的空域基底和/或频域基底。
S306、网络设备根据下行信道变化信息确定预编码矩阵。
示例性的,网络设备在获取下行信道信息的周期内向终端设备发送数据时,网络设备可以基于下行信道变化信息做鲁棒预编码。
例如,预编码矩阵设计准则为:其中,W1为网络设备对应的预编码矩阵,为确定W1的信道矩阵,Δ1为SRS周期内或PMI反馈周期内的信道矩阵的变化值,H1为网络设备最近一次获取的信道矩阵,[H1,H11]为在SRS周期内或PMI反馈周期内的信道的变化范围。其中,H1可以为网络设备基于SRS获取得到,也可以为网络设备基于CSI-RS获取得到,本申请实施例对此不做具体限定。
在下行信道变化信息为下行信道变化率的情况下,网络设备可以根据反馈的下行信道变化率确定SRS周期内或PMI周期内的信道矩阵的变化值。
例如,下行信息变化率为{Δi′11,Δi′12,Δi′22,Δi′23,Δi′32,Δi′33},分别表示6个位置的空频合并系数的每ms的变化率,SRS周期为20ms,网络设备基于SRS获取得到的最新的信道矩阵为基于此,网络设备将每个位置的空频合并系数的变化率与SRS周期相乘,可以得到该SRS周期内的空频合并系数的变化值为{20Δi′11,20Δi′12,20Δi′22,20Δi′23,20Δi′32,20Δi′33},从而可以确定在一个SRS周期内的变化范围为 进而将与Wspace、Wfreq相乘,也即将每个空频合并系数的变化值与对应的空域基底和频域基底相乘,可以得到在SRS周期内的信道矩阵的变化值,如 由此,网络设备可以从 中取值确定W1
在下行信道变化信息为S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值的情况下,如下行信道变化信息为{Δimax1,Δimax2,Δimax3},也即在一个SRS周期内的变化范围为网络设备将与Wspace、Wfreq相乘,也即将每个空频合并系数的变化值与对应的空域基底和频域基底相乘,可以得到在SRS周期内或PMI反馈周期内的信道矩阵的变化值,如由此,网络设备可以从H1~H11中取值确定W1
在下行信道变化信息为S个第一空频合并系数标准差的情况下,如下行信道变化信息为 也即在一个SRS周期内的变化范围为网络设备将与Wspace、Wfreq相乘,也即将每个空频合并系数的变化值与对应的空域基底和频域基底相乘,可以得到在SRS周期内或PMI反馈周期内的信道矩阵的变化值,如由此,网络设备可以从H1~H11中取值确定W1
在下行信道变化信息为K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值的情况下,如下行信道变化信息为{Δimax11,Δimax12,Δimax22,Δimax23,Δimax32,Δimax33},也即在一个SRS周期内的变化范围为网络设备将与Wspace、Wfreq相乘,也即将每个空频合并系数的变化值与对应的空域基底和频域基底相乘,可以得到在SRS周期内或PMI反馈周期内的信道矩阵的变化值,如 由此,网络设备可以从H1~H11中取值确定W1
在下行信道变化信息为K个第二空频合并系数标准差的情况下,如下行信道变化信息为 也即在一个SRS周期内的变化范围为网络设备将与Wspace、Wfreq相乘,也即将每个空频合并系数的变化值与对应的空域基底和频域基底相乘,可以得到在SRS周期内或PMI反馈周期内的信道矩阵的变化值,如Δ1由此,网络设备可以从H1~H11中取值确定W1
应理解,下行信道变化信息的不同对应得到的信道矩阵的变化值Δ1可以不同,该信道矩阵的变化值Δ1用于表征SRS周期内或PMI反馈周期内的下行信道变化。
本申请实施例,网络设备可以基于反馈的下行信道变化信息,以及当前最近一次获取的下行信道信息确定一个下行信道变化范围,并通过上述预编码设计,增大发送信号的覆盖范围,使得信号覆盖范围大于终端设备在SRS周期内或PMI反馈周期内的移动距离,以便于终端设备在下行信道变化范围中信道状态最差的情况下,接收性能也能达到最好。
对于多个网络设备服务同一终端设备的场景下,每个网络设备也可以基于上述过程确定预编码矩阵。例如,两个网络设备(网络设备1和网络设备2)的预编码矩阵设计准则为:其中,W1为网络设备1对应的预编码矩阵,W2为网络设 备1对应的预编码矩阵,Hi表示第i个网络设备最近一次获取的信道矩阵,Δi表示第i个网络设备对应的SRS周期内或PMI反馈周期内的信道矩阵的变化值,i为正整数,i∈[1,2],为确定W1的信道矩阵,为确定W2的信道矩阵。由此,网络设备1和网络设备2分别确定W1和W2,可以使得终端设备在[H1,H11]和[H2,H22]中信道变化范围内的最差的下性能最好。也就是说,多个网络设备基于上述预编码设计,可以使得多个网络设备发送的信号在终端设备处叠加,且信号覆盖范围大于终端设备在SRS周期内或PMI反馈周期内的移动距离,从而可以提高终端设备的接收性能。
可以理解的是,的取值范围确定可以参见上述S301~S306中的相关描述,此处不再赘述。
基于图3示出的通信方法,基于该通信方法,终端设备可以基于同一网络设备发送的多个第一参考信号得到多个空频合并系数矩阵,来构建元素个数以及位置相同的多个空频合并系数集合,并利用多个空频合并系数集合中同一位置的空频合并系数两两作差得到的差值,确定下行信道信息获取周期内的下行信道变化信息,以便于网络设备利用反馈的下行信道变化信息做预编码,可以解决在下行信道信息获取周期内下行信道信息老化导致信道不匹配,从而造成终端设备性能受损的问题,提高了发送信号的覆盖范围,进而可以提高终端设备在移动性场景下的接收性能。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于该终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现;由网络设备实现的方法和/或步骤,也可以由用于该网络设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现。
上述主要对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述方法实施例中的各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含终端设备的装置,或者为可用于终端设备的部件,例如芯片或芯片系统。或者,该通信装置可以为上述方法实施例中的网络设备,或者包含网络设备的装置,或者为可用于网络设备的部件,例如芯片或芯片系统。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以通信装置为上述方法实施例中的终端设备或者网络设备为例,图6是本申请实施例提供的一种通信装置的结构示意图。如图6所示,通信装置600包括:处理模块601和收发模块602。其中,处理模块601,用于执行上述方法实施例中的终端设备或网络设备的处理功能。收发模块602,用于执行上述方法实施例中的终端设备或网络设备的收发功能。
可选地,本申请实施例中,收发模块602可以包括接收模块和发送模块(图6中未示出)。其中,收发模块用于实现通信装置600的发送功能和接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当处理模块601执行该程序或指令时,使得通信装置600可以执行图3所示出的通信方法中终端设备或网络设备的功能。
应理解,通信装置600中涉及的处理模块601可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块602可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本实施例提供的通信装置600可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
示例性地,图7为本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(系统)或其他部件或组件。如图7所示,通信装置700可以包括处理器701。可选地,通信装置700还可以包括存储器702和/或收发器703。其中,处理器701与存储器702和收发器703耦合,如可以通过通信总线连接。
下面结合图7对通信装置700的各个构成部件进行具体的介绍:
其中,处理器701是通信装置700的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器701是一个或多个中央处理器(central processing unit,CPU),也可以是应用特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器701可以通过运行或执行存储在存储器702内的软件程序,以及调用存储在存储器702内的数据,执行通信装置700的各种功能。
在具体的实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700也可以包括多个处理器,例如图7中所示的处理器701和处理器704。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器702用于存储执行本申请方案的软件程序,并由处理器701来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以和处理器701集成在一起,也可以独立存在,并通过通信装置700的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
收发器703,用于与其他通信装置之间的通信。例如,通信装置700为终端设备,收发器703可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置700为网络设备,收发器703可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器703可以包括接收器和发送器(图7中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器703可以和处理器701集成在一起,也可以独立存在,并通过通信装置700的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
需要说明的是,图7中示出的通信装置700的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置700的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括上述终端设备和网络设备。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机 程序或指令被计算机执行时实现上述方法实施例的功能。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述方法实施例的功能。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的J个第一参考信号,J为大于1的正整数;
    所述终端设备根据所述J个第一参考信号确定J个空频合并系数集合,所述J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个所述空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,K为正整数;
    所述终端设备将所述J个空频合并系数集合中的相邻空频合并系数集合中的位于所述J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差,得到所述K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值,所述相邻空频合并系数集合为根据连续接收的两个所述第一参考信号确定的;
    所述终端设备根据所述K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定下行信道变化信息;
    所述终端设备向所述网络设备发送所述下行信道变化信息,其中,所述下行信道变化信息用于所述网络设备确定预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,J=2;所述下行信道变化信息包括K个下行信道变化率。
  3. 根据权利要求2所述的方法,其特征在于,所述K个下行信道变化率为所述K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到,所述第一时间差为所述终端设备分别根据两个连续接收的所述第一参考信号确定两个空频合并系数矩阵的时间间隔。
  4. 根据权利要求1所述的方法,其特征在于,J=2;所述下行信道变化信息包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值,所述S个空频合并系数差值集合中每个空频合并系数差值集合中包括所述K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。
  5. 根据权利要求1所述的方法,其特征在于,J=2;所述下行信道变化信息包括S个第一空频合并系数标准差,所述S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为所述终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,所述S个空频合并系数差值集合中每个空频合并系数差值集合中包括所述K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
  6. 根据权利要求1所述的方法,其特征在于,J>2;所述下行信道变化信息包括所述K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。
  7. 根据权利要求1所述的方法,其特征在于,J>2;所述下行信道变化信息包括K个第二空频合并系数标准差,所述K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为所述终端设备对所述K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且所述第一矩阵中按元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和,所述第一矩阵为将所述J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
  9. 根据权利要求1-7中任一项所述的方法,其特征在于,所述J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,所述第一矩阵为将所述J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,在多个所述网络设备服务所述终端设备的情况下,所述方法还包括:
    所述终端设备向所述多个网络设备发送空域基底和/或频域基底,所述多个网络设备对应的空域基底和/或频域基底部分相同。
  11. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送J个第一参考信号,J为大于1的正整数;
    所述网络设备接收来自所述终端设备的下行信道变化信息,其中,所述下行信道变化信息根据K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值确定,所述K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值为所述终端设备将J个空频合并系数集合中的相邻空频合并系数集合中的位于J个空频合并系数矩阵中同一位置的空频合并系数的值两两作差得到,所述相邻空频合并系数集合为根据连续接收的两个所述第一参考信号确定的,所述J个空频合并系数集合根据所述J个第一参考信号确定,所述J个空频合并系数集合中的每个空频合并系数集合中包括K个空频合并系数的值,每个所述空频合并系数集合中的K个空频合并系数在J个空频合并系数矩阵中的位置相同,K为正整数;
    所述网络设备根据所述下行信息变化信息确定预编码矩阵。
  12. 根据权利要求11所述的方法,其特征在于,J=2;所述下行信道变化信息包括K个下行信道变化率。
  13. 根据权利要求12所述的方法,其特征在于,所述K个下行信道变化率为所述K个空频合并系数对应的K个空频合并系数差值除以第一时间差得到,所述第一时间差为所述终端设备分别根据两个连续接收的所述第一参考信号确定两个空频合并系数矩阵的时间间隔。
  14. 根据权利要求11所述的方法,其特征在于,J=2;所述下行信道变化信息包括S个空频合并系数差值集合中每个空频合并系数差值集合中对应的最大空频合并系数差值,所述S个空频合并系数差值集合中每个空频合并系数差值集合中包括所述K个空频合并系数对应的K个空频合并系数差值中的一个或多个,S为正整数。
  15. 根据权利要求11所述的方法,其特征在于,J=2;所述下行信道变化信息包括S个第一空频合并系数标准差,所述S个第一空频合并系数标准差中的第s个第一空频合并系数标准差为所述终端设备对S个空频合并系数差值集合中的第s个空频合并系数差值集合中的空频合并系数差值进行标准差计算得到,所述S个空频合并系数差值集合中每个空频合并系数差值集合中包括所述K个空频合并系数对应的K个空频合并系数差值中的一个或多个,s、S为正整数,1≤s≤S。
  16. 根据权利要求11所述的方法,其特征在于,J>2;所述下行信道变化信息包括所述K个空频合并系数中每个空频合并系数对应的J-1个空频合并系数差值中的最大空频合并系数差值。
  17. 根据权利要求11所述的方法,其特征在于,J>2;所述下行信道变化信息包括K个第二空频合并系数标准差,所述K个第二空频合并系数标准差中的第k个第二空频合并系数标准差为所述终端设备对所述K个空频合并系数中的第k个空频合并系数对应的J-1个空频合并系数差值进行标准差计算得到,k为正整数,1≤k≤K。
  18. 根据权利要求11-17中任一项所述的方法,其特征在于,所述J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中按元素能量从大到小排序后的排在前K个的元素位置相同的空频合并系数,且所述第一矩阵中按元素能量从大到小排序后的排在前K个的元素的能量之和为预设能量之和,所述第一矩阵为将所述J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到,j为正整数,1≤j≤J。
  19. 根据权利要求11-17中任一项所述的方法,其特征在于,所述J个空频合并系数集合中的第j个空频合并系数集合中的K个空频合并系数为第j个空频合并系数矩阵中,与第一矩阵中能量大于或等于预设能量的元素位置相同的空频合并系数,所述第一矩阵为将所述J个第一参考信号对应的J个空频合并系数矩阵中同一位置的空频合并系数的模值的平方相加得到。
  20. 根据权利要求11-19中任一项所述的方法,其特征在于,在多个所述网络设备服务所述终端设备的情况下,所述方法还包括:
    所述网络设备接收来自所述终端设备的空域基底和/或频域基底,所述多个网络设备对应的空 域基底和/或频域基底部分相同。
  21. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述处理模块,用于执行如权利要求1-20中任一项所述方法的处理功能;
    所述收发模块,用于执行如权利要求1-20中任一项所述方法的收发功能。
  22. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置执行如权利要求1-20中任一项所述的通信方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-20中任一项所述的通信方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-20中任一项所述的通信方法。
PCT/CN2023/124509 2022-11-28 2023-10-13 通信方法及装置 WO2024114126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211501901.X 2022-11-28
CN202211501901.XA CN118101005A (zh) 2022-11-28 2022-11-28 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024114126A1 true WO2024114126A1 (zh) 2024-06-06

Family

ID=91143033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124509 WO2024114126A1 (zh) 2022-11-28 2023-10-13 通信方法及装置

Country Status (2)

Country Link
CN (1) CN118101005A (zh)
WO (1) WO2024114126A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068628A1 (en) * 2014-10-31 2016-05-06 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
WO2021017571A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种空频合并系数的指示方法及装置
WO2021175634A1 (en) * 2020-03-06 2021-09-10 Nokia Technologies Oy Improving precoding
WO2022078452A1 (zh) * 2020-10-16 2022-04-21 维沃移动通信有限公司 参考信号的调整方法及装置、终端及网络侧设

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068628A1 (en) * 2014-10-31 2016-05-06 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
WO2021017571A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种空频合并系数的指示方法及装置
WO2021175634A1 (en) * 2020-03-06 2021-09-10 Nokia Technologies Oy Improving precoding
WO2022078452A1 (zh) * 2020-10-16 2022-04-21 维沃移动通信有限公司 参考信号的调整方法及装置、终端及网络侧设

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "CSI enhancement for coherent JT and mobility", 3GPP TSG-RAN WG1 MEETING #109-E, R1-2203151, 29 April 2022 (2022-04-29), XP052143969 *

Also Published As

Publication number Publication date
CN118101005A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US10819406B2 (en) Codebook-based channel state information feedback method and device
CN110034797B (zh) 一种预编码矩阵指示的反馈方法及装置
EP3672095B1 (en) Method and device for indicating and determining precoding matrix
US20220263560A1 (en) Channel state information reporting method and communications apparatus
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
CN111342873A (zh) 一种信道测量方法和通信装置
US11184208B2 (en) Communication method, communications apparatus, and system
US10581497B2 (en) Transmit diversity method, terminal, and base station
EP4181446A1 (en) Method and apparatus for acquiring channel parameter
CN111756415A (zh) 通信方法及装置
US11943014B2 (en) Channel measurement method and communications apparatus
CN112312464A (zh) 上报信道状态信息的方法和通信装置
WO2018127110A1 (zh) 指示、确定预编码矩阵的方法以及接收、发射端设备
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
CN111865372B (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
US20220271900A1 (en) Method for configuring transmit port of downlink reference signal and communication apparatus
WO2024114126A1 (zh) 通信方法及装置
CN116743217A (zh) 信道状态信息的反馈方法和通信装置
CN112398516A (zh) 一种码本子集限制的方法和通信装置
WO2024114058A1 (zh) 通信方法及装置
WO2017088658A1 (zh) 获取信道信息的方法及装置
WO2024109633A1 (zh) 信道状态信息发送方法、信道状态信息接收方法和装置
WO2024093945A1 (zh) 一种信道参数上报方法及通信装置
WO2024001744A1 (zh) 一种信道状态信息的上报方法及通信装置
US10594369B2 (en) Channel information feedback method, channel information determining method, receive end device, and transmit end device