WO2024113762A1 - 提高发电效率的太阳能光伏板制作方法及太阳能光伏板 - Google Patents

提高发电效率的太阳能光伏板制作方法及太阳能光伏板 Download PDF

Info

Publication number
WO2024113762A1
WO2024113762A1 PCT/CN2023/100127 CN2023100127W WO2024113762A1 WO 2024113762 A1 WO2024113762 A1 WO 2024113762A1 CN 2023100127 W CN2023100127 W CN 2023100127W WO 2024113762 A1 WO2024113762 A1 WO 2024113762A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic panel
frame
wall surface
panel body
power generation
Prior art date
Application number
PCT/CN2023/100127
Other languages
English (en)
French (fr)
Inventor
唐万雄
宋桂珍
Original Assignee
唐万雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐万雄 filed Critical 唐万雄
Publication of WO2024113762A1 publication Critical patent/WO2024113762A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means

Definitions

  • the present application relates to generating electrical energy by converting infrared radiation, visible light or ultraviolet light, such as using photovoltaics, and specifically to a method for manufacturing a solar photovoltaic panel and a solar photovoltaic panel that improves power generation efficiency.
  • Solar photovoltaic panels are devices that directly convert light energy into electrical energy through the photoelectric effect or photochemical effect. Solar photovoltaic panels can output voltage and current when exposed to light. In this process, part of the light energy is converted into heat energy, causing the photovoltaic panels to heat up.
  • Photovoltaic panels are the main material of photovoltaic cell assemblies. Photovoltaic panels are usually installed with aluminum frames as frames. When exposed to sunlight, the temperature of the aluminum frame will rise to a temperature higher than the temperature of the photovoltaic panel itself, especially in hot summer. The temperature of the aluminum frame may be as high as 85°C and the temperature of the photovoltaic panel may be as high as 65°C. Since the temperature of the aluminum frame is higher than that of the photovoltaic panel, the heat of the photovoltaic panel cannot be dissipated through the aluminum frame. Instead, the aluminum frame will transfer the heat to the photovoltaic panel.
  • the optimal power generation temperature of photovoltaic panels is about 25°C. For every degree increase in the temperature of the photovoltaic panels, their power generation efficiency decreases by about 0.4%. Therefore, the aluminum frames of existing solar photovoltaic panels will affect the power generation efficiency of the photovoltaic panels themselves in hot weather.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a method for manufacturing a solar photovoltaic panel that is beneficial to improving the power generation efficiency of the solar photovoltaic panel, and the technical solution adopted is:
  • a method for manufacturing a solar photovoltaic panel for improving power generation efficiency comprises a photovoltaic panel body and a frame.
  • the method comprises: coating the surface of the frame with paint and curing the paint to form a reflective heat insulation layer.
  • a technical solution adopted by an embodiment of the present invention to solve its technical problem is: the adhesion of the reflective heat insulation layer on the frame is less than or equal to level 1, the hardness is greater than or equal to HB, and the weather resistance is greater than or equal to 10 years.
  • a technical solution adopted by an embodiment of the present invention to solve its technical problem is: the sunlight reflectivity of the reflective heat-insulating layer is greater than or equal to 80%.
  • the reflective heat-insulating layer is formed by curing a reflective heat-insulating coating applied on the surface of the frame.
  • the frame includes an upper wall surface, an inner wall surface, an outer wall surface and a lower wall surface, and before or after the photovoltaic panel body and the frame are assembled, a reflective heat-insulating coating is applied to the upper wall surface of the frame.
  • the frame includes an upper wall surface, an inner wall surface, an outer wall surface and a lower wall surface, and before or after the photovoltaic panel body and the frame are assembled, the upper wall surface and the outer wall surface of the frame are coated with reflective heat-insulating coating.
  • the frame includes an upper wall surface, an inner wall surface, an outer wall surface and a lower wall surface, and before the photovoltaic panel body and the frame are assembled, the upper wall surface, the outer wall surface and the inner wall surface of the frame are coated with reflective heat-insulating coating.
  • the frame includes an upper wall surface, an inner wall surface, an outer wall surface and a lower wall surface, and before the photovoltaic panel body and the frame are assembled, the upper wall surface, the outer wall surface, the inner wall surface and the lower wall surface of the frame are coated with reflective heat-insulating coating.
  • a technical solution adopted by an embodiment of the present invention to solve the technical problem is: the frame surface is cleaned and dried before being coated with reflective heat-insulating paint.
  • the present application also proposes a solar photovoltaic panel, which is manufactured using the above manufacturing method.
  • the temperature of the frame coated with a reflective insulation layer can be maintained below 50°C, which is lower than the temperature of the photovoltaic panel body, and can prevent the frame from transferring heat to the photovoltaic panel body;
  • the photovoltaic panel body can also transfer its own heat to the frame and dissipate it, thereby improving the heat dissipation efficiency of the photovoltaic panel body, reducing the temperature of the photovoltaic panel body, and helping to improve the power generation efficiency of the photovoltaic panel body.
  • FIG1 is a cross-sectional view of a solar photovoltaic panel according to Example 1 of the present application.
  • FIG2 is a cross-sectional view of a solar photovoltaic panel according to Example 2 of the present application.
  • FIG3 is a cross-sectional view of the solar photovoltaic panel described in Example 3 of the present application.
  • FIG4 is a cross-sectional view of the solar photovoltaic panel described in Example 4 of the present application.
  • orientations such as up, down, front, back, left, right, etc.
  • orientations or positional relationships indicated are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present invention.
  • the words “set”, “install”, “connect” and the like should be understood in a broad sense, for example, they can be directly connected or indirectly connected through an intermediate medium; they can be fixedly connected or detachably connected or integrally formed; they can be mechanically connected; they can be the internal connection of two elements or the interaction relationship between two elements.
  • the words “set”, “install”, “connect” and the like should be understood in a broad sense, for example, they can be directly connected or indirectly connected through an intermediate medium; they can be fixedly connected or detachably connected or integrally formed; they can be mechanically connected; they can be the internal connection of two elements or the interaction relationship between two elements.
  • the method for manufacturing a solar photovoltaic panel for improving power generation efficiency described in this embodiment is applicable to assembled solar photovoltaic panels and unassembled solar photovoltaic panels.
  • the solar photovoltaic panel includes a photovoltaic panel body 1 and a frame 2.
  • the frame 2 includes an inner wall, an upper wall, a lower wall and an outer wall.
  • a slot is provided on the upper part of the inner wall of the frame 2, and the photovoltaic panel body 1 is installed on the slot.
  • the solar photovoltaic panel is usually tilted in a photovoltaic power station, with the upper wall facing upward and the lower wall facing downward, and the outer wall is located on the side of the frame 2 away from the photovoltaic panel body 1.
  • the temperature of the frame 2 coated with the reflective insulation layer 3 can be maintained below 50°C, which is lower than the temperature of the photovoltaic panel body 1, thereby preventing the frame 2 from transferring heat to the photovoltaic panel body 1; and because the temperature of the photovoltaic panel body 1 is higher than the temperature of the frame 2, the photovoltaic panel body 1 can also transfer its own heat to the frame 2, thereby improving the heat dissipation efficiency of the photovoltaic panel body 1, reducing the temperature of the photovoltaic panel body 1, and helping to improve the power generation efficiency of the photovoltaic panel body 1.
  • the reflective thermal insulation layer 3 is formed by curing the reflective thermal insulation paint coated on the upper wall surface of the frame 2.
  • the adhesion of the reflective thermal insulation paint is less than or equal to level 1, the hardness is greater than or equal to HB, and the weather resistance is greater than or equal to 10 years, thereby ensuring the bonding strength between the reflective thermal insulation paint and the frame 2 and guaranteeing the service life of the reflective thermal insulation paint.
  • the sunlight reflectivity of the reflective heat-insulating layer 3 is greater than or equal to 80%.
  • the reflective heat-insulating layer 3 can reflect most of the sunlight, and the frame 2 only absorbs a small part of the sunlight energy, thereby achieving a heat-insulating effect.
  • the sunlight irradiates the reflective heat-insulating layer 3 of the frame 2 and is reflected into the space around it. A part of the light reflected by the frame 2 will be incident on the photovoltaic panel body 1, thereby improving the light utilization rate, and further facilitating the improvement of the power generation efficiency of the photovoltaic panel body 1.
  • the solar photovoltaic panel manufacturing method described in this embodiment is applicable to assembled solar photovoltaic panels that have not been put into use and solar photovoltaic panels that have been put into use in photovoltaic power plants; for assembled solar photovoltaic panels that have not been put into use, after the surface of the photovoltaic panel body 1 is well protected, a reflective heat-insulating coating is applied to the upper wall surface of the frame 2;
  • reflective heat-insulating paint is usually applied to the upper wall surface of the frame 2; or reflective heat-insulating paint is applied to the upper wall surface and outer wall surface of the frame 2.
  • the method for manufacturing a solar photovoltaic panel for improving power generation efficiency described in this embodiment is applicable to unassembled solar photovoltaic panels.
  • the solar photovoltaic panel includes a photovoltaic panel body 1 and a frame 2.
  • the frame 2 includes an inner wall surface, an upper wall surface, a lower wall surface and an outer wall surface.
  • a reflective insulation coating is coated on the surface of the frame 2 and cured to form a reflective insulation layer 3.
  • the photovoltaic panel body 1 and the frame 2 coated with the reflective insulation layer 3 are assembled.
  • the reflective insulation layer 3 is formed by curing the reflective insulation paint coated on the upper wall and outer wall of the frame 2.
  • the adhesion of the reflective insulation paint is less than or equal to level 1, the hardness is greater than or equal to HB, and the weather resistance is greater than or equal to 10 years.
  • the method for manufacturing a solar photovoltaic panel for improving power generation efficiency described in this embodiment is applicable to unassembled solar photovoltaic panels, wherein the solar photovoltaic panel includes a photovoltaic panel body 1 and a frame 2, wherein the frame 2 includes an inner wall surface, an upper wall surface, a lower wall surface and an outer wall surface.
  • a reflective thermal insulation coating is coated on the upper wall surface, the outer wall surface and the inner wall surface of the frame 2 and cured to form a reflective thermal insulation layer 3, and then the photovoltaic panel body 1 and the frame 2 coated with the reflective thermal insulation layer 3 are assembled.
  • the reflective thermal insulation layer 3 is formed by curing a reflective thermal insulation coating applied on the upper wall, outer wall and inner wall of the frame 2.
  • the adhesion of the reflective thermal insulation coating is less than or equal to level 1, the hardness is greater than or equal to HB, and the weather resistance is greater than or equal to 10 years.
  • the method for manufacturing a solar photovoltaic panel for improving power generation efficiency described in this embodiment is applicable to unassembled solar photovoltaic panels, wherein the solar photovoltaic panel includes a photovoltaic panel body 1 and a frame 2, wherein the frame 2 includes an inner wall surface, an upper wall surface, a lower wall surface and an outer wall surface.
  • a reflective thermal insulation coating is coated on the upper wall surface, the outer wall surface, the inner wall surface and the lower wall surface of the frame 2 and cured to form a reflective thermal insulation layer 3, and then the photovoltaic panel body 1 and the frame 2 coated with the reflective thermal insulation layer 3 are assembled.
  • the inner wall surface of the frame 2 has a slot for inserting the photovoltaic panel body 1 , and the inner wall surface of the frame 2 is coated with a reflective heat-insulating coating to prevent the light passing through the photovoltaic panel body 1 from being absorbed by the frame 2 and heated up.
  • the reflective thermal insulation layer 3 is formed by curing a reflective thermal insulation coating applied on the upper wall, outer wall, inner wall and lower wall of the frame 2.
  • the adhesion of the reflective thermal insulation coating is less than or equal to level 1, the hardness is greater than or equal to HB, and the weather resistance is greater than or equal to 10 years.
  • the present application reduces the heat absorption of the frame 2 through the reflective insulation layer 3, which can effectively lower the temperature of the frame 2 in hot weather.
  • the temperature of the frame 2 coated with the reflective insulation layer 3 can be maintained below 50°C, which is lower than the temperature of the photovoltaic panel body 1. This can prevent the frame 2 from transferring heat to the photovoltaic panel body 1, thereby preventing the temperature of the photovoltaic panel from further rising, which is beneficial to improving the power generation efficiency of the photovoltaic panel body 1.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明提出一种提高发电效率的太阳能光伏板制作方法及太阳能光伏板,太阳能光伏板包括光伏板本体和边框,制作方法包括:在边框表面涂布涂料并固化形成反射隔热层。在夏季时,涂布有反射隔热层的边框的温度能维持在50℃以下,其温度低于光伏板本体的温度,能避免边框将热量传递给光伏板本体;且由于光伏板本体的温度高于边框的温度,光伏板本体还可将其自身热量传递给边框,从而提高光伏板本体的散热效率,降低光伏板本体的温度,有利于提高光伏板本体的发电效率。

Description

提高发电效率的太阳能光伏板制作方法及太阳能光伏板 技术领域
本申请涉及由红外线辐射、可见光或紫外光转换产生电能,如使用光伏,具体涉及提高发电效率的太阳能光伏板制作方法及太阳能光伏板。
背景技术
太阳能光伏板是通过光电效应或者光化学效应直接把光能转化成电能的装置,太阳能光伏板被光照到即可输出电压及电流,在这个过程中也有部分光能转化为热能,使光伏板发热。
光伏板是光伏电池组件的主体材料,光伏板通常采用铝框作为边框进行安装,铝框在太阳光的照射下,其温度会上升至超过光伏板本体的温度,尤其是在炎热的夏季,铝框的温度可能会高至85℃以上,光伏板的温度会高至65℃以上,由于铝框温度高于光伏板,光伏板的热量无法通过铝框散发出去,铝框反而会将热量传递给光伏板。
光伏板的最佳发电温度为25℃左右,光伏板的温度每升高一度,其发电效率大约下降0.4%,因此,目前现有的太阳能光伏板的铝框会在高温天气影响光伏板本体的发电效率。
技术解决方案
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种有利于提高太阳能光伏板发电效率的太阳能光伏板制作方法,采用的技术方案为:
一种提高发电效率的太阳能光伏板制作方法,太阳能光伏板包括光伏板本体和边框,包括:在边框表面涂布涂料并固化形成反射隔热层。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述反射隔热层在所述边框上的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述反射隔热层的太阳光反射率大于或等于80%。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述反射隔热层由涂布在所述边框表面上反射隔热涂料固化而成。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述边框包括上壁面、内壁面、外壁面和下壁面,在光伏板本体和边框在组装前或组装后,对所述边框的上壁面涂布反射隔热涂料。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述边框包括上壁面、内壁面、外壁面和下壁面,在光伏板本体和边框组装前或组装后,对所述边框的上壁面和外壁面涂布反射隔热涂料。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述边框包括上壁面、内壁面、外壁面和下壁面,在光伏板本体和边框组装前,对所述边框的上壁面、外壁面和内壁面涂布反射隔热涂料。
本发明的一种实施例解决其技术问题所采用的技术方案是:所述边框包括上壁面、内壁面、外壁面和下壁面,在光伏板本体和边框组装前,对边框的上壁面、外壁面、内壁面和下壁面涂布反射隔热涂料。
本发明的一种实施例解决其技术问题所采用的技术方案是:对边框表面进行清洁后并干燥后再涂布反射隔热涂料。
本申请还提出一种太阳能光伏板,采用上述制作方法制作得到。
有益效果
本发明的有益效果:
在夏季时,涂布有反射隔热层的边框的温度能维持在50℃以下,其温度低于光伏板本体的温度,能避免边框将热量传递给光伏板本体;
且由于光伏板本体的温度高于边框的温度,光伏板本体还可将其自身热量传递给边框并散失掉,从而提高光伏板本体的散热效率,降低光伏板本体的温度,有利于提高光伏板本体的发电效率。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例1所述太阳能光伏板的剖视图;
图2为本申请实施例2所述太阳能光伏板的剖视图;
图3为本申请实施例3所述太阳能光伏板的剖视图。
图4为本申请实施例4所述太阳能光伏板的剖视图。
本发明的最佳实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明中,除非另有明确的限定,“设置”、“安装”、“连接”等词语应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连;可以是固定连接,也可以是可拆卸连接,还可以是一体成型;可以是机械连接;可以是两个元件内部的连通或两个元件的相互作用关系。所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
实施例1
参照附图1所示,本实施例中所述提高发电效率的太阳能光伏板制作方法适用于已组装的太阳能光伏板和未组装的太阳能光伏板,太阳能光伏板包括光伏板本体1和边框2,所述边框2包括内壁面、上壁面、下壁面和外壁面,所述边框2内壁面上部设有插槽,所述光伏板本体1安装在插槽上,所述太阳能光伏板通常倾斜设置在光伏电站中,且上壁面朝上,下壁面朝下,外壁面位于所述边框2背离所述光伏板本体1的一侧。
在夏季时,涂布有反射隔热层3的边框2的温度能维持在50℃以下,其温度低于光伏板本体1的温度,能避免边框2将热量传递给光伏板本体1;且由于光伏板本体1的温度高于边框2的温度,光伏板本体1还可将其自身热量传递给边框2,从而提高光伏板本体1的散热效率,降低光伏板本体1的温度,有利于提高光伏板本体1的发电效率。
本实施例中,所述反射隔热层3由涂布在所述边框2上壁面上的反射隔热涂料固化而成,所述反射隔热涂料的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年,保证反射隔热涂料与边框2之间的结合力,保障反射隔热涂料使用寿命。
作为优选,所述反射隔热层3的太阳光反射率大于或等于80%。
反射隔热层3能将大部分太阳光反射出去,边框2只吸收少部分太阳光能,从而达到隔热的效果。太阳光线照射在所述边框2的反射隔热层3上被反射到其周围的空间内,所述边框2反射的一部分光线会入射到光伏板本体1,提高光线利用率,进而有利于提高光伏板本体1的发电效率。
本实施例所述太阳能光伏板制作方法适用于已组装未投入使用的太阳能光伏板和已在光伏电站投入使用的太阳能光伏板;对于已组装未投入使用的太阳能光伏板,做好光伏板本体1表面的防护后,再在所述在边框2的上壁面涂布反射隔热涂料;
参照附图1所示,对于已在光伏电站投入使用的太阳能光伏板,需要对边框2表面进行清洁并干燥后,做好光伏板本体1表面的防护后,再在所述在边框2上壁面上涂布反射隔热涂料。
对于已组装未投入使用或已在光伏电站投入使用的太阳能光伏板,通常在边框2的上壁面涂布反射隔热涂料;或在边框2的上壁面和外壁面涂布反射隔热涂料。
实施例2
参照附图2所示,本实施例中所述提高发电效率的太阳能光伏板制作方法适用于未组装的太阳能光伏板,太阳能光伏板包括光伏板本体1和边框2,所述边框2包括内壁面、上壁面、下壁面和外壁面,所述光伏板本体1与边框2在生产后,并在所述边框2的表面上均涂布反射隔热涂料固化形成反射隔热层3后,再将光伏板本体1以及涂布有反射隔热层3的边框2进行组装。
本实施例中,所述反射隔热层3由涂布在所述边框2上壁面和外壁面上的反射隔热涂料固化而成,所述反射隔热涂料的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年。
实施例3
参照附图3所示,本实施例中所述提高发电效率的太阳能光伏板制作方法适用于未组装的太阳能光伏板,太阳能光伏板包括光伏板本体1和边框2,所述边框2包括内壁面、上壁面、下壁面和外壁面,所述光伏板本体1与边框2在生产后,并在所述边框2的上壁面、外壁面和内壁面上均涂布反射隔热涂料固化形成反射隔热层3后,再将光伏板本体1以及涂布有反射隔热层3的边框2进行组装。
本实施例中,所述反射隔热层3由涂布在所述边框2上壁面、外壁面和内壁面上的反射隔热涂料固化而成,所述反射隔热涂料的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年。
实施例4
参照附图4所示,本实施例中所述提高发电效率的太阳能光伏板制作方法适用于未组装的太阳能光伏板,太阳能光伏板包括光伏板本体1和边框2,所述边框2包括内壁面、上壁面、下壁面和外壁面,所述光伏板本体1与边框2在生产后,并在所述边框2的上壁面、外壁面、内壁面和下壁面上均涂布反射隔热涂料固化形成反射隔热层3后,再将光伏板本体1以及涂布有反射隔热层3的边框2进行组装。
如图4中所示,所述边框2内壁面上供光伏板本体1插入的插槽,所述边框2内壁面上涂布有发射隔热涂料,避免透过所述光伏板本体1的光被所述边框2吸收升温。
本实施例中,所述反射隔热层3由涂布在所述边框2上壁面、外壁面、内壁面和下壁面上的反射隔热涂料固化而成,所述反射隔热涂料的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年。
本申请通过反射隔热层3减少所述边框2的吸热,能在高温天气有效降低所述边框2的温度,在夏季时,涂布有反射隔热层3的边框2的温度能维持在50℃以下,其温度低于光伏板本体1的温度,能避免边框2将热量传递给光伏板本体1,进而避免光伏板温度的进一步上升,有利于提高光伏板本体1的发电效率。
当然,本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变形和替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种提高发电效率的太阳能光伏板制作方法,太阳能光伏板包括光伏板本体(1)和边框(2),其特征在于,包括:在边框(2)表面涂布涂料并固化形成反射隔热层(3)。
  2.  根据权利要求1所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述反射隔热层(3)在所述边框(2)上的附着力小于或等于1级,硬度大于或等于HB,耐候性大于或等于10年。
  3.  根据权利要求1所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述反射隔热层(3)的反射率大于或等于80%。
  4.  根据权利要求1所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述反射隔热层(3)由涂布在所述边框(2)表面上反射隔热涂料固化而成。
  5.  根据权利要求4所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述边框(2)包括上壁面、内壁面、外壁面和下壁面,在光伏板本体(1)和边框(2)在组装前或组装后,对所述边框(2)的上壁面涂布反射隔热涂料。
  6.  根据权利要求4所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述边框(2)包括上壁面、内壁面、外壁面和下壁面,在光伏板本体(1)和边框(2)组装前或组装后,对所述边框(2)的上壁面和外壁面涂布反射隔热涂料。
  7.  根据权利要求4所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述边框(2)包括上壁面、内壁面、外壁面和下壁面,在光伏板本体(1)和边框(2)组装前,对所述边框(2)的上壁面、外壁面和内壁面涂布反射隔热涂料。
  8.  根据权利要求4所述的提高发电效率的太阳能光伏板制作方法,其特征在于,所述边框(2)包括上壁面、内壁面、外壁面和下壁面,在光伏板本体(1)和边框(2)组装前,再对边框(2)的上壁面、外壁面、内壁面和下壁面涂布反射隔热涂料。
  9.  根据权利要求4-8任一项所述的提高发电效率的太阳能光伏板制作方法,其特征在于,对边框(2)表面进行清洁后并干燥后再涂布反射隔热涂料。
  10.  一种太阳能光伏板,其特征在于,采用如权利要求1-9任一项所述制作方法制作得到。
PCT/CN2023/100127 2022-12-01 2023-06-14 提高发电效率的太阳能光伏板制作方法及太阳能光伏板 WO2024113762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211533327.6A CN115765601A (zh) 2022-12-01 2022-12-01 提高发电效率的太阳能光伏板制作方法及太阳能光伏板
CN202211533327.6 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024113762A1 true WO2024113762A1 (zh) 2024-06-06

Family

ID=85342371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100127 WO2024113762A1 (zh) 2022-12-01 2023-06-14 提高发电效率的太阳能光伏板制作方法及太阳能光伏板

Country Status (2)

Country Link
CN (1) CN115765601A (zh)
WO (1) WO2024113762A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765601A (zh) * 2022-12-01 2023-03-07 中山市博兴科技开发有限公司 提高发电效率的太阳能光伏板制作方法及太阳能光伏板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002293A (zh) * 2010-11-12 2011-04-06 航天材料及工艺研究所 一种薄型太阳反射多功能涂层及制备方法
CN106601829A (zh) * 2016-12-16 2017-04-26 三河方元绿洲节能科技有限公司 一种提升光伏发电转化率的装置及太阳光高反射涂料
WO2021095968A1 (ko) * 2019-11-14 2021-05-20 (주) 비에이에너지 방열도료가 도포된 태양광 패널
CN115765601A (zh) * 2022-12-01 2023-03-07 中山市博兴科技开发有限公司 提高发电效率的太阳能光伏板制作方法及太阳能光伏板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002293A (zh) * 2010-11-12 2011-04-06 航天材料及工艺研究所 一种薄型太阳反射多功能涂层及制备方法
CN106601829A (zh) * 2016-12-16 2017-04-26 三河方元绿洲节能科技有限公司 一种提升光伏发电转化率的装置及太阳光高反射涂料
WO2021095968A1 (ko) * 2019-11-14 2021-05-20 (주) 비에이에너지 방열도료가 도포된 태양광 패널
CN115765601A (zh) * 2022-12-01 2023-03-07 中山市博兴科技开发有限公司 提高发电效率的太阳能光伏板制作方法及太阳能光伏板

Also Published As

Publication number Publication date
CN115765601A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN102903769B (zh) 中空玻璃热电一体化装置
CN105553408B (zh) 一种吸热板直接与玻璃盖板复合的太阳能光伏光热一体化模块
CN201570507U (zh) 一种太阳能电热一体化组件
CN104064616B (zh) 一种太阳能光伏模块
WO2024113762A1 (zh) 提高发电效率的太阳能光伏板制作方法及太阳能光伏板
CN203573997U (zh) 一种薄膜太阳能电池
CN102569454A (zh) 背板材料、使用背板材料的光伏组件及其制造方法
KR101232034B1 (ko) 방열패키지 일체형 태양전지모듈
CN103872162B (zh) 一种低工作温度太阳能电池组件
CN204834643U (zh) 一种太阳能光伏光热建筑一体化模块
CN205647425U (zh) 电热联用聚光光伏系统
CN203839391U (zh) 太阳能光伏光热复合组件
CN202487612U (zh) 一种具有高热导率的光伏组件
CN208738277U (zh) 太阳能电池玻璃结构
CN203840255U (zh) 分体式阳台壁挂太阳能光伏光热集成系统
CN207083059U (zh) 一种改进型耐高温太阳能发电板
CN216959731U (zh) 一种用于光伏建筑一体化的真空低辐射发电玻璃
CN201913849U (zh) 背板材料及使用背板材料的光伏组件
CN219960486U (zh) 一种使用反射隔热边框的太阳能光伏板
CN206490647U (zh) 低倍聚光光伏电池组件
CN105811878A (zh) 电热联用聚光光伏系统
CN106968561A (zh) 一种改进的太阳能窗户
CN207441725U (zh) 一种太阳能电池背板及其太阳能电池组件
CN206402625U (zh) 一种用于不间断电源的散热装置
CN207441727U (zh) 一种光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895927

Country of ref document: EP

Kind code of ref document: A1