WO2024113640A1 - Allocation of resources for transmission repetition for wireless communication systems - Google Patents

Allocation of resources for transmission repetition for wireless communication systems Download PDF

Info

Publication number
WO2024113640A1
WO2024113640A1 PCT/CN2023/088726 CN2023088726W WO2024113640A1 WO 2024113640 A1 WO2024113640 A1 WO 2024113640A1 CN 2023088726 W CN2023088726 W CN 2023088726W WO 2024113640 A1 WO2024113640 A1 WO 2024113640A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetition
transmission
determining
resource
wireless communication
Prior art date
Application number
PCT/CN2023/088726
Other languages
French (fr)
Inventor
Xing Liu
Xianghui HAN
Peng Hao
Jing Shi
Min Ren
Chunli Liang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/088726 priority Critical patent/WO2024113640A1/en
Publication of WO2024113640A1 publication Critical patent/WO2024113640A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present implementations relate generally to wireless communications, and more particularly to systems, methods, apparatuses, and non-transitory computer-readable media for allocating resources for transmission repetition.
  • a UL Resource Blocks (RBs) set e.g., UL subband
  • RBs UL Resource Blocks
  • a frequency-domain resource in the UL subband needs to be no larger than or less than a normal UL slot.
  • the base station schedules a UL transmission of a frequency resource in the UL slot, and repetition is configured for the uplink transmission, at least one repetition transmission can be performed in the UL subband.
  • UL transmission of different UEs may overlap in the UL subband in the frequency domain.
  • the arrangements disclosed herein relate to systems, methods, apparatuses, and non-transitory computer-readable media for determining, by a wireless communication device, an available resource based on a first time-domain resource, wherein an uplink (UL) resource block (RB) set is configured in the first time-domain resource and sending, by the wireless communication device to a network, at least one repetition of each of at least one transmission using the available resource.
  • UL uplink
  • RB resource block
  • the arrangements disclosed herein relate to systems, methods, apparatuses, and non-transitory computer-readable media for configuring, by a network to a wireless communication device, an available resource based on a first time-domain resource, wherein an UL RB set is configured in the first time-domain resource and receiving, by the network from the wireless communication device, at least one repetition of each of at least one transmission using the available resource.
  • FIG. 1 is a diagram illustrating an example wireless communication system, according to various arrangements.
  • FIG. 2 is a diagram illustrating a block diagram of an example wireless communication system for transmitting and receiving downlink and uplink communication signals, according to various arrangements.
  • FIG. 3 is a diagram illustrating RVs for a frame structure, according to various arrangements.
  • FIG. 4 is a diagram illustrating RVs for a frame structure, according to various arrangements.
  • FIG. 5 is a diagram illustrating a frame structure with an UL subband configured, according to various arrangements.
  • FIG. 6 is a flowchart diagram illustrating an example method for performing repetition transmissions, according to various arrangements.
  • FIG. 7 is a diagram illustrating resource allocation in a frame structure including a UL subband, according to various arrangements.
  • FIG. 8 is a diagram illustrating resource allocation in a frame structure including a UL subband, according to various arrangements.
  • FIG. 9 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
  • FIG. 10 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
  • FIG. 11 is a diagram illustrating an example resource allocation, according to various arrangements.
  • FIG. 12 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
  • Implementations described as being implemented in software should not be limited thereto, but can include implementations implemented in hardware, or combinations of software and hardware, and vice-versa, as is apparent to those skilled in the art, unless otherwise specified herein.
  • an implementation showing a singular component should not be considered limiting. Rather, the present disclosure is intended to encompass other implementations including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein.
  • the present implementations encompass present and future known equivalents to the known components referred to herein by way of illustration.
  • the arrangements disclosed herein relate to reducing performance degradation caused by UL transmissions on UL resources that overlap.
  • a repetition transmission mechanism can be employed to perform coverage enhancement.
  • a communication node can repeatedly transmit a same Transport Block (TB) by using one or more time-domain resources (e.g., slots) .
  • the same TB can have a same or different Redundancy Versions (RV) .
  • RV Redundancy Versions
  • UE User Equipment
  • one cell can configure multiple times of scheduling-free repetition transmission for a plurality of UEs to perform data transmission.
  • the cell can schedule multiple times of aggregation transmission for the UEs to perform data transmission.
  • a maximum quantity of repetition transmissions for physically sharing an uplink channel such as a Physical Uplink Share Channel (PUSCH) may be 16 (e.g., in Release 16) .
  • time-frequency resources used by different UEs may overlap.
  • interference between data sent on the overlapping resources is significant, thus negatively impacting service transmission reliability.
  • a UL subband can be used to increase the availability of UL transmission resources.
  • a UL frequency-domain resource in the UL subband is less than that in the normal UL time resource (e.g., a slot) .
  • some repetition transmission can be performed in the UL subband.
  • UL transmissions of different UEs can overlap in the UL subband in the frequency domain.
  • FIG. 1 shows an example wireless communication system 100.
  • the wireless communication system 100 corresponds to a group communication within a cellular network.
  • a network-side communication node or a base station can include one or more of a next Generation Node B (gNB) , an E-Utran Node B (also known as Evolved Node B, eNodeB or eNB) , a pico station, a femto station, a Transmission/Reception Point (TRP) , an Access Point (AP) , or the like.
  • gNB next Generation Node B
  • E-Utran Node B also known as Evolved Node B, eNodeB or eNB
  • TRP Transmission/Reception Point
  • AP Access Point
  • a terminal-side node or a UE can include a long range communication system (such as but not limited to, a mobile device, a smart phone, a Personal Digital Assistant (PDA) , a tablet, a laptop computer) or a short range communication system (such as but not limited to, a wearable device, a vehicle with a vehicular communication system, or the like) .
  • a network-side communication node is represented by a BS 102
  • a terminal-side communication node is represented by a UE 104a or 104b.
  • the BS 102 is sometimes referred to as a wireless communication node.
  • the UE 104a/104b is sometimes referred to as a wireless communication device.
  • the BS 102 can provide wireless communication services to the UEs 104a and 104b within a cell 101.
  • the UE 104a can communicate with the BS 102 via a communication channel 103a.
  • the UE 104b can communicate with the BS 102 via a communication channel 103b.
  • the communication channels (e.g., 103a and 103b) can be through interfaces such as but not limited to, an Uu interface which is also known as Universal Mobile Telecommunication System (UMTS) air interface.
  • the BS 102 is connected to a Core Network (CN) 108 through an external interface 107, e.g., an Iu interface.
  • CN Core Network
  • FIG. 2 illustrates a block diagram of an example wireless communication system 150 for transmitting and receiving downlink and uplink communication signals, in accordance with some arrangements of the present disclosure.
  • the system 150 is a portion of the system 100.
  • data symbols can be transmitted and received in a wireless communication environment such as the wireless communication system 100 of FIG. 1.
  • the system 150 generally includes the BS 102 and UEs 104a and 104b.
  • the BS 102 includes a BS transceiver module 110, a BS antenna 112, a BS memory module 116, a BS processor module 114, and a network communication module 118.
  • the modules/components are coupled and interconnected with one another as needed via a data communication bus 120.
  • the UE 104a includes a UE transceiver module 130a, a UE antenna 132a, a UE memory module 134a, and a UE processor module 136a.
  • the modules/components are coupled and interconnected with one another as needed via a data communication bus 140a.
  • the UE 104b includes a UE transceiver module 130b, a UE antenna 132b, a UE memory module 134b, and a UE processor module 136b.
  • the modules/components are coupled and interconnected with one another as needed via a data communication bus 140b.
  • the BS 102 communicates with the UEs 104a and 104b via communication channels 155, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
  • the system 150 can further include any number of modules/elements other than the modules/elements shown in FIG. 2.
  • the various illustrative blocks, modules, elements, circuits, and processing logic described in connection with the arrangements disclosed herein can be implemented in hardware, computer-readable software, firmware, or any practical combination thereof.
  • various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionalities. Whether such functionalities are implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionalities in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
  • a wireless transmission from an antenna of each of the UEs 104a and 104b to an antenna of the BS 102 is known as an uplink transmission
  • a wireless transmission from an antenna of the BS 102 to an antenna of each of the UEs 104a and 104b is known as a downlink transmission.
  • each of the UE transceiver modules 130a and 130b may be referred to herein as an uplink transceiver, or UE transceiver.
  • the uplink transceiver can include a transmitter circuitry and receiver circuitry that are each coupled to the respective antenna 132a and 132b.
  • a duplex switch may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver module 110 may be herein referred to as a downlink transceiver, or BS transceiver.
  • the downlink transceiver can include RF transmitter circuitry and receiver circuitry that are each coupled to the antenna 112.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the antenna 112 in time duplex fashion.
  • the operations of the transceivers 110, 130a, and 130b are coordinated in time such that the uplink receiver is coupled to the antenna 132a and 132b for reception of transmissions over the wireless communication channels 155 at the same time that the downlink transmitter is coupled to the antenna 112.
  • the UEs 104a and 104b can use the UE transceivers 130a and 130b through the respective antennas 132a and 132b to communicate with the BS 102 via the wireless communication channels 155.
  • the wireless communication channel 155 can be any wireless channel or other medium suitable for downlink (DL) and/or uplink (UL) transmission of data as described herein.
  • the UE transceiver 130a/130b and the BS transceiver 110 are configured to communicate via the wireless data communication channel 155, and cooperate with a suitably configured antenna arrangement that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 130a/130b and the BS transceiver 110 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, or the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 130a/130b and the BS transceiver 110 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the processor modules 136a and 136b and 114 may be each implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the memory modules 116, 134a, 134b can be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or another suitable form of storage medium.
  • the memory modules 116, 134a, and 134b may be coupled to the processor modules 114, 136a, and 136b, respectively, such that the processors modules 114, 136a, and 136b can read information from, and write information to, the memory modules 116, 134a, and 134b, respectively.
  • the memory modules 116, 134a, and 134b may also be integrated into their respective processor modules 114, 136a, and 136b.
  • the memory modules 116, 134a, and 134b may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 114, 136a, and 136b, respectively.
  • Memory modules 116, 134a, and 134b may also each include non-volatile memory for storing instructions to be executed by the processor modules 114, 136a, and 136b, respectively.
  • the network interface 118 generally represents the hardware, software, firmware, processing logic, and/or other components of the BS 102 that enable bi-directional communication between BS transceiver 110 and other network components and communication nodes configured to communication with the BS 102.
  • the network interface 118 may be configured to support internet or WiMAX traffic.
  • the network interface 118 provides an 802.3 Ethernet interface such that BS transceiver 110 can communicate with a conventional Ethernet based computer network.
  • the network interface 118 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
  • the network interface 118 can allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
  • dynamic scheduling-based slot aggregation e.g., slot-based aggregation, dynamic scheduling slot-based repetition, or PUSCH repetition type A
  • scheduling-free slot repetition e.g., scheduling-free slot-based repetitions or configured grant transmission with slot-based repetition
  • the UE repeatedly transmits a TB by using multiple time-domain resources (e.g., slots) , and the TB has the same time-domain resource allocation in each time-domain resource (e.g., each slot) .
  • the number of slots that can be aggregated or used for repetition transmissions can be one of ⁇ 1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32 ⁇ .
  • dynamic scheduling-based uplink aggregation transmission and scheduling-free uplink repeated transmission can be provided. Therefore, a mini-slot (or sub-slot) granularity-based aggregation or repetition transmission, also be referred to as PUSCH repetition type B, can be employed. That is, the UE repeatedly transmits a TB in a plurality of consecutive mini-slots in one slot or across multiple slots, and the time-domain duration of each mini-slot is the same.
  • FIG. 3 is a diagram illustrating RVs for a frame structure 300, according to various arrangements. ) .
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 300 includes slots (e.g., slot 0, slot 1, slot 2, slot 3, and slot 4 as shown in FIG.
  • RV 2 is indicated in the DCI, and the RV of the first repetition transmission (repetition 1) , which is in slot 0, is 2.
  • the RV of the second repetition transmission (repetition 2) which is in slot 1, is 3.
  • the RV of the third repetition transmission (repetition 3) which is in slot 2, is 1.
  • the RV of the fourth repetition transmission (repetition 4) which is in slot 3, is 0.
  • the RV of the fifth repetition transmission (repetition 5) which is in slot 4, is 2, and so on.
  • any one of other RVs can also be indicated in the DCI, and this RV can be used for the first repetition transmission.
  • the RVs used for other repetition transmissions will also be determined according to the cyclical association between RV and repetition transmission.
  • PUSCH repetition For transmitting a repetition of an UL transmission (e.g., PUSCH repetition, Physical Random Access Channel (PRACH) repetition, or a Physical Uplink Control Channel (PUCCH) repetition) , at least one available time-domain resource (e.g., slot) can be identified.
  • PUSCH repetition is used as an example, and it should be recognized that the methods can also be applied to other types of UL transmissions such as PRACH, PUCCH, and so on.
  • TDD Time Division Duplex
  • parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated, and ssb-PositionsInBurst are considered for the determination of available slots.
  • the resource can be determined as unavailable resource.
  • the resource other than the unavailable resource can be considered as available resource. If a repetition of a transmission overlaps with the unavailable resource by at least one symbol, the PUSCH repetition can be deferred to the next slot.
  • FIG. 4 is a diagram illustrating RVs for a frame structure 400, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the RV of the second repetition transmission (repetition 2) which is in slot 1, is 3.
  • the RV of the third repetition transmission (repetition 3) which is in slot 3, is 1.
  • the RV of the fourth repetition transmission (repetition 4) which is in slot 4, is 0, and so on.
  • slot 2 is configured as DL by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, this slot is skipped. That is, slot 2 cannot be defined as an available slot for repetition transmission.
  • all slots will be defined as available slots.
  • For half duplex FDD only ssb-PositionsInBurst are considered for the determination of available slots.
  • the resource in response to determining that a resource is indicated as a SSB resource by ssb-PositionsInBurst, the resource can be determined as unavailable resource. The resource other than the unavailable resource can be considered as available resource.
  • the UE further determines whether to drop a repetition or not according to existing dropping rules for transmission type (e.g., PUSCH) .
  • the PUSCH repetition is nevertheless considered or counted in the K repetitions.
  • the repetition factor is configured or indicated as 4
  • four available slots e.g., slots 0, 1, 3, 4
  • the actual transmission times of the transmission may be less than 4.
  • FIG. 5 is a diagram illustrating a frame structure 500 with an UL subband 510 configured, according to various arrangements.
  • the frame structure 500 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subband 510 is introduced into DL and/or flexible resource (slot or symbol) .
  • a UE can transmit UL data in the UL subband, which is also referred to as a UL RB set.
  • the resource containing the UL subband e.g., if a DL or flexible slot containing UL subband
  • the UL subband 510 can be efficiently used to transmit repetitions of a transmission in the manner described herein.
  • FIG. 6 is a flowchart diagram illustrating an example method 600 for performing repetition transmissions, according to various arrangements.
  • the method 600 can be performed using the system 100.
  • the method 600 can be used to define or determine a resource containing UL subband for PUSCH repetition transmission.
  • the UE 104a determines an available resource based on a first time-domain resource.
  • a UL RB set is configured in the first time-domain resource. That is, in response to determining that a time-domain resource is configured with a UL RB set, the time-domain resource can be determined as an available resource.
  • the UE 104a determines the available resource by receiving configuration or indication from the network (e.g., the BS 102) .
  • the network can configure the available resource based on the first time-domain resource, where the UL RB set is configured in the first time-domain resource.
  • An example of the UL RB set includes the UL subband or another set of resources used to transmit UL data.
  • the UE 104a can send to the network at least one repetition of each of at least one transmission using the available resource.
  • the network receives the at least one repetition of each of at least one transmission using the available resource.
  • the available resource or the resource used to transmit the at least one repetition can include a frequency-domain resource and a time-domain resource.
  • each of the at least one transmission can include a PUSCH, PRACH, PUCCH, or another suitable uplink data.
  • each of the at least one repetition includes a repetition of the PUSCH, PRACH, PUCCH, or another suitable uplink data.
  • the time-domain resource in which the UL RB set (e.g., the UL subband) is configured is defined as available resource for transmitting a repetition.
  • determining the available resource of transmitting a repetition is based on the UL subband configuration.
  • determining a resource in response to determining a resource is not configured for UL subband, in response to determining that a resource is indicated by the network as DL resource using the parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, or in response to determining a resource is indicted by the network as a SSB resource using the parameter networssb-PositionsInBurst, the UE 104a determines that such resource is an unavailable resource and not an available resource. Accordingly, determining the available resource at 620 includes determining that the available resource includes or is the first time-domain resource.
  • the time-domain resource in which the UL RB set (e.g., the UL subband) is configured, excluding a first number of second time-domain resources (e.g., symbols or slots) is defined as available resource for transmitting a repetition. Accordingly, determining the available resource at 620 includes determining that the available resource includes or is the first time-domain resource excluding at least one second time-domain resource (e.g., at least one symbol or slot) within the first time-domain resource.
  • FIG. 7 is a diagram illustrating resource allocation in a frame structure 700 including a UL subband 730, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 700 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subband 730 is introduced into DL and flexible resources (slot or symbol) .
  • the UE 104a can transmit UL data in the UL subband 730.
  • the resource containing the UL subband 730 (e.g., a DL or flexible slot containing the UL subband 730) can be defined as an available slot for repetition transmission.
  • the time-domain resources in which the UL subband 730 is configured are defined as available resources for the repetition transmissions (e.g., 710a, 710b, 710c, and 710d) of a first transmission (e.g., PUSCH) , as the frequency-domain resource for the first PUSCH is included in the frequency-domain range of the UL subband 730.
  • the time-domain resource in which the UL subband 730 is configured cannot be defined as the available resource for the repetition transmission of a second transmission (e.g., a second PUSCH 720) , as the frequency-domain resource for PUSCH 720 is out of the frequency domain range of the UL subband 730. Accordingly, determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and that a frequency-domain resource for the UL RB set (e.g., the UL subband 730) contains a frequency range of the at least one transmission (e.g., the first transmission) .
  • FIG. 8 is a diagram illustrating resource allocation in a frame structure 800 including a UL subband 830, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 800 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subband 830 is introduced into DL and flexible resources (slot or symbol) .
  • the UE 104a can transmit UL data in the UL subband 830. As shown in FIG.
  • the time-domain resource in which the UL subband 830 is configured can be defined as the available resource for the repetition transmission of a first transmission (e.g., PUSCH 810) , as the bandwidth of PUSCH 810 is less than or no greater than the bandwidth of the UL subband 830.
  • the time-domain resource in which the UL subband 830 is configured cannot be defined as the available resource for the repetition transmission of a second transmission (e.g., PUSCH 820) , as the bandwidth of PUSCH 820 is greater than or no less than the bandwidth of the UL subband 830.
  • determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and that a bandwidth of a frequency-domain resource for the UL RB set (e.g., the UL subband 830) is greater than or no less than a bandwidth of the at least one transmission (e.g., PUSCH 810) .
  • determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and an RV cycling for the at least one transmission includes a predefined value (e.g., 0000) .
  • determining the available resource at 620 includes determining that the available resource includes the first time-domain resource in response to determining that an RV cycling for the at least one transmission includes a predefined value (e.g., 0000) and that a repetition factor for the at least one transmission is less than or no greater than a threshold.
  • two or more of the methods described herein for determining an available resource for resource configuration with UL subband can be implemented in combination.
  • resource type of resource configuration with UL subband is defined. Accordingly, a UE can efficiently determine whether a time-domain resource with UL subband can be defined as an available resource for repetition transmission.
  • Some arrangements described herein relate to efficiently using UL subband to transmit at least one repetition.
  • at least a portion of DL or flexible resource may be modified to a UL transmission resource.
  • part of time-domain resource of DL or flexible time-domain resource can be configured with a UL subband.
  • a UL subband can be configured by the network (e.g., the BS 102) to the UEs 104a and 104b for a carrier or a DL Bandwidth Part (BWP) . Then, the bandwidth of the UL subband may be less than the carrier bandwidth or the DL BWP bandwidth.
  • the network e.g., the BS 102
  • BWP Bandwidth Part
  • FIG. 9 is a diagram illustrating resource allocation in a frame structure 900 including UL subbands, e.g., UL subband 930 and UL subband 940, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 900 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subbands 930 and 940 are introduced into DL and flexible resources (slot or symbol) .
  • the UE 104a can transmit UL data in the UL subbands 930 and 940.
  • the repetitions of a transmission includes PUSCH 910a, 910b, 910c, and 910d.
  • the UE 104a can transmit the PUSCH 910a and 910d in the UL time-domain resources, e.g., UL slot or symbols or UL Bandwidth Part (BWP) .
  • the transmission resource for a transmission e.g., PUSCH 910a
  • a frequency location of a frequency-domain resource can be defined using one or more of a lowest frequency (e.g., lowest Resource Element (RE) ) , frequency range (e.g., number of RBs or REs) , highest frequency (e.g., highest RE) , center frequency (center RE) , and so on.
  • a lowest frequency e.g., lowest Resource Element (RE)
  • frequency range e.g., number of RBs or REs
  • highest frequency e.g., highest RE
  • center frequency center RE
  • the frequency domain location for a resource used to transmit a repetition in UL subband can be changed by using a frequency offset 905.
  • the network can indicate to the UE 104a a first frequency-domain location in a Downlink Control Information (DCI) for repetition scheduling of a transmission.
  • DCI Downlink Control Information
  • the UE 104a can use the first frequency domain location to transmit to the network a PUSCH repetition (e.g., PUSCH 910a) in the UL slot.
  • the UE 104a can determine a second frequency-domain location for repetitions (e.g., PUSCH 910b and 910c) according to the first frequency domain location and the frequency offset 905.
  • the second frequency domain location can be used for transmitting the repetitions (e.g., PUSCH 910b and 910c) in the UL subband 940.
  • the offset 905 can be configured by the network (e.g., the BS 102) to the UE 104a.
  • the UE 104a can determine the offset 905 according to a rule, e.g., the frequency-domain relationship between UL BWP and the UL subband 940.
  • the UE 104a can determine the offset 905 according to the difference between the lowest frequency-domain location (e.g., lowest RE) of the UL BWP (used to transmit the PUSCH 910a) and the lowest frequency-domain location (e.g., lowest RE) of the UL subband.
  • the UE 104a can determine the offset 905 according to the difference between the highest frequency-domain location (e.g., highest RE) of the UL BWP (used to transmit the PUSCH 910a) and the highest frequency-domain location (e.g., highest RE) of the UL subband 940.
  • sending the at least one repetition of the at least one transmission using the available resource at 630 includes determining a first frequency-domain location for the at least one repetition by changing a second frequency-domain location based on a frequency offset and sending the at least one repetition at the first frequency-domain location, e.g., the first frequency-domain resource is within frequency range of the UL subband.
  • FIG. 10 is a diagram illustrating resource allocation in a frame structure 1000 including a UL subbands 1030 and 1040, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 1000 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subbands 1030 and 1040 are introduced into DL and flexible resources (slot or symbol) .
  • the UEs 104a and 104b can transmit UL data in the UL subbands 1030 and 1040.
  • the UE 104a transmits repetitions of a first transmission (e.g., PUSCH) including PUSCH 1010a, PUSCHs with Orthogonal Complementary Code (OCC) 1015, and PUSCH 1010b.
  • the UE 104b transmits repetitions of a second transmission (e.g., PUSCH) including PUSCH 1020a, PUSCHs with OCC 1025, and PUSCH 1020b.
  • the UE 104a can transmit the PUSCH 1010a and 1010b in the UL time-domain resources, e.g., UL slot or UL symbol.
  • the UE 104b can transmit the PUSCH 1020a and 1020b in the UL time-domain resources, e.g., UL slot or UL symbol.
  • the repetitions of the first transmission overlaps with the repetitions of the second transmission in the UL subband 1040.
  • the repetitions of the first transmission and the repetitions of the second transmission overlap in the overlapped portions 1042 and 1050 in respective DL and flexible slots as shown, forming the overlapped transmissions 1060 and 1070 respectively.
  • the overlapped transmissions 1060 and 1070 each includes the PUSCH with OCC 1015 and PUSCH with OCC 1025.
  • the PUSCH with OCC 1015 in each of the transmissions 1060 and 1070) includes the overlapped portion 1042 or 1050 respectively, and the non-overlapped portion 1045.
  • the PUSCH with OCC 1025 (in each of the transmissions 1060 and 1070) includes the overlapped portion 1042 or 1050 respectively, and the non-overlapped portion 1055.
  • the overlapped portions 1042 and 1050 of the different transmissions from the different UEs 104a and 104b interfere with each other.
  • each of the UEs 104a and 104b can perform orthogonal spreading on its own transmissions respectively. For example, the UE 104a can multiply its own transmission by a first OCC, and the UE 104b can multiply its own transmission by a second OCC. The first OCC and the second OCC are orthogonal.
  • the information carried on the first transmission (e.g., PUSCH 1010a or 1010b) has the content denoted as A
  • the UE 104a multiples two repetitions of the first transmission in UL subband 1040 (e.g., in the DL and flexible resources) by OCC codes +1 and +1 respectively.
  • the information actually transmitted in PUSCHs with OCC 1015 are A (in the DL resource) and A (in the flexible resource) .
  • the information carried on the second transmission (e.g., PUSCH 1020a and 1020b) has the content denoted as B
  • the UE 104b multiples two repetitions of the second transmission in UL subband 1040 (e.g., in the DL and flexible resources) by OCC codes +1 and -1 respectively.
  • the information actually transmitted in PUSCHs with OCC 1025 are B (in the DL resource) and -B (in the flexible resource) . While the OCC illustrated herein a 2-dimensional, the OCC applied (e.g., added) can have more dimensions.
  • the information carried on the first transmission and the second transmission in the DL resource in the UL subband 1040 includes A+B.
  • the information carried on the first transmission and the second transmission in the flexible resource in the UL subband 1040 includes A-B.
  • the OCC code e.g., +1 and -1
  • sending the at least one repetition of the at least one transmission using the available resource at 630 includes sending, by the UE 104a to the network, at least two repetitions of the transmission using the at least one available resource and an OCC.
  • the information added using the OCC can use a same RV.
  • a same RV e.g., RV0 is used for all of the PUSCH repetitions added using the OCC.
  • OCC is only added on the data information carried on the PUSCH. That is, the OCC is not added on reference information or signals such as Demodulation Reference Signal (DMRS) , Phase-Tracking Reference Signal (PTRS) , Sounding Reference Signal (SRS) , Channel-State Information Reference Signal (CSI-RS) , and so on.
  • the method 600 can further include applying (e.g., adding) the OCC to data information of the at least two repetitions of the transmission.
  • OCC is added on both of the data information and the reference information or signals.
  • the method 600 can further include applying the OCC to data information and reference information or signals of the at least two repetitions of the transmission. That is, a same OCC applies to both of data information and reference information or signals, and added on both of them.
  • the UEs do not apply the OCC to the reference information or signals.
  • the UEs in response to determining that different PUSCHs partially overlap with each other, and that the reference information or signals of the different PUSCHs are configured with same comb index, the UEs apply the OCC to the reference information or signals.
  • the UEs in response different PUSCHs completely overlap with each other, the UEs do not add the OCC to the reference information or signals.
  • the UE in response to determining that different PUSCHs at least partially overlap with each other, and that the time domain location of reference information or signals of the different PUSCHs are different, the UE apply the OCC to the reference information or signals. In some arrangements, the UE determines to apply the OCC to the reference information or signals according to the indication of the BS 102 via a RRC signaling or a DCI.
  • two or more symbols are within one transmission (e.g., PUSCH) including the reference information or signals.
  • FIG. 11 is a diagram illustrating an example resource allocation 1100, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. As shown in FIG. 11, the reference information or signals (e.g., DMRS) is repeated on different symbols.
  • the reference information or signals 1112a and 1112b for a first transmission e.g., a PUSCH 1110
  • the reference information or signals 1122a and 1122b for a second transmission can be transmitted by the UE 104b to the BS 102 on the symbols 1130 and 1140, respectively.
  • the OCC can be applied on different symbols within the same transmission.
  • the PUSCHs 1110 and 1120 overlap with each other in the time domain and the frequency domain.
  • a same sequence of the reference information or signal e.g., DMRS
  • OCC can be applied on the reference information or signal in different symbols of a PUSCH.
  • the UE 104a can apply OCC (e.g., +1 and +1) to the reference information or signal of PUSCH 1110 in the first DMRS symbol 1130 and the second DMRS symbol 1140, respectively.
  • the UE 104b can apply OCC (e.g., +1 and -1) to the reference information or signal of PUSCH 1120 in the first DMRS symbol 1130 and the second DMRS symbol 1140, respectively. Accordingly, a UE can apply the OCC to different symbols of reference information or signal of the transmission. The interference of the reference information or signal can be reduced or eliminated within a transmission.
  • OCC e.g., +1 and -1
  • the OCC can be applied on only the repetitions transmitted in the UL subband. That is, a UE can apply the OCC to the repetition of the transmission, the repetition is transmitted within the UL RB set (e.g., the UL subband) .
  • the repetitions of a transmission within UL subband can be divided into two or more groups. Each group of repetitions has a same RV.
  • the OCC can be applied or added for each group. In some arrangements, all repetitions of a transmission can be divided into two or more groups. In some arrangements, the OCC are applied or added for a part group of repetition. In other words, at least one group of repetition are not added by OCC.
  • four repetitions of a PUSCH in the UL subband have RV cycling of 0303.
  • the first repetition and the third repetition form a first group.
  • the second repetition and the fourth repetition form a second group.
  • the OCC are applied for each group respectively. That is, the repetition of the transmission includes a plurality of groups. Each of the plurality of groups have a same RV value.
  • the OCC is applied to each of the plurality of groups of the repetition of the transmission.
  • the transmission will be dropped. That is, a UE does not transmit the repetition.
  • a number of the at least one repetition for a value of RV is one, and the method 600 further includes dropping by the UE 104a the at least one repetition.
  • the network e.g., the BS 102
  • the network can indicate to the UE whether to drop this transmission in the scheduling DCI or via RRC signaling.
  • a number of the at least one repetition for a value of RV is one, and the method 600 further includes determining, by the UE 104a, whether to drop the at least one repetition based on an indication received from the network.
  • the OCC can be applied on the repetitions regardless of whether the repetitions are in the UL subband. That is, the OCC is applied to the repetition of the transmission regardless of the available resource used to send the repetition of the transmission is within the UL RB set.
  • the UE 104a can apply the OCC on both repetitions transmitted in the UL slot and in the UL subband.
  • the PUSCH repetition can be divided into two or more groups, each group has a same RV, and the OCC can be applied for each group.
  • a transmission e.g., PUSCH
  • the first repetition and the third repetition form a first group.
  • the second repetition and the fourth repetition form a second group.
  • the UE 104a can apply the OCC for each group, respectively.
  • different OCCs can be applied with different PUSCHs overlapping with each other.
  • a first OCC of a first UL transmission (including first repetition and second repetition) from a first UE can be ⁇ +1, +1 ⁇ , that is, both of the first repetition and the second are added by +1.
  • a second OCC of a second UL transmission (including two repetition, e.g., third repetition and fourth repetition) from a second UE is ⁇ +1, -1 ⁇ . Then, the third repetition is added by +1, and the fourth repetition is added by -1.
  • the UE can be configured with an OCC to be used for transmitting a PUSCH.
  • the BS 102 there are at least two UEs (e.g., the first UE and the second UE) that transmit PUSCHs overlapping with each other.
  • the BS 102 can configure a pair of OCCs, e.g., ⁇ +1, +1 ⁇ and ⁇ +1, -1 ⁇ for the first UE and the second UE. That is, one OCC is configured for the first UE, and another is configured for the second UE.
  • the first transmission by the UE 104a and the second transmission by UE 104b belong to (e.g., transmitted to) different cells (e.g., different BSs) .
  • the BS 102 can configure the OCC used for PUSCH transmission in this cell in the system information. Accordingly, the method 600 further includes determining by the UE 104a or UE 104b the OCC using a parameter associated with a cell or indicated by a system information.
  • the configured or indicated OCC can be used for these PUSCH repetitions. That is, in some arrangements, the UE 104a applies an OCC to the at least one repetition in response to determining that transmission of all of the at least one repetition is based on the available resource located within the UL RB set.
  • the OCC is not applied to PUSCH repetitions for this RV. That is, in some arrangements, the UE 104a excludes application of an OCC to the at least one repetition in response to determining that transmission of one or more of the at least one repetition is based on the available resource having at least a portion located outside of the UL RB set.
  • the UL resource efficiency can be improved by application of the OCC and defining the application conditions of the OCC as described herein.
  • OCCs can be applied to PUSCHs having a same RV.
  • a quantity of repetition times is relatively small, for example, four or less times, there is no multiple repetition of a same RV. Therefore, OCCs cannot be effectively applied.
  • RV cycling is configured or determined as a predefined value (e.g., 0231)
  • the RV cycling is switched to 0000 or 0303. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to determining that transmission of the at least one repetition is based on the available response located within the UL RB set, the UE 104a switches the first RV cycling value to a second RV cycling value.
  • RV cycling is configured or determined as a predefined value (e.g., 0231)
  • the RV cycling is switched to 0000 or 0303. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to determining that that an OCC is configured for the at least one repetition, the UE 104a switches the first RV cycling value to a second RV cycling value.
  • the network (e.g., the BS 102) indicates whether to switch to other RV cycling using a scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to receiving a network indication (e.g., scheduling DCI) indicating to switch the first RC cycling value, the UE 104a switches the first RV cycling value to a second RV cycling value.
  • a network indication e.g., scheduling DCI
  • the network (e.g., the BS 102) indicates whether to count the time-domain resource in which the UL subband is configured as available resource for repetition using a scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a receives from the network an indication (e.g., the scheduling DCI) indicating whether the first time-domain resource is the available resource for the at least one repetition.
  • an indication e.g., the scheduling DCI
  • the network can indicate to the UE 104a various types of information using a scheduling DCI.
  • the scheduling DCI can indicate RV cycling switching to another RV cycling, e.g., 0000 or 0303, and count the time-domain resource in which the UL subband is configured as available resource for PUSCH repetition.
  • the scheduling DCI can indicate that the time-domain resource in which the UL subband is configured does not count as available resource for PUSCH repetition.
  • the scheduling DCI can indicate that the time-domain resource in which the UL subband is configured counts as available resource for PUSCH repetition.
  • the scheduling DCI can indicate RV cycling switching to other RV cycling, e.g., 0000 or 0303, and doesn’t count the time-domain resource in which the UL subband is configured as available resource for PUSCH repetition.
  • the UE 104a can determine whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to a repetition factor (e.g., k) . That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor whether the first time-domain resource is the available resource for the at least one repetition. For example, in response to determining that the repetition factor is no greater than or less than a predefined threshold, the time-domain resource in which the UL subband is configured is counted as available resource for repetition. In response to determining that the repetition factor is greater than or no less than a predefined threshold, the time-domain resource in which the UL subband is configured is counted as available resource for repetition.
  • a repetition factor e.g., k
  • the UE 104a can determine whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to a repetition factor. and the indication contained the scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor and an indication (e.g., the scheduling DCI) receive from the network, whether the first time-domain resource is the available resource for the at least one repetition.
  • an indication e.g., the scheduling DCI
  • the UE 104a determines whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to the indication received via the scheduling DCI. In response to determining that the repetition factor is greater than or no less than a predefined threshold, the UE 104a determines that the time-domain resource in which the UL subband is configured is counted as available resource for PUSCH repetition.
  • the UE 104a determines whether to switch to another RV cycling according to repetition factor. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor, whether to switch the first RV cycling value to a second RV cycling value. For example, in response to determining that the repetition factor is no greater than or less than a predefined threshold, the UE 104a switches the RV cycling to another RV cycling (e.g., 0000 or 0303) . In response to determining that the repetition factor is greater than or no less than a predefined threshold, the UE 104a does not switch the RV cycling.
  • a predefined threshold e.g. 0231
  • a first RV cycling is used for PUSCH repetition in UL subband
  • a second RV cycling is used for PUSCH repetition out of the UL subband.
  • the first and second RV cycling can configured independently.
  • two consecutive PUSCH repetitions in the UL subband form a group, which fixedly uses the same RV and is recorded as a PUSCH repetition.
  • FIG. 12 is a diagram illustrating resource allocation in a frame structure 1200 including a UL subbands 1230, 1240, and 1250, according to various arrangements.
  • the horizontal axis denotes time, and the vertical axis denotes frequency.
  • the frame structure 1200 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) .
  • the UL subbands 1230, 1240, and 1250 are introduced into DL and flexible resources (slot or symbol) .
  • the UEs 104a and 104b can transmit UL data in the UL subbands 1230, 1240, and 1250.
  • the UE 104a transmits repetitions of a first transmission (e.g., PUSCH) including PUSCH 1210a, PUSCHs with OCC 1215, and PUSCHs 1210b, 1210c.
  • the UE 104b transmits repetitions of a second transmission (e.g., PUSCH) including PUSCH 1220a, PUSCHs with OCC 1225, and PUSCHs 1220b, 1220c.
  • the UE 104a can transmit the PUSCH 1210a, 1210b, and 1210c in the UL time-domain resources.
  • the UE 104b can transmit the PUSCH 1220a, 1220b, and 1220c in the UL time-domain resources.
  • the repetitions of the first transmission overlaps with the repetitions of the second transmission in the UL subbands 1240 and 1250.
  • the repetitions of the first transmission and the repetitions of the second transmission overlap in the overlapped portions 1241, 1242, and 1244 in respective DL and flexible slots in the UL subband 1240, and overlap in the overlapped portion 1246 in the DL slot in the UL subband 1250, as shown, forming the overlapped transmissions 1260, 1262, 1264, and 1266 respectively.
  • the overlapped transmissions 1260, 1262, 1264, and 1266 each includes the PUSCH with OCC 1215 and PUSCH with OCC 1225.
  • the PUSCH with OCC 1215 (in each of the transmissions 1260, 1262, 1264, and 1266) includes the overlapped portion 1241, 1242, 1244, or 1246 respectively, and the non-overlapped portion 1245.
  • the PUSCH with OCC 1225 (in each of the transmissions 1260, 1262, 1264, and 1266) includes the overlapped portion 1241, 1242, 1244, or 1246 respectively, and the non-overlapped portion 1255.
  • the PUSCH repetitions in the slots 1202 and 1204 form a first group.
  • the PUSCH repetitions in the slots 1206 and 1208 form a second group.
  • the PUSCH repetitions in the slots 1206 and 1208, which are used to transmit consecutive repetitions, use a same RV value (e.g., 3) , and are counted as one PUSCH repetition. That is, the at least one repetition includes a first repetition and a second repetition of a transmission of the at least one transmission.
  • the first repetition and the second repetition are consecutive repetitions.
  • the first repetition and the second repetition use a same RV cycling value.
  • the first repetition and the second repetition are recorded as one repetition.
  • the UL resource efficiency can be improved by application of the OCC and defining the application conditions of the OCC as described herein.
  • the arrangements described herein define resources containing UL subbands for PUSCH repetition transmissions and allow efficiently use UL subband to transmit PUSCH repetition. Accordingly, resource type of resource configuration with UL subband can be provided.
  • a UE can efficiently determine whether a time-domain resource with UL subband can be used as an available resource for repetition transmission.
  • UL resource efficiency can be improved by introducing the OCC and defining the application conditions of the OCC.
  • any two components so associated can also be viewed as being “operably connected, " or “operably coupled, " to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable, " to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Example implementations include determining, by a wireless communication device, an available resource based on a first time-domain resource, wherein an uplink (UL) resource block (RB) set is configured in the first time-domain resource; and sending, by the wireless communication device to a network, at least one repetition of each of at least one transmission using the available resource.

Description

ALLOCATION OF RESOURCES FOR TRANSMISSION REPETITION FOR WIRELESS COMMUNICATION SYSTEMS TECHNICAL FIELD
The present implementations relate generally to wireless communications, and more particularly to systems, methods, apparatuses, and non-transitory computer-readable media for allocating resources for transmission repetition.
BACKGROUND
The rapid growth of mobile communications led to greater demand for capacity, connectivity, energy consumption, hardware cost, spectral efficiency, and latency in wireless communications. In a scenario in which a frequency-domain resource is lacking or limited in a full duplex system for transmitting uplink (UL) transmissions, a UL Resource Blocks (RBs) set, e.g., UL subband, can be used to increase available UL transmission resources for transmitting the UL transmissions. A frequency-domain resource in the UL subband needs to be no larger than or less than a normal UL slot. When the base station schedules a UL transmission of a frequency resource in the UL slot, and repetition is configured for the uplink transmission, at least one repetition transmission can be performed in the UL subband. UL transmission of different UEs may overlap in the UL subband in the frequency domain.
SUMMARY
The arrangements disclosed herein relate to systems, methods, apparatuses, and non-transitory computer-readable media for determining, by a wireless communication device, an available resource based on a first time-domain resource, wherein an uplink (UL) resource block (RB) set is configured in the first time-domain resource and sending, by the wireless  communication device to a network, at least one repetition of each of at least one transmission using the available resource.
The arrangements disclosed herein relate to systems, methods, apparatuses, and non-transitory computer-readable media for configuring, by a network to a wireless communication device, an available resource based on a first time-domain resource, wherein an UL RB set is configured in the first time-domain resource and receiving, by the network from the wireless communication device, at least one repetition of each of at least one transmission using the available resource.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects and features of the present implementations is apparent to those ordinarily skilled in the art upon review of the following description of specific implementations in conjunction with the accompanying figures, wherein:
FIG. 1 is a diagram illustrating an example wireless communication system, according to various arrangements.
FIG. 2 is a diagram illustrating a block diagram of an example wireless communication system for transmitting and receiving downlink and uplink communication signals, according to various arrangements.
FIG. 3 is a diagram illustrating RVs for a frame structure, according to various arrangements.
FIG. 4 is a diagram illustrating RVs for a frame structure, according to various arrangements.
FIG. 5 is a diagram illustrating a frame structure with an UL subband configured, according to various arrangements.
FIG. 6 is a flowchart diagram illustrating an example method for performing repetition transmissions, according to various arrangements.
FIG. 7 is a diagram illustrating resource allocation in a frame structure including a UL subband, according to various arrangements.
FIG. 8 is a diagram illustrating resource allocation in a frame structure including a UL subband, according to various arrangements.
FIG. 9 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
FIG. 10 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
FIG. 11 is a diagram illustrating an example resource allocation, according to various arrangements.
FIG. 12 is a diagram illustrating resource allocation in a frame structure including a UL subbands, according to various arrangements.
DETAILED DESCRIPTION
The present implementations will now be described in detail with reference to the drawings, which are provided as illustrative examples of the implementations so as to enable those skilled in the art to practice the implementations and alternatives apparent to those skilled in the art. Notably, the figures and examples below are not meant to limit the scope of the present implementations to a single implementation, but other implementations are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present implementations can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present implementations is described, and detailed descriptions of other portions of such known components is omitted so as not to obscure the present implementations. Implementations described as being implemented in software should not be limited thereto, but can include implementations implemented in hardware, or combinations of software and hardware, and vice-versa, as is apparent to those skilled in the art, unless otherwise specified herein. In the present specification, an implementation showing a singular component should not be considered limiting. Rather, the present disclosure is intended to encompass other implementations including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such. Further, the present implementations encompass present and future known equivalents to the known components referred to herein by way of illustration.
The arrangements disclosed herein relate to reducing performance degradation caused by UL transmissions on UL resources that overlap.
In present wireless communication systems such as the 5G New Radio (NR) system, to ensure coverage and improve service transmission reliability, a repetition transmission mechanism can be employed to perform coverage enhancement. For example, a communication node can repeatedly transmit a same Transport Block (TB) by using one or more time-domain resources (e.g., slots) . The same TB can have a same or different Redundancy Versions (RV) . In some examples in which User Equipment (UE) density is high, one cell can configure multiple times of scheduling-free repetition transmission for a plurality of UEs to perform data transmission. Alternatively, the cell can schedule multiple times of aggregation transmission for the UEs to perform data transmission. A maximum quantity of repetition transmissions for physically sharing an uplink channel such as a Physical Uplink Share Channel (PUSCH) may be 16 (e.g., in Release 16) . In performing repetition transmission multiple times, time-frequency resources used by different UEs may overlap. When time-frequency resources of different UEs overlap with each other, interference between data sent on the overlapping resources is significant, thus negatively impacting service transmission reliability.
Especially in a scenario in which the frequency-domain resources are scarce or limited, for example, in a full duplex system, a UL subband can be used to increase the availability of UL transmission resources. However, a UL frequency-domain resource in the UL subband is less than that in the normal UL time resource (e.g., a slot) . In response to the base station scheduling an UL transmission according to the frequency resource of the UL slot, and repetition is configured for the uplink transmission, some repetition transmission can be performed in the UL subband. Further, UL transmissions of different UEs can overlap in the UL subband in the frequency domain.
FIG. 1 shows an example wireless communication system 100. The wireless communication system 100 corresponds to a group communication within a cellular network. In  the wireless communication system 100, a network-side communication node or a base station (BS) can include one or more of a next Generation Node B (gNB) , an E-Utran Node B (also known as Evolved Node B, eNodeB or eNB) , a pico station, a femto station, a Transmission/Reception Point (TRP) , an Access Point (AP) , or the like. A terminal-side node or a UE can include a long range communication system (such as but not limited to, a mobile device, a smart phone, a Personal Digital Assistant (PDA) , a tablet, a laptop computer) or a short range communication system (such as but not limited to, a wearable device, a vehicle with a vehicular communication system, or the like) . As in FIG. 1, a network-side communication node is represented by a BS 102, and a terminal-side communication node is represented by a UE 104a or 104b. In some arrangements, the BS 102 is sometimes referred to as a wireless communication node. The UE 104a/104b is sometimes referred to as a wireless communication device.
As shown in FIG. 1, the BS 102 can provide wireless communication services to the UEs 104a and 104b within a cell 101. The UE 104a can communicate with the BS 102 via a communication channel 103a. Similarly, the UE 104b can communicate with the BS 102 via a communication channel 103b. The communication channels (e.g., 103a and 103b) can be through interfaces such as but not limited to, an Uu interface which is also known as Universal Mobile Telecommunication System (UMTS) air interface. The BS 102 is connected to a Core Network (CN) 108 through an external interface 107, e.g., an Iu interface.
FIG. 2 illustrates a block diagram of an example wireless communication system 150 for transmitting and receiving downlink and uplink communication signals, in accordance with some arrangements of the present disclosure. Referring to FIGS. 1 and 2, the system 150 is a portion of the system 100. In the system 150, data symbols can be transmitted and received in a wireless communication environment such as the wireless communication system 100 of FIG. 1.
The system 150 generally includes the BS 102 and UEs 104a and 104b. The BS 102 includes a BS transceiver module 110, a BS antenna 112, a BS memory module 116, a BS processor module 114, and a network communication module 118. The modules/components are coupled and interconnected with one another as needed via a data communication bus 120. The UE 104a includes a UE transceiver module 130a, a UE antenna 132a, a UE memory module 134a, and a UE processor module 136a. The modules/components are coupled and interconnected with one another as needed via a data communication bus 140a. Similarly, the UE 104b includes a UE transceiver module 130b, a UE antenna 132b, a UE memory module 134b, and a UE processor module 136b. The modules/components are coupled and interconnected with one another as needed via a data communication bus 140b. The BS 102 communicates with the UEs 104a and 104b via communication channels 155, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
The system 150 can further include any number of modules/elements other than the modules/elements shown in FIG. 2. The various illustrative blocks, modules, elements, circuits, and processing logic described in connection with the arrangements disclosed herein can be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionalities. Whether such functionalities are implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionalities in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
A wireless transmission from an antenna of each of the UEs 104a and 104b to an antenna of the BS 102 is known as an uplink transmission, and a wireless transmission from an antenna of the BS 102 to an antenna of each of the UEs 104a and 104b is known as a downlink transmission. In accordance with some arrangements, each of the UE transceiver modules 130a and 130b may be referred to herein as an uplink transceiver, or UE transceiver. The uplink transceiver can include a transmitter circuitry and receiver circuitry that are each coupled to the respective antenna 132a and 132b. A duplex switch may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, the BS transceiver module 110 may be herein referred to as a downlink transceiver, or BS transceiver. The downlink transceiver can include RF transmitter circuitry and receiver circuitry that are each coupled to the antenna 112. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the antenna 112 in time duplex fashion. The operations of the transceivers 110, 130a, and 130b are coordinated in time such that the uplink receiver is coupled to the antenna 132a and 132b for reception of transmissions over the wireless communication channels 155 at the same time that the downlink transmitter is coupled to the antenna 112. In some arrangements, the UEs 104a and 104b can use the UE transceivers 130a and 130b through the respective antennas 132a and 132b to communicate with the BS 102 via the wireless communication channels 155. The wireless communication channel 155 can be any wireless channel or other medium suitable for downlink (DL) and/or uplink (UL) transmission of data as described herein.
The UE transceiver 130a/130b and the BS transceiver 110 are configured to communicate via the wireless data communication channel 155, and cooperate with a suitably configured antenna arrangement that can support a particular wireless communication protocol and modulation scheme. In some arrangements, the UE transceiver 130a/130b and the BS transceiver  110 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, or the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 130a/130b and the BS transceiver 110 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
The processor modules 136a and 136b and 114 may be each implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, methods or algorithms described in connection with the arrangements disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 114, 136a, and 136b, respectively, or in any practical combination thereof. The memory modules 116, 134a, 134b can be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or another suitable form of storage medium. In this regard, the memory modules 116, 134a, and 134b may be coupled to the processor modules 114, 136a, and 136b, respectively, such that the processors modules 114, 136a, and 136b can read information from, and write information  to, the memory modules 116, 134a, and 134b, respectively. The memory modules 116, 134a, and 134b may also be integrated into their respective processor modules 114, 136a, and 136b. In some arrangements, the memory modules 116, 134a, and 134b may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 114, 136a, and 136b, respectively. Memory modules 116, 134a, and 134b may also each include non-volatile memory for storing instructions to be executed by the processor modules 114, 136a, and 136b, respectively.
The network interface 118 generally represents the hardware, software, firmware, processing logic, and/or other components of the BS 102 that enable bi-directional communication between BS transceiver 110 and other network components and communication nodes configured to communication with the BS 102. For example, the network interface 118 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, the network interface 118 provides an 802.3 Ethernet interface such that BS transceiver 110 can communicate with a conventional Ethernet based computer network. In this manner, the network interface 118 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function. The network interface 118 can allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
In some examples, dynamic scheduling-based slot aggregation (e.g., slot-based aggregation, dynamic scheduling slot-based repetition, or PUSCH repetition type A) and scheduling-free slot repetition (e.g., scheduling-free slot-based repetitions or configured grant  transmission with slot-based repetition) can be used to improve coverage. Using dynamic scheduling-based slot aggregation and scheduling-free slot repetition, the UE repeatedly transmits a TB by using multiple time-domain resources (e.g., slots) , and the TB has the same time-domain resource allocation in each time-domain resource (e.g., each slot) . In some examples, the number of slots that can be aggregated or used for repetition transmissions can be one of {1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32} . In some examples, to support Ultra-High Reliability and Ultra-Low Latency Transmission (URLLC) , to transmit services with low latency and high reliability within a short transmission time, dynamic scheduling-based uplink aggregation transmission and scheduling-free uplink repeated transmission can be provided. Therefore, a mini-slot (or sub-slot) granularity-based aggregation or repetition transmission, also be referred to as PUSCH repetition type B, can be employed. That is, the UE repeatedly transmits a TB in a plurality of consecutive mini-slots in one slot or across multiple slots, and the time-domain duration of each mini-slot is the same.
Multiple times of repetition or aggregation transmission of the same TB may have a same Redundancy Version (RV) or different RVs. In some examples, for PUSCH repetition type A and PUSCH repetition type B, the RV cycling is defined as RV 0, RV 2, RV 3 and RV 1. The RVs are associated with the repetition transmissions cyclically. The starting RV associated with the first repetition transmission can be indicated in the DCI for scheduling the repetition transmission. FIG. 3 is a diagram illustrating RVs for a frame structure 300, according to various arrangements. ) . The horizontal axis denotes time, and the vertical axis denotes frequency. The frame structure 300 includes slots (e.g., slot 0, slot 1, slot 2, slot 3, and slot 4 as shown in FIG. 3, RV = 2 is indicated in the DCI, and the RV of the first repetition transmission (repetition 1) , which is in slot 0, is 2. The RV of the second repetition transmission (repetition 2) , which is in slot 1, is 3. The RV of the  third repetition transmission (repetition 3) , which is in slot 2, is 1. The RV of the fourth repetition transmission (repetition 4) , which is in slot 3, is 0. The RV of the fifth repetition transmission (repetition 5) , which is in slot 4, is 2, and so on. Alternatively, any one of other RVs can also be indicated in the DCI, and this RV can be used for the first repetition transmission. The RVs used for other repetition transmissions will also be determined according to the cyclical association between RV and repetition transmission.
For transmitting a repetition of an UL transmission (e.g., PUSCH repetition, Physical Random Access Channel (PRACH) repetition, or a Physical Uplink Control Channel (PUCCH) repetition) , at least one available time-domain resource (e.g., slot) can be identified. In some arrangements, PUSCH repetition is used as an example, and it should be recognized that the methods can also be applied to other types of UL transmissions such as PRACH, PUCCH, and so on. For example, for Time Division Duplex (TDD) , parameters tdd-UL-DL-ConfigurationCommon, tdd-UL-DL-ConfigurationDedicated, and ssb-PositionsInBurst are considered for the determination of available slots. In some examples, if a resource is indicated as DL resource by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, or as a SSB resource by ssb-PositionsInBurst, the resource can be determined as unavailable resource. The resource other than the unavailable resource can be considered as available resource. If a repetition of a transmission overlaps with the unavailable resource by at least one symbol, the PUSCH repetition can be deferred to the next slot.
FIG. 4 is a diagram illustrating RVs for a frame structure 400, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. As shown in FIG. 4, RV = 2 is indicated in the DCI, and the RV of the first repetition transmission (repetition 1) , which is in slot 0, is 2. The RV of the second repetition transmission (repetition 2) ,  which is in slot 1, is 3. The RV of the third repetition transmission (repetition 3) , which is in slot 3, is 1. The RV of the fourth repetition transmission (repetition 4) , which is in slot 4, is 0, and so on. As shown in FIG. 4, slot 2 is configured as DL by tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, this slot is skipped. That is, slot 2 cannot be defined as an available slot for repetition transmission.
In some arrangements, for full duplex FDD, all slots will be defined as available slots. For half duplex FDD, only ssb-PositionsInBurst are considered for the determination of available slots. In some examples, in response to determining that a resource is indicated as a SSB resource by ssb-PositionsInBurst, the resource can be determined as unavailable resource. The resource other than the unavailable resource can be considered as available resource.
In some arrangements, the UE further determines whether to drop a repetition or not according to existing dropping rules for transmission type (e.g., PUSCH) . The PUSCH repetition is nevertheless considered or counted in the K repetitions. In the example case shown in FIG. 4, if the repetition factor is configured or indicated as 4, then, four available slots (e.g., slots 0, 1, 3, 4) are determined as described herein. Then, if there are some transmission collisions, one or more repetitions may be dropped, and the actual transmission times of the transmission may be less than 4.
In some arrangements, Subband Full Duplex (SBFD) is specified. FIG. 5 is a diagram illustrating a frame structure 500 with an UL subband 510 configured, according to various arrangements. The frame structure 500 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 5, the UL subband 510 is introduced into DL and/or flexible resource (slot or symbol) . A UE can transmit UL data in the UL subband, which is also  referred to as a UL RB set. Then, the resource containing the UL subband (e.g., if a DL or flexible slot containing UL subband) can be defined as an available slot for repetition transmission. The UL subband 510 can be efficiently used to transmit repetitions of a transmission in the manner described herein.
FIG. 6 is a flowchart diagram illustrating an example method 600 for performing repetition transmissions, according to various arrangements. The method 600 can be performed using the system 100. The method 600 can be used to define or determine a resource containing UL subband for PUSCH repetition transmission.
At 620, the UE 104a determines an available resource based on a first time-domain resource. A UL RB set is configured in the first time-domain resource. That is, in response to determining that a time-domain resource is configured with a UL RB set, the time-domain resource can be determined as an available resource. In some examples, the UE 104a determines the available resource by receiving configuration or indication from the network (e.g., the BS 102) . For example, at 610, the network can configure the available resource based on the first time-domain resource, where the UL RB set is configured in the first time-domain resource. An example of the UL RB set includes the UL subband or another set of resources used to transmit UL data.
At 630, the UE 104a can send to the network at least one repetition of each of at least one transmission using the available resource. At 640, the network receives the at least one repetition of each of at least one transmission using the available resource. The available resource or the resource used to transmit the at least one repetition can include a frequency-domain resource and a time-domain resource. In some examples, each of the at least one transmission can include a  PUSCH, PRACH, PUCCH, or another suitable uplink data. In some examples, each of the at least one repetition includes a repetition of the PUSCH, PRACH, PUCCH, or another suitable uplink data.
In some arrangements, the time-domain resource in which the UL RB set (e.g., the UL subband) is configured is defined as available resource for transmitting a repetition. In other words, for TDD, determining the available resource of transmitting a repetition is based on the UL subband configuration. For example, in response to determining a resource is not configured for UL subband, in response to determining that a resource is indicated by the network as DL resource using the parameter tdd-UL-DL-ConfigurationCommon or tdd-UL-DL-ConfigurationDedicated, or in response to determining a resource is indicted by the network as a SSB resource using the parameter networssb-PositionsInBurst, the UE 104a determines that such resource is an unavailable resource and not an available resource. Accordingly, determining the available resource at 620 includes determining that the available resource includes or is the first time-domain resource.
In some arrangements, the time-domain resource in which the UL RB set (e.g., the UL subband) is configured, excluding a first number of second time-domain resources (e.g., symbols or slots) is defined as available resource for transmitting a repetition. Accordingly, determining the available resource at 620 includes determining that the available resource includes or is the first time-domain resource excluding at least one second time-domain resource (e.g., at least one symbol or slot) within the first time-domain resource.
In some arrangements, the time-domain resource in which the UL subband is configured and the frequency range of the UL subband can include the frequency-domain resource for a  repetition will be defined as available resource for this PUSCH repetition. FIG. 7 is a diagram illustrating resource allocation in a frame structure 700 including a UL subband 730, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. The frame structure 700 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 7, the UL subband 730 is introduced into DL and flexible resources (slot or symbol) . The UE 104a can transmit UL data in the UL subband 730. The resource containing the UL subband 730 (e.g., a DL or flexible slot containing the UL subband 730) can be defined as an available slot for repetition transmission. As shown in FIG. 7, the time-domain resources in which the UL subband 730 is configured are defined as available resources for the repetition transmissions (e.g., 710a, 710b, 710c, and 710d) of a first transmission (e.g., PUSCH) , as the frequency-domain resource for the first PUSCH is included in the frequency-domain range of the UL subband 730. The time-domain resource in which the UL subband 730 is configured cannot be defined as the available resource for the repetition transmission of a second transmission (e.g., a second PUSCH 720) , as the frequency-domain resource for PUSCH 720 is out of the frequency domain range of the UL subband 730. Accordingly, determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and that a frequency-domain resource for the UL RB set (e.g., the UL subband 730) contains a frequency range of the at least one transmission (e.g., the first transmission) .
In some arrangements, the time-domain resource in which the UL subband is configured and the bandwidth of the UL subband is greater than or no smaller than the bandwidth of a repetition can be defined as the available resource for this repetition. FIG. 8 is a diagram illustrating resource allocation in a frame structure 800 including a UL subband 830, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. The  frame structure 800 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 8, the UL subband 830 is introduced into DL and flexible resources (slot or symbol) . The UE 104a can transmit UL data in the UL subband 830. As shown in FIG. 8, the time-domain resource in which the UL subband 830 is configured can be defined as the available resource for the repetition transmission of a first transmission (e.g., PUSCH 810) , as the bandwidth of PUSCH 810 is less than or no greater than the bandwidth of the UL subband 830. The time-domain resource in which the UL subband 830 is configured cannot be defined as the available resource for the repetition transmission of a second transmission (e.g., PUSCH 820) , as the bandwidth of PUSCH 820 is greater than or no less than the bandwidth of the UL subband 830. Accordingly, determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and that a bandwidth of a frequency-domain resource for the UL RB set (e.g., the UL subband 830) is greater than or no less than a bandwidth of the at least one transmission (e.g., PUSCH 810) .
In some arrangements in which the RV cycling is configured as a predefined value (e.g., 0000) , the time-domain resource in which the UL subband is configured can be defined as available resource for transmitting repetition. Otherwise, in the arrangements in which the RV cycling (e.g., 0231) is not configured as the predefined value (e.g., 0000) , the time-domain resource in which the UL subband is configured cannot be defined as available resource for repetition. Accordingly, determining the available resource at 620 includes determining that the available resource includes the first time-domain resource, and an RV cycling for the at least one transmission includes a predefined value (e.g., 0000) .
In some arrangements in which the RV cycling is configured as a predefined value (e.g., 0231) and the repetition factor is less than or no greater than a predefined threshold (e.g., 4) , the  time-domain resource in which the UL subband is configured cannot be defined as available resource for transmitting repetition. Otherwise, the time-domain resource in which the UL subband is configured can be defined as available resource for the repetition. Accordingly, determining the available resource at 620 includes determining that the available resource includes the first time-domain resource in response to determining that an RV cycling for the at least one transmission includes a predefined value (e.g., 0000) and that a repetition factor for the at least one transmission is less than or no greater than a threshold.
In some arrangements, two or more of the methods described herein for determining an available resource for resource configuration with UL subband can be implemented in combination. With the method described above, resource type of resource configuration with UL subband is defined. Accordingly, a UE can efficiently determine whether a time-domain resource with UL subband can be defined as an available resource for repetition transmission.
Some arrangements described herein relate to efficiently using UL subband to transmit at least one repetition. By introducing the UL subband, at least a portion of DL or flexible resource may be modified to a UL transmission resource. For example, part of time-domain resource of DL or flexible time-domain resource can be configured with a UL subband. From the frequency domain, a UL subband can be configured by the network (e.g., the BS 102) to the UEs 104a and 104b for a carrier or a DL Bandwidth Part (BWP) . Then, the bandwidth of the UL subband may be less than the carrier bandwidth or the DL BWP bandwidth.
FIG. 9 is a diagram illustrating resource allocation in a frame structure 900 including UL subbands, e.g., UL subband 930 and UL subband 940, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. The frame structure 900  includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 9, the UL subbands 930 and 940 are introduced into DL and flexible resources (slot or symbol) . The UE 104a can transmit UL data in the UL subbands 930 and 940. The repetitions of a transmission (e.g., PUSCH) includes PUSCH 910a, 910b, 910c, and 910d. The UE 104a can transmit the PUSCH 910a and 910d in the UL time-domain resources, e.g., UL slot or symbols or UL Bandwidth Part (BWP) . In some arrangements, as shown in FIG. 9, the transmission resource for a transmission (e.g., PUSCH 910a) can exceed the frequency domain range of the UL subbands 930 and 940. A frequency location of a frequency-domain resource can be defined using one or more of a lowest frequency (e.g., lowest Resource Element (RE) ) , frequency range (e.g., number of RBs or REs) , highest frequency (e.g., highest RE) , center frequency (center RE) , and so on.
In some examples, the frequency domain location for a resource used to transmit a repetition in UL subband can be changed by using a frequency offset 905. For example, the network can indicate to the UE 104a a first frequency-domain location in a Downlink Control Information (DCI) for repetition scheduling of a transmission. The UE 104a can use the first frequency domain location to transmit to the network a PUSCH repetition (e.g., PUSCH 910a) in the UL slot. The UE 104a can determine a second frequency-domain location for repetitions (e.g., PUSCH 910b and 910c) according to the first frequency domain location and the frequency offset 905. Then, the second frequency domain location can be used for transmitting the repetitions (e.g., PUSCH 910b and 910c) in the UL subband 940. In some examples, the offset 905 can be configured by the network (e.g., the BS 102) to the UE 104a. In some examples, the UE 104a can determine the offset 905 according to a rule, e.g., the frequency-domain relationship between UL BWP and the UL subband 940. For example, the UE 104a can determine the offset 905 according to the difference between the lowest frequency-domain location (e.g., lowest RE) of the UL BWP  (used to transmit the PUSCH 910a) and the lowest frequency-domain location (e.g., lowest RE) of the UL subband. For example, the UE 104a can determine the offset 905 according to the difference between the highest frequency-domain location (e.g., highest RE) of the UL BWP (used to transmit the PUSCH 910a) and the highest frequency-domain location (e.g., highest RE) of the UL subband 940. According, in some arrangements, sending the at least one repetition of the at least one transmission using the available resource at 630 includes determining a first frequency-domain location for the at least one repetition by changing a second frequency-domain location based on a frequency offset and sending the at least one repetition at the first frequency-domain location, e.g., the first frequency-domain resource is within frequency range of the UL subband.
In some arrangements, transmissions for different UEs (e.g., the UEs 104a and 104b) can overlap when the transmissions are transmitted in the UL subband. FIG. 10 is a diagram illustrating resource allocation in a frame structure 1000 including a UL subbands 1030 and 1040, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. The frame structure 1000 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 10, the UL subbands 1030 and 1040 are introduced into DL and flexible resources (slot or symbol) . The UEs 104a and 104b can transmit UL data in the UL subbands 1030 and 1040. The UE 104a transmits repetitions of a first transmission (e.g., PUSCH) including PUSCH 1010a, PUSCHs with Orthogonal Complementary Code (OCC) 1015, and PUSCH 1010b. The UE 104b transmits repetitions of a second transmission (e.g., PUSCH) including PUSCH 1020a, PUSCHs with OCC 1025, and PUSCH 1020b. The UE 104a can transmit the PUSCH 1010a and 1010b in the UL time-domain resources, e.g., UL slot or UL symbol. The UE 104b can transmit the PUSCH 1020a and 1020b in the UL time-domain resources, e.g., UL slot or UL symbol.
As shown in FIG. 10, the repetitions of the first transmission overlaps with the repetitions of the second transmission in the UL subband 1040. For example, the repetitions of the first transmission and the repetitions of the second transmission overlap in the overlapped portions 1042 and 1050 in respective DL and flexible slots as shown, forming the overlapped transmissions 1060 and 1070 respectively. The overlapped transmissions 1060 and 1070 each includes the PUSCH with OCC 1015 and PUSCH with OCC 1025. The PUSCH with OCC 1015 (in each of the transmissions 1060 and 1070) includes the overlapped portion 1042 or 1050 respectively, and the non-overlapped portion 1045. The PUSCH with OCC 1025 (in each of the transmissions 1060 and 1070) includes the overlapped portion 1042 or 1050 respectively, and the non-overlapped portion 1055. The overlapped portions 1042 and 1050 of the different transmissions from the different UEs 104a and 104b interfere with each other. In some arrangements, to reduce or eliminate such interference, each of the UEs 104a and 104b can perform orthogonal spreading on its own transmissions respectively. For example, the UE 104a can multiply its own transmission by a first OCC, and the UE 104b can multiply its own transmission by a second OCC. The first OCC and the second OCC are orthogonal.
In the example in which the information carried on the first transmission (e.g., PUSCH 1010a or 1010b) has the content denoted as A, and the UE 104a multiples two repetitions of the first transmission in UL subband 1040 (e.g., in the DL and flexible resources) by OCC codes +1 and +1 respectively. The information actually transmitted in PUSCHs with OCC 1015 are A (in the DL resource) and A (in the flexible resource) . In the example in which the information carried on the second transmission (e.g., PUSCH 1020a and 1020b) has the content denoted as B, and the UE 104b multiples two repetitions of the second transmission in UL subband 1040 (e.g., in the DL and flexible resources) by OCC codes +1 and -1 respectively. The information actually transmitted  in PUSCHs with OCC 1025 are B (in the DL resource) and -B (in the flexible resource) . While the OCC illustrated herein a 2-dimensional, the OCC applied (e.g., added) can have more dimensions.
The information carried on the first transmission and the second transmission in the DL resource in the UL subband 1040 includes A+B. The information carried on the first transmission and the second transmission in the flexible resource in the UL subband 1040 includes A-B. For decoding the original information carried on the first transmission, the BS 102 can add the information carried on the DL and flexible resources in the UL subband 1040 together according to the OCC code (e.g., +1 and +1) , e.g., (A+B) + (A-B) =2A. For the original information carried on the second transmission, the BS 102 can added the information carried on the DL and flexible resources in the UL subband 1040 together according to the OCC code (e.g., +1 and -1) , e.g., (A+B) - (A-B) =2B. Accordingly, interference can be reduced or eliminated.
Accordingly, in some arrangements, sending the at least one repetition of the at least one transmission using the available resource at 630 includes sending, by the UE 104a to the network, at least two repetitions of the transmission using the at least one available resource and an OCC.
In some arrangements, the information added using the OCC can use a same RV. In the examples in which the RV cycling is configured as 0000, a same RV (e.g., RV0) is used for all of the PUSCH repetitions added using the OCC.
In some arrangements, OCC is only added on the data information carried on the PUSCH. That is, the OCC is not added on reference information or signals such as Demodulation Reference Signal (DMRS) , Phase-Tracking Reference Signal (PTRS) , Sounding Reference Signal (SRS) , Channel-State Information Reference Signal (CSI-RS) , and so on. Thus, the method 600 can  further include applying (e.g., adding) the OCC to data information of the at least two repetitions of the transmission. In some arrangements, OCC is added on both of the data information and the reference information or signals. Thus, the method 600 can further include applying the OCC to data information and reference information or signals of the at least two repetitions of the transmission. That is, a same OCC applies to both of data information and reference information or signals, and added on both of them.
In some arrangements, for different PUSCHs that at least partially overlap with each other, in response to determining that the reference information or signals of the different PUSCHs are configured with different comb indexes, the UEs do not apply the OCC to the reference information or signals. In some arrangements, in response to determining that different PUSCHs partially overlap with each other, and that the reference information or signals of the different PUSCHs are configured with same comb index, the UEs apply the OCC to the reference information or signals. In some arrangements, in response different PUSCHs completely overlap with each other, the UEs do not add the OCC to the reference information or signals. In some arrangements, in response to determining that different PUSCHs at least partially overlap with each other, and that the time domain location of reference information or signals of the different PUSCHs are different, the UE apply the OCC to the reference information or signals. In some arrangements, the UE determines to apply the OCC to the reference information or signals according to the indication of the BS 102 via a RRC signaling or a DCI.
In some arrangements, two or more symbols are within one transmission (e.g., PUSCH) including the reference information or signals. FIG. 11 is a diagram illustrating an example resource allocation 1100, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. As shown in FIG. 11, the reference information or signals  (e.g., DMRS) is repeated on different symbols. For example, the reference information or signals 1112a and 1112b for a first transmission (e.g., a PUSCH 1110) can be transmitted by the UE 104a to the BS 102 on the symbols 1130 and 1140, respectively. The reference information or signals 1122a and 1122b for a second transmission (e.g., a PUSCH 1120) can be transmitted by the UE 104b to the BS 102 on the symbols 1130 and 1140, respectively.
The OCC can be applied on different symbols within the same transmission. As an example shown in FIG. 11, the PUSCHs 1110 and 1120 overlap with each other in the time domain and the frequency domain. In some examples, a same sequence of the reference information or signal (e.g., DMRS) can be generated for these two symbols 1130 and 1140. OCC can be applied on the reference information or signal in different symbols of a PUSCH. For example, the UE 104a can apply OCC (e.g., +1 and +1) to the reference information or signal of PUSCH 1110 in the first DMRS symbol 1130 and the second DMRS symbol 1140, respectively. The UE 104b can apply OCC (e.g., +1 and -1) to the reference information or signal of PUSCH 1120 in the first DMRS symbol 1130 and the second DMRS symbol 1140, respectively. Accordingly, a UE can apply the OCC to different symbols of reference information or signal of the transmission. The interference of the reference information or signal can be reduced or eliminated within a transmission.
In some arrangements, the OCC can be applied on only the repetitions transmitted in the UL subband. That is, a UE can apply the OCC to the repetition of the transmission, the repetition is transmitted within the UL RB set (e.g., the UL subband) .
In some arrangements, the repetitions of a transmission within UL subband can be divided into two or more groups. Each group of repetitions has a same RV. The OCC can be applied or added for each group. In some arrangements, all repetitions of a transmission can be divided into  two or more groups. In some arrangements, the OCC are applied or added for a part group of repetition. In other words, at least one group of repetition are not added by OCC. In an example in which four repetitions of a PUSCH in the UL subband, have RV cycling of 0303. The first repetition and the third repetition form a first group. The second repetition and the fourth repetition form a second group. The OCC are applied for each group respectively. That is, the repetition of the transmission includes a plurality of groups. Each of the plurality of groups have a same RV value. The OCC is applied to each of the plurality of groups of the repetition of the transmission.
For a given RV, in the examples in which only one repetition is to be transmitted, the transmission will be dropped. That is, a UE does not transmit the repetition. In some examples, a number of the at least one repetition for a value of RV is one, and the method 600 further includes dropping by the UE 104a the at least one repetition.
In other examples, if there is only one repetition for a RV to be transmitted, the network (e.g., the BS 102) can indicate to the UE whether to drop this transmission in the scheduling DCI or via RRC signaling. In some examples, a number of the at least one repetition for a value of RV is one, and the method 600 further includes determining, by the UE 104a, whether to drop the at least one repetition based on an indication received from the network.
In some arrangements, the OCC can be applied on the repetitions regardless of whether the repetitions are in the UL subband. That is, the OCC is applied to the repetition of the transmission regardless of the available resource used to send the repetition of the transmission is within the UL RB set. For example, the UE 104a can apply the OCC on both repetitions transmitted in the UL slot and in the UL subband. In some arrangements, the PUSCH repetition can be divided into two or more groups, each group has a same RV, and the OCC can be applied for each group. In an  example, a transmission (e.g., PUSCH) has four repetitions with RV having a value of 0303. The first repetition and the third repetition form a first group. The second repetition and the fourth repetition form a second group. The UE 104a can apply the OCC for each group, respectively.
In some arrangements, different OCCs can be applied with different PUSCHs overlapping with each other. For example, a first OCC of a first UL transmission (including first repetition and second repetition) from a first UE can be {+1, +1} , that is, both of the first repetition and the second are added by +1. A second OCC of a second UL transmission (including two repetition, e.g., third repetition and fourth repetition) from a second UE is {+1, -1} . Then, the third repetition is added by +1, and the fourth repetition is added by -1.
The UE can be configured with an OCC to be used for transmitting a PUSCH. The BS 102, there are at least two UEs (e.g., the first UE and the second UE) that transmit PUSCHs overlapping with each other. The BS 102 can configure a pair of OCCs, e.g., {+1, +1} and {+1, -1} for the first UE and the second UE. That is, one OCC is configured for the first UE, and another is configured for the second UE.
In some arrangements, the first transmission by the UE 104a and the second transmission by UE 104b belong to (e.g., transmitted to) different cells (e.g., different BSs) . A cell-specific OCC can be defined to eliminate inter-cells co-channel interference. That is, the transmission within a cell can use an OCC which is determined according to a cell-specific parameter. For example, the OCC used in one cell is associated with or can be determined using the cell ID, e.g., cell ID mod N = n, where N is number of OCC, and n represents OCC index used in this cell. In the example in which two OCCs are defined as OCC#0= {+1, +1} and OCC#1= {+1, -1} , for a cell having cell ID = 3, OCC#1 used in this cell can be determined as 3 mod 2 = 1. In some  arrangements, the BS 102 can configure the OCC used for PUSCH transmission in this cell in the system information. Accordingly, the method 600 further includes determining by the UE 104a or UE 104b the OCC using a parameter associated with a cell or indicated by a system information.
In some arrangements, for a RV, if all the PUSCH repetitions are located within the UL subband, the configured or indicated OCC can be used for these PUSCH repetitions. That is, in some arrangements, the UE 104a applies an OCC to the at least one repetition in response to determining that transmission of all of the at least one repetition is based on the available resource located within the UL RB set.
In some arrangements, for a RV, if at least one of the PUSCH repetitions is located outside the UL subband, the OCC is not applied to PUSCH repetitions for this RV. That is, in some arrangements, the UE 104a excludes application of an OCC to the at least one repetition in response to determining that transmission of one or more of the at least one repetition is based on the available resource having at least a portion located outside of the UL RB set.
Accordingly, the UL resource efficiency can be improved by application of the OCC and defining the application conditions of the OCC as described herein.
Some arrangements described herein relate to efficiently using UL subband to transmit at least one repetition. As described herein, OCCs can be applied to PUSCHs having a same RV. For a RV cycling having a RV changed significantly, for example, to 0231, if a quantity of repetition times is relatively small, for example, four or less times, there is no multiple repetition of a same RV. Therefore, OCCs cannot be effectively applied.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , if at least one of the PUSCH repetitions is located within the UL subband, the RV cycling is switched to 0000 or 0303. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to determining that transmission of the at least one repetition is based on the available response located within the UL RB set, the UE 104a switches the first RV cycling value to a second RV cycling value.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , if OCC is configured for PUSCH repetition, the RV cycling is switched to 0000 or 0303. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to determining that that an OCC is configured for the at least one repetition, the UE 104a switches the first RV cycling value to a second RV cycling value.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the network (e.g., the BS 102) indicates whether to switch to other RV cycling using a scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. In response to receiving a network indication (e.g., scheduling DCI) indicating to switch the first RC cycling value, the UE 104a switches the first RV cycling value to a second RV cycling value.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the network (e.g., the BS 102) indicates whether to count the time-domain resource in which the UL subband is configured as available resource for repetition using a  scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a receives from the network an indication (e.g., the scheduling DCI) indicating whether the first time-domain resource is the available resource for the at least one repetition.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the network can indicate to the UE 104a various types of information using a scheduling DCI. In some examples, the scheduling DCI can indicate RV cycling switching to another RV cycling, e.g., 0000 or 0303, and count the time-domain resource in which the UL subband is configured as available resource for PUSCH repetition. In some examples, the scheduling DCI can indicate that the time-domain resource in which the UL subband is configured does not count as available resource for PUSCH repetition. In some examples, the scheduling DCI can indicate that the time-domain resource in which the UL subband is configured counts as available resource for PUSCH repetition. In some examples, the scheduling DCI can indicate RV cycling switching to other RV cycling, e.g., 0000 or 0303, and doesn’t count the time-domain resource in which the UL subband is configured as available resource for PUSCH repetition.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the UE 104a can determine whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to a repetition factor (e.g., k) . That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor whether the first time-domain resource is the available resource for the at least one repetition. For example, in response to determining that the repetition factor is no greater than or less than a predefined threshold, the time-domain resource in which the UL subband is configured is counted  as available resource for repetition. In response to determining that the repetition factor is greater than or no less than a predefined threshold, the time-domain resource in which the UL subband is configured is counted as available resource for repetition.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the UE 104a can determine whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to a repetition factor. and the indication contained the scheduling DCI. That is, the UE 104a determines or receives configuration from the network, a RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor and an indication (e.g., the scheduling DCI) receive from the network, whether the first time-domain resource is the available resource for the at least one repetition. For example, in response to determining that the repetition factor is no greater than or less than a predefined threshold, the UE 104a determines whether to count the time-domain resource in which the UL subband is configured as available resource for repetition according to the indication received via the scheduling DCI. In response to determining that the repetition factor is greater than or no less than a predefined threshold, the UE 104a determines that the time-domain resource in which the UL subband is configured is counted as available resource for PUSCH repetition.
In some arrangements in which RV cycling is configured or determined as a predefined value (e.g., 0231) , the UE 104a determines whether to switch to another RV cycling according to repetition factor. That is, the UE 104a determines or receives configuration from the network, a first RV cycling value for the at least one transmission. The UE 104a determines according to a repetition factor, whether to switch the first RV cycling value to a second RV cycling value. For example, in response to determining that the repetition factor is no greater than or less than a  predefined threshold, the UE 104a switches the RV cycling to another RV cycling (e.g., 0000 or 0303) . In response to determining that the repetition factor is greater than or no less than a predefined threshold, the UE 104a does not switch the RV cycling.
In some arrangements, a first RV cycling is used for PUSCH repetition in UL subband, and a second RV cycling is used for PUSCH repetition out of the UL subband. The first and second RV cycling can configured independently.
In some arrangements, two consecutive PUSCH repetitions in the UL subband form a group, which fixedly uses the same RV and is recorded as a PUSCH repetition.
FIG. 12 is a diagram illustrating resource allocation in a frame structure 1200 including a UL subbands 1230, 1240, and 1250, according to various arrangements. The horizontal axis denotes time, and the vertical axis denotes frequency. The frame structure 1200 includes slots designated for DL (D) , UL (U) , and special/flexible slot (S) . As shown in FIG. 12, the UL subbands 1230, 1240, and 1250 are introduced into DL and flexible resources (slot or symbol) . The UEs 104a and 104b can transmit UL data in the UL subbands 1230, 1240, and 1250. The UE 104a transmits repetitions of a first transmission (e.g., PUSCH) including PUSCH 1210a, PUSCHs with OCC 1215, and PUSCHs 1210b, 1210c. The UE 104b transmits repetitions of a second transmission (e.g., PUSCH) including PUSCH 1220a, PUSCHs with OCC 1225, and PUSCHs 1220b, 1220c. The UE 104a can transmit the PUSCH 1210a, 1210b, and 1210c in the UL time-domain resources. The UE 104b can transmit the PUSCH 1220a, 1220b, and 1220c in the UL time-domain resources.
As shown in FIG. 12, the repetitions of the first transmission overlaps with the repetitions of the second transmission in the UL subbands 1240 and 1250. For example, the repetitions of the  first transmission and the repetitions of the second transmission overlap in the overlapped portions 1241, 1242, and 1244 in respective DL and flexible slots in the UL subband 1240, and overlap in the overlapped portion 1246 in the DL slot in the UL subband 1250, as shown, forming the overlapped transmissions 1260, 1262, 1264, and 1266 respectively. The overlapped transmissions 1260, 1262, 1264, and 1266 each includes the PUSCH with OCC 1215 and PUSCH with OCC 1225. The PUSCH with OCC 1215 (in each of the transmissions 1260, 1262, 1264, and 1266) includes the overlapped portion 1241, 1242, 1244, or 1246 respectively, and the non-overlapped portion 1245. The PUSCH with OCC 1225 (in each of the transmissions 1260, 1262, 1264, and 1266) includes the overlapped portion 1241, 1242, 1244, or 1246 respectively, and the non-overlapped portion 1255.
As shown in FIG. 12, the PUSCH repetitions in the slots 1202 and 1204 form a first group. The PUSCH repetitions in the slots 1202 and 1204, which are used to transmit consecutive repetitions, use a same RV value (e.g., 2) , and are counted as one PUSCH repetition. The PUSCH repetitions in the slots 1206 and 1208 form a second group. The PUSCH repetitions in the slots 1206 and 1208, which are used to transmit consecutive repetitions, use a same RV value (e.g., 3) , and are counted as one PUSCH repetition. That is, the at least one repetition includes a first repetition and a second repetition of a transmission of the at least one transmission. The first repetition and the second repetition are consecutive repetitions. The first repetition and the second repetition use a same RV cycling value. The first repetition and the second repetition are recorded as one repetition.
Accordingly, the UL resource efficiency can be improved by application of the OCC and defining the application conditions of the OCC as described herein.
The arrangements described herein define resources containing UL subbands for PUSCH repetition transmissions and allow efficiently use UL subband to transmit PUSCH repetition. Accordingly, resource type of resource configuration with UL subband can be provided. A UE can efficiently determine whether a time-domain resource with UL subband can be used as an available resource for repetition transmission. UL resource efficiency can be improved by introducing the OCC and defining the application conditions of the OCC.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are illustrative, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected, " or "operably coupled, " to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable, " to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
With respect to the use of plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate  to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It is understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to, " the term "having" should be interpreted as "having at least, " the term "includes" should be interpreted as "includes but is not limited to, " etc. ) .
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations of the described methods could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
It is further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent is explicitly recited in the claim, and in the absence of such recitation, no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to the disclosure containing only one such  recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should typically be interpreted to mean "at least one" or "one or more" ) ; the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations, " without other modifiers, typically means at least two recitations, or two or more recitations) .
Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, etc. " is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., "a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. ) . In those instances where a convention analogous to "at least one of A, B, or C, etc. " is used, in general, such a construction is intended in the sense one having skill in the art would understand the convention (e.g., "a system having at least one of A, B, or C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. ) . It is further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase "A or B" is understood to include the possibilities of "A" or "B" or "A and B. "
Further, unless otherwise noted, the use of the words “approximate, ” “about, ” “around, ” “substantially, ” etc., mean plus or minus ten percent.
The foregoing description of illustrative implementations has been presented for purposes of illustration and of description. It is not intended to be exhaustive or limiting with respect to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed implementations. It is intended that the scope of the disclosure be defined by the claims appended hereto and their equivalents.

Claims (34)

  1. A wireless communication method, comprising:
    determining, by a wireless communication device, an available resource based on a first time-domain resource, wherein an uplink (UL) resource block (RB) set is configured in the first time-domain resource; and
    sending, by the wireless communication device to a network, at least one repetition of each of at least one transmission using the available resource.
  2. The method of claim 1, wherein
    the at least one transmission comprises a Physical Uplink Shared Channel (PUSCH) , a Physical Random Access Channel (PRACH) , or a Physical Uplink Control Channel (PUCCH) ; and
    the at least one repetition comprises at least one PUSCH repetition, at least one PRACH, or at least one PUCCH.
  3. The method of claim 1, wherein determining the available resource comprises determining that the available resource comprises the first time-domain resource.
  4. The method of claim 1, wherein determining the available resource comprises determining that the available resource comprises the first time-domain resource excluding at least one second time-domain resource within the first time-domain resource.
  5. The method of claim 1, wherein determining the available resource comprises determining that the available resource comprises:
    the first time-domain resource; and
    a frequency-domain resource for the UL RB set contains a frequency range of the at least one transmission.
  6. The method of claim 1, wherein determining the available resource comprises determining that the available resource comprises:
    the first time-domain resource; and
    a bandwidth of a frequency-domain resource for the UL RB set is greater than or no less than a bandwidth of the at least one transmission.
  7. The method of claim 1, wherein
    determining the available resource comprises determining that the available resource comprises the first time-domain resource; and
    a Redundancy Versions (RV) cycling for the at least one transmission comprises a predefined value.
  8. The method of claim 1, wherein determining the available resource comprises determining that the available resource excludes the first time-domain resource in response to determining:
    a Redundancy Versions (RV) cycling for the at least one transmission comprises a predefined value; and
    a repetition factor for the at least one transmission is less than or no greater than a threshold.
  9. The method of claim 1, wherein sending the at least one repetition of the at least one transmission using the available resource comprises:
    determining a first frequency-domain location for the at least one repetition by changing a second frequency-domain location based on a frequency offset,
    sending the at least one repetition at the first frequency-domain location.
  10. The method of claim 1, wherein sending the at least one repetition of the at least one transmission using the available resource comprises sending, by the wireless communication device to the network, at least two repetitions of the transmission using the at least one available resource and a Orthogonal Complementary Code (OCC) .
  11. The method of claim 10, further comprising applying the OCC to data information of the at least two repetitions of the transmission.
  12. The method of claim 10, further comprising applying the OCC to data information and reference information of the at least two repetitions of the transmission.
  13. The method of claim 10, further comprising applying the OCC to different symbols of reference information of the transmission.
  14. The method of claim 10, wherein the OCC is applied to the repetition of the transmission, the repetition is transmitted within the UL RB set.
  15. The method of claim 10, wherein
    the repetition of the transmission comprises a plurality of groups;
    Each of the plurality of groups have a same Redundancy Versions (RV) value;
    the OCC is applied to each of the plurality of groups of the repetition of the transmission.
  16. The method of claim 10, wherein the OCC is applied to the repetition of the transmission regardless of the available resource used to send the repetition of the transmission is within the UL RB set.
  17. The method of claim 10, the method further comprising determining the OCC using a parameter associated with a cell or indicated by a system information.
  18. The method of claim 1, wherein
    a number of the at least one repetition for a value of RV is one;
    the method further comprises dropping the at least one repetition.
  19. The method of claim 1, wherein
    a number of the at least one repetition for a value of RV is one;
    the method further comprises determining whether to drop the at least one repetition based on an indication received from the network.
  20. The method of claim 1, further comprising applying an Orthogonal Complementary Code (OCC) to the at least one repetition in response to determining that transmission of all of the at least one repetition is based on the available resource located within the UL RB set.
  21. The method of claim 1, further comprising excluding application of an Orthogonal Complementary Code (OCC) to the at least one repetition in response to determining that transmission of one or more of the at least one repetition is based on the available resource having at least a portion located outside of the UL RB set.
  22. The method of claim 1, further comprising:
    determining, by the wireless communication device, a first Redundancy Versions (RV) cycling value for the at least one transmission;
    in response to determining that transmission of the at least one repetition is based on the available response located within the UL RB set, switching the first RV cycling value to a second RV cycling value.
  23. The method of claim 1, further comprising:
    determining, by the wireless communication device, a first Redundancy Versions (RV) cycling value for the at least one transmission;
    in response to determining that an Orthogonal Complementary Code (OCC) is configured for the at least one repetition, switching the first RV cycling value to a second RV cycling value.
  24. The method of claim 1, further comprising:
    determining, by the wireless communication device, a first Redundancy Versions (RV) cycling value for the at least one transmission;
    in response to receiving from the network an indication to switch the first RV cycling value, switching the first RV cycling value to a second RV cycling value.
  25. The method of claim 1, further comprising:
    determining, by the wireless communication device, a Redundancy Versions (RV) cycling value for the at least one transmission;
    receiving from the network an indication on whether the first time-domain resource is the available resource for the at least one repetition.
  26. The method of claim 1, further comprising:
    determining, by the wireless communication device, a Redundancy Versions (RV) cycling value for the at least one transmission;
    determining, by the wireless communication device according to a repetition factor, whether the first time-domain resource is the available resource for the at least one repetition.
  27. The method of claim 1, further comprising:
    determining, by the wireless communication device, a Redundancy Versions (RV) cycling value for the at least one transmission;
    determining, by the wireless communication device according to a repetition factor and an indication received from the network, whether the first time-domain resource is the available resource for the at least one repetition.
  28. The method of claim 1, further comprising:
    determining, by the wireless communication device, a first Redundancy Versions (RV) cycling value for the at least one transmission;
    determining, by the wireless communication device according to a repetition factor, whether to switch the first RV cycling value to a second RV cycling value.
  29. The method of claim 1, wherein
    the at least one repetition comprises a first repetition and a second repetition of a transmission of the at least one transmission;
    the first repetition and the second repetition are consecutive repetitions;
    the first repetition and the second repetition use a same Redundancy Versions (RV) cycling value; and
    the first repetition and the second repetition are recorded as one repetition.
  30. A wireless communication apparatus comprising at least one processor and a memory, wherein the at least one processor is configured to read code from the memory and implement the method recited in claim 1.
  31. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by at least one processor, causing the at least one processor to implement the method recited in claim 1.
  32. A wireless communication method, comprising:
    configuring, by a network to a wireless communication device, an available resource based on a first time-domain resource, wherein an uplink (UL) resource block (RB) set is configured in the first time-domain resource; and
    receiving, by the network from the wireless communication device, at least one repetition of each of at least one transmission using the available resource.
  33. A wireless communication apparatus comprising at least one processor and a memory, wherein the at least one processor is configured to read code from the memory and implement the method recited in claim 31.
  34. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by at least one processor, causing the at least one processor to implement the method recited in claim 31.
PCT/CN2023/088726 2023-04-17 2023-04-17 Allocation of resources for transmission repetition for wireless communication systems WO2024113640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/088726 WO2024113640A1 (en) 2023-04-17 2023-04-17 Allocation of resources for transmission repetition for wireless communication systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/088726 WO2024113640A1 (en) 2023-04-17 2023-04-17 Allocation of resources for transmission repetition for wireless communication systems

Publications (1)

Publication Number Publication Date
WO2024113640A1 true WO2024113640A1 (en) 2024-06-06

Family

ID=91322881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088726 WO2024113640A1 (en) 2023-04-17 2023-04-17 Allocation of resources for transmission repetition for wireless communication systems

Country Status (1)

Country Link
WO (1) WO2024113640A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917328A (en) * 2011-08-02 2013-02-06 华为技术有限公司 Specific subframe based indication method, related device and system
CN110999500A (en) * 2017-08-04 2020-04-10 中兴通讯股份有限公司 System and method for scheduling communication resources
CN112970312A (en) * 2019-02-11 2021-06-15 Oppo广东移动通信有限公司 Resource indication method, terminal equipment and network equipment
CN114868414A (en) * 2019-12-31 2022-08-05 中兴通讯股份有限公司 System and method for determining information indicating cancellation
CN115039359A (en) * 2020-02-11 2022-09-09 中兴通讯股份有限公司 System and method for resource allocation
CN115066851A (en) * 2020-04-15 2022-09-16 Oppo广东移动通信有限公司 Time domain resource determination method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917328A (en) * 2011-08-02 2013-02-06 华为技术有限公司 Specific subframe based indication method, related device and system
CN110999500A (en) * 2017-08-04 2020-04-10 中兴通讯股份有限公司 System and method for scheduling communication resources
CN112970312A (en) * 2019-02-11 2021-06-15 Oppo广东移动通信有限公司 Resource indication method, terminal equipment and network equipment
CN114868414A (en) * 2019-12-31 2022-08-05 中兴通讯股份有限公司 System and method for determining information indicating cancellation
CN115039359A (en) * 2020-02-11 2022-09-09 中兴通讯股份有限公司 System and method for resource allocation
CN115066851A (en) * 2020-04-15 2022-09-16 Oppo广东移动通信有限公司 Time domain resource determination method and device

Similar Documents

Publication Publication Date Title
CN109644466B (en) Uplink signal sending method and terminal equipment
WO2020143057A1 (en) Method and apparatus for determining channel access scheme, terminal device, and network device
US11265870B2 (en) Systems and methods for determining information indicative of cancelation
WO2018209803A1 (en) Method and apparatus for information transmission
US20230199735A1 (en) Methods and systems for coverage enhancement in wireless networks
WO2021093125A1 (en) Systems and methods for determining information indicative of cancelation
US11963187B2 (en) Systems and methods for slot offset information management
US20230319840A1 (en) Method and system for single cg-based uplink transmission in multi-trp operation
CN110890953B (en) Communication method and communication device using unlicensed frequency band
WO2011052782A1 (en) Mobile communication method, mobile station and radio base station
WO2024113640A1 (en) Allocation of resources for transmission repetition for wireless communication systems
CN117121419A (en) Method and equipment for constructing type 1HARQ-ACK codebook
JP2023543124A (en) Systems and methods for improving uplink transmission
CN115004602A (en) System and method for determining downlink control information
WO2023102811A1 (en) Systems and methods for managing frequency resource group based service transmissions
WO2023102809A1 (en) Systems and methods for managing frequency resource group based service transmissions
WO2024011632A1 (en) Resource configuration method and apparatus, device, and storage medium
WO2023102826A1 (en) Systems and methods for managing frequency resource group based service transmissions
WO2023102815A1 (en) Systems and methods for managing frequency resource group based service transmissions
WO2022205301A1 (en) Method and system for resource configuration
JP7218834B2 (en) User Equipment and Base Station
JP7279871B2 (en) User Equipment and Base Station
US20240073884A1 (en) Systems and methods for simultaneous uplink transmissions based on multi-trp operation
WO2023077418A1 (en) Method and system for managing multicast communications in wireless communication networks
US20240048346A1 (en) Systems and methods for uplink transmission scheme in multi-trp operation