WO2024113514A1 - 一种光源显指调节方法及使用其的舞台灯 - Google Patents

一种光源显指调节方法及使用其的舞台灯 Download PDF

Info

Publication number
WO2024113514A1
WO2024113514A1 PCT/CN2023/077821 CN2023077821W WO2024113514A1 WO 2024113514 A1 WO2024113514 A1 WO 2024113514A1 CN 2023077821 W CN2023077821 W CN 2023077821W WO 2024113514 A1 WO2024113514 A1 WO 2024113514A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
color
values
display index
target
Prior art date
Application number
PCT/CN2023/077821
Other languages
English (en)
French (fr)
Inventor
蒋伟楷
Original Assignee
广州市浩洋电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市浩洋电子股份有限公司 filed Critical 广州市浩洋电子股份有限公司
Priority to US18/176,317 priority Critical patent/US20240179813A1/en
Publication of WO2024113514A1 publication Critical patent/WO2024113514A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/105Outdoor lighting of arenas or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the technical field of light source display index adjustment, and more specifically, to a light source display index adjustment method and a stage light using the same.
  • the color rendering index refers to the ability of a light source to reproduce the visual experience of an object under sunlight. The higher the color rendering, the closer the color rendering index value is to 100, the stronger the ability to reproduce the color of the object, and the easier it is for the human eye to distinguish the color of the object.
  • CRI color rendering index
  • the higher the color rendering index the lower its brightness.
  • stage lights need to take into account both the color rendering index and brightness.
  • current stage light sources usually cannot adjust the color rendering index, or can only switch between high and low color rendering index modes, but cannot adjust the color rendering index as needed, and try to take into account both the color rendering index and brightness as much as possible.
  • the present invention provides a method for adjusting the color rendering index of a light source, which can arbitrarily adjust the color rendering index of a light source to a certain value, thereby improving the color rendering index as much as possible while ensuring brightness.
  • the technical solution adopted by the present invention is: a method for adjusting the display index of a light source, comprising the following steps:
  • a controlled light source having a first indicator LED chipset and a second indicator LED chipset, wherein the first indicator LED chipset has a first color rendering index, and the second indicator LED chipset has a second color rendering index, obtain the color temperature of the first indicator LED chipset and the color temperature of the second indicator LED chipset, and the relative spectral power distribution PA ( ⁇ ) and PB ( ⁇ ) at maximum brightness, and normalize PA ( ⁇ ) and PB ( ⁇ ), and record the normalization coefficients as KA and KB ;
  • a normalized relative spectral power distribution P( ⁇ ) of the reference light source is obtained, which is used as the target spectrum, and the range of the chromaticity difference of the target spectrum and the color difference range of 14 Munsell color samples of the target spectrum are limited;
  • the first indicator LED chipset and the second indicator LED chipset are controlled to emit light respectively.
  • the first index display LED chipset and the second index display LED chipset have the same color temperature
  • the target color temperature is the color temperature of the first index display LED chipset and the second index display LED chipset.
  • the color temperature problem does not need to be considered during the color rendering index adjustment process, and it is convenient to calculate the K 1 and K 2 values required for the first index display LED chipset and the second index display LED chipset to achieve the target index display.
  • the standard illuminant D is selected as the reference light source
  • the black body radiation light source is selected as the reference light source. This can make the reference light source more similar to the controlled light source, and better simulate the controlled light source based on the reference light source.
  • the first indicator LED chipset and the second indicator LED chipset are both white light chips, that is, the first indicator LED chipset and the second indicator LED chipset both emit white light, and have higher luminous efficiency.
  • step S3 after finding the first group of K 1 and K 2 values that make the normalized P total ( ⁇ ) close to the target spectrum, modify the K 1 and K 2 values within a certain range, calculate the relative spectral power distribution P total ( ⁇ ) of the synthetic spectrum based on the modified K 1 and K 2 values and normalize it, and find other K 1 and K 2 values that make the normalized P total ( ⁇ ) close to the target spectrum. Since the K 1 and K 2 values that meet the conditions are generally concentrated in a certain area, after finding the first group of K 1 and K 2 values that meet the conditions, find other K 1 and K 2 values that meet the conditions near the values, so that all the K 1 and K 2 values that meet the conditions can be quickly found . K 2 value, saving time and computing power.
  • the interpolation method is used to find the first set of K 1 and K 2 values that make P total ( ⁇ ) close to the target spectrum after normalization.
  • the interpolation method is a common method for fast solution, which can quickly find the K 1 and K 2 values, saving time and computing power.
  • the interpolation method is also used, and the magnitude of the interpolation method value at this time is one order of magnitude lower than the interpolation method value when searching for the first set of K 1 and K 2 values, thereby improving the operation speed and making the search process of K 1 and K 2 more accurate.
  • K1 and K2 values that meet the conditions are distributed in a range of 0.1, so after finding the first group of K1 and K2 values, the corresponding values of K1 and K2 fluctuate by 0.1 above and below, and almost all K1 and K2 values that meet the conditions can be found.
  • step S3 multiple groups of K 1 and K 2 values that meet the conditions are found, and the relative magnitude of the power and brightness of the combined light at this time is calculated.
  • step S4 a suitable group of K 1 and K 2 values is selected according to the power or brightness requirements to control the first indicator LED chipset and the second indicator LED chipset to emit light respectively.
  • the controlled light source can emit light with a target indicator at a specified power or brightness within a certain power or brightness range.
  • step S4 according to the input combined light power, K1 and K2 values corresponding to the combined light power are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source to achieve different display indexes, the combined light power of the controlled light source remains unchanged; or in step S4, K1 and K2 values that maximize the combined light power are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source to achieve different display indexes, the controlled light source corresponds to each display index and makes the combined light power reach the maximum under the display index; or in step S4, K1 and K2 values that maximize the combined light brightness are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source to achieve different display indexes, the controlled light source corresponds to each display index and makes the combined light brightness reach the maximum under the display index.
  • step S3 the chromaticity difference satisfies the color range of different color intervals corresponding to the MacAdam ellipse on the CIE1976 UCS diagram.
  • Different lamp types can choose different standards, but they all need to meet the color range of different color intervals corresponding to the MacAdam ellipse, so as to select K1 and K2 values within a reasonable range, avoid too many interference values, and improve the calculation speed.
  • step S3 the specific operation of finding the K 1 and K 2 values that make the target spectrum 14 Munsell color samples within the color difference range is as follows:
  • the corrected chromaticity coordinates u' k,i v' k,i of each color sample i of the 14 Munsell color samples of the controlled light source are obtained:
  • the present invention also discloses a stage lamp, which uses any one of the above light source display index adjustment methods to adjust the display index of a controlled light source in a lamp holder.
  • FIG1 is a schematic structural diagram of a first embodiment of a controlled light source of the present invention.
  • FIG. 2 is a schematic structural diagram of a second embodiment of a controlled light source of the present invention.
  • FIG. 3 is a schematic flow chart of a method for adjusting a light source display index according to the present invention.
  • FIG. 4 is a flow chart of the present invention for finding K 1 and K 2 values that make P total ( ⁇ ) fall within the color difference range of 14 Munsell color samples of the target spectrum.
  • FIG. 5 is a schematic diagram of the overall structure of the stage light of the present invention.
  • FIG. 6 is a schematic diagram of the focusing structure of the controlled light source of the present invention.
  • 100 controlled light source
  • 110 first indicator LED chipset
  • 120 second indicator LED chipset
  • 130 circuit board
  • 140 first light collecting lens
  • 150 second light collecting lens
  • 160 first light mixing lens
  • 170 second light mixing lens
  • 180 light collecting mirror
  • 200 lamp holder
  • 210 focusing mirror
  • 220 magnifying glass
  • 230 fixed mirror
  • 300 support arm
  • 400 chassis
  • the present invention provides a method for adjusting the display index of a light source, comprising the following steps:
  • a controlled light source 100 having a first indicator LED chipset 110 and a second indicator LED chipset 120, wherein the first indicator LED chipset 110 has a first color rendering index, and the second indicator LED chipset 120 has a second color rendering index, obtain the color temperature of the first indicator LED chipset 110 and the color temperature of the second indicator LED chipset 120, and the relative spectral power distribution PA ( ⁇ ) and PB ( ⁇ ) at maximum brightness, and normalize PA ( ⁇ ) and PB ( ⁇ ), and record the normalization coefficients as KA and KB ;
  • the target color temperature is a value between the color temperature of the first display index LED chipset 110 and the color temperature of the second display index LED chipset 120
  • the normalized relative spectral power distribution P ( ⁇ ) of the reference light source uses it as the target spectrum, and limit the range of the chromaticity difference of the target spectrum and the color difference range of the 14 Munsell color samples of the target spectrum;
  • the first indicator LED chipset 110 and the second indicator LED chipset 120 are controlled to emit light respectively.
  • the light source color rendering index adjustment method provides a controlled light source 100 including a first color rendering index LED chipset 110 having a first color rendering index and a second color rendering index LED chipset 120 having a second color rendering index.
  • the normalized relative spectral power distribution P( ⁇ ) of the reference light source can be obtained by table lookup.
  • the D65 standard light source color temperature 6500K, wavelength 380nm-780nm
  • the D65 standard light source can be easily obtained by looking up its normalized relative spectral power distribution based on the relevant specification of the D65 standard light source or on the Internet, given that its CRI and color temperature are known.
  • the first color rendering index is 65
  • the second color rendering index is 95
  • the target color rendering index is a value between 65-95.
  • the first indicator LED chipset 110 and the second indicator LED chipset 120 form multiple rows respectively, and the rows are staggered to facilitate light mixing and control, and also facilitate wiring.
  • the light-emitting chips in the first indicator LED chips group 110 and the light-emitting chips in the second indicator LED chips group 120 are arranged at intervals, so that the light emitted by the first indicator LED chips group 110 and the second indicator LED chips group 120 can be mixed more evenly, thereby improving the uniformity of the light beam.
  • one of each of the first indicator LED chipset 110, the second indicator LED chipset 120, and the third indicator LED chipset may be combined to form a point light source (not shown).
  • the first indicator LED chipset 110 and/or the second indicator LED chipset 120 are controlled as a whole, that is, the brightness of the first indicator LED chipset 110 and/or the second indicator LED chipset 120 is increased or decreased as a whole, rather than individually controlling the brightness of individual LED chips or groups in the first indicator LED chipset 110 and/or the second indicator LED chipset 120 to change.
  • the wavelength of light emitted by the first indicator LED chipset 110 and the second indicator LED chipset 120 is in the range of 380nm-780nm, that is, in the range of light visible to the naked eye.
  • a third indicator LED chipset having a color rendering index different from that of the first indicator LED chipset 110 and the second indicator LED chipset 120 can also be included, and more combinations can be achieved by mixing the target indicator together using the first indicator LED chipset 110, the second indicator LED chipset 120 and the third indicator LED chipset.
  • the first index display LED chipset 110 and the second index display LED chipset 120 have the same color temperature
  • the target color temperature is the color temperature of the first index display LED chipset 110 and the second index display LED chipset 120.
  • the present application adopts this solution, the common color temperature is 6500 ⁇ 500K, and the standard lighting body D is selected as the reference light source.
  • the standard illuminant D is selected as the reference light source
  • the black body radiation light source is selected as the reference light source.
  • the reference light source and the controlled light source 100 can be more similar, and the controlled light source 100 can be better simulated and calculated based on the reference light source.
  • both the first indicator LED chipset 110 and the second indicator LED chipset 120 are white light chips, that is, both the first indicator LED chipset 110 and the second indicator LED chipset 120 emit white light, and have higher luminous efficiency.
  • step S3 after finding the first group of K 1 and K 2 values that make P total ( ⁇ ) normalized and close to the target spectrum, modify the K 1 and K 2 values within a certain range, calculate the relative spectral power distribution P total ( ⁇ ) of the synthetic spectrum based on the modified K 1 and K 2 values and normalize it, and find other K 1 and K 2 values that make P total ( ⁇ ) normalized and close to the target spectrum.
  • K 1 and K 2 values that meet the conditions are generally concentrated in a certain area, after finding the first group of K 1 and K 2 values that meet the conditions, find other K 1 and K 2 values that meet the conditions near the values, so that all K 1 and K 2 values that meet the conditions can be quickly found , saving time and computing power.
  • the interpolation method is used to find the first set of K 1 and K 2 values that make P total ( ⁇ ) close to the target spectrum after normalization.
  • the interpolation method is a common method for fast solution, which can quickly find the K 1 and K 2 values, saving time and computing power.
  • the adjustment unit of the interpolation method is 0.1.
  • the interpolation method when modifying the values of K 1 and K 2 within a certain range, the interpolation method is also used, and at this time
  • the interpolation value of is one order of magnitude lower than the interpolation value when searching for the first set of K 1 and K 2 values. Improve the operation speed and make the search process of K 1 and K 2 more accurate.
  • the adjustment unit of the interpolation method is 0.01.
  • K1 and K2 values that meet the conditions are distributed in a range of 0.1, so after finding the first group of K1 and K2 values, the corresponding values of K1 and K2 fluctuate by 0.1, and almost all K1 and K2 values that meet the conditions can be found.
  • step S3 multiple groups of K 1 and K 2 values that meet the conditions are found, and the relative magnitude of the power and brightness of the combined light at this time is calculated.
  • step S4 a suitable group of K 1 and K 2 values is selected according to the power or brightness requirements to control the first indicator LED chipset 110 and the second indicator LED chipset 120 to emit light respectively.
  • the controlled light source 100 can emit light with a target indicator at a specified power or brightness within a certain power or brightness range.
  • step S4 according to the input combined light power, K1 and K2 values corresponding to the combined light power are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source 100 to achieve different display indexes, the combined light power of the controlled light source 100 remains unchanged; or in step S4, K1 and K2 values that maximize the combined light power are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source 100 to achieve different display indexes, the controlled light source 100 corresponds to each display index and makes the combined light power reach the maximum under the display index; or in step S4, K1 and K2 values that maximize the combined light brightness are selected from multiple groups of K1 and K2 values corresponding to the target display index, so that in the process of adjusting the controlled light source 100 to achieve different display indexes, the controlled light source 100 corresponds to each display index and makes the combined light brightness reach the maximum under the display index.
  • step S3 the chromaticity difference satisfies the color range of different color intervals corresponding to the MacAdam ellipse on the CIE1976 UCS diagram.
  • Different lamp types can choose different standards, but they all need to meet the color range of different color intervals corresponding to the MacAdam ellipse, so as to select K1 and K2 values within a reasonable range, avoid too many interference values, and improve the calculation speed.
  • the chromaticity difference satisfies the 5-order color range of different color intervals corresponding to the MacAdam ellipse on the CIE1976 UCS diagram, adapts to current process technology, and meets the conventional color difference requirements of lamps.
  • step S3 the specific operation of finding the K 1 and K 2 values that make the target spectrum 14 blocks of Munsell color samples within the color difference range is as follows:
  • the corrected chromaticity coordinates u' k,i v' k,i of each color sample i of the 14 Munsell color samples of the controlled light source 100 are obtained:
  • the coordinate values of each test color of the 14 Munsell color samples of the controlled light source 100 in the CIE1964 uniform color space are calculated.
  • the present invention further provides a stage lamp, which uses any of the above-mentioned light source display index adjustment methods to adjust the display index of the controlled light source 100 in the lamp head 200 .
  • the stage light generally includes a lamp head 200, a support arm 300, and a chassis 400.
  • the chassis 400 supports the support arm 300 to rotate, and the support arm 300 supports the lamp head 200 to rotate.
  • the controlled light source 100 is located in the lamp head 200. The light emitted by the controlled light source 100 passes through the focusing lens 210, the magnifying lens 220, and the fixed lens 230 in sequence before being emitted.
  • the controlled light source 100 includes a circuit board 130 provided with light-emitting chips (including the first display finger LED chip group 110 and the second display finger LED chip group 120), and also includes a first light-collecting lens 140, a second light-collecting lens 150, a first light-mixing lens 160, a second light-mixing lens 170 and a light-collecting mirror 180 arranged in sequence along the light-emitting direction of the light-emitting chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种光源显指调节方法及使用其的舞台灯,光源显指调节方法提供包括第一显色指数的第一显指LED芯片组、具有第二显色指数的第二显指LED芯片组的受控光源,根据参考光源在目标显指以及目标色温下的目标光谱P (λ),限定目标光谱的色品差范围和目标光谱的14块孟塞尔颜色样品的色差范围,调节第一显指LED芯片组与第二显指LED芯片组的相对光谱功率分布P A(λ)、P B(λ)归一化系数K A、K B,计算受控光源合成光光谱的相对光谱功率分布P (λ)=K 1 P A(λ)+K 2P B(λ),寻找使相对光谱功率分布P (λ)落入目标光谱色品差范围和目标光谱14块孟塞尔颜色样品色差范围的K 1、K 2值,并选取合适的K 1、K 2值,实现对受控光源的显色指数的调节。

Description

一种光源显指调节方法及使用其的舞台灯 技术领域
本发明涉及光源显指调节技术领域,更具体地,涉及一种光源显指调节方法及使用其的舞台灯。
背景技术
显色指数(CRI)是指光源对物体还原阳光下给人的视觉感受能力的高低。显色性越高,显色指数值越接近100,对物体的色彩还原能力越强,人眼区分物体颜色越轻松。但是对于光源来说,通常显色指数越高,其亮度就会越低。舞台灯作为一种舞台照明灯具,需要兼顾显色指数与亮度,而目前的舞台灯光源通常无法调节显色指数,或者只能在显色指数高低模式间切换,而无法做到根据需要随意调节显色指数,尽可能的兼顾显色指数与亮度。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,提供一种光源显指调节方法,可以任意调节光源的显色指数至某一数值,在保障亮度的前提下,尽可能的提高显色指数。
为解决上述技术问题,本发明采用的技术方案是:一种光源显指调节方法,包括以下步骤:
S1、提供具有第一显指LED芯片组与第二显指LED芯片组的受控光源,其中所述第一显指LED芯片组具有第一显色指数,所述第二显指LED芯片组具有第二显色指数,获取第一显指LED芯片组的色温与第二显指LED芯片组的色温以及最大亮度时的相对光谱功率分布PA(λ)、PB(λ),并将PA(λ)、PB(λ)归一化,归一化系数记为KA、KB
S2、根据输入的目标显指以及目标色温,获得归一化的参考光源的相对光谱功率分布P(λ),将其作为目标光谱,并限定目标光谱的色品差的范围和目标光谱的14块孟塞尔颜色样品的色差范围;
S3、反复调节第一显指LED芯片组的光强控制参数K1与第二显指LED芯片组的光强控制参数K2,其中0≤K1≤KA、0≤K2≤KB,根据K1、K2以及PA(λ)、PB(λ)计算受控光源合成光光谱的相对光谱功率分布P(λ)=K1PA(λ)+K2PB(λ),寻找使相对光谱功 率分布P(λ)落入目标光谱的色品差的范围和目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值;
S4、根据寻找到的K1、K2值,分别控制第一显指LED芯片组与第二显指LED芯片组发光。
所述光源显指调节方法提供包括第一显色指数的第一显指LED芯片组、具有第二显色指数的第二显指LED芯片组受的受控光源,根据参考光源在目标显指以及目标色温下的目标光谱P(λ),限定目标光谱的色品差范围和目标光谱的14块孟塞尔颜色样品的色差范围,调节第一显指LED芯片组与第二显指LED芯片组的相对光谱功率分布PA(λ)、PB(λ)归一化系数KA、KB,计算受控光源合成光光谱的相对光谱功率分布P(λ)=K1PA(λ)+K2PB(λ),寻找使相对光谱功率分布P(λ)落入目标光谱色品差范围和目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值,并根据需要选取合适的K1、K2值,从而可以实现对受控光源的显色指数的调节。
进一步地,所述第一显指LED芯片组与所述第二显指LED芯片组色温相同,所述目标色温为所述第一显指LED芯片组与所述第二显指LED芯片组的色温。这样显色指数调节过程中不需考虑色温问题,便于计算所述第一显指LED芯片组与所述第二显指LED芯片组实现目标显指所需的K1、K2值。
进一步地,当受控光源色温大于5000K时选取标准照明体D作为参考光源,色温小于5000K时则选择黑体辐射光源作为参考光源。从而可以使参考光源与受控光源相似度更高,更好的根据参考光源来对受控光源进行模拟计算。
进一步地,所述第一显指LED芯片组与所述第二显指LED芯片组均为白光芯片。即所述第一显指LED芯片组与所述第二显指LED芯片组均发出白光,发光效率更高。
进一步地,S3步骤中,在寻找到首组使P(λ)归一化与目标光谱相接近的K1、K2值后,在一定范围内修改K1、K2值,并根据修改后的K1、K2值计算合成光谱的相对光谱功率分布P(λ)并对其进行归一化,寻找其它使P(λ)归一化与目标光谱相接近的K1、K2值。由于符合条件的K1、K2值一般聚集在某一区域,在寻找到首组符合条件的K1、K2值后,在该值附近寻找其它符合条件的K1、K2值,从而可以实现快速寻找全部符合条件的K1、 K2值,节省时间和算力。
进一步地,以插值法寻找首组使P(λ)归一化后与目标光谱相接近的K1、K2值。插值法是快速求解时的常规做法,可以快速的寻找到K1、K2值,节省时间和算力。
进一步地,在一定范围内修改K1、K2值时,同样采用插值法,且此时的插值法数值量级,低于寻找首组K1、K2值时插值法数值的一个量级。提高运算速度,且尽量使K1、K2的查找过程更精准。
进一步地,当KA=1且KB=1时,在一定范围内是指K1-0.1至K1+0.1、K2-0.1至K2+0.1。当KA=1且KB=1时,一般满足条件的K1、K2值各自分布在一个0.1区间的范围内,因此在寻找到首组K1、K2值后,在K1、K2对应数值上下浮动0.1,几乎可以找到全部符合条件的K1、K2值。
进一步地,S3步骤中,寻找多组符合条件的K1、K2值,并计算此时合光的功率与亮度的相对大小,S4步骤中,根据功率或亮度需求选择合适的一组K1、K2值分别控制第一显指LED芯片组与第二显指LED芯片组发光。从而可以在一定功率或亮度范围内,实现指定功率或亮度下,所述受控光源发出的具有目标显指的光。
进一步地,S4步骤中,根据输入的合光功率,从目标显指对应的多组K1、K2值中,选择与此合光功率对应的K1、K2值,这样在调节所述受控光源实现不同显指的过程中,所述受控光源的合光功率保持不变;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光功率最大的K1、K2值,这样在调节所述受控光源实现不同显指的过程中,所述受控光源对应每一显指,都使合光功率在该显指下达到最大;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光亮度最大的K1、K2值,这样在调节所述受控光源实现不同显指的过程中,所述受控光源对应每一显指,都使合光亮度在该显指下达到最大。
进一步地,S3步骤中,所述色品差满足CIE1976UCS图上的麦克亚当椭圆对应的不同颜色区间的颜色范围。不同的灯型可以选择不同的标准,但均需要符合麦克亚当椭圆对应的不同颜色区间的颜色范围,从而在合理的范围内筛选K1、K2值,避免干扰值过多,提高运算速度。
进一步地,S3步骤中,寻找使目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值具体操作如下:
S31、根据某组K1、K2值对应的算出受控光源的色坐标(xk,yk)、三刺激值 (Xk,Yk,Zk)和CIE1976UCS色品坐标(uk,vk),以及受控光源的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色坐标(xk,i,yk,i)、CIE三刺激值(Xk,i,Yk,i,Zk,i)和色品坐标(uk,i,vk,i),其中
S32、根据参考光源的相对光谱功率分布P(λ),计算参考光源的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色品坐标(ur,i,vr,i)和CIE1976UCS色品坐标(ur,vr);
S33、将受控光源色品坐标(uk,vk)修正为参考光源的色品坐标(ur,vr),即令将受控光源的14块孟塞尔颜色样品的各颜色样品i的色品坐标(uk,i,vk,i)修正为参考光源的色品坐标(u'k,i,v'k,i),具体如下:
由公式可以分别求得,
参考光源的色品坐标修正系数cr、dr
受控光源的色品坐标修正系数ck、dk
受控光源照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i
根据参考光源的色品坐标修正系数cr、dr、受控光源的色品坐标修正系数ck、dk以及受控光源照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i,从而得出受控光源14块孟塞尔颜色样品的各颜色样品i的修正色品坐标u'k,iv'k,i
S34、根据参考光源的14块孟塞尔颜色样品各试验色的色品坐标(ur,i,vr,i)以及参考光源的色品坐标(ur,vr),计算参考光源14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值 其中为参考光源的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
根据受控光源的14块孟塞尔颜色样品各试验色的CIE1976UCS修正色品坐标u'k,iv'k,i、受控光源的修正色品坐标(u'k,v'k),计算受控光源14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值 其中为受控光源的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
S35、用CIE1964色差公式,求得受控光源和参考光源对应同一孟塞尔颜色样品试验色i的色差△Ei=[(Ur,i *-Uk,i *)2+(Vr,i *-Vk,i *)2+(Wr,i *-Wk,i *)2],判断各孟塞尔颜色样品试验色i的色差△Ei是否在目标光谱的14块孟塞尔颜色样品的色差的范围内,是则保留此组K1、K2值,否则验证下组K1、K2值。从而获取使受控光源合成光光谱的相对光谱功率分布P(λ),符合目标光谱14块孟塞尔颜色样品色差范围的K1、K2值。
本发明还公开一种舞台灯,使用上述任一种所述的光源显指调节方法调节灯头内的受控光源显指。
附图说明
图1是本发明受控光源第一实施例的结构示意图。
图2是本发明受控光源第二实施例的结构示意图。
图3是本发明光源显指调节方法的流程示意图。
图4是本发明寻找使P(λ)落入目标光谱14块孟塞尔颜色样品色差范围内K1、K2值的流程示意图。
图5是本发明舞台灯的整体结构示意图。
图6是本发明受控光源的聚光结构示意图。
图中:
100、受控光源;110、第一显指LED芯片组;120、第二显指LED芯片组;130、电
路板;140、第一收光透镜;150、第二收光透镜;160、第一混光透镜;170、第二混光透镜;180、收光镜;200、灯头;210、调焦镜;220、放大镜;230、固定镜;300、支撑臂;400、机箱。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
如图1、图3,本发明提供一种光源显指调节方法,包括以下步骤:
S1、提供具有第一显指LED芯片组110与第二显指LED芯片组120的受控光源100,其中所述第一显指LED芯片组110具有第一显色指数,所述第二显指LED芯片组120具有第二显色指数,获取第一显指LED芯片组110的色温与第二显指LED芯片组120的色温以及最大亮度时的相对光谱功率分布PA(λ)、PB(λ),并将PA(λ)、PB(λ)归一化,归一化系数记为KA、KB
S2、根据输入的目标显指以及目标色温(目标色温为所述第一显指LED芯片组110的色温与所述第二显指LED芯片组120的色温之间的某一数值),获得归一化的参考光源的相对光谱功率分布P(λ),将其作为目标光谱,并限定目标光谱的色品差的范围和目标光谱的14块孟塞尔颜色样品的色差范围;
S3、反复调节第一显指LED芯片组110的光强控制参数K1与第二显指LED芯片组120的光强控制参数K2,其中0≤K1≤KA、0≤K2≤KB,根据K1、K2以及PA(λ)、PB(λ)计算受控光源100合成光光谱的相对光谱功率分布P(λ)=K1PA(λ)+K2PB(λ),寻找使相对光谱功率分布P(λ)落入目标光谱的色品差的范围和目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值;
S4、根据寻找到的K1、K2值,分别控制第一显指LED芯片组110与第二显指LED芯片组120发光。
所述光源显指调节方法提供包括第一显色指数的第一显指LED芯片组110、具有第二显色指数的第二显指LED芯片组120受的受控光源100,根据参考光源在目标显指以及目标色温下的目标光谱P(λ),限定目标光谱的色品差范围和目标光谱的14块孟塞尔颜色样品的色差范围,调节第一显指LED芯片组110与第二显指LED芯片组120的相对光谱功率分布PA(λ)、PB(λ)归一化系数KA、KB,计算受控光源100合成光光谱的相对光谱功率分布P(λ)=K1PA(λ)+K2PB(λ),寻找使相对光谱功率分布P(λ)落入目标光谱色品差范围和目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值,并根据需要选取合适的K1、K2值,从而可以实现对受控光源100的显色指数的调节。
优选地,S2步骤中,根据输入的目标显指以及目标色温,可以通过查表的方式获得归一化的参考光源的相对光谱功率分布P(λ),例如D65标准光源(色温6500K、波长380nm-780nm),在已知其显指和色温的前提下,很容易根据D65标准光源的相关规格书,或者在网上查询到其归一化的相对光谱功率分布。
优选地,所述第一显色指数为65,所述第二显色指数为95,所述目标显指为介于65-95之间的某一数值。
如图1,优选地,所述第一显指LED芯片组110与所述第二显指LED芯片组120分别形成多排,且两者排与排之间交错设置,便于混光和控制,也便于布线。
如图2,优选地,所述第一显指LED芯片组110中的发光芯片与所述第二显指LED芯片组120的发光芯片颗与颗之间间隔设置,从而使所述第一显指LED芯片组110与所述第二显指LED芯片组120发出的光可以混合的更均匀,提高光束的均匀性。
在其它实施例中,也可以每个所述第一显指LED芯片组110、所述第二显指LED芯片组120、所述第三显指LED芯片组中出一个一起组成点光源(未图示)。
优选地,所述第一显指LED芯片组110和/或所述第二显指LED芯片组120整体受控,即整体的升高或者降低第一显指LED芯片组110和/或第二显指LED芯片组120的亮度,而不是单独的控制第一显指LED芯片组110和/或第二显指LED芯片组120中的单独几颗或者几组亮度发生改变。
优选地,第一显指LED芯片组110与第二显指LED芯片组120发出的光波长范围在380nm-780nm,即肉眼可见光范围。
优选地,还可以包括与所述第一显指LED芯片组110与所述第二显指LED芯片组120的显色指数不同的第三显指LED芯片组,利用所述第一显指LED芯片组110、所述第二显指LED芯片组120及所述第三显指LED芯片组共同混出目标显指,可以有更多的组合。
在本发明优选地实施例中,所述第一显指LED芯片组110与所述第二显指LED芯片组120色温相同,所述目标色温为所述第一显指LED芯片组110与所述第二显指LED芯片组120的色温。这样显色指数调节过程中不需考虑色温问题,便于计算所述第一显指LED芯片组110与所述第二显指LED芯片组120实现目标显指所需的K1、K2值。
优选地,本申请采用此方案,共同色温为6500±500K,选取标准照明体D作为参考光源。
在本发明优选地实施例中,当受控光源100色温大于5000K时选取标准照明体D作为参考光源,色温小于5000K时则选择黑体辐射光源作为参考光源。从而可以使参考光源与受控光源100相似度更高,更好的根据参考光源来对受控光源100进行模拟计算。
在本发明优选地实施例中,所述第一显指LED芯片组110与所述第二显指LED芯片组120均为白光芯片。即所述第一显指LED芯片组110与所述第二显指LED芯片组120均发出白光,发光效率更高。
在本发明优选地实施例中,S3步骤中,在寻找到首组使P(λ)归一化与目标光谱相接近的K1、K2值后,在一定范围内修改K1、K2值,并根据修改后的K1、K2值计算合成光谱的相对光谱功率分布P(λ)并对其进行归一化,寻找其它使P(λ)归一化与目标光谱相接近的K1、K2值。由于符合条件的K1、K2值一般聚集在某一区域,在寻找到首组符合条件的K1、K2值后,在该值附近寻找其它符合条件的K1、K2值,从而可以实现快速寻找全部符合条件的K1、K2值,节省时间和算力。
在本发明优选地实施例中,以插值法寻找首组使P(λ)归一化后与目标光谱相接近的K1、K2值。插值法是快速求解时的常规做法,可以快速的寻找到K1、K2值,节省时间和算力。
优选地,在本实施例中,插值法的调整单位为0.1。
在本发明优选地实施例中,在一定范围内修改K1、K2值时,同样采用插值法,且此时 的插值法数值量级,低于寻找首组K1、K2值时插值法数值的一个量级。提高运算速度,且尽量使K1、K2的查找过程更精准。
优选地,在本实施例中,插值法的调整单位为0.01。
在本发明优选地实施例中,当KA=1且KB=1时,在一定范围内是指K1-0.1至K1+0.1、K2-0.1至K2+0.1。当KA=1且KB=1时,一般满足条件的K1、K2值各自分布在一个0.1区间的范围内,因此在寻找到首组K1、K2值后,在K1、K2对应数值上下浮动0.1,几乎可以找到全部符合条件的K1、K2值。
在本发明优选地实施例中,S3步骤中,寻找多组符合条件的K1、K2值,并计算此时合光的功率与亮度的相对大小,S4步骤中,根据功率或亮度需求选择合适的一组K1、K2值分别控制第一显指LED芯片组110与第二显指LED芯片组120发光。从而可以在一定功率或亮度范围内,实现指定功率或亮度下,所述受控光源100发出的具有目标显指的光。
在本发明优选地实施例中,S4步骤中,根据输入的合光功率,从目标显指对应的多组K1、K2值中,选择与此合光功率对应的K1、K2值,这样在调节所述受控光源100实现不同显指的过程中,所述受控光源100的合光功率保持不变;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光功率最大的K1、K2值,这样在调节所述受控光源100实现不同显指的过程中,所述受控光源100对应每一显指,都使合光功率在该显指下达到最大;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光亮度最大的K1、K2值,这样在调节所述受控光源100实现不同显指的过程中,所述受控光源100对应每一显指,都使合光亮度在该显指下达到最大。
在本发明优选地实施例中,S3步骤中,所述色品差满足CIE1976UCS图上的麦克亚当椭圆对应的不同颜色区间的颜色范围。不同的灯型可以选择不同的标准,但均需要符合麦克亚当椭圆对应的不同颜色区间的颜色范围,从而在合理的范围内筛选K1、K2值,避免干扰值过多,提高运算速度。
优选地,所述色品差满足CIE1976UCS图上的麦克亚当椭圆对应的不同颜色区间的5阶颜色范围。适应目前的工艺技术,且符合常规的灯具颜色差异要求。
如图4,在本发明优选地实施例中,S3步骤中,寻找使目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值具体操作如下:
S31、根据某组K1、K2值对应的算出受控光源100的色坐标(xk,yk)、三刺激值 (Xk,Yk,Zk)和CIE1976UCS色品坐标(uk,vk),以及受控光源100的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色坐标(xk,i,yk,i)、CIE三刺激值(Xk,i,Yk,i,Zk,i)和色品坐标(uk,i,vk,i),其中
S32、根据参考光源的相对光谱功率分布P(λ),计算参考光源的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色品坐标(ur,i,vr,i)和CIE1976UCS色品坐标(ur,vr);
S33、将受控光源100色品坐标(uk,vk)修正为参考光源的色品坐标(ur,vr),即令将受控光源100的14块孟塞尔颜色样品的各颜色样品i的色品坐标(uk,i,vk,i)修正为参考光源的色品坐标(u'k,i,v'k,i),具体如下:
由公式可以分别求得,
参考光源的色品坐标修正系数cr、dr
受控光源100的色品坐标修正系数ck、dk
受控光源100照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i
根据参考光源的色品坐标修正系数cr、dr、受控光源100的色品坐标修正系数ck、dk以及受控光源100照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i,从而得出受控光源100的14块孟塞尔颜色样品的各颜色样品i的修正色品坐标u'k,iv'k,i
S34、根据参考光源的14块孟塞尔颜色样品各试验色的色品坐标(ur,i,vr,i)以及参考光源的色品坐标(ur,vr),计算参考光源14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值 其中为参考光源的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
根据受控光源100的14块孟塞尔颜色样品各试验色的CIE1976UCS修正色品坐标u'k,iv'k,i、受控光源100的修正色品坐标(u'k,v'k),计算受控光源100的14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值 其中为受控光源100的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
S35、用CIE1964色差公式,求得受控光源100和参考光源对应同一孟塞尔颜色样品试验色i的色差△Ei=[(Ur,i *-Uk,i *)2+(Vr,i *-Vk,i *)2+(Wr,i *-Wk,i *)2],判断各孟塞尔颜色样品试验色i的色差△Ei是否在目标光谱的14块孟塞尔颜色样品的色差的范围内,是则保留此组K1、K2值,否则验证下组K1、K2值。从而获取使受控光源100合成光光谱的相对光谱功率分布P(λ),符合目标光谱14块孟塞尔颜色样品色差范围的K1、K2值。
如图5,本发明还提供一种舞台灯,使用上述任一种所述的光源显指调节方法调节灯头200内的受控光源100显指。
舞台灯一般包括灯头200、支撑臂300、机箱400,所述机箱400支撑所述支撑臂300旋转,所述支撑臂300支撑所述灯头200旋转,所述受控光源100位于所述灯头200内。所述受控光源100发出的光依次经过调焦镜210、放大镜220和固定镜230后射出。
如图6,所述受控光源100包括设置有发光芯片(包括所述第一显指LED芯片组110、所述第二显指LED芯片组120)的电路板130,还包括沿所述发光芯片的出光方向依次设置的第一收光透镜140、第二收光透镜150、第一混光透镜160、第二混光透镜170与收光镜180。
显然,本发明的上述实施例仅仅是为了清楚地说明本发明所作的举例,而并非是对本发 明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (13)

  1. 一种光源显指调节方法,其特征在于,包括以下步骤:
    S1、提供具有第一显指LED芯片组(110)与第二显指LED芯片组(120)的受控光源(100),其中所述第一显指LED芯片组(110)具有第一显色指数,所述第二显指LED芯片组(120)具有第二显色指数,获取第一显指LED芯片组(110)的色温与第二显指LED芯片组(120)的色温以及最大亮度时的相对光谱功率分布PA(λ)、PB(λ),并将PA(λ)、PB(λ)归一化,归一化系数记为KA、KB
    S2、根据输入的目标显指以及目标色温,获得归一化的参考光源的相对光谱功率分布P(λ),将其作为目标光谱,并限定目标光谱的色品差的范围和目标光谱的14块孟塞尔颜色样品的色差范围;
    S3、反复调节第一显指LED芯片组(110)的光强控制参数K1与第二显指LED芯片组(120)的光强控制参数K2,其中0≤K1≤KA、0≤K2≤KB,根据K1、K2以及PA(λ)、PB(λ)计算受控光源(100)合成光光谱的相对光谱功率分布P(λ)=K1PA(λ)+K2PB(λ),寻找使相对光谱功率分布P(λ)落入目标光谱的色品差的范围和目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值;
    S4、根据寻找到的K1、K2值,分别控制第一显指LED芯片组(110)与第二显指LED芯片组(120)发光。
  2. 根据权利要求1所述的光源显指调节方法,其特征在于,所述第一显指LED芯片组(110)与所述第二显指LED芯片组(120)色温相同,所述目标色温为所述第一显指LED芯片组(110)与所述第二显指LED芯片组(120)的色温。
  3. 根据权利要求1所述的光源显指调节方法,其特征在于,当受控光源(100)色温大于5000K时选取标准照明体D作为参考光源,色温小于5000K时则选择黑体辐射光源作为参考光源。
  4. 根据权利要求1所述的光源显指调节方法,其特征在于,所述第一显指LED芯片组(110)与所述第二显指LED芯片组(120)均为白光芯片。
  5. 根据权利要求1所述的光源显指调节方法,其特征在于,S3步骤中,在寻找到首组使P(λ)归一化与目标光谱相接近的K1、K2值后,在一定范围内修改K1、K2值,并根据修改后的K1、K2值计算合成光谱的相对光谱功率分布P(λ)并对其进行归一化,寻找其它使P(λ)归一化与目标光谱相接近的K1、K2值。
  6. 根据权利要求5所述的光源显指调节方法,其特征在于,以插值法寻找首组使P(λ)归一化后与目标光谱相接近的K1、K2值。
  7. 根据权利要求6所述的光源显指调节方法,其特征在于,在一定范围内修改K1、K2值时,同样采用插值法,且此时的插值法数值量级,低于寻找首组K1、K2值时插值法数值的一个量级。
  8. 根据权利要求5所述的光源显指调节方法,其特征在于,当KA=1且KB=1时,在一定范围内是指K1-0.1至K1+0.1、K2-0.1至K2+0.1。
  9. 根据权利要求1所述的光源显指调节方法,其特征在于,S3步骤中,寻找多组符合条件的K1、K2值,并计算此时合光的功率与亮度的相对大小,S4步骤中,根据功率或亮度需求选择合适的一组K1、K2值分别控制第一显指LED芯片组(110)与第二显指LED芯片组(120)发光。
  10. 根据权利要求9所述的光源显指调节方法,其特征在于,S4步骤中,根据输入的合光功率,从目标显指对应的多组K1、K2值中,选择与此合光功率对应的K1、K2值;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光功率最大的K1、K2值;或者S4步骤中,从目标显指对应的多组K1、K2值中,选择使合光亮度最大的K1、K2值。
  11. 根据权利要求1所述的光源显指调节方法,其特征在于,S3步骤中,所述色品差满足CIE1976 UCS图上的麦克亚当椭圆对应的不同颜色区间的颜色范围。
  12. 根据权利要求1所述的光源显指调节方法,其特征在于,S3步骤中,寻找使目标光谱14块孟塞尔颜色样品色差范围内的K1、K2值具体操作如下:
    S31、根据某组K1、K2值对应的算出受控光源(100)的色坐标(xk,yk)、三刺激值(Xk,Yk,Zk)和CIE1976 UCS色品坐标(uk,vk),以及受控光源(100)的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色坐标(xk,i,yk,i)、CIE三刺激值(Xk,i,Yk,i,Zk,i)和色品坐标(uk,i,vk,i),其中
    S32、根据参考光源的相对光谱功率分布P(λ),计算参考光源的14块孟塞尔颜色样品各试验色i(i=1、2、3…,14)的色品坐标(ur,i,vr,i)和CIE1976 UCS色品坐标(ur,vr);
    S33、将受控光源(100)色品坐标(uk,vk)修正为参考光源的色品坐标(ur,vr),即 令将受控光源(100)的14块孟塞尔颜色样品的各颜色样品i的色品坐标(uk,i,vk,i)修正为参考光源的色品坐标(u'k,i,v'k,i),具体如下:
    由公式可以分别求得,
    参考光源的色品坐标修正系数cr、dr
    受控光源(100)的色品坐标修正系数ck、dk
    受控光源(100)照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i
    根据参考光源的色品坐标修正系数cr、dr、受控光源(100)的色品坐标修正系数ck、dk以及受控光源(100)照明下的14块孟塞尔颜色样品各试验色的色品坐标修正系数ck,i、dk,i,从而得出受控光源(100)的14块孟塞尔颜色样品的各颜色样品i的修正色品坐标u'k,iv'k,i
    S34、根据参考光源的14块孟塞尔颜色样品各试验色的色品坐标(ur,i,vr,i)以及参考光源的色品坐标(ur,vr),计算参考光源14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值其中为参考光源的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
    根据受控光源(100)的14块孟塞尔颜色样品各试验色的CIE1976 UCS修正色品坐标u'k,iv'k,i、受控光源(100)的修正色品坐标(u'k,v'k),计算受控光源(100)的14块孟塞尔颜色样品各试验色在CIE1964均匀颜色空间中的坐标值 其中为受控光源(100)的14块孟塞尔颜色样品各试验色的三刺激值Y的1/3根号系数,其中1≤Y≤100;
    S35、用CIE1964色差公式,求得受控光源(100)和参考光源对应同一孟塞尔颜色样品试验色i的色差△Ei=[(Ur,i *-Uk,i *)2+(Vr,i *-Vk,i *)2+(Wr,i *-Wk,i *)2],判断各孟塞尔颜色样品试验色i的色差△Ei是否在目标光谱的14块孟塞尔颜色样品的色差的范围内,是则保留此组K1、K2值,否则验证下组K1、K2值。
  13. 一种舞台灯,其特征在于,使用权利要求1-12任一项所述的光源显指调节方法调节灯头(200)内的受控光源(100)显指。
PCT/CN2023/077821 2022-11-30 2023-02-23 一种光源显指调节方法及使用其的舞台灯 WO2024113514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/176,317 US20240179813A1 (en) 2022-11-30 2023-02-28 Method for adjusting color rendering index of light source and stage light fixture using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211519176.9 2022-11-30
CN202211519176.9A CN115802540A (zh) 2022-11-30 2022-11-30 一种光源显指调节方法及使用其的舞台灯

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/176,317 Continuation US20240179813A1 (en) 2022-11-30 2023-02-28 Method for adjusting color rendering index of light source and stage light fixture using same

Publications (1)

Publication Number Publication Date
WO2024113514A1 true WO2024113514A1 (zh) 2024-06-06

Family

ID=85443681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077821 WO2024113514A1 (zh) 2022-11-30 2023-02-23 一种光源显指调节方法及使用其的舞台灯

Country Status (2)

Country Link
CN (1) CN115802540A (zh)
WO (1) WO2024113514A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118265196A (zh) * 2024-04-23 2024-06-28 深圳市正远科技有限公司 用于提升led光源显示亮度的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082622A1 (en) * 2011-09-29 2013-04-04 National Chiao Tung University Method for mixing light of led cluster
CN108954041A (zh) * 2018-07-23 2018-12-07 浙江智彩科技有限公司 一种led混光合成标准光源的方法
CN109451624A (zh) * 2018-10-26 2019-03-08 中国建筑科学研究院有限公司 多通道led照明系统的光谱调节方法
CN111010765A (zh) * 2019-12-03 2020-04-14 天津工业大学 基于脉冲宽度调制的六基色发光二极管白光混合方法及光源模块
CN216521202U (zh) * 2021-12-30 2022-05-13 广州市浩洋电子股份有限公司 一种可变显指的舞台灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082622A1 (en) * 2011-09-29 2013-04-04 National Chiao Tung University Method for mixing light of led cluster
CN108954041A (zh) * 2018-07-23 2018-12-07 浙江智彩科技有限公司 一种led混光合成标准光源的方法
CN109451624A (zh) * 2018-10-26 2019-03-08 中国建筑科学研究院有限公司 多通道led照明系统的光谱调节方法
CN111010765A (zh) * 2019-12-03 2020-04-14 天津工业大学 基于脉冲宽度调制的六基色发光二极管白光混合方法及光源模块
CN216521202U (zh) * 2021-12-30 2022-05-13 广州市浩洋电子股份有限公司 一种可变显指的舞台灯

Also Published As

Publication number Publication date
CN115802540A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US8403523B2 (en) Methods, luminaires and systems for matching a composite light spectrum to a target light spectrum
US8760060B2 (en) Solid state light fixture with enhanced thermal cooling and color mixing
Davis et al. Toward an improved color rendering metric
TWI479196B (zh) 一種發光二極體陣列的混光方法
CN104540263B (zh) 一种模拟日光变化的方法及装置
CN105723146B (zh) 用于更好的视觉敏锐度的光谱增强的白光
CN1568496A (zh) 白照明
WO2024113514A1 (zh) 一种光源显指调节方法及使用其的舞台灯
JP2012506614A (ja) 複数の光源タイプを用いた色生成
CN105606218B (zh) 光源显色性性能的光谱诊断方法及系统
CN107333359A (zh) 一种色温可调的led混光照明系统及其调光方法
CN112203383B (zh) 一种多光谱led的调光方法
CN105163419B (zh) 高色饱和度白光led照明系统及其混色设计方法
CN109982478B (zh) 白光发光二极管的调光方法
KR20160107251A (ko) Led 조명 디바이스들을 테스트하고 특징을 규정하는 시스템 및 방법들
CN115315040B (zh) 一种基于rgbwcla七色合一的led全光谱色彩管理系统
CN113097364A (zh) 一种全光谱led光源的制造方法
US20140239841A1 (en) Led lamp with adjustable color
AU2020104402A4 (en) High-efficiency two-tone dimming led street lamp based on mesopic vision
CN108954042B (zh) 一种大范围光谱精度可调的照明光源的合成方法
CN113465742B (zh) 一种基于照度优化的白光光源光照颜色分辨能力量化方法及系统
CN109058778A (zh) 一种家庭植物工厂用led照明灯具
Miller et al. NIST spectrally tunable lighting facility for color rendering and lighting experiments
US20240179813A1 (en) Method for adjusting color rendering index of light source and stage light fixture using same
CN111163556A (zh) 一种实现任意色彩led光源的配光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895690

Country of ref document: EP

Kind code of ref document: A1