WO2024111652A1 - Living body symptom change predicting system, information processing device, and living body symptom change predicting method - Google Patents

Living body symptom change predicting system, information processing device, and living body symptom change predicting method Download PDF

Info

Publication number
WO2024111652A1
WO2024111652A1 PCT/JP2023/042084 JP2023042084W WO2024111652A1 WO 2024111652 A1 WO2024111652 A1 WO 2024111652A1 JP 2023042084 W JP2023042084 W JP 2023042084W WO 2024111652 A1 WO2024111652 A1 WO 2024111652A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
environmental factor
symptoms
intermediate data
factor data
Prior art date
Application number
PCT/JP2023/042084
Other languages
French (fr)
Japanese (ja)
Inventor
将貴 秦
淳 西野
哲 橋本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024111652A1 publication Critical patent/WO2024111652A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • This disclosure relates to a system for predicting changes in symptoms in a living body, an information processing device, and a method for predicting changes in symptoms in a living body.
  • Patent Document 1 discloses technology that detects events that may worsen a chronic disease from physiological data and environmental factor data, and recommends favorable actions and medication based on the detection results.
  • This disclosure provides technology that predicts changes in biological symptoms caused by environmental factors using less data.
  • a first aspect of the present disclosure is a method for manufacturing a semiconductor device comprising: A symptom change prediction system for a living body having an environmental sensor and an information processing device,
  • the environmental sensor detects environmental factor data related to an environmental factor of a target space;
  • the information processing device has a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by an environment;
  • the control unit predicts the possibility of a symptom change from the intermediate data by using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment.
  • changes in a person's symptoms caused by environmental factors can be predicted with less data.
  • a second aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model that simulates the biological characteristics is the Weber-Fechner law.
  • a third aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model that simulates the biological characteristics is a model that outputs different intermediate data depending on the range of values that the environmental factor data takes or whether the environmental factor data satisfies a condition.
  • a fourth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model simulating the biological characteristics is a model that outputs the intermediate data corresponding to the amount of increase or decrease only when the change in the environmental factor data is either an increase or a decrease, or a model that outputs the intermediate data that changes according to the value of the nth derivative.
  • a fifth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model simulating the biological characteristics is a model that outputs the intermediate data corresponding to the integrated value of the environmental factor data, or the intermediate data that differs depending on the history of changes in the past values of the environmental factor data even if the current value of the environmental factor data is the same.
  • a sixth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model that simulates the biological characteristic is a model that outputs the intermediate data according to the duration that the environmental factor data continues to have a value within a predetermined range, or the number of times that the environmental factor data repeats a value within a predetermined range.
  • a seventh aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model that simulates the biological characteristics is a model that outputs the intermediate data that changes after a predetermined time has elapsed from the time when the environmental factor data occurs.
  • An eighth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
  • the model that simulates the biological characteristics is a log function, an exponential function, or an n-th order function, in which the environmental factor data is input and the intermediate data is output.
  • a ninth aspect of the present disclosure is a symptom change prediction system according to any one of the first to eighth aspects,
  • the control unit further predicts the possibility of the symptom change from the intermediate data and the environmental factor data, using correspondence information in which the environmental factor data is associated with each other.
  • a tenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to ninth aspects,
  • the possibility of the symptom change is a possibility of worsening or improving any of the following symptoms: allergy symptoms, asthma symptoms, meteorological illness, infectious disease, decreased sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness.
  • An eleventh aspect of the present disclosure is a symptom change prediction system according to any of the first to tenth aspects,
  • the environmental factor data is a statistical quantity that has been processed by statistical processing.
  • a twelfth aspect of the present disclosure is a symptom change prediction system according to the ninth aspect,
  • the control unit predicts the possibility of the symptom change from the actually measured environmental factor data and the intermediate data, or from predicted values of the environmental factor data and the intermediate data.
  • a thirteenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to twelfth aspects,
  • the corresponding information is generated using machine learning techniques using information on changes in symptoms reported regarding asthma symptoms, allergy symptoms, weather-related illnesses, infectious diseases, poor sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness as training data.
  • a fourteenth aspect of the present disclosure is a symptom change prediction system according to the thirteenth aspect, the control unit generates first correspondence information using a machine learning technique with the intermediate data as an explanatory variable and the symptom change information reported by a plurality of persons as teacher data; generating second correspondence information using a machine learning technique with the intermediate data as explanatory variables and the symptom change information reported by the individual as teacher data; The control unit predicts a possibility of a symptom change of an individual based on the possibility of a symptom change predicted by the first correspondence information and the second correspondence information, respectively.
  • a fifteenth aspect of the present disclosure is a symptom change prediction system according to the thirteenth or fourteenth aspect,
  • the control unit generates the correspondence information for each season, each target disease, or each allergen in an allergic symptom, and predicts the possibility of a change in symptoms based on the correspondence information generated for each season, each target disease, or each allergen.
  • a sixteenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to fifteenth aspects,
  • the control unit displays the intermediate data and the possibility of a symptom change on the same screen.
  • a seventeenth aspect of the present disclosure is a method for manufacturing a semiconductor device comprising: An information processing device, receiving environmental factor data from the environmental sensor relating to an environmental factor of a target space; a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment; The control unit predicts the possibility of a symptom change from the intermediate data by using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment.
  • changes in symptoms of a living body caused by environmental factors can be predicted with less data.
  • An eighteenth aspect of the present disclosure is a method for manufacturing a semiconductor device comprising: A symptom change prediction method performed by a symptom change prediction system for a living body having an environmental sensor and an information processing device, comprising: The environmental sensor detects environmental factor data related to an environmental factor of a target space; A process in which a control unit converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment; A process of predicting the possibility of a symptom change from the intermediate data using correspondence information that associates at least the intermediate data with the possibility of a symptom change is performed.
  • changes in symptoms of a living body caused by environmental factors can be predicted with less data.
  • FIG. 1 is a diagram outlining an example of a system configuration and a prediction method of a system for predicting changes in a person's symptoms.
  • FIG. FIG. 13 is a diagram showing a modified example of the system configuration of the human symptom change prediction system.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a system for predicting a change in a person's symptom.
  • FIG. 2 illustrates an example of a hardware configuration of an information processing device.
  • 11 is an example of a functional block diagram illustrating functions of an information processing device in a learning phase, divided into blocks.
  • FIG. 4 is a diagram showing an example of environmental factor data acquired by an environmental factor data acquisition unit; FIG. FIG.
  • FIG. 13 is a diagram illustrating a learning phase in which a mathematical model is generated from the statistics of environmental factor data, sensory intensity (explanatory variable), and symptom change information (objective variable, teacher data).
  • FIG. 1 is a flowchart illustrating an example of a flow of a learning method using a gradient boosting decision tree.
  • FIG. 1 is an image diagram of a decision tree.
  • 1A and 1B are diagrams illustrating examples of the shapes of a log function, an exponential function, and an n-th order function.
  • FIG. 1 is a diagram showing an example of the shapes of a step function, a sigmoid function, an IF function, and a function having values only in a specific range.
  • FIG. 1 is a flowchart illustrating an example of a flow of a learning method using a gradient boosting decision tree.
  • FIG. 1 is an image diagram of a decision tree.
  • 1A and 1B are diagrams illustrating examples of the shapes of a log function, an exponential function,
  • 13 is a diagram showing an example of the shape (tangent) of a first derivative of a quadratic function.
  • 1 is a diagram showing an example of a relationship between time and environmental factor data (e.g., atmospheric pressure) and a relationship between time and intermediate data (e.g., a physiological reaction amount related to meteorological illness).
  • 1 is an example of a diagram showing the relationship between time and environmental factor data (e.g., the amount of pollen dispersed) and the relationship between time and intermediate data (e.g., a physiological response related to hay fever).
  • 1 is a diagram showing an example of a relationship between time and environmental factor data (for example, temperature) and a relationship between time and intermediate data (for example, a physiological reaction amount related to heat stroke).
  • 1 is an example of a graph showing the relationship between time and environmental factor data (e.g., CO2 concentration) and the relationship between time and intermediate data (e.g., a physiological response amount related to decreased alertness).
  • time and environmental factor data e.g., CO2 concentration
  • time and intermediate data e.g., a physiological response amount related to decreased alertness
  • 1 is an example of a diagram showing the relationship between time and environmental factor data (for example, the amount of allergens) and the relationship between time and intermediate data (the amount of physiological reaction related to allergic symptoms).
  • 1 is a diagram showing an example of a relationship between time and environmental factor data (for example, the amount of house dust) and a relationship between time and intermediate data (for example, the amount of physiological reaction related to an allergic symptom).
  • FIG. 1 is an example of a diagram showing the correspondence between environmental factor data (X-axis) and sensory intensity (Y-axis), and a diagram showing the correspondence between environmental factor data and sensory intensity with two straight lines.
  • FIG. 13 is a diagram for explaining how sensory intensity is estimated from environmental factor data and corresponds to a biological response.
  • 11 is an example of a functional block diagram illustrating functions of an information processing device in a prediction phase, divided into blocks.
  • FIG. FIG. 13 is a diagram illustrating a prediction phase in which environmental factor data and sensory intensity are input to an exacerbation risk prediction unit to predict exacerbation risk.
  • FIG. 13 is a diagram comparing the prediction accuracy of asthma exacerbation risk when predicting without and with sensory intensity.
  • FIG. 13 is a diagram showing an example of a map screen of an exacerbation risk displayed on a user terminal.
  • FIG. 13 is a diagram showing an example of a sensation intensity and exacerbation risk screen displayed on a user terminal.
  • FIG. 13 is a diagram showing an example of environmental factor data and symptoms.
  • Symptoms that occur in people are influenced by environmental factors. Symptoms include allergy symptoms, asthma symptoms, weather-related illnesses, infectious diseases, poor sleep quality (insomnia, waking up during the night, difficulty falling asleep, difficulty waking up), decreased alertness/drowsiness, autonomic dysfunction, frailty, dementia/delirium, memory loss, motor function loss, heat stroke, motion sickness, VR sickness, etc. In this way, symptoms are not limited to illness.
  • intermediate data that indicates the human body's response (symptoms) to environmental factors is used as an explanatory variable, making it possible to accurately predict symptoms with a smaller amount of data.
  • Intermediate data is a numerical value that simulates the response related to the environmental factors that cause symptoms.
  • Such intermediate data can be generated by a model that simulates biological characteristics (described later).
  • the model that creates the intermediate data can itself simulate symptom characteristics.
  • this intermediate data may be described using the term “sensation intensity.” Also, changes in symptoms may be described using the term “risk of exacerbation.”
  • exacerbation refers to a condition in which a disease such as asthma or allergy symptoms worsens, does not improve with normal treatment, and requires a change in treatment
  • exacerbation risk refers to the risk (possibility) of such a condition occurring.
  • asthma there is a correlation between asthma and environmental factors. Asthma is a condition whose onset is said to be contributed to by a wide variety of environmental factors.
  • Environmental factors that are known to aggravate asthma are diverse and include PM2.5, VOCs, SOx, NOx, fungi, dust mites, dust, strong odors/fumes, smoke, cold, dry air, and hot air.
  • ⁇ Outline of the method for predicting the risk of progression> 1 is a diagram illustrating an outline of a system configuration and a prediction method of an example of a human symptom change prediction system 100.
  • An environmental device 10, an environmental sensor 11, a user terminal 70, and an information processing device 60 are communicatively connected via a network N.
  • the environmental sensor 11 is installed in preferably each room of a building in which a patient 9 with asthma or allergy symptoms resides.
  • the environmental sensor 11 detects environmental factor data related to the environmental factors of the target space 7 in which the patient 9 resides. Only one environmental sensor 11 may be installed in a building.
  • the environmental device 10 is a device that controls the environment related to air quality, such as an air conditioner, a ventilation device, or an air purifier.
  • the environmental device 10 may have multiple functions, and there may be an environmental device 10 for each function.
  • the user terminal 70 is a terminal device that displays a map screen, which will be described later.
  • a web browser or a native application is executed on the user terminal 70, and information to be displayed on the display is received from the information processing device 60 via the network N.
  • the patient 9 can view the map screen or the like to understand the environmental conditions that reduce or do not increase the risk of exacerbation.
  • the user terminal 70 can be carried by the patient 9, and does not need to be installed in the same space as the space in which the environmental sensor 11 is installed.
  • the information processing device 60 is, for example, a server device that processes various information, provides services, and stores files.
  • the information processing device 60 generates a mathematical model, which will be described later, and predicts the risk of exacerbation by inputting sensory intensity and environmental factor data into this mathematical model.
  • Sensory intensity is a variable that indicates the magnitude of the impact that a person will have when a change in the air quality environment becomes a stimulus.
  • the environmental sensor 11 transmits environmental factor data to the information processing device 60.
  • the patient 9 also self-reports symptom change information (e.g., worsening, improvement, remission, improvement) to the information processing device 60 via the user terminal 70.
  • symptom change information e.g., worsening, improvement, remission, improvement
  • the information processing device 60 inputs the sensory intensity and environmental factor data into a mathematical model that has been generated to predict the risk of exacerbation.
  • This mathematical model uses sensory intensity without requiring vital data, as described below.
  • the mathematical model is correspondence information that associates sensory intensity with the risk of exacerbation of asthma or allergic symptoms.
  • the information processing device 60 transmits to the user terminal 70 a map screen in which the risk of deterioration is plotted on a map for each environmental factor data.
  • the user terminal 70 displays a map screen that indicates which environmental settings will reduce or increase the risk of progression.
  • the user terminal 70 transmits the environmental settings to the information processing device 60.
  • the information processing device 60 converts the environmental settings into setting information for the environmental device 10 and transmits it to the environmental device 10. This allows the environmental device 10 to control the air quality so as to reduce or prevent an increase in the risk of deterioration.
  • vital data is not used when predicting the risk of exacerbation.
  • intermediate data sensor intensity
  • can replace vital data can replace vital data
  • the accuracy of machine learning can be improved with a small number of samples. This makes it possible for patient 9 to avoid that environment, or for environmental control to be performed to create an indoor environment that reduces the risk of exacerbation.
  • the environmental sensor 11 does not have to exist independently, but may be built into the indoor unit 10b as shown in Fig. 2.
  • Fig. 2 shows a modified example of the system configuration of the human symptom change prediction system 100.
  • the human symptom change prediction system 100 mainly has one outdoor unit 10a as a heat source unit, one or more indoor units 10b as utilization units, and a remote control device (hereinafter referred to as "remote control 12") as an input device for inputting commands related to various settings.
  • the outdoor unit 10a and the indoor unit 10b are called an air conditioner.
  • the outdoor unit 10a and the indoor unit 10b are connected by a refrigerant connection pipe (gas connection pipe GP) to form a refrigerant circuit.
  • the human symptom change prediction system 100 has multiple communication networks (network NW1, network NW2) that function as transmission paths for signals between each unit.
  • Network NW2 may be wired or wireless.
  • the remote control 12 is a user interface that accepts settings such as temperature and humidity.
  • the functions of the information processing device 60 may be the same as those in FIG. 1.
  • the indoor unit 10b has a built-in environmental sensor 11.
  • the indoor unit 10b transmits environmental factor data to the outdoor unit 10a.
  • the outdoor unit 10a transmits the environmental factor data to the information processing device 60.
  • the information processing device 60 inputs the sensory intensity and environmental factor data into the mathematical model that was generated to predict the risk of exacerbation.
  • the information processing device 60 transmits a map screen showing the risk of deterioration for the environmental factor data on a map to the remote control 12 via the outdoor unit 10a and the indoor unit 10b.
  • the remote control 12 displays a map screen that indicates which environmental settings will reduce or increase the risk of aggravation.
  • the remote control 12 transmits the environmental settings to the indoor unit 10b.
  • the indoor unit 10b converts the environmental settings into setting information for the air conditioner and controls the unit itself. This allows the environmental equipment 10 to control the air quality so as to reduce the risk of deterioration or to prevent an increase.
  • Fig. 3 is a diagram showing an example of the system configuration of the human symptom change prediction system 100.
  • the human symptom change prediction system 100 provides various services utilizing IoT to everyone from administrators to general users by having various devices 30, such as air conditioners and lighting, and a cloud-side information processing device 60 communicate via a network N.
  • the edge device 80, devices 30, sensor switches 53, and user terminal 70 are installed on the customer side, and the information processing device 60 is installed in a data center or on the Internet or other cloud.
  • the edge device 80 is a device that centrally manages the devices 30 and sensor switches 53, so the edge device 80 is not necessary.
  • the equipment 30 refers to any device that consumes power, such as the environmental equipment 10, security equipment, heat source equipment, fire alarms, AHUs (air handling units), electricity meters, and lighting.
  • the sensor switches 53 are various sensors including the environmental sensor 11, lamps, relays, and the like.
  • the equipment 30 and the sensor switches 53 are communicatively connected to the edge device 80 via a dedicated cable or a network such as a LAN.
  • the equipment 30 and the sensor switches 53 may also be communicatively connected to the edge device 80 via wireless communication.
  • the equipment 30 and the sensor switches 53 are controlled by the edge device 80.
  • the edge device 80 applies the required operations to the equipment 30 and the sensor switches 53 to suit the purpose of the equipment 30 and the sensor switches 53.
  • the content of the control varies depending on the type of equipment 30 and the sensor switches 53, but for example, if the equipment 30 is an air conditioner, it may include all control related to the functions of the air conditioner, such as the cooling/heating mode, set temperature, air volume, humidity, air direction, etc., which can generally be set on an air conditioner. Control also includes operating modes such as a mode dedicated to pre-season inspection, microcomputer reset, operation stop, and function substitution.
  • the equipment 30 collects operating data appropriate for the equipment 30 and transmits it mainly periodically to the edge device 80. Periodically means, for example, once per minute, once per 10 minutes, once per 60 minutes, etc., but this can be set by the user or the information processing device 60. Furthermore, the equipment 30 can transmit operating data to the edge device 80 upon request from the edge device 80 or the user terminal 70.
  • the operating data varies depending on the equipment 30, but in the case of an air conditioner, for example, it can include high pressure and low pressure of the refrigerant, refrigerant temperature, fan rotation speed, and microcomputer CPU temperature.
  • the device 30 If the device 30 detects an abnormality, it transmits an abnormality code to the edge device 80.
  • the device 30 that detects the abnormality stops operation.
  • the edge device 80 transmits the abnormality code to the information processing device 60.
  • the edge device 80 may perform the same processing for the sensor switches 53.
  • the sensor switches 53 transmit various detection information, such as detected environmental factor data, and transmit abnormality codes to the edge device 80, for example, periodically.
  • the edge device 80 is a controller that controls the device 30 and the sensor switches 53. If the edge device 80 is not present, the information processing device 60 controls the device 30 and the sensor switches 53.
  • the edge device 80 has the functions of a control device that controls the device 30 and the sensor switches 53, an information processing device that processes operation data, etc., and a communication device that communicates with the information processing device 60.
  • the edge device 80 transmits, for example, an error code received from the device 30 to the information processing device 60, and receives an instruction corresponding to the error code from the information processing device 60.
  • the edge device 80 receives an instruction from the information processing device 60 without transmitting any information to the information processing device 60 (for example, when an instruction is given to the information processing device 60 from the user terminal 70).
  • the edge device 80 converts the instruction into an appropriate instruction according to the model of the device 30 and the sensor switches 53, and transmits it to the device 30 and the sensor switches 53.
  • the information processing device 60 may be one or more server devices. Although one information processing device 60 is shown in FIG. 3, the information processing device 60 may be installed in several separate units according to function. Furthermore, the functions of the information processing device 60 may be consolidated into one server device. Furthermore, multiple information processing devices 60 with the same functions may be provided, and the multiple information processing devices 60 may communicate with each other and perform processing like a server cluster.
  • the information processing device 60 inputs the sensory intensity and environmental factor data into a mathematical model to predict the risk of aggravation, and provides it to the user terminal 70, etc.
  • the information processing device 60 can predict the risk of aggravation not only for facilities such as individual homes and buildings, but also for each region, and may share the risk of aggravation with public broadcasting, etc.
  • the information processing device 60 can also provide the user terminal 70 with environmental settings that are favorable for the risk of aggravation, using comprehensively prepared environmental factor data and the risk of aggravation.
  • the information processing device 60 can also transmit instructions to the edge device 80 for the equipment 30 according to the schedule and operations set by the user terminal 70.
  • an information processing device that generates the mathematical model may exist separately from the information processing device 60.
  • the mathematical model generated by the information processing device is introduced into the information processing device 60.
  • the information processing device 60 generates the mathematical model.
  • the information processing device 60 also has the functionality of a web server.
  • client software such as a web browser operated by the user
  • the web server provides the client with screen information written in HTML files, XML, CSS files, JavaScript (registered trademark), etc.
  • An application that uses web mechanisms in this way is called a web app.
  • Cloud computing refers to a form of usage in which resources on a network are used without being aware of specific hardware resources. Cloud computing provides users with data and software that users have traditionally used on their local computers as a service via a network. Users can use a variety of services from any terminal by providing a web browser that runs on a personal computer or mobile information terminal, and an Internet connection environment.
  • the user terminal 70 is a client terminal that displays various screens provided by the information processing device 60.
  • the user terminal 70 may be used by an administrator or a general user (patient 9 in this disclosure). If the device 30 is in a general household, the administrator may be a family member, or the patient 9 may also serve as the administrator. If the device 30 is in a building managed by a company, the administrator may be, for example, a facility manager, a caregiver, or a nurse.
  • the user terminal 70 can display a wide variety of screens, but some examples include the map screen mentioned above, a list screen of the devices 30 and sensor switches 53 present on the customer's side, an internal company map showing the locations where the devices 30 and sensor switches 53 are located, and an operation screen for operating the devices 30 and sensor switches 53.
  • the user terminal 70 may be, for example, a PC (Personal Computer), a smartphone, a tablet terminal, a PDA (Personal Digital Assistant), a wearable PC (sunglasses type, wristwatch type, etc.), etc. However, it is sufficient that it has a communication function and can run a web browser. Also, instead of a web browser, the user terminal 70 may run a native app dedicated to the human symptom change prediction system 100.
  • Fig. 4 is a diagram showing an example of the hardware configuration of the information processing device 60.
  • the information processing device 60 has a processor 221, a memory 222, an auxiliary storage device 223, an I/F (Interface) device 224, a communication device 225, and a drive device 226.
  • the hardware components of the information processing device 60 are connected to each other via a bus 207.
  • the processor 221 has various computing devices such as a CPU (Central Processing Unit).
  • the processor 221 reads various programs onto the memory 222 and executes them.
  • the processor 211 corresponds to the control unit 110 which controls and performs calculations on the entire information processing device 60. In addition to overall control, the control unit 110 performs processing to estimate the sensory intensity related to human senses. The processing to estimate sensory intensity will be described later.
  • the memory 222 has a primary storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the processor 221 and the memory 222 form a so-called computer, and the processor 221 executes various programs read onto the memory 222.
  • the auxiliary storage device 223 stores various programs and various data used when the programs are executed by the processor 221.
  • the I/F device 224 is a connection device that connects the display device 230, which is an example of an external device, and the operation device 240 to the information processing device 60.
  • the display device 230 displays the internal state of the information processing device 60.
  • the operation device 240 is used when the administrator of the information processing device 60 inputs various instructions to the information processing device 60.
  • the communication device 225 is a communication device for communicating with the edge device 80 and the user terminal 70 via the network N.
  • the drive unit 226 is a device for setting the recording medium 250.
  • the recording medium 250 here includes media that record information optically, electrically, or magnetically, such as CD-ROMs, flexible disks, and magneto-optical disks.
  • the recording medium 250 may also include semiconductor memory that records information electrically, such as ROMs and flash memories.
  • the various programs to be installed in the auxiliary storage device 223 are installed, for example, by setting the distributed recording medium 250 in the drive device 226 and reading the various programs recorded on the recording medium 250 by the drive device 226.
  • the various programs to be installed in the auxiliary storage device 223 may be installed by downloading them from the network N via the communication device 225.
  • Fig. 5 is an example of a functional block diagram illustrating the functions of the information processing device 60 in the learning phase by dividing them into blocks.
  • the information processing device 60 has an environmental factor data acquisition unit 61, a symptom change information acceptance unit 62, a statistical quantity calculation unit 63, a sensory intensity estimation unit 64, and a mathematical model generation unit 65. Each of these units of the information processing device 60 is a function or means realized by the control unit 110 of the information processing device 60 executing the commands of a program expanded in the memory 222.
  • the environmental factor data acquisition unit 61 acquires environmental factor data that indicates the concentration of an environmental factor actually detected by the environmental sensor 11.
  • the environmental factor data includes temperature, humidity, CO2 concentration, PM2.5 concentration, TVOC concentration, and formaldehyde concentration, but these are merely examples.
  • the environmental factor data may include pollen and dust.
  • the environmental factor data acquisition unit 61 may simply receive the environmental factor data periodically transmitted by the environmental sensor 11, or may request the environmental sensor 11 to measure the environmental factor data and receive the environmental factor data in response. It is preferable that the data be acquired at least once a day, and for example, it may be possible to acquire the data at a frequency of once every few minutes to once every few hours.
  • the symptom change information receiving unit 62 receives symptom change information input to the user terminal 70 by the patient 9 at risk of exacerbation.
  • the symptom change information is information that indicates the presence or absence of symptoms such as asthma or allergy symptoms, and the intensity of the symptoms. For example, the patient 9 inputs "1" if the symptom occurs and "0" if the symptom does not occur as symptom change information for that day every day.
  • the symptom change information may be a value from 0 to 100, not "1" or "0", or may be a 3 to 5 level of intensity. In this way, the symptom change information indicates not only worsening but also improvement. These values correspond to symptoms that have worsened, improved, gone into remission, or improved.
  • the symptom change information receiving unit 62 obtains the patient ID (the patient can be identified).
  • Basic information about the patient 9 is registered in advance in the information processing device 60.
  • the basic information is age, sex, height, allergens (mold, dust, pollen, etc.), underlying diseases, etc.
  • An allergen is an antigen that specifically reacts with the antibodies of a person with asthma or an allergic disease. Generally speaking, an allergen is a substance that causes allergic symptoms.
  • the statistics calculation unit 63 calculates the statistics of the environmental factor data by processing the environmental factor data through statistical processing.
  • the statistics may be, for example, a maximum value per day, a minimum value per day, an average value per day, or a standard deviation for each environmental factor data. Furthermore, the statistics are not limited to these, and may be a median, an integrated value, or a moving average over the past few hours to several days. The statistics are calculated in order to reduce the processing load of the environmental factor data, so the statistics calculation unit 63 may not be required.
  • the sensory intensity estimation unit 64 generates intermediate data based on a model that simulates biological characteristics from the statistics of the environmental factor data. As an example, in the present disclosure, the sensory intensity estimation unit 64 estimates sensory intensity from the statistics of the environmental factor data. Details of sensory intensity are described in Figures 19 and 20.
  • the mathematical model generation unit 65 uses learning data in which the statistical quantities and sensory intensity of environmental factor data are explanatory variables and symptom change information is the objective variable (teacher data) to generate a mathematical model that predicts the risk of exacerbation from the statistical quantities and sensory intensity of environmental factor data.
  • a mathematical model is a simplification of a real object, and a mathematical representation of the relationship between various quantities in accordance with physical laws. However, it is not required that the mathematical model be strict, and it is sufficient that the mathematical model can predict the risk of exacerbation from environmental factor data and sensory intensity.
  • FIG. 6 shows symptom change information corresponding to the environmental factor data.
  • the symptom change information was entered by patient 9. This symptom change information is either worsened (1) or not worsened (0).
  • Figure 7 is a diagram for explaining the learning phase in which a mathematical model is generated from the statistics of environmental factor data, sensory intensity (explanatory variable), and symptom change information (target variable, teacher data).
  • the functional configurations of Figures 5 and 7 are the same, but in Figure 7, the blocks are arranged according to the processing flow.
  • the environmental factor data acquisition unit 61 acquires the environmental factor data actually detected by the environmental sensor 11.
  • the environmental factor data is not limited to actual measured values, but may be forecast values. These forecast values may be provided by the Japan Meteorological Agency or may be predicted by the environmental factor data acquisition unit 61 from the actual measured values.
  • the symptom change information receiving unit 62 also receives symptom change information input by a patient 9 with asthma or allergy symptoms from a user terminal 70 or the like.
  • P the sensory intensity (also called the sensory quantity)
  • I the intensity of the stimulus
  • I0 the intensity of the stimulus at which the sensory intensity becomes
  • k is a constant specific to the stimulus. Details of these will be described later.
  • Machine learning is a technology that allows computers to acquire human-like learning capabilities, whereby the computer autonomously generates the algorithms necessary for judgments such as data identification from training data that is previously loaded, and applies these to new data to make predictions.
  • Methods using machine learning may be any of the following methods: supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning, or deep learning, or may be a combination of these learning methods; any learning method for machine learning is acceptable.
  • Gradient boosting decision trees are a type of supervised learning that combines “gradient descent,” “Boosting (ensemble),” and “decision trees.”
  • Figure 8 is a flow chart that explains the flow of the learning method using gradient boosting decision trees.
  • Figure 9 shows an image of the decision tree.
  • the mathematical model generation unit 65 calculates an initial value from multiple pieces of symptom change information (teacher data) prepared as learning data (S11).
  • the initial value is, for example, an average value.
  • this average value is referred to as predicted value 1.
  • the mathematical model generation unit 65 calculates, for each piece of learning data, the value obtained by subtracting the average value from the symptom change information as error 1 (S12).
  • Error 1 is positive if the symptom change information is greater than the average, and negative if it is less than the average.
  • the reason why the "value obtained by subtracting the average value from the symptom change information" is used as the error here is because the squared error between the symptom change information and the predicted value is used as the error calculation method, and the gradient obtained by differentiating the squared error is used to calculate the error. Absolute value error may also be used as the error calculation method.
  • the mathematical model generation unit 65 constructs a decision tree for the purpose of predicting errors (S13).
  • the number of nodes and layers of the decision tree may be limited to a preset range.
  • This decision tree is a weak classifier (boosting).
  • the top tree in Figure 9 is an image of the decision tree that is created first. Because Figure 9 is an image, the number of nodes, etc. is insufficient compared to the amount of input data, but errors are classified into the leaves (ends of the tree) of such a decision tree.
  • the mathematical model generation unit 65 calculates the entropy based on the ratio of correct answers to incorrect answers in the training data before classification.
  • the mathematical model generation unit 65 may use the Gini coefficient instead of the entropy.
  • the mathematical model generating unit 65 calculates the entropy for each branch based on the ratio of correct answers to incorrect answers for each branch when classified by any one attribute.
  • the mathematical model generating unit 65 calculates a weighted average of the entropies of (ii). This weighted average may be calculated by multiplying the number of original data by the ratio of the number of data classified into each branch.
  • the mathematical model generating unit 65 adopts the attribute with the largest difference (gain) between the entropies of (i) and (iii) as the attribute of the root.
  • the structure of the lower part of the root is also determined by processes (i) to (iv).
  • the mathematical model generation unit 65 then calculates a new predicted value using error 1 (S14). Note that although “error 1” is used here, “error n” increases with repetition. Since error 1 is classified for each sample of training data in the leaves of the decision tree, predicted value 1 can be calculated using error 1 for each sample of training data. If multiple errors are classified into one leaf, the average of the errors contained in the leaf is error 1.
  • the learning rate is a value smaller than 1, and is a hyperparameter that determines how much error is corrected in one decision tree.
  • the learning rate is set appropriately, for example, to 0.05 to 0.3.
  • the mathematical model generation unit 65 calculates an error from the symptom change information, which is the teacher data, and the predicted value 2 (S15).
  • the mathematical model generation unit 65 calculates the error from the predicted value 2 for the symptom change information of all the prepared learning data.
  • the error calculated from the predicted value 2 is called error 2.
  • the mathematical model generation unit 65 repeats steps S13 to S15 until the error has been calculated a certain number of times or until the error falls below a threshold (S16). As shown in the second and third trees in Figure 9, the mathematical model generation unit 65 classifies the previous error using a new decision tree and calculates predicted values 3, 4... n using the error and errors 3, 4... n. Since the error changes as the process is repeated, the structure of the decision tree also changes automatically.
  • the n decision trees created in this way are the mathematical model of the present disclosure. The prediction of exacerbation risk using n decision trees in the prediction phase will be described later.
  • LightGBM Light Gradient Boosting Machine
  • XGBoost eXtreme Gradient Boosting
  • Catboost Category Boosting
  • the mathematical model generation unit 65 may use these frameworks.
  • predicting the risk of progression using a gradient boosting decision tree is a so-called regression problem (using continuous values to predict one or more values from another), so the algorithms that can be used are not limited to gradient boosting decision trees.
  • regression multiple regression
  • logistic regression logistic regression
  • neural networks Bayesian linear regression
  • SVM regression ridge regression
  • lasso regression lasso regression
  • Poisson regression a so-called regression problem
  • deep learning is an algorithm that predicts XYZ based on input data ABC, and then adjusts the weights between neural networks using backpropagation to reduce the error with the training data.
  • the environmental factor data is converted into intermediate data using a model that represents a nonlinear relationship as shown below.
  • the control unit 110 generates intermediate data that correlates with the amount of physiological response to the environment based on a model that simulates these biological characteristics. All of the following models are nonlinear processes that contain quantitative information.
  • Models that output intermediate data according to the ratio of values taken by the environmental factor data (log function, exponential function, n-th order function) This model is suitable for expressing the relationship between the amount of dust and asthma symptoms, etc.
  • the change according to the ratio of values means a relationship in which when the environmental factor data increases at a certain ratio, the value of the intermediate data also increases at a specified ratio.
  • Figures 10(a) to 10(c) show examples of the shapes of a log function 331, an exponential function 332, and an n-th order function 333, which are examples of this model.
  • Models that output different intermediate data values depending on the range of values that the environmental factor data takes or whether the environmental factor data meets a condition (step functions, sigmoid functions, IF functions, functions that have values only in a specific range)
  • This model is suitable for expressing the relationship between temperature and sweating or shivering, or the relationship between temperature and the activity level of immune cells.
  • This model is also suitable for expressing the relationship between temperature and humidity and heat stroke, and the relationship between the amount of dust and coughing or sneezing.
  • Figures 11(a) to 11(d) show examples of the shapes of a step function 334, a sigmoid function 335, an IF function 336, and a function 337 having values only in a specific range, which are examples of this model.
  • the IF function 336 is a function that takes a fixed value when a specified condition is met with respect to the environmental factor data, and takes a different fixed value when the specified condition is not met.
  • Figures 13(a) and (b) are diagrams explaining functions that have values that change in only one direction.
  • Figure 13(a) shows the relationship between time and environmental factor data (e.g. air pressure), while
  • Figure 13(b) shows the relationship between time and intermediate data (e.g. a physiological reaction amount related to meteorological illness).
  • time and intermediate data e.g. a physiological reaction amount related to meteorological illness.
  • the environmental factor data is air pressure
  • the physiological reaction amount changes in value only when the air pressure decreases.
  • intermediate data corresponding to the amount of increase or decrease is output only when the environmental factor data changes to either an increase or decrease.
  • This model is therefore suitable for expressing the relationship between air pressure and meteorological illness, etc.
  • This model is suitable for expressing the relationship between the amount of pollen intake and the amount of antibodies, or between CO2 concentration and blood oxygen concentration, etc.
  • This model is also suitable for expressing the relationship between the amount of pollen dispersion and hay fever, or between temperature, humidity and heat stroke, etc.
  • FIG. 14(a) and (b) are diagrams for explaining intermediate data according to the integrated value of environmental factor data.
  • FIG. 14(a) shows the relationship between time and environmental factor data (e.g., pollen dispersion amount)
  • FIG. 14(b) shows the relationship between time and intermediate data (e.g., physiological reaction related to hay fever).
  • time T1 the time and pollen concentration
  • time T2 the time and intermediate data
  • this model is suitable for expressing the relationship between the amount of pollen intake and the amount of antibodies, or between CO2 concentration and blood oxygen concentration, etc.
  • Figures 15(a) and (b) are diagrams explaining intermediate data that differs depending on the history (hysteresis) of past environmental factor measurements even when the environmental factor data is the same.
  • Figure 15(a) shows the relationship between time and environmental factor data (e.g., temperature), while
  • Figure 15(b) shows the relationship between time and intermediate data (e.g., physiological response amount associated with heat stroke).
  • the environmental factor data is temperature
  • the intermediate data is physiological response amount associated with heat stroke. Even when the temperature starts to drop (time t1), the physiological response amount does not drop immediately, and even when the temperature drops to the same temperature, the physiological response amount does not drop to the same value (time t2). Therefore, this model is suitable for expressing the relationship between pollen dispersion amount and hay fever, or the relationship between temperature, humidity, and heat stroke, etc.
  • (v) A model that outputs intermediate data according to the duration that the environmental factor data remains within a certain range or the number of times that the environmental factor data repeats a certain range of values.
  • This model is suitable for expressing habituation to temperature.
  • This model is also suitable for expressing the relationship between the number of times an allergen is ingested and the amount of immune reaction (anaphylaxis), etc.
  • FIG. 16(a) and (b) are diagrams for explaining the duration of continuous measurement of environmental factor data and intermediate data corresponding to the sustained value.
  • FIG. 16(a) shows the relationship between time and environmental factor data (e.g., CO2 concentration)
  • FIG. 16(b) shows the relationship between time and intermediate data (e.g., physiological response amount associated with decreased arousal).
  • the environmental factor data is CO2 concentration
  • the intermediate data is physiological response amount associated with decreased arousal.
  • the physiological response amount increases (time T1) when CO2 is at or above a certain concentration for a certain period of time, and decreases (time T2) when CO2 is at or below a certain concentration for a certain period of time. Therefore, this model is suitable for expressing symptoms caused by the duration of continuous exposure to environmental factor data and the sustained value.
  • Figures 17(a) and (b) are diagrams explaining intermediate data according to the number of repetitions at which environmental factor data is measured.
  • Figure 17(a) shows the relationship between time and environmental factor data (e.g., amount of allergen)
  • Figure 17(b) shows the relationship between time and intermediate data (amount of physiological response related to allergic symptoms).
  • the environmental factor data is the amount of allergen
  • the intermediate data is the amount of physiological response related to allergic symptoms. Even if the amount of allergen is the same, the physiological response is greater the second time than the first. Therefore, this model is suitable for expressing symptoms that arise according to the number of times exposed to environmental factor data.
  • FIGS. 18(a) and (b) are diagrams explaining intermediate data corresponding to measured environmental factor data after time has passed since the environmental factor data was measured.
  • FIG. 18(a) shows the relationship between time and environmental factor data (e.g., the amount of house dust), and FIG. 18(b) shows the relationship between time and intermediate data (e.g., the amount of physiological response associated with allergic symptoms).
  • the environmental factor data is the amount of house dust
  • the intermediate data is the amount of physiological response associated with allergic symptoms.
  • the amount of physiological response is roughly proportional to the amount of house dust, but changes with a slight delay (a delay of time T) from the time when the amount of house dust changes. Therefore, this model is suitable for expressing symptoms that occur after time has passed since exposure to environmental factor data.
  • the Weber-Fechner law provides sensory intensity as an example of the intermediate data.
  • the present disclosure introduces "sensory intensity" as a variable that represents the magnitude of the impact that a change in the air quality environment will have on humans as a stimulus.
  • the sensory intensity is estimated from air quality environment data based on the Weber-Fechner law proposed by Weber and Fechner.
  • the Weber-Fechner law is a law that expresses the strength of stimuli felt by humans in a mathematical formula, and is said to approximately apply to all five senses.
  • Sensory intensity P is estimated from the statistics of environmental factor data as shown in formula (1).
  • I, I0 , and k in formula (1) which are necessary to estimate sensory intensity from air quality environmental data, are determined as follows: For "stimulus strength I,” statistics from environmental factor data are used. The average value of the environmental factor data is used for "the intensity of the stimulus at which the intensity of sensation becomes 0 (the intensity of the stimulus at which the sensation begins to be felt) I 0 ". The reason for using the average value is as follows.
  • the average value is used as the intensity I0 of the stimulus at which the stimulus begins to be felt.
  • the "stimulus-specific constant k" is a different value for each sensation, but in the present invention, it is used as a weighting coefficient to smooth out differences in the degree of influence caused by differences in the range of values and units that environmental factor data (e.g., temperature, humidity, CO2 , PM2.5, TVOC, formaldehyde, etc.) can take, and is determined for each environmental factor.
  • the determination method is to create an approximation equation using the environmental factor data as the explanatory variable and the exacerbation risk as the objective variable, and to obtain the constant that minimizes the approximation error.
  • FIG. 19(a) and (b) are diagrams showing the correspondence between environmental factor data (X-axis) and sensory intensity (Y-axis).
  • Fig. 19(a) is a graph of the following formula (2).
  • Y klogX + ⁇ ... (2)
  • k and ⁇ may be appropriately designed constants.
  • equations (1) and (2) are merely examples, and the correspondence between the stimulus and the sensory intensity may be expressed by, for example, equation (3).
  • Y logI ... (3) I is the statistical value of environmental factor data/daily average value.
  • the sensory intensity may be calculated using a method other than logarithm.
  • Figure 19(b) shows the correspondence between the stimulus and the sensory intensity using two straight lines. In this way, the sensory intensity is saturated in the region where the stimulus is large rather than in the region where the stimulus is small.
  • the correspondence between the stimulus and the sensory intensity may be expressed using three or more straight lines.
  • Figure 20 explains how sensory intensity is estimated from environmental factor data and corresponds to a biological response.
  • the surrounding environment A and the human side (inside the ecosystem) B are shown separately.
  • Surrounding environment A People feel stimuli due to changes in the environment, such as changes in temperature, humidity, air quality, and smell.
  • Human side (inside the ecosystem) B According to the Weber-Fechner law, the stimulus becomes saturated as it becomes larger. In other words, people perceive the intensity of the sensory sensation, not the magnitude of the stimulus. Sensory intensity then changes form and appears as various biological reactions (changes in heart rate, blood pressure, respiratory rate, etc.). Therefore, it can be seen that sensory intensity is information that can replace vital data.
  • Fig. 21 is an example of a functional block diagram explaining the functions of the information processing device 60 in the prediction phase by dividing them into blocks. In the explanation of Fig. 21, the differences from Fig. 5 will be mainly explained.
  • the information processing device 60 has an environmental factor data acquisition unit 61, a statistics calculation unit 63, a sensory intensity estimation unit 64, and an exacerbation risk prediction unit 66.
  • Each of these units of the information processing device 60 is a function or means realized by the control unit 110 of the information processing device 60 executing commands of a program deployed in the memory 222.
  • the exacerbation risk prediction unit 66 corresponds to the mathematical model.
  • the exacerbation risk prediction unit 66 predicts the possibility of symptom change from the intermediate data using correspondence information that associates the intermediate data with the possibility of symptom change.
  • the exacerbation risk prediction unit 66 outputs the exacerbation risk from the environmental factor data (actual measurement, forecast) and the sensory intensity estimated based on the environmental factor data.
  • the possibility of symptom change indicates the degree of probability that the symptom will worsen or improve.
  • the predicted value of the possibility of symptom change also takes a value in the range of 0 to 1. The closer the predicted value is to 1, the more likely the symptom will change for the worse, and the closer the predicted value is to 0, the more likely the symptom will change for the better.
  • the exacerbation risk unit 66 can predict the degree to which the symptom will change. When a forecast value is used for the environmental factor data, the sensory intensity is also estimated using the forecast value.
  • the exacerbation risk is a value predicted by the exacerbation risk prediction unit 66 from the self-reported symptom change information.
  • FIG. 22 is a diagram explaining the prediction phase in which environmental factor data and sensory intensity are input to the exacerbation risk prediction unit 66 to predict the risk of exacerbation. Note that the explanation of FIG. 22 will mainly explain the differences from FIG. 7. Steps S1, S3, and S4 may be the same as in FIG. 7.
  • the exacerbation risk prediction unit 66 takes the statistics of the environmental factor data and the sensory intensity estimated from the statistics as input data and outputs the exacerbation risk.
  • the exacerbation risk prediction unit 66 inputs input data to all of the decision trees created in the learning phase. There are three decision trees in Figure 9, and the input data for each decision tree is classified into one leaf of the decision tree. An error is stored in each leaf. For example, suppose that errors 1 to 3 are classified into leaves 321 to 323, indicated by dotted circles in Figure 9.
  • the exacerbation risk prediction unit 66 estimates the predicted value of symptom change information (exacerbation risk) by summing up the values obtained by multiplying the errors of these leaves by the learning rate for the average value calculated in the learning phase for all decision trees.
  • Predicted risk of exacerbation average + learning rate x error 1 + learning rate x error 2 + learning rate x error 3
  • the final predicted value is the average calculated in the learning phase plus all of the errors 1 through n multiplied by the learning rate.
  • Final prediction value average + learning rate x error 1 + learning rate x error 2 + ... + learning rate x error n
  • the predicted value is a value between 0 and 1.
  • the exacerbation risk prediction unit 66 may multiply the predicted value by 100 to convert it into a percentage.
  • Fig. 23 is a diagram comparing the prediction accuracy of the asthma exacerbation risk when it is predicted without using the sensory intensity and when it is predicted with the sensory intensity.
  • the prediction accuracy when it is predicted without using the sensory intensity is 61.1%, whereas the prediction accuracy when it is predicted with the sensory intensity is improved to 73.3%.
  • ⁇ Modification of the learning phase It is known that symptom change information varies greatly from person to person. This means that in the learning phase, it is effective for the mathematical model generating unit 65 to generate a mathematical model for each individual.
  • the mathematical model generating unit 65 generates a mathematical model (an example of the first correspondence information) for all patients who report symptom change information, and also generates a mathematical model (an example of the second correspondence information) for each individual.
  • the exacerbation risk prediction unit 66 predicts the exacerbation risk using a mathematical model for multiple people (e.g., all patients) and also predicts the exacerbation risk using an individual's mathematical model.
  • the exacerbation risk prediction unit 66 provides the individual with one or more of the two predicted exacerbation risks, the higher of the two predicted exacerbation risks, or the average of the two predicted exacerbation risks, making it easier for each individual to grasp the exacerbation risk on that day.
  • the mathematical model generation unit 65 since some allergens, such as pollen, become environmental factors depending on the season, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each season. Also, since allergens differ depending on the individual, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each allergen.
  • the allergens of the patient 9 are registered in the information processing device 60.
  • the mathematical model generation unit 65 groups patients 9 with the same allergen and generates a mathematical model based on the reported symptom change information and environmental factor data. Also, since diseases (underlying diseases) that are likely to develop differ depending on the individual, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each target disease.
  • the disease of the patient 9 is registered in the information processing device 60.
  • the mathematical model generation unit 65 groups patients 9 with the same disease and generates a mathematical model based on the reported symptom change information and environmental factor data.
  • mathematical models can be created for each user's attributes (e.g., gender and age) and area (e.g., prefecture or city/town/village). This is expected to improve the accuracy of predictions of exacerbation risk.
  • ⁇ Examples of risk of exacerbation> 24 is a display example of an exacerbation risk map screen 300 displayed by the user terminal 70.
  • the map screen 300 mainly has a mode selection field 301 and a map display field 302.
  • the mode selection field 301 has a recommendation button 303, an anti-mold and dust mite button 304, an energy saving button 305, and a decision button 306.
  • the recommendation button 303 is a button that displays the recommended environmental settings based on a combination of mold and dust mite prevention and energy saving performance.
  • the Anti-Mold & Mite button 304 is a button that displays environmental settings that suppress mold and mites based on at least one of the mold index or mite index.
  • the energy saving button 305 displays recommended environmental settings based on energy saving performance.
  • the decision button 306 is a button that accepts control of the environmental equipment with the environmental settings set by the patient 9.
  • the map display area 302 displays three maps A to C. This is just one example, and maps A to C may be displayed one at a time. Current environmental conditions 308 to 310 are shown on the three maps A to C, respectively.
  • Map A shows areas with a high risk of aggravation that correspond to the set temperature and humidity.
  • the areas with a low risk of aggravation are divided into two, and areas with a risk of aggravation below a first threshold are shown in blue (one example) and areas with a risk of aggravation below a second threshold are shown in red (one example) in correspondence with the temperature and humidity of the map screen original data.
  • the map screen original data is data in which environmental factor data and aggravation risk are comprehensively calculated.
  • the screen generation unit 73 performs processing such as coloring by interpolating between points.
  • ⁇ Map B shows areas with low risk of aggravation associated with CO2 concentration and PM2.5 concentration.
  • the areas with low risk of aggravation are divided into two, and areas with aggravation risk below the first threshold are shown in blue (example), and areas below the second threshold are shown in red (example), in association with the CO2 concentration and PM2.5 concentration of the original data on the map screen.
  • the first threshold is less than the second threshold.
  • Map C shows areas with low risk of aggravation, which are associated with formaldehyde concentration and TVOC concentration.
  • the areas with low risk of aggravation are divided into two, and areas with aggravation risk below a first threshold are shown in blue (one example), and areas below a second threshold are shown in red (one example), which are associated with formaldehyde concentration and TVOC concentration in the original data on the map screen.
  • the information processing device 60 may display the map screen on the display device 230.
  • FIG. 25 is an example of a sensory intensity and aggravation risk screen 310 displayed on the user terminal 70.
  • the sensory intensity and aggravation risk screen 310 displays a message 311 saying "The risk of allergic symptoms aggravating is as follows," the aggravation risk 312, and the degree of influence 313 of environmental factors that contribute to the aggravation risk.
  • the user can check the displayed exacerbation risk 312 and visually grasp the environmental factors that contribute to the exacerbation risk.
  • the sensory intensity and exacerbation risk screen 310 also displays environmental factors 314 that contribute to the exacerbation risk and have a degree of influence equal to or greater than a threshold. This allows the user to know which environmental factors they should adjust.
  • FIG. 26(a) and (b) show examples of environmental factor data and symptoms.
  • FIG. 26(a) shows environmental factor data that can be detected by an environmental sensor.
  • environmental factor data includes radiation temperature, air pressure, dust (amount, suspended concentration), airflow (wind speed, air volume), CO2, oxygen (concentration), sound (sound pressure, volume, frequency, tempo), odor (intensity), acceleration/inclination (environmental factor data when riding in a vehicle), droplets/steam/smoke (environmental factor data related to infectious diseases), etc.
  • these can be source data for predicting the possibility of a change in symptoms.
  • FIG. 26(b) shows symptoms caused by environmental factor data.
  • symptoms include weather-related illnesses, infectious diseases, sleep quality, autonomic nervous system imbalance, dementia/delirium, weakness/frailty, memory decline/improvement, alertness/drowsiness, heat stroke, motor function, motion sickness, and VR sickness.
  • these can also be symptom changes predicted by the mathematical model.
  • the mathematical model is being trained, the user reports the presence or absence and severity of these symptoms as training data.
  • the information processing device 60 and the environmental sensor 11 do not have to be separate systems, and the information processing device 60 may be integrated into the environmental sensor 11.
  • the environmental sensor 11 can display the risk of exacerbation predicted from the environmental factor data of the space in which it is installed on a liquid crystal display or the like.
  • the indoor unit 10b of the air conditioner has an environmental sensor 11 built in
  • either the indoor unit 10b, the outdoor unit 10a, or the remote control 12 may display on the remote control 12 the risk of aggravation predicted from the environmental factor data of the space.
  • vital data is not required to predict the risk of exacerbation, but the information processing device 60 may predict the risk of exacerbation using sensory intensity and vital data.
  • this embodiment is not limited to predicting symptoms in humans, but may also be used to predict symptoms in animals such as pets, livestock such as cows and pigs, and farmed fish.
  • the configuration examples in Figures 5, 21, etc. are divided according to main functions to make it easier to understand the processing by the information processing device 60.
  • the technology disclosed herein is not limited by the manner in which the processing units are divided or the names of the processing units.
  • the processing of the information processing device 60 can also be divided into even more processing units depending on the processing content. Also, it can be divided so that one processing unit includes even more processes.
  • the information processing device 60 includes multiple computing devices, such as a server cluster.
  • the multiple computing devices are configured to communicate with each other via any type of communication link, including a network, shared memory, etc., and perform the processing disclosed herein.
  • processing circuit includes a processor programmed to execute each function by software, such as a processor implemented by an electronic circuit, an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and devices such as conventional circuit modules designed to execute each of the functions described above.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the third aspect of the present disclosure is that "the model simulating biological characteristics outputs different intermediate data depending on the range of values that the environmental factor data takes or whether the environmental factor data satisfies a condition," so that sweating or shivering due to temperature, or the relationship between temperature and the degree of immune cell activity, etc., can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of symptom changes due to the environment can be created with a smaller number of learning data samples.
  • the fourth aspect of the present disclosure is that "the model simulating biological characteristics outputs the intermediate data according to the amount of increase or decrease only when the change in the environmental factor data changes to either an increase or a decrease, or outputs the intermediate data that changes according to the value of the nth derivative," so that physiological reactions such as not noticing small temperature changes, physiological reactions in which a burn caused by touching a high temperature does not heal even when the temperature returns to normal, the relationship between air pressure and meteorological illnesses, or the relationship between acceleration and car sickness can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of changes in symptoms due to the environment can be created with a smaller number of learning data samples.
  • the model simulating biological characteristics outputs the intermediate data according to the integrated value of the environmental factor data, or the intermediate data which differs depending on the history of changes in the past values of the environmental factor data even if the current value of the environmental factor data is the same
  • relationships between pollen intake and antibody amount, CO2 concentration and blood oxygen concentration, the relationship between pollen dispersion amount and hay fever, or the relationship between temperature, humidity and heat stroke, etc. can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of changes in symptoms due to the environment can be created with a smaller number of learning data samples.
  • the model simulating biological characteristics outputs the intermediate data according to the duration that the environmental factor data maintains a value within a specified range, or the number of times that the environmental factor data repeats a value within a specified range," so that the relationship between habituation to temperature, the number of times an allergen is ingested, and the amount of immune response (anaphylaxis), etc., can be expressed by the intermediate data, and correspondence information that matches the intermediate data with the possibility of symptom changes in response to the environment can be created with a smaller number of learning data samples.
  • the seventh aspect of the present disclosure is that "the model simulating biological characteristics outputs the intermediate data that changes after a predetermined time has elapsed from the time the environmental factor data occurs," so that the relationship of a runny nose occurring with a delay after inhaling pollen, or the relationship of the immune system acting with a delay after coming into contact with bacteria, can be expressed in intermediate data, and correspondence information that associates the intermediate data with the possibility of symptom changes in response to the environment can be created with a smaller number of learning data samples.
  • control unit further predicts the possibility of the symptom change from the intermediate data and the environmental factor data using correspondence information that associates the environmental factor data," so that the possibility of a symptom change can be predicted not only from the intermediate data but also from the environmental factor data.
  • the possibility of symptom change is the possibility of worsening or improving any of the following symptoms: allergy symptoms, asthma symptoms, weather-related illness, infectious disease, decreased sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness," making it possible to predict the possibility of changes in various symptoms.
  • "environmental factor data is a statistical quantity processed by statistical processing,” so that the statistical processing can be converted into intermediate data rather than the environmental factor data itself, and the correspondence information associates this intermediate data with the possibility of symptom changes in response to the environment, thereby improving the accuracy of prediction.
  • the twelfth aspect of the present disclosure "predicts the possibility of a symptom change from the actually measured environmental factor data and the intermediate data, or from the forecast values of the environmental factor data and the intermediate data," so that the possibility of a symptom change can be predicted not only from the actually measured environmental factor data and intermediate data, but also from the forecast values of the environmental factor data and the intermediate data.
  • a thirteenth aspect of the present disclosure "uses the intermediate data as explanatory variables, and information on changes in symptoms reported regarding asthma symptoms, allergy symptoms, weather-related illnesses, infectious diseases, poor sleep quality, decreased alertness/drowsiness, autonomic dysfunction, frailty, dementia/delirium, poor memory, decreased motor function, heat stroke, motion sickness, or VR sickness as training data, and generates the correspondence information using machine learning techniques," so that correspondence information that learns the correspondence between explanatory variables and training data can be generated, and the correspondence information can predict the possibility of these symptom changes.
  • a fourteenth aspect of the present disclosure "predicts the possibility of a symptom change for an individual based on the possibility of symptom change predicted by" first correspondence information for multiple people and second correspondence information for an individual, so that correspondence information for multiple people and for an individual can be generated separately, and the possibility of symptom change is predicted using each of the two pieces of correspondence information, so that information such as those with a high risk of exacerbation can be provided for each individual.
  • the fifteenth aspect of the present disclosure "predicts the possibility of a symptom change based on the correspondence information generated for each season, each target disease, or each allergen," making it possible to generate and predict the possibility of a symptom change for each season, each target disease, or each allergen.
  • the sixteenth aspect of the present disclosure "displays the intermediate data and the possibility of symptom change on the same screen," making it easy to understand how likely a symptom change is compared to the current intermediate data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

The objective of the present invention is to predict a change in a symptom of a living body caused by environmental factors using a smaller amount of data. The present disclosure provides a living body symptom change predicting system 100 comprising an environment sensor 11 and an information processing device 60, wherein: the environment sensor detects environmental factor data relating to environmental factors in a target space; the information processing device includes a control unit for converting the environmental factor data into intermediate data by means of a model that simulates biological characteristics associated with symptoms relating to the environment; and the control unit uses associating information that associates at least the intermediate data and a possibility of a symptom change relating to the environment to predict the possibility of the symptom change from the intermediate data.

Description

生体の症状変化予測システム、情報処理装置、生体の症状変化予測方法System for predicting changes in symptoms of a living body, information processing device, and method for predicting changes in symptoms of a living body
 本開示は、生体の症状変化予測システム、情報処理装置、及び生体の症状変化予測方法に関する。 This disclosure relates to a system for predicting changes in symptoms in a living body, an information processing device, and a method for predicting changes in symptoms in a living body.
 環境因子(例えば温度、湿度、CO、PM2.5、TVOC、ホルムアルデヒド等)により、喘息やアレルギー症状が生じるなどの人の症状に変化が生じることが知られている。環境因子データから人の症状変化をある程度予測できれば、患者がその環境を忌避したり、人の症状が改善する環境になるように事前に環境制御を行ったりすることが可能になる。 It is known that environmental factors (such as temperature, humidity, CO2 , PM2.5, TVOC, formaldehyde, etc.) can cause changes in human symptoms, such as asthma and allergy symptoms. If changes in human symptoms can be predicted to some extent from environmental factor data, it will be possible to prevent patients from avoiding that environment or to control the environment in advance so that the person's symptoms improve.
 慢性疾患悪化の可能性のある事象を検出し、検出結果に基づいて行動などを推奨する技術が知られている(例えば、特許文献1参照。)。特許文献1には、生理学的データ及び環境因子データから慢性疾患悪化の可能性のある事象を検出し、検出結果に基づいて好ましい行動や服薬を推奨する技術が開示されている。 Technology is known that detects events that may worsen a chronic disease and recommends actions based on the detection results (see, for example, Patent Document 1). Patent Document 1 discloses technology that detects events that may worsen a chronic disease from physiological data and environmental factor data, and recommends favorable actions and medication based on the detection results.
特許第6987042号公報Patent No. 6987042
 しかしながら、機械学習などで環境因子データから生体の症状変化を予測する対応情報を作成するには、膨大なデータ量が必要になる。これは、人が環境の影響を受けると内部で何らかの反応や変化があり、その結果として症状が生じると考えられ、症状と環境に単純な線形関係があることは少ないためである。 However, to create correspondence information that can predict changes in symptoms in a living organism from environmental factor data using machine learning or other methods, a huge amount of data is required. This is because it is believed that when a person is affected by the environment, some kind of internal reaction or change occurs, resulting in symptoms, and there is rarely a simple linear relationship between symptoms and the environment.
 本開示は、環境因子により生じる生体の症状変化を、より少ないデータで予測する技術を提供する。 This disclosure provides technology that predicts changes in biological symptoms caused by environmental factors using less data.
 本開示の第1の態様は、
 環境センサと、情報処理装置とを有する生体の症状変化予測システムであって、
 前記環境センサは、対象空間の環境因子に関する環境因子データを検出し、
 前記情報処理装置は、環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する制御部を有し、
 前記制御部は、少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する。
A first aspect of the present disclosure is a method for manufacturing a semiconductor device comprising:
A symptom change prediction system for a living body having an environmental sensor and an information processing device,
The environmental sensor detects environmental factor data related to an environmental factor of a target space;
the information processing device has a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by an environment;
The control unit predicts the possibility of a symptom change from the intermediate data by using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment.
 本開示の第1の態様によれば、環境因子により生じる人の症状変化を、より少ないデータで予測することができる。 According to the first aspect of the present disclosure, changes in a person's symptoms caused by environmental factors can be predicted with less data.
 本開示の第2の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、ウェーバー・フェヒナーの法則である。
A second aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model that simulates the biological characteristics is the Weber-Fechner law.
 本開示の第3の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、前記環境因子データが取る値の範囲によって又は前記環境因子データが条件を満たすか否かで、異なる前記中間データを出力するモデルである。
A third aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model that simulates the biological characteristics is a model that outputs different intermediate data depending on the range of values that the environmental factor data takes or whether the environmental factor data satisfies a condition.
 本開示の第4の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、前記環境因子データの変化が増加又は減少のどちらか一方に変化した場合にのみ増加量又は減少量に応じた前記中間データを出力するモデル、又は、n階導関数の値に応じて変化する前記中間データを出力するモデルである。
A fourth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model simulating the biological characteristics is a model that outputs the intermediate data corresponding to the amount of increase or decrease only when the change in the environmental factor data is either an increase or a decrease, or a model that outputs the intermediate data that changes according to the value of the nth derivative.
 本開示の第5の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、前記環境因子データの積算値に応じた前記中間データ、又は、前記環境因子データの現在値が同じでも環境因子データの過去の値の変化履歴によって異なる前記中間データを出力するモデルである。
A fifth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model simulating the biological characteristics is a model that outputs the intermediate data corresponding to the integrated value of the environmental factor data, or the intermediate data that differs depending on the history of changes in the past values of the environmental factor data even if the current value of the environmental factor data is the same.
 本開示の第6の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、前記環境因子データが所定範囲の値を継続する持続時間、又は、前記環境因子データが所定範囲の値を繰り返す回数に応じた前記中間データを出力するモデルである。
A sixth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model that simulates the biological characteristic is a model that outputs the intermediate data according to the duration that the environmental factor data continues to have a value within a predetermined range, or the number of times that the environmental factor data repeats a value within a predetermined range.
 本開示の第7の態様は、第1の態様に記載の症状変化予測システムであって、
前記生体特性を模擬したモデルは、前記環境因子データが生起した時刻から所定時間が経過した後に変化する前記中間データを出力するモデルである。
A seventh aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model that simulates the biological characteristics is a model that outputs the intermediate data that changes after a predetermined time has elapsed from the time when the environmental factor data occurs.
 本開示の第8の態様は、第1の態様に記載の症状変化予測システムであって、
 前記生体特性を模擬したモデルは、前記環境因子データを入力、前記中間データを出力とするlog関数、指数関数、又はn次関数である。
An eighth aspect of the present disclosure is a symptom change prediction system according to the first aspect,
The model that simulates the biological characteristics is a log function, an exponential function, or an n-th order function, in which the environmental factor data is input and the intermediate data is output.
 本開示の第9の態様は、第1~第8のいずれかの態様に記載の症状変化予測システムであって、
 前記制御部は、さらに前記環境因子データを対応づけた対応情報を用いて、前記中間データ及び前記環境因子データから前記症状変化の可能性を予測する。
A ninth aspect of the present disclosure is a symptom change prediction system according to any one of the first to eighth aspects,
The control unit further predicts the possibility of the symptom change from the intermediate data and the environmental factor data, using correspondence information in which the environmental factor data is associated with each other.
 本開示の第10の態様は、第1~第9の態様に記載の症状変化予測システムであって、
 前記症状変化の可能性は、アレルギー症状、喘息症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いのいずれかの症状が、悪化又は好転する可能性である
 本開示の第11の態様は、第1~第10のいずれかの態様に記載の症状変化予測システムであって、
 前記環境因子データは、統計処理により加工された統計量である。
A tenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to ninth aspects,
The possibility of the symptom change is a possibility of worsening or improving any of the following symptoms: allergy symptoms, asthma symptoms, meteorological illness, infectious disease, decreased sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness. An eleventh aspect of the present disclosure is a symptom change prediction system according to any of the first to tenth aspects,
The environmental factor data is a statistical quantity that has been processed by statistical processing.
 本開示の第12の態様は、第9の態様に記載の症状変化予測システムであって、
 前記制御部は、実測された前記環境因子データ及び前記中間データ、又は、前記環境因子データの予報値及び前記中間データから、前記症状変化の可能性を予測する。
A twelfth aspect of the present disclosure is a symptom change prediction system according to the ninth aspect,
The control unit predicts the possibility of the symptom change from the actually measured environmental factor data and the intermediate data, or from predicted values of the environmental factor data and the intermediate data.
 本開示の第13の態様は、第1~第12のいずれかの態様に記載の症状変化予測システムであって、
 喘息症状、アレルギー症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いについて申告された症状変化情報を教師データとして、機械学習の手法を用いて前記対応情報を生成する。
A thirteenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to twelfth aspects,
The corresponding information is generated using machine learning techniques using information on changes in symptoms reported regarding asthma symptoms, allergy symptoms, weather-related illnesses, infectious diseases, poor sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness as training data.
 本開示の第14の態様は、第13の態様に記載の症状変化予測システムであって、
 前記制御部は、前記中間データを説明変数、複数人が申告した前記症状変化情報を教師データとして、機械学習の手法を用いて第1の対応情報を生成し、
 前記中間データを説明変数、個人が申告した前記症状変化情報を教師データとして、機械学習の手法を用いて第2の対応情報を生成し、
 前記制御部は、前記第1の対応情報と前記第2の対応情報によりそれぞれ予測された症状変化の可能性に基づいて個人の症状変化の可能性を予測する。
A fourteenth aspect of the present disclosure is a symptom change prediction system according to the thirteenth aspect,
the control unit generates first correspondence information using a machine learning technique with the intermediate data as an explanatory variable and the symptom change information reported by a plurality of persons as teacher data;
generating second correspondence information using a machine learning technique with the intermediate data as explanatory variables and the symptom change information reported by the individual as teacher data;
The control unit predicts a possibility of a symptom change of an individual based on the possibility of a symptom change predicted by the first correspondence information and the second correspondence information, respectively.
 本開示の第15の態様は、第13又は第14の態様に記載の症状変化予測システムであって、
 前記制御部は、季節ごと、対象疾患ごと、又は、アレルギー症状におけるアレルゲンごとに、前記対応情報を生成し、季節ごと、対象疾患ごと、又は、前記アレルゲンごとに生成した前記対応情報に基づいて前記症状変化の可能性を予測する。
A fifteenth aspect of the present disclosure is a symptom change prediction system according to the thirteenth or fourteenth aspect,
The control unit generates the correspondence information for each season, each target disease, or each allergen in an allergic symptom, and predicts the possibility of a change in symptoms based on the correspondence information generated for each season, each target disease, or each allergen.
 本開示の第16の態様は、第1~第15のいずれかの態様に記載の症状変化予測システムであって、
 前記制御部は、前記中間データと前記症状変化の可能性を同じ画面に表示する。
A sixteenth aspect of the present disclosure is a symptom change prediction system according to any one of the first to fifteenth aspects,
The control unit displays the intermediate data and the possibility of a symptom change on the same screen.
 本開示の第17の態様は、
 情報処理装置であって、
 対象空間の環境因子に関する環境因子データを前記環境センサから受信し、
 環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する制御部を有し、
 前記制御部は、少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する。
A seventeenth aspect of the present disclosure is a method for manufacturing a semiconductor device comprising:
An information processing device,
receiving environmental factor data from the environmental sensor relating to an environmental factor of a target space;
a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment;
The control unit predicts the possibility of a symptom change from the intermediate data by using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment.
 本開示の第17の態様によれば、環境因子により生じる生体の症状変化を、より少ないデータで予測することができる。 According to the seventeenth aspect of the present disclosure, changes in symptoms of a living body caused by environmental factors can be predicted with less data.
 本開示の第18の態様は、
 環境センサと、情報処理装置とを有する生体の症状変化予測システムが行う症状変化予測方法であって、
 前記環境センサは、対象空間の環境因子に関する環境因子データを検出し、
 制御部が、環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する処理と、
 少なくとも前記中間データと症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する処理と、を行う。
An eighteenth aspect of the present disclosure is a method for manufacturing a semiconductor device comprising:
A symptom change prediction method performed by a symptom change prediction system for a living body having an environmental sensor and an information processing device, comprising:
The environmental sensor detects environmental factor data related to an environmental factor of a target space;
A process in which a control unit converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment;
A process of predicting the possibility of a symptom change from the intermediate data using correspondence information that associates at least the intermediate data with the possibility of a symptom change is performed.
 本開示の第18の態様によれば、環境因子により生じる生体の症状変化を、より少ないデータで予測することができる。 According to the 18th aspect of the present disclosure, changes in symptoms of a living body caused by environmental factors can be predicted with less data.
人の症状変化予測システムの一例のシステム構成と予測方法の概略を説明する図である。1 is a diagram outlining an example of a system configuration and a prediction method of a system for predicting changes in a person's symptoms. FIG. 人の症状変化予測システムのシステム構成の変形例を示す図である。FIG. 13 is a diagram showing a modified example of the system configuration of the human symptom change prediction system. 人の症状変化予測システムのシステム構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a system configuration of a system for predicting a change in a person's symptom. 情報処理装置のハードウェア構成の一例を示す図である。FIG. 2 illustrates an example of a hardware configuration of an information processing device. 学習フェーズにおいて、情報処理装置が有する機能をブロックに分けて説明する機能ブロック図の一例である。11 is an example of a functional block diagram illustrating functions of an information processing device in a learning phase, divided into blocks. FIG. 環境因子データ取得部が取得した環境因子データの一例を示す図である。4 is a diagram showing an example of environmental factor data acquired by an environmental factor data acquisition unit; FIG. 環境因子データの統計量、感覚強度(説明変数)及び症状変化情報(目的変数、教師データ)から数理モデルを生成する学習フェーズを説明する図である。FIG. 13 is a diagram illustrating a learning phase in which a mathematical model is generated from the statistics of environmental factor data, sensory intensity (explanatory variable), and symptom change information (objective variable, teacher data). 勾配ブースティング決定木による学習方法の流れを説明するフローチャート図の一例である。FIG. 1 is a flowchart illustrating an example of a flow of a learning method using a gradient boosting decision tree. 決定木のイメージ図である。FIG. 1 is an image diagram of a decision tree. log関数、指数関数、n次関数の形状の一例を示す図である。1A and 1B are diagrams illustrating examples of the shapes of a log function, an exponential function, and an n-th order function. ステップ関数、シグモイド関数、IF関数、特定の範囲だけ値を持つ関数の形状の一例を示す図である。FIG. 1 is a diagram showing an example of the shapes of a step function, a sigmoid function, an IF function, and a function having values only in a specific range. 2次関数に対する1次導関数の形状(接線)の一例を示す図である。FIG. 13 is a diagram showing an example of the shape (tangent) of a first derivative of a quadratic function. 時間と環境因子データ(例えば気圧)の関係、時間と中間データ(例えば気象病と関連のある生理反応量)の関係を示す図の一例である。1 is a diagram showing an example of a relationship between time and environmental factor data (e.g., atmospheric pressure) and a relationship between time and intermediate data (e.g., a physiological reaction amount related to meteorological illness). 時間と環境因子データ(例えば花粉飛散量)の関係、時間と中間データ(例えば花粉症と関連のある生理反応)の関係を示す図の一例である。1 is an example of a diagram showing the relationship between time and environmental factor data (e.g., the amount of pollen dispersed) and the relationship between time and intermediate data (e.g., a physiological response related to hay fever). 時間と環境因子データ(例えば気温)の関係、時間と中間データ(例えば熱中症と関連のある生理反応量)の関係を示す図の一例である。1 is a diagram showing an example of a relationship between time and environmental factor data (for example, temperature) and a relationship between time and intermediate data (for example, a physiological reaction amount related to heat stroke). 時間と環境因子データ(例えばCO濃度)の関係、時間と中間データ(例えば覚醒低下と関連のある生理反応量)の関係を示す図の一例である。1 is an example of a graph showing the relationship between time and environmental factor data (e.g., CO2 concentration) and the relationship between time and intermediate data (e.g., a physiological response amount related to decreased alertness). 時間と環境因子データ(例えばアレルゲン量)の関係、時間と中間データ(アレルギー症状と関連のある生理反応量)の関係を示す図の一例である。1 is an example of a diagram showing the relationship between time and environmental factor data (for example, the amount of allergens) and the relationship between time and intermediate data (the amount of physiological reaction related to allergic symptoms). 時間と環境因子データ(例えばハウスダスト量)の関係、時間と中間データ(例えばアレルギー症状と関連のある生理反応量)の関係を示す図の一例である。1 is a diagram showing an example of a relationship between time and environmental factor data (for example, the amount of house dust) and a relationship between time and intermediate data (for example, the amount of physiological reaction related to an allergic symptom). 環境因子データ(X軸)と感覚強度(Y軸)の対応を表した図、及び、環境因子データと感覚強度の対応を二本の直線で示す図の一例である。1 is an example of a diagram showing the correspondence between environmental factor data (X-axis) and sensory intensity (Y-axis), and a diagram showing the correspondence between environmental factor data and sensory intensity with two straight lines. 環境因子データから感覚強度が推定されることで生体反応と対応することを説明する図である。FIG. 13 is a diagram for explaining how sensory intensity is estimated from environmental factor data and corresponds to a biological response. 予測フェーズにおいて、情報処理装置が有する機能をブロックに分けて説明する機能ブロック図の一例である。11 is an example of a functional block diagram illustrating functions of an information processing device in a prediction phase, divided into blocks. FIG. 環境因子データと感覚強度を増悪リスク予測部に入力し、増悪リスクを予測する予測フェーズを説明する図である。FIG. 13 is a diagram illustrating a prediction phase in which environmental factor data and sensory intensity are input to an exacerbation risk prediction unit to predict exacerbation risk. 喘息の増悪リスクを、感覚強度を用いないで予測した場合と用いて予測した場合の予測精度を比較する図である。FIG. 13 is a diagram comparing the prediction accuracy of asthma exacerbation risk when predicting without and with sensory intensity. ユーザー端末が表示する増悪リスクのマップ画面の表示例を示す図である。FIG. 13 is a diagram showing an example of a map screen of an exacerbation risk displayed on a user terminal. ユーザー端末が表示する感覚強度と増悪リスク画面の表示例を示す図である。FIG. 13 is a diagram showing an example of a sensation intensity and exacerbation risk screen displayed on a user terminal. 環境因子データと症状の一例を示す図である。FIG. 13 is a diagram showing an example of environmental factor data and symptoms.
 以下、本開示を実施するための形態の一例として、人の症状変化予測システムと人の症状変化予測システムが行う人の症状変化予測方法について説明する。 Below, as an example of a form for implementing the present disclosure, a system for predicting changes in human symptoms and a method for predicting changes in human symptoms performed by the system for predicting changes in human symptoms will be described.
 <中間データと人の症状変化について>
人に生じる症状は環境因子の影響を受ける。症状としては、アレルギー症状、喘息症状、気象病、感染症、睡眠質低下(不眠、中途覚醒、寝つきが悪い、目覚めが悪い)、覚醒低下・眠気、自律神経失調、フレイル(虚弱)、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、VR酔い等がある。このように、症状は病気に限られない。
<Interim data and changes in symptoms in people>
Symptoms that occur in people are influenced by environmental factors. Symptoms include allergy symptoms, asthma symptoms, weather-related illnesses, infectious diseases, poor sleep quality (insomnia, waking up during the night, difficulty falling asleep, difficulty waking up), decreased alertness/drowsiness, autonomic dysfunction, frailty, dementia/delirium, memory loss, motor function loss, heat stroke, motion sickness, VR sickness, etc. In this way, symptoms are not limited to illness.
 しかし、人に生じる症状と環境因子に単純な線形関係があるわけではない。単純な線形関係とみなせないのは、環境因子の影響を受けて、人体で何らかの反応や変化があり、その結果として症状が生じるからである。環境因子と症状の関係は非線形の関係であることが知られており、非常に複雑なため、機械学習などで両者の関係からモデルを作成するには、膨大なデータ量が必要になる。 However, there is no simple linear relationship between the symptoms that people experience and environmental factors. The reason it cannot be considered a simple linear relationship is that environmental factors affect the human body, causing some kind of reaction or change, which results in symptoms. The relationship between environmental factors and symptoms is known to be nonlinear and extremely complex, so creating a model from the relationship between the two using machine learning or other methods requires a huge amount of data.
 そこで、本実施形態では、環境因子に対する人体の反応(症状)を示すような中間データを説明変数として用いることで、より少ないデータ量で精度よく症状を予測可能にする。中間データとは症状を引き起こす環境因子に関する応答を模擬した数値である。このような中間データは、生体特性を模擬したモデル(後述する)により生成することが可能である。中間データを作成するモデル自体が症状特性を模擬できる。生体特性を模擬したモデルにより環境因子データを中間データに変換することで、少サンプル数で機械学習の精度を上げることができる。 In this embodiment, intermediate data that indicates the human body's response (symptoms) to environmental factors is used as an explanatory variable, making it possible to accurately predict symptoms with a smaller amount of data. Intermediate data is a numerical value that simulates the response related to the environmental factors that cause symptoms. Such intermediate data can be generated by a model that simulates biological characteristics (described later). The model that creates the intermediate data can itself simulate symptom characteristics. By converting environmental factor data into intermediate data using a model that simulates biological characteristics, it is possible to improve the accuracy of machine learning with a small number of samples.
 なお、本実施形態では、この中間データを「感覚強度」という用語で説明する場合がある。また、症状の変化を「増悪リスク」という用語で説明する場合がある。 In this embodiment, this intermediate data may be described using the term "sensation intensity." Also, changes in symptoms may be described using the term "risk of exacerbation."
 具体的な環境因子として室内、乗り物、又は屋外などの空気質に関する環境因子(現状:温度、湿度、CO、PM2.5、TVOC(総揮発性有機化合物)、ホルムアルデヒド等)が知られている。環境因子の変化により、喘息又はアレルギー症状等の増悪リスクが増加する場合がある。増悪とは、喘息又はアレルギー症状などの病気が悪化して、通常の治療で改善せず、治療内容を変更する必要がある状態をいい、増悪リスクとはそのような状態になるリスク(可能性)をいう。 Specific environmental factors are known to be those related to air quality indoors, in vehicles, or outdoors (current conditions: temperature, humidity, CO2 , PM2.5, TVOC (total volatile organic compounds), formaldehyde, etc.). Changes in environmental factors may increase the risk of exacerbation of asthma or allergy symptoms. An exacerbation refers to a condition in which a disease such as asthma or allergy symptoms worsens, does not improve with normal treatment, and requires a change in treatment, and exacerbation risk refers to the risk (possibility) of such a condition occurring.
 例えば喘息と環境因子には相関関係があることが知られている。喘息は非常に多岐にわたる環境因子が発症に寄与すると言われている症状である。喘息を増悪させる環境因子として、PM2.5、VOC、 SOx、NOx、真菌、ダニ、ホコリ、強い匂い/煙霧、煙、冷たく乾燥した空気、熱気等が知られており、多種多様である。 For example, it is known that there is a correlation between asthma and environmental factors. Asthma is a condition whose onset is said to be contributed to by a wide variety of environmental factors. Environmental factors that are known to aggravate asthma are diverse and include PM2.5, VOCs, SOx, NOx, fungi, dust mites, dust, strong odors/fumes, smoke, cold, dry air, and hot air.
 厚生労働省は、喘息の抑制のためだけでないが、好ましい環境因子の基準値・推奨値を公開している。 The Ministry of Health, Labour and Welfare has published standard and recommended values for favorable environmental factors, not just for suppressing asthma.
 温度(17℃~28℃)、湿度(40%~70%)、二酸化炭素濃度(1000ppm以下)、ホルムアルデヒド(0.08ppm以下)
 しかし、これらの基準値・推奨値は人体への健康リスク有無の目安であり、症状に寄与する因子は複数ある。
Temperature (17℃ to 28℃), humidity (40% to 70%), carbon dioxide concentration (1000ppm or less), formaldehyde (0.08ppm or less)
However, these standard and recommended values are merely guidelines for whether or not there is a risk to human health, and there are multiple factors that contribute to symptoms.
 したがって、識者によると、喘息又はアレルギー症状に対し万人に共通の対処法は現状見つかっておらず、原因の特定も難しい。診察時や検査入院時では症状がでず、自宅でのみ症状が出る患者も存在する。また、自宅でのセルフメディケーションも重要と言われている。 Accordingly, experts say that currently there is no universal solution to asthma or allergy symptoms, and identifying the cause is difficult. There are also patients who do not experience symptoms during consultations or hospitalization for tests, but only experience symptoms at home. It is also said that self-medication at home is important.
 これらの実情を踏まえると、喘息又はアレルギー症状を低減する環境因子は、因子毎の基準値の設定では対処しきれない。また、患者自身による室内環境へのアプローチが可能であることも重要であり、環境制御の操作性も重要であると考えられる。 In light of these realities, environmental factors that reduce asthma or allergy symptoms cannot be fully addressed by setting standard values for each factor. It is also important that patients themselves are able to approach their indoor environment, and ease of use of environmental control is also considered important.
 <増悪リスクの予測方法の概略>
図1は、人の症状変化予測システム100の一例のシステム構成と予測方法の概略を説明する図である。ネットワークNを介して、環境機器10、環境センサ11、ユーザー端末70、及び、情報処理装置60が通信可能に接続されている。
<Outline of the method for predicting the risk of progression>
1 is a diagram illustrating an outline of a system configuration and a prediction method of an example of a human symptom change prediction system 100. An environmental device 10, an environmental sensor 11, a user terminal 70, and an information processing device 60 are communicatively connected via a network N.
 環境センサ11は、喘息又はアレルギー症状を有している患者9が居住する建物の好ましくは各部屋に設置されている。環境センサ11は患者9が居住する対象空間7の環境因子に関する環境因子データを検出する。環境センサ11は、建物に1つだけ設置されていてもよい。環境機器10は、空調機、換気装置、又は、空気清浄機など、空気質に関する環境を制御する機器である。環境機器10は複数の機能を有していてもよいし、各機能の環境機器10がそれぞれ存在してもよい。 The environmental sensor 11 is installed in preferably each room of a building in which a patient 9 with asthma or allergy symptoms resides. The environmental sensor 11 detects environmental factor data related to the environmental factors of the target space 7 in which the patient 9 resides. Only one environmental sensor 11 may be installed in a building. The environmental device 10 is a device that controls the environment related to air quality, such as an air conditioner, a ventilation device, or an air purifier. The environmental device 10 may have multiple functions, and there may be an environmental device 10 for each function.
 ユーザー端末70は、後述するマップ画面を表示する端末装置である。ユーザー端末70では、Webブラウザやネイティブアプリが実行されており、ネットワークNを介して情報処理装置60からディスプレイに表示するための情報を受信する。患者9はマップ画面等を閲覧して、増悪リスクを下げる又は増大させない環境状況を把握できる。ユーザー端末70は患者9が携帯でき、環境センサ11が設置された空間と同じ空間に設置されていなくてもよい。 The user terminal 70 is a terminal device that displays a map screen, which will be described later. A web browser or a native application is executed on the user terminal 70, and information to be displayed on the display is received from the information processing device 60 via the network N. The patient 9 can view the map screen or the like to understand the environmental conditions that reduce or do not increase the risk of exacerbation. The user terminal 70 can be carried by the patient 9, and does not need to be installed in the same space as the space in which the environmental sensor 11 is installed.
 情報処理装置60は、例えば、種々の情報処理やサービスの提供、ファイルの保管を行うサーバー装置である。情報処理装置60は、後述する数理モデルを生成し、この数理モデルに感覚強度及び環境因子データを入力することで増悪リスクを予測する。感覚強度とは、空気質環境の変化が刺激となり、人間が受けるであろう影響の大きさを表す変数である。 The information processing device 60 is, for example, a server device that processes various information, provides services, and stores files. The information processing device 60 generates a mathematical model, which will be described later, and predicts the risk of exacerbation by inputting sensory intensity and environmental factor data into this mathematical model. Sensory intensity is a variable that indicates the magnitude of the impact that a person will have when a change in the air quality environment becomes a stimulus.
 (1) 環境センサ11は情報処理装置60に環境因子データを送信する。数理モデルを生成する学習フェーズでは、更に、患者9がユーザー端末70から症状変化情報(例えば、悪化した、好転した、寛解した、改善した)を情報処理装置60に自己申告する。 (1) The environmental sensor 11 transmits environmental factor data to the information processing device 60. In the learning phase for generating a mathematical model, the patient 9 also self-reports symptom change information (e.g., worsening, improvement, remission, improvement) to the information processing device 60 via the user terminal 70.
 (2) 情報処理装置60は感覚強度及び環境因子データを生成しておいた数理モデルに入力して、増悪リスクを予測する。この数理モデルは、後述するようにバイタルデータを必要とせずに、感覚強度を使用する。数理モデルは、感覚強度と喘息やアレルギー症状の増悪リスクとを対応付けた対応情報である。 (2) The information processing device 60 inputs the sensory intensity and environmental factor data into a mathematical model that has been generated to predict the risk of exacerbation. This mathematical model uses sensory intensity without requiring vital data, as described below. The mathematical model is correspondence information that associates sensory intensity with the risk of exacerbation of asthma or allergic symptoms.
 (3) 情報処理装置60は環境因子データに対し増悪リスクがマップ上に配置されたマップ画面をユーザー端末70に送信する。 (3) The information processing device 60 transmits to the user terminal 70 a map screen in which the risk of deterioration is plotted on a map for each environmental factor data.
 (4) ユーザー端末70はマップ画面を表示するが、マップ画面にはどのような環境設定なら増悪リスクが低減又は増大するか示されている。ユーザーが表示された環境設定を指定することで、ユーザー端末70が環境設定を情報処理装置60に送信する。 (4) The user terminal 70 displays a map screen that indicates which environmental settings will reduce or increase the risk of progression. When the user specifies the displayed environmental settings, the user terminal 70 transmits the environmental settings to the information processing device 60.
 (5) 情報処理装置60は環境設定を環境機器10の設定情報に変換して、環境機器10に送信する。これにより、環境機器10が増悪リスクを低減するように又は増大しないように空気質を制御できる。 (5) The information processing device 60 converts the environmental settings into setting information for the environmental device 10 and transmits it to the environmental device 10. This allows the environmental device 10 to control the air quality so as to reduce or prevent an increase in the risk of deterioration.
 このように本開示では、増悪リスクの予測に際し、バイタルデータを使用しない。具体的には、環境因子データに加えて、空気質環境の変化が刺激となり、人間が受けるであろう影響の大きさを表す変数として「中間データ(感覚強度)」を導入する(バイタルデータの代替が可能)ことで、症状の増悪リスクを高精度に予測可能とした。また、生体特性を模擬したモデルにより環境因子データを中間データに変換することで、少サンプル数で機械学習の精度を上げることができる。これにより、患者9がその環境を忌避したり、増悪リスクが低減される室内環境に環境制御を行ったりすることが可能になる。 In this way, in this disclosure, vital data is not used when predicting the risk of exacerbation. Specifically, in addition to environmental factor data, "intermediate data (sensory intensity)" is introduced as a variable that represents the magnitude of the impact that changes in the air quality environment will have on humans (can replace vital data), making it possible to predict the risk of exacerbation with high accuracy. In addition, by converting environmental factor data into intermediate data using a model that simulates biological characteristics, the accuracy of machine learning can be improved with a small number of samples. This makes it possible for patient 9 to avoid that environment, or for environmental control to be performed to create an indoor environment that reduces the risk of exacerbation.
 <<システム構成の変形例>>
環境センサ11が独立に存在するのでなく、図2に示すように、環境センサ11は室内機10bに内蔵されていてもよい。図2は、人の症状変化予測システム100のシステム構成の変形例を示す。人の症状変化予測システム100は、主として、熱源ユニットとしての1台の室外ユニット10aと、利用ユニットとしての1台以上の室内機10bと、各種設定に係るコマンドを入力する入力装置としてのリモートコントロール装置(以下、「リモコン12」と称する)と、を有している。
<<Modifications of system configuration>>
The environmental sensor 11 does not have to exist independently, but may be built into the indoor unit 10b as shown in Fig. 2. Fig. 2 shows a modified example of the system configuration of the human symptom change prediction system 100. The human symptom change prediction system 100 mainly has one outdoor unit 10a as a heat source unit, one or more indoor units 10b as utilization units, and a remote control device (hereinafter referred to as "remote control 12") as an input device for inputting commands related to various settings.
 室外ユニット10aと室内機10bとを空調機という。室外ユニット10aと、室内機10bとが冷媒連絡配管(ガス連絡配管GP)で接続されることで冷媒回路が構成されている。また、人の症状変化予測システム100では、各ユニット間の信号の伝送路として機能する複数の通信ネットワーク(ネットワークNW1、ネットワークNW2)が構築されている。ネットワークNW2は有線でも無線でもよい。 The outdoor unit 10a and the indoor unit 10b are called an air conditioner. The outdoor unit 10a and the indoor unit 10b are connected by a refrigerant connection pipe (gas connection pipe GP) to form a refrigerant circuit. In addition, the human symptom change prediction system 100 has multiple communication networks (network NW1, network NW2) that function as transmission paths for signals between each unit. Network NW2 may be wired or wireless.
 リモコン12は、温度や湿度などの設定を受け付けるユーザーインターフェースである。情報処理装置60の機能は図1と同様でよい。 The remote control 12 is a user interface that accepts settings such as temperature and humidity. The functions of the information processing device 60 may be the same as those in FIG. 1.
 (1) 室内機10bには組み込み型の環境センサ11が内蔵されている。室内機10bは環境因子データを室外ユニット10aに送信する。 (1) The indoor unit 10b has a built-in environmental sensor 11. The indoor unit 10b transmits environmental factor data to the outdoor unit 10a.
 (2) 室外ユニット10aは情報処理装置60に環境因子データを送信する。 (2) The outdoor unit 10a transmits the environmental factor data to the information processing device 60.
 (3) 情報処理装置60は感覚強度及び環境因子データを生成しておいた数理モデルに入力して、増悪リスクを予測する。 (3) The information processing device 60 inputs the sensory intensity and environmental factor data into the mathematical model that was generated to predict the risk of exacerbation.
 (4) 情報処理装置60は環境因子データに対し増悪リスクがマップ上に配置されたマップ画面を、室外ユニット10a、室内機10bを介してリモコン12に送信する。 (4) The information processing device 60 transmits a map screen showing the risk of deterioration for the environmental factor data on a map to the remote control 12 via the outdoor unit 10a and the indoor unit 10b.
 (5) リモコン12はマップ画面を表示するが、マップ画面にはどのような環境設定なら増悪リスクが低減又は増大するか示されている。ユーザーが表示された環境設定を指定することで、リモコン12が環境設定を室内機10bに送信する。 (5) The remote control 12 displays a map screen that indicates which environmental settings will reduce or increase the risk of aggravation. When the user specifies the displayed environmental settings, the remote control 12 transmits the environmental settings to the indoor unit 10b.
 (6) 室内機10bは環境設定を空調機の設定情報に変換して、自機を制御する。これにより、環境機器10が増悪リスクを低減するように又は増加しないように空気質を制御できる。 (6) The indoor unit 10b converts the environmental settings into setting information for the air conditioner and controls the unit itself. This allows the environmental equipment 10 to control the air quality so as to reduce the risk of deterioration or to prevent an increase.
 <人の症状変化予測システムのシステム構成>
次に、図3を参照し、人の症状変化予測システム100のシステム構成について説明する。図3は、人の症状変化予測システム100のシステム構成の一例を示す図である。
<System configuration of the system for predicting changes in human symptoms>
Next, a system configuration of the human symptom change prediction system 100 will be described with reference to Fig. 3. Fig. 3 is a diagram showing an example of the system configuration of the human symptom change prediction system 100.
 人の症状変化予測システム100は、空調、照明などの各種の機器30とクラウド側の情報処理装置60を、ネットワークNを介して通信させることで、管理者から一般ユーザーに至るまでIoTを活用した様々なサービスを提供する。エッジ装置80、機器30、センサスイッチ類53及びユーザー端末70は顧客側に設置され、情報処理装置60はデータセンターやインターネット等のクラウドに設置される。なお、エッジ装置80は機器30とセンサスイッチ類53を集中管理する装置なので、エッジ装置80はなくてもよい。 The human symptom change prediction system 100 provides various services utilizing IoT to everyone from administrators to general users by having various devices 30, such as air conditioners and lighting, and a cloud-side information processing device 60 communicate via a network N. The edge device 80, devices 30, sensor switches 53, and user terminal 70 are installed on the customer side, and the information processing device 60 is installed in a data center or on the Internet or other cloud. Note that the edge device 80 is a device that centrally manages the devices 30 and sensor switches 53, so the edge device 80 is not necessary.
 機器30は、電力を消費する装置全般を指し、例えば、環境機器10、防犯設備、熱源機器、火災警報器、AHU(エアハンドリングユニット)、電力量計、照明等である。センサスイッチ類53は、環境センサ11を含む各種センサ、ランプ、リレー等である。機器30及びセンサスイッチ類53は、専用ケーブル又はLAN等のネットワークを介してエッジ装置80と通信可能に接続されている。機器30及びセンサスイッチ類53は無線通信でエッジ装置80と通信可能に接続されていてもよい。 The equipment 30 refers to any device that consumes power, such as the environmental equipment 10, security equipment, heat source equipment, fire alarms, AHUs (air handling units), electricity meters, and lighting. The sensor switches 53 are various sensors including the environmental sensor 11, lamps, relays, and the like. The equipment 30 and the sensor switches 53 are communicatively connected to the edge device 80 via a dedicated cable or a network such as a LAN. The equipment 30 and the sensor switches 53 may also be communicatively connected to the edge device 80 via wireless communication.
 機器30及びセンサスイッチ類53は、エッジ装置80により制御される。換言すると、エッジ装置80は、機器30及びセンサスイッチ類53の目的に適合するように、機器30及びセンサスイッチ類53に所要の操作を加える。制御の内容は、機器30及びセンサスイッチ類53の種類によって様々だが、例えば機器30が空調機の場合、空調機にて一般に設定可能な冷暖モード、設定温度、風量、湿度、風向等、空調機が有する機能に関する全ての制御が含まれてよい。また、制御には、シーズン前点検専用モードなどの動作モード、マイコンリセット、運転の停止、及び、機能の代用などもある。 The equipment 30 and the sensor switches 53 are controlled by the edge device 80. In other words, the edge device 80 applies the required operations to the equipment 30 and the sensor switches 53 to suit the purpose of the equipment 30 and the sensor switches 53. The content of the control varies depending on the type of equipment 30 and the sensor switches 53, but for example, if the equipment 30 is an air conditioner, it may include all control related to the functions of the air conditioner, such as the cooling/heating mode, set temperature, air volume, humidity, air direction, etc., which can generally be set on an air conditioner. Control also includes operating modes such as a mode dedicated to pre-season inspection, microcomputer reset, operation stop, and function substitution.
 機器30は機器30に応じた運転データを収集し、エッジ装置80に主に定期的に送信する。定期的とは例えば1回/1分間、1回/10分間、1回/60分間等であるが、ユーザーや情報処理装置60が設定できてよい。また、エッジ装置80やユーザー端末70から要求で、機器30が運転データをエッジ装置80に送信できる。運転データは、機器30によって様々であるが、例えば、空調機の場合、冷媒の高圧圧力、低圧圧力、冷媒温度、ファンの回転数、及びマイコンのCPU温度など、様々である。 The equipment 30 collects operating data appropriate for the equipment 30 and transmits it mainly periodically to the edge device 80. Periodically means, for example, once per minute, once per 10 minutes, once per 60 minutes, etc., but this can be set by the user or the information processing device 60. Furthermore, the equipment 30 can transmit operating data to the edge device 80 upon request from the edge device 80 or the user terminal 70. The operating data varies depending on the equipment 30, but in the case of an air conditioner, for example, it can include high pressure and low pressure of the refrigerant, refrigerant temperature, fan rotation speed, and microcomputer CPU temperature.
 また、機器30が異常を検知した場合は異常コードをエッジ装置80に送信する。異常を検知した機器30は運転を停止する。エッジ装置80は異常コードを情報処理装置60に送信する。センサスイッチ類53に関してもエッジ装置80の処理は同様でよい。センサスイッチ類53はエッジ装置80に例えば定期的に、検出した環境因子データなどの各種の検出情報を送信したり、異常コードを送信したりする。 If the device 30 detects an abnormality, it transmits an abnormality code to the edge device 80. The device 30 that detects the abnormality stops operation. The edge device 80 transmits the abnormality code to the information processing device 60. The edge device 80 may perform the same processing for the sensor switches 53. The sensor switches 53 transmit various detection information, such as detected environmental factor data, and transmit abnormality codes to the edge device 80, for example, periodically.
 エッジ装置80は、機器30及びセンサスイッチ類53を制御するコントローラである。エッジ装置80がない場合は情報処理装置60が機器30及びセンサスイッチ類53を制御する。エッジ装置80は、機器30及びセンサスイッチ類53を制御する制御装置、運転データ等を処理する情報処理装置、及び、情報処理装置60と通信する通信装置としての機能を有している。エッジ装置80は、例えば機器30から受信した異常コードを情報処理装置60に送信し、情報処理装置60から異常コードに応じた指示を受信する。あるいは、エッジ装置80が、情報処理装置60に何ら情報を送信しなくても、情報処理装置60から指示を受信する(例えばユーザー端末70から情報処理装置60に指示がある場合)。エッジ装置80は、機器30及びセンサスイッチ類53の機種に応じて指示を適切な指示に変換し、機器30及びセンサスイッチ類53に送信する。 The edge device 80 is a controller that controls the device 30 and the sensor switches 53. If the edge device 80 is not present, the information processing device 60 controls the device 30 and the sensor switches 53. The edge device 80 has the functions of a control device that controls the device 30 and the sensor switches 53, an information processing device that processes operation data, etc., and a communication device that communicates with the information processing device 60. The edge device 80 transmits, for example, an error code received from the device 30 to the information processing device 60, and receives an instruction corresponding to the error code from the information processing device 60. Alternatively, the edge device 80 receives an instruction from the information processing device 60 without transmitting any information to the information processing device 60 (for example, when an instruction is given to the information processing device 60 from the user terminal 70). The edge device 80 converts the instruction into an appropriate instruction according to the model of the device 30 and the sensor switches 53, and transmits it to the device 30 and the sensor switches 53.
 情報処理装置60は、一台以上のサーバー装置であってもよい。図3では一台の情報処理装置60が示されているが、情報処理装置60は機能ごとにいくつかに分かれて設置されてよい。また、情報処理装置60は、一台のサーバー装置によりその機能が集約されていてもよい。また、情報処理装置60は、複数台の同じ機能のものが用意されていて、複数の情報処理装置60がサーバークラスタのように通信しながら処理してもよい。 The information processing device 60 may be one or more server devices. Although one information processing device 60 is shown in FIG. 3, the information processing device 60 may be installed in several separate units according to function. Furthermore, the functions of the information processing device 60 may be consolidated into one server device. Furthermore, multiple information processing devices 60 with the same functions may be provided, and the multiple information processing devices 60 may communicate with each other and perform processing like a server cluster.
 情報処理装置60は、感覚強度及び環境因子データを数理モデルに入力して増悪リスクを予測し、ユーザー端末70等に提供する。情報処理装置60は、個々の住居やビルなどの施設だけでなく、地域ごとに増悪リスクを予測することもでき、公共放送などに増悪リスクをシェアしてもよい。また、情報処理装置60は、網羅的に用意した環境因子データと増悪リスクを用いて、増悪リスクに対し好ましい環境設定をユーザー端末70に提供できる。また、情報処理装置60は、ユーザー端末70が設定したスケジュールや操作に応じて機器30への指示をエッジ装置80に送信することもできる。 The information processing device 60 inputs the sensory intensity and environmental factor data into a mathematical model to predict the risk of aggravation, and provides it to the user terminal 70, etc. The information processing device 60 can predict the risk of aggravation not only for facilities such as individual homes and buildings, but also for each region, and may share the risk of aggravation with public broadcasting, etc. The information processing device 60 can also provide the user terminal 70 with environmental settings that are favorable for the risk of aggravation, using comprehensively prepared environmental factor data and the risk of aggravation. The information processing device 60 can also transmit instructions to the edge device 80 for the equipment 30 according to the schedule and operations set by the user terminal 70.
 なお、図3には記載がないが、数理モデルを生成する情報処理装置が情報処理装置60とは別に存在してもよい。この場合、情報処理装置が生成した数理モデルが情報処理装置60に導入される。本開示では、説明の便宜上、情報処理装置60が数理モデルを生成するものとする。 Note that although not shown in FIG. 3, an information processing device that generates the mathematical model may exist separately from the information processing device 60. In this case, the mathematical model generated by the information processing device is introduced into the information processing device 60. In this disclosure, for convenience of explanation, it is assumed that the information processing device 60 generates the mathematical model.
 情報処理装置60は、Webサーバーの機能も有している。Webサーバーはユーザーが手元で操作するWebブラウザなどのクライアントソフトウェア(Webクライアント)からの要求に応えて、HTMLファイル、XML、CSSファイル、JavaScript(登録商標)などで記述された画面情報をクライアントに提供する。このようにWebの仕組みを使用するアプリケーションをWebアプリという。 The information processing device 60 also has the functionality of a web server. In response to requests from client software (web client) such as a web browser operated by the user, the web server provides the client with screen information written in HTML files, XML, CSS files, JavaScript (registered trademark), etc. An application that uses web mechanisms in this way is called a web app.
 なお、情報処理装置60は、クラウドコンピューティングに対応していることが好ましい。クラウドコンピューティングとは、特定ハードウェア資源が意識されずにネットワーク上のリソースが利用される利用形態をいう。クラウドコンピューティングは、従来はユーザーが手元のコンピュータで利用していたデータやソフトウェアを、ネットワーク経由で、サービスとしてユーザーに提供する。ユーザー側はパーソナルコンピュータや携帯情報端末などで動作するWebブラウザ、及びインターネット接続環境などを用意することで、どの端末からでも、さまざまなサービスを利用することができる。 It is preferable that the information processing device 60 is compatible with cloud computing. Cloud computing refers to a form of usage in which resources on a network are used without being aware of specific hardware resources. Cloud computing provides users with data and software that users have traditionally used on their local computers as a service via a network. Users can use a variety of services from any terminal by providing a web browser that runs on a personal computer or mobile information terminal, and an Internet connection environment.
 ユーザー端末70は、情報処理装置60が提供する各種の画面を表示するクライアント端末である。ユーザー端末70は、管理者が使用してもよいし、一般ユーザー(本開示では患者9)が使用してもよい。機器30が一般家庭にある場合、管理者は家族でもよいし、患者9が管理者を兼ねてよい。機器30が、企業が管理するビル等にある場合、管理者は例えば施設の管理者、介護者、看護師などである。 The user terminal 70 is a client terminal that displays various screens provided by the information processing device 60. The user terminal 70 may be used by an administrator or a general user (patient 9 in this disclosure). If the device 30 is in a general household, the administrator may be a family member, or the patient 9 may also serve as the administrator. If the device 30 is in a building managed by a company, the administrator may be, for example, a facility manager, a caregiver, or a nurse.
 ユーザー端末70が表示する画面は多種多様であるが、一例として、上記のマップ画面、顧客側に存在する機器30及びセンサスイッチ類53の一覧画面、機器30及びセンサスイッチ類53が配置された場所を示す社内マップ、及び、機器30やセンサスイッチ類53を操作する操作画面などがある。 The user terminal 70 can display a wide variety of screens, but some examples include the map screen mentioned above, a list screen of the devices 30 and sensor switches 53 present on the customer's side, an internal company map showing the locations where the devices 30 and sensor switches 53 are located, and an operation screen for operating the devices 30 and sensor switches 53.
 ユーザー端末70は、例えば、PC(Personal Computer)、スマートフォン、タブレット端末、PDA(Personal Digital Assistant)、ウェアラブルPC(サングラス型、腕時計型など)などである。ただし、通信機能を有しWebブラウザが動作すればよい。また、ユーザー端末70ではWebブラウザでなく、人の症状変化予測システム100に専用のネイティブアプリが動作してもよい。 The user terminal 70 may be, for example, a PC (Personal Computer), a smartphone, a tablet terminal, a PDA (Personal Digital Assistant), a wearable PC (sunglasses type, wristwatch type, etc.), etc. However, it is sufficient that it has a communication function and can run a web browser. Also, instead of a web browser, the user terminal 70 may run a native app dedicated to the human symptom change prediction system 100.
 <情報処理装置のハードウェア構成>
図4を参照して、情報処理装置60のハードウェア構成について説明する。図4は、情報処理装置60のハードウェア構成の一例を示す図である。図4に示すように、情報処理装置60は、プロセッサ221、メモリ222、補助記憶装置223、I/F(Interface)装置224、通信装置225、ドライブ装置226を有する。なお、情報処理装置60の各ハードウェアは、バス207を介して相互に接続されている。
<Hardware configuration of information processing device>
The hardware configuration of the information processing device 60 will be described with reference to Fig. 4. Fig. 4 is a diagram showing an example of the hardware configuration of the information processing device 60. As shown in Fig. 4, the information processing device 60 has a processor 221, a memory 222, an auxiliary storage device 223, an I/F (Interface) device 224, a communication device 225, and a drive device 226. The hardware components of the information processing device 60 are connected to each other via a bus 207.
 プロセッサ221は、CPU(Central Processing Unit)等の各種演算デバイスを有する。プロセッサ221は、各種プログラムをメモリ222上に読み出して実行する。プロセッサ211は、情報処理装置60の全体を制御したり演算したりする制御部110に相当する。制御部110は、全体制御に加えて、人間の感覚に関する感覚強度を推定する処理を行う。感覚強度を推定する処理は後述する。 The processor 221 has various computing devices such as a CPU (Central Processing Unit). The processor 221 reads various programs onto the memory 222 and executes them. The processor 211 corresponds to the control unit 110 which controls and performs calculations on the entire information processing device 60. In addition to overall control, the control unit 110 performs processing to estimate the sensory intensity related to human senses. The processing to estimate sensory intensity will be described later.
 メモリ222は、ROM(Read Only Memory)、RAM(Random Access Memory)等の主記憶デバイスを有する。プロセッサ221とメモリ222とは、いわゆるコンピュータを形成し、プロセッサ221が、メモリ222上に読み出した各種プログラムを実行する。 The memory 222 has a primary storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory). The processor 221 and the memory 222 form a so-called computer, and the processor 221 executes various programs read onto the memory 222.
 補助記憶装置223は、各種プログラムや、各種プログラムがプロセッサ221によって実行される際に用いられる各種データを格納する。 The auxiliary storage device 223 stores various programs and various data used when the programs are executed by the processor 221.
 I/F装置224は、外部装置の一例である表示装置230、操作装置240と、情報処理装置60とを接続する接続デバイスである。表示装置230は、情報処理装置60の内部状態を表示する。操作装置240は、情報処理装置60の管理者が情報処理装置60に対して各種指示を入力する際に用いられる。 The I/F device 224 is a connection device that connects the display device 230, which is an example of an external device, and the operation device 240 to the information processing device 60. The display device 230 displays the internal state of the information processing device 60. The operation device 240 is used when the administrator of the information processing device 60 inputs various instructions to the information processing device 60.
 通信装置225は、ネットワークNを介してエッジ装置80及びユーザー端末70と通信するための通信デバイスである。 The communication device 225 is a communication device for communicating with the edge device 80 and the user terminal 70 via the network N.
 ドライブ装置226は記録媒体250をセットするためのデバイスである。ここでいう記録媒体250には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体250には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。 The drive unit 226 is a device for setting the recording medium 250. The recording medium 250 here includes media that record information optically, electrically, or magnetically, such as CD-ROMs, flexible disks, and magneto-optical disks. The recording medium 250 may also include semiconductor memory that records information electrically, such as ROMs and flash memories.
 なお、補助記憶装置223にインストールされる各種プログラムは、例えば、配布された記録媒体250がドライブ装置226にセットされ、該記録媒体250に記録された各種プログラムがドライブ装置226により読み出されることでインストールされる。あるいは、補助記憶装置223にインストールされる各種プログラムは、通信装置225を介してネットワークNからダウンロードされることで、インストールされてもよい。 The various programs to be installed in the auxiliary storage device 223 are installed, for example, by setting the distributed recording medium 250 in the drive device 226 and reading the various programs recorded on the recording medium 250 by the drive device 226. Alternatively, the various programs to be installed in the auxiliary storage device 223 may be installed by downloading them from the network N via the communication device 225.
 <機能について>
次に、図5を参照して、人の症状変化予測システム100が有する各装置の機能構成について詳細に説明する。図5は、学習フェーズにおいて、情報処理装置60が有する機能をブロックに分けて説明する機能ブロック図の一例である。
<About the function>
Next, the functional configuration of each device of the human symptom change prediction system 100 will be described in detail with reference to Fig. 5. Fig. 5 is an example of a functional block diagram illustrating the functions of the information processing device 60 in the learning phase by dividing them into blocks.
 情報処理装置60は、環境因子データ取得部61、症状変化情報受付部62、統計量算出部63、感覚強度推定部64、及び、数理モデル生成部65、を有している。情報処理装置60が有するこれら各部は、情報処理装置60の制御部110がメモリ222に展開されたプログラムの命令を実行することで実現される機能又は手段である。 The information processing device 60 has an environmental factor data acquisition unit 61, a symptom change information acceptance unit 62, a statistical quantity calculation unit 63, a sensory intensity estimation unit 64, and a mathematical model generation unit 65. Each of these units of the information processing device 60 is a function or means realized by the control unit 110 of the information processing device 60 executing the commands of a program expanded in the memory 222.
 環境因子データ取得部61は、環境センサ11が実際に検出した、環境因子の濃度などを表す環境因子データを取得する。本開示では、環境因子データが、温度、湿度、CO濃度、PM2.5濃度、TVOC濃度、及び、ホルムアルデヒド濃度、とするが、一例に過ぎない。例えば、環境因子データに花粉やほこりが含まれてもよい。 The environmental factor data acquisition unit 61 acquires environmental factor data that indicates the concentration of an environmental factor actually detected by the environmental sensor 11. In this disclosure, the environmental factor data includes temperature, humidity, CO2 concentration, PM2.5 concentration, TVOC concentration, and formaldehyde concentration, but these are merely examples. For example, the environmental factor data may include pollen and dust.
 環境因子データ取得部61は、環境センサ11が定期的に送信する環境因子データを受信するだけでもよいし、環境センサ11に対し環境因子データの測定を要求し、その応答として環境因子データを受信してもよい。取得のタイミングは、少なくとも1日1回以上であることが好ましく、例えば、数分から数時間に1回の頻度とすることが考えられる。 The environmental factor data acquisition unit 61 may simply receive the environmental factor data periodically transmitted by the environmental sensor 11, or may request the environmental sensor 11 to measure the environmental factor data and receive the environmental factor data in response. It is preferable that the data be acquired at least once a day, and for example, it may be possible to acquire the data at a frequency of once every few minutes to once every few hours.
 症状変化情報受付部62は、増悪リスクがある患者9がユーザー端末70に入力する症状変化情報を受け付ける。症状変化情報は、喘息やアレルギー症状などの症状の有無、症状の強さを表す情報である。患者9は、例えば毎日、その日の症状変化情報として、症状が出た場合に「1」、症状が出なかった場合に「0」を入力する。症状変化情報は、「1」「0」でなく、0~100の数値でもよいし、3~5段階の強度でもよい。このように症状変化情報は悪化することだけでなく改善することも表す。これらの数値は、症状が悪化した、好転した、寛解した、又は改善したに対応する。患者9が情報処理装置60にログインすることで、症状変化情報受付部62は患者IDを取得する(患者を特定できる)。患者9についての基本的な情報は、予め情報処理装置60に登録されている。例えば、基本的な情報は、年齢、性別、身長、アレルゲン(カビ、ほこり、花粉など)、基礎疾患等である。アレルゲンとは、喘息やアレルギー疾患を持っている人の抗体と特異的に反応する抗原をいう。一般には、アレルゲンは、そのアレルギー症状を引き起こす原因物質をいう。 The symptom change information receiving unit 62 receives symptom change information input to the user terminal 70 by the patient 9 at risk of exacerbation. The symptom change information is information that indicates the presence or absence of symptoms such as asthma or allergy symptoms, and the intensity of the symptoms. For example, the patient 9 inputs "1" if the symptom occurs and "0" if the symptom does not occur as symptom change information for that day every day. The symptom change information may be a value from 0 to 100, not "1" or "0", or may be a 3 to 5 level of intensity. In this way, the symptom change information indicates not only worsening but also improvement. These values correspond to symptoms that have worsened, improved, gone into remission, or improved. When the patient 9 logs into the information processing device 60, the symptom change information receiving unit 62 obtains the patient ID (the patient can be identified). Basic information about the patient 9 is registered in advance in the information processing device 60. For example, the basic information is age, sex, height, allergens (mold, dust, pollen, etc.), underlying diseases, etc. An allergen is an antigen that specifically reacts with the antibodies of a person with asthma or an allergic disease. Generally speaking, an allergen is a substance that causes allergic symptoms.
 統計量算出部63は、環境因子データを統計処理で加工することで環境因子データの統計量を算出する。統計量は、環境因子データごとの、例えば、一日当たりの最大値、一日当たりの最小値、一日の平均値、標準偏差などでよい。また、統計量は、これらに限られず、中央値、積算値、過去数時間から数日の移動平均などでもよい。統計量を算出するのは、環境因子データの処理負荷を低減するためなので、統計量算出部63はなくてもよい。 The statistics calculation unit 63 calculates the statistics of the environmental factor data by processing the environmental factor data through statistical processing. The statistics may be, for example, a maximum value per day, a minimum value per day, an average value per day, or a standard deviation for each environmental factor data. Furthermore, the statistics are not limited to these, and may be a median, an integrated value, or a moving average over the past few hours to several days. The statistics are calculated in order to reduce the processing load of the environmental factor data, so the statistics calculation unit 63 may not be required.
 感覚強度推定部64は、環境因子データの統計量から、生体特性を模擬したモデルをもとに中間データを生成する。一例として本開示では、感覚強度推定部64は、環境因子データの統計量から感覚強度を推定する。感覚強度の詳細については、図19、図20で説明する。 The sensory intensity estimation unit 64 generates intermediate data based on a model that simulates biological characteristics from the statistics of the environmental factor data. As an example, in the present disclosure, the sensory intensity estimation unit 64 estimates sensory intensity from the statistics of the environmental factor data. Details of sensory intensity are described in Figures 19 and 20.
 数理モデル生成部65は、環境因子データの統計量及び感覚強度を説明変数、症状変化情報を目的変数(教師データ)とする学習データを用いて、環境因子データの統計量及び感覚強度から増悪リスクを予測する数理モデルを生成する。数理モデルとは、現実の対象を簡略化し、物理法則にしたがって諸量の関係を数学的に表したものである。ただし、厳密な数理モデルであることまでは要求されず、数理モデルは環境因子データと感覚強度から増悪リスクを予測できればよい。 The mathematical model generation unit 65 uses learning data in which the statistical quantities and sensory intensity of environmental factor data are explanatory variables and symptom change information is the objective variable (teacher data) to generate a mathematical model that predicts the risk of exacerbation from the statistical quantities and sensory intensity of environmental factor data. A mathematical model is a simplification of a real object, and a mathematical representation of the relationship between various quantities in accordance with physical laws. However, it is not required that the mathematical model be strict, and it is sufficient that the mathematical model can predict the risk of exacerbation from environmental factor data and sensory intensity.
 <環境因子データの例>
図6を参照して、環境センサ11が検出できる環境因子データについて説明する。図6は、環境因子データ取得部61が取得した環境因子データを示す。ここでは、説明の便宜上、図6は、環境因子データの統計量を示す。図6に示すように、温度の統計量(一日の平均値、標準偏差、一日当たりの最大値、一日当たりの最小値)、湿度の統計量、(中略)、PM2.5濃度の統計量等が取得されている。図6の環境因子データは1日ごとの統計量だが、より短時間の統計量でもよい。
<Examples of environmental factor data>
The environmental factor data that can be detected by the environmental sensor 11 will be described with reference to Fig. 6. Fig. 6 shows the environmental factor data acquired by the environmental factor data acquisition unit 61. For ease of explanation, Fig. 6 shows the statistics of the environmental factor data. As shown in Fig. 6, the temperature statistics (daily average value, standard deviation, daily maximum value, daily minimum value), humidity statistics, (omitted), PM2.5 concentration statistics, etc. are acquired. The environmental factor data in Fig. 6 is daily statistics, but statistics for a shorter period of time may also be used.
 また、図6には、環境因子データに対応する症状変化情報が示されている。症状変化情報は患者9が入力したものである。この症状変化情報は増悪した(1)、増悪しない(0)である。 In addition, FIG. 6 shows symptom change information corresponding to the environmental factor data. The symptom change information was entered by patient 9. This symptom change information is either worsened (1) or not worsened (0).
 <数理モデルの生成>
続いて、図7~図9を参照し、数理モデルの生成方法を説明する。図7は、環境因子データの統計量、感覚強度(説明変数)及び症状変化情報(目的変数、教師データ)から数理モデルを生成する学習フェーズを説明する図である。図5と図7の機能構成は同じであるが、図7は処理の流れに沿ってブロックが配置されている。
<Mathematical model generation>
Next, a method for generating a mathematical model will be described with reference to Figures 7 to 9. Figure 7 is a diagram for explaining the learning phase in which a mathematical model is generated from the statistics of environmental factor data, sensory intensity (explanatory variable), and symptom change information (target variable, teacher data). The functional configurations of Figures 5 and 7 are the same, but in Figure 7, the blocks are arranged according to the processing flow.
 S1:まず、環境因子データ取得部61が、環境センサ11が実際に検出した環境因子データを取得する。環境因子データは、実測値に限らず、予報値でもよい。この予報値は、気象庁などが提供するものでもよいし、環境因子データ取得部61が実測値から予測したものでもよい。 S1: First, the environmental factor data acquisition unit 61 acquires the environmental factor data actually detected by the environmental sensor 11. The environmental factor data is not limited to actual measured values, but may be forecast values. These forecast values may be provided by the Japan Meteorological Agency or may be predicted by the environmental factor data acquisition unit 61 from the actual measured values.
 S2:また、喘息又はアレルギー症状を有している患者9が、ユーザー端末70等から入力する症状変化情報を症状変化情報受付部62が受け付ける。 S2: The symptom change information receiving unit 62 also receives symptom change information input by a patient 9 with asthma or allergy symptoms from a user terminal 70 or the like.
 S3:次に、統計量算出部63は、環境因子データの統計量(例えば、一日当たりの最大値、一日当たりの最小値、一日の平均値、標準偏差など)を算出する。以上で、図6に示した環境因子データが得られる。 S3: Next, the statistics calculation unit 63 calculates the statistics of the environmental factor data (e.g., maximum value per day, minimum value per day, average value per day, standard deviation, etc.). With the above steps, the environmental factor data shown in FIG. 6 is obtained.
 S4:次に、感覚強度推定部64は、環境因子データの統計量から感覚強度を推定する。なお、環境因子データに予報値を用いる場合は、感覚強度も前記予報値を用いて推定する。感覚強度について詳細は、図19、図20にて説明する。感覚強度Pは式(1)により推定される。 S4: Next, the sensory intensity estimation unit 64 estimates the sensory intensity from the statistics of the environmental factor data. When a predicted value is used for the environmental factor data, the sensory intensity is also estimated using the predicted value. Details of the sensory intensity are explained in Figures 19 and 20. The sensory intensity P is estimated by formula (1).
 P=klog(I/I0) ……(1)
 ただし、P:感覚強度(感覚量ともいう)、 I:刺激の強さ, I0:感覚の強さが0になる刺激の強さ, k:刺激固有の定数、である。これらの詳細については後述する。
P = klog(I/ I0 ) ……(1)
where P is the sensory intensity (also called the sensory quantity), I is the intensity of the stimulus, I0 is the intensity of the stimulus at which the sensory intensity becomes 0, and k is a constant specific to the stimulus. Details of these will be described later.
 S5:そして、数理モデル生成部65は、環境因子データの統計量と感覚強度を説明変数、症状変化情報を目的変数(教師データ)として、環境因子データの統計量と感覚強度から増悪リスクを出力する数理モデルを構築する。環境因子データの種類が6、統計量がそれぞれの環境因子データごとに4つ、また、感覚強度がそれぞれの環境因子データごとに1つとすると、6×5=30個のデータが学習データの1サンプルである。 S5: The mathematical model generation unit 65 then constructs a mathematical model that outputs the risk of exacerbation from the statistical quantities and sensory intensity of the environmental factor data, with the statistical quantities and sensory intensity of the environmental factor data as explanatory variables and the symptom change information as the objective variable (teaching data). If there are six types of environmental factor data, four statistics for each type of environmental factor data, and one sensory intensity for each type of environmental factor data, then 6 x 5 = 30 pieces of data constitute one sample of training data.
 なお、本開示では、環境因子データの統計量が学習に使用されるが、環境因子データは感覚強度にも含まれているので、数理モデル生成部65は、環境因子データの統計量を用いずに(感覚強度で)学習してもよい。 In this disclosure, the statistics of the environmental factor data are used for learning, but since the environmental factor data is also included in the sensory intensity, the mathematical model generation unit 65 may learn without using the statistics of the environmental factor data (using sensory intensity).
 また数理モデルを生成する処理を機械学習という。機械学習とは、コンピュータに人のような学習能力を獲得させるための技術であり、コンピュータが、データ識別等の判断に必要なアルゴリズムを、事前に取り込まれる学習データから自律的に生成し、新たなデータについてこれを適用して予測を行う技術をいう。機械学習を用いた手法は、教師あり学習、教師なし学習、半教師学習、強化学習、深層学習のいずれかの方法でもよく、更に、これらの学習方法を組み合わせた学習方法でもよく、機械学習のための学習方法は問わない。 The process of generating mathematical models is called machine learning. Machine learning is a technology that allows computers to acquire human-like learning capabilities, whereby the computer autonomously generates the algorithms necessary for judgments such as data identification from training data that is previously loaded, and applies these to new data to make predictions. Methods using machine learning may be any of the following methods: supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning, or deep learning, or may be a combination of these learning methods; any learning method for machine learning is acceptable.
 機械学習を用いて数理モデルを生成する手法には様々なアルゴリズムがあるが、本開示では、例えば勾配ブースティング決定木を説明する。勾配ブースティング決定木は、「勾配降下法」と「Boosting(アンサンブル)」、「決定木」を組み合わせた教師あり学習の1つである。 There are various algorithms for generating mathematical models using machine learning, but in this disclosure, we will explain, for example, gradient boosting decision trees. Gradient boosting decision trees are a type of supervised learning that combines "gradient descent," "Boosting (ensemble)," and "decision trees."
 図8は、勾配ブースティング決定木による学習方法の流れを説明するフローチャート図である。図9は決定木のイメージを示す。 Figure 8 is a flow chart that explains the flow of the learning method using gradient boosting decision trees. Figure 9 shows an image of the decision tree.
 数理モデル生成部65は、学習データとして用意された複数の症状変化情報(教師データ)から初期値を算出する(S11)。初期値は例えば平均値である。説明のため、この平均値を予測値1という。 The mathematical model generation unit 65 calculates an initial value from multiple pieces of symptom change information (teacher data) prepared as learning data (S11). The initial value is, for example, an average value. For the sake of explanation, this average value is referred to as predicted value 1.
 次に、数理モデル生成部65は、学習データの1つ1つで、症状変化情報から平均値を減じた値を誤差1として算出する(S12)。誤差1は、症状変化情報が平均より大きければ正値、小さければ負値となる。ここで「症状変化情報から平均値を減じた値」を誤差とするのは、症状変化情報と予測値の二乗誤差を誤差の算出方法とし、二乗誤差を微分した勾配を誤差の算出に使用したためである。絶対値誤差を誤差の算出方法としてもよい。 Next, the mathematical model generation unit 65 calculates, for each piece of learning data, the value obtained by subtracting the average value from the symptom change information as error 1 (S12). Error 1 is positive if the symptom change information is greater than the average, and negative if it is less than the average. The reason why the "value obtained by subtracting the average value from the symptom change information" is used as the error here is because the squared error between the symptom change information and the predicted value is used as the error calculation method, and the gradient obtained by differentiating the squared error is used to calculate the error. Absolute value error may also be used as the error calculation method.
 次に、数理モデル生成部65は、誤差を予測する目的で決定木を構築する(S13)。決定木のノード数や階層は予め設定された範囲に制限されてもよい。この決定木が弱い識別器(ブースティング)である。図9の一番上の木は最初に作成される決定木のイメージである。図9はイメージなので、入力されるデータの数に対しノード数等が足りないが、このような決定木の葉(木の端部)に誤差が分類される。 Next, the mathematical model generation unit 65 constructs a decision tree for the purpose of predicting errors (S13). The number of nodes and layers of the decision tree may be limited to a preset range. This decision tree is a weak classifier (boosting). The top tree in Figure 9 is an image of the decision tree that is created first. Because Figure 9 is an image, the number of nodes, etc. is insufficient compared to the amount of input data, but errors are classified into the leaves (ends of the tree) of such a decision tree.
 決定木の構築について簡単に説明する。
(i) 数理モデル生成部65は、分類前の学習データの正答と誤答の比率に基づいてエントロピーを算出する。数理モデル生成部65は、エントロピーでなくジニ係数を使用してもよい。
(ii) 数理モデル生成部65は、任意の1つの属性で分類したときの各枝の正答と誤答の比率に基づいて枝ごとにエントロピーを算出する。
(iii) 数理モデル生成部65は、(ii)のエントロピーの加重平均を算出する。この加重平均は、元のデータ数に対し各枝に分類されたデータ数の比を乗じたものでよい。
(iv) 数理モデル生成部65は、(i)と(iii)のエントロピーの差異(ゲイン)が最も大きくなる属性を根の属性に採用する。
(v) 根の下の部分の構造も(i)~(iv)の処理により決定される。
A brief explanation of decision tree construction will be given.
(i) The mathematical model generation unit 65 calculates the entropy based on the ratio of correct answers to incorrect answers in the training data before classification. The mathematical model generation unit 65 may use the Gini coefficient instead of the entropy.
(ii) The mathematical model generating unit 65 calculates the entropy for each branch based on the ratio of correct answers to incorrect answers for each branch when classified by any one attribute.
(iii) The mathematical model generating unit 65 calculates a weighted average of the entropies of (ii). This weighted average may be calculated by multiplying the number of original data by the ratio of the number of data classified into each branch.
(iv) The mathematical model generating unit 65 adopts the attribute with the largest difference (gain) between the entropies of (i) and (iii) as the attribute of the root.
(v) The structure of the lower part of the root is also determined by processes (i) to (iv).
 次に、数理モデル生成部65は、誤差1を用いて新たな予測値を算出する(S14)。なお、ここでは「誤差1」としたが、「誤差n」は繰り返しにより増えていく。決定木の葉には学習データのサンプルごとに誤差1が分類されているので、学習データのサンプルごとに誤差1を用いて予測値1を算出できる。1つの葉に複数の誤差が分類された場合は葉が含む誤差の平均が誤差1である。 The mathematical model generation unit 65 then calculates a new predicted value using error 1 (S14). Note that although "error 1" is used here, "error n" increases with repetition. Since error 1 is classified for each sample of training data in the leaves of the decision tree, predicted value 1 can be calculated using error 1 for each sample of training data. If multiple errors are classified into one leaf, the average of the errors contained in the leaf is error 1.
 新たな予測値を予測値2とすると、「予測値2 = 予測値1 + 学習率 * 誤差1」である。学習率は1より小さい値であり、1回の決定木でどの程度誤差を修正するかを決定するハイパーパラメータである。学習率は例えば0.05~0.3など適宜決定される。「誤差を求めて学習率を掛けて足す」という作業を何度も繰り返し行うことで、精度が少しずつ改善されていく。 If the new predicted value is predicted value 2, then "predicted value 2 = predicted value 1 + learning rate * error 1". The learning rate is a value smaller than 1, and is a hyperparameter that determines how much error is corrected in one decision tree. The learning rate is set appropriately, for example, to 0.05 to 0.3. By repeatedly performing the process of "finding the error, multiplying it by the learning rate, and adding it", the accuracy is improved little by little.
 次に、数理モデル生成部65は、教師データである症状変化情報と予測値2から誤差を算出する(S15)。数理モデル生成部65は、用意された全ての学習データの症状変化情報について、予測値2との誤差を算出する。予測値2から算出された誤差を誤差2という。 Next, the mathematical model generation unit 65 calculates an error from the symptom change information, which is the teacher data, and the predicted value 2 (S15). The mathematical model generation unit 65 calculates the error from the predicted value 2 for the symptom change information of all the prepared learning data. The error calculated from the predicted value 2 is called error 2.
 数理モデル生成部65は、一定回数、誤差を算出したか、又は誤差が閾値未満になるまで、ステップS13~S15を繰り返す(S16)。図9の2番目と3番目の木に示すように、数理モデル生成部65は、新たな決定木により直前の誤差を分類し、誤差を用いた予測値3、4……n、誤差3、4……nを算出する。処理の繰り返しにより誤差も変わるので、決定木の構造も自動的に変わる。このようにして作成されたn個の決定木が本開示の数理モデルである。予測フェーズにおけるn個の決定木を用いた増悪リスクの予測については後述する。 The mathematical model generation unit 65 repeats steps S13 to S15 until the error has been calculated a certain number of times or until the error falls below a threshold (S16). As shown in the second and third trees in Figure 9, the mathematical model generation unit 65 classifies the previous error using a new decision tree and calculates predicted values 3, 4... n using the error and errors 3, 4... n. Since the error changes as the process is repeated, the structure of the decision tree also changes automatically. The n decision trees created in this way are the mathematical model of the present disclosure. The prediction of exacerbation risk using n decision trees in the prediction phase will be described later.
 勾配ブースティング決定木を情報処理装置で実現する種々のフレームワークとして、LightGBM(Light Gradient Boosting Machine) 、XGBoost(eXtreme Gradient Boosting)、Catboost(Category Boosting)などが知られている。数理モデル生成部65は、これらフレームワークを使用してもよい。 LightGBM (Light Gradient Boosting Machine), XGBoost (eXtreme Gradient Boosting), Catboost (Category Boosting), etc. are known as various frameworks for realizing gradient boosting decision trees in information processing devices. The mathematical model generation unit 65 may use these frameworks.
 また、勾配ブースティング決定木により増悪リスクを予測することはいわゆる回帰問題(連続値を使い、ある1つ以上の数値から別の数値を予測すること)なので、使用できるアルゴリズムは勾配ブースティング決定木に限らない。回帰に使用できるアルゴリズムとして、線形回帰(重回帰)、ロジスティック回帰、ニューラルネットワーク、ベイズ線形回帰、SVM回帰、リッジ回帰、ラッソ回帰、ポワソン回帰等、多くのアルゴリズムがある。 In addition, predicting the risk of progression using a gradient boosting decision tree is a so-called regression problem (using continuous values to predict one or more values from another), so the algorithms that can be used are not limited to gradient boosting decision trees. There are many algorithms that can be used for regression, including linear regression (multiple regression), logistic regression, neural networks, Bayesian linear regression, SVM regression, ridge regression, lasso regression, and Poisson regression.
 例えば、ディープラーニングは、入力されたデータABCに基づいてXYZを予測した後に、教師データとの誤差を減らすために誤差逆伝播法でニューラルネットワーク間の重みを調整するアルゴリズムである。 For example, deep learning is an algorithm that predicts XYZ based on input data ABC, and then adjusts the weights between neural networks using backpropagation to reduce the error with the training data.
 <生体特性を模擬したモデルをもとにした環境に対する生理反応量>
環境因子データを中間データに変換する、生体特性を模擬したモデルについて詳細に説明する。生体特性を模擬するとは、環境因子データに対し人間が受ける影響(生理反応量や挙動など)を推定することをいう。なお、このモデルの1つであるウェーバーとフェヒナーの法則について後に詳述する。
<Physiological response to the environment based on a model that mimics biological characteristics>
This section provides a detailed explanation of models that simulate biological characteristics and convert environmental factor data into intermediate data. Simulating biological characteristics means estimating the effects of environmental factor data on humans (such as physiological reactions and behavior). One such model, Weber-Fechner's law, will be described in detail later.
 環境因子データは以下のような非線形の関係を表すモデルによって中間データに変換される。すなわち、制御部110は、これら生体特性を模擬したモデルをもとに環境に対する生理反応量に相関のある中間データを生成する。以下のモデルはいずれも、量的情報を持つ非線形化処理である。 The environmental factor data is converted into intermediate data using a model that represents a nonlinear relationship as shown below. In other words, the control unit 110 generates intermediate data that correlates with the amount of physiological response to the environment based on a model that simulates these biological characteristics. All of the following models are nonlinear processes that contain quantitative information.
 (i) 環境因子データが取る値の比率に応じた中間データを出力するモデル(log関数、指数関数、n次関数)
このモデルは、粉塵量と喘息症状などの関係を表すことに適している。値の比率に応じた変化とは、環境因子データが一定の比率で大きくなると中間データの値も所定の比率で大きくなる関係をいう。図10(a)~図10(c)にこのモデルの一例であるlog関数331、指数関数332、n次関数333の形状の一例を示す。
(i) Models that output intermediate data according to the ratio of values taken by the environmental factor data (log function, exponential function, n-th order function)
This model is suitable for expressing the relationship between the amount of dust and asthma symptoms, etc. The change according to the ratio of values means a relationship in which when the environmental factor data increases at a certain ratio, the value of the intermediate data also increases at a specified ratio. Figures 10(a) to 10(c) show examples of the shapes of a log function 331, an exponential function 332, and an n-th order function 333, which are examples of this model.
 (ii) 環境因子データが取る値の範囲又は環境因子データが条件を満たすか否かで、異なる中間データの値を出力するモデル(ステップ関数、シグモイド関数、IF関数、特定の範囲だけ値を持つ関数)
このモデルは、温度による発汗や震え、又は、温度と免疫細胞の活性度合などの関係を表すことに適している。また、このモデルは、温湿度と熱中症の関係、粉塵量と咳やくしゃみなどの関係を表すことに適している。図11(a)~図11(d)にこのモデルの一例であるステップ関数334、シグモイド関数335、IF関数336、特定の範囲だけ値を持つ関数337の形状の一例を示す。なお、IF関数336は環境因子データに関して所定の条件を満たす場合に一定値を取り、所定の条件を満たない場合に別の一定値を取る関数である。
(ii) Models that output different intermediate data values depending on the range of values that the environmental factor data takes or whether the environmental factor data meets a condition (step functions, sigmoid functions, IF functions, functions that have values only in a specific range)
This model is suitable for expressing the relationship between temperature and sweating or shivering, or the relationship between temperature and the activity level of immune cells. This model is also suitable for expressing the relationship between temperature and humidity and heat stroke, and the relationship between the amount of dust and coughing or sneezing. Figures 11(a) to 11(d) show examples of the shapes of a step function 334, a sigmoid function 335, an IF function 336, and a function 337 having values only in a specific range, which are examples of this model. The IF function 336 is a function that takes a fixed value when a specified condition is met with respect to the environmental factor data, and takes a different fixed value when the specified condition is not met.
 (iii) 絶対値ではなく環境因子データの変化の仕方に応じた中間データを出力するモデル(n階導関数(傾き、加速度)、一方向の変化のみ値を持つ関数)
このモデルは、温度変化が小さいと気づかない生理反応、又は、高温に触れてやけどすると温度が戻ってもやけどは回復しないような生理反応を表すことに適している。また、このモデルは、気圧と気象病の関係、又は、加速度と車酔いの関係などを表すことに適している。図12に2次関数に対する1次導関数338の形状(接線)の一例を示す。
(iii) A model that outputs intermediate data according to the way in which the environmental factor data changes, rather than absolute values (n-th order derivatives (slope, acceleration), functions that have values only for changes in one direction)
This model is suitable for expressing physiological reactions in which a small temperature change is not noticed, or in which a burn caused by touching a high temperature does not heal even if the temperature returns to normal. This model is also suitable for expressing the relationship between atmospheric pressure and meteorological illness, or the relationship between acceleration and car sickness. Figure 12 shows an example of the shape (tangent) of the first derivative 338 of the quadratic function.
 図13(a)(b)は、一方向の変化のみ値を持つ関数を説明する図である。図13(a)は、時間と環境因子データ(例えば気圧)の関係を示し、図13(b)は時間と中間データ(例えば気象病と関連のある生理反応量)の関係を示す。例えば環境因子データを気圧とすると、生理反応量は気圧が減少する場合にだけ値が変化している。すなわち、環境因子データが増加又は減少のどちらか一方に変化した場合にのみ増加量又は減少量に応じた中間データが出力される。したがって、このモデルは気圧と気象病などの関係を表すのに適している。 Figures 13(a) and (b) are diagrams explaining functions that have values that change in only one direction. Figure 13(a) shows the relationship between time and environmental factor data (e.g. air pressure), while Figure 13(b) shows the relationship between time and intermediate data (e.g. a physiological reaction amount related to meteorological illness). For example, if the environmental factor data is air pressure, the physiological reaction amount changes in value only when the air pressure decreases. In other words, intermediate data corresponding to the amount of increase or decrease is output only when the environmental factor data changes to either an increase or decrease. This model is therefore suitable for expressing the relationship between air pressure and meteorological illness, etc.
 (iv) 環境因子データの積算値に応じた中間データ、又は、環境因子データの現在値が同じでも環境因子データの過去の値の変化履歴(ヒステレシス)によって異なる中間データを出力するモデル
このモデルは、花粉の摂取量と抗体の量、又は、CO濃度と血中酸素濃度などの関係を表すことに適している。また、このモデルは、花粉飛散量と花粉症の関係、又は、温湿度と熱中症などの関係を表すことに適している。
(iv) A model that outputs intermediate data according to the integrated value of environmental factor data, or intermediate data that varies depending on the change history (hysteresis) of the past values of environmental factor data even if the current value of the environmental factor data is the same. This model is suitable for expressing the relationship between the amount of pollen intake and the amount of antibodies, or between CO2 concentration and blood oxygen concentration, etc. This model is also suitable for expressing the relationship between the amount of pollen dispersion and hay fever, or between temperature, humidity and heat stroke, etc.
 図14(a)(b)は、環境因子データの積算値に応じた中間データを説明する図である。図14(a)は、時間と環境因子データ(例えば花粉飛散量)の関係を示し、図14(b)は時間と中間データ(例えば花粉症と関連のある生理反応)の関係を示す。例えば環境因子データを花粉飛散量とすると、中間データは、花粉濃度に変化がなくても積算値に応じて上昇し(時間T1)、花粉濃度がゼロになっても、積算値が変化しないので変化しない(時間T2)。したがって、このモデルは花粉の摂取量と抗体の量やCO濃度と血中酸素濃度などの関係を表すのに適している。 14(a) and (b) are diagrams for explaining intermediate data according to the integrated value of environmental factor data. FIG. 14(a) shows the relationship between time and environmental factor data (e.g., pollen dispersion amount), and FIG. 14(b) shows the relationship between time and intermediate data (e.g., physiological reaction related to hay fever). For example, if the environmental factor data is the pollen dispersion amount, the intermediate data rises according to the integrated value even if the pollen concentration does not change (time T1), and does not change even if the pollen concentration becomes zero because the integrated value does not change (time T2). Therefore, this model is suitable for expressing the relationship between the amount of pollen intake and the amount of antibodies, or between CO2 concentration and blood oxygen concentration, etc.
 図15(a)(b)は、環境因子データが同じでも過去に環境因子データが測定された履歴(ヒステレシス)によって異なる中間データを説明する図である。図15(a)は、時間と環境因子データ(例えば気温)の関係を示し、図15(b)は時間と中間データ(例えば熱中症と関連のある生理反応量)の関係を示す。例えば環境因子データを気温とし、中間データは熱中症と関連する生理反応量とする。気温が下がり始めても生理反応量はすぐには下がらず(時刻t1)、また、気温が同じ気温に下がっても、生理反応量は同じ値までは下がらない(時刻t2)。したがって、このモデルは花粉飛散量と花粉症の関係、又は、温湿度と熱中症などの関係を表すことに適している。 Figures 15(a) and (b) are diagrams explaining intermediate data that differs depending on the history (hysteresis) of past environmental factor measurements even when the environmental factor data is the same. Figure 15(a) shows the relationship between time and environmental factor data (e.g., temperature), while Figure 15(b) shows the relationship between time and intermediate data (e.g., physiological response amount associated with heat stroke). For example, the environmental factor data is temperature, and the intermediate data is physiological response amount associated with heat stroke. Even when the temperature starts to drop (time t1), the physiological response amount does not drop immediately, and even when the temperature drops to the same temperature, the physiological response amount does not drop to the same value (time t2). Therefore, this model is suitable for expressing the relationship between pollen dispersion amount and hay fever, or the relationship between temperature, humidity, and heat stroke, etc.
 (v) 環境因子データが所定範囲の値を継続する持続時間、又は、環境因子データが所定範囲の値を繰り返す回数に応じた中間データを出力するモデル
このモデルは、気温への慣れを表すことに適している。また、このモデルは、アレルゲンの摂取回数と免疫反応量(アナフィラキシー)などの関係を表すことに適している。
(v) A model that outputs intermediate data according to the duration that the environmental factor data remains within a certain range or the number of times that the environmental factor data repeats a certain range of values. This model is suitable for expressing habituation to temperature. This model is also suitable for expressing the relationship between the number of times an allergen is ingested and the amount of immune reaction (anaphylaxis), etc.
 図16(a)(b)は、環境因子データが継続して測定される持続時間と持続する値に応じた中間データを説明する図である。図16(a)は、時間と環境因子データ(例えばCO濃度)の関係を示し、図16(b)は時間と中間データ(例えば覚醒低下と関連のある生理反応量)の関係を示す。例えば環境因子データをCO濃度とし、中間データは覚醒低下と関連のある生理反応量とする。生理反応量は、COが所定の濃度以上の時間が一定以上持続すると上昇し(時間T1)、所定の濃度以下の時間が一定以上持続すると低下する(時間T2)。したがって、このモデルは環境因子データに継続してさらされた持続時間と持続する値により生じる症状を現すことに適している。 16(a) and (b) are diagrams for explaining the duration of continuous measurement of environmental factor data and intermediate data corresponding to the sustained value. FIG. 16(a) shows the relationship between time and environmental factor data (e.g., CO2 concentration), and FIG. 16(b) shows the relationship between time and intermediate data (e.g., physiological response amount associated with decreased arousal). For example, the environmental factor data is CO2 concentration, and the intermediate data is physiological response amount associated with decreased arousal. The physiological response amount increases (time T1) when CO2 is at or above a certain concentration for a certain period of time, and decreases (time T2) when CO2 is at or below a certain concentration for a certain period of time. Therefore, this model is suitable for expressing symptoms caused by the duration of continuous exposure to environmental factor data and the sustained value.
 図17(a)(b)は、環境因子データが測定される繰り返し回数に応じた中間データを説明する図である。図17(a)は、時間と環境因子データ(例えばアレルゲン量)の関係を示し、図17(b)は時間と中間データ(アレルギー症状と関連のある生理反応量)の関係を示す。例えば環境因子データをアレルゲン量とし、中間データはアレルギー症状と関連のある生理反応量とする。生理反応量は、アレルゲン量が同じでも1回目より2回目の方が、反応が大きくなる。したがって、このモデルは環境因子データにさらされた回数に応じて生じる症状を現すことに適している。 Figures 17(a) and (b) are diagrams explaining intermediate data according to the number of repetitions at which environmental factor data is measured. Figure 17(a) shows the relationship between time and environmental factor data (e.g., amount of allergen), and Figure 17(b) shows the relationship between time and intermediate data (amount of physiological response related to allergic symptoms). For example, the environmental factor data is the amount of allergen, and the intermediate data is the amount of physiological response related to allergic symptoms. Even if the amount of allergen is the same, the physiological response is greater the second time than the first. Therefore, this model is suitable for expressing symptoms that arise according to the number of times exposed to environmental factor data.
 (vi) 環境因子データが生起した時刻から所定時間が経過した後に変化する中間データを出力するモデル
このモデルは、花粉を吸ってから遅れて鼻水が出るような関係を表すことに適している。また、このモデルは、菌に接触してから遅れて免疫が働くような関係を表すことに適している。
(vi) A model that outputs intermediate data that changes after a certain time has passed since the occurrence of environmental factor data This model is suitable for expressing the relationship of a delayed runny nose after inhaling pollen, or a delayed immune response after contact with bacteria.
 図18(a)(b)は、環境因子データが測定されたときから時間が経過した後に、測定された環境因子データに応じた中間データを説明する図である。図18(a)は、時間と環境因子データ(例えばハウスダスト量)の関係を示し、図18(b)は時間と中間データ(例えばアレルギー症状と関連のある生理反応量)の関係を示す。例えば環境因子データをハウスダスト量とし、中間データはアレルギー症状と関連のある生理反応量とする。生理反応量は、ハウスダスト量にほぼ比例しているが、ハウスダスト量が変化した時刻から少し遅れて(時間Tの遅れ)変化する。したがって、このモデルは環境因子データにさらされたときから時間が経過した後に生じる症状を現すことに適している。 FIGS. 18(a) and (b) are diagrams explaining intermediate data corresponding to measured environmental factor data after time has passed since the environmental factor data was measured. FIG. 18(a) shows the relationship between time and environmental factor data (e.g., the amount of house dust), and FIG. 18(b) shows the relationship between time and intermediate data (e.g., the amount of physiological response associated with allergic symptoms). For example, the environmental factor data is the amount of house dust, and the intermediate data is the amount of physiological response associated with allergic symptoms. The amount of physiological response is roughly proportional to the amount of house dust, but changes with a slight delay (a delay of time T) from the time when the amount of house dust changes. Therefore, this model is suitable for expressing symptoms that occur after time has passed since exposure to environmental factor data.
 <感覚強度に関して>
次に、生体特性を模擬したモデルの1つとしてウェーバーとフェヒナーの法則について詳細に説明する。ウェーバーとフェヒナーの法則により上記の中間データの一例として感覚強度が得られる。すなわち、本開示は、空気質環境の変化が刺激となり、人間が受けるであろう影響の大きさを表す変数として「感覚強度」を導入する。感覚強度は、ウェーバーとフェヒナーにより提唱されたウェーバー・フェヒナーの法則に基づいて、空気質環境データから推定を行う。
<Regarding sensory intensity>
Next, the Weber-Fechner law will be described in detail as one model that simulates biological characteristics. The Weber-Fechner law provides sensory intensity as an example of the intermediate data. In other words, the present disclosure introduces "sensory intensity" as a variable that represents the magnitude of the impact that a change in the air quality environment will have on humans as a stimulus. The sensory intensity is estimated from air quality environment data based on the Weber-Fechner law proposed by Weber and Fechner.
 ウェーバー・フェヒナーの法則は人間が感じる刺激の強さを数式で表現する法則であり、五感全てに近似的に当てはまると言われている。感覚強度Pは、式(1)に示すように環境因子データの統計量から推定する。空気質環境データから感覚強度を推定する際に必要な、式(1)のI、I0、kは以下のように決定する。
「刺激の強さI」には環境因子データの統計量を用いる。
「感覚の強さが0になる刺激の強さ(刺激を感じ始める刺激の強さ)I0」には、環境因子データの平均値を用いる。平均値を用いる理由は以下のとおりである。
The Weber-Fechner law is a law that expresses the strength of stimuli felt by humans in a mathematical formula, and is said to approximately apply to all five senses. Sensory intensity P is estimated from the statistics of environmental factor data as shown in formula (1). I, I0 , and k in formula (1), which are necessary to estimate sensory intensity from air quality environmental data, are determined as follows:
For "stimulus strength I," statistics from environmental factor data are used.
The average value of the environmental factor data is used for "the intensity of the stimulus at which the intensity of sensation becomes 0 (the intensity of the stimulus at which the sensation begins to be felt) I 0 ". The reason for using the average value is as follows.
 人は周囲の環境に順応しようとする特性があることが知られている。この順応は、周囲の環境の平均的な状態に向かってすすむ。これらのことを考慮して、本発明では平均値を、刺激を感じ始める刺激の強さI0として用いる。
「刺激固有の定数k」については、感覚毎に異なる値とされているが、本発明では、環境因子データ(例えば温度、湿度、CO、PM2.5、TVOC、ホルムアルデヒド等)の取り得る値の範囲や単位が異なることに起因する影響度の違いを揃えるための重み係数として用い、環境因子ごとに決定する。決定方法は、環境因子データを説明変数、増悪リスクを目的変数として、近似式を作成し、近似誤差を最小とする定数として求める。
It is known that humans have the tendency to adapt to their surroundings. This adaptation progresses toward the average state of the surrounding environment. Taking this into consideration, in this invention, the average value is used as the intensity I0 of the stimulus at which the stimulus begins to be felt.
The "stimulus-specific constant k" is a different value for each sensation, but in the present invention, it is used as a weighting coefficient to smooth out differences in the degree of influence caused by differences in the range of values and units that environmental factor data (e.g., temperature, humidity, CO2 , PM2.5, TVOC, formaldehyde, etc.) can take, and is determined for each environmental factor. The determination method is to create an approximation equation using the environmental factor data as the explanatory variable and the exacerbation risk as the objective variable, and to obtain the constant that minimizes the approximation error.
 図19(a)(b)は、環境因子データ(X軸)と感覚強度(Y軸)の対応を表した図である。図19(a)は以下の式(2)をグラフにしたものである。
Y=klogX+α……(2)
 ただし、kとαは適宜設計された定数でよい。
19(a) and (b) are diagrams showing the correspondence between environmental factor data (X-axis) and sensory intensity (Y-axis). Fig. 19(a) is a graph of the following formula (2).
Y = klogX + α ... (2)
Here, k and α may be appropriately designed constants.
 なお、式(1)(2)は一例であり、刺激と感覚強度の対応は、例えば式(3)で表されてもよい。
Y=logI……(3)
 Iは環境因子データの統計量/1日の平均値。
Note that equations (1) and (2) are merely examples, and the correspondence between the stimulus and the sensory intensity may be expressed by, for example, equation (3).
Y = logI ... (3)
I is the statistical value of environmental factor data/daily average value.
 また、感覚強度は対数以外で求めてもよい。図19(b)は、刺激と感覚強度の対応を二本の直線で示す。このように、感覚強度は、刺激が小さい領域よりも刺激が大きい領域で飽和すればよい。刺激と感覚強度の対応は三本以上の直線で表されてもよい。 Furthermore, the sensory intensity may be calculated using a method other than logarithm. Figure 19(b) shows the correspondence between the stimulus and the sensory intensity using two straight lines. In this way, the sensory intensity is saturated in the region where the stimulus is large rather than in the region where the stimulus is small. The correspondence between the stimulus and the sensory intensity may be expressed using three or more straight lines.
 図20は、環境因子データから感覚強度が推定されることで生体反応と対応することを説明する図である。図20では、周辺環境Aと、人間側(生態内部)Bとを分けて示している。 Figure 20 explains how sensory intensity is estimated from environmental factor data and corresponds to a biological response. In Figure 20, the surrounding environment A and the human side (inside the ecosystem) B are shown separately.
 周辺環境A:人は、温度変化、湿度変化、空気質の変化、匂いの変化等、環境変化により刺激を感じる。 Surrounding environment A: People feel stimuli due to changes in the environment, such as changes in temperature, humidity, air quality, and smell.
 人間側(生態内部)B:その刺激は、ウェーバー・フェヒナーの法則により大きくなると飽和する。つまり、人は刺激の大きさでなく感覚強度を知覚する。そして、感覚強度が姿形を変え様々な生体反応(心拍数の変化、血圧の変化、呼吸数の変化等)として現れる。したがって、感覚強度は、バイタルデータを代替できる情報であることが分かる。 Human side (inside the ecosystem) B: According to the Weber-Fechner law, the stimulus becomes saturated as it becomes larger. In other words, people perceive the intensity of the sensory sensation, not the magnitude of the stimulus. Sensory intensity then changes form and appears as various biological reactions (changes in heart rate, blood pressure, respiratory rate, etc.). Therefore, it can be seen that sensory intensity is information that can replace vital data.
 <増悪リスクの予測>
続いて、数理モデル生成部65が生成した数理モデルを使用して、環境因子データと感覚強度から増悪リスクを予測する予測方法を説明する。
<Prediction of risk of progression>
Next, a prediction method for predicting the risk of exacerbation from environmental factor data and sensory intensity using the mathematical model generated by the mathematical model generating unit 65 will be described.
 <<機能について>>
図21は、予測フェーズにおいて、情報処理装置60が有する機能をブロックに分けて説明する機能ブロック図の一例である。なお、図21の説明においては、図5との相違を主に説明する。情報処理装置60は、環境因子データ取得部61、統計量算出部63、感覚強度推定部64、及び、増悪リスク予測部66、を有している。情報処理装置60が有するこれら各部は、情報処理装置60の制御部110がメモリ222に展開されたプログラムの命令を実行することで実現される機能又は手段である。
<<About the function>>
Fig. 21 is an example of a functional block diagram explaining the functions of the information processing device 60 in the prediction phase by dividing them into blocks. In the explanation of Fig. 21, the differences from Fig. 5 will be mainly explained. The information processing device 60 has an environmental factor data acquisition unit 61, a statistics calculation unit 63, a sensory intensity estimation unit 64, and an exacerbation risk prediction unit 66. Each of these units of the information processing device 60 is a function or means realized by the control unit 110 of the information processing device 60 executing commands of a program deployed in the memory 222.
 このうち、増悪リスク予測部66が数理モデルに相当する。増悪リスク予測部66は、中間データと、症状変化の可能性とを対応付けた対応情報を用いて、中間データから症状変化の可能性を予測する。本開示では、増悪リスク予測部66は、環境因子データ(実測、予報)と環境因子データをもとに推定される感覚強度から増悪リスクを出力する。症状変化の可能性とは、症状が悪化又は好転することがどの程度の確からしさかを示す。増悪リスクを例にすると、ユーザーが入力する症状変化情報が1(増悪した)又は0(憎悪しない)である場合、症状変化の可能性の予測値も0~1の範囲の値を取る。予測値が1に近いほど、症状が悪い方に変化する可能性を示し、予測値が0に近いほど症状がよい方に変化する可能性を示す。増悪リスク部66は症状がどの程度変化するかを予測できる。環境因子データに予報値を用いる場合は、感覚強度も前記予報値を用いて推定する。増悪リスクは、自己申告された症状変化情報を、増悪リスク予測部66が予測した値である。 Among these, the exacerbation risk prediction unit 66 corresponds to the mathematical model. The exacerbation risk prediction unit 66 predicts the possibility of symptom change from the intermediate data using correspondence information that associates the intermediate data with the possibility of symptom change. In the present disclosure, the exacerbation risk prediction unit 66 outputs the exacerbation risk from the environmental factor data (actual measurement, forecast) and the sensory intensity estimated based on the environmental factor data. The possibility of symptom change indicates the degree of probability that the symptom will worsen or improve. Taking the exacerbation risk as an example, when the symptom change information input by the user is 1 (worsened) or 0 (not aggravated), the predicted value of the possibility of symptom change also takes a value in the range of 0 to 1. The closer the predicted value is to 1, the more likely the symptom will change for the worse, and the closer the predicted value is to 0, the more likely the symptom will change for the better. The exacerbation risk unit 66 can predict the degree to which the symptom will change. When a forecast value is used for the environmental factor data, the sensory intensity is also estimated using the forecast value. The exacerbation risk is a value predicted by the exacerbation risk prediction unit 66 from the self-reported symptom change information.
 図22は、環境因子データと感覚強度を増悪リスク予測部66に入力し、増悪リスクを予測する予測フェーズを説明する図である。なお、図22の説明では主に図7との差異を説明する。ステップS1、S3、及びS4については図7と同様でよい。 FIG. 22 is a diagram explaining the prediction phase in which environmental factor data and sensory intensity are input to the exacerbation risk prediction unit 66 to predict the risk of exacerbation. Note that the explanation of FIG. 22 will mainly explain the differences from FIG. 7. Steps S1, S3, and S4 may be the same as in FIG. 7.
 S6:増悪リスク予測部66は、環境因子データの統計量及び統計量から推定した感覚強度を入力データとして、増悪リスクを出力する。 S6: The exacerbation risk prediction unit 66 takes the statistics of the environmental factor data and the sensory intensity estimated from the statistics as input data and outputs the exacerbation risk.
 勾配ブースティング決定木を用いた予測について説明する。増悪リスク予測部66は、学習フェーズで作成された全ての決定木にそれぞれ入力データを入力する。図9では3つの決定木があるが、決定木ごとに入力データが決定木の1つの葉に分類される。各葉には誤差が格納されている。例えば図9の点線の○で示す葉321~323に誤差1~3が分類されたとする。増悪リスク予測部66は、学習フェーズで計算した平均値に対し、これらの葉が有する誤差に学習率を乗じた値を全ての決定木で合計することで、症状変化情報の予測値(増悪リスク)を推定する。 Prediction using gradient boosting decision trees will now be explained. The exacerbation risk prediction unit 66 inputs input data to all of the decision trees created in the learning phase. There are three decision trees in Figure 9, and the input data for each decision tree is classified into one leaf of the decision tree. An error is stored in each leaf. For example, suppose that errors 1 to 3 are classified into leaves 321 to 323, indicated by dotted circles in Figure 9. The exacerbation risk prediction unit 66 estimates the predicted value of symptom change information (exacerbation risk) by summing up the values obtained by multiplying the errors of these leaves by the learning rate for the average value calculated in the learning phase for all decision trees.
 増悪リスクの予測値=平均+学習率×誤差1+学習率×誤差2+学習率×誤差3
 このように、勾配ブースティング決定木において、最終的な予測値は、学習フェーズで計算した平均に、学習率を掛けた誤差1~誤差nをすべて足した値である。
最終的な予測値=平均+学習率×誤差1+学習率×誤差2+……+学習率×誤差n
 教師データの症状変化情報が増悪した(1)、増悪しない(0)の場合、予測値は0~1の値である。増悪リスク予測部66は予測値を100倍してパーセント表示に変換するとよい。
Predicted risk of exacerbation = average + learning rate x error 1 + learning rate x error 2 + learning rate x error 3
Thus, in a gradient boosting decision tree, the final predicted value is the average calculated in the learning phase plus all of the errors 1 through n multiplied by the learning rate.
Final prediction value = average + learning rate x error 1 + learning rate x error 2 + ... + learning rate x error n
When the symptom change information in the training data is worsened (1) or not worsened (0), the predicted value is a value between 0 and 1. The exacerbation risk prediction unit 66 may multiply the predicted value by 100 to convert it into a percentage.
 <感覚強度を用いたことによる予測精度の向上>
図23を参照して、感覚強度を用いたことによる効果について説明する。図23は、喘息の増悪リスクを、感覚強度を用いないで予測した場合と用いて予測した場合の予測精度を比較する図である。感覚強度を用いないで予測した場合の予測精度が61.1%であるのに対し、感覚強度を用いて予測した場合の予測精度が73.3%に向上している。 
 <学習フェーズの変形例>
症状変化情報は個人差が大きいことが知られている。これは、学習フェーズにおいて、数理モデル生成部65は、個人別に数理モデルを生成することが有効であることを意味する。数理モデル生成部65は、症状変化情報を申告する全患者について数理モデル(第1の対応情報の一例)を生成すると共に、個人別に数理モデル(第2の対応情報の一例)を生成する。
<Improving prediction accuracy by using sensory intensity>
The effect of using the sensory intensity will be described with reference to Fig. 23. Fig. 23 is a diagram comparing the prediction accuracy of the asthma exacerbation risk when it is predicted without using the sensory intensity and when it is predicted with the sensory intensity. The prediction accuracy when it is predicted without using the sensory intensity is 61.1%, whereas the prediction accuracy when it is predicted with the sensory intensity is improved to 73.3%.
<Modification of the learning phase>
It is known that symptom change information varies greatly from person to person. This means that in the learning phase, it is effective for the mathematical model generating unit 65 to generate a mathematical model for each individual. The mathematical model generating unit 65 generates a mathematical model (an example of the first correspondence information) for all patients who report symptom change information, and also generates a mathematical model (an example of the second correspondence information) for each individual.
 増悪リスク予測部66は、複数人(例えば全患者)の数理モデルで増悪リスクを予測すると共に、個人の数理モデルで増悪リスクを予測する。増悪リスク予測部66は、予測した2つの増悪リスク、予測した2つの増悪リスクの高い方、又は、予測した2つの増悪リスクの平均の1つ以上を個人に提供することで、各個人が当日の増悪リスクを把握しやすくなる。 The exacerbation risk prediction unit 66 predicts the exacerbation risk using a mathematical model for multiple people (e.g., all patients) and also predicts the exacerbation risk using an individual's mathematical model. The exacerbation risk prediction unit 66 provides the individual with one or more of the two predicted exacerbation risks, the higher of the two predicted exacerbation risks, or the average of the two predicted exacerbation risks, making it easier for each individual to grasp the exacerbation risk on that day.
 また、アレルゲンには花粉のように、季節によって環境因子となるものがあるので、数理モデル生成部65は、季節ごとに数理モデルを生成することが有効である。また、個人によってアレルゲンも異なるため、数理モデル生成部65は、アレルゲンごとに数理モデルを生成することが有効である。患者9のアレルゲンは情報処理装置60に登録されている。数理モデル生成部65は、同じアレルゲンの患者9をグループ化して、申告された症状変化情報と環境因子データに基づいて数理モデルを生成する。また、個人によって発症しやすい疾患(基礎疾患)も異なるため、数理モデル生成部65は、対象疾患ごとに数理モデルを生成することが有効である。患者9の疾患は情報処理装置60に登録されている。数理モデル生成部65は、同じ疾患の患者9をグループ化して、申告された症状変化情報と環境因子データに基づいて数理モデルを生成する。 Also, since some allergens, such as pollen, become environmental factors depending on the season, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each season. Also, since allergens differ depending on the individual, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each allergen. The allergens of the patient 9 are registered in the information processing device 60. The mathematical model generation unit 65 groups patients 9 with the same allergen and generates a mathematical model based on the reported symptom change information and environmental factor data. Also, since diseases (underlying diseases) that are likely to develop differ depending on the individual, it is effective for the mathematical model generation unit 65 to generate a mathematical model for each target disease. The disease of the patient 9 is registered in the information processing device 60. The mathematical model generation unit 65 groups patients 9 with the same disease and generates a mathematical model based on the reported symptom change information and environmental factor data.
 充分な環境因子データが得られる場合は、更に、数理モデルの作成を、ユーザーの属性(例えば性別や年齢)、エリア(例えば都道府県や市町村)ごとに作成しても良い。これにより、増悪リスクの予測精度の向上が期待できる。 If sufficient data on environmental factors is available, mathematical models can be created for each user's attributes (e.g., gender and age) and area (e.g., prefecture or city/town/village). This is expected to improve the accuracy of predictions of exacerbation risk.
 <増悪リスクの提示例>
図24は、ユーザー端末70が表示する増悪リスクのマップ画面300の表示例である。マップ画面300は、主に、モード選択欄301、及び、マップ表示欄302を有している。モード選択欄301は、推奨ボタン303、防カビ&ダニボタン304、省エネボタン305、及び決定ボタン306を有している。
<Examples of risk of exacerbation>
24 is a display example of an exacerbation risk map screen 300 displayed by the user terminal 70. The map screen 300 mainly has a mode selection field 301 and a map display field 302. The mode selection field 301 has a recommendation button 303, an anti-mold and dust mite button 304, an energy saving button 305, and a decision button 306.
 ・推奨ボタン303は、防カビ・ダニ性と省エネ性を総合して、推奨される環境設定を表示させるボタンである。 The recommendation button 303 is a button that displays the recommended environmental settings based on a combination of mold and dust mite prevention and energy saving performance.
 ・防カビ&ダニボタン304は、カビ指数又はダニ指数の少なくとも一方に基づいてカビとダニが抑制される環境設定を表示させるボタンである。 The Anti-Mold & Mite button 304 is a button that displays environmental settings that suppress mold and mites based on at least one of the mold index or mite index.
 ・省エネボタン305は、省エネ性に基づいて推奨される環境設定を表示させるボタンである。 The energy saving button 305 displays recommended environmental settings based on energy saving performance.
 ・決定ボタン306は、患者9が設定した環境設定で環境機器を制御すること受け付けるボタンである。 The decision button 306 is a button that accepts control of the environmental equipment with the environmental settings set by the patient 9.
 マップ表示欄302は、3つのマップA~Cを表示している。これは一例であって、マップA~Cは1つずつ表示されてもよい。3つのマップA~Cには、それぞれ現在の環境状況308~310が示されている。 The map display area 302 displays three maps A to C. This is just one example, and maps A to C may be displayed one at a time. Current environmental conditions 308 to 310 are shown on the three maps A to C, respectively.
 ・マップAは、設定温度と設定湿度に対応付けられた増悪リスクの高い領域を示す。増悪リスクの低い領域は2つに区分されており、マップ画面元データの温度と湿度に対応付けて、増悪リスクが第1閾値以下の領域が青色(一例)で、第2閾値以下の領域が赤色(一例)で示されている。なお、マップ画面元データは、環境因子データと増悪リスクが網羅的に算出されたデータである。マップ画面元データは、離散データなので、画面生成部73は点と点の間を補間して着色する等の処理を行っている。 Map A shows areas with a high risk of aggravation that correspond to the set temperature and humidity. The areas with a low risk of aggravation are divided into two, and areas with a risk of aggravation below a first threshold are shown in blue (one example) and areas with a risk of aggravation below a second threshold are shown in red (one example) in correspondence with the temperature and humidity of the map screen original data. The map screen original data is data in which environmental factor data and aggravation risk are comprehensively calculated. As the map screen original data is discrete data, the screen generation unit 73 performs processing such as coloring by interpolating between points.
 ・マップBは、CO濃度とPM2.5濃度に対応付けられた増悪リスクの低い領域を示す。増悪リスクの低い領域は2つに区分されており、マップ画面元データのCO濃度とPM2.5濃度に対応付けて、増悪リスクが第1閾値以下の領域が青色(一例)で、第2閾値以下の領域が赤色(一例)で示されている。ただし、第1閾値<第2閾値とする。 ・Map B shows areas with low risk of aggravation associated with CO2 concentration and PM2.5 concentration. The areas with low risk of aggravation are divided into two, and areas with aggravation risk below the first threshold are shown in blue (example), and areas below the second threshold are shown in red (example), in association with the CO2 concentration and PM2.5 concentration of the original data on the map screen. However, the first threshold is less than the second threshold.
 ・マップCは、ホルムアルデヒド濃度とTVOC濃度に対応付けられた増悪リスクの低い領域を示す。増悪リスクの低い領域は2つに区分されており、マップ画面元データのホルムアルデヒド濃度とTVOC濃度に対応付けて、増悪リスクが第1閾値以下の領域が青色(一例)で、第2閾値以下の領域が赤色(一例)で示されている。  Map C shows areas with low risk of aggravation, which are associated with formaldehyde concentration and TVOC concentration. The areas with low risk of aggravation are divided into two, and areas with aggravation risk below a first threshold are shown in blue (one example), and areas below a second threshold are shown in red (one example), which are associated with formaldehyde concentration and TVOC concentration in the original data on the map screen.
 したがって、ユーザーはどのくらいの温度と湿度に空調機を設定すればよいかを容易に判断できる。 This allows users to easily determine what temperature and humidity to set their air conditioner to.
 なお、ユーザー端末70がマップ画面を表示するのでなく、情報処理装置60が表示装置230にマップ画面を表示してもよい。 In addition, instead of the user terminal 70 displaying the map screen, the information processing device 60 may display the map screen on the display device 230.
 図25は、ユーザー端末70が表示する感覚強度と増悪リスク画面310の表示例である。感覚強度と増悪リスク画面310は、「アレルギー症状の増悪リスクは以下の通りです」というメッセージ311、増悪リスク312、増悪リスクに関与する環境因子の影響度313、が表示されている。 FIG. 25 is an example of a sensory intensity and aggravation risk screen 310 displayed on the user terminal 70. The sensory intensity and aggravation risk screen 310 displays a message 311 saying "The risk of allergic symptoms aggravating is as follows," the aggravation risk 312, and the degree of influence 313 of environmental factors that contribute to the aggravation risk.
 ユーザーは表示された増悪リスク312を確認することができると共に、増悪リスクに関与する環境因子を視覚的に把握できる。また、感覚強度と増悪リスク画面310は、増悪リスクに関与する影響度が閾値以上の環境因子314を表示する。これにより、ユーザーはどの環境因子を調整すればよいかが分かる。 The user can check the displayed exacerbation risk 312 and visually grasp the environmental factors that contribute to the exacerbation risk. The sensory intensity and exacerbation risk screen 310 also displays environmental factors 314 that contribute to the exacerbation risk and have a degree of influence equal to or greater than a threshold. This allows the user to know which environmental factors they should adjust.
 <環境因子データと症状のより詳細な説明>
図26(a)(b)は、環境因子データと症状の一例を示す。図26(a)は環境センサで検出可能な環境因子データを示す。環境因子データとしては、温度、湿度、花粉、カビ、ダニ、以外にも、輻射温度、気圧、粉塵(量、浮遊濃度)、気流(風速、風量)、CO2、酸素(濃度)、音(音圧、音量、周波数、テンポ)、臭気(強度)、加速度・傾き(乗り物に乗車した場合の環境因子データ)、飛沫・蒸気・煙(感染症に関する環境因子データ)等がある。本開示では、これらは症状変化の可能性を予測する元データとなり得る。
<Environmental factor data and more detailed description of symptoms>
26(a) and (b) show examples of environmental factor data and symptoms. FIG. 26(a) shows environmental factor data that can be detected by an environmental sensor. In addition to temperature, humidity, pollen, mold, and mites, environmental factor data includes radiation temperature, air pressure, dust (amount, suspended concentration), airflow (wind speed, air volume), CO2, oxygen (concentration), sound (sound pressure, volume, frequency, tempo), odor (intensity), acceleration/inclination (environmental factor data when riding in a vehicle), droplets/steam/smoke (environmental factor data related to infectious diseases), etc. In the present disclosure, these can be source data for predicting the possibility of a change in symptoms.
 図26(b)は、環境因子データで引き起こされる症状を示す。症状としては、アレルギー以外にも、気象病、感染症、睡眠質、自律神経失調、認知症・せん妄、虚弱・フレイル、記憶力の減退・向上、覚醒度・眠気、熱中症、運動機能、乗り物酔い、及び、VR酔い等がある。本開示では、これらも数理モデルにより予測される症状変化となり得る。数理モデルの学習時には、これらの症状の有無や程度を教師データとしてユーザーが申告する。 FIG. 26(b) shows symptoms caused by environmental factor data. In addition to allergies, symptoms include weather-related illnesses, infectious diseases, sleep quality, autonomic nervous system imbalance, dementia/delirium, weakness/frailty, memory decline/improvement, alertness/drowsiness, heat stroke, motor function, motion sickness, and VR sickness. In this disclosure, these can also be symptom changes predicted by the mathematical model. When the mathematical model is being trained, the user reports the presence or absence and severity of these symptoms as training data.
 <主な効果>
以上説明したように、本開示では、増悪リスクの予測に際し、バイタルデータを使用しない。また、本開示は、空気質環境の変化が刺激となり、人間が受けるであろう影響の大きさを表す変数として「感覚強度」を導入することで、バイタルデータを代替し、症状の増悪リスクを高精度に予測することができる。また、生体特性を模擬したモデルにより環境因子データを中間データに変換することで、少サンプル数で機械学習の精度を上げることができる。
<Major Effects>
As described above, in the present disclosure, vital data is not used to predict the risk of exacerbation. In addition, in the present disclosure, by introducing "sensation intensity" as a variable that represents the magnitude of the impact that a change in the air quality environment will have on a human being, it is possible to replace vital data and predict the risk of exacerbation of symptoms with high accuracy. In addition, by converting environmental factor data into intermediate data using a model that simulates biological characteristics, the accuracy of machine learning can be improved with a small number of samples.
 <その他の適用例>
以上、本開示を実施するための最良の形態について実施例を用いて説明したが、本開示はこうした実施例に何等限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
<Other application examples>
The above describes the best mode for carrying out the present disclosure using examples, but the present disclosure is not limited to these examples in any way, and various modifications and substitutions can be made within the scope that does not deviate from the gist of the present disclosure.
 例えば、情報処理装置60と環境センサ11とが別体のシステムでなく、環境センサ11に情報処理装置60が一体化されていてもよい。この場合、環境センサ11は、設置された空間の環境因子データから予測した増悪リスクを液晶ディスプレイなどに表示できる。 For example, the information processing device 60 and the environmental sensor 11 do not have to be separate systems, and the information processing device 60 may be integrated into the environmental sensor 11. In this case, the environmental sensor 11 can display the risk of exacerbation predicted from the environmental factor data of the space in which it is installed on a liquid crystal display or the like.
 同様に、空調機の室内機10bに環境センサ11が内蔵されている場合、室内機10b、室外ユニット10a又はリモコン12のいずれかが、空間の環境因子データから予測した増悪リスクをリモコン12に表示してよい。 Similarly, if the indoor unit 10b of the air conditioner has an environmental sensor 11 built in, either the indoor unit 10b, the outdoor unit 10a, or the remote control 12 may display on the remote control 12 the risk of aggravation predicted from the environmental factor data of the space.
 また、本開示では、増悪リスクの予測にバイタルデータが不要であるが、情報処理装置60は、感覚強度とバイタルデータを用いて増悪リスクを予測してもよい。 In addition, in the present disclosure, vital data is not required to predict the risk of exacerbation, but the information processing device 60 may predict the risk of exacerbation using sensory intensity and vital data.
 また、本実施形態は、人の症状の予測に限定されるものではなく、ペットなどの動物、牛や豚などの家畜、養殖される魚などの症状の予測に使用されてもよい。 Furthermore, this embodiment is not limited to predicting symptoms in humans, but may also be used to predict symptoms in animals such as pets, livestock such as cows and pigs, and farmed fish.
 また、図5、図21などの構成例は、情報処理装置60による処理の理解を容易にするために、主な機能に応じて分割したものである。処理単位の分割の仕方や名称によって本開示の技術が制限されることはない。情報処理装置60の処理は、処理内容に応じて更に多くの処理単位に分割することもできる。また、1つの処理単位が更に多くの処理を含むように分割することもできる。 Furthermore, the configuration examples in Figures 5, 21, etc. are divided according to main functions to make it easier to understand the processing by the information processing device 60. The technology disclosed herein is not limited by the manner in which the processing units are divided or the names of the processing units. The processing of the information processing device 60 can also be divided into even more processing units depending on the processing content. Also, it can be divided so that one processing unit includes even more processes.
 また、実施例に記載された装置群は、本明細書に開示された実施形態を実施するための複数のコンピューティング環境のうちの1つを示すものにすぎない。ある実施形態では、情報処理装置60は、サーバークラスタといった複数のコンピューティングデバイスを含む。複数のコンピューティングデバイスは、ネットワークや共有メモリなどを含む任意のタイプの通信リンクを介して互いに通信するように構成されており、本明細書に開示された処理を実施する。 Furthermore, the devices described in the examples are merely representative of one of multiple computing environments for implementing the embodiments disclosed herein. In one embodiment, the information processing device 60 includes multiple computing devices, such as a server cluster. The multiple computing devices are configured to communicate with each other via any type of communication link, including a network, shared memory, etc., and perform the processing disclosed herein.
 上記で説明した本開示の各機能は、プログラムの実行によるソフトウェア処理だけでなく、一又は複数の処理回路によって実現することが可能である。ここで、本明細書における「処理回路」は、電子回路により実装されるプロセッサのようにソフトウェアによって各機能を実行するようプログラミングされたプロセッサや、上記で説明した各機能を実行するよう設計されたASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、及び、従来の回路モジュール等のデバイスを含む。 Each of the functions of the present disclosure described above can be realized not only by software processing through the execution of a program, but also by one or more processing circuits. Here, the "processing circuit" in this specification includes a processor programmed to execute each function by software, such as a processor implemented by an electronic circuit, an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and devices such as conventional circuit modules designed to execute each of the functions described above.
 <効果が生じる理由>
・本開示の第1の態様は、「環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する制御部を有し、
 前記制御部は、少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する」ので、人に生じる症状と環境因子に単純な線形関係がなく、複雑な対応関係があっても、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。
<Reasons for the effect>
The first aspect of the present disclosure is a method for detecting an environmental factor by using an environmental factor analysis method, comprising:
The control unit predicts the possibility of a symptom change from the intermediate data using correspondence information that matches at least the intermediate data with the possibility of a symptom change due to the environment. Therefore, even if there is no simple linear relationship between the symptoms that a person experiences and environmental factors and there is a complex correspondence relationship, it is possible to create correspondence information that matches the intermediate data with the possibility of a symptom change due to the environment with a smaller number of learning data samples.
 ・本開示の第2の態様は、「前記生体特性を模擬したモデルは、ウェーバー・フェヒナーの法則である」ので、空気質環境の変化が刺激となり人間が受けるであろう影響の大きさを適切に中間データに変換することができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - The second aspect of the present disclosure is that "the model that mimics the biological characteristics is the Weber-Fechner law," so that the magnitude of the impact that changes in the air quality environment will have on humans can be appropriately converted into intermediate data, and correspondence information that matches the intermediate data with the possibility of changes in symptoms in response to the environment can be created with a smaller number of learning data samples.
 ・本開示の第3の態様は、「生体特性を模擬したモデルは、前記環境因子データが取る値の範囲によって又は前記環境因子データが条件を満たすか否かで、異なる前記中間データを出力するモデル」なので、温度による発汗や震え、又は、温度と免疫細胞の活性度合などの関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - The third aspect of the present disclosure is that "the model simulating biological characteristics outputs different intermediate data depending on the range of values that the environmental factor data takes or whether the environmental factor data satisfies a condition," so that sweating or shivering due to temperature, or the relationship between temperature and the degree of immune cell activity, etc., can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of symptom changes due to the environment can be created with a smaller number of learning data samples.
 ・本開示の第4の態様は、「生体特性を模擬したモデルは、前記環境因子データの変化が増加又は減少のどちらか一方に変化した場合にのみ増加量又は減少量に応じた前記中間データを出力するモデル、又は、n階導関数の値に応じて変化する前記中間データを出力するモデル」なので、温度変化が小さいと気づかない生理反応、高温に触れてやけどすると温度が戻ってもやけどは回復しないような生理反応、気圧と気象病の関係、又は、加速度と車酔いの関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - The fourth aspect of the present disclosure is that "the model simulating biological characteristics outputs the intermediate data according to the amount of increase or decrease only when the change in the environmental factor data changes to either an increase or a decrease, or outputs the intermediate data that changes according to the value of the nth derivative," so that physiological reactions such as not noticing small temperature changes, physiological reactions in which a burn caused by touching a high temperature does not heal even when the temperature returns to normal, the relationship between air pressure and meteorological illnesses, or the relationship between acceleration and car sickness can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of changes in symptoms due to the environment can be created with a smaller number of learning data samples.
 ・本開示の第5の態様は、「生体特性を模擬したモデルは、前記環境因子データの積算値に応じた前記中間データ、又は、前記環境因子データの現在値が同じでも環境因子データの過去の値の変化履歴によって異なる前記中間データを出力するモデル」なので、花粉の摂取量と抗体の量、CO濃度と血中酸素濃度などの関係、花粉飛散量と花粉症の関係、又は、温湿度と熱中症などの関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - In the fifth aspect of the present disclosure, "the model simulating biological characteristics outputs the intermediate data according to the integrated value of the environmental factor data, or the intermediate data which differs depending on the history of changes in the past values of the environmental factor data even if the current value of the environmental factor data is the same", so that relationships between pollen intake and antibody amount, CO2 concentration and blood oxygen concentration, the relationship between pollen dispersion amount and hay fever, or the relationship between temperature, humidity and heat stroke, etc. can be represented by intermediate data, and correspondence information that matches the intermediate data with the possibility of changes in symptoms due to the environment can be created with a smaller number of learning data samples.
 ・本開示の第6の態様は、「生体特性を模擬したモデルは、前記環境因子データが所定範囲の値を継続する持続時間、又は、前記環境因子データが所定範囲の値を繰り返す回数に応じた前記中間データを出力するモデル」なので、気温への慣れ、アレルゲンの摂取回数と免疫反応量(アナフィラキシー)などの関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - The sixth aspect of the present disclosure is that "the model simulating biological characteristics outputs the intermediate data according to the duration that the environmental factor data maintains a value within a specified range, or the number of times that the environmental factor data repeats a value within a specified range," so that the relationship between habituation to temperature, the number of times an allergen is ingested, and the amount of immune response (anaphylaxis), etc., can be expressed by the intermediate data, and correspondence information that matches the intermediate data with the possibility of symptom changes in response to the environment can be created with a smaller number of learning data samples.
 ・本開示の第7の態様は、「生体特性を模擬したモデルは、前記環境因子データが生起した時刻から所定時間が経過した後に変化する前記中間データを出力するモデル」なので、花粉を吸ってから遅れて鼻水が出るような関係、又は、菌に接触してから遅れて免疫が働くような関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - The seventh aspect of the present disclosure is that "the model simulating biological characteristics outputs the intermediate data that changes after a predetermined time has elapsed from the time the environmental factor data occurs," so that the relationship of a runny nose occurring with a delay after inhaling pollen, or the relationship of the immune system acting with a delay after coming into contact with bacteria, can be expressed in intermediate data, and correspondence information that associates the intermediate data with the possibility of symptom changes in response to the environment can be created with a smaller number of learning data samples.
 ・本開示の第8の態様は、「生体特性を模擬したモデルは、前記環境因子データを入力、前記中間データを出力とするlog関数、指数関数、又はn次関数」なので、粉塵量と喘息症状などの関係を中間データで表すことができ、より少ない学習データのサンプル数で、中間データと環境に対する症状変化の可能性とを対応付けた対応情報を作成できる。 - In the eighth aspect of the present disclosure, "the model simulating the biological characteristics is a log function, exponential function, or n-th order function that inputs the environmental factor data and outputs the intermediate data," so that the relationship between the amount of dust and asthma symptoms, etc., can be expressed by intermediate data, and correspondence information that associates the intermediate data with the possibility of symptom changes in response to the environment can be created with a smaller number of training data samples.
 ・本開示の第9の態様は、「制御部は、さらに前記環境因子データを対応づけた対応情報を用いて、前記中間データ及び前記環境因子データから前記症状変化の可能性を予測する」ので、中間データだけでなく環境因子データからも症状変化の可能性を予測できる。 - In the ninth aspect of the present disclosure, "the control unit further predicts the possibility of the symptom change from the intermediate data and the environmental factor data using correspondence information that associates the environmental factor data," so that the possibility of a symptom change can be predicted not only from the intermediate data but also from the environmental factor data.
 ・本開示の第10の態様は、「症状変化の可能性は、アレルギー症状、喘息症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いのいずれかの症状が、悪化又は好転する可能性」なので、様々な症状の変化の可能性を予測できる。 - The tenth aspect of the present disclosure is that "the possibility of symptom change is the possibility of worsening or improving any of the following symptoms: allergy symptoms, asthma symptoms, weather-related illness, infectious disease, decreased sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, decreased memory, decreased motor function, heat stroke, motion sickness, or VR sickness," making it possible to predict the possibility of changes in various symptoms.
 ・本開示の第11の態様は、「環境因子データは、統計処理により加工された統計量である」ので、環境因子データそのものでなく統計処理を中間データに変換でき、対応情報がこの中間データと環境に対する症状変化の可能性とを対応付けるので、予測の精度を向上できる。 - In an eleventh aspect of the present disclosure, "environmental factor data is a statistical quantity processed by statistical processing," so that the statistical processing can be converted into intermediate data rather than the environmental factor data itself, and the correspondence information associates this intermediate data with the possibility of symptom changes in response to the environment, thereby improving the accuracy of prediction.
 ・本開示の第12の態様は、「実測された前記環境因子データ及び前記中間データ、又は、前記環境因子データの予報値及び前記中間データから、前記症状変化の可能性を予測する」ので、実測された環境因子データ及び中間データだけでなく、環境因子データ及び中間データの予報値からも症状変化の可能性を予測できる。 - The twelfth aspect of the present disclosure "predicts the possibility of a symptom change from the actually measured environmental factor data and the intermediate data, or from the forecast values of the environmental factor data and the intermediate data," so that the possibility of a symptom change can be predicted not only from the actually measured environmental factor data and intermediate data, but also from the forecast values of the environmental factor data and the intermediate data.
 ・本開示の第13の態様は、「前記中間データを説明変数、喘息症状、アレルギー症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いについて申告された症状変化情報を教師データとして、機械学習の手法を用いて前記対応情報を生成する」ので、説明変数と教師データの対応を学習した対応情報を生成でき、この対応情報でこれらの症状変化の可能性を予測できる。 - A thirteenth aspect of the present disclosure "uses the intermediate data as explanatory variables, and information on changes in symptoms reported regarding asthma symptoms, allergy symptoms, weather-related illnesses, infectious diseases, poor sleep quality, decreased alertness/drowsiness, autonomic dysfunction, frailty, dementia/delirium, poor memory, decreased motor function, heat stroke, motion sickness, or VR sickness as training data, and generates the correspondence information using machine learning techniques," so that correspondence information that learns the correspondence between explanatory variables and training data can be generated, and the correspondence information can predict the possibility of these symptom changes.
 ・本開示の第14の態様は、複数人用の第1の対応情報と、個人用の第2の対応情報「によりそれぞれ予測された症状変化の可能性に基づいて個人の症状変化の可能性を予測する」ので、複数人用と個人用それぞれの対応情報を生成でき、2つの対応情報でそれぞれ症状変化の可能性を予測するので、増悪リスクの高い方などを個人ごとに提供できる。 - A fourteenth aspect of the present disclosure "predicts the possibility of a symptom change for an individual based on the possibility of symptom change predicted by" first correspondence information for multiple people and second correspondence information for an individual, so that correspondence information for multiple people and for an individual can be generated separately, and the possibility of symptom change is predicted using each of the two pieces of correspondence information, so that information such as those with a high risk of exacerbation can be provided for each individual.
 ・本開示の第15の態様は、「季節ごと、対象疾患ごと、又は、前記アレルゲンごとに生成した前記対応情報に基づいて前記症状変化の可能性を予測する」なので、季節ごと、対象疾患ごと、又は、アレルゲンごとに生成し症状変化の可能性を予測できる。 - The fifteenth aspect of the present disclosure "predicts the possibility of a symptom change based on the correspondence information generated for each season, each target disease, or each allergen," making it possible to generate and predict the possibility of a symptom change for each season, each target disease, or each allergen.
 ・本開示の第16の態様は、「中間データと前記症状変化の可能性を同じ画面に表示する」ので、現在の中間データに対しどのくらい症状変化の可能性があるかを把握しやすい。 - The sixteenth aspect of the present disclosure "displays the intermediate data and the possibility of symptom change on the same screen," making it easy to understand how likely a symptom change is compared to the current intermediate data.
 本出願は、2022年11月24日に日本国特許庁に出願した特願2022-187732号に基づく優先権を主張するものであり、特願2022-187732号の全内容を本出願に援用する。 This application claims priority based on Patent Application No. 2022-187732, filed with the Japan Patent Office on November 24, 2022, and the entire contents of Patent Application No. 2022-187732 are incorporated herein by reference.
 10  環境機器
 11  環境センサ
 60  情報処理装置
 70  ユーザー端末
 100 人の症状変化予測システム
10 Environmental device 11 Environmental sensor 60 Information processing device 70 User terminal 100 System for predicting changes in human symptoms

Claims (18)

  1.  環境センサと、情報処理装置とを有する生体の症状変化予測システムであって、
     前記環境センサは、対象空間の環境因子に関する環境因子データを検出し、
     前記情報処理装置は、環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する制御部を有し、
     前記制御部は、少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する生体の症状変化予測システム。
    A symptom change prediction system for a living body having an environmental sensor and an information processing device,
    The environmental sensor detects environmental factor data related to an environmental factor of a target space;
    the information processing device has a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by an environment;
    The control unit is a symptom change prediction system for a living body that predicts the possibility of a symptom change from the intermediate data using correspondence information that associates at least the intermediate data with the possibility of a symptom change depending on the environment.
  2.  前記生体特性を模擬したモデルは、ウェーバー・フェヒナーの法則である請求項1に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms in a living body according to claim 1, wherein the model that simulates the biological characteristics is the Weber-Fechner law.
  3.  前記生体特性を模擬したモデルは、前記環境因子データが取る値の範囲によって又は前記環境因子データが条件を満たすか否かで、異なる前記中間データを出力するモデルである請求項1に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms of a living body according to claim 1, wherein the model simulating the biological characteristics is a model that outputs different intermediate data depending on the range of values that the environmental factor data takes or whether the environmental factor data satisfies a condition.
  4.  前記生体特性を模擬したモデルは、前記環境因子データの変化が増加又は減少のどちらか一方に変化した場合にのみ増加量又は減少量に応じた前記中間データを出力するモデル、又は、n階導関数の値に応じて変化する前記中間データを出力するモデルである請求項1に記載の生体の症状変化予測システム。 The symptom change prediction system for a living body according to claim 1, wherein the model simulating the biological characteristics is a model that outputs the intermediate data according to the amount of increase or decrease only when the change in the environmental factor data changes to either an increase or a decrease, or a model that outputs the intermediate data that changes according to the value of an n-th order derivative.
  5.  前記生体特性を模擬したモデルは、前記環境因子データの積算値に応じた前記中間データ、又は、前記環境因子データの現在値が同じでも環境因子データの過去の値の変化履歴によって異なる前記中間データを出力するモデルである請求項1に記載の生体の症状変化予測システム。 The symptom change prediction system for a living body according to claim 1, wherein the model simulating the biological characteristics is a model that outputs the intermediate data according to an integrated value of the environmental factor data, or the intermediate data that differs depending on a history of changes in the past values of the environmental factor data even if the current value of the environmental factor data is the same.
  6.  前記生体特性を模擬したモデルは、前記環境因子データが所定範囲の値を継続する持続時間、又は、前記環境因子データが所定範囲の値を繰り返す回数に応じた前記中間データを出力するモデルである請求項1に記載の生体の症状変化予測システム。 The symptom change prediction system for a living body according to claim 1, wherein the model simulating the biological characteristics is a model that outputs the intermediate data according to the duration for which the environmental factor data maintains a value within a predetermined range, or the number of times that the environmental factor data repeats a value within a predetermined range.
  7.  前記生体特性を模擬したモデルは、前記環境因子データが生起した時刻から所定時間が経過した後に変化する前記中間データを出力するモデルである請求項1に記載の生体の症状変化予測システム。 The symptom change prediction system of claim 1, wherein the model simulating the biological characteristics is a model that outputs the intermediate data that changes after a predetermined time has elapsed from the time when the environmental factor data occurs.
  8.  前記生体特性を模擬したモデルは、前記環境因子データを入力、前記中間データを出力とするlog関数、指数関数、又はn次関数である請求項1に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms of a living body according to claim 1, wherein the model simulating the biological characteristics is a log function, an exponential function, or an n-th order function, in which the environmental factor data is input and the intermediate data is output.
  9.  前記制御部は、さらに前記環境因子データを対応づけた対応情報を用いて、前記中間データ及び前記環境因子データから前記症状変化の可能性を予測する請求項1~8のいずれか1項に記載の生体の症状変化予測システム。 The system for predicting a symptom change in a living body according to any one of claims 1 to 8, wherein the control unit further predicts the possibility of the symptom change from the intermediate data and the environmental factor data using correspondence information that associates the environmental factor data.
  10.  前記症状変化の可能性は、アレルギー症状、喘息症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いのいずれかの症状が、悪化又は好転する可能性である請求項1に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms in a living body according to claim 1, wherein the possibility of a change in symptoms is the possibility of a worsening or improvement in any of the following symptoms: allergy symptoms, asthma symptoms, weather-related illness, infectious disease, poor sleep quality, decreased alertness/drowsiness, autonomic dysfunction, frailty, dementia/delirium, poor memory, poor motor function, heat stroke, motion sickness, or VR sickness.
  11.  前記環境因子データは、統計処理により加工された統計量である請求項1に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms in a living body according to claim 1, wherein the environmental factor data is a statistical quantity processed by statistical processing.
  12.  前記制御部は、実測された前記環境因子データ及び前記中間データ、又は、前記環境因子データの予報値及び前記中間データから、前記症状変化の可能性を予測する請求項9に記載の生体の症状変化予測システム。 The system for predicting symptom changes in a living body according to claim 9, wherein the control unit predicts the possibility of the symptom change from the actually measured environmental factor data and the intermediate data, or from the predicted values of the environmental factor data and the intermediate data.
  13.  前記制御部は、前記中間データを説明変数、
     喘息症状、アレルギー症状、気象病、感染症、睡眠質低下、覚醒低下・眠気、自律神経失調、フレイル、認知症・せん妄、記憶力低下、運動機能低下、熱中症、乗り物酔い、又は、VR酔いについて申告された症状変化情報を教師データとして、
     機械学習の手法を用いて前記対応情報を生成する請求項1に記載の生体の症状変化予測システム。
    The control unit classifies the intermediate data into explanatory variables,
    The change in symptoms reported for asthma symptoms, allergy symptoms, weather-related illnesses, infectious diseases, poor sleep quality, decreased alertness/drowsiness, autonomic nervous system imbalance, frailty, dementia/delirium, memory loss, motor function loss, heat stroke, motion sickness, or VR sickness is used as training data.
    The system for predicting changes in symptoms of a living body according to claim 1 , wherein the corresponding information is generated using a machine learning technique.
  14.  前記制御部は、前記中間データを説明変数、複数人が申告した前記症状変化情報を教師データとして、機械学習の手法を用いて第1の対応情報を生成し、
     前記中間データを説明変数、個人が申告した前記症状変化情報を教師データとして、機械学習の手法を用いて第2の対応情報を生成し、
     前記制御部は、前記第1の対応情報と前記第2の対応情報によりそれぞれ予測された症状変化の可能性に基づいて個人の症状変化の可能性を予測する請求項13に記載の生体の症状変化予測システム。
    the control unit generates first correspondence information using a machine learning technique with the intermediate data as an explanatory variable and the symptom change information reported by a plurality of persons as teacher data;
    generating second correspondence information using a machine learning technique with the intermediate data as explanatory variables and the symptom change information reported by the individual as teacher data;
    The system for predicting symptom changes in a living body as described in claim 13, wherein the control unit predicts the possibility of a symptom change in an individual based on the possibility of symptom change predicted by the first correspondence information and the second correspondence information, respectively.
  15.  前記制御部は、季節ごと、対象疾患ごと、又は、アレルギー症状におけるアレルゲンごとに、前記対応情報を生成し、
     季節ごと、対象疾患ごと、又は、前記アレルゲンごとに生成した前記対応情報に基づいて前記症状変化の可能性を予測する請求項13又は14に記載の生体の症状変化予測システム。
    The control unit generates the correspondence information for each season, each target disease, or each allergen in an allergic symptom,
    15. The system for predicting a symptom change in a living body according to claim 13 or 14, which predicts the possibility of the symptom change based on the correspondence information generated for each season, each target disease, or each allergen.
  16.  前記制御部は、前記中間データと前記症状変化の可能性を同じ画面に表示する請求項1~8のいずれか1項に記載の生体の症状変化予測システム。 The system for predicting changes in symptoms in a living body according to any one of claims 1 to 8, wherein the control unit displays the intermediate data and the possibility of the symptom change on the same screen.
  17.  情報処理装置であって、
     対象空間の環境因子に関する環境因子データを環境センサから受信し、
     環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する制御部を有し、
     前記制御部は、少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する情報処理装置。
    An information processing device,
    receiving environmental factor data from an environmental sensor relating to an environmental factor of the target space;
    a control unit that converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment;
    The control unit is an information processing device that predicts the possibility of a symptom change from the intermediate data by using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment.
  18.  環境センサと、情報処理装置とを有する生体の症状変化予測システムが行う症状変化予測方法であって、
     前記環境センサは、対象空間の環境因子に関する環境因子データを検出し、
     制御部が、環境に対する症状に関連する生体特性を模擬したモデルにより前記環境因子データを中間データに変換する処理と、
     少なくとも前記中間データと環境に対する症状変化の可能性とを対応付けた対応情報を用いて、前記中間データから前記症状変化の可能性を予測する処理と、
     を行う症状変化予測方法。
    A symptom change prediction method performed by a symptom change prediction system for a living body having an environmental sensor and an information processing device, comprising:
    The environmental sensor detects environmental factor data related to an environmental factor of a target space;
    A process in which a control unit converts the environmental factor data into intermediate data using a model that simulates biological characteristics related to symptoms caused by the environment;
    A process of predicting a possibility of a symptom change from the intermediate data using correspondence information that associates at least the intermediate data with a possibility of a symptom change depending on an environment;
    A method for predicting changes in symptoms.
PCT/JP2023/042084 2022-11-24 2023-11-22 Living body symptom change predicting system, information processing device, and living body symptom change predicting method WO2024111652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-187732 2022-11-24
JP2022187732 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024111652A1 true WO2024111652A1 (en) 2024-05-30

Family

ID=91196102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042084 WO2024111652A1 (en) 2022-11-24 2023-11-22 Living body symptom change predicting system, information processing device, and living body symptom change predicting method

Country Status (2)

Country Link
JP (1) JP2024076373A (en)
WO (1) WO2024111652A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067403A (en) * 1999-08-25 2001-03-16 Care Network:Kk Home health management system
JP2002311158A (en) * 2001-04-19 2002-10-23 Metocean Environment Inc System, method, and program for downloading medical meteorological forecast
JP2005063218A (en) * 2003-08-15 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> Disease control support method and disease control support system
JP2017102654A (en) * 2015-12-01 2017-06-08 株式会社ビズフォース Non-disease electronic chart presentation device and presentation method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067403A (en) * 1999-08-25 2001-03-16 Care Network:Kk Home health management system
JP2002311158A (en) * 2001-04-19 2002-10-23 Metocean Environment Inc System, method, and program for downloading medical meteorological forecast
JP2005063218A (en) * 2003-08-15 2005-03-10 Nippon Telegr & Teleph Corp <Ntt> Disease control support method and disease control support system
JP2017102654A (en) * 2015-12-01 2017-06-08 株式会社ビズフォース Non-disease electronic chart presentation device and presentation method of the same

Also Published As

Publication number Publication date
JP2024076373A (en) 2024-06-05

Similar Documents

Publication Publication Date Title
Williams et al. Short-term impact of PM2. 5 on contemporaneous asthma medication use: Behavior and the value of pollution reductions
Toyinbo et al. Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools
US20180189242A1 (en) Sensor design support apparatus, sensor design support method and non-transitory computer readable medium
CN106796046A (en) Intelligent environment regulation and control engine, intelligent environment regulating system and equipment
Bibi et al. Prediction of emergency department visits for respiratory symptoms using an artificial neural network
Favero et al. Human thermal comfort under dynamic conditions: An experimental study
KR102013831B1 (en) Allergic diseases patient-specific environment management system
JP2001067403A (en) Home health management system
CN109478304A (en) The building system of optimization patient room is controlled to improve the system and method for patient&#39;s result
WO2022059285A1 (en) Information processing method, information processing device, and program
US20180192914A1 (en) Determining metabolic parameters
Coleman et al. Inner-city asthma in childhood
CN110136795B (en) Construction method of time sequence database for cognitive early warning
CN107560107A (en) A kind of hospital ward Air conditioner air exchange number analysis method and its device
WO2021038759A1 (en) Model selection method, model selection program, and information processing device
von Grabe Using the instance-based learning paradigm to model energy-relevant occupant behaviors in buildings
Martins et al. Personal thermal comfort models: A deep learning approach for predicting older people’s thermal preference
WO2024111652A1 (en) Living body symptom change predicting system, information processing device, and living body symptom change predicting method
Oetomo et al. Indoor temperatures in the 2018 heat wave in Quebec, Canada: Exploratory study using Ecobee smart thermostats
Ming et al. A comprehensive understanding of adaptive thermal comfort in dynamic environments–an interaction matrix-based path analysis modeling framework
Yu et al. Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study
Rastogi et al. Context-aware IoT-enabled framework to analyse and predict indoor air quality
JP2024076251A (en) RISK DISPLAY SYSTEM, INFORMATION PROCESSING DEVICE, AND RISK DISPLAY METHOD
Aparicio-Ruiz et al. Predicting the clothing insulation through machine learning algorithms: A comparative analysis and a practical approach
JP7340747B2 (en) Control method, control program and air conditioning control device