WO2024111645A1 - Axial center displacement estimation system and axial center displacement estimation method - Google Patents

Axial center displacement estimation system and axial center displacement estimation method Download PDF

Info

Publication number
WO2024111645A1
WO2024111645A1 PCT/JP2023/042053 JP2023042053W WO2024111645A1 WO 2024111645 A1 WO2024111645 A1 WO 2024111645A1 JP 2023042053 W JP2023042053 W JP 2023042053W WO 2024111645 A1 WO2024111645 A1 WO 2024111645A1
Authority
WO
WIPO (PCT)
Prior art keywords
center point
rotation center
kiln
tire
cylinder
Prior art date
Application number
PCT/JP2023/042053
Other languages
French (fr)
Japanese (ja)
Inventor
拓 折出
洋介 友光
知也 縄田
翔 岡部
Original Assignee
Ubeマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubeマシナリー株式会社 filed Critical Ubeマシナリー株式会社
Publication of WO2024111645A1 publication Critical patent/WO2024111645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • G01B21/24Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing alignment of axes

Definitions

  • This disclosure relates to a shaft core displacement amount estimation system and a shaft core displacement amount estimation method.
  • Patent Documents 1 and 2 disclose an adjustment method for adjusting the position of a cylinder included in a cylinder rotation device such as a rotary kiln.
  • the method includes measuring the position of a measurement point on the surface of the cylinder while the cylinder rotation device is in operation, calculating the amount of deviation between the position of the measurement point or the position of a center point obtained from the measurement point and a predetermined reference line, and adjusting the position of the cylinder according to the amount of deviation.
  • This disclosure relates to a displacement estimation system and a method for estimating the axis of a cylinder with high accuracy.
  • the present invention provides an axial displacement estimation system that includes a cylinder that rotates and processes material passing through it, a girth gear attached to the outer periphery of the cylinder, a drive unit that rotates the cylinder via the girth gear, and a number of tires that rotatably support the cylinder, and includes a girth gear rotation center estimation step for estimating the coordinates of the rotation center of the girth gear, a cylinder rotation center estimation step for estimating the coordinates of the rotation center of the cylinder, and a reference line setting step for setting a reference line that serves as a reference for estimating the axial displacement of the cylinder, the reference line passing through the girth gear rotation center, and estimating the displacement of the cylinder based on the distance between the rotation center of the cylinder and the reference line.
  • the shaft core displacement amount estimation system and shaft core displacement amount estimation method disclosed herein can accurately estimate the displacement amount of a cylindrical body.
  • FIG. 1 is a schematic diagram of a shaft core displacement amount estimation system according to the present invention
  • 2 is a cross-sectional view taken along line II-II of FIG. 1.
  • 13 is a flowchart of a shaft core displacement amount estimation.
  • FIG. 2 is a perspective view of a cylinder (kiln).
  • FIG. 13 is a diagram showing the measurement of a representative point as one method for estimating the kiln rotation center point.
  • FIG. 13 is a diagram showing a method for estimating a kiln rotation center point, the method including calculating a virtual circle.
  • FIG. 2 is a perspective view of the kiln at the girth gear portion.
  • FIG. 8 is a diagram showing a reference line set in FIG. 7 .
  • FIG. 2 is a radial side view of the entire kiln with reference lines.
  • FIG. 1 Some drawings in this specification show a Cartesian coordinate system defined by the x-axis, y-axis, and z-axis.
  • the x-axis is a horizontal axis in the direction of the kiln 10, with the end (feeding port 11) side described below being positive.
  • the y-axis is a horizontal axis perpendicular to the x-axis, with the left side of Figure 1 and Figure 2 being positive.
  • the z-axis is an axis extending vertically above and below the kiln 10, with the vertical upward being positive.
  • center point refers to the center point of rotation of the kiln 10. Therefore, the tire center point is the center point of rotation of the kiln 10 at the tire 30, and the girth gear center point is the center point of rotation of the kiln 10 at the girth gear 20.
  • the center point of the kiln 10 the center point of the girth gear, and the center point of the tire are all estimates unless otherwise specified.
  • each component In equipment such as rotary kilns, dryers, and coolers to which the technology of this specification is applied, each component also displaces from its initial state due to changes over time, so the position of the center point is identified by estimation.
  • FIG. 1 shows the overall configuration of a shaft core displacement estimation system 1
  • Fig. 2 shows a radial cross-section of a cylindrical body rotation device 2.
  • Fig. 2 shows a radial cross-section of a tire 30.
  • the shaft core displacement estimation system 1 includes the cylindrical body rotation device 2, a position detection means 3, and a controller 100.
  • the cylinder rotation device 2 is configured to heat-treat (e.g., bake, dry, cool, etc.) the material while rotating the cylinder 10 and passing the material through the interior of the cylinder 10.
  • the cylinder rotation device 2 is, for example, a rotary kiln, a dryer, or a cooler.
  • the cylinder rotation device 2 comprises the cylinder 10, a girth gear 20, a plurality of tires 30, a drive unit 40, and a plurality of support units 50.
  • the cylinder 10 is referred to as a kiln 10 as a representative example of the cylinder 10, unless otherwise specified.
  • the kiln 10 has a generally cylindrical kiln shell 10a, and a refractory material 10b is provided on the inner periphery.
  • the refractory material 10b is provided over the entire inner periphery of the kiln shell 10a, and protects the kiln shell 10a from the internal workpiece and heat.
  • the kiln 10 has two ends, one on the positive x-axis side, which is an inlet 11 for the material to be treated, and the other on the negative x-axis side, which is an outlet 12.
  • the material to be treated is fed into the inlet 11, is heat-treated while moving with the rotation of the kiln 10, and is discharged from the outlet 12.
  • the kiln 10 is installed at a slight incline, with the inlet 11 located vertically above (above the z-axis) the outlet 12. This allows the movement of the material to be treated to be smooth.
  • the kiln 10 may also be installed horizontally without being inclined.
  • the girth gear 20 is an annular gear provided on the outer periphery of the kiln 10, and transmits the driving force of the drive unit 40 to rotate the kiln 10. Only one girth gear 20 is provided in the present invention, and the entire kiln 10 is driven by this girth gear 20. Therefore, the position of the center of rotation of the kiln 10 at the girth gear 20 can be regarded as the reference for the rotation axis of the entire kiln 10.
  • a plurality of tires 30 are provided, a total of four tires 30 being located at both ends and the middle of the kiln 10.
  • the first tire 30A is located on the inlet 11 side
  • the second tire 30D is located on the outlet 12 side
  • the third and fourth tires 30B and 30C are located in the middle.
  • Each of the tires 30A-30D is an annular support member that rotatably supports the kiln 10 located on the inner circumference side.
  • the tires 30A-30D are arranged at equal intervals, and the first and second tires 30A and 30D are arranged at the ends of the kiln 10.
  • the first tire 30A is located within a specified range from the inlet 11, which is the end of the kiln.
  • This specified range may be any range that can stably support the kiln 10, and may be within 20% of the overall length of the kiln 10, for example.
  • the second tire 30D is located within a specified range from the outlet 12, which is the end of the kiln 10.
  • the driving unit 40 includes a base 41, a pair of supports 42, a pinion gear 43, and a driving source 44.
  • the base 41 is configured to support the pair of supports 42.
  • the pair of supports 42 are provided on the base 41 so as to face each other with the pinion gear 43 therebetween.
  • the pair of supports 42 are configured to rotatably hold a rotation shaft 43a of the pinion gear 43.
  • the pinion gear 43 has a gear shape with alternating concaves and convexes in the circumferential direction, and is arranged to mesh with the girth gear 20.
  • the pinion gear 43 is configured to transmit rotational force to the girth gear 20 by meshing with the girth gear 20.
  • the position where the pinion gear 43 and the girth gear 20 mesh is below and to the side of the kiln 10, but is not particularly limited to this.
  • the driving source 44 is configured to operate based on a drive signal from the controller 100 and to drive the rotation shaft 43a of the pinion gear 43 to rotate.
  • the driving source 44 may be, for example, an electric motor.
  • the power of the driving source 44 is transmitted to the kiln 10 via the rotation shaft 43a, the pinion gear 43, and the girth gear 20, and the kiln 10 rotates around the kiln rotation center axis A that extends along the x-axis direction.
  • Each of the plurality of support parts 50 is configured to support a corresponding tire 30 among the plurality of tires 30.
  • the cylindrical body rotation device 2 may include support parts 50A to 50D that support the tires 30A to 30D, respectively.
  • the support parts 50A to 50D are lined up in this order from the input port 11 toward the discharge port 12.
  • the support section 50 includes a base 51, a pair of supports 52, a pair of supports 53, a support roller 54, and a support roller 55.
  • the base 51 is configured to support the pair of supports 52, 53.
  • the pair of supports 52 are provided on the base 51 so as to face each other with the support roller 54 between them.
  • the pair of supports 52 are configured to rotatably hold the rotation shaft 54a of the support roller 54.
  • the pair of supports 52 are configured so that the installation position relative to the base 51 in the y-axis direction can be adjusted by attaching and detaching a position adjustment bolt or the like (not shown).
  • the pair of supports 53 are provided on the base 51 so as to face each other with the support roller 55 between them.
  • the pair of supports 53 are configured to rotatably hold the rotation shaft 55a of the support roller 55.
  • the pair of supports 53 are configured so that the installation position relative to the base 51 in the y-axis direction can be adjusted by attaching and detaching a position adjustment bolt or the like (not shown).
  • the support rollers 54, 55 are configured to be in direct contact with the tire 30 and support the tire 30. Specifically, the outer circumferential surfaces of the support rollers 54, 55 are in direct contact with the outer circumferential surface of the tire 30.
  • the pair of supports 52 and the pair of supports 53 are arranged in the y-axis direction with the kiln rotation central axis A between them, as illustrated in Fig. 2. That is, the tire 30 is supported by support rollers 54, 55 on both sides of its lower part. [0027] ⁇ Adjustment in the z-axis direction> Therefore, when the installation position of at least one of the pair of supports 52, 53 is changed so that the distance between the pair of supports 52, 53 becomes relatively small, the distance between the support rollers 54, 55 also becomes relatively small.
  • the contact position of the tire 30 on the support rollers 54, 55 moves relatively upward, and the kiln 10 is displaced relatively upward (in the positive direction of the z-axis).
  • the installation position of at least one of the pair of supports 52, 53 is changed so that the distance between the pair of supports 52, 53 becomes relatively large, the distance between the support rollers 54, 55 also becomes relatively large. Therefore, the contact points of the tire 30 on the support rollers 54, 55 move relatively downward, and the kiln 10 is displaced relatively downward (in the negative z-axis direction).
  • the intermediate position of the support rollers 54, 55 in the y-axis direction also relatively moves leftward in Fig. 2. Therefore, as the support rollers 54, 55 move, the kiln 10 also relatively moves leftward (positive y-axis direction). In this way, by adjusting the positions of the pair of supports 52, 53 in the y-axis direction, the position of the kiln 10 in the up, down, left, and right directions (z-axis direction, y-axis direction) is adjusted.
  • the position detection means 3 is a non-contact type position detection device that is installed in a changeable position and detects the position of the kiln outer shell 10a. Any non-contact type may be used, such as an optical type, a laser type, or a radio wave type. By moving the position detection means 3 in the x-axis direction, the position of the kiln outer shell 10a can be detected throughout the entire axial direction of the kiln 10.
  • the position of the kiln casing 10a cannot be measured directly because the girth gear 20 and each tire 30A-30D are present on the outer periphery side. Therefore, the position of the kiln casing 10a in the vicinity of the girth gear 20 and each tire 30A-30D is measured, and the center of rotation of the kiln 10 at the girth gear 20 and each tire 30A-30D is estimated based on the position in this vicinity. This will be described later.
  • the controller 100 is connected to the position detection means 3, processes the detected position of the kiln shell 10a, and estimates the center point of the kiln 10, the center point of the girth gear 20, and the center points of each of the tires 30A to 30D. Based on these, the amount of axial misalignment of the kiln 10 is estimated (see the flowchart in FIG. 3 described later).
  • the kiln 10 deforms due to various factors, including the weight of the kiln 10 itself, the weight of the material being processed inside, heat, aging during operation, and other factors. As the kiln 10 deforms, the kiln rotation axis A also bends, and in that case the kiln 10 rotates in a bent state.
  • the non-refractory materials installed inside may peel off, and friction in the sliding parts, the girth gear 20 and the tires 30, may become excessive. Also, the farther away in the x-axis direction from each tire 30 is the location, the greater the bending and bending of the kiln rotation axis A.
  • a rotation center line is set assuming that the kiln's rotation axis A is a straight line, and the difference between this rotation center line and the actual kiln rotation axis A is understood, and the amount of deviation of the kiln's rotation axis A can be understood.
  • the center point of the girth gear 20 is first estimated (see step S1 in FIG. 3), and a straight line passing through the center point of the girth gear is set as a reference line BL for determining the amount of deviation (see step S3 in FIG. 3).
  • a straight line passing through the center point of the girth gear is set as a reference line BL for determining the amount of deviation (see step S3 in FIG. 3).
  • two arbitrary points in the axial direction of the kiln 10 are taken, and the kiln rotation center points at these two points are estimated (step S2 in FIG. 3).
  • the distance between the two rotation centers and the reference line BL is calculated (step S4 in FIG. 3), and the difference between these distances is estimated as the relative deviation between the two points (step S5 in FIG. 3).
  • FIG. 4 is a perspective view of the kiln 10
  • Fig. 5 is a radial cross-sectional view of the kiln 10 at the first vicinity position P1.
  • the radial cross-section of Fig. 5 is designated as N (see Figs. 4 and 7).
  • first and second nearby positions P1 and P2 are provided on either side of the girth gear 20 in the axial direction, both of which are equidistant from the girth gear 20 in the x-axis direction (or in the direction of the kiln rotation center axis A).
  • the rotation center point OG of the kiln 10 at the girth gear 20 (hereinafter referred to as the girth gear center point OG) is estimated using the rotation center points OP1 and OP2 of the kiln 10 at the first and second nearby positions P1 and P2.
  • the position detection means 3 measures the coordinates of the representative point MP1 of the kiln outer shell 10a at the first nearby position P1.
  • This measurement point MP1 can be anywhere on the kiln outer shell 10a at the first nearby position P1, and any one point is selected as the representative point.
  • the coordinates of the representative point MP1 are measured over the entire circumference of the first vicinity position P1.
  • the trajectory of this representative point MP1 becomes the outer periphery of the kiln 10 at the first vicinity position P1, and is defined as the first outer periphery L1.
  • This first outer periphery L1 exists within the radial cross section N1 of the kiln 10 at the first vicinity position P1.
  • the radial cross section N1 is a plane perpendicular to the rotation axis of the kiln 10 at the first outer periphery L1.
  • the first outer periphery L1 will also be a perfect circle. In contrast, if the kiln 10 is deformed, the first outer periphery L1 will not be a perfect circle but will be a distorted circle (see Figure 5). Therefore, the position of the representative point MP1 will also change as the kiln 10 rotates.
  • the average value of the coordinates indicating this changing representative point MP1 is taken and defined as measurement point MP1a.
  • other representative points at the first neighboring position P1 are selected as representative points MP2 and MP3, and the average values are defined as measurement points MP2a and MP3a.
  • the first outer periphery L1 exists within the radial cross section N1, so the representative points MP1 to MP3 and the measurement points MP1a to MP3a also exist within the radial cross section N1.
  • the measurement points are described as three points, MP1a to MP3a, but any number of points greater than three may be used.
  • a virtual circle is calculated based on the three measurement points MP1a to MP3a obtained.
  • This virtual circle is defined as the virtual circle of the kiln 10 at the first vicinity position P1 and is called the first virtual circle C1.
  • the center point of the obtained first virtual circle C1 is called the first virtual circle center OC1.
  • the first virtual circle C1 and its center OC1 also exist within the radial cross section N1.
  • the second virtual circle C2 is calculated in the same manner as the first virtual circle M1.
  • the calculation method is the same as the first virtual circle C1, in that first, representative points MP4 to MP6 at the first vicinity position P1 and measurement points MP4a to MP6a which are the average values of those representative points are obtained, and the second virtual circle C2 is calculated based on the representative points.
  • the center point of the obtained second virtual circle C2 is set as the second virtual circle center OC2.
  • the second virtual circle C2 and the second virtual circle center OC2 are also virtual circles and their centers at the first vicinity position P1, and therefore both the second virtual circle C2 and the second virtual circle center OC2 exist within the radial cross section N1.
  • the first kiln center point OP1 at the first vicinity position P1 is determined by taking the average of the first virtual circle center OC1 and the second virtual circle center OC2. Since it is difficult to measure the actual kiln center point due to deformation of the kiln 10, the first kiln center point OP1 is estimated using the above-mentioned method.
  • the second kiln center point OP2 is estimated in the same manner as the first nearby position P1 at the second nearby position P2 (see FIG. 4) set on the negative x-axis side of the girth gear 20.
  • this radial cross section N2 is also a plane perpendicular to the rotation axis of the kiln 10 at the second outer periphery L2.
  • [Estimation of girth gear center point using first and second neighboring position center points] 7 is a perspective view of the kiln 10 at the girth gear 20.
  • the distance in the x-axis direction between the first neighboring position P1 and the girth gear 20 is T1
  • the distance in the x-axis direction between the second neighboring position P2 and the girth gear 20 is T2.
  • the coordinates of the girth gear center point OG are the midpoint between the center point OP1 at the first nearby position P1 and the center point OP2 at the second nearby position P2. This allows the position of the girth gear center point OG to be estimated based on the first and second nearby position center points OP1 and OP2 (see step S1 in Figure 3).
  • the girth gear center point OG may be the intersection of the straight line connecting the first and second nearby position center points OP1 and OP2 with the girth gear 20.
  • intersection here refers to the intersection of a plane Ng that is perpendicular to the rotation axis of the kiln 10 at the center position of the girth gear 20 in the x-axis direction and a line segment connecting OP1 and OP2 (see Figures 8 and 9).
  • this plane Ng may be translated in the axial direction of the kiln 10 within a range that includes the girth gear 20.
  • the position of the girth gear center point OG may be estimated based on the ratio of T1, T2 instead of the midpoint, or the intersection of the straight line connecting OP1, OP2 and the girth gear 20 using the plane Ng may be taken as OG.
  • the first and second nearby positions P1, P2 are provided on both axial sides of the girth gear 20, but they may be provided on only one axial side.
  • the second nearby position P2 may also be provided on the positive x-axis side of the girth gear 20 (the inlet 11 side) and the ratio of the distances T1, T2 may be used, or the intersection of the extensions of the first and second center points OP1, OP2 and the girth gear 20 may be regarded as the girth gear center point OG and estimated.
  • the kiln outer shell 10a is not exposed on the first and second tires 30A, 30D, so the kiln center point is estimated on the kiln outer shell 10a on both axial sides (or only one side) of the tire 30, and the first and second tire center points OA, OD are estimated based on this.
  • FIG. 8 shows an example in which a reference line BL is set in Fig. 7.
  • Fig. 9 is a radial side view of the entire kiln 10 with the reference line BL drawn thereon.
  • a reference line BL is set as a reference for grasping the amount of deviation (see step S3 in FIG. 3).
  • This reference line BL passes through the rotation center point OG of the kiln 10 at the girth gear 20 (hereinafter, girth gear center point OG). This is because the girth gear 20 is the starting point of rotation in the kiln 10, and the girth gear center point OG can be regarded as the reference for the rotation axis of the entire kiln 10.
  • the reference line BL can be any line that passes through the girth gear center point OG (except for lines perpendicular to the kiln 10). Regardless of the straight line selected as the reference line BL, it is possible to accurately grasp the relative deviation of multiple kiln center points. Details will be given below.
  • [Estimation of deviation amount] (Calculation of distance between reference line BL and center point of kiln) For example, a specific reference line BL is set, and a first tire distance ⁇ , which is the distance between the reference line BL and the first tire center point OT1, is calculated (see step S4 in FIG. 3).
  • the first tire distance ⁇ is not the shortest distance between the reference line BL and the first tire center point OT1, but the distance in a plane NT1 including the first tire 30A.
  • the plane NT1 passes through the first tire center point OT1 and is perpendicular to the rotation axis of the kiln 10 at this center point OT1.
  • the plane NT1 may be translated in the axial direction of the kiln 10 within a range including the first tire 30A.
  • the second tire distance ⁇ which is the distance between the reference line BL and the second tire center point OT2, is calculated (see step S4 in FIG. 3).
  • is the distance within the plane NT2 that includes the second tire 30D.
  • the relative difference between the calculated first tire distance ⁇ and the second tire distance ⁇ is the relative deviation between the first and second tires 30A, 30D (see step S5 in FIG. 3).
  • the relative deviation between the first and second tires 30A, 30D is the relative deviation between the first and second tires 30A, 30D (see step S5 in FIG. 3).
  • a straight line passing through the center point OG of the girth gear 20 is used as the reference line BL. Since the kiln 10 is rotationally driven by the girth gear 20, the center point OG of the girth gear 20 can be regarded as the reference point for displacement for a cylindrical rotating device such as the kiln 10.
  • FIG. 3 is a flow chart showing the process for estimating the amount of shaft core displacement according to the present invention. Each step will be described below.
  • Step S1 the girth gear center point OG is estimated.
  • the rotation center points OP1, OP2 at the first and second nearby positions P1, P2 are estimated using the position detection means 3.
  • the girth gear center point OG is estimated based on the estimated first and second nearby position rotation center points OP1, OP2.
  • Step S2 the first and second tire center points OT1 and OT2 are estimated using a method similar to that used for estimating the girth gear center point OG.
  • a reference line BL is set.
  • the reference line BL may be a straight line passing through the rotation center point OG of the girth gear 20, and is not particularly limited.
  • Step S4 a first tire distance ⁇ and a second tire distance ⁇ are calculated, which are distances between the reference line BL and the first and second tire center points OT1 and OT2.
  • the first and second tire distances ⁇ and ⁇ are distances within planes NT1 and NT2 that include the first and second tires 30A and 30D, respectively.
  • Step S5 the difference between the first tire distance ⁇ and the second tire distance ⁇ is calculated, and this difference is estimated as the amount of relative deviation between the first and second tires 30A, 30D.
  • a shaft core displacement estimation system including a kiln 10 (cylinder 10) that rotates and processes materials passing through it, a girth gear 20 provided on the outer periphery of the kiln 10, a drive unit 40 that rotates the kiln 10 via the girth gear 20, and a number of tires 30 that rotatably support the kiln 10, the system includes a girth gear rotation center point estimation step (step S1) for estimating the coordinates of the girth gear rotation center point OG, a kiln rotation center point estimation step (step S2) for estimating the coordinates of the kiln 10's rotation center point (e.g., first and second tire center points OT1 and OT2), and a reference line setting step (step S3) for setting a reference line BL that serves as a reference for estimating the shaft core displacement in the kiln 10, the reference line BL passing through the girth gear rotation center point OG, and the displacement of the kiln 10 is estimated based on the distance between
  • the misalignment can be adjusted by moving the support point (tire 30) of the kiln 10.
  • moving the girth gear 20 is cumbersome and undesirable. It is particularly difficult to move the girth gear position while the kiln 10 is in operation.
  • the support points (tires 30) and girth gear 20 of the kiln 10 also move from their initial values at the time of installation, so it is not realistic to measure the absolute displacement from the initial value.
  • the entire coordinate system of the kiln 10 can be considered to move parallel as a whole, if a reference line BL for calculating the deviation is set and this reference line BL is also assumed to move parallel together with the kiln coordinate system, it is possible to grasp the deviation of the kiln central axis based on the relative positional relationship between this reference line BL and the estimated kiln center point (estimated based on the actually measured position of the kiln outer shell 10a).
  • the multiple tires 30 include a first tire 30A provided at least at one end of the kiln 10, and in the girth gear rotation center point estimation step, the longitudinal position of the girth gear 20 is identified based on the position of the first tire 30A.
  • the tires 30 support parts
  • the tires 30 are provided at both ends and in the middle of the kiln 10. Therefore, by identifying the position based on the distance from at least the first tire 30A provided at one end of the kiln end, the accuracy of the girth gear position estimation can be improved compared to the case where a tire 30 in the middle is used.
  • step S2 the kiln rotation center is estimated at any point in the axial direction of the kiln 10. It is possible to estimate the rotation center in the radial cross section throughout the entire axial direction of the kiln 10. Therefore, it is possible to estimate the distance between the kiln rotation center and the reference line BL throughout the entire axial direction, and the amount of rotation can be grasped with high accuracy.
  • a non-contact position detection means 3 is further provided, and the center of rotation of the tire 30 is estimated based on the center of rotation of the kiln 10 on one or both axial sides of the tire 30, and the center of rotation of the girth gear 20 is estimated based on the center of rotation of the kiln 10 on one or both axial sides of the girth gear 20.
  • the position detection means 3 uses a non-contact type such as a laser. Because it is a non-contact type, measurements can be easily performed even while the kiln 10 is in operation. However, at the positions corresponding to the tires 30, the tires 30 become an obstacle and the kiln casing 10a cannot be directly measured.
  • a non-contact type such as a laser. Because it is a non-contact type, measurements can be easily performed even while the kiln 10 is in operation. However, at the positions corresponding to the tires 30, the tires 30 become an obstacle and the kiln casing 10a cannot be directly measured.
  • the kiln shell 10a is exposed on both axial sides of the tire 30, and the kiln center point at the exposed parts can be estimated. Also, the distance in the x-axis direction from the exposed parts to the center point of the tire 30 can be measured.
  • the radial position of the tire center point based on the position of the kiln rotation center point on one or both sides of the tire 30 and the axial distance to the tire center point (e.g., the first and second tire center points OT1 and OT2). Since the position of the tire center point (axial position and estimated radial position) is thus identified, the tire rotation center point can be estimated with high accuracy without relying on direct measurement. The same is true for the girth gear center point OG.
  • the position of the tire 30 center point can be estimated without any problem even if the two points are not equidistant axially from each tire.
  • the center point (radial position) of the girth gear 20 can be estimated using a similarity relationship based on the axial position. This point is geometrically self-evident.
  • the cross-sectional shape of the kiln 10 can be determined by the non-contact position detection means 3. Based on this cross-sectional shape, the geometric center of gravity (not the mass center of gravity) of the kiln 10 can be calculated, and the vibration caused by the rotation of the kiln 10 can be grasped.
  • the cross-sectional shape and center of rotation are estimated by the position detection means 3, it is possible to grasp the amount of bending, bending, and deformation of the cross-sectional shape of the kiln 10 and the central axis of rotation at any position in the axial direction (longitudinal direction or x-axis direction) of the kiln 10.
  • step S2 center points OT1 to OT4 of the multiple tires 30A to 30D are estimated.
  • This makes it possible to estimate center points OT1 to OT4, which are the rotation center of the kiln 10 for each tire 30A to 30D, and by taking the difference from the reference line BL, it is possible to grasp the relative deviation amount of each tire 30A to 30D. Therefore, by changing the relative position of each tire 30A to 30D, the linearity of the kiln 10 can be easily improved.
  • EMBODIMENT 2 [Setting the reference line for suppressing tire position change amount: ⁇ + ⁇ minimum]
  • the second embodiment differs in that the reference line BL is determined based on the values of the first and second tire distances ⁇ and ⁇ , which are the distances between the reference line BL and each tire center point OT1 and OT2.
  • the reference line BL is set at a position where the sum of the first and second tire distances ⁇ and ⁇ is minimal.
  • the first and second tires 30A and 30B are both tires provided at both ends of the kiln 10, and changing their positions has a large impact on the kiln 10. Therefore, by minimizing the value of ⁇ + ⁇ , the sum of the amount of change in position of the first and second tires 30A and 30D is kept to a minimum, and the impact of the adjustment of the axis misalignment on the sliding condition of the kiln 10 is reduced as much as possible.
  • the first tire rotation center point OT1 which is the rotation center point of the kiln 10 at the first tire 30A
  • the second tire rotation center point OT2 which is the rotation center point of the kiln 10 at the second tire 30D
  • the first tire distance ⁇ which is the deviation from the reference line BL at the first tire rotation center point OT1
  • the second tire distance ⁇ which is the deviation from the reference line BL at the second tire rotation center point OT2

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

The present disclosure describes a displacement estimation method in a cylinder rotating device, a displacement estimation system in a cylinder rotating device, and an axial center displacement estimation method that make it possible to accurately estimate the displacement of a cylinder. Provided is an axial center displacement estimation system comprising: a cylinder that rotates and processes a material passing through the interior thereof; a girth gear that is provided on the outer circumference of the cylinder; a drive unit that causes the cylinder to rotate via the girth gear; and a plurality of tires that rotatably support the cylinder. The axial center displacement estimation system implements a girth gear rotation center point estimation step for estimating the coordinates of the rotation center point of the girth gear, a cylinder rotation center point estimation step for estimating the coordinates of the rotation center point of the cylinder, and a reference line setting step for setting a reference line that serves as a reference for estimating the axial center displacement in the cylinder. The reference line passes through the rotation center point of the girth gear. The displacement of the cylinder is estimated on the basis of the distance between the rotation center point of the cylinder and the reference line.

Description

軸芯変位量推定システム及び軸芯変位量推定方法Shaft core displacement amount estimation system and shaft core displacement amount estimation method
 本開示は、軸芯変位量推定システム及び軸芯変位量推定方法に関する。 This disclosure relates to a shaft core displacement amount estimation system and a shaft core displacement amount estimation method.
 特許文献1,2は、ロータリーキルンなどの筒体回転装置が備える筒体の位置を調節する調節方法を開示している。当該方法は、筒体回転装置の動作中に、筒体の表面における測定点の位置を測定することと、測定点の位置又は測定点から得られる中心点の位置と所定の基準線とのズレ量を算出することと、ズレ量に応じて筒体の位置を調節することとを含む。 Patent Documents 1 and 2 disclose an adjustment method for adjusting the position of a cylinder included in a cylinder rotation device such as a rotary kiln. The method includes measuring the position of a measurement point on the surface of the cylinder while the cylinder rotation device is in operation, calculating the amount of deviation between the position of the measurement point or the position of a center point obtained from the measurement point and a predetermined reference line, and adjusting the position of the cylinder according to the amount of deviation.
特開平6-159942号公報Japanese Patent Application Laid-Open No. 6-159942 特表2013-511033号公報JP 2013-511033 A
 本開示は、筒体の軸心を精度よく推定することが可能な変位量推定システム及び軸芯変位量推定方法に関する。 This disclosure relates to a displacement estimation system and a method for estimating the axis of a cylinder with high accuracy.
 上記課題を解決するため、本件発明では、回転するとともに内部を通過する材料を処理する筒体と、筒体の外周に設けられたガースギヤと、ガースギヤを介して筒体を回転させる駆動部と、筒体を回転可能に支持する複数のタイヤとを備える軸芯変位量推定システムであって、ガースギヤの回転中心点の座標を推定するガースギヤ回転中心点推定ステップと、筒体の回転中心点の座標を推定する筒体回転中心点推定ステップと、筒体における軸芯変位量推定の基準となる基準線を設定する基準線設定ステップとを備え、基準線は、ガースギヤ回転中心点を通り、筒体の回転中心点と、基準線との距離に基づき、筒体の変位量を推定することとした。 In order to solve the above problems, the present invention provides an axial displacement estimation system that includes a cylinder that rotates and processes material passing through it, a girth gear attached to the outer periphery of the cylinder, a drive unit that rotates the cylinder via the girth gear, and a number of tires that rotatably support the cylinder, and includes a girth gear rotation center estimation step for estimating the coordinates of the rotation center of the girth gear, a cylinder rotation center estimation step for estimating the coordinates of the rotation center of the cylinder, and a reference line setting step for setting a reference line that serves as a reference for estimating the axial displacement of the cylinder, the reference line passing through the girth gear rotation center, and estimating the displacement of the cylinder based on the distance between the rotation center of the cylinder and the reference line.
 本開示に係る軸芯変位量推定システム及び軸芯変位量推定方法によれば、筒体の変位量を精度よく推定することができる。 The shaft core displacement amount estimation system and shaft core displacement amount estimation method disclosed herein can accurately estimate the displacement amount of a cylindrical body.
本発明の軸芯変位量推定システムの概略図である。1 is a schematic diagram of a shaft core displacement amount estimation system according to the present invention; 図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II of FIG. 1. 軸芯変位量推定のフローチャートである。13 is a flowchart of a shaft core displacement amount estimation. 筒体(キルン)の斜視図である。FIG. 2 is a perspective view of a cylinder (kiln). キルン回転中心点を推定する方法のうち、代表点の計測を示す図である。FIG. 13 is a diagram showing the measurement of a representative point as one method for estimating the kiln rotation center point. キルン回転中心点を推定する方法のうち、仮想円算出を示す図である。FIG. 13 is a diagram showing a method for estimating a kiln rotation center point, the method including calculating a virtual circle. ガースギヤ部分におけるキルンの斜視図である。FIG. 2 is a perspective view of the kiln at the girth gear portion. 図7において基準線を設定した図である。FIG. 8 is a diagram showing a reference line set in FIG. 7 . 基準線を記載したキルン全体の径方向側面図である。FIG. 2 is a radial side view of the entire kiln with reference lines.
 以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 In the following description, the same elements or elements with the same functions will be designated by the same reference numerals, and duplicate descriptions will be omitted.
 本件明細書の一部の図面には、x軸、y軸及びz軸で規定される直交座標系が示されている。x軸はキルン10の方向の水平な軸であって、後述の端部(投入口11)側を正とする。y軸はx軸に直交する水平の軸であって、図1の図2の左側を正とする。z軸はキルン10の鉛直上下方向に延在する軸であって、鉛直上方を正とする。 Some drawings in this specification show a Cartesian coordinate system defined by the x-axis, y-axis, and z-axis. The x-axis is a horizontal axis in the direction of the kiln 10, with the end (feeding port 11) side described below being positive. The y-axis is a horizontal axis perpendicular to the x-axis, with the left side of Figure 1 and Figure 2 being positive. The z-axis is an axis extending vertically above and below the kiln 10, with the vertical upward being positive.
 なお、本明細書において「中心点」とは、特に断りがない限りキルン10の回転中心点を示す。よってタイヤ中心点はタイヤ30におけるキルン10の回転中心点、ガースギヤ中心点はガースギヤ20におけるキルン10の回転中心点である。 In this specification, unless otherwise specified, "center point" refers to the center point of rotation of the kiln 10. Therefore, the tire center point is the center point of rotation of the kiln 10 at the tire 30, and the girth gear center point is the center point of rotation of the kiln 10 at the girth gear 20.
 さらに本明細書において、キルン10の中心点、ガースギヤ中心点、タイヤ中心点は、特に断りが無ければいずれも推定である。本明細書の技術が適用されるロータリーキルン、ドライヤ、クーラ等の設備では、経時変化によって各部材も初期状態から変位するため、中心点の位置は推定によって特定されるものである。 Furthermore, in this specification, the center point of the kiln 10, the center point of the girth gear, and the center point of the tire are all estimates unless otherwise specified. In equipment such as rotary kilns, dryers, and coolers to which the technology of this specification is applied, each component also displaces from its initial state due to changes over time, so the position of the center point is identified by estimation.
 実施形態1
 [全体構成]
 図1は軸芯変位量推定システム1の全体構成、図2は筒体回転装置2の径方向断面図である。なお図2ではタイヤ30における径方向断面を示す。軸芯変位量推定システム1は、筒体回転装置2、位置検出手段3、コントローラ100を備える。
EMBODIMENT 1
[overall structure]
Fig. 1 shows the overall configuration of a shaft core displacement estimation system 1, and Fig. 2 shows a radial cross-section of a cylindrical body rotation device 2. Note that Fig. 2 shows a radial cross-section of a tire 30. The shaft core displacement estimation system 1 includes the cylindrical body rotation device 2, a position detection means 3, and a controller 100.
 筒体回転装置2は、筒体10を回転させつつ筒体10の内部に材料を通過させながら、当該材料を熱処理(例えば、焼成、乾燥、冷却など)するように構成されている。筒体回転装置2は、例えばロータリーキルン、ドライヤ、クーラである。筒体回転装置2は、筒体10、ガースギヤ20、複数のタイヤ30、駆動部40、及び複数の支持部50を備える。本明細書では、筒体10の代表例として、特に断りがない限り筒体10をキルン10と記載する。 The cylinder rotation device 2 is configured to heat-treat (e.g., bake, dry, cool, etc.) the material while rotating the cylinder 10 and passing the material through the interior of the cylinder 10. The cylinder rotation device 2 is, for example, a rotary kiln, a dryer, or a cooler. The cylinder rotation device 2 comprises the cylinder 10, a girth gear 20, a plurality of tires 30, a drive unit 40, and a plurality of support units 50. In this specification, the cylinder 10 is referred to as a kiln 10 as a representative example of the cylinder 10, unless otherwise specified.
 キルン10は、図2に例示されるように略円筒形状のキルン外皮10aを有し、内周側には耐火物10bが設けられている。耐火物10bはキルン外皮10aの内周側全体に亘って設けられており、内部の被処理物及び熱からキルン外皮10aを保護するものである。 As shown in FIG. 2, the kiln 10 has a generally cylindrical kiln shell 10a, and a refractory material 10b is provided on the inner periphery. The refractory material 10b is provided over the entire inner periphery of the kiln shell 10a, and protects the kiln shell 10a from the internal workpiece and heat.
 キルン10の両端は、一端のx軸正方向側が被処理物の投入口11であり、他端のx軸負方向側が排出口12とされる。投入口11から投入された被処理物は、キルン10の回転に伴って移動しながら加熱処理され、排出口12から排出される。 The kiln 10 has two ends, one on the positive x-axis side, which is an inlet 11 for the material to be treated, and the other on the negative x-axis side, which is an outlet 12. The material to be treated is fed into the inlet 11, is heat-treated while moving with the rotation of the kiln 10, and is discharged from the outlet 12.
 キルン10は若干傾斜して設けられており、投入口11は排出口12よりも鉛直上方(z軸上方)に位置する。これにより被処理物の移動をスムーズなものとする。なお、キルン10は傾斜させることなく水平に設けられても良い。 The kiln 10 is installed at a slight incline, with the inlet 11 located vertically above (above the z-axis) the outlet 12. This allows the movement of the material to be treated to be smooth. The kiln 10 may also be installed horizontally without being inclined.
 [ガースギヤ]
 ガースギヤ20はキルン10の外周側に設けられた円環状の歯車であり、駆動部40の駆動力を伝達してキルン10を回転させる。本発明のガースギヤ20は1つのみ設けられており、このガースギヤ20によってキルン10全体が駆動される。したがってガースギヤ20におけるキルン10の回転中心位置を、キルン10全体における回転軸の基準と見做すことが可能である。
[Girth gear]
The girth gear 20 is an annular gear provided on the outer periphery of the kiln 10, and transmits the driving force of the drive unit 40 to rotate the kiln 10. Only one girth gear 20 is provided in the present invention, and the entire kiln 10 is driven by this girth gear 20. Therefore, the position of the center of rotation of the kiln 10 at the girth gear 20 can be regarded as the reference for the rotation axis of the entire kiln 10.
 [タイヤ]
 タイヤ30は複数設けられており、キルン10の両端部及び中間部に計4つが位置する。投入口11側の第1タイヤ30A、排出口12側の第2タイヤ30D、中間部の第3、第4タイヤ30B、30Cである。
[tire]
A plurality of tires 30 are provided, a total of four tires 30 being located at both ends and the middle of the kiln 10. The first tire 30A is located on the inlet 11 side, the second tire 30D is located on the outlet 12 side, and the third and fourth tires 30B and 30C are located in the middle.
 各タイヤ30A~30Dはそれぞれ円環状の支持部材であって、内周側に設けられたキルン10を回転可能に支持する。また図1では各タイヤ30A~30Dはそれぞれ等間隔で設けられており、第1、第2タイヤ30A、30Dはキルン10の端部に設けられる。 Each of the tires 30A-30D is an annular support member that rotatably supports the kiln 10 located on the inner circumference side. In FIG. 1, the tires 30A-30D are arranged at equal intervals, and the first and second tires 30A and 30D are arranged at the ends of the kiln 10.
 なお第1タイヤ30Aは、端部である投入口11から所定範囲内に設けられる。この所定範囲はキルン10を安定的に支持できる範囲であればよく、例えばキルン10の全長の20%以内である。第2タイヤ30Dについても同様に、キルン10の端部である排出口12から所定範囲内に位置するものである。 The first tire 30A is located within a specified range from the inlet 11, which is the end of the kiln. This specified range may be any range that can stably support the kiln 10, and may be within 20% of the overall length of the kiln 10, for example. Similarly, the second tire 30D is located within a specified range from the outlet 12, which is the end of the kiln 10.
 [駆動部]
 駆動部40は、台座41と、一対の支持体42と、ピニオンギヤ43と、駆動源44とを含む。台座41は、一対の支持体42を支持するように構成されている。一対の支持体42は、ピニオンギヤ43を間において対面するように、台座41上に設けられている。一対の支持体42は、ピニオンギヤ43の回転軸43aを回転可能に保持するように構成されている。
[Drive part]
The driving unit 40 includes a base 41, a pair of supports 42, a pinion gear 43, and a driving source 44. The base 41 is configured to support the pair of supports 42. The pair of supports 42 are provided on the base 41 so as to face each other with the pinion gear 43 therebetween. The pair of supports 42 are configured to rotatably hold a rotation shaft 43a of the pinion gear 43.
 ピニオンギヤ43は、その周方向において凹凸が交互に並ぶ歯車形状を呈しており、ガースギヤ20と噛み合うように配置されている。ピニオンギヤ43は、ガースギヤ20と噛み合うことで、回転力をガースギヤ20に伝達するように構成されている。ピニオンギヤ43とガースギヤ20とが噛み合う位置は、図1の例ではキルン10の下方で且つ側方であるが、これに特に限定されない。 The pinion gear 43 has a gear shape with alternating concaves and convexes in the circumferential direction, and is arranged to mesh with the girth gear 20. The pinion gear 43 is configured to transmit rotational force to the girth gear 20 by meshing with the girth gear 20. In the example of FIG. 1, the position where the pinion gear 43 and the girth gear 20 mesh is below and to the side of the kiln 10, but is not particularly limited to this.
 駆動源44は、コントローラ100からの駆動信号に基づいて動作し、ピニオンギヤ43の回転軸43aを回転駆動させるように構成されている。駆動源44は、例えば、電動モータであってもよい。駆動源44の動作に伴い、駆動源44の動力が、回転軸43a、ピニオンギヤ43及びガースギヤ20を介してキルン10に伝達し、x軸方向に沿って延びるキルン回転中心軸A周りにキルン10が回転する。 The driving source 44 is configured to operate based on a drive signal from the controller 100 and to drive the rotation shaft 43a of the pinion gear 43 to rotate. The driving source 44 may be, for example, an electric motor. As the driving source 44 operates, the power of the driving source 44 is transmitted to the kiln 10 via the rotation shaft 43a, the pinion gear 43, and the girth gear 20, and the kiln 10 rotates around the kiln rotation center axis A that extends along the x-axis direction.
 [支持部]
 複数の支持部50はそれぞれ、複数のタイヤ30のうち対応するタイヤ30を支持するように構成されている。図1に例示されるように、筒体回転装置2は、タイヤ30A~30Dをそれぞれ支持する支持部50A~50Dを備えていてもよい。この場合、支持部50A~50Dは、投入口11から排出口12に向けてこの順で並んでいる。
[Support part]
Each of the plurality of support parts 50 is configured to support a corresponding tire 30 among the plurality of tires 30. As illustrated in Fig. 1, the cylindrical body rotation device 2 may include support parts 50A to 50D that support the tires 30A to 30D, respectively. In this case, the support parts 50A to 50D are lined up in this order from the input port 11 toward the discharge port 12.
 支持部50は、図1及び図2に例示されるように、台座51と、一対の支持体52と、一対の支持体53と、支持ローラ54と、支持ローラ55とを含む。台座51は、一対の支持体52,53を支持するように構成されている。 As illustrated in Figures 1 and 2, the support section 50 includes a base 51, a pair of supports 52, a pair of supports 53, a support roller 54, and a support roller 55. The base 51 is configured to support the pair of supports 52, 53.
 一対の支持体52は、支持ローラ54を間において対面するように、台座51上に設けられている。一対の支持体52は、支持ローラ54の回転軸54aを回転可能に保持するように構成されている。一対の支持体52は、図2において矢印Ar1にて例示されるように、図示しない位置調節用のボルト等の着脱により、y軸方向における台座51に対する設置位置を調節可能に構成されている。 The pair of supports 52 are provided on the base 51 so as to face each other with the support roller 54 between them. The pair of supports 52 are configured to rotatably hold the rotation shaft 54a of the support roller 54. As illustrated by the arrow Ar1 in FIG. 2, the pair of supports 52 are configured so that the installation position relative to the base 51 in the y-axis direction can be adjusted by attaching and detaching a position adjustment bolt or the like (not shown).
 一対の支持体53は、支持ローラ55を間において対面するように、台座51上に設けられている。一対の支持体53は、支持ローラ55の回転軸55aを回転可能に保持するように構成されている。一対の支持体53は、図2において矢印Ar2にて例示されるように、図示しない位置調節用のボルト等の着脱により、y軸方向における台座51に対する設置位置を調節可能に構成されている。 The pair of supports 53 are provided on the base 51 so as to face each other with the support roller 55 between them. The pair of supports 53 are configured to rotatably hold the rotation shaft 55a of the support roller 55. As illustrated by the arrow Ar2 in FIG. 2, the pair of supports 53 are configured so that the installation position relative to the base 51 in the y-axis direction can be adjusted by attaching and detaching a position adjustment bolt or the like (not shown).
 支持ローラ54,55は、タイヤ30と直接接触して、タイヤ30を支持するように構成されている。具体的には、支持ローラ54,55の外周面が、タイヤ30の外周面と直接接触している。 The support rollers 54, 55 are configured to be in direct contact with the tire 30 and support the tire 30. Specifically, the outer circumferential surfaces of the support rollers 54, 55 are in direct contact with the outer circumferential surface of the tire 30.
 [ローラ位置変更によるキルン本体の位置調整]
 ここで、一対の支持体52と一対の支持体53とは、図2に例示されるように、y軸方向において、キルン回転中心軸Aを間におくように並んでいる。すなわち、タイヤ30は、その下部の両側において、支持ローラ54,55によって支持されている。
 [0027]
 <z軸方向の調整>
 そのため、一対の支持体52,53の離隔距離が相対的に小さくなるように、一対の支持体52,53の少なくとも一方の設置位置が変更された場合、支持ローラ54,55の離隔距離も相対的に小さくなる。したがって、支持ローラ54,55におけるタイヤ30の接触位置が相対的に上方に移動するので、キルン10が相対的に上方(z軸正方向)に変位する。
 [0028]
 一対の支持体52,53の離隔距離が相対的に大きくなるように、一対の支持体52,53の少なくとも一方の設置位置が変更された場合、支持ローラ54,55の離隔距離も相対的に大きくなる。したがって、支持ローラ54,55におけるタイヤ30の接触点が相対的に下方に移動するので、キルン10が相対的に下方(z軸負方向)に変位する。
 [0029]
 <y軸方向の調整>
 y軸方向における一対の支持体52,53の中間位置が図2の右方に相対的に移動するように、一対の支持体52,53の少なくとも一方の設置位置が変更された場合、y軸方向における支持ローラ54,55の中間位置も図2の右方に相対的に移動する。したがって、支持ローラ54,55の移動につれて、キルン10も相対的に右方(y軸負方向)に変位する。
 [0030]
 y軸方向における一対の支持体52,53の中間位置が図2の左方に相対的に移動するように、一対の支持体52,53の少なくとも一方の設置位置が変更された場合、y軸方向における支持ローラ54,55の中間位置も図2の左方に相対的に移動する。したがって、支持ローラ54,55の移動につれて、キルン10も相対的に左方(y軸正方向)に変位する。
 このように、y軸方向における一対の支持体52,53の位置を調節することにより、キルン10の上下左右(z軸方向、y軸方向)の位置が調節される。
[Adjusting the kiln body position by changing the roller position]
Here, the pair of supports 52 and the pair of supports 53 are arranged in the y-axis direction with the kiln rotation central axis A between them, as illustrated in Fig. 2. That is, the tire 30 is supported by support rollers 54, 55 on both sides of its lower part.
[0027]
<Adjustment in the z-axis direction>
Therefore, when the installation position of at least one of the pair of supports 52, 53 is changed so that the distance between the pair of supports 52, 53 becomes relatively small, the distance between the support rollers 54, 55 also becomes relatively small. Therefore, the contact position of the tire 30 on the support rollers 54, 55 moves relatively upward, and the kiln 10 is displaced relatively upward (in the positive direction of the z-axis).
[0028]
When the installation position of at least one of the pair of supports 52, 53 is changed so that the distance between the pair of supports 52, 53 becomes relatively large, the distance between the support rollers 54, 55 also becomes relatively large. Therefore, the contact points of the tire 30 on the support rollers 54, 55 move relatively downward, and the kiln 10 is displaced relatively downward (in the negative z-axis direction).
[0029]
<Adjustment in the y-axis direction>
When the installation position of at least one of the pair of supports 52, 53 is changed so that the intermediate position of the pair of supports 52, 53 in the y-axis direction relatively moves to the right in Fig. 2, the intermediate position of the support rollers 54, 55 in the y-axis direction also relatively moves to the right in Fig. 2. Therefore, as the support rollers 54, 55 move, the kiln 10 also relatively moves to the right (negative y-axis direction).
[0030]
When the installation position of at least one of the pair of supports 52, 53 is changed so that the intermediate position of the pair of supports 52, 53 in the y-axis direction relatively moves leftward in Fig. 2, the intermediate position of the support rollers 54, 55 in the y-axis direction also relatively moves leftward in Fig. 2. Therefore, as the support rollers 54, 55 move, the kiln 10 also relatively moves leftward (positive y-axis direction).
In this way, by adjusting the positions of the pair of supports 52, 53 in the y-axis direction, the position of the kiln 10 in the up, down, left, and right directions (z-axis direction, y-axis direction) is adjusted.
 [位置検出手段]
 位置検出手段3(図1参照)は設置位置を変更可能に設けられた非接触式の位置検出装置であり、キルン外皮10aの位置を検出する。非接触式であれば何でもよく、光学式、レーザー式、電波式等であってもよい。この位置検出手段3をx軸方向に移動させることで、キルン10の軸方向全体に亘ってキルン外皮10aの位置を検出可能となっている。
[Position detection means]
The position detection means 3 (see FIG. 1) is a non-contact type position detection device that is installed in a changeable position and detects the position of the kiln outer shell 10a. Any non-contact type may be used, such as an optical type, a laser type, or a radio wave type. By moving the position detection means 3 in the x-axis direction, the position of the kiln outer shell 10a can be detected throughout the entire axial direction of the kiln 10.
 なおキルン10の回転中に位置検出手段3を用いることで、キルン外皮10aにおける外周面の位置を連続的に測定することが可能である。これに基づき、キルン10の回転中心点を推定するものである(図5、図6参照)。 Furthermore, by using the position detection means 3 while the kiln 10 is rotating, it is possible to continuously measure the position of the outer peripheral surface of the kiln shell 10a. Based on this, the center of rotation of the kiln 10 is estimated (see Figures 5 and 6).
 なおガースギヤ20及び各タイヤ30A~30Dの内周側においては、外周側にこれらのガースギヤ20及び各タイヤ30A~30Dが存在するためキルン外皮10aの位置を直接測定することができない。したがってガースギヤ20及び各タイヤ30A~30D近傍のキルン外皮10aの位置を測定し、この近傍の位置に基づきガースギヤ20及び各タイヤ30A~30Dにおけるキルン10の回転中心点を推定する。これについては後述する。 Note that on the inner periphery side of the girth gear 20 and each tire 30A-30D, the position of the kiln casing 10a cannot be measured directly because the girth gear 20 and each tire 30A-30D are present on the outer periphery side. Therefore, the position of the kiln casing 10a in the vicinity of the girth gear 20 and each tire 30A-30D is measured, and the center of rotation of the kiln 10 at the girth gear 20 and each tire 30A-30D is estimated based on the position in this vicinity. This will be described later.
 [コントローラ]
 コントローラ100は位置検出手段3と接続し、検出されたキルン外皮10aの位置を処理するとともに、キルン10の中心点、ガースギヤ20の中心点、各タイヤ30A~30Dの中心点を推定する。これらに基づき、キルン10の軸芯ずれ量を推定するものである(後述の図3:フローチャート参照)。
[controller]
The controller 100 is connected to the position detection means 3, processes the detected position of the kiln shell 10a, and estimates the center point of the kiln 10, the center point of the girth gear 20, and the center points of each of the tires 30A to 30D. Based on these, the amount of axial misalignment of the kiln 10 is estimated (see the flowchart in FIG. 3 described later).
 [キルン及び回転中心軸の変形]
 キルン10は、このキルン10自体の重量や内部の処理物の重量、熱や運転に伴う経年、その他様々な要因によって変形する。キルン10の変形に伴ってキルン回転中心軸Aも屈曲するが、その場合キルン10が撓んだまま回転することとなる。
[Deformation of the kiln and the central axis of rotation]
The kiln 10 deforms due to various factors, including the weight of the kiln 10 itself, the weight of the material being processed inside, heat, aging during operation, and other factors. As the kiln 10 deforms, the kiln rotation axis A also bends, and in that case the kiln 10 rotates in a bent state.
 キルン10の撓み量が大きくなり、キルン回転中心軸Aの屈曲量も大きくなると、内部に設けられた非耐火物が剥離するおそれがあり、また摺動部分であるガースギヤ20やタイヤ30における摩擦が過大となる。また各タイヤ30からのx軸方向距離が離れた場所ほど、キルン回転中心軸Aの撓み量、屈曲量が大きくなる。 If the kiln 10 bends more and the kiln rotation axis A bends more, the non-refractory materials installed inside may peel off, and friction in the sliding parts, the girth gear 20 and the tires 30, may become excessive. Also, the farther away in the x-axis direction from each tire 30 is the location, the greater the bending and bending of the kiln rotation axis A.
 そのため、キルン回転中心軸Aが理想的な直線状態からどれだけのずれ(差分)があるか、を把握することは重要な課題である。この課題を解決するためには、キルン回転中心軸Aが直線であると仮定した場合の回転中心線を設け、この回転中心線を基準として実際のキルン回転中心軸Aとの差分を把握すれば、キルン回転中心軸Aのずれ量が把握されることとなる。 Therefore, it is an important task to understand how much the kiln's rotation axis A deviates (differences) from an ideal straight line. To solve this problem, a rotation center line is set assuming that the kiln's rotation axis A is a straight line, and the difference between this rotation center line and the actual kiln rotation axis A is understood, and the amount of deviation of the kiln's rotation axis A can be understood.
 しかしながら、キルン10の支持点であるタイヤ30、及びガースギヤ20も経年その他の理由によって変位するため、キルン10の初期状態(据え付け時)からの変位を測定することは非現実的であり、絶対的なずれ量把握の基準を設定することは困難である。 However, because the tires 30, which are the support points for the kiln 10, and the girth gear 20 also displace over time and for other reasons, it is unrealistic to measure the displacement of the kiln 10 from its initial state (at the time of installation), and it is difficult to set an absolute standard for understanding the amount of displacement.
 そこで、本発明者らが鋭意検討した結果、ガースギヤ20の回転中心点の座標を取得し、ガースギヤ20の回転中心点を通る任意の直線をずれ量把握の基準線として設定することにより、キルン回転中心軸の変位量、すなわちキルン10の軸芯変位量を精度よく推定することが可能となることを見出した。以下に、キルン10の軸芯変位量の推定について、図3~図9を参照して説明する。 As a result of extensive research, the inventors have discovered that by acquiring the coordinates of the rotation center of the girth gear 20 and setting any straight line passing through the rotation center of the girth gear 20 as the reference line for determining the amount of deviation, it is possible to accurately estimate the amount of displacement of the kiln's rotation center axis, i.e., the amount of shaft core displacement of the kiln 10. The estimation of the amount of shaft core displacement of the kiln 10 will be described below with reference to Figures 3 to 9.
 [軸心変位量の推定]
 本件発明の軸芯変位量推定においては、まずガースギヤ20の中心点を推定し(図3のステップS1参照)、このガースギヤ中心点を通る直線をずれ量把握の基準線BLとして設定する(図3のステップS3参照)。次いでキルン10の軸方向任意の2点を取り、その2点におけるキルン回転中心点を推定する(図3のステップS2)。さらに上記2点の回転中心点と基準線BLとの距離を求め(図3のステップS4)、この距離の差を2点間の相対的なずれ量として推定するものである(図3のステップS5)。
[Estimation of shaft center displacement]
In the present invention, the center point of the girth gear 20 is first estimated (see step S1 in FIG. 3), and a straight line passing through the center point of the girth gear is set as a reference line BL for determining the amount of deviation (see step S3 in FIG. 3). Next, two arbitrary points in the axial direction of the kiln 10 are taken, and the kiln rotation center points at these two points are estimated (step S2 in FIG. 3). Furthermore, the distance between the two rotation centers and the reference line BL is calculated (step S4 in FIG. 3), and the difference between these distances is estimated as the relative deviation between the two points (step S5 in FIG. 3).
 以下、ずれ量推定の例として、第1、第2タイヤ30A、30Dの相対的なずれ量を求めるものとする。 Below, as an example of estimating the amount of deviation, we will calculate the relative amount of deviation between the first and second tires 30A and 30D.
 [ガースギヤ中心点の推定]
  (1:ガースギヤ近傍位置におけるキルン外皮座標の測定)
 図4はキルン10の斜視図、図5は第1近傍位置P1におけるキルン10の径方向断面図である。なお、図5の径方向断面をNとする(図4、図7参照)。
[Girth gear center point estimation]
(1: Measurement of the kiln shell coordinates near the girth gear)
Fig. 4 is a perspective view of the kiln 10, and Fig. 5 is a radial cross-sectional view of the kiln 10 at the first vicinity position P1. The radial cross-section of Fig. 5 is designated as N (see Figs. 4 and 7).
 図4においてはガースギヤ20の軸方向両側に第1、第2近傍位置P1、P2が設けられ、いずれもガースギヤ20からx軸方向(あるいはキルン回転中心軸Aの方向)で等距離にある。この第1、第2近傍位置P1、P2におけるキルン10の回転中心点OP1、OP2を用いて、ガースギヤ20におけるキルン10の回転中心点OG(以下、ガースギヤ中心点OG)を推定するものである。 In FIG. 4, first and second nearby positions P1 and P2 are provided on either side of the girth gear 20 in the axial direction, both of which are equidistant from the girth gear 20 in the x-axis direction (or in the direction of the kiln rotation center axis A). The rotation center point OG of the kiln 10 at the girth gear 20 (hereinafter referred to as the girth gear center point OG) is estimated using the rotation center points OP1 and OP2 of the kiln 10 at the first and second nearby positions P1 and P2.
 まず、位置検出手段3によって第1近傍位置P1におけるキルン外皮10aの代表点MP1の座標を計測する。この測定点MP1は第1近傍位置P1におけるキルン外皮10a上であればどこでもよく、代表点として任意の1点を選択する。 First, the position detection means 3 measures the coordinates of the representative point MP1 of the kiln outer shell 10a at the first nearby position P1. This measurement point MP1 can be anywhere on the kiln outer shell 10a at the first nearby position P1, and any one point is selected as the representative point.
 キルン10の回転中に計測することで、第1近傍位置P1の全周に亘って代表点MP1の座標が計測される。この代表点MP1の軌跡は第1近傍位置P1におけるキルン10の外周線となり、第1外周線L1と定義する。この第1外周線L1は、第1近傍位置P1におけるキルン10の径方向断面N1内に存在する。なお径方向断面N1は、第1外周線L1においてキルン10の回転軸に直交する平面である。 By measuring while the kiln 10 is rotating, the coordinates of the representative point MP1 are measured over the entire circumference of the first vicinity position P1. The trajectory of this representative point MP1 becomes the outer periphery of the kiln 10 at the first vicinity position P1, and is defined as the first outer periphery L1. This first outer periphery L1 exists within the radial cross section N1 of the kiln 10 at the first vicinity position P1. The radial cross section N1 is a plane perpendicular to the rotation axis of the kiln 10 at the first outer periphery L1.
 キルン10が真円である場合、第1外周線L1も真円となる。これに対しキルン10が変形している場合、第1外周線L1が真円ではなく歪んだ円形状となる(図5参照)。そのためキルン10の回転に伴って代表点MP1の位置も変化する。 If the kiln 10 is a perfect circle, the first outer periphery L1 will also be a perfect circle. In contrast, if the kiln 10 is deformed, the first outer periphery L1 will not be a perfect circle but will be a distorted circle (see Figure 5). Therefore, the position of the representative point MP1 will also change as the kiln 10 rotates.
 この変化する代表点MP1を示す座標の平均値を取り、測定点MP1aと定義する。同様に、第1近傍位置P1における他の代表点を代表点MP2,MP3として選択し、平均値を測定点MP2a、MP3aとする。 The average value of the coordinates indicating this changing representative point MP1 is taken and defined as measurement point MP1a. Similarly, other representative points at the first neighboring position P1 are selected as representative points MP2 and MP3, and the average values are defined as measurement points MP2a and MP3a.
 上述のように第1外周線L1は径方向断面N1内に存在するため、各代表点MP1~MP3、及び測定点MP1a~MP3aも径方向断面N1内に存在することとなる。なお本明細書では測定点はMP1a~MP3aの3点として説明するが、3点以上であれば何点でもよい。 As described above, the first outer periphery L1 exists within the radial cross section N1, so the representative points MP1 to MP3 and the measurement points MP1a to MP3a also exist within the radial cross section N1. Note that in this specification, the measurement points are described as three points, MP1a to MP3a, but any number of points greater than three may be used.
  (2:第1仮想円算出)
 得られた3点の測定点MP1a~MP3aに基づき、仮想的に円を算出する。この仮想円を第1近傍位置P1におけるキルン10の仮想円とし、第1仮想円C1と定義する。得られた第1仮想円C1の中心点を、第1仮想円中心OC1とする。第1仮想円C1及びその中心OC1も、径方向断面N1内に存在する。
(2: Calculation of the first virtual circle)
A virtual circle is calculated based on the three measurement points MP1a to MP3a obtained. This virtual circle is defined as the virtual circle of the kiln 10 at the first vicinity position P1 and is called the first virtual circle C1. The center point of the obtained first virtual circle C1 is called the first virtual circle center OC1. The first virtual circle C1 and its center OC1 also exist within the radial cross section N1.
  (3:第2仮想円算出)
 第1仮想円M1と同様に、第2仮想円C2を算出する。算出方法は第1仮想円C1と同様に、まず第1近傍位置P1における代表点MP4~MP6とその平均値である測定点MP4a~MP6aを求め、これに基づき第2仮想円C2を算出するものである。得られた第2仮想円C2の中心点を第2仮想円中心OC2とする。第2仮想円C2及び第2仮想円中心OC2も、第1近傍位置P1における仮想円とその中心であるため、第2仮想円C2及び第2仮想円中心OC2ともに径方向断面N1内に存在する。
(3: Calculation of the second virtual circle)
The second virtual circle C2 is calculated in the same manner as the first virtual circle M1. The calculation method is the same as the first virtual circle C1, in that first, representative points MP4 to MP6 at the first vicinity position P1 and measurement points MP4a to MP6a which are the average values of those representative points are obtained, and the second virtual circle C2 is calculated based on the representative points. The center point of the obtained second virtual circle C2 is set as the second virtual circle center OC2. The second virtual circle C2 and the second virtual circle center OC2 are also virtual circles and their centers at the first vicinity position P1, and therefore both the second virtual circle C2 and the second virtual circle center OC2 exist within the radial cross section N1.
  (4:第1、第2仮想円中心の平均算出、キルン中心点の推定)
 得られた第1仮想円中心OC1と、第2仮想円中心OC2の平均を取り、第1近傍位置P1における第1キルン中心点OP1とする。キルン10の変形により実際のキルン中心点を測定することは困難であるため、上述の手法を用いて第1キルン中心点OP1を推定するものである。
(4: Calculate the average of the first and second virtual circle centers, and estimate the kiln center point)
The first kiln center point OP1 at the first vicinity position P1 is determined by taking the average of the first virtual circle center OC1 and the second virtual circle center OC2. Since it is difficult to measure the actual kiln center point due to deformation of the kiln 10, the first kiln center point OP1 is estimated using the above-mentioned method.
  (5.第2近傍位置における回転中心点の推定)
 同様の手法により、ガースギヤ20のx軸負方向側に設定された第2近傍位置P2(図4参照)においても、第1近傍位置P1と同様に第2キルン中心点OP2を推定するものである。他、キルン10の軸方向任意の箇所においてキルン中心点を推定することが可能である。
(5. Estimation of Rotation Center Point at Second Nearby Position)
Using a similar method, the second kiln center point OP2 is estimated in the same manner as the first nearby position P1 at the second nearby position P2 (see FIG. 4) set on the negative x-axis side of the girth gear 20. In addition, it is possible to estimate the kiln center point at any point in the axial direction of the kiln 10.
 なお、第2近傍位置P2における第2キルン中心点OP2は、このOP2の導出に用いられる各代表点、測定点、及び仮想円とともに、第2近傍位置P2におけるキルン10の径方向断面N2(径方向断面N1と同様であるため不図示)内に存在する。径方向断面N1と同様に、この径方向断面N2も第2外周線L2においてキルン10の回転軸に直交する平面となる。 The second kiln center point OP2 at the second nearby position P2, together with the representative points, measurement points, and virtual circle used to derive this OP2, exists within a radial cross section N2 (not shown because it is similar to the radial cross section N1) of the kiln 10 at the second nearby position P2. Like the radial cross section N1, this radial cross section N2 is also a plane perpendicular to the rotation axis of the kiln 10 at the second outer periphery L2.
 [第1、第2近傍位置中心点を用いたガースギヤ中心点の推定]
 図7はガースギヤ20部分におけるキルン10の斜視図である。第1近傍位置P1とガースギヤ20のx軸方向距離はT1、第2近傍位置P2とガースギヤ20のx軸方向処理はT2である。
[Estimation of girth gear center point using first and second neighboring position center points]
7 is a perspective view of the kiln 10 at the girth gear 20. The distance in the x-axis direction between the first neighboring position P1 and the girth gear 20 is T1, and the distance in the x-axis direction between the second neighboring position P2 and the girth gear 20 is T2.
 なお図7では、見かけ上T1とT2の長さが異なっているが、説明を簡略化するため以下ではT1=T2として述べる。 Note that in Figure 7, T1 and T2 appear to have different lengths, but to simplify the explanation, we will assume that T1 = T2 below.
 第1近傍位置P1と第2近傍位置P2がガースギヤ20から等距離にある場合、ガースギヤ中心点OGの座標は、第1近傍位置P1における中心点OP1と、第2近傍位置P2における中心点OP2の中点となる。これにより第1、第2近傍位置中心点OP1、OP2に基づき、ガースギヤ中心点OGの位置が推定される(図3のステップS1参照)。あるいは、第1、第2近傍位置中心点OP1、OP2を結ぶ直線とガースギヤ20との交点をガースギヤ中心点OGとしてもよい。 When the first nearby position P1 and the second nearby position P2 are equidistant from the girth gear 20, the coordinates of the girth gear center point OG are the midpoint between the center point OP1 at the first nearby position P1 and the center point OP2 at the second nearby position P2. This allows the position of the girth gear center point OG to be estimated based on the first and second nearby position center points OP1 and OP2 (see step S1 in Figure 3). Alternatively, the girth gear center point OG may be the intersection of the straight line connecting the first and second nearby position center points OP1 and OP2 with the girth gear 20.
 なおここでの交点とは、ガースギヤ20のx軸方向中心位置においてキルン10の回転軸と直交する平面Ngと、OP1,OP2を結ぶ線分の交点である(図8、図9参照)。但しこの平面Ngは、ガースギヤ20を含む範囲でキルン10の軸方向に平行移動されてもよい。 The intersection here refers to the intersection of a plane Ng that is perpendicular to the rotation axis of the kiln 10 at the center position of the girth gear 20 in the x-axis direction and a line segment connecting OP1 and OP2 (see Figures 8 and 9). However, this plane Ng may be translated in the axial direction of the kiln 10 within a range that includes the girth gear 20.
 なお、ガースギヤ20に対する第1、第2近傍位置P1,P2の距離T1、T2が等距離でない場合、中点ではなくT1、T2の比率に基づきガースギヤ中心点OGの位置を推定してもよいし、平面Ngを用いてOP1、OP2を結ぶ直線とガースギヤ20との交点をOGとしてもよい。 If the distances T1, T2 of the first and second proximal positions P1, P2 relative to the girth gear 20 are not equidistant, the position of the girth gear center point OG may be estimated based on the ratio of T1, T2 instead of the midpoint, or the intersection of the straight line connecting OP1, OP2 and the girth gear 20 using the plane Ng may be taken as OG.
 また、上記の例では第1、第2近傍位置P1,P2はガースギヤ20の軸方向両脇に設けられたが、軸方向片側のみであってもよい。例えば、第1近傍位置P1に加えて第2近傍位置P2もガースギヤ20のx軸正方向側(投入口11側)に設け、距離T1、T2の比率によってもよいし、第1、第2中心点OP1、OP2の延長線とガースギヤ20との交点をガースギヤ中心点OGと見做して推定してもよい。 In the above example, the first and second nearby positions P1, P2 are provided on both axial sides of the girth gear 20, but they may be provided on only one axial side. For example, in addition to the first nearby position P1, the second nearby position P2 may also be provided on the positive x-axis side of the girth gear 20 (the inlet 11 side) and the ratio of the distances T1, T2 may be used, or the intersection of the extensions of the first and second center points OP1, OP2 and the girth gear 20 may be regarded as the girth gear center point OG and estimated.
 [タイヤ中心点の推定]
 次いで、タイヤ中心点の推定を行う。ここではキルン10の両端に設けられた第1、第2タイヤ30A、30Dの中心点OT1,OT2を推定する(図3のステップS2参照)。
[Tire center point estimation]
Next, the tire center points are estimated. Here, the center points OT1, OT2 of the first and second tires 30A, 30D provided at both ends of the kiln 10 are estimated (see step S2 in FIG. 3).
 ガースギヤ20と同様、第1、第2タイヤ30A、30Dにおいてもキルン外皮10aが露出していないため、タイヤ30の軸方向両側(あるいは片側のみ)のキルン外皮10aにおいてキルン中心点を推定し、これに基づき第1、第2タイヤ中心点OA、ODを推定するものである。 As with the girth gear 20, the kiln outer shell 10a is not exposed on the first and second tires 30A, 30D, so the kiln center point is estimated on the kiln outer shell 10a on both axial sides (or only one side) of the tire 30, and the first and second tire center points OA, OD are estimated based on this.
 [基準線BLの設定]
 図8は、図7において基準線BLを設定した例である。図9は、基準線BLを記載したキルン10全体の径方向側面図である。
[Setting of Reference Line BL]
Fig. 8 shows an example in which a reference line BL is set in Fig. 7. Fig. 9 is a radial side view of the entire kiln 10 with the reference line BL drawn thereon.
 上述のタイヤ中心点の推定に続き、ずれ量把握の基準となる基準線BLを設定する(図3のステップS3参照)。この基準線BLはガースギヤ20におけるキルン10の回転中心点OG(以降、ガースギヤ中心点OG)を通るものとする。ガースギヤ20はキルン10における回転の起点となるため、ガースギヤ中心点OGを、キルン10全体における回転軸の基準と見做せるためである。 Following the estimation of the tire center point as described above, a reference line BL is set as a reference for grasping the amount of deviation (see step S3 in FIG. 3). This reference line BL passes through the rotation center point OG of the kiln 10 at the girth gear 20 (hereinafter, girth gear center point OG). This is because the girth gear 20 is the starting point of rotation in the kiln 10, and the girth gear center point OG can be regarded as the reference for the rotation axis of the entire kiln 10.
 なお、基準線BLはガースギヤ中心点OGを通るものであれば任意である(キルン10と直交するものは除く)。基準線BLとしてどのような直線を選択した場合であっても、複数のキルン中心点の相対的なずれ量を精度良く把握することが可能である。以降で詳細を述べる。 The reference line BL can be any line that passes through the girth gear center point OG (except for lines perpendicular to the kiln 10). Regardless of the straight line selected as the reference line BL, it is possible to accurately grasp the relative deviation of multiple kiln center points. Details will be given below.
 [ずれ量の推定]
  (基準線BL-キルン中心点との距離算出)
 例えば特定の基準線BLを設定し、この基準線BLと第1タイヤ中心点OT1との距離である第1タイヤ距離αを算出する(図3のステップS4参照)。
 ここで第1タイヤ距離αとは、基準線BLと第1タイヤ中心点OT1との最短距離ではなく、第1タイヤ30Aを含む平面NT1内での距離である。厳密には、平面NT1は第1タイヤ中心点OT1を通り、この中心点OT1におけるキルン10の回転軸と直交する平面である。但し、第1タイヤ30Aを含む範囲で、平面NT1をキルン10の軸方向に平行移動してもよい。
[Estimation of deviation amount]
(Calculation of distance between reference line BL and center point of kiln)
For example, a specific reference line BL is set, and a first tire distance α, which is the distance between the reference line BL and the first tire center point OT1, is calculated (see step S4 in FIG. 3).
Here, the first tire distance α is not the shortest distance between the reference line BL and the first tire center point OT1, but the distance in a plane NT1 including the first tire 30A. Strictly speaking, the plane NT1 passes through the first tire center point OT1 and is perpendicular to the rotation axis of the kiln 10 at this center point OT1. However, the plane NT1 may be translated in the axial direction of the kiln 10 within a range including the first tire 30A.
 同様に、基準線BLと第2タイヤ中心点OT2との距離である第2タイヤ距離βを算出する(図3のステップS4参照)。ここでも、βは第2タイヤ30Dを含む平面NT2内における距離である。 Similarly, the second tire distance β, which is the distance between the reference line BL and the second tire center point OT2, is calculated (see step S4 in FIG. 3). Here again, β is the distance within the plane NT2 that includes the second tire 30D.
  (相対ずれ量の算出とずれ量の推定)
 算出された第1タイヤ距離αと、第2タイヤ距離βとの相対的な差が、第1、第2タイヤ30A,30D間の相対的なずれ量となる(図3のステップS5参照)。このように、基準線BLを設定してキルン10軸方向任意の2点間の相対的なずれ量を求めることで、キルン回転中心軸Aの変形量を推定することが可能となっている。そこで各タイヤ30A~30Dの位置を変更して相対的なずれ量を極力抑えることにより、キルン回転中心軸Aを直線に近づけるものである。
(Calculation of relative deviation amount and estimation of deviation amount)
The relative difference between the calculated first tire distance α and the second tire distance β is the relative deviation between the first and second tires 30A, 30D (see step S5 in FIG. 3). In this way, by setting the reference line BL and determining the relative deviation between any two points in the axial direction of the kiln 10, it is possible to estimate the deformation of the kiln rotation axis A. Therefore, by changing the positions of the tires 30A to 30D to minimize the relative deviation, the kiln rotation axis A is brought closer to a straight line.
 本発明では、ガースギヤ20の中心点OGを通る直線を基準線BLとして用いている。キルン10はガースギヤ20によって回転駆動されるため、キルン10等の筒型回転装置についてはガースギヤ20の中心点OGが変位の基準点と見做せる。 In the present invention, a straight line passing through the center point OG of the girth gear 20 is used as the reference line BL. Since the kiln 10 is rotationally driven by the girth gear 20, the center point OG of the girth gear 20 can be regarded as the reference point for displacement for a cylindrical rotating device such as the kiln 10.
 そこで本発明では、ガースギヤ20の中心点OGを通る直線を基準線BLとして用いることで、このガースギヤ20における噛み合いを考慮した上で、タイヤ30A~30Dによるキルン軸芯ずれの調整量を把握することが可能となる。 In this invention, therefore, by using a straight line passing through the center point OG of the girth gear 20 as the reference line BL, it is possible to grasp the amount of adjustment for the kiln axis misalignment by the tires 30A-30D while taking into account the meshing of this girth gear 20.
 [軸芯変位量の推定フロー:図3]
 図3は、本発明の軸芯変位量の推定にかかるフローチャートである。以下各ステップにつき説明する。
[Flow of estimating shaft core displacement: Figure 3]
3 is a flow chart showing the process for estimating the amount of shaft core displacement according to the present invention. Each step will be described below.
 (ステップS1)
 ステップS1ではガースギヤ中心点OGを推定する。上述のとおり、位置検出手段3を用いて第1、第2近傍位置P1、P2における回転中心点OP1、OP2を推定する。推定された第1、第2近傍位置回転中心点OP1、OP2に基づき、ガースギヤ中心点OGを推定するものである。
(Step S1)
In step S1, the girth gear center point OG is estimated. As described above, the rotation center points OP1, OP2 at the first and second nearby positions P1, P2 are estimated using the position detection means 3. The girth gear center point OG is estimated based on the estimated first and second nearby position rotation center points OP1, OP2.
 (ステップS2)
 ステップS2では第1、第2タイヤ中心点OT1、OT2を推定する。ガースギヤ中心点OGの推定と同様の手法を用いる。
(Step S2)
In step S2, the first and second tire center points OT1 and OT2 are estimated using a method similar to that used for estimating the girth gear center point OG.
 (ステップS3)
 ステップS3では基準線BLを設定する。基準線BLはガースギヤ20の回転中心点OGを通る直線であればよく、特に限定しない。
(Step S3)
In step S3, a reference line BL is set. The reference line BL may be a straight line passing through the rotation center point OG of the girth gear 20, and is not particularly limited.
 (ステップS4)
 ステップS4では、基準線BLと第1、第2タイヤ中心点OT1、OT2との距離である第1タイヤ距離α、第2タイヤ距離βを算出する。第1、第2タイヤ距離α、βは、それぞれ第1、第2タイヤ30A、30Dを含む平面NT1、NT2内における距離である。
(Step S4)
In step S4, a first tire distance α and a second tire distance β are calculated, which are distances between the reference line BL and the first and second tire center points OT1 and OT2. The first and second tire distances α and β are distances within planes NT1 and NT2 that include the first and second tires 30A and 30D, respectively.
 (ステップS5)
 ステップS5では、第1タイヤ距離αと第2タイヤ距離βの差分を取り、この差分を第1、第2タイヤ30A、30Dの相対ずれ量として推定する。
(Step S5)
In step S5, the difference between the first tire distance α and the second tire distance β is calculated, and this difference is estimated as the amount of relative deviation between the first and second tires 30A, 30D.
 [効果]
 以下、本件発明の効果である。
[effect]
The effects of the present invention are as follows.
 (1)回転するとともに内部を通過する材料を処理するキルン10(筒体10)と、キルン10の外周に設けられたガースギヤ20と、ガースギヤ20を介してキルン10を回転させる駆動部40と、キルン10を回転可能に支持する複数のタイヤ30とを備える軸芯変位量推定システムであって、ガースギヤ回転中心点OGの座標を推定するガースギヤ回転中心点推定ステップ(ステップS1)と、キルン10の回転中心点(例えば第1、第2タイヤ中心点OT1、OT2)の座標を推定するキルン回転中心点推定ステップ(ステップS2)と、キルン10における軸芯変位量推定の基準となる基準線BLを設定する基準線設定ステップ(ステップS3)とを備え、基準線BLは、ガースギヤ回転中心点OGを通り、キルン10の回転中心点と、基準線BLとの距離に基づき、キルン10の変位量を推定することとした。 (1) A shaft core displacement estimation system including a kiln 10 (cylinder 10) that rotates and processes materials passing through it, a girth gear 20 provided on the outer periphery of the kiln 10, a drive unit 40 that rotates the kiln 10 via the girth gear 20, and a number of tires 30 that rotatably support the kiln 10, the system includes a girth gear rotation center point estimation step (step S1) for estimating the coordinates of the girth gear rotation center point OG, a kiln rotation center point estimation step (step S2) for estimating the coordinates of the kiln 10's rotation center point (e.g., first and second tire center points OT1 and OT2), and a reference line setting step (step S3) for setting a reference line BL that serves as a reference for estimating the shaft core displacement in the kiln 10, the reference line BL passing through the girth gear rotation center point OG, and the displacement of the kiln 10 is estimated based on the distance between the kiln 10's rotation center point and the reference line BL.
 キルン10(筒体10)が理想的な直線でなく、軸芯が相対的にずれている場合、キルン10の支持点(タイヤ30)を移動させることで軸芯のずれを調整可能であるが、ガースギヤ20は周囲のピニオンギヤと噛み合っているため、ガースギヤ20の移動は煩雑であり好ましくない。特にキルン10運転中におけるガースギヤ位置の移動は困難である。 If the kiln 10 (cylinder 10) is not an ideal straight line and the axis is misaligned relative to the center, the misalignment can be adjusted by moving the support point (tire 30) of the kiln 10. However, because the girth gear 20 meshes with the surrounding pinion gears, moving the girth gear 20 is cumbersome and undesirable. It is particularly difficult to move the girth gear position while the kiln 10 is in operation.
 したがってガースギヤ回転中心を通る直線をキルン10の基準線BLとして用い、この基準線BLとの距離に基づきずれ量を把握することで、ガースギヤ中心OGをずれ量把握の原点とすることが可能となる。 Therefore, by using the straight line passing through the center of rotation of the girth gear as the reference line BL of the kiln 10 and determining the amount of deviation based on the distance from this reference line BL, it is possible to use the girth gear center OG as the origin for determining the amount of deviation.
 キルン10の支持点(タイヤ30)及びガースギヤ20も据え付け時の初期値から移動するため、初期値からの絶対的な変位を測定することは現実的でない。一方キルン10の座標系全体が一体として平行移動していると見做せるため、ずれ量算出の基準線BLを設定し、この基準線BLもキルン座標系と一体となって平行移動するものとすれば、この基準線BLと推定キルン中心点(実測されるキルン外皮10aの位置に基づき推定)との相対的な位置関係に基づきキルン中心軸のずれ量を把握することが可能である。 The support points (tires 30) and girth gear 20 of the kiln 10 also move from their initial values at the time of installation, so it is not realistic to measure the absolute displacement from the initial value. On the other hand, since the entire coordinate system of the kiln 10 can be considered to move parallel as a whole, if a reference line BL for calculating the deviation is set and this reference line BL is also assumed to move parallel together with the kiln coordinate system, it is possible to grasp the deviation of the kiln central axis based on the relative positional relationship between this reference line BL and the estimated kiln center point (estimated based on the actually measured position of the kiln outer shell 10a).
 したがってキルン10のずれ量把握の基準線BLが推定ガースギヤ中心を通るよう設けることで、問題なくキルン中心軸のずれ量の把握を行うことができる。 Therefore, by setting the reference line BL for determining the deviation of the kiln 10 so that it passes through the center of the estimated girth gear, it is possible to determine the deviation of the kiln's central axis without any problems.
 (2)複数のタイヤ30は、少なくともキルン10の一端に設けられた第1タイヤ30Aを有し、ガースギヤ回転中心点推定ステップでは、第1タイヤ30Aの位置に基づき、ガースギヤ20の長手方向位置を特定することとした。一般的にタイヤ30(支持部)はキルン10両端及び中間部に設けられている。そこで少なくともキルン端部の一端側に設けられた第1タイヤ30Aからの距離に基づき特定されることで、中間部のタイヤ30を用いる場合に比べてガースギヤ位置推定の精度を向上させることができる。 (2) The multiple tires 30 include a first tire 30A provided at least at one end of the kiln 10, and in the girth gear rotation center point estimation step, the longitudinal position of the girth gear 20 is identified based on the position of the first tire 30A. Generally, the tires 30 (support parts) are provided at both ends and in the middle of the kiln 10. Therefore, by identifying the position based on the distance from at least the first tire 30A provided at one end of the kiln end, the accuracy of the girth gear position estimation can be improved compared to the case where a tire 30 in the middle is used.
 (3)キルン回転中心点推定ステップ(ステップS2)では、キルン10の軸方向任意の箇所において、キルン回転中心点を推定することとした。径方向断面における回転中心点を、キルン10軸方向全体に亘って推定することが可能となる。したがって軸方向全体に亘ってキルン回転中心点と基準線BLとの距離を推定することが可能となり、精度よいずれ量の把握を行うことができる。 (3) In the kiln rotation center estimation step (step S2), the kiln rotation center is estimated at any point in the axial direction of the kiln 10. It is possible to estimate the rotation center in the radial cross section throughout the entire axial direction of the kiln 10. Therefore, it is possible to estimate the distance between the kiln rotation center and the reference line BL throughout the entire axial direction, and the amount of rotation can be grasped with high accuracy.
 (4)非接触式の位置検出手段3をさらに備え、タイヤ30における回転中心点は、このタイヤ30の軸方向一方側または両側におけるキルン10の回転中心点に基づき推定され、ガースギヤ20における回転中心点は、このガースギヤ20の軸方向一方側または両側におけるキルン10の回転中心点に基づき推定されることとした。 (4) A non-contact position detection means 3 is further provided, and the center of rotation of the tire 30 is estimated based on the center of rotation of the kiln 10 on one or both axial sides of the tire 30, and the center of rotation of the girth gear 20 is estimated based on the center of rotation of the kiln 10 on one or both axial sides of the girth gear 20.
 位置検出手段3はレーザー等の非接触式を用いる。非接触式であるが故にキルン10稼働中も簡便に計測可能な一方、タイヤ30に相当する位置ではこれらのタイヤ30が障害となってキルン外皮10aを直接測定することができない。 The position detection means 3 uses a non-contact type such as a laser. Because it is a non-contact type, measurements can be easily performed even while the kiln 10 is in operation. However, at the positions corresponding to the tires 30, the tires 30 become an obstacle and the kiln casing 10a cannot be directly measured.
 一方、タイヤ30の軸方向両脇においてはキルン外皮10aが露出しており、露出部分におけるキルン中心点は推定可能である。また、当該露出部分とタイヤ30中心点までのx軸方向距離は実測可能である。 On the other hand, the kiln shell 10a is exposed on both axial sides of the tire 30, and the kiln center point at the exposed parts can be estimated. Also, the distance in the x-axis direction from the exposed parts to the center point of the tire 30 can be measured.
 したがってタイヤ30を挟んで片側あるいは両側のキルン回転中心点の位置と、タイヤ中心点(例えば第1、第2タイヤ中心点OT1、OT2)までの軸方向距離に基づき、タイヤ中心点の径方向位置を推定することが可能である。よってタイヤ中心点の位置(軸方向位置及び推定径方向位置)が特定されるため、直接計測に依らずとも精度よくタイヤ回転中心点を推定することができる。ガースギヤ中心点OGについても同様である。 Therefore, it is possible to estimate the radial position of the tire center point based on the position of the kiln rotation center point on one or both sides of the tire 30 and the axial distance to the tire center point (e.g., the first and second tire center points OT1 and OT2). Since the position of the tire center point (axial position and estimated radial position) is thus identified, the tire rotation center point can be estimated with high accuracy without relying on direct measurement. The same is true for the girth gear center point OG.
 なお軸方向両側からタイヤ中心点の位置を算出する場合、各タイヤから軸方向の等距離にある2点でなくても問題なくタイヤ30中心点の位置を推定することができる。即ちガースギヤ20に対し軸方向一方側のキルン中心点を2点求め、この2点を結ぶ直線上にガースギヤ中心点OGがあると仮定することにより、軸方向位置に基づく相似関係を用いてガースギヤ20中心点(径方向位置)を推定することができる。この点は幾何学的に自明である。 When calculating the position of the tire center point from both axial sides, the position of the tire 30 center point can be estimated without any problem even if the two points are not equidistant axially from each tire. In other words, by determining two kiln center points on one axial side of the girth gear 20 and assuming that the girth gear center point OG is on the line connecting these two points, the center point (radial position) of the girth gear 20 can be estimated using a similarity relationship based on the axial position. This point is geometrically self-evident.
 また、非接触式の位置検出手段3によりキルン10の断面形状が分かる。この断面形状に基づき、キルン10の幾何学重心(質量重心ではない)を算出し、キルン10の回転に伴う振れを把握することができる。 In addition, the cross-sectional shape of the kiln 10 can be determined by the non-contact position detection means 3. Based on this cross-sectional shape, the geometric center of gravity (not the mass center of gravity) of the kiln 10 can be calculated, and the vibration caused by the rotation of the kiln 10 can be grasped.
 なお、位置検出手段3によって断面形状および回転中心を推定するため、キルン10の軸方向(長手方向あるいはx軸方向)任意の位置においてキルン10及び回転中心軸の撓み量、屈折、及び断面形状の変形を把握することができる。従来からキルン10の軸芯ずれ量が増加することにより支持点(本件明細書では各タイヤ30A~30D)付近の耐火物10bへの影響が懸念されていたが、各タイヤ30の間におけるキルン10の撓みや屈折、変形等もまた耐火物10bに影響を及ぼすおそれがある。そのため軸方向全体に亘ってキルン10の断面形状と回転中心を把握することで、各タイヤ30間の耐火物に発生する不具合の原因推定を容易に行うことができる。 In addition, since the cross-sectional shape and center of rotation are estimated by the position detection means 3, it is possible to grasp the amount of bending, bending, and deformation of the cross-sectional shape of the kiln 10 and the central axis of rotation at any position in the axial direction (longitudinal direction or x-axis direction) of the kiln 10. Conventionally, there has been concern that an increase in the amount of axial misalignment of the kiln 10 may affect the refractory 10b near the support points (each tire 30A to 30D in this specification), but bending, bending, deformation, etc. of the kiln 10 between each tire 30 may also affect the refractory 10b. Therefore, by grasping the cross-sectional shape and center of rotation of the kiln 10 over the entire axial direction, it is possible to easily estimate the cause of defects occurring in the refractory between each tire 30.
 (5)キルン回転中心点推定ステップ(ステップS2)では、前記複数のタイヤ30A~30Dにおける中心点OT1~OT4を推定することとした。これにより、各タイヤ30A~30Dにおけるキルン10の回転中心である中心点OT1~OT4を推定し、基準線BLとの差分を取ることで、各タイヤ30A~30Dの相対ずれ量を把握することが可能となる。よって、各タイヤ30A~30Dの相対位置を変更し、キルン10の直線性を容易に向上させることができる。 (5) In the kiln rotation center point estimation step (step S2), center points OT1 to OT4 of the multiple tires 30A to 30D are estimated. This makes it possible to estimate center points OT1 to OT4, which are the rotation center of the kiln 10 for each tire 30A to 30D, and by taking the difference from the reference line BL, it is possible to grasp the relative deviation amount of each tire 30A to 30D. Therefore, by changing the relative position of each tire 30A to 30D, the linearity of the kiln 10 can be easily improved.
 (6)回転するとともに内部を通過する材料を処理するキルン10(筒体10)と、キルン10の外周に設けられたガースギヤ20と、ガースギヤ20を介してキルン10を回転させる駆動部40と、キルン10を回転可能に支持する複数のタイヤ30とを備えるキルン10の軸芯変位量推定方法であって、ガースギヤ回転中心点OGの座標を推定し(ステップS1)、キルン10の回転中心点の座標を推定し(ステップS2)、キルン10における軸芯変位量推定の基準となる基準線BLを設定し(ステップS3)、基準線BLは、ガースギヤ回転中心点OGを通り、キルン10の回転中心点と、基準線BLとの距離に基づき、キルン10の変位量を推定することとした。これにより、上記(1)と同様の作用効果が得られる。 (6) A method for estimating the amount of axial displacement of a kiln 10 (cylinder 10) that rotates and processes materials passing through it, a girth gear 20 provided on the outer periphery of the kiln 10, a drive unit 40 that rotates the kiln 10 via the girth gear 20, and a number of tires 30 that rotatably support the kiln 10, in which the coordinates of the girth gear rotation center point OG are estimated (step S1), the coordinates of the rotation center point of the kiln 10 are estimated (step S2), and a reference line BL that serves as a reference for estimating the amount of axial displacement in the kiln 10 is set (step S3), and the reference line BL passes through the girth gear rotation center point OG, and the amount of displacement of the kiln 10 is estimated based on the distance between the rotation center point of the kiln 10 and the reference line BL. This provides the same effect as (1) above.
 実施形態2
 [タイヤ位置変更量を抑制する基準線の設定:α+β最小]
 実施形態2について説明する。実施形態1における基準線BLは、ガースギヤ中心点OGを通っていれば特に制限は設けていない。これに対し実施形態2では、基準線BLと各タイヤ中心点OT1、OT2との距離である第1、第2タイヤ距離α、βの値に基づき、基準線BLを決定する点で異なる。
EMBODIMENT 2
[Setting the reference line for suppressing tire position change amount: α + β minimum]
Next, a second embodiment will be described. There is no particular restriction on the reference line BL in the first embodiment as long as it passes through the girth gear center point OG. In contrast, the second embodiment differs in that the reference line BL is determined based on the values of the first and second tire distances α and β, which are the distances between the reference line BL and each tire center point OT1 and OT2.
 すなわち実施形態2では、第1、第2タイヤ距離α、βの和が最小となる位置に、基準線BLを設定する。第1、第2タイヤ30A、30Bはともにキルン10の両端に設けられたタイヤであり、その位置変更はキルン10に与える影響が大きい。そのためα+βの値を最小とすることで第1、第2タイヤ30A、30Dの位置変更量の総和を最小限に抑制し、軸芯ずれの調整がキルン10の摺動状態に与える影響をできるだけ低減するものである。 In other words, in the second embodiment, the reference line BL is set at a position where the sum of the first and second tire distances α and β is minimal. The first and second tires 30A and 30B are both tires provided at both ends of the kiln 10, and changing their positions has a large impact on the kiln 10. Therefore, by minimizing the value of α+β, the sum of the amount of change in position of the first and second tires 30A and 30D is kept to a minimum, and the impact of the adjustment of the axis misalignment on the sliding condition of the kiln 10 is reduced as much as possible.
 複数のタイヤ30のうち、任意の2つを第1タイヤ30Aおよび第2タイヤ30Dとし、第1タイヤ30Aにおけるキルン10の回転中心点である第1タイヤ回転中心点OT1と、第2タイヤ30Dにおけるキルン10の回転中心点である第2タイヤ回転中心点OT2と、第1タイヤ回転中心点OT1における基準線BLとのずれ量である第1タイヤ距離αと、第2タイヤ回転中心点OT2における基準線BLとのずれ量である第2タイヤ距離βとを求め、基準線BLは、α+βの値が最小となる位置に設定されることとした。 Among the multiple tires 30, two of them are selected as the first tire 30A and the second tire 30D. The first tire rotation center point OT1, which is the rotation center point of the kiln 10 at the first tire 30A, and the second tire rotation center point OT2, which is the rotation center point of the kiln 10 at the second tire 30D, are calculated. The first tire distance α, which is the deviation from the reference line BL at the first tire rotation center point OT1, and the second tire distance β, which is the deviation from the reference line BL at the second tire rotation center point OT2, are calculated. The reference line BL is set at the position where the value of α+β is minimum.
 キルン軸芯ずれを調整する際は各タイヤ30の位置を変更することで調整を行うが、タイヤ位置を大幅に変更すると、キルン10の支持点における荷重条件(荷重の作用状態)及び摺動部の接触状態が大きく変化するため、発熱等の不具合が発生するおそれがある。したがってα+βの値が最小となる位置に基準線BLを設定することで、タイヤ位置の変更量を最小限に抑えつつ、キルン10の直線性を極力確保することができる。 When adjusting the kiln axis misalignment, the adjustment is made by changing the position of each tire 30, but if the tire position is changed significantly, the load conditions (load application state) at the support points of the kiln 10 and the contact state of the sliding parts change significantly, which may cause problems such as heat generation. Therefore, by setting the reference line BL at the position where the value of α + β is minimum, it is possible to minimize the amount of change in the tire position while ensuring the linearity of the kiln 10 as much as possible.
 1 軸芯変位量推定システム
 2 筒体回転装置
 3 位置検出手段
 10 キルン(筒体)
 20 ガースギヤ
 30 タイヤ
 30A 第1タイヤ
 30D 第2タイヤ
 40 駆動部
REFERENCE SIGNS LIST 1 Axial displacement estimation system 2 Cylinder rotation device 3 Position detection means 10 Kiln (cylinder)
20 Girth gear 30 Tire 30A First tire 30D Second tire 40 Drive unit

Claims (7)

  1.  回転するとともに内部を通過する材料を処理する筒体と、
     前記筒体の外周に設けられたガースギヤと、
     前記ガースギヤを介して前記筒体を回転させる駆動部と、
     前記筒体を回転可能に支持する複数のタイヤと
     を備える軸芯変位量推定システムであって、
     前記ガースギヤの回転中心点の座標を推定するガースギヤ回転中心点推定ステップと、
     前記筒体の回転中心点の座標を推定する筒体回転中心点推定ステップと、
     前記筒体における軸芯変位量推定の基準となる基準線を設定する基準線設定ステップと
     を備え、
     前記基準線は、前記ガースギヤ回転中心点を通り、
     前記筒体の回転中心点と、前記基準線との距離に基づき、前記筒体の変位量を推定すること
     を特徴とする軸芯変位量推定システム。
    A cylinder that rotates and processes material passing through it;
    a girth gear provided on an outer periphery of the cylindrical body;
    a drive unit that rotates the cylindrical body via the girth gear;
    and a plurality of tires that rotatably support the cylindrical body,
    a girth gear rotation center point estimating step of estimating coordinates of a rotation center point of the girth gear;
    a cylinder rotation center point estimation step of estimating coordinates of a rotation center point of the cylinder;
    A reference line setting step of setting a reference line that serves as a reference for estimating an amount of axial core displacement in the cylindrical body,
    The reference line passes through the girth gear rotation center point,
    and estimating a displacement amount of the cylindrical body based on a distance between a rotation center point of the cylindrical body and the reference line.
  2.  請求項1に記載の軸芯変位量推定システムにおいて、
     前記複数のタイヤは、少なくとも前記筒体の一端に設けられた第1タイヤを有し、
     前記ガースギヤ回転中心点推定ステップでは、前記第1タイヤの位置に基づき、前記ガースギヤの長手方向位置を特定すること
     を特徴とする軸芯変位量推定システム。
    2. The shaft core displacement estimation system according to claim 1,
    The plurality of tires includes at least a first tire provided at one end of the cylindrical body,
    the girth gear rotation center point estimating step specifies a longitudinal position of the girth gear based on a position of the first tire.
  3.  請求項1または請求項2に記載の軸芯変位量推定システムにおいて、
     複前記数のタイヤのうち、任意の2つを第1タイヤおよび第2タイヤとし、
     前記第1タイヤにおける筒体の回転中心点である第1タイヤ回転中心点と、
     前記第2タイヤにおける筒体の回転中心点である第2タイヤ回転中心点と、
     前記第1タイヤ回転中心点と、前記基準線との距離である第1タイヤ距離αと、
     前記第2タイヤ回転中心点と、前記基準線との距離である第2タイヤ距離βと
     を求め、
     基準線は、α+βの値が最小となる位置に設定されること
     を特徴とする軸芯変位量推定システム。
    3. The shaft core displacement estimation system according to claim 1,
    Among the plurality of tires, any two are a first tire and a second tire;
    A first tire rotation center point which is a rotation center point of a cylindrical body of the first tire;
    A second tire rotation center point which is a rotation center point of a cylindrical body of the second tire;
    A first tire distance α which is a distance between the first tire rotation center point and the reference line;
    A second tire distance β is calculated, the second tire distance β being the distance between the second tire rotation center point and the reference line.
    The reference line is set at the position where the value of α+β is the smallest.
  4.  請求項1または請求項2に記載の軸芯変位量推定システムにおいて、
     前記筒体回転中心点推定ステップでは、前記筒体の軸方向任意の箇所において、前記筒体の回転中心点を推定すること
     を特徴とする軸芯変位量推定システム。
    3. The shaft core displacement estimation system according to claim 1,
    The axial core displacement estimation system, wherein the cylinder rotation center point estimating step estimates the rotation center point of the cylinder at an arbitrary point in the axial direction of the cylinder.
  5.  請求項4に記載の軸芯変位量推定システムにおいて、
     非接触式の位置検出手段をさらに備え、
     前記タイヤにおける回転中心点は、このタイヤの軸方向一方側または両側における前記筒体の回転中心点に基づき推定され、
     前記ガースギヤにおける回転中心点は、このガースギヤの軸方向一方側または両側における前記筒体の回転中心点に基づき推定されること
     を特徴とする軸芯変位量推定システム。
    The shaft core displacement estimation system according to claim 4,
    Further comprising a non-contact position detection means,
    a rotation center point of the tire is estimated based on a rotation center point of the cylindrical body on one or both axial sides of the tire;
    A shaft core displacement estimation system, characterized in that the rotation center point of the girth gear is estimated based on the rotation center points of the cylindrical body on one or both axial sides of the girth gear.
  6.  請求項1に記載の軸芯変位量推定システムにおいて、
     前記筒体回転中心点推定ステップでは、前記複数のタイヤにおける前記筒体の回転中心を推定すること
     を特徴とする軸芯変位量推定システム。
    2. The shaft core displacement estimation system according to claim 1,
    a rotation center of the cylinder of each of the tires is estimated in the cylinder rotation center point estimating step.
  7.  回転するとともに内部を通過する材料を処理する筒体と、
     前記筒体の外周に設けられたガースギヤと、
     前記ガースギヤを介して筒体を回転させる駆動部と、
     前記筒体を回転可能に支持する複数のタイヤと
     を備える筒体の軸芯変位量推定方法であって、
     前記ガースギヤ回転中心点の座標を推定し、
     前記筒体の回転中心点の座標を推定し、
     前記筒体における軸芯変位量推定の基準となる基準線を設定し、
     前記基準線は、前記ガースギヤの回転中心点を通り、
     前記筒体の回転中心点と、前記基準線との距離に基づき、前記筒体の変位量を推定すること
     を特徴とする軸芯変位量推定方法。
    A cylinder that rotates and processes material passing through it;
    a girth gear provided on an outer periphery of the cylindrical body;
    A drive unit that rotates the cylindrical body via the girth gear;
    and a plurality of tires rotatably supporting the cylindrical body,
    Estimating the coordinates of the girth gear rotation center point;
    Estimating the coordinates of the center of rotation of the cylinder;
    A reference line is set as a reference for estimating an amount of axial core displacement in the cylindrical body;
    The reference line passes through a rotation center point of the girth gear,
    a displacement amount of the cylindrical body based on a distance between a rotation center point of the cylindrical body and the reference line,
PCT/JP2023/042053 2022-11-25 2023-11-22 Axial center displacement estimation system and axial center displacement estimation method WO2024111645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-187961 2022-11-25
JP2022187961 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111645A1 true WO2024111645A1 (en) 2024-05-30

Family

ID=91196087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042053 WO2024111645A1 (en) 2022-11-25 2023-11-22 Axial center displacement estimation system and axial center displacement estimation method

Country Status (1)

Country Link
WO (1) WO2024111645A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159942A (en) * 1992-11-20 1994-06-07 Ube Ind Ltd Centering method of horizontal rotary drum
JP2013511033A (en) * 2009-11-11 2013-03-28 アンドリツ オサケユキチュア Method of measuring and aligning a cylindrical rotating device
JP2014185788A (en) * 2013-03-22 2014-10-02 Ube Ind Ltd Rotary kiln shaft center correction device and rotary kiln shaft center correction method
US20170292788A1 (en) * 2011-06-27 2017-10-12 Holcim Technology Ltd. Method and Device for Detecting Straightness Deviations and/or Deformations in a Rotary Kiln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159942A (en) * 1992-11-20 1994-06-07 Ube Ind Ltd Centering method of horizontal rotary drum
JP2013511033A (en) * 2009-11-11 2013-03-28 アンドリツ オサケユキチュア Method of measuring and aligning a cylindrical rotating device
US20170292788A1 (en) * 2011-06-27 2017-10-12 Holcim Technology Ltd. Method and Device for Detecting Straightness Deviations and/or Deformations in a Rotary Kiln
JP2014185788A (en) * 2013-03-22 2014-10-02 Ube Ind Ltd Rotary kiln shaft center correction device and rotary kiln shaft center correction method

Similar Documents

Publication Publication Date Title
US10607878B2 (en) Transfer device and correction method
WO2015093351A1 (en) Device for measuring thrust load acting on rotor of sealed kneading apparatus
WO2024111645A1 (en) Axial center displacement estimation system and axial center displacement estimation method
EP2330398B1 (en) Method for inspecting a gear contact pattern of a gearbox in a steam turbine, and corresponding steam turbine system
US20140191480A1 (en) Rim replacing device in tire balance measuring device
CN112240370A (en) Cycloidal transmission with torque detection device
WO2017183750A1 (en) Apparatus and method for measuring tooth profile of cycloid gear
JP2008273719A (en) Device for measuring resistance force of conveyor belt getting over rollers
KR101715222B1 (en) Robot coaxial articulation unit
JP2008039707A (en) Device for measuring deflection of measuring object
BR112017011456B1 (en) Coupling load measuring method and coupling load measuring device
JP2017217753A (en) Steady rest
JP6036654B2 (en) Method and apparatus for measuring the amount of deflection of a rotating shaft
JP2007003416A (en) Tire testing machine
WO2022242160A1 (en) Transfer case assembly clutch axial pressure calibration apparatus and calibration method thereof
JP4260897B2 (en) Cylindrical drum support device
GB2513905A (en) Apparatus for driving a rotor
CN110048555A (en) Method for monitoring magnetic bearing apparatus
JPS63159708A (en) Shaft center detector for cylindrical body
KR20190079834A (en) Shaft direction force measurable screw driving apparatus
JP2019078497A (en) Displacement detection device of workpiece support member of rotary kiln
JPS63246607A (en) Method and apparatus for measuring bending of pipe or rod material
JP2004264191A (en) Method for measuring profile of cylinder
JP2016191639A (en) Interfacial distance measuring device and method
JPS6355402A (en) Measuring instrument for camber amount of rolled stock