WO2024111543A1 - Method and kit for detecting target nucleic acid - Google Patents

Method and kit for detecting target nucleic acid Download PDF

Info

Publication number
WO2024111543A1
WO2024111543A1 PCT/JP2023/041610 JP2023041610W WO2024111543A1 WO 2024111543 A1 WO2024111543 A1 WO 2024111543A1 JP 2023041610 W JP2023041610 W JP 2023041610W WO 2024111543 A1 WO2024111543 A1 WO 2024111543A1
Authority
WO
WIPO (PCT)
Prior art keywords
stranded dna
grna
nucleic acid
double
acid fragment
Prior art date
Application number
PCT/JP2023/041610
Other languages
French (fr)
Japanese (ja)
Inventor
力也 渡邉
肇 篠田
麻美 牧野
麻実 吉村
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2024111543A1 publication Critical patent/WO2024111543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention relates to a method and kit for detecting a target nucleic acid. More specifically, the present invention relates to a method for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, a method for detecting human hepatitis B virus covalently closed circular DNA (HBV cccDNA), a method for screening a therapeutic agent for chronic hepatitis B, a kit for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, and a kit for detecting HBV cccDNA in a sample.
  • HBV cccDNA human hepatitis B virus covalently closed circular DNA
  • Non-Patent Documents 1 to 3 report a method for detecting target nucleic acid fragments with high sensitivity by utilizing such activity of Cas12 and Cas13.
  • the present invention aims to provide a technology that uses the CRISPR-Cas protein to detect fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.
  • a method for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA comprising: a step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment; wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA; the first gRNA is a gRNA that is complementary to a region of the completely double-stranded DNA that corresponds to an incomplete portion of the incomplete double-stranded DNA; and The method includes: step (a) in which a first substrate nucleic acid fragment is labeled with a first gRNA, a CRISPR-C
  • the rcDNA forms a ternary complex, it is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, causing the second fluorescent substance to separate from the second quenching substance and emitting a second fluorescence when irradiated with a second excitation light; in the step (b), the second fluorescent substance is further irradiated with the second excitation light and the second fluorescence
  • a method for screening a therapeutic agent for chronic hepatitis B comprising: incubating cells infected with human hepatitis B virus (HBV) in the presence of a test substance; and detecting HBV cccDNA in the cells, wherein a decrease in the amount of the detected HBV cccDNA compared to that in the absence of the test substance indicates that the test substance is a candidate for a therapeutic agent for chronic hepatitis B, and the detection of the HBV cccDNA is a step (a) of contacting the cell-derived sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the first gRNA is a gRNA complementary to at least a part of an RNA region of HBV rcDNA, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and the first gRNA, the CRISPR-Cas12 protein, and
  • a kit for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA comprising a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA, and the first gRNA is a nuclease that is a nucleic acid fragment of the completely double-stranded DNA.
  • the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance; and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light.
  • kits according to [8] for detecting HBV cccDNA in a sample wherein the complete double-stranded DNA is HBV cccDNA, the incomplete double-stranded DNA is HBV rcDNA, and the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA.
  • kits according to [8] for further detecting HBV rcDNA in a sample further comprising a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, wherein the second gRNA is a gRNA complementary to an RNA region of HBV rcDNA, and the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quencher, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas13 protein, and the second fluorescent substance is separated from the second quencher, and emits a second fluorescence when irradiated with a second excitation light.
  • the present invention provides a technique for detecting fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.
  • FIG. 1 is a schematic diagram illustrating a method for detecting a target nucleic acid.
  • FIG. 2 is a schematic diagram showing an example of the structure of an incomplete double-stranded DNA.
  • FIG. 3 is a schematic diagram illustrating the life cycle of human hepatitis B virus (HBV).
  • Figure 4 is a diagram illustrating the structures of a nucleic acid fragment that mimics HBV cccDNA and a nucleic acid fragment that mimics HBV rcDNA.
  • Figure 5 illustrates the recognition of a nucleic acid fragment mimicking HBV cccDNA by gRNA.
  • Figure 6 is a diagram illustrating the recognition of a nucleic acid fragment mimicking HBV rcDNA by gRNA.
  • FIG. 7 is a set of representative fluorescence micrographs showing the results of Experimental Example 1.
  • FIG. 8 is a graph created based on FIG.
  • FIG. 9 is a schematic diagram illustrating Experimental Example 2.
  • FIG. 10 is a representative fluorescence micrograph showing the results of Experimental Example 2.
  • the present invention provides a method for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, comprising the step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA, and the first gRNA is a gRNA complementary to a region of the completely double-stranded DNA that corresponds to the incomplete portion of the incomplete double-strand
  • the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quencher, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, causing the first fluorescent substance to separate from the first quencher and emitting a first fluorescence upon irradiation with a first excitation light; and a step (b) of irradiating the first fluorescent substance with the first excitation light and detecting the first fluorescence, wherein detection of the first fluorescence indicates the presence of the completely double-stranded DNA in the sample.
  • FIG. 1 is a schematic diagram illustrating the method of this embodiment.
  • the Cas12 protein 110 and the first gRNA 120 are brought into contact with each other, they bind to each other to form a binary complex 130.
  • the first gRNA 120 has a base sequence complementary to the target nucleic acid (completely double-stranded DNA) 140 in a part thereof.
  • the Cas12 protein 110 does not express nuclease activity, so the first substrate nucleic acid fragment 150 is not cleaved.
  • the substrate nucleic acid fragment 150 is a single-stranded DNA fragment labeled with a first fluorescent substance F and a first quenching substance Q. No fluorescence is generated even when the first substrate nucleic acid fragment 150 is irradiated with excitation light.
  • the Cas12 protein 110 cleaves the target site of the target nucleic acid 140.
  • the target site of the target nucleic acid 140 is indicated by an arrowhead.
  • the lower part of FIG. 1 is a schematic diagram showing a ternary complex 100' in which the target site of the target nucleic acid fragment 140 has been cleaved.
  • the ternary complex 100' expresses nuclease activity.
  • the first substrate nucleic acid fragment 150 present around the ternary complex 100' is cleaved.
  • the first fluorescent substance F of the first substrate nucleic acid fragment 150 is separated from the first quenching substance Q.
  • the first fluorescent substance F separated from the first quenching substance Q emits a first fluorescence when irradiated with the first excitation light.
  • the first excitation light is irradiated onto the first fluorescent substance F, and the first fluorescence is detected. If the first fluorescence is detected, it can be determined that the target nucleic acid 140 is present in the sample.
  • the sample, the first gRNA 120, the CRISPR-Cas12 protein 110, and the first substrate nucleic acid fragment 150 may be mixed and contacted in any order.
  • the first gRNA 120 and the CRISPR-Cas12 protein 110 may first be brought into contact with each other to form a binary complex 130, and then the sample may be brought into contact with the sample.
  • the target nucleic acid 140 binds to the binary complex 130, forming a ternary complex 100.
  • the first substrate nucleic acid fragment 150 may be brought into contact with the sample.
  • the target nucleic acid 140 and the first substrate nucleic acid fragment 150 may be contacted simultaneously.
  • the first gRNA 120, the CRISPR-Cas12 protein 110, and the sample may be contacted simultaneously. Even in this case, if the target nucleic acid 140 is present in the sample, a ternary complex 100 is ultimately formed. After that, the first substrate nucleic acid fragment 150 may be contacted.
  • the sample, the first gRNA 120, the CRISPR-Cas12 protein 110, and the first substrate nucleic acid fragment 150 may be contacted simultaneously. Even in this case, if the target nucleic acid 140 is present in the sample, a ternary complex 100 is eventually formed, and when the target site of the target nucleic acid 140 is cleaved in the ternary complex 100, it is converted to a ternary complex 100', which expresses nuclease activity and cleaves the first substrate nucleic acid fragment 150.
  • the fully double-stranded DNA is the target nucleic acid 140 that is cleaved as a target by the binary complex 130 of the first gRNA 120 and the CRISPR-Cas12 protein 110.
  • the first gRNA 120 is selected so that the incomplete double-stranded DNA is not targeted by the binary complex 130 of the first gRNA 120 and the CRISPR-Cas12 protein 110. This makes it possible to detect the complete double-stranded DNA in a sample that contains complete double-stranded DNA and incomplete double-stranded DNA.
  • Incomplete double-stranded DNA is DNA in which part of one of the strands of a fully double-stranded DNA has been replaced with RNA, part of the fully double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one of the strands of a fully double-stranded DNA.
  • Figure 2 is a schematic diagram showing an example of the structure of incomplete double-stranded DNA.
  • the solid line represents DNA
  • the dashed line represents RNA.
  • a part of a completely double-stranded DNA is single-stranded DNA when, for example, it has a base sequence that is not complementary to a part of the completely double-stranded DNA, making that region single-stranded DNA, or when part of one of the strands of the completely double-stranded DNA is missing.
  • the first gRNA is a gRNA that is complementary to a region of the completely double-stranded DNA that corresponds to an incomplete portion of the incomplete double-stranded DNA.
  • the incomplete portion is, as described above, an RNA region when part of one strand of the completely double-stranded DNA is replaced with RNA, a single-stranded region when part of the completely double-stranded DNA becomes single-stranded DNA, a deleted region when part of one strand of the completely double-stranded DNA is deleted, a region containing a nick when a nick is introduced into one strand of the completely double-stranded DNA, etc.
  • the first gRNA is a gRNA that is complementary to a region on the completely double-stranded DNA that corresponds to these incomplete portions.
  • the first gRNA forms a ternary complex with the Cas12 protein and fully double-stranded DNA, and is capable of cleaving the fully double-stranded DNA to express nuclease activity.
  • the first gRNA is unable to form a ternary complex with the Cas12 protein and incompletely double-stranded DNA, or is unable to express nuclease activity even if it does form a ternary complex. Therefore, according to the method of this embodiment, it becomes possible to detect fully double-stranded DNA in a sample containing fully double-stranded DNA and incompletely double-stranded DNA.
  • the Cas12 protein expresses nuclease activity after forming a ternary complex with the gRNA and the target nucleic acid (completely double-stranded DNA).
  • the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when it is cleaved by the nuclease activity of the ternary complex and the first fluorescent substance is separated from the first quenching substance, it emits a first fluorescence when irradiated with a first excitation light.
  • the above-mentioned ternary complex is formed, the first substrate nucleic acid fragment is cleaved, and the first fluorescent substance separates from the first quenching substance. Then, when the first excitation light is irradiated, the first fluorescence is detected.
  • the method of this embodiment may be a method in which the complete double-stranded DNA is human hepatitis B virus covalently closed circular DNA (HBV cccDNA), the incomplete double-stranded DNA is human hepatitis B virus relaxed circular DNA (HBV rcDNA), the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA, and in which the detection of the first fluorescence in step (b) indicates the presence of the HBV cccDNA in the sample.
  • HBV cccDNA human hepatitis B virus covalently closed circular DNA
  • HBV rcDNA human hepatitis B virus relaxed circular DNA
  • the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA
  • FIG 3 is a schematic diagram explaining the life cycle of human hepatitis B virus (HBV).
  • HBV is known to infect humans through body fluids such as blood, and cause acute hepatitis, chronic hepatitis, cirrhosis, and hepatocellular carcinoma.
  • HBV virus particles contain a genome consisting of HBV rcDNA of approximately 3,200 bases.
  • HBV rcDNA is an incomplete double-stranded DNA that is partially RNA.
  • HBV infects human hepatocytes HBV rcDNA is transported to the nucleus, where the host's gene repair pathway forms a completely double-stranded closed circular DNA (HBV cccDNA).
  • HBV cccDNA is structurally extremely stable, and it is known that once an individual is infected with HBV, it remains in the nucleus for a long period of time even after the HBs antigen in the blood has disappeared.
  • RNA required for HBV replication is transcribed from HBV cccDNA.
  • Viral transcription products include pregenomic (pg)RNA, which is the viral RNA genome, in addition to mRNA that codes for the viral surface protein (HBs) and mRNA for the HBx protein.
  • pg pregenomic
  • HBs viral surface protein
  • pgRNA has an RNA higher-order structure called the epsilon structure.
  • the viral reverse transcriptase P protein recognizes this epsilon structure, the viral RNP complex is formed.
  • the RNP complex is incorporated into an icosahedral structure composed of the core protein, forming the nucleocapsid.
  • the P protein converts pgRNA to HBV rcDNA, and when the nucleocapsid assembles with the viral surface protein (HBs), it is released from the hepatocyte as an infectious virus.
  • HBs viral surface protein
  • HBV-infected cells contain HBV rcDNA, as well as double-stranded linear DNA (dslDNA), which is produced intermediately during the production process of HBV rcDNA, and the total amount of these is 100 to 1,000 times that of HBV cccDNA. For this reason, it has previously been difficult to specifically detect only HBV cccDNA.
  • dslDNA double-stranded linear DNA
  • the method of this embodiment makes it possible to specifically detect only HBV cccDNA, even in the presence of HBV crcDNA.
  • the first gRNA is not particularly limited as long as it can detect HBV cccDNA in a sample and does not react with HBV rcDNA.
  • the first gRNA may be complementary to at least a part of the RNA region of HBV rcDNA, for example, a gRNA complementary to a region on HBV cccDNA corresponding to a region including the RNA region of HBV rcDNA and the DNA region adjacent thereto.
  • the first gRNA may be complementary to a region on HBV cccDNA corresponding to the RNA region of HBV rcDNA.
  • gRNAs shown in SEQ ID NOs: 4 and 5 can be suitably used as the first gRNA.
  • the method of this embodiment may further detect HBV rcDNA in the sample.
  • the sample is further contacted with a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, where the second gRNA is a gRNA complementary to the RNA region of HBV rcDNA, and the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance.
  • the second substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, and the second fluorescent substance is separated from the second quenching substance and emits a second fluorescence when irradiated with a second excitation light.
  • the second fluorescent substance is further irradiated with a second excitation light, and the second fluorescence is detected, and the detection of the second fluorescence indicates the presence of the HBV rcDNA in the sample.
  • the method of this embodiment is a method for detecting HBV cccDNA and HBV rcDNA in a sample, and includes a step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, a first substrate nucleic acid fragment, a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, in which the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the HBV cccDNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas12 protein, the first fluorescent substance is separated from the first quenching substance, and emit
  • the Cas13 protein can detect single-stranded RNA or single-stranded DNA as the target nucleic acid.
  • the second gRNA is not particularly limited as long as it can detect HBV rcDNA in a sample and does not react with HBV cccDNA.
  • the second gRNA may be complementary to the RNA region of HBV rcDNA. This allows the second gRNA, Cas13 protein, and HBV rcDNA to form a three-component complex, and the second substrate nucleic acid fragment can be cleaved by the nuclease activity expressed by the Cas13 protein.
  • the gRNA shown in SEQ ID NO: 6 can be suitably used as the second gRNA.
  • the guide RNA is not particularly limited as long as it can be used with the CRISPR-Cas protein used, and may be a complex of CRISPR RNA (crRNA) and transactivating CRISPR RNA (tracrRNA), a single gRNA (sgRNA) that combines tracrRNA and crRNA, or crRNA alone.
  • examples of the CRISPR-Cas12 protein include Cas12a protein derived from Lachnospiraceae bacterium ND2006 (LbCas12a, UniProtKB accession number: A0A182DWE3), Cas12a protein derived from Acidaminococcus sp. (AsCas12a, UniProtKB accession number: U2UMQ6), and Cas12a protein derived from Francisella tularensis subsp. Cas12a protein derived from B.
  • novicida FnCas12a, UniProtKB accession number: A0Q7Q2
  • Cas12b protein derived from Alicyclobacillus acidoterrestris AaCas12b, UniProtKB accession number: T0D7A2
  • orthologs of these proteins and modified forms of these proteins can be used.
  • Modified forms of the CRISPR-Cas12 protein include, for example, mutants with improved efficiency in forming a ternary complex and mutants with increased nuclease activity after forming a ternary complex.
  • CRISPR-Cas13 proteins include the Cas13a protein derived from L. trevisanii JMUB4039 (LtrCas13a, NCBI accession number: BBM56601.1), the Cas13a protein derived from Leptotrichia wadei (LwaCas13a, NCBI accession number: WP_021746774.1), the Cas13a protein derived from Lachnospiraceae bacterium NK4A179 (LbaCas13a, NCBI accession number: WP_022785443.1), and the Cas13a protein derived from Leptotrichia buccalis C-1013-b.
  • Cas13b protein from Bergeyella zoohelcum (BzoCas13b, NCBI accession number: WP_002664492), Cas13b protein from Prevotella intermedia (PinCas13b, NCBI accession number: WP_036860899), Cas13b protein from Prevotella buccae (PbuCas13b, NCBI accession number: WP_004343973), Alistipes sp.
  • Cas13b protein derived from ZOR0009 (AspCas13b, NCBI accession number: WP_047447901), Prevotella sp.
  • the Cas13b protein derived from MA2016 (PsmCas13b, NCBI accession number: WP_036929175), the Cas13b protein derived from Riemerella anatipestifer (RanCas13b, NCBI accession number: WP_004919755), the Cas13b protein derived from Prevotella aurantiaca (PauCas13b, NCBI accession number: WP_025000926), the Cas13b protein derived from Prevotella saccharolytica (PsaCas13b, NCBI accession number: WP_025000926), I accession number: WP_051522484), Cas13b protein derived from Prevotella intermedia (Pin2Cas13b, NCBI accession number: WP_061868553), Cas13b protein derived from Capnocytophaga canimorsus (CcaCas13b, NCBI accession number: WP_013997271),
  • Cas13b protein derived from P5-125 (PspCas13b, NCBI accession number: WP_044065294), Cas13b protein derived from Porphyromonas gingivalis (PigCas13b, NCBI accession number: WP_053444417), Cas13b protein derived from Prevotella intermedia (Pin3Cas13b, NCBI accession number: WP_050955369), Cas13b protein derived from Enterococcus italicus
  • the Csm6 protein derived from Lactobacillus salivarius (EiCsm6, NCBI accession number: WP_007208953.1), the Csm6 protein derived from Lactobacillus salivarius (LsCsm6, NCBI accession number: WP_081509150.1), the Csm6 protein derived from Thermus thermophilus (TtCsm6, NCBI accession number: WP_011229148.1), ortholog
  • the sample is not particularly limited and can be appropriately selected depending on the purpose, and examples include biological samples such as saliva, blood, urine, amniotic fluid, malignant ascites, pharyngeal swabs, and nasal swabs, as well as cultured cell supernatants and cultured cell homogenates.
  • biological samples such as saliva, blood, urine, amniotic fluid, malignant ascites, pharyngeal swabs, and nasal swabs, as well as cultured cell supernatants and cultured cell homogenates.
  • liver biopsy samples from patients with chronic hepatitis B, homogenates of HBV-infected cells, etc. can be suitably used.
  • the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and is cleaved by the nuclease activity of the ternary complex of gRNA, Cas12 protein, and target nucleic acid.
  • the first fluorescent substance separates from the first quenching substance, the first fluorescence is emitted by irradiation with the first excitation light.
  • the Cas12 protein cleaves single-stranded DNA as a substrate by the nuclease activity expressed after the formation of the ternary complex. Therefore, it is preferable to use single-stranded DNA as the first substrate nucleic acid fragment.
  • the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance, and is cleaved by the nuclease activity of the ternary complex of gRNA, Cas13 protein, and target nucleic acid.
  • the second fluorescent substance separates from the second quenching substance, the second fluorescence is emitted by irradiation with second excitation light.
  • the Cas13 protein cleaves single-stranded RNA as a substrate by the nuclease activity expressed after the formation of the ternary complex. Therefore, it is preferable to use single-stranded RNA as the second substrate nucleic acid fragment.
  • the combination of fluorescent substance and quenching substance is one that can quench the fluorescence of the fluorescent substance when they are placed close to each other.
  • fluorescent substance for example, when FAM, HEX, JOE, etc. are used as the fluorescent substance, Iowa Black FQ (IDT) or TAMRA, etc. can be used as the quenching substance.
  • Iowa Black FQ (IDT) or TAMRA, etc. can be used as the quenching substance.
  • Alexa Fluor 647, TAMRA, ROX, etc. are used as the fluorescent substance
  • Iowa Black RQ (IDT) etc. can be used as the quenching substance.
  • step (a) is preferably carried out in a reaction space having a volume of 10 aL to 100 pL.
  • Technologies for carrying out enzyme reactions in a large number of minute reaction spaces are being considered as a method for detecting target substances with high accuracy. These methods are called digital measurement. In digital measurement, the sample is divided into an extremely large number of minute reaction spaces to detect signals.
  • the signal from each reaction space is binarized, and the presence or absence of the target substance is determined, and the number of molecules of the target substance is measured.
  • Digital measurement can significantly improve detection sensitivity and quantitation compared to conventional ELISA and real-time PCR methods.
  • the method of this embodiment is preferably performed by digital measurement. More specifically, the sample, Cas12 protein, first gRNA, first substrate nucleic acid fragment, Cas13 protein, second gRNA, and second substrate nucleic acid fragment are contacted in a minute reaction space.
  • the volume of each reaction space may be, for example, 10 aL to 10 pL, for example, 10 aL to 1 pL, for example, 10 aL to 100 fL, or for example, 10 aL to 10 fL.
  • the reaction space may be, for example, a droplet.
  • the reaction space may be a well formed on a substrate.
  • the present invention provides a method for screening a therapeutic agent for chronic hepatitis B, comprising: incubating a cell infected with human hepatitis B virus (HBV) in the presence of a test substance; and detecting HBV cccDNA in the cell, wherein a decrease in the amount of the detected HBV cccDNA compared to the absence of the test substance indicates that the test substance is a candidate for a therapeutic agent for chronic hepatitis B, and the detection of the HBV cccDNA is a step (a) of contacting the cell-derived sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the first gRNA is a gRNA complementary to at least a part of an RNA region of HBV rcDNA, and the first substrate nucleic acid fragment is labeled with a first fluorescent substance and
  • the first gRNA, Cas12 protein, first substrate nucleic acid fragment, first fluorescent substance, first quenching substance, first excitation light, first fluorescence, etc. are the same as those described above.
  • step (a) it is preferable to carry out step (a) in a reaction space having a volume of 10 aL to 100 pL, and to detect HBV cccDNA by digital measurement under conditions in which 0 or 1 HBV cccDNA is introduced per reaction space.
  • test substance is not particularly limited, and for example, a natural compound library, a synthetic compound library, an existing drug library, etc. can be used.
  • Examples of cells infected with HBV include primary human hepatocytes and cell lines expressing the sodium-taurocholate cotransporting molecule NTCP (Na + Taurocholate Co-transporting Polypeptide).
  • NTCP Na + Taurocholate Co-transporting Polypeptide
  • the second gRNA, Cas13 protein, and second substrate nucleic acid fragment described above may be further used to further detect HBV rcDNA together with HBV cccDNA.
  • the present invention provides a kit for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, the kit comprising: a first gRNA; a CRISPR-Cas12 protein; and a first substrate nucleic acid fragment; wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA; and the first gRNA is a completely double-stranded DNA in which a part of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA.
  • A is a gRNA complementary to a region corresponding to the incomplete part of the incomplete double-stranded DNA
  • the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance
  • the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein
  • the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light.
  • the kit of this embodiment can be used to suitably carry out the above-mentioned method of detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, the method of detecting HBV cccDNA, and the method of screening for a therapeutic drug for chronic hepatitis B.
  • the first gRNA, Cas12 protein, first substrate nucleic acid fragment, first fluorescent substance, first quenching substance, first excitation light, first fluorescence, etc. are the same as those described above.
  • the kit of this embodiment may be for detecting HBV cccDNA in a sample.
  • the fully double-stranded DNA is HBV cccDNA
  • the incompletely double-stranded DNA is HBV rcDNA
  • the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA.
  • the kit of this embodiment may be for detecting HBV rcDNA in a sample in addition to HBV cccDNA.
  • the kit of this embodiment further includes a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, the second gRNA being a gRNA complementary to the RNA region of HBV rcDNA, the second substrate nucleic acid fragment being labeled with a second fluorescent substance and a second quenching substance, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, the second fluorescent substance is separated from the second quenching substance, and emits a second fluorescence when irradiated with a second excitation light.
  • the second gRNA, Cas13 protein, second substrate nucleic acid fragment, second fluorescent substance, second quenching substance, second excitation light, second fluorescence, etc. are the same as those described above.
  • the kit of this embodiment may further include a well array with a volume of 10 aL to 100 pL per well. This makes it possible to detect completely double-stranded DNA or incompletely double-stranded DNA in a reaction space with a volume of 10 aL to 100 pL and perform digital measurement.
  • Cas12 protein As the Cas12 protein, the D156R/G532R/K538R mutant (enLbCas12a) of Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) was used.
  • the expression vector of enLbCas12a was transfected into Escherichia coli Rosetta 2 (DE3) strain to express it.
  • the expression vector was a pET-based vector having a 6xHis tag and a FLAG tag at the N-terminus.
  • the expressed Cas12 protein was purified using Ni-NTA resin. Subsequently, cation exchange chromatography was performed using a HiTrap SP HP column (Cytiva), and further purification was performed by gel filtration chromatography using an Enrich SEC 650 column (Bio-Rad).
  • Cas13 protein As the Cas1 protein, the Cas13a protein (LtrCas13a) derived from L. trevisanii JMUB4039 was used. The expression vector of LtrCas13a was transfected into the E. coli Rosetta 2 (DE3) strain to express it. The expression vector was a pET-based vector having a 6xHis tag and a FLAG tag at the N-terminus. The expressed Cas13 protein was purified using Ni-NTA resin. Subsequently, cation exchange chromatography was performed using a HiTrap SP HP column (Cytiva), and further purification was performed by gel filtration chromatography using an Enrich SEC 650 column (Bio-Rad).
  • Target Nucleic Acid Fragment As target nucleic acid fragments, nucleic acid fragments mimicking regions in which the structures of HBV cccDNA and HBV rcDNA are different were prepared.
  • ccc1 a complete double-stranded nucleic acid fragment that mimics HBV cccDNA.
  • Figure 4 The structure of ccc1 is shown in Figure 4.
  • nucleic acid fragments Fw and Rv_rc_A shown in Table 1 below were annealed to prepare a nucleic acid fragment (hereinafter sometimes referred to as "rc1") that mimics HBV rcDNA.
  • rc1 a nucleic acid fragment that mimics HBV rcDNA.
  • the lowercase letters represent RNA and the uppercase letters represent DNA.
  • a portion of the nucleic acid fragment rc1 is RNA, and furthermore, the 5' end of the RNA portion has a region that is not complementary to the nucleic acid fragment Fw.
  • the structure of rc1 is shown in Figure 4.
  • rc2 nucleic acid fragments in which the 3'-base of rcDNA (+) extends to the RNA flap site.
  • rc2 was prepared by annealing the nucleic acid fragments Fw, Rv_rc_A, and Rv_rc_B shown in Table 1 below.
  • rc3 was prepared by annealing the nucleic acid fragments Fw, Rv_rc_A, and Rv_rc_C shown in Table 1 below.
  • the structures of rc2 and rc3 are shown in Figure 4. In Figure 4, "(" in rc2 and rc3 represents a nick.
  • Each annealed sample was subjected to agarose gel electrophoresis, and the target nucleic acid fragment was excised and then purified using NucleoSpin Gel and PCR Clean-up (U0609C, Takara).
  • gRNA for Cas13 The nucleic acid fragments shown in Table 3 below were used as gRNA (crRNA) for Cas13. In Table 3, the lowercase letters represent RNA.
  • Substrate nucleic acid fragment for Cas12 A single-stranded DNA fragment was used as the substrate nucleic acid fragment for Cas12.
  • the substrate nucleic acid fragment was chemically synthesized by outsourcing (IDT).
  • the 5' end of the substrate nucleic acid fragment was labeled with FAM, a fluorescent substance, and the 3' end was labeled with Iowa Black FQ (IDT), a quenching substance.
  • the base sequence of the chemically synthesized substrate nucleic acid fragment for Cas12 was "5'-(FAM)TTATT(IABkFQ)-3'" (where "IABkFQ” stands for Iowa Black FQ).
  • substrate nucleic acid fragment for Cas13 A single-stranded RNA fragment was used as the substrate nucleic acid fragment for Cas13.
  • the substrate nucleic acid fragment single-stranded RNA fragment was chemically synthesized by outsourcing (IDT).
  • IDTT The 5' end of the substrate nucleic acid fragment was labeled with Alexa Fluor 647, a fluorescent substance, and the 3' end was labeled with Iowa Black RQ (IDT), a quenching substance.
  • the base sequence of the chemically synthesized substrate nucleic acid fragment was "5'-(Ax647)UUUUU(IABkRQ)-3'" (where "Ax647” represents Alexa Fluor 647 and "IABkRQ” represents Iowa Black RQ).
  • HBV cccDNA or HBV rcDNA was performed using a device (hereinafter sometimes referred to as a "CD device") in which a sealing material (keshimir) was applied in a circular pattern with a diameter of 7 mm and intervals of 9 mm onto a well array containing approximately 1 million cylindrical wells, each 3.5 ⁇ m in diameter and 3.5 ⁇ m deep, arranged in an area of 1 cm2.
  • a sealing material keshimir
  • Buffers The compositions of the buffers used are as follows: Buffer A (20 mM HEPES-KOH (pH 7.5), 150 mM KCl, 10 mM MgCl 2 ), Buffer F (20 mM HEPES-KOH (pH 6.8), 60 mM NaCl, 6 mM MgCl 2 ), Buffer N (10 mM Tris-NaCl (pH 9.0), 10 mM NaCl, 15 mM MgCl 2 ).
  • Figure 5 is a diagram explaining the recognition by gRNA of a nucleic acid fragment (ccc1 described above) that mimics HBV cccDNA.
  • the top of Figure 5 is a schematic diagram of HBV cccDNA, and the position surrounded by a dotted line in a square corresponds to the nucleic acid fragment ccc1.
  • the bottom of Figure 5 shows the case where the above-mentioned LbCas12a_crRNA_H5 is used as the gRNA.
  • the lower case letters represent RNA
  • the upper case letters represent DNA.
  • the gRNA, Cas12 protein, and nucleic acid fragment ccc1 form a ternary complex, and it is believed that the Cas12 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas12.
  • Figure 6 is a diagram explaining the recognition by gRNA of nucleic acid fragments (rc1, rc2, and rc3 mentioned above) that mimic HBV rcDNA.
  • the top row of Figure 6 is a schematic diagram of HBV rcDNA, and the positions enclosed by dotted lines in the squares correspond to the nucleic acid fragments rc1, rc2, and rc3.
  • the second row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc1 by gRNA LbCas12a_crRNA_H5.
  • the lowercase letters represent RNA, and the uppercase letters represent DNA.
  • the recognition site of the nucleic acid fragment rc1 by LbCas12a_crRNA_H5 is a DNA-RNA hybrid, and only a portion of the base sequence is identical. Since the Cas12 protein binds to and activates DNA fragments, it is thought that when LbCas12a_crRNA_H5 is used as the gRNA, the Cas12 protein will not be activated by the nucleic acid fragment rc1.
  • the third row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc2 by gRNA LbCas12a_crRNA_H5.
  • the lowercase letters represent RNA, and the uppercase letters represent DNA.
  • "(" represents a nick.
  • the recognition site of the nucleic acid fragment rc2 by LbCas12a_crRNA_H5 is a DNA-RNA hybrid, and also contains a nick. For this reason, when LbCas12a_crRNA_H5 is used as the gRNA, it is thought that the Cas12 protein will not be activated by the nucleic acid fragment rc2.
  • the fourth row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc3 by gRNA LbCas12a_crRNA_H5.
  • the lowercase letters represent RNA, and the uppercase letters represent DNA.
  • "(" represents a nick.
  • the recognition site of the nucleic acid fragment rc2 by LbCas12a_crRNA_H5 contains a nick. For this reason, when LbCas12a_crRNA_H5 is used as the gRNA, it is thought that the Cas12 protein is unlikely to be activated by the nucleic acid fragment rc2.
  • the reagents shown in Table 4 below were mixed and incubated at room temperature for 10 minutes to prepare a gRNA-Cas12 binary complex.
  • the gRNA used was the LbCas12a_crRNA_H5 described above.
  • the gRNA-Cas12 binary complex and the substrate nucleic acid fragment for Cas12 were mixed and diluted with Buffer A + 50 ⁇ M Triton X-100 so that the final concentration of Cas12 protein was 120 nM, the final concentration of gRNA was 30 nM, and the final concentration of the substrate nucleic acid fragment for Cas12 was 12 ⁇ M, to prepare an assay solution.
  • sealant (Fomblin Y-LVAC 25/6) was dripped from the edge of the well at 5 ⁇ L/sec. Then, 15 ⁇ L of the mixture was aspirated from the edge of the well opposite the location where the sealant was dripped and discarded. This was followed by incubation at 45°C for 15 minutes. The well array was then observed under a fluorescence microscope. An excitation wavelength of 488 nm was applied and FAM fluorescence was detected.
  • nucleic acid fragments rc1, rc2, and rc3 were used instead of nucleic acid fragment ccc1.
  • Figure 7 is a representative fluorescence microscope photograph showing the results of the assay.
  • Figure 8 is a graph created based on Figure 7. As a result, it was revealed that when nucleic acid fragment ccc1 was reacted, a fluorescent signal that was approximately 1,000 times higher than when nucleic acid fragments rc1, rc2, and rc3 were reacted was detected. This result shows that the method of this experimental example can distinguish between HBV cccDNA and HBV rcDNA, and specifically detect only HBV cccDNA.
  • the upper part of Figure 9 shows the position on the nucleic acid fragment ccc1 that is recognized by the Cas12 protein when the above-mentioned LbCas12a_crRNA_H5 is used.
  • the lined region is recognized by the Cas12 protein, and it is believed that the gRNA, Cas12 protein, and nucleic acid fragment ccc1 form a ternary complex, and the Cas12 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas12.
  • the lower part of Figure 9 shows the position on the nucleic acid fragment rc1 that is recognized by the Cas13 protein when the above-mentioned LtrCas13a_crRNA_rc is used.
  • the lower case letters represent RNA
  • the upper case letters represent DNA.
  • the Cas13 protein uses a single-stranded RNA fragment or a single-stranded DNA fragment as a substrate, when LtrCas13a_crRNA_rc is used as the gRNA, the lined region in the lower part of Figure 9 is recognized by the Cas13 protein, and the gRNA, Cas13 protein, and nucleic acid fragment rc1 form a ternary complex, and it is believed that the Cas13 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas13.
  • the reagents shown in Table 5 below were mixed and incubated at room temperature for 10 minutes to prepare a gRNA-Cas12 binary complex.
  • the gRNA used was the LbCas12a_crRNA_H5 described above.
  • the reagents shown in Table 6 below were mixed and incubated at 37°C for 10 minutes to prepare a gRNA-Cas13 binary complex.
  • the gRNA used was the LtrCas13a_crRNA_rc described above.
  • the gRNA-Cas12 binary complex, the gRNA-Cas13 binary complex, the substrate nucleic acid fragment for Cas12, and the substrate nucleic acid fragment for Cas13 were mixed and diluted with Buffer N + 50 ⁇ M Triton X-100 so that the final concentration of Cas12 protein was 120 nM, the final concentration of gRNA (LbCas12a_crRNA_H5) was 30 nM, the final concentration of Cas13 protein was 300 nM, the final concentration of gRNA (LtrCas13a_crRNA_rc) was 75 nM, the final concentration of the substrate nucleic acid fragment for Cas12 was 12 ⁇ M, and the final concentration of the substrate nucleic acid fragment for Cas13 was 12 ⁇ M, to prepare an assay solution.
  • Triton X-100 Triton X-100
  • sealant (Fomblin Y-LVAC 25/6) was dripped from the edge of the well at 5 ⁇ L/sec. 15 ⁇ L of the mixture was then aspirated and discarded from the edge of the well opposite the sealant drip position. The well was then incubated at room temperature for 5 minutes and at 45°C for 15 minutes. The well array was then observed under a fluorescence microscope. FAM fluorescence was detected by irradiating with an excitation wavelength of 488 nm, and Alexa Fluor 647 fluorescence was detected by irradiating with an excitation wavelength of 640 nm.
  • Figure 10 is a representative fluorescence microscope photograph showing the results of the assay.
  • the top row shows the results of reacting with Cas12 protein and detecting FAM fluorescence
  • the bottom row shows the results of reacting with Cas13 protein and detecting Alexa Fluor 647 fluorescence.
  • the left column shows the results of reacting with nucleic acid fragment ccc1
  • the right column shows the results of reacting with nucleic acid fragment rc1.
  • nucleic acid fragment ccc1 and the nucleic acid fragment rc1 could be detected independently in two color channels. This result shows that the method of this experimental example can simultaneously detect HBV cccDNA and HBV rcDNA.
  • the present invention provides a technique for detecting fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

This method for detecting a complete double-stranded DNA in a sample comprises: a step (a) for bringing the sample into contact with gRNA, Cas12 protein, and a substrate nucleic acid fragment, wherein the gRNA is complementary to a region corresponding to an incomplete part of the complete double-stranded DNA, the substrate nucleic acid fragment is labeled with a fluorescent substance and a quenching substance, and when the gRNA, the Cas12 protein and the complete double-stranded DNA form a three-member complex, the complex is cleaved by nuclease activity expressed by the Cas12 protein, the fluorescent substance separates from the quenching substance, and fluorescence is generated upon irradiation with excitation light; and a step (b) for irradiating the fluorescent substance with excitation light to detect fluorescence, wherein the detection of fluorescence indicates that a complete double-stranded DNA is present in the sample.

Description

標的核酸の検出方法及びキットMethod and kit for detecting target nucleic acid
 本発明は、標的核酸の検出方法及びキットに関する。より詳細には、本発明は、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法、ヒトB型肝炎ウイルス covalently closed circular DNA(HBV cccDNA)を検出する方法、B型慢性肝炎の治療薬のスクリーニング方法、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出するためのキット、及び、試料中のHBV cccDNAを検出するためのキットに関する。本願は、2022年11月25日に、日本に出願された特願2022-188381号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method and kit for detecting a target nucleic acid. More specifically, the present invention relates to a method for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, a method for detecting human hepatitis B virus covalently closed circular DNA (HBV cccDNA), a method for screening a therapeutic agent for chronic hepatitis B, a kit for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, and a kit for detecting HBV cccDNA in a sample. This application claims priority based on Japanese Patent Application No. 2022-188381 filed in Japan on November 25, 2022, the contents of which are incorporated herein by reference.
 近年ゲノム編集に応用されているCRISPR-Casタンパク質には複数のファミリーが存在する。CRISPR-Casタンパク質ファミリーのうち、Cas12、Cas13は、gRNA及び標的核酸と3者複合体を形成し、標的核酸を切断すると、周囲のDNA又はRNAを切断する活性を発現することが明らかにされている。例えば、非特許文献1~3には、Cas12、Cas13のこのような活性を利用して、標的核酸断片を高感度に検出する方法が報告されている。 There are several families of CRISPR-Cas proteins that have been applied to genome editing in recent years. Of the CRISPR-Cas protein family, Cas12 and Cas13 form a ternary complex with gRNA and target nucleic acid, and it has been revealed that when the target nucleic acid is cleaved, they express an activity to cleave the surrounding DNA or RNA. For example, Non-Patent Documents 1 to 3 report a method for detecting target nucleic acid fragments with high sensitivity by utilizing such activity of Cas12 and Cas13.
 本発明は、CRISPR-Casタンパク質を利用して、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する技術を提供することを目的とする。 The present invention aims to provide a technology that uses the CRISPR-Cas protein to detect fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.
 本発明は以下の態様を含む。
[1]完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法であって、前記試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、を含み、前記第1の蛍光が検出されたことが、前記試料中に前記完全二本鎖DNAが存在することを示す、方法。
[2]前記完全二本鎖DNAがヒトB型肝炎ウイルス covalently closed circular DNA(HBV cccDNA)であり、前記不完全二本鎖DNAがヒトB型肝炎ウイルス relaxed circular DNA(HBV rcDNA)であり、前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、前記工程(b)において、前記第1の蛍光が検出されたことが、前記試料中に前記HBV cccDNAが存在することを示す、[1]に記載の方法。
[3]前記試料中のHBV rcDNAを更に検出する、[2]に記載の方法であって、前記工程(a)において、前記試料を、第2のgRNA、CRISPR-Cas13タンパク質、及び、第2の基質核酸断片と更に接触させ、ここで、前記第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、前記第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、前記第2のgRNA、前記CRISPR-Cas13タンパク質及び前記HBV rcDNAが3者複合体を形成した場合に、前記CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、前記第2の蛍光物質が前記第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものであり、前記工程(b)において、更に、前記第2の蛍光物質に前記第2の励起光を照射し、前記第2の蛍光を検出し、前記第2の蛍光が検出されたことが、前記試料中に前記HBV rcDNAが存在することを示す、方法。
[4]前記工程(a)を10aL~100pLの容積を有する反応空間内で行う、[1]~[3]のいずれかに記載の方法。
[5]前記完全二本鎖DNAが、前記反応空間1つあたりに0個又は1個導入される、[4]に記載の方法。
[6]B型慢性肝炎の治療薬のスクリーニング方法であって、被験物質の存在下で、ヒトB型肝炎ウイルス(HBV)が感染した細胞をインキュベートする工程と、前記細胞中のHBV cccDNAを検出する工程と、を含み、前記HBV cccDNAの検出量が前記被験物質の非存在下と比較して減少することが、前記被験物質がB型慢性肝炎の治療薬の候補であることを示し、前記HBV cccDNAの検出が、前記細胞由来試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記HBV cccDNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、を含み、前記第1の蛍光が検出されたことが、前記試料中に前記HBV cccDNAが存在することを示す、方法により行われる、スクリーニング方法。
[7]完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出するためのキットであって、第1のgRNAと、CRISPR-Cas12タンパク質と、第1の基質核酸断片と、を含み、前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、キット。
[8]試料中のHBV cccDNAを検出するための、[7]に記載のキットであって、前記完全二本鎖DNAがHBV cccDNAであり、前記不完全二本鎖DNAがHBV rcDNAであり、前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAである、キット。
[9]試料中のHBV rcDNAを更に検出するための、[8]に記載のキットであって、第2のgRNAと、CRISPR-Cas13タンパク質と、第2の基質核酸断片と、を更に含み、前記第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、前記第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、前記第2のgRNA、前記CRISPR-Cas13タンパク質及び前記HBV rcDNAが3者複合体を形成した場合に、前記CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、前記第2の蛍光物質が前記第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものである、キット。
[10]1ウェルあたりの容積が10aL~100pLであるウェルアレイを更に含む、[7]~[9]のいずれかに記載のキット。
The present invention includes the following aspects.
[1] A method for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, comprising: a step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment; wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA; the first gRNA is a gRNA that is complementary to a region of the completely double-stranded DNA that corresponds to an incomplete portion of the incomplete double-stranded DNA; and The method includes: step (a) in which a first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quencher, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, causing the first fluorescent substance to separate from the first quencher and emitting a first fluorescence upon irradiation with a first excitation light; and step (b) in which the first fluorescent substance is irradiated with the first excitation light and the first fluorescence is detected, and the detection of the first fluorescence indicates the presence of the completely double-stranded DNA in the sample.
[2] The method according to [1], wherein the complete double-stranded DNA is human hepatitis B virus covalently closed circular DNA (HBV cccDNA), the incomplete double-stranded DNA is human hepatitis B virus relaxed circular DNA (HBV rcDNA), the first gRNA is a gRNA complementary to at least a part of an RNA region of HBV rcDNA, and detection of the first fluorescence in the step (b) indicates the presence of the HBV cccDNA in the sample.
[3] The method according to [2], further comprising detecting HBV rcDNA in the sample, wherein in the step (a), the sample is further contacted with a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, wherein the second gRNA is a gRNA complementary to an RNA region of HBV rcDNA, the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quencher, and the second gRNA, the CRISPR-Cas13 protein, and the HBV When the rcDNA forms a ternary complex, it is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, causing the second fluorescent substance to separate from the second quenching substance and emitting a second fluorescence when irradiated with a second excitation light; in the step (b), the second fluorescent substance is further irradiated with the second excitation light and the second fluorescence is detected, and the detection of the second fluorescence indicates the presence of the HBV rcDNA in the sample.
[4] The method according to any one of [1] to [3], wherein the step (a) is carried out in a reaction space having a volume of 10 aL to 100 pL.
[5] The method according to [4], wherein 0 or 1 completely double-stranded DNA is introduced per reaction space.
[6] A method for screening a therapeutic agent for chronic hepatitis B, comprising: incubating cells infected with human hepatitis B virus (HBV) in the presence of a test substance; and detecting HBV cccDNA in the cells, wherein a decrease in the amount of the detected HBV cccDNA compared to that in the absence of the test substance indicates that the test substance is a candidate for a therapeutic agent for chronic hepatitis B, and the detection of the HBV cccDNA is a step (a) of contacting the cell-derived sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the first gRNA is a gRNA complementary to at least a part of an RNA region of HBV rcDNA, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and the first gRNA, the CRISPR-Cas12 protein, and the HBV The screening method includes: step (a) in which, when the cccDNA forms a ternary complex, the cccDNA is cleaved by a nuclease activity expressed by the CRISPR-Cas12 protein, causing the first fluorescent substance to separate from the first quenching substance and emitting a first fluorescence when irradiated with a first excitation light; and step (b) in which the first fluorescent substance is irradiated with the first excitation light and the first fluorescence is detected, wherein the detection of the first fluorescence indicates the presence of the HBV cccDNA in the sample.
[7] A kit for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, comprising a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA, and the first gRNA is a nuclease that is a nucleic acid fragment of the completely double-stranded DNA. the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance; and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light.
[8] The kit according to [7] for detecting HBV cccDNA in a sample, wherein the complete double-stranded DNA is HBV cccDNA, the incomplete double-stranded DNA is HBV rcDNA, and the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA.
[9] The kit according to [8] for further detecting HBV rcDNA in a sample, further comprising a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, wherein the second gRNA is a gRNA complementary to an RNA region of HBV rcDNA, and the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quencher, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas13 protein, and the second fluorescent substance is separated from the second quencher, and emits a second fluorescence when irradiated with a second excitation light.
[10] The kit according to any one of [7] to [9], further comprising a well array having a volume per well of 10 aL to 100 pL.
 本発明によれば、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する技術を提供することができる。 The present invention provides a technique for detecting fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.
図1は、標的核酸の検出方法を説明する模式図である。FIG. 1 is a schematic diagram illustrating a method for detecting a target nucleic acid. 図2は、不完全二本鎖DNAの構造の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the structure of an incomplete double-stranded DNA. 図3は、ヒトB型肝炎ウイルス(HBV)の生活環を説明する模式図である。FIG. 3 is a schematic diagram illustrating the life cycle of human hepatitis B virus (HBV). 図4は、HBV cccDNAを模倣した核酸断片及びHBV rcDNAを模倣した核酸断片の構造を説明する図である。Figure 4 is a diagram illustrating the structures of a nucleic acid fragment that mimics HBV cccDNA and a nucleic acid fragment that mimics HBV rcDNA. 図5は、HBV cccDNAを模倣した核酸断片のgRNAによる認識を説明する図である。Figure 5 illustrates the recognition of a nucleic acid fragment mimicking HBV cccDNA by gRNA. 図6は、HBV rcDNAを模倣した核酸断片のgRNAによる認識を説明する図である。Figure 6 is a diagram illustrating the recognition of a nucleic acid fragment mimicking HBV rcDNA by gRNA. 図7は、実験例1の結果を示す代表的な蛍光顕微鏡写真である。FIG. 7 is a set of representative fluorescence micrographs showing the results of Experimental Example 1. 図8は、図7に基づいて作成したグラフである。FIG. 8 is a graph created based on FIG. 図9は、実験例2を説明する模式図である。FIG. 9 is a schematic diagram illustrating Experimental Example 2. 図10は、実験例2の結果を示す代表的な蛍光顕微鏡写真である。FIG. 10 is a representative fluorescence micrograph showing the results of Experimental Example 2.
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。なお、各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。 Below, an embodiment of the present invention will be described in detail, with reference to the drawings where necessary. Note that in the drawings, identical or equivalent parts are given the same or corresponding reference numerals, and duplicate explanations will be omitted. Note that the dimensional ratios in each drawing may be exaggerated for the purpose of explanation, and do not necessarily correspond to the actual dimensional ratios.
[完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法]
 一実施形態において、本発明は、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法であって、前記試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、を含み、前記第1の蛍光が検出されたことが、前記試料中に前記完全二本鎖DNAが存在することを示す、方法を提供する。
[Method for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA]
In one embodiment, the present invention provides a method for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, comprising the step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA, and the first gRNA is a gRNA complementary to a region of the completely double-stranded DNA that corresponds to the incomplete portion of the incomplete double-stranded DNA. The first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quencher, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, causing the first fluorescent substance to separate from the first quencher and emitting a first fluorescence upon irradiation with a first excitation light; and a step (b) of irradiating the first fluorescent substance with the first excitation light and detecting the first fluorescence, wherein detection of the first fluorescence indicates the presence of the completely double-stranded DNA in the sample.
 図1は、本実施形態の方法を説明する模式図である。まず、図1上段に示すように、Cas12タンパク質110と、第1のgRNA120とを接触させると、これらは結合し、2者複合体130を形成する。第1のgRNA120は、一部に標的核酸(完全二本鎖DNA)140と相補的な塩基配列を有している。 FIG. 1 is a schematic diagram illustrating the method of this embodiment. First, as shown in the upper part of FIG. 1, when the Cas12 protein 110 and the first gRNA 120 are brought into contact with each other, they bind to each other to form a binary complex 130. The first gRNA 120 has a base sequence complementary to the target nucleic acid (completely double-stranded DNA) 140 in a part thereof.
 続いて、2者複合体130に試料中の標的核酸140が接触すると、Cas12タンパク質110、第1のgRNA120、標的核酸140が3者複合体100を形成する。この段階では、Cas12タンパク質110は、ヌクレアーゼ活性を発現していないため、第1の基質核酸断片150は切断されない。図1の例では、基質核酸断片150は、第1の蛍光物質F及び第1の消光物質Qで標識された1本鎖DNA断片である。第1の基質核酸断片150に励起光を照射しても蛍光は発生しない。 Subsequently, when the target nucleic acid 140 in the sample comes into contact with the binary complex 130, the Cas12 protein 110, the first gRNA 120, and the target nucleic acid 140 form a ternary complex 100. At this stage, the Cas12 protein 110 does not express nuclease activity, so the first substrate nucleic acid fragment 150 is not cleaved. In the example of FIG. 1, the substrate nucleic acid fragment 150 is a single-stranded DNA fragment labeled with a first fluorescent substance F and a first quenching substance Q. No fluorescence is generated even when the first substrate nucleic acid fragment 150 is irradiated with excitation light.
 3者複合体100が形成されると、Cas12タンパク質110が、標的核酸140の標的部位を切断する。図1上段では、標的核酸140の標的部位を矢頭で示す。図1下段は、標的核酸断片140の標的部位が切断された3者複合体100’を示す模式図である。図1下段に示すように、3者複合体100’はヌクレアーゼ活性を発現する。そして、3者複合体100’の周囲に存在する第1の基質核酸断片150を切断する。この結果、第1の基質核酸断片150の第1の蛍光物質Fが第1の消光物質Qから離れる。第1の消光物質Qから離れた第1の蛍光物質Fは、第1の励起光の照射により第1の蛍光を発する。 When the ternary complex 100 is formed, the Cas12 protein 110 cleaves the target site of the target nucleic acid 140. In the upper part of FIG. 1, the target site of the target nucleic acid 140 is indicated by an arrowhead. The lower part of FIG. 1 is a schematic diagram showing a ternary complex 100' in which the target site of the target nucleic acid fragment 140 has been cleaved. As shown in the lower part of FIG. 1, the ternary complex 100' expresses nuclease activity. Then, the first substrate nucleic acid fragment 150 present around the ternary complex 100' is cleaved. As a result, the first fluorescent substance F of the first substrate nucleic acid fragment 150 is separated from the first quenching substance Q. The first fluorescent substance F separated from the first quenching substance Q emits a first fluorescence when irradiated with the first excitation light.
 続いて、第1の蛍光物質Fに第1の励起光を照射し、第1の蛍光を検出する。第1の蛍光が検出された場合、試料中に標的核酸140が存在していたと判断することができる。 Then, the first excitation light is irradiated onto the first fluorescent substance F, and the first fluorescence is detected. If the first fluorescence is detected, it can be determined that the target nucleic acid 140 is present in the sample.
 本実施形態の方法において、試料、第1のgRNA120、CRISPR-Cas12タンパク質110、第1の基質核酸断片150は、どのような順序で混合して接触させてもよい。 In the method of this embodiment, the sample, the first gRNA 120, the CRISPR-Cas12 protein 110, and the first substrate nucleic acid fragment 150 may be mixed and contacted in any order.
 例えば、まず、第1のgRNA120及びCRISPR-Cas12タンパク質110を接触させて、予め2者複合体130を形成させた後に、試料を接触させてもよい。この場合、試料中に標的核酸140が存在する場合には、2者複合体130に標的核酸140が結合し、3者複合体100が形成される。その後、第1の基質核酸断片150を接触させてもよい。 For example, the first gRNA 120 and the CRISPR-Cas12 protein 110 may first be brought into contact with each other to form a binary complex 130, and then the sample may be brought into contact with the sample. In this case, if a target nucleic acid 140 is present in the sample, the target nucleic acid 140 binds to the binary complex 130, forming a ternary complex 100. After that, the first substrate nucleic acid fragment 150 may be brought into contact with the sample.
 あるいは、2者複合体130を形成した後に、標的核酸140及び第1の基質核酸断片150を同時に接触させてもよい。 Alternatively, after the binary complex 130 is formed, the target nucleic acid 140 and the first substrate nucleic acid fragment 150 may be contacted simultaneously.
 あるいは、第1のgRNA120、CRISPR-Cas12タンパク質110、試料を同時に接触させてもよい。この場合においても、試料中に標的核酸140が存在する場合、最終的には3者複合体100が形成される。その後、第1の基質核酸断片150を接触させてもよい。 Alternatively, the first gRNA 120, the CRISPR-Cas12 protein 110, and the sample may be contacted simultaneously. Even in this case, if the target nucleic acid 140 is present in the sample, a ternary complex 100 is ultimately formed. After that, the first substrate nucleic acid fragment 150 may be contacted.
 あるいは、試料、第1のgRNA120、CRISPR-Cas12タンパク質110、第1の基質核酸断片150を同時に接触させてもよい。この場合においても、試料中に標的核酸140が存在する場合、最終的には3者複合体100が形成され、3者複合体100において、標的核酸140の標的部位が切断されると、3者複合体100’に変換され、ヌクレアーゼ活性を発現し、第1の基質核酸断片150が切断される。 Alternatively, the sample, the first gRNA 120, the CRISPR-Cas12 protein 110, and the first substrate nucleic acid fragment 150 may be contacted simultaneously. Even in this case, if the target nucleic acid 140 is present in the sample, a ternary complex 100 is eventually formed, and when the target site of the target nucleic acid 140 is cleaved in the ternary complex 100, it is converted to a ternary complex 100', which expresses nuclease activity and cleaves the first substrate nucleic acid fragment 150.
 本実施形態の方法において、完全二本鎖DNAとは、第1のgRNA120及びCRISPR-Cas12タンパク質110との2者複合体130が標的として切断する標的核酸140である。 In the method of this embodiment, the fully double-stranded DNA is the target nucleic acid 140 that is cleaved as a target by the binary complex 130 of the first gRNA 120 and the CRISPR-Cas12 protein 110.
 本実施形態の方法では、不完全二本鎖DNAが、第1のgRNA120及びCRISPR-Cas12タンパク質110との2者複合体130の標的とならないように第1のgRNA120を選択する。これにより、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出することが可能になる。 In the method of this embodiment, the first gRNA 120 is selected so that the incomplete double-stranded DNA is not targeted by the binary complex 130 of the first gRNA 120 and the CRISPR-Cas12 protein 110. This makes it possible to detect the complete double-stranded DNA in a sample that contains complete double-stranded DNA and incomplete double-stranded DNA.
 不完全二本鎖DNAは、完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、完全二本鎖DNAの一部が一本鎖DNAになったものであるか、完全二本鎖DNAの一方の鎖にニックが導入されたものである。 Incomplete double-stranded DNA is DNA in which part of one of the strands of a fully double-stranded DNA has been replaced with RNA, part of the fully double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one of the strands of a fully double-stranded DNA.
 図2は、不完全二本鎖DNAの構造の例を示す模式図である。図2中、実線部分はDNAを表し、破線部分はRNAを表す。完全二本鎖DNAの一部が一本鎖DNAになっているとは、例えば、完全二本鎖DNAの一部に相補的でない塩基配列を有しており、その領域が一本鎖DNAとなっている場合、完全二本鎖DNAの一方の鎖の一部が欠失している場合等が挙げられる。 Figure 2 is a schematic diagram showing an example of the structure of incomplete double-stranded DNA. In Figure 2, the solid line represents DNA, and the dashed line represents RNA. A part of a completely double-stranded DNA is single-stranded DNA when, for example, it has a base sequence that is not complementary to a part of the completely double-stranded DNA, making that region single-stranded DNA, or when part of one of the strands of the completely double-stranded DNA is missing.
 本実施形態の方法において、第1のgRNAは、完全二本鎖DNAのうち、不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAである。不完全部分とは、上述した、完全二本鎖DNAの一方の鎖の一部がRNAに置換された場合のRNA領域、完全二本鎖DNAの一部が一本鎖DNAになった場合の一本鎖領域、完全二本鎖DNAの一方の鎖の一部が欠失した場合の欠失領域、完全二本鎖DNAの一方の鎖にニックが導入された場合のニックを含む領域等である。第1のgRNAは、これらの不完全部分に対応する、完全二本鎖DNA上の領域に相補的なgRNAである。 In the method of this embodiment, the first gRNA is a gRNA that is complementary to a region of the completely double-stranded DNA that corresponds to an incomplete portion of the incomplete double-stranded DNA. The incomplete portion is, as described above, an RNA region when part of one strand of the completely double-stranded DNA is replaced with RNA, a single-stranded region when part of the completely double-stranded DNA becomes single-stranded DNA, a deleted region when part of one strand of the completely double-stranded DNA is deleted, a region containing a nick when a nick is introduced into one strand of the completely double-stranded DNA, etc. The first gRNA is a gRNA that is complementary to a region on the completely double-stranded DNA that corresponds to these incomplete portions.
 第1のgRNAは、Cas12タンパク質及び完全二本鎖DNAと3者複合体を形成し、完全二本鎖DNAを切断してヌクレアーゼ活性を発現することができる。これに対し、第1のgRNAは、Cas12タンパク質及び不完全二本鎖DNAとは、3者複合体を形成することができないか、3者複合体を形成したとしても、ヌクレアーゼ活性を発現することができない。このため、本実施形態の方法によれば、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出することが可能になる。 The first gRNA forms a ternary complex with the Cas12 protein and fully double-stranded DNA, and is capable of cleaving the fully double-stranded DNA to express nuclease activity. In contrast, the first gRNA is unable to form a ternary complex with the Cas12 protein and incompletely double-stranded DNA, or is unable to express nuclease activity even if it does form a ternary complex. Therefore, according to the method of this embodiment, it becomes possible to detect fully double-stranded DNA in a sample containing fully double-stranded DNA and incompletely double-stranded DNA.
 Cas12タンパク質は、gRNA及び標的核酸(完全二本鎖DNA)と3者複合体を形成した後にヌクレアーゼ活性を発現する。第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、上記3者複合体のヌクレアーゼ活性により切断されて第1の蛍光物質が第1の消光物質から離れると、第1の励起光の照射により第1の蛍光を発するものである。 The Cas12 protein expresses nuclease activity after forming a ternary complex with the gRNA and the target nucleic acid (completely double-stranded DNA). The first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when it is cleaved by the nuclease activity of the ternary complex and the first fluorescent substance is separated from the first quenching substance, it emits a first fluorescence when irradiated with a first excitation light.
 この結果、試料中に標的核酸が存在した場合に上記3者複合体が形成されて第1の基質核酸断片が切断され、第1の蛍光物質が第1の消光物質から離れる。そして、第1の励起光を照射すると第1の蛍光が検出される。 As a result, when a target nucleic acid is present in a sample, the above-mentioned ternary complex is formed, the first substrate nucleic acid fragment is cleaved, and the first fluorescent substance separates from the first quenching substance. Then, when the first excitation light is irradiated, the first fluorescence is detected.
 本実施形態の方法は、完全二本鎖DNAがヒトB型肝炎ウイルス covalently closed circular DNA(HBV cccDNA)であり、不完全二本鎖DNAがヒトB型肝炎ウイルス relaxed circular DNA(HBV rcDNA)であり、第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、工程(b)において、第1の蛍光が検出されたことが、試料中に前記HBV cccDNAが存在することを示す方法であってもよい。 The method of this embodiment may be a method in which the complete double-stranded DNA is human hepatitis B virus covalently closed circular DNA (HBV cccDNA), the incomplete double-stranded DNA is human hepatitis B virus relaxed circular DNA (HBV rcDNA), the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA, and in which the detection of the first fluorescence in step (b) indicates the presence of the HBV cccDNA in the sample.
 図3は、ヒトB型肝炎ウイルス(HBV)の生活環を説明する模式図である。HBVは、血液等の体液を介してヒトからヒトに感染し、急性肝炎、慢性肝炎、肝硬変、肝細胞癌を起こすことが知られている。 Figure 3 is a schematic diagram explaining the life cycle of human hepatitis B virus (HBV). HBV is known to infect humans through body fluids such as blood, and cause acute hepatitis, chronic hepatitis, cirrhosis, and hepatocellular carcinoma.
 HBVのウイルス粒子内には、約3,200塩基のHBV rcDNAからなるゲノムが存在する。HBV rcDNAは、不完全二本鎖DNAであり、一部がRNAである。HBVがヒトの肝細胞に感染すると、HBV rcDNAは核に運ばれ、宿主の遺伝子修復経路により、完全二本鎖の閉環状DNA(HBV cccDNA)が形成される。 HBV virus particles contain a genome consisting of HBV rcDNA of approximately 3,200 bases. HBV rcDNA is an incomplete double-stranded DNA that is partially RNA. When HBV infects human hepatocytes, HBV rcDNA is transported to the nucleus, where the host's gene repair pathway forms a completely double-stranded closed circular DNA (HBV cccDNA).
 HBVが排除不能である最大の原因はHBV cccDNAの存在である。HBV cccDNAは構造的に極めて安定であり、一旦HBVに感染すると、血中のHBs抗原が消失しても長期に核内に残存することが知られている。 The main reason why HBV cannot be eliminated is the presence of HBV cccDNA. HBV cccDNA is structurally extremely stable, and it is known that once an individual is infected with HBV, it remains in the nucleus for a long period of time even after the HBs antigen in the blood has disappeared.
 HBV cccDNAから、HBVの複製に必要なRNAが転写される。ウイルス転写産物には、ウイルス表面タンパク質(HBs)をコードするmRNAやHBxタンパク質のmRNA以外に、ウイルスRNAゲノムであるpregenomic(pg)RNAが含まれる。 The RNA required for HBV replication is transcribed from HBV cccDNA. Viral transcription products include pregenomic (pg)RNA, which is the viral RNA genome, in addition to mRNA that codes for the viral surface protein (HBs) and mRNA for the HBx protein.
 pgRNAはイプシロン構造と呼ばれるRNA高次構造を有する。ウイルスの逆転写酵素であるPタンパク質がこのイプシロン構造を認識すると、ウイルスRNP複合体が形成される。RNP複合体は、コアタンパク質で構成される二十面体構造内に取り込まれ、ヌクレオキャプシドが形成される。 pgRNA has an RNA higher-order structure called the epsilon structure. When the viral reverse transcriptase P protein recognizes this epsilon structure, the viral RNP complex is formed. The RNP complex is incorporated into an icosahedral structure composed of the core protein, forming the nucleocapsid.
 ヌクレオキャプシド内ではPタンパク質がpgRNAをHBV rcDNAに変換し、さらにヌクレオキャプシドがウイルス表面タンパク質(HBs)とともに集合すると感染性ウイルスとして肝細胞より放出される。 Inside the nucleocapsid, the P protein converts pgRNA to HBV rcDNA, and when the nucleocapsid assembles with the viral surface protein (HBs), it is released from the hepatocyte as an infectious virus.
 HBV cccDNAが核内に留まることが慢性肝炎の原因である。HBVの治療薬の開発のために、HBV cccDNAのみを特異的に検出する技術が求められている。HBV感染細胞中には、HBV rcDNA、HBV rcDNAの産生過程で中間的に産生される直鎖状二本鎖DNA(double-stranded linear DNA: dslDNA)等が存在しており、これらの合計量は、HBV cccDNAの100倍から1,000倍に達する。このため、従来、HBV cccDNAのみを特異的に検出することは困難であった。 The retention of HBV cccDNA in the nucleus is the cause of chronic hepatitis. To develop a treatment for HBV, a technology that can specifically detect only HBV cccDNA is required. HBV-infected cells contain HBV rcDNA, as well as double-stranded linear DNA (dslDNA), which is produced intermediately during the production process of HBV rcDNA, and the total amount of these is 100 to 1,000 times that of HBV cccDNA. For this reason, it has previously been difficult to specifically detect only HBV cccDNA.
 これに対し、実施例において後述するように、本実施形態の方法によれば、HBV crcDNAの存在下においても、HBV cccDNAのみを特異的に検出することができる。 In contrast, as described later in the Examples, the method of this embodiment makes it possible to specifically detect only HBV cccDNA, even in the presence of HBV crcDNA.
 第1のgRNAは、試料中のHBV cccDNAを検出することができ、HBV rcDNAには反応しないものであれば特に制限されない。第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的であればよく、例えば、HBV rcDNAのRNA領域及びこれに隣接するDNA領域を含む領域に対応する、HBV cccDNA上の領域に相補的なgRNAであってもよい。あるいは、HBV rcDNAのRNA領域に対応する、HBV cccDNA上の領域に相補的なgRNAであってもよい。実施例において後述するように、例えば、配列番号4、5に示すgRNA等を第1のgRNAとして好適に用いることができる。 The first gRNA is not particularly limited as long as it can detect HBV cccDNA in a sample and does not react with HBV rcDNA. The first gRNA may be complementary to at least a part of the RNA region of HBV rcDNA, for example, a gRNA complementary to a region on HBV cccDNA corresponding to a region including the RNA region of HBV rcDNA and the DNA region adjacent thereto. Alternatively, the first gRNA may be complementary to a region on HBV cccDNA corresponding to the RNA region of HBV rcDNA. As described later in the Examples, for example, gRNAs shown in SEQ ID NOs: 4 and 5 can be suitably used as the first gRNA.
 本実施形態の方法は、試料中のHBV rcDNAを更に検出するものであってもよい。この場合、工程(a)において、試料を、第2のgRNA、CRISPR-Cas13タンパク質、及び、第2の基質核酸断片と更に接触させ、ここで、第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、第2のgRNA、CRISPR-Cas13タンパク質及び前記HBV rcDNAが3者複合体を形成した場合に、CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、第2の蛍光物質が第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものであり、前記工程(b)において、更に、第2の蛍光物質に第2の励起光を照射し、第2の蛍光を検出し、第2の蛍光が検出されたことが、前記試料中に前記HBV rcDNAが存在することを示す方法である。 The method of this embodiment may further detect HBV rcDNA in the sample. In this case, in step (a), the sample is further contacted with a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, where the second gRNA is a gRNA complementary to the RNA region of HBV rcDNA, and the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance. When the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, and the second fluorescent substance is separated from the second quenching substance and emits a second fluorescence when irradiated with a second excitation light. In step (b), the second fluorescent substance is further irradiated with a second excitation light, and the second fluorescence is detected, and the detection of the second fluorescence indicates the presence of the HBV rcDNA in the sample.
 いいかえると、本実施形態の方法は、試料中のHBV cccDNA及びHBV rcDNAを検出する方法であって、試料を、第1のgRNA、CRISPR-Cas12タンパク質、第1の基質核酸断片、第2のgRNA、CRISPR-Cas13タンパク質、第2の基質核酸断片と接触させる工程(a)であって、第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、第1のgRNA、CRISPR-Cas12タンパク質及びHBV cccDNAが3者複合体を形成した場合に、CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、第1の蛍光物質が第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものであり、第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、第2のgRNA、CRISPR-Cas13タンパク質及びHBV rcDNAが3者複合体を形成した場合に、CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、第2の蛍光物質が第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものである、工程(a)と、第1の蛍光物質に第1の励起光を照射して第1の蛍光を検出し、第2の蛍光物質に第2の励起光を照射して第2の蛍光を検出する工程(b)と、を含み、第1の蛍光が検出されたことが、試料中にHBV cccDNAが存在することを示し、第2の蛍光が検出されたことが、試料中にHBV rcDNAが存在することを示す、方法であるということができる。 In other words, the method of this embodiment is a method for detecting HBV cccDNA and HBV rcDNA in a sample, and includes a step (a) of contacting the sample with a first gRNA, a CRISPR-Cas12 protein, a first substrate nucleic acid fragment, a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, in which the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the HBV cccDNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas12 protein, the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light, and the second gRNA is a gRNA complementary to the RNA region of HBV rcDNA, the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, the second fluorescent substance is separated from the second quenching substance, and emits a second fluorescence when irradiated with a second excitation light, and the method includes a step (b) of irradiating the first fluorescent substance with the first excitation light to detect the first fluorescence, and irradiating the second fluorescent substance with the second excitation light to detect the second fluorescence, and the detection of the first fluorescence indicates the presence of HBV cccDNA in the sample, and the detection of the second fluorescence indicates the presence of HBV rcDNA in the sample.
 Cas13タンパク質は、標的核酸として一本鎖RNA又は一本鎖DNAを検出することができる。第2のgRNAは、試料中のHBV rcDNAを検出することができ、HBV cccDNAには反応しないものであれば特に制限されない。第2のgRNAは、HBV rcDNAのRNA領域に相補的であればよい。これにより、第2のgRNA、Cas13タンパク質及びHBV rcDNAが3者複合体を形成し、Cas13タンパク質が発現するヌクレアーゼ活性により第2の基質核酸断片を切断することができる。実施例において後述するように、例えば、配列番号6に示すgRNA等を第2のgRNAとして好適に用いることができる。 The Cas13 protein can detect single-stranded RNA or single-stranded DNA as the target nucleic acid. The second gRNA is not particularly limited as long as it can detect HBV rcDNA in a sample and does not react with HBV cccDNA. The second gRNA may be complementary to the RNA region of HBV rcDNA. This allows the second gRNA, Cas13 protein, and HBV rcDNA to form a three-component complex, and the second substrate nucleic acid fragment can be cleaved by the nuclease activity expressed by the Cas13 protein. As described later in the Examples, for example, the gRNA shown in SEQ ID NO: 6 can be suitably used as the second gRNA.
 本実施形態の方法において、ガイドRNA(gRNA)は、使用するCRISPR-Casタンパク質に用いることができるものであれば特に限定されず、CRISPR RNA(crRNA)とトランス活性化型CRISPR RNA(tracrRNA)との複合体であってもよいし、tracrRNAとcrRNAを組み合わせた単一のgRNA(sgRNA)であってもよいし、crRNAのみであってもよい。 In the method of this embodiment, the guide RNA (gRNA) is not particularly limited as long as it can be used with the CRISPR-Cas protein used, and may be a complex of CRISPR RNA (crRNA) and transactivating CRISPR RNA (tracrRNA), a single gRNA (sgRNA) that combines tracrRNA and crRNA, or crRNA alone.
 本実施形態の方法において、CRISPR-Cas12タンパク質としては、例えば、Lachnospiraceae bacterium ND2006由来のCas12aタンパク質(LbCas12a、UniProtKBアクセッション番号:A0A182DWE3)、Acidaminococcus sp.由来のCas12aタンパク質(AsCas12a、UniProtKBアクセッション番号:U2UMQ6)、Francisella tularensis subsp. novicida由来のCas12aタンパク質(FnCas12a、UniProtKBアクセッション番号:A0Q7Q2)、Alicyclobacillus acidoterrestris由来のCas12bタンパク質(AaCas12b、UniProtKBアクセッション番号:T0D7A2)、これらのタンパク質のオルソログ、これらのタンパク質の改変体等を利用することができる。CRISPR-Cas12タンパク質の改変体としては、例えば、3者複合体の形成効率が向上した変異体、3者複合体を形成した後のヌクレアーゼ活性が上昇した変異体等を用いることができる。 In the method of this embodiment, examples of the CRISPR-Cas12 protein include Cas12a protein derived from Lachnospiraceae bacterium ND2006 (LbCas12a, UniProtKB accession number: A0A182DWE3), Cas12a protein derived from Acidaminococcus sp. (AsCas12a, UniProtKB accession number: U2UMQ6), and Cas12a protein derived from Francisella tularensis subsp. Cas12a protein derived from B. novicida (FnCas12a, UniProtKB accession number: A0Q7Q2), Cas12b protein derived from Alicyclobacillus acidoterrestris (AaCas12b, UniProtKB accession number: T0D7A2), orthologs of these proteins, and modified forms of these proteins can be used. Modified forms of the CRISPR-Cas12 protein include, for example, mutants with improved efficiency in forming a ternary complex and mutants with increased nuclease activity after forming a ternary complex.
 また、CRISPR-Cas13タンパク質としては、L.trevisanii JMUB4039由来のCas13aタンパク質(LtrCas13a、NCBIアクセッション番号:BBM56601.1)、Leptotrichia wadei由来のCas13aタンパク質(LwaCas13a、NCBIアクセッション番号:WP_021746774.1)、Lachnospiraceae bacterium NK4A179由来のCas13aタンパク質(LbaCas13a、NCBIアクセッション番号:WP_022785443.1)、Leptotrichia buccalis C-1013-b由来のCas13aタンパク質(LbuCas13a、NCBIアクセッション番号:WP_015770004.1)、Bergeyella zoohelcum由来のCas13bタンパク質(BzoCas13b、NCBIアクセッション番号:WP_002664492)、Prevotella intermedia由来のCas13bタンパク質(PinCas13b、NCBIアクセッション番号:WP_036860899)、Prevotella buccae由来のCas13bタンパク質(PbuCas13b、NCBIアクセッション番号:WP_004343973)、Alistipes sp. ZOR0009由来のCas13bタンパク質(AspCas13b、NCBIアクセッション番号:WP_047447901)、Prevotella sp. MA2016由来のCas13bタンパク質(PsmCas13b、NCBIアクセッション番号:WP_036929175)、Riemerella anatipestifer由来のCas13bタンパク質(RanCas13b、NCBIアクセッション番号:WP_004919755)、Prevotella aurantiaca由来のCas13bタンパク質(PauCas13b、NCBIアクセッション番号:WP_025000926)、Prevotella saccharolytica由来のCas13bタンパク質(PsaCas13b、NCBIアクセッション番号:WP_051522484)、Prevotella intermedia由来のCas13bタンパク質(Pin2Cas13b、NCBIアクセッション番号:WP_061868553)、Capnocytophaga canimorsus由来のCas13bタンパク質(CcaCas13b、NCBIアクセッション番号:WP_013997271)、Porphyromonas gulae由来のCas13bタンパク質(PguCas13b、NCBIアクセッション番号:WP_039434803)、Prevotella sp. P5-125由来のCas13bタンパク質(PspCas13b、NCBIアクセッション番号:WP_044065294)、Porphyromonas gingivalis由来のCas13bタンパク質(PigCas13b、NCBIアクセッション番号:WP_053444417)、Prevotella intermedia由来のCas13bタンパク質(Pin3Cas13b、NCBIアクセッション番号:WP_050955369)、Enterococcus italicus由来のCsm6タンパク質(EiCsm6、NCBIアクセッション番号:WP_007208953.1)、Lactobacillus salivarius由来のCsm6タンパク質(LsCsm6、NCBIアクセッション番号:WP_081509150.1)、Thermus thermophilus由来のCsm6タンパク質(TtCsm6、NCBIアクセッション番号:WP_011229148.1)、これらのタンパク質のオルソログ、これらのタンパク質の改変体等を利用することができる。CRISPR-Cas13タンパク質の改変体としては、例えば、3者複合体の形成効率が向上した変異体、3者複合体を形成した後のヌクレアーゼ活性が上昇した変異体等を用いることができる。 CRISPR-Cas13 proteins include the Cas13a protein derived from L. trevisanii JMUB4039 (LtrCas13a, NCBI accession number: BBM56601.1), the Cas13a protein derived from Leptotrichia wadei (LwaCas13a, NCBI accession number: WP_021746774.1), the Cas13a protein derived from Lachnospiraceae bacterium NK4A179 (LbaCas13a, NCBI accession number: WP_022785443.1), and the Cas13a protein derived from Leptotrichia buccalis C-1013-b. Cas13b protein from Bergeyella zoohelcum (BzoCas13b, NCBI accession number: WP_002664492), Cas13b protein from Prevotella intermedia (PinCas13b, NCBI accession number: WP_036860899), Cas13b protein from Prevotella buccae (PbuCas13b, NCBI accession number: WP_004343973), Alistipes sp. Cas13b protein derived from ZOR0009 (AspCas13b, NCBI accession number: WP_047447901), Prevotella sp. The Cas13b protein derived from MA2016 (PsmCas13b, NCBI accession number: WP_036929175), the Cas13b protein derived from Riemerella anatipestifer (RanCas13b, NCBI accession number: WP_004919755), the Cas13b protein derived from Prevotella aurantiaca (PauCas13b, NCBI accession number: WP_025000926), the Cas13b protein derived from Prevotella saccharolytica (PsaCas13b, NCBI accession number: WP_025000926), I accession number: WP_051522484), Cas13b protein derived from Prevotella intermedia (Pin2Cas13b, NCBI accession number: WP_061868553), Cas13b protein derived from Capnocytophaga canimorsus (CcaCas13b, NCBI accession number: WP_013997271), Cas13b protein derived from Porphyromonas gulae (PguCas13b, NCBI accession number: WP_039434803), Prevotella sp. Cas13b protein derived from P5-125 (PspCas13b, NCBI accession number: WP_044065294), Cas13b protein derived from Porphyromonas gingivalis (PigCas13b, NCBI accession number: WP_053444417), Cas13b protein derived from Prevotella intermedia (Pin3Cas13b, NCBI accession number: WP_050955369), Cas13b protein derived from Enterococcus italicus The Csm6 protein derived from Lactobacillus salivarius (EiCsm6, NCBI accession number: WP_007208953.1), the Csm6 protein derived from Lactobacillus salivarius (LsCsm6, NCBI accession number: WP_081509150.1), the Csm6 protein derived from Thermus thermophilus (TtCsm6, NCBI accession number: WP_011229148.1), orthologs of these proteins, modified forms of these proteins, etc. can be used. As modified forms of the CRISPR-Cas13 protein, for example, mutants with improved efficiency of forming a ternary complex, mutants with increased nuclease activity after forming a ternary complex, etc. can be used.
 本実施形態の方法において、試料としては、特に限定されず、目的に応じて適宜選択することができ、例えば、唾液、血液、尿、羊水、悪性腹水、咽頭ぬぐい液、鼻腔ぬぐい液等の生体試料や、培養細胞の上清、培養細胞の破砕物等が挙げられる。特に、HBV cccDNAを検出する場合には、慢性B型肝炎患者由来の肝臓生検試料、HBV感染細胞の破砕物等を好適に用いることができる。 In the method of this embodiment, the sample is not particularly limited and can be appropriately selected depending on the purpose, and examples include biological samples such as saliva, blood, urine, amniotic fluid, malignant ascites, pharyngeal swabs, and nasal swabs, as well as cultured cell supernatants and cultured cell homogenates. In particular, when detecting HBV cccDNA, liver biopsy samples from patients with chronic hepatitis B, homogenates of HBV-infected cells, etc. can be suitably used.
 本実施形態の方法において、第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、gRNA、Cas12タンパク質、標的核酸の3者複合体のヌクレアーゼ活性により切断されて、第1の蛍光物質が第1の消光物質から離れると、第1の励起光の照射により第1の蛍光を発するものである。Cas12タンパク質は、3者複合体の形成後に発現するヌクレアーゼ活性により1本鎖DNAを基質として切断する。そこで、第1の基質核酸断片としては、1本鎖DNAを使用するとよい。 In the method of this embodiment, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and is cleaved by the nuclease activity of the ternary complex of gRNA, Cas12 protein, and target nucleic acid. When the first fluorescent substance separates from the first quenching substance, the first fluorescence is emitted by irradiation with the first excitation light. The Cas12 protein cleaves single-stranded DNA as a substrate by the nuclease activity expressed after the formation of the ternary complex. Therefore, it is preferable to use single-stranded DNA as the first substrate nucleic acid fragment.
 また、第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、gRNA、Cas13タンパク質、標的核酸の3者複合体のヌクレアーゼ活性により切断されて、第2の蛍光物質が第2の消光物質から離れると、第2の励起光の照射により第2の蛍光を発するものである。Cas13タンパク質は、3者複合体の形成後に発現するヌクレアーゼ活性により1本鎖RNAを基質として切断する。そこで、第2の基質核酸断片としては、1本鎖RNAを使用するとよい。 The second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance, and is cleaved by the nuclease activity of the ternary complex of gRNA, Cas13 protein, and target nucleic acid. When the second fluorescent substance separates from the second quenching substance, the second fluorescence is emitted by irradiation with second excitation light. The Cas13 protein cleaves single-stranded RNA as a substrate by the nuclease activity expressed after the formation of the ternary complex. Therefore, it is preferable to use single-stranded RNA as the second substrate nucleic acid fragment.
 蛍光物質及び消光物質の組み合わせは、互いに近接させた場合に蛍光物質の蛍光を消光させることができる組み合わせのものを用いる。例えば、蛍光物質として、FAM、HEX、JOE等を用いる場合には、消光物質としてIowa Black FQ(IDT社)やTAMRA等を用いることができる。また、蛍光物質としてAlexa Fluor 647、TAMRA、ROX等を用いる場合には、消光物質としてIowa Black RQ(IDT社)等を用いることができる。 The combination of fluorescent substance and quenching substance is one that can quench the fluorescence of the fluorescent substance when they are placed close to each other. For example, when FAM, HEX, JOE, etc. are used as the fluorescent substance, Iowa Black FQ (IDT) or TAMRA, etc. can be used as the quenching substance. Also, when Alexa Fluor 647, TAMRA, ROX, etc. are used as the fluorescent substance, Iowa Black RQ (IDT) etc. can be used as the quenching substance.
 本実施形態の方法において、工程(a)を10aL~100pLの容積を有する反応空間内で行うことが好ましい。標的物質を精度よく検出する手法として、多数の微小な反応空間内で酵素反応を行う技術が検討されている。これらの手法はデジタル計測と呼ばれている。デジタル計測では、試料を極めて多数の微小な反応空間に分割してシグナルを検出する。 In the method of this embodiment, step (a) is preferably carried out in a reaction space having a volume of 10 aL to 100 pL. Technologies for carrying out enzyme reactions in a large number of minute reaction spaces are being considered as a method for detecting target substances with high accuracy. These methods are called digital measurement. In digital measurement, the sample is divided into an extremely large number of minute reaction spaces to detect signals.
 そして、各反応空間からの信号を2値化し、標的物質が存在するか否かのみを判別して、標的物質の分子数を計測する。デジタル計測によれば、従来のELISAやリアルタイムPCR法等と比較して、検出感度及び定量性を格段に向上させることができる。 Then, the signal from each reaction space is binarized, and the presence or absence of the target substance is determined, and the number of molecules of the target substance is measured. Digital measurement can significantly improve detection sensitivity and quantitation compared to conventional ELISA and real-time PCR methods.
 本実施形態の方法は、デジタル計測により行うことが好ましい。より具体的には、試料、Cas12タンパク質、第1のgRNA、第1の基質核酸断片、Cas13タンパク質、第2のgRNA、第2の基質核酸断片の接触を微小な反応空間内で行う。反応空間1つあたりの容積は、例えば10aL~10pLであってもよく、例えば10aL~1pLであってもよく、例えば10aL~100fLであってもよく、例えば10aL~10fLであってもよい。反応空間が上記の範囲であることにより、標的核酸を高感度に検出することが可能になる。 The method of this embodiment is preferably performed by digital measurement. More specifically, the sample, Cas12 protein, first gRNA, first substrate nucleic acid fragment, Cas13 protein, second gRNA, and second substrate nucleic acid fragment are contacted in a minute reaction space. The volume of each reaction space may be, for example, 10 aL to 10 pL, for example, 10 aL to 1 pL, for example, 10 aL to 100 fL, or for example, 10 aL to 10 fL. By having the reaction space in the above range, it becomes possible to detect the target nucleic acid with high sensitivity.
 本実施形態の方法を、標的核酸(完全二本鎖DNA)が、反応空間1つあたりに0個又は1個導入される条件で行うことにより、デジタル計測を行うことができる。つまり、シグナルが検出された反応空間の個数を、試料中の標的核酸の分子数と対応させることができる。 By carrying out the method of this embodiment under conditions where 0 or 1 target nucleic acid (completely double-stranded DNA) is introduced per reaction space, digital measurement can be performed. In other words, the number of reaction spaces where a signal is detected can be made to correspond to the number of target nucleic acid molecules in the sample.
 反応空間は、例えば液滴であってもよい。あるいは、反応空間は、基板上に形成されたウェルであってもよい。 The reaction space may be, for example, a droplet. Alternatively, the reaction space may be a well formed on a substrate.
[B型慢性肝炎の治療薬のスクリーニング方法]
 一実施形態において、本発明は、B型慢性肝炎の治療薬のスクリーニング方法であって、被験物質の存在下で、ヒトB型肝炎ウイルス(HBV)が感染した細胞をインキュベートする工程と、前記細胞中のHBV cccDNAを検出する工程と、を含み、前記HBV cccDNAの検出量が前記被験物質の非存在下と比較して減少することが、前記被験物質がB型慢性肝炎の治療薬の候補であることを示し、前記HBV cccDNAの検出が、前記細胞由来試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記HBV cccDNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、を含み、前記第1の蛍光が検出されたことが、前記試料中に前記HBV cccDNAが存在することを示す、方法により行われる、スクリーニング方法を提供する。
[Method of screening for therapeutic agents for chronic hepatitis B]
In one embodiment, the present invention provides a method for screening a therapeutic agent for chronic hepatitis B, comprising: incubating a cell infected with human hepatitis B virus (HBV) in the presence of a test substance; and detecting HBV cccDNA in the cell, wherein a decrease in the amount of the detected HBV cccDNA compared to the absence of the test substance indicates that the test substance is a candidate for a therapeutic agent for chronic hepatitis B, and the detection of the HBV cccDNA is a step (a) of contacting the cell-derived sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment, wherein the first gRNA is a gRNA complementary to at least a part of an RNA region of HBV rcDNA, and the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quencher, and the first gRNA, the CRISPR-Cas12 protein, and the HBV The present invention provides a screening method, which includes: step (a) in which, when the cccDNA forms a ternary complex, the cccDNA is cleaved by a nuclease activity expressed by the CRISPR-Cas12 protein, causing the first fluorescent substance to separate from the first quenching substance and emitting a first fluorescence upon irradiation with a first excitation light; and step (b) in which the first fluorescent substance is irradiated with the first excitation light and the first fluorescence is detected, wherein detection of the first fluorescence indicates the presence of the HBV cccDNA in the sample.
 本実施形態のスクリーニング方法において、第1のgRNA、Cas12タンパク質、第1の基質核酸断片、第1の蛍光物質、第1の消光物質、第1の励起光、第1の蛍光等については上述したものと同様である。 In the screening method of this embodiment, the first gRNA, Cas12 protein, first substrate nucleic acid fragment, first fluorescent substance, first quenching substance, first excitation light, first fluorescence, etc. are the same as those described above.
 また、工程(a)を10aL~100pLの容積を有する反応空間内で行うことが好ましく、HBV cccDNAが、反応空間1つあたりに0個又は1個導入される条件で、HBV cccDNAの検出をデジタル計測により行うことが好ましい。 In addition, it is preferable to carry out step (a) in a reaction space having a volume of 10 aL to 100 pL, and to detect HBV cccDNA by digital measurement under conditions in which 0 or 1 HBV cccDNA is introduced per reaction space.
 被験物質としては、特に限定されず、例えば、天然化合物ライブラリ、合成化合物ライブラリ、既存薬ライブラリ等を用いることができる。 The test substance is not particularly limited, and for example, a natural compound library, a synthetic compound library, an existing drug library, etc. can be used.
 HBVが感染した細胞としては、初代ヒト肝細胞、ナトリウム-タウロコール酸共役輸送分子NTCP(Na Taurocholate Co-transporting Polypeptide)を発現させた細胞株等が挙げられる。 Examples of cells infected with HBV include primary human hepatocytes and cell lines expressing the sodium-taurocholate cotransporting molecule NTCP (Na + Taurocholate Co-transporting Polypeptide).
 本実施形態のスクリーニング方法において、上述した第2のgRNA、Cas13タンパク質、第2の基質核酸断片を更に用いることにより、HBV cccDNAと共にHBV rcDNAを更に検出してもよい。 In the screening method of this embodiment, the second gRNA, Cas13 protein, and second substrate nucleic acid fragment described above may be further used to further detect HBV rcDNA together with HBV cccDNA.
[キット]
 一実施形態において、本発明は、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出するためのキットであって、第1のgRNAと、CRISPR-Cas12タンパク質と、第1の基質核酸断片と、を含み、前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、キットを提供する。
[kit]
In one embodiment, the present invention provides a kit for detecting a completely double-stranded DNA in a sample containing a completely double-stranded DNA and an incomplete double-stranded DNA, the kit comprising: a first gRNA; a CRISPR-Cas12 protein; and a first substrate nucleic acid fragment; wherein the incomplete double-stranded DNA is a completely double-stranded DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA; and the first gRNA is a completely double-stranded DNA in which a part of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA. A is a gRNA complementary to a region corresponding to the incomplete part of the incomplete double-stranded DNA, the first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light.
 本実施形態のキットにより、上述した、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法、HBV cccDNAを検出する方法、B型慢性肝炎の治療薬のスクリーニング方法を好適に実施することができる。 The kit of this embodiment can be used to suitably carry out the above-mentioned method of detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, the method of detecting HBV cccDNA, and the method of screening for a therapeutic drug for chronic hepatitis B.
 本実施形態のキットにおいて、第1のgRNA、Cas12タンパク質、第1の基質核酸断片、第1の蛍光物質、第1の消光物質、第1の励起光、第1の蛍光等については上述したものと同様である。 In the kit of this embodiment, the first gRNA, Cas12 protein, first substrate nucleic acid fragment, first fluorescent substance, first quenching substance, first excitation light, first fluorescence, etc. are the same as those described above.
 本実施形態のキットは、試料中のHBV cccDNAを検出するためのものであってもよい。この場合、完全二本鎖DNAがHBV cccDNAであり、不完全二本鎖DNAがHBV rcDNAであり、前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAである。 The kit of this embodiment may be for detecting HBV cccDNA in a sample. In this case, the fully double-stranded DNA is HBV cccDNA, the incompletely double-stranded DNA is HBV rcDNA, and the first gRNA is a gRNA complementary to at least a portion of the RNA region of HBV rcDNA.
 本実施形態のキットは、HBV cccDNAに加えて、試料中のHBV rcDNAを更に検出するためのものであってもよい。この場合、本実施形態のキットは、第2のgRNAと、CRISPR-Cas13タンパク質と、第2の基質核酸断片と、を更に含み、第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、第2のgRNA、CRISPR-Cas13タンパク質及びHBV rcDNAが3者複合体を形成した場合に、CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、第2の蛍光物質が第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものである。 The kit of this embodiment may be for detecting HBV rcDNA in a sample in addition to HBV cccDNA. In this case, the kit of this embodiment further includes a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment, the second gRNA being a gRNA complementary to the RNA region of HBV rcDNA, the second substrate nucleic acid fragment being labeled with a second fluorescent substance and a second quenching substance, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by the nuclease activity expressed by the CRISPR-Cas13 protein, the second fluorescent substance is separated from the second quenching substance, and emits a second fluorescence when irradiated with a second excitation light.
 ここで、第2のgRNA、Cas13タンパク質、第2の基質核酸断片、第2の蛍光物質、第2の消光物質、第2の励起光、第2の蛍光等については上述したものと同様である。 Here, the second gRNA, Cas13 protein, second substrate nucleic acid fragment, second fluorescent substance, second quenching substance, second excitation light, second fluorescence, etc. are the same as those described above.
 本実施形態のキットは、1ウェルあたりの容積が10aL~100pLであるウェルアレイを更に含んでいてもよい。これにより、完全二本鎖DNA又は不完全二本鎖DNAの検出を10aL~100pLの容積を有する反応空間内で行い、デジタル計測することが可能になる。 The kit of this embodiment may further include a well array with a volume of 10 aL to 100 pL per well. This makes it possible to detect completely double-stranded DNA or incompletely double-stranded DNA in a reaction space with a volume of 10 aL to 100 pL and perform digital measurement.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[材料及び方法]
(Cas12タンパク質)
 Cas12タンパク質として、Lachnospiraceae bacterium ND2006 Cas12a(LbCas12a)のD156R/G532R/K538R変異体(enLbCas12a)を使用した。enLbCas12aの発現ベクターを大腸菌Rosetta 2(DE3)株にトランスフェクションして発現させた。発現ベクターは、N末端に、6×Hisタグ及びFLAGタグを有するpETベースのベクターであった。発現したCas12タンパク質はNi-NTA樹脂を用いて精製した。続いて、HiTrap SP HPカラム(Cytiva社)を用いてカチオン交換クロマトグラフィーを行い、更にEnrich SEC 650カラム(Bio-Rad社)を用いたゲルろ過クロマトグラフィーにより精製した。
Materials and Methods
(Cas12 protein)
As the Cas12 protein, the D156R/G532R/K538R mutant (enLbCas12a) of Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) was used. The expression vector of enLbCas12a was transfected into Escherichia coli Rosetta 2 (DE3) strain to express it. The expression vector was a pET-based vector having a 6xHis tag and a FLAG tag at the N-terminus. The expressed Cas12 protein was purified using Ni-NTA resin. Subsequently, cation exchange chromatography was performed using a HiTrap SP HP column (Cytiva), and further purification was performed by gel filtration chromatography using an Enrich SEC 650 column (Bio-Rad).
(Cas13タンパク質)
 Cas1タンパク質として、L.trevisanii JMUB4039由来のCas13aタンパク質(LtrCas13a)を使用した。LtrCas13aの発現ベクターを大腸菌Rosetta 2(DE3)株にトランスフェクションして発現させた。発現ベクターは、N末端に、6×Hisタグ及びFLAGタグを有するpETベースのベクターであった。発現したCas13タンパク質はNi-NTA樹脂を用いて精製した。続いて、HiTrap SP HPカラム(Cytiva社)を用いてカチオン交換クロマトグラフィーを行い、更にEnrich SEC 650カラム(Bio-Rad社)を用いたゲルろ過クロマトグラフィーにより精製した。
(Cas13 protein)
As the Cas1 protein, the Cas13a protein (LtrCas13a) derived from L. trevisanii JMUB4039 was used. The expression vector of LtrCas13a was transfected into the E. coli Rosetta 2 (DE3) strain to express it. The expression vector was a pET-based vector having a 6xHis tag and a FLAG tag at the N-terminus. The expressed Cas13 protein was purified using Ni-NTA resin. Subsequently, cation exchange chromatography was performed using a HiTrap SP HP column (Cytiva), and further purification was performed by gel filtration chromatography using an Enrich SEC 650 column (Bio-Rad).
(標的核酸断片)
 標的核酸断片として、HBV cccDNAとHBV rcDNAの構造が異なる領域を模倣した核酸断片をそれぞれ調製した。
(Target Nucleic Acid Fragment)
As target nucleic acid fragments, nucleic acid fragments mimicking regions in which the structures of HBV cccDNA and HBV rcDNA are different were prepared.
 下記表1に示す核酸断片Fw及びRv_cccをアニーリングさせて、HBV cccDNAを模倣した完全二本鎖核酸断片(以下、「ccc1」という場合がある。)を調製した。図4にccc1の構造を示す。 The nucleic acid fragments Fw and Rv_ccc shown in Table 1 below were annealed to prepare a complete double-stranded nucleic acid fragment (hereinafter sometimes referred to as "ccc1") that mimics HBV cccDNA. The structure of ccc1 is shown in Figure 4.
 また、下記表1に示す核酸断片Fw及びRv_rc_Aをアニーリングさせて、HBV rcDNAを模倣した核酸断片(以下、「rc1」という場合がある。)を調製した。表1中、小文字部分はRNAであり、大文字部分はDNAである。核酸断片rc1の一部はRNAであり、更に、RNA部分の5’末端には核酸断片Fwと相補的でない領域が存在する。図4にrc1の構造を示す。 Furthermore, the nucleic acid fragments Fw and Rv_rc_A shown in Table 1 below were annealed to prepare a nucleic acid fragment (hereinafter sometimes referred to as "rc1") that mimics HBV rcDNA. In Table 1, the lowercase letters represent RNA and the uppercase letters represent DNA. A portion of the nucleic acid fragment rc1 is RNA, and furthermore, the 5' end of the RNA portion has a region that is not complementary to the nucleic acid fragment Fw. The structure of rc1 is shown in Figure 4.
 ところで、rcDNAの(+)鎖の伸長領域はウイルス粒子毎に定まっていない。そこで、rcDNA(+)の3’側塩基が、RNA flap箇所まで伸長してないもの(c1)に加え、RNA flap箇所まで伸長した核酸断片(以下、「rc2」、「rc3」という場合がある。)を調製した。rc2は、下記表1に示す核酸断片Fw、Rv_rc_A及びRv_rc_Bをアニーリングさせて調製した。rc3は、下記表1に示す核酸断片Fw、Rv_rc_A及びRv_rc_Cをアニーリングさせて調製した。図4にrc2、rc3の構造を示す。図4中、rc2、rc3における「(」はニックを表す。 The extension region of the (+) strand of rcDNA is not fixed for each virus particle. Therefore, in addition to the 3'-base of rcDNA (+) that does not extend to the RNA flap site (c1), we prepared nucleic acid fragments (hereinafter sometimes referred to as "rc2" and "rc3") in which the 3'-base of rcDNA (+) extends to the RNA flap site. rc2 was prepared by annealing the nucleic acid fragments Fw, Rv_rc_A, and Rv_rc_B shown in Table 1 below. rc3 was prepared by annealing the nucleic acid fragments Fw, Rv_rc_A, and Rv_rc_C shown in Table 1 below. The structures of rc2 and rc3 are shown in Figure 4. In Figure 4, "(" in rc2 and rc3 represents a nick.
 アニーリングさせた各試料をアガロースゲル電気泳動に供し、目的の核酸断片を切り出した後、NucleoSpin Gel and PCR Clean-up(U0609C、タカラ)を用いて精製した。 Each annealed sample was subjected to agarose gel electrophoresis, and the target nucleic acid fragment was excised and then purified using NucleoSpin Gel and PCR Clean-up (U0609C, Takara).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(Cas12用gRNA)
 Cas12用gRNA(crRNA)としては、下記表2に示す核酸断片を使用した。表2中、小文字部分はRNAであり、大文字部分はDNAである。
(gRNA for Cas12)
The nucleic acid fragments shown in Table 2 below were used as gRNA (crRNA) for Cas12. In Table 2, the lower case letters represent RNA, and the upper case letters represent DNA.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(Cas13用gRNA)
 Cas13用gRNA(crRNA)としては、下記表3に示す核酸断片を使用した。表3中、小文字部分はRNAである。
(gRNA for Cas13)
The nucleic acid fragments shown in Table 3 below were used as gRNA (crRNA) for Cas13. In Table 3, the lowercase letters represent RNA.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(Cas12用基質核酸断片)
 Cas12用基質核酸断片として、一本鎖DNA断片を使用した。基質核酸断片は外注(IDT社)により化学合成した。基質核酸断片の5’末端を蛍光物質であるFAMで標識し、3’末端を消光物質であるIowa Black FQ(IDT社)で標識した。化学合成したCas12用基質核酸断片の塩基配列は「5'-(FAM)TTATT(IABkFQ)-3'」(ここで、「IABkFQ」はIowa Black FQを示す。)であった。
(Substrate nucleic acid fragment for Cas12)
A single-stranded DNA fragment was used as the substrate nucleic acid fragment for Cas12. The substrate nucleic acid fragment was chemically synthesized by outsourcing (IDT). The 5' end of the substrate nucleic acid fragment was labeled with FAM, a fluorescent substance, and the 3' end was labeled with Iowa Black FQ (IDT), a quenching substance. The base sequence of the chemically synthesized substrate nucleic acid fragment for Cas12 was "5'-(FAM)TTATT(IABkFQ)-3'" (where "IABkFQ" stands for Iowa Black FQ).
(Cas13用基質核酸断片)
 Cas13用基質核酸断片として、一本鎖RNA断片を使用した。基質核酸断片(一本鎖RNA断片)は外注(IDT社)により化学合成した。基質核酸断片の5’末端を蛍光物質であるAlexa Fluor 647で標識し、3’末端を消光物質であるIowa Black RQ(IDT社)で標識した。化学合成した基質核酸断片(一本鎖RNA断片)の塩基配列は「5'-(Ax647)UUUUU(IABkRQ)-3'」(ここで、「Ax647」はAlexa Fluor 647を示し、「IABkRQ」はIowa Black RQを示す。)であった。
(Substrate nucleic acid fragment for Cas13)
A single-stranded RNA fragment was used as the substrate nucleic acid fragment for Cas13. The substrate nucleic acid fragment (single-stranded RNA fragment) was chemically synthesized by outsourcing (IDT). The 5' end of the substrate nucleic acid fragment was labeled with Alexa Fluor 647, a fluorescent substance, and the 3' end was labeled with Iowa Black RQ (IDT), a quenching substance. The base sequence of the chemically synthesized substrate nucleic acid fragment (single-stranded RNA fragment) was "5'-(Ax647)UUUUU(IABkRQ)-3'" (where "Ax647" represents Alexa Fluor 647 and "IABkRQ" represents Iowa Black RQ).
(ウェルアレイ)
 HBV cccDNA又はHBV rcDNAの検出は、直径3.5μm、深さ3.5μmの円柱状のウェルが1cmに約100万個並んだウェルアレイ上に、シール材(ケシミール)を直径7mm、間隔9mmの円形パターンに塗布したデバイス(以下、「CDデバイス」という場合がある。)を用いて行った。
(Well Array)
Detection of HBV cccDNA or HBV rcDNA was performed using a device (hereinafter sometimes referred to as a "CD device") in which a sealing material (keshimir) was applied in a circular pattern with a diameter of 7 mm and intervals of 9 mm onto a well array containing approximately 1 million cylindrical wells, each 3.5 μm in diameter and 3.5 μm deep, arranged in an area of 1 cm2.
(バッファー類)
 以下に使用したバッファーの組成を示す。バッファーA(20mM HEPES-KOH(pH7.5),150mM KCl,10mM MgCl)、バッファーF(20mM HEPES-KOH(pH6.8),60mM NaCl,6mM MgCl)、バッファーN(10mM Tris-NaCl(pH9.0),10mM NaCl,15mM MgCl
(Buffers)
The compositions of the buffers used are as follows: Buffer A (20 mM HEPES-KOH (pH 7.5), 150 mM KCl, 10 mM MgCl 2 ), Buffer F (20 mM HEPES-KOH (pH 6.8), 60 mM NaCl, 6 mM MgCl 2 ), Buffer N (10 mM Tris-NaCl (pH 9.0), 10 mM NaCl, 15 mM MgCl 2 ).
[実験例1]
(Cas12を用いたHBV cccDNAの検出)
 Cas12を用いたHBV cccDNAの検出を検討した。以下、図5及び図6を参照しながら、本実験例を説明する。
[Experimental Example 1]
(Detection of HBV cccDNA using Cas12)
Detection of HBV cccDNA using Cas12 was examined. Hereinafter, this experimental example will be described with reference to Figs. 5 and 6.
 図5は、HBV cccDNAを模倣した核酸断片(上述したccc1)のgRNAによる認識を説明する図である。図5上段はHBV cccDNAの模式図であり、四角の点線で囲んだ位置が核酸断片ccc1に対応する。図5下段は、gRNAとして、上述したLbCas12a_crRNA_H5を使用した場合を示す。図5下段中、小文字部分はRNAであり、大文字部分はDNAである。図5下段に示すように、gRNA、Cas12タンパク質及び核酸断片ccc1は、3者複合体を形成し、Cas12タンパク質がヌクレアーゼ活性を発現して、Cas12用基質核酸断片を切断すると考えられる。 Figure 5 is a diagram explaining the recognition by gRNA of a nucleic acid fragment (ccc1 described above) that mimics HBV cccDNA. The top of Figure 5 is a schematic diagram of HBV cccDNA, and the position surrounded by a dotted line in a square corresponds to the nucleic acid fragment ccc1. The bottom of Figure 5 shows the case where the above-mentioned LbCas12a_crRNA_H5 is used as the gRNA. In the bottom of Figure 5, the lower case letters represent RNA, and the upper case letters represent DNA. As shown in the bottom of Figure 5, the gRNA, Cas12 protein, and nucleic acid fragment ccc1 form a ternary complex, and it is believed that the Cas12 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas12.
 図6は、HBV rcDNAを模倣した核酸断片(上述したrc1、rc2、rc3)のgRNAによる認識を説明する図である。図6の一番上の段はHBV rcDNAの模式図であり、四角の点線で囲んだ位置が核酸断片rc1、rc2、rc3に対応する。 Figure 6 is a diagram explaining the recognition by gRNA of nucleic acid fragments (rc1, rc2, and rc3 mentioned above) that mimic HBV rcDNA. The top row of Figure 6 is a schematic diagram of HBV rcDNA, and the positions enclosed by dotted lines in the squares correspond to the nucleic acid fragments rc1, rc2, and rc3.
 図6の上から2番目の段は、gRNA LbCas12a_crRNA_H5による核酸断片rc1の認識部位を示す。小文字部分はRNAであり、大文字部分はDNAである。LbCas12a_crRNA_H5による核酸断片rc1の認識部位は、DNA-RNAハイブリッドになっており、しかも塩基配列が一部しか一致していない。Cas12タンパク質は、DNA断片に結合し活性化するため、gRNAとしてLbCas12a_crRNA_H5を使用した場合、Cas12タンパク質は、核酸断片rc1によっては活性化しないと考えられる。 The second row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc1 by gRNA LbCas12a_crRNA_H5. The lowercase letters represent RNA, and the uppercase letters represent DNA. The recognition site of the nucleic acid fragment rc1 by LbCas12a_crRNA_H5 is a DNA-RNA hybrid, and only a portion of the base sequence is identical. Since the Cas12 protein binds to and activates DNA fragments, it is thought that when LbCas12a_crRNA_H5 is used as the gRNA, the Cas12 protein will not be activated by the nucleic acid fragment rc1.
 図6の上から3番目の段は、gRNA LbCas12a_crRNA_H5による核酸断片rc2の認識部位を示す。小文字部分はRNAであり、大文字部分はDNAである。また、「(」はニックを表す。LbCas12a_crRNA_H5による核酸断片rc2の認識部位は、DNA-RNAハイブリッドになっており、しかもニックを含んでいる。このため、gRNAとしてLbCas12a_crRNA_H5を使用した場合、Cas12タンパク質は、核酸断片rc2によっては活性化しないと考えられる。 The third row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc2 by gRNA LbCas12a_crRNA_H5. The lowercase letters represent RNA, and the uppercase letters represent DNA. In addition, "(" represents a nick. The recognition site of the nucleic acid fragment rc2 by LbCas12a_crRNA_H5 is a DNA-RNA hybrid, and also contains a nick. For this reason, when LbCas12a_crRNA_H5 is used as the gRNA, it is thought that the Cas12 protein will not be activated by the nucleic acid fragment rc2.
 図6の上から4番目の段は、gRNA LbCas12a_crRNA_H5による核酸断片rc3の認識部位を示す。小文字部分はRNAであり、大文字部分はDNAである。また、「(」はニックを表す。LbCas12a_crRNA_H5による核酸断片rc2の認識部位はニックを含んでいる。このため、gRNAとしてLbCas12a_crRNA_H5を使用した場合、Cas12タンパク質は、核酸断片rc2によっては活性化されにくいと考えられる。 The fourth row from the top in Figure 6 shows the recognition site of the nucleic acid fragment rc3 by gRNA LbCas12a_crRNA_H5. The lowercase letters represent RNA, and the uppercase letters represent DNA. In addition, "(" represents a nick. The recognition site of the nucleic acid fragment rc2 by LbCas12a_crRNA_H5 contains a nick. For this reason, when LbCas12a_crRNA_H5 is used as the gRNA, it is thought that the Cas12 protein is unlikely to be activated by the nucleic acid fragment rc2.
 下記表4に示す試薬を混合し、室温で10分間インキュベートして、gRNA-Cas12 2者複合体を調製した。gRNAとして、上述したLbCas12a_crRNA_H5を使用した。 The reagents shown in Table 4 below were mixed and incubated at room temperature for 10 minutes to prepare a gRNA-Cas12 binary complex. The gRNA used was the LbCas12a_crRNA_H5 described above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 続いて、gRNA-Cas12 2者複合体及びCas12用基質核酸断片を混合し、Cas12タンパク質の終濃度が120nMとなり、gRNAの終濃度が30nMとなり、Cas12用基質核酸断片の終濃度が12μMとなるようにバッファーA+50μM Triton X-100を用いて希釈して、アッセイ溶液を調製した。 Then, the gRNA-Cas12 binary complex and the substrate nucleic acid fragment for Cas12 were mixed and diluted with Buffer A + 50 μM Triton X-100 so that the final concentration of Cas12 protein was 120 nM, the final concentration of gRNA was 30 nM, and the final concentration of the substrate nucleic acid fragment for Cas12 was 12 μM, to prepare an assay solution.
 続いて、チューブ内で、10pMの核酸断片ccc1 100μLにアッセイ溶液20μLを混合した。続いて、50秒間インキュベートした後、混合液105μLをCDデバイスのウェルの中央に滴下した。続いて、混合液をCDデバイス上で60秒ピペッティングして更に混合した。続いて、ウェル端から混合液95μLを吸引して破棄した。この結果ウェル上には10μLが残存した。 Next, 100 μL of 10 pM nucleic acid fragment ccc1 was mixed with 20 μL of assay solution in a tube. After incubation for 50 seconds, 105 μL of the mixture was dropped into the center of the well of the CD device. The mixture was then pipetted on the CD device for 60 seconds for further mixing. 95 μL of the mixture was then aspirated from the edge of the well and discarded. As a result, 10 μL remained on the well.
 続いて、封止剤(Fomblin Y-LVAC 25/6)45μLをウェル端から5μL/秒で滴下した。続いて、封止剤の滴下位置と反対側のウェル端から混合液15μLを吸引して破棄した。続いて、45℃で15分間インキュベートした。続いて、蛍光顕微鏡でウェルアレイを観察した。488nmの励起波長を照射し、FAMの蛍光を検出した。 Next, 45 μL of sealant (Fomblin Y-LVAC 25/6) was dripped from the edge of the well at 5 μL/sec. Then, 15 μL of the mixture was aspirated from the edge of the well opposite the location where the sealant was dripped and discarded. This was followed by incubation at 45°C for 15 minutes. The well array was then observed under a fluorescence microscope. An excitation wavelength of 488 nm was applied and FAM fluorescence was detected.
 また、核酸断片ccc1の代わりに核酸断片rc1、rc2、rc3をそれぞれ使用した以外は上記と同様のアッセイも行った。 In addition, the same assay as above was performed, except that nucleic acid fragments rc1, rc2, and rc3 were used instead of nucleic acid fragment ccc1.
 図7は、アッセイの結果を示す代表的な蛍光顕微鏡写真である。また、図8は、図7に基づいて作成したグラフである。その結果、核酸断片ccc1を反応させた場合に、核酸断片rc1、rc2、rc3を反応させた場合の約1,000倍の蛍光シグナルを検出できたことが明らかとなった。この結果は、本実験例の方法により、HBV cccDNAとHBV rcDNAを識別し、HBV cccDNAのみを特異的に検出することができることを示す。 Figure 7 is a representative fluorescence microscope photograph showing the results of the assay. Figure 8 is a graph created based on Figure 7. As a result, it was revealed that when nucleic acid fragment ccc1 was reacted, a fluorescent signal that was approximately 1,000 times higher than when nucleic acid fragments rc1, rc2, and rc3 were reacted was detected. This result shows that the method of this experimental example can distinguish between HBV cccDNA and HBV rcDNA, and specifically detect only HBV cccDNA.
[実験例2]
(Cas12及びCas13を用いた、HBV cccDNA及びHBV rcDNAの同時検出)
 Cas12及びCas13を用いた、HBV cccDNA及びHBV rcDNAの同時検出を検討した。以下、図9を参照しながら、本実験例を説明する。
[Experimental Example 2]
(Simultaneous detection of HBV cccDNA and HBV rcDNA using Cas12 and Cas13)
Simultaneous detection of HBV cccDNA and HBV rcDNA using Cas12 and Cas13 was examined. Hereinafter, this experimental example will be described with reference to FIG. 9 .
 図9上段は、上述したLbCas12a_crRNA_H5を使用した場合に、Cas12タンパク質が認識する、核酸断片ccc1上の位置を示す図である。図9上段中、線を付した領域がCas12タンパク質に認識され、gRNA、Cas12タンパク質及び核酸断片ccc1が3者複合体を形成し、Cas12タンパク質がヌクレアーゼ活性を発現して、Cas12用基質核酸断片を切断すると考えられる。 The upper part of Figure 9 shows the position on the nucleic acid fragment ccc1 that is recognized by the Cas12 protein when the above-mentioned LbCas12a_crRNA_H5 is used. In the upper part of Figure 9, the lined region is recognized by the Cas12 protein, and it is believed that the gRNA, Cas12 protein, and nucleic acid fragment ccc1 form a ternary complex, and the Cas12 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas12.
 図9下段は、上述したLtrCas13a_crRNA_rcを使用した場合に、Cas13タンパク質が認識する、核酸断片rc1上の位置を示す図である。図9下段中、小文字部分はRNAであり、大文字部分はDNAである。Cas13タンパク質は、一本鎖RNA断片又は一本鎖DNA断片を基質とするため、gRNAとしてLtrCas13a_crRNA_rcを使用した場合、図9下段中、線を付した領域がCas13タンパク質に認識され、gRNA、Cas13タンパク質及び核酸断片rc1が3者複合体を形成し、Cas13タンパク質がヌクレアーゼ活性を発現して、Cas13用基質核酸断片を切断すると考えられる。 The lower part of Figure 9 shows the position on the nucleic acid fragment rc1 that is recognized by the Cas13 protein when the above-mentioned LtrCas13a_crRNA_rc is used. In the lower part of Figure 9, the lower case letters represent RNA, and the upper case letters represent DNA. Since the Cas13 protein uses a single-stranded RNA fragment or a single-stranded DNA fragment as a substrate, when LtrCas13a_crRNA_rc is used as the gRNA, the lined region in the lower part of Figure 9 is recognized by the Cas13 protein, and the gRNA, Cas13 protein, and nucleic acid fragment rc1 form a ternary complex, and it is believed that the Cas13 protein expresses nuclease activity to cleave the substrate nucleic acid fragment for Cas13.
 下記表5に示す試薬を混合し、室温で10分間インキュベートして、gRNA-Cas12 2者複合体を調製した。gRNAとして、上述したLbCas12a_crRNA_H5を使用した。 The reagents shown in Table 5 below were mixed and incubated at room temperature for 10 minutes to prepare a gRNA-Cas12 binary complex. The gRNA used was the LbCas12a_crRNA_H5 described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 下記表6に示す試薬を混合し、37℃で10分間インキュベートして、gRNA-Cas13 2者複合体を調製した。gRNAとして、上述したLtrCas13a_crRNA_rcを使用した。 The reagents shown in Table 6 below were mixed and incubated at 37°C for 10 minutes to prepare a gRNA-Cas13 binary complex. The gRNA used was the LtrCas13a_crRNA_rc described above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 続いて、gRNA-Cas12 2者複合体、gRNA-Cas13 2者複合体、Cas12用基質核酸断片及びCas13用基質核酸断片を混合し、Cas12タンパク質の終濃度が120nMとなり、gRNA(LbCas12a_crRNA_H5)の終濃度が30nMとなり、Cas13タンパク質の終濃度が300nMとなり、gRNA(LtrCas13a_crRNA_rc)の終濃度が75nMとなり、Cas12用基質核酸断片の終濃度が12μMとなり、Cas13用基質核酸断片の終濃度が12μMとなるようにバッファーN+50μM Triton X-100を用いて希釈して、アッセイ溶液を調製した。 Subsequently, the gRNA-Cas12 binary complex, the gRNA-Cas13 binary complex, the substrate nucleic acid fragment for Cas12, and the substrate nucleic acid fragment for Cas13 were mixed and diluted with Buffer N + 50 μM Triton X-100 so that the final concentration of Cas12 protein was 120 nM, the final concentration of gRNA (LbCas12a_crRNA_H5) was 30 nM, the final concentration of Cas13 protein was 300 nM, the final concentration of gRNA (LtrCas13a_crRNA_rc) was 75 nM, the final concentration of the substrate nucleic acid fragment for Cas12 was 12 μM, and the final concentration of the substrate nucleic acid fragment for Cas13 was 12 μM, to prepare an assay solution.
 続いて、チューブ内で、10pMの核酸断片ccc1又は100pMの核酸断片rc1 100μLにアッセイ溶液20μLを混合した。続いて、50秒間インキュベートした後、混合液105μLをCDデバイスのウェルの中央に滴下した。続いて、混合液をCDデバイス上で60秒ピペッティングして更に混合した。続いて、ウェル端から混合液95μLを吸引して破棄した。この結果ウェル上には10μLが残存した。 Next, 100 μL of 10 pM nucleic acid fragment ccc1 or 100 pM nucleic acid fragment rc1 was mixed with 20 μL of assay solution in a tube. After incubation for 50 seconds, 105 μL of the mixture was dropped into the center of the well of the CD device. The mixture was then pipetted on the CD device for 60 seconds for further mixing. 95 μL of the mixture was then aspirated from the edge of the well and discarded. As a result, 10 μL remained on the well.
 続いて、封止剤(Fomblin Y-LVAC 25/6)45μLをウェル端から5μL/秒で滴下した。続いて、封止剤の滴下位置と反対側のウェル端から混合液15μLを吸引して破棄した。続いて、室温で5分間インキュベートし、45℃で15分間インキュベートした。続いて、蛍光顕微鏡でウェルアレイを観察した。488nmの励起波長を照射してFAMの蛍光を検出し、640nmの励起波長を照射してAlexa Fluor 647の蛍光を検出した。 Next, 45 μL of sealant (Fomblin Y-LVAC 25/6) was dripped from the edge of the well at 5 μL/sec. 15 μL of the mixture was then aspirated and discarded from the edge of the well opposite the sealant drip position. The well was then incubated at room temperature for 5 minutes and at 45°C for 15 minutes. The well array was then observed under a fluorescence microscope. FAM fluorescence was detected by irradiating with an excitation wavelength of 488 nm, and Alexa Fluor 647 fluorescence was detected by irradiating with an excitation wavelength of 640 nm.
 図10は、アッセイの結果を示す代表的な蛍光顕微鏡写真である。図10中、上段はCas12タンパク質を反応させてFAMの蛍光を検出した結果であり、下段はCas13タンパク質を反応させてAlexa Fluor 647の蛍光を検出した結果である。また、左欄は核酸断片ccc1を反応させた結果であり、右欄は核酸断片rc1を反応させた結果である。 Figure 10 is a representative fluorescence microscope photograph showing the results of the assay. In Figure 10, the top row shows the results of reacting with Cas12 protein and detecting FAM fluorescence, and the bottom row shows the results of reacting with Cas13 protein and detecting Alexa Fluor 647 fluorescence. Additionally, the left column shows the results of reacting with nucleic acid fragment ccc1, and the right column shows the results of reacting with nucleic acid fragment rc1.
 その結果、核酸断片ccc1及び核酸断片rc1を2色のチャネルで独立して検出することができた。この結果は、本実験例の方法により、HBV cccDNAとHBV rcDNAを同時に検出することができることを示す。 As a result, the nucleic acid fragment ccc1 and the nucleic acid fragment rc1 could be detected independently in two color channels. This result shows that the method of this experimental example can simultaneously detect HBV cccDNA and HBV rcDNA.
 本発明によれば、完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する技術を提供することができる。 The present invention provides a technique for detecting fully double-stranded DNA in a sample that contains fully double-stranded DNA and incomplete double-stranded DNA.
 100,100’…3者複合体、110…Cas12タンパク質、120…第1のgRNA、130…2者複合体、140…標的核酸(完全二本鎖DNA)、150…第1の基質核酸断片、F…第1の蛍光物質、Q…第1の消光物質。 100, 100'... ternary complex, 110... Cas12 protein, 120... first gRNA, 130... binary complex, 140... target nucleic acid (completely double-stranded DNA), 150... first substrate nucleic acid fragment, F... first fluorescent substance, Q... first quencher.

Claims (10)

  1.  完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出する方法であって、
     前記試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、
     前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、
     前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、
     前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、
     前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、
     を含み、前記第1の蛍光が検出されたことが、前記試料中に前記完全二本鎖DNAが存在することを示す、方法。
    A method for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, comprising the steps of:
    (a) contacting the sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment;
    The incomplete double-stranded DNA is a DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA,
    The first gRNA is a gRNA complementary to a region of the complete double-stranded DNA corresponding to an incomplete portion of the incomplete double-stranded DNA,
    The first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light;
    (b) irradiating the first fluorescent substance with the first excitation light and detecting the first fluorescence;
    wherein detection of the first fluorescence indicates the presence of the fully double-stranded DNA in the sample.
  2.  前記完全二本鎖DNAがヒトB型肝炎ウイルス covalently closed circular DNA(HBV cccDNA)であり、前記不完全二本鎖DNAがヒトB型肝炎ウイルス relaxed circular DNA(HBV rcDNA)であり、
     前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、
     前記工程(b)において、前記第1の蛍光が検出されたことが、前記試料中に前記HBV cccDNAが存在することを示す、請求項1に記載の方法。
    The complete double-stranded DNA is human hepatitis B virus covalently closed circular DNA (HBV cccDNA), and the incomplete double-stranded DNA is human hepatitis B virus relaxed circular DNA (HBV rcDNA),
    The first gRNA is a gRNA complementary to at least a portion of an RNA region of HBV rcDNA;
    2. The method of claim 1, wherein in step (b), detection of the first fluorescence indicates the presence of the HBV cccDNA in the sample.
  3.  前記試料中のHBV rcDNAを更に検出する、請求項2に記載の方法であって、
     前記工程(a)において、前記試料を、第2のgRNA、CRISPR-Cas13タンパク質、及び、第2の基質核酸断片と更に接触させ、
     ここで、前記第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、
     前記第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、前記第2のgRNA、前記CRISPR-Cas13タンパク質及び前記HBV rcDNAが3者複合体を形成した場合に、前記CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、前記第2の蛍光物質が前記第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものであり、
     前記工程(b)において、更に、前記第2の蛍光物質に前記第2の励起光を照射し、前記第2の蛍光を検出し、
     前記第2の蛍光が検出されたことが、前記試料中に前記HBV rcDNAが存在することを示す、方法。
    3. The method of claim 2, further comprising detecting HBV rcDNA in the sample,
    In the step (a), the sample is further contacted with a second gRNA, a CRISPR-Cas13 protein, and a second substrate nucleic acid fragment;
    wherein the second gRNA is a gRNA complementary to an RNA region of HBV rcDNA;
    the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance, and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas13 protein, and the second fluorescent substance is separated from the second quenching substance, and emits a second fluorescence when irradiated with a second excitation light;
    In the step (b), the second fluorescent substance is further irradiated with the second excitation light and the second fluorescence is detected;
    Detection of the second fluorescence indicates the presence of the HBV rcDNA in the sample.
  4.  前記工程(a)を10aL~100pLの容積を有する反応空間内で行う、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein step (a) is carried out in a reaction space having a volume of 10 aL to 100 pL.
  5.  前記完全二本鎖DNAが、前記反応空間1つあたりに0個又は1個導入される、請求項4に記載の方法。 The method according to claim 4, wherein 0 or 1 of the complete double-stranded DNA is introduced into each reaction space.
  6.  B型慢性肝炎の治療薬のスクリーニング方法であって、
     被験物質の存在下で、ヒトB型肝炎ウイルス(HBV)が感染した細胞をインキュベートする工程と、
     前記細胞中のHBV cccDNAを検出する工程と、を含み、
     前記HBV cccDNAの検出量が前記被験物質の非存在下と比較して減少することが、前記被験物質がB型慢性肝炎の治療薬の候補であることを示し、
     前記HBV cccDNAの検出が、
     前記細胞由来試料を、第1のgRNA、CRISPR-Cas12タンパク質、及び、第1の基質核酸断片と接触させる工程(a)であって、
     前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAであり、
     前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記HBV cccDNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、工程(a)と、
     前記第1の蛍光物質に前記第1の励起光を照射し、前記第1の蛍光を検出する工程(b)と、
     を含み、前記第1の蛍光が検出されたことが、前記試料中に前記HBV cccDNAが存在することを示す、方法により行われる、スクリーニング方法。
    A method for screening a therapeutic agent for chronic hepatitis B, comprising:
    incubating cells infected with human hepatitis B virus (HBV) in the presence of a test substance;
    detecting HBV cccDNA in said cells;
    a decrease in the detected amount of the HBV cccDNA compared to the absence of the test substance indicates that the test substance is a candidate for a therapeutic drug for chronic hepatitis B;
    The detection of HBV cccDNA,
    (a) contacting the cell-derived sample with a first gRNA, a CRISPR-Cas12 protein, and a first substrate nucleic acid fragment;
    The first gRNA is a gRNA complementary to at least a portion of an RNA region of HBV rcDNA;
    The first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the HBV cccDNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light;
    (b) irradiating the first fluorescent substance with the first excitation light and detecting the first fluorescence;
    wherein detection of said first fluorescence indicates the presence of said HBV cccDNA in said sample.
  7.  完全二本鎖DNAと不完全二本鎖DNAを含む試料中の完全二本鎖DNAを検出するためのキットであって、
     第1のgRNAと、
     CRISPR-Cas12タンパク質と、
     第1の基質核酸断片と、を含み、
     前記不完全二本鎖DNAは、前記完全二本鎖DNAの一方の鎖の一部がRNAに置換されたものであるか、前記完全二本鎖DNAの一部が一本鎖DNAになったものであるか、前記完全二本鎖DNAの一方の鎖にニックが導入されたものであり、
     前記第1のgRNAは、前記完全二本鎖DNAのうち、前記不完全二本鎖DNAの不完全部分に対応する領域に相補的なgRNAであり、
     前記第1の基質核酸断片は、第1の蛍光物質及び第1の消光物質で標識されており、前記第1のgRNA、前記CRISPR-Cas12タンパク質及び前記完全二本鎖DNAが3者複合体を形成した場合に、前記CRISPR-Cas12タンパク質が発現するヌクレアーゼ活性により切断されて、前記第1の蛍光物質が前記第1の消光物質から離れ、第1の励起光の照射により第1の蛍光を発するものである、キット。
    A kit for detecting fully double-stranded DNA in a sample containing fully double-stranded DNA and incomplete double-stranded DNA, comprising:
    A first gRNA; and
    A CRISPR-Cas12 protein; and
    a first substrate nucleic acid fragment,
    The incomplete double-stranded DNA is a DNA in which a part of one strand of the completely double-stranded DNA has been replaced with RNA, a part of the completely double-stranded DNA has become single-stranded DNA, or a nick has been introduced into one strand of the completely double-stranded DNA,
    The first gRNA is a gRNA complementary to a region of the complete double-stranded DNA corresponding to an incomplete portion of the incomplete double-stranded DNA,
    The first substrate nucleic acid fragment is labeled with a first fluorescent substance and a first quenching substance, and when the first gRNA, the CRISPR-Cas12 protein, and the completely double-stranded DNA form a ternary complex, the first substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas12 protein, and the first fluorescent substance is separated from the first quenching substance, and emits a first fluorescence when irradiated with a first excitation light.
  8.  試料中のHBV cccDNAを検出するための、請求項7に記載のキットであって、
     前記完全二本鎖DNAがHBV cccDNAであり、
     前記不完全二本鎖DNAがHBV rcDNAであり、
     前記第1のgRNAは、HBV rcDNAのRNA領域の少なくとも一部に相補的なgRNAである、キット。
    8. A kit for detecting HBV cccDNA in a sample according to claim 7, comprising:
    the fully double-stranded DNA is HBV cccDNA,
    the incomplete double-stranded DNA is HBV rcDNA,
    The first gRNA is a gRNA complementary to at least a portion of an RNA region of HBV rcDNA.
  9.  試料中のHBV rcDNAを更に検出するための、請求項8に記載のキットであって、
     第2のgRNAと、
     CRISPR-Cas13タンパク質と、
     第2の基質核酸断片と、を更に含み、
     前記第2のgRNAは、HBV rcDNAのRNA領域に相補的なgRNAであり、 前記第2の基質核酸断片は、第2の蛍光物質及び第2の消光物質で標識されており、前記第2のgRNA、前記CRISPR-Cas13タンパク質及び前記HBV rcDNAが3者複合体を形成した場合に、前記CRISPR-Cas13タンパク質が発現するヌクレアーゼ活性により切断されて、前記第2の蛍光物質が前記第2の消光物質から離れ、第2の励起光の照射により第2の蛍光を発するものである、キット。
    9. A kit according to claim 8 for further detecting HBV rcDNA in a sample, comprising:
    A second gRNA; and
    A CRISPR-Cas13 protein; and
    a second substrate nucleic acid fragment,
    the second gRNA is a gRNA complementary to an RNA region of HBV rcDNA; the second substrate nucleic acid fragment is labeled with a second fluorescent substance and a second quenching substance; and when the second gRNA, the CRISPR-Cas13 protein, and the HBV rcDNA form a ternary complex, the second substrate nucleic acid fragment is cleaved by nuclease activity expressed by the CRISPR-Cas13 protein, causing the second fluorescent substance to separate from the second quenching substance, and emitting a second fluorescence when irradiated with a second excitation light.
  10.  1ウェルあたりの容積が10aL~100pLであるウェルアレイを更に含む、請求項7~9のいずれか一項に記載のキット。 The kit according to any one of claims 7 to 9, further comprising a well array with a volume per well of 10 aL to 100 pL.
PCT/JP2023/041610 2022-11-25 2023-11-20 Method and kit for detecting target nucleic acid WO2024111543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188381 2022-11-25
JP2022-188381 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111543A1 true WO2024111543A1 (en) 2024-05-30

Family

ID=91195634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041610 WO2024111543A1 (en) 2022-11-25 2023-11-20 Method and kit for detecting target nucleic acid

Country Status (1)

Country Link
WO (1) WO2024111543A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002476A1 (en) * 2019-07-04 2021-01-07 国立研究開発法人理化学研究所 Method and kit for detecting target nucleic acid fragment
JP2021528090A (en) * 2018-06-26 2021-10-21 マサチューセッツ インスティテュート オブ テクノロジー Amplification methods, systems, and diagnostic methods based on the CRISPR effector system
WO2021236651A1 (en) * 2020-05-19 2021-11-25 The Regents Of The University Of California Compositions and methods of a nuclease chain reaction for nucleic acid detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528090A (en) * 2018-06-26 2021-10-21 マサチューセッツ インスティテュート オブ テクノロジー Amplification methods, systems, and diagnostic methods based on the CRISPR effector system
WO2021002476A1 (en) * 2019-07-04 2021-01-07 国立研究開発法人理化学研究所 Method and kit for detecting target nucleic acid fragment
WO2021236651A1 (en) * 2020-05-19 2021-11-25 The Regents Of The University Of California Compositions and methods of a nuclease chain reaction for nucleic acid detection

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DING RONGHUA, LONG JINZHAO; YUAN MINGZHU; ZHENG XUE; SHEN YUE; JIN YUEFEI; YANG HAIYAN; LI HAO; CHEN SHUAIYIN; DUAN GUANGCAI: "CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (MDPI), BASEL, CH, vol. 22, no. 9, 3 May 2021 (2021-05-03), Basel, CH , pages 4842, XP093173659, ISSN: 1422-0067, DOI: 10.3390/ijms22094842 *
GHORBANI ABOZAR; HADIFAR SHIMA; SALARI ROYA; IZADPANAH KERAMATOLLAH; BURMISTRZ MICHAL; AFSHARIFAR ALIREZA; ESKANDARI MOHAMMAD HADI: "A short overview of CRISPR-Cas technology and its application in viral disease control", TRANSGENIC RESEARCH, SPRINGER NETHERLANDS, NL, vol. 30, no. 3, 8 April 2021 (2021-04-08), NL , pages 221 - 238, XP037469353, ISSN: 0962-8819, DOI: 10.1007/s11248-021-00247-w *
GONG SHAOHUA, ZHANG SHIQI; WANG I.; LI JINGJING; PAN WEI; LI A.; TANG O.: "Strand Displacement Amplification Assisted CRISPR-Cas12a Strategy for Colorimetric Analysis of Viral Nucleic Acid", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 93, no. 45, 16 November 2021 (2021-11-16), US , pages 15216 - 15223, XP093173667, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.1c04133 *
KAMIYA NAOHIRO, SUGIMOTO TAKAHIKO; ABE CHAYAMA HIROMI; AKIYAMA RIE; TSUBOI YASUNORI; MOGAMI AKIRA; IMAMURA MICHIO; HAYES N.; CHAYA: "Untying relaxed circular DNA of hepatitis B virus by polymerase reaction provides a new option for accurate quantification and visualization of covalently closed circular DNA", JOURNAL OF GENERAL VIROLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, vol. 103, no. 2, 7 February 2022 (2022-02-07), XP093173669, ISSN: 0022-1317, DOI: 10.1099/jgv.0.001591 *
ZHANG XIANGYING; TIAN YUAN; XU LING; FAN ZIHAO; CAO YALING; MA YINGMIN; LI HAO; REN FENG: "CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection", HEPATOLOGY INTERNATIONAL, SPRINGER INDIA, INDIA, vol. 16, no. 2, 17 March 2022 (2022-03-17), India , pages 306 - 315, XP037799698, ISSN: 1936-0533, DOI: 10.1007/s12072-022-10311-0 *

Similar Documents

Publication Publication Date Title
EP4107282A1 (en) Capturing genetic targets using a hybridization approach
US20020127623A1 (en) Biosensors, reagents and diagnostic applications of directed evolution
EP3995833A1 (en) Method and kit for detecting target nucleic acid fragment
CN111254223A (en) Reaction system and kit for detecting African swine fever virus nucleic acid and application of reaction system and kit
CN110894557A (en) CRRNA (crribonucleic acid) for detecting African swine fever virus based on CRISPR (clustered regularly interspaced short palindromic repeats) mode and kit
WO2022257663A1 (en) Method and kit for detecting and screening n501y mutation in covid-19
CN113046475B (en) Primer composition and kit for rapidly detecting mutant novel coronavirus
Qiu et al. Identification and quantitation of vesivirus 2117 particles in bioreactor fluids from infected Chinese hamster ovary cell cultures
US20190048425A1 (en) Tumor detection and monitoring
WO2023216707A1 (en) Universal preclinical bio-distribution detection kit for nk cell therapy products
Peris et al. DNA from resin-embedded organisms: Past, present and future
CN111521781B (en) Detection kit for SARS-CoV-2 nucleic acid of new coronary pneumonia virus and detection method thereof
JP2022174242A (en) Method for detecting target nucleic acid
US20180355437A1 (en) Plasma/serum target enrichment
WO2024111543A1 (en) Method and kit for detecting target nucleic acid
JP2020108358A (en) Method for detecting target object with high sensitivity
EP3655546A1 (en) Tumor detection and monitoring
CN114350854B (en) Method for detecting SARS-CoV-269-70del locus based on RAA-CRISPR
EP4269581A1 (en) Method and kit for detecting target nucleic acid fragment
CN110195129B (en) PCR-CRISPR (polymerase chain reaction-clustered regularly interspaced short palindromic repeats) detection method for targeted HBV (hepatitis B virus) drug-resistant mutant gene
CN111088303A (en) Plasma simulation cfDNA (deoxyribonucleic acid) and preparation method thereof as well as construction method of sequencing library
CN108531563A (en) The purposes and lysate of porous microsphere and the application method of lysate
Swaminath et al. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus–host interactions
WO2023195542A1 (en) Method and kit for detecting multiple types of target nucleic acid fragments
WO2022257664A1 (en) Method and kit for detecting and screening n439k mutation of novel coronavirus