WO2024111540A1 - Protein collection determination system, protein collection determination method, and recording medium - Google Patents

Protein collection determination system, protein collection determination method, and recording medium Download PDF

Info

Publication number
WO2024111540A1
WO2024111540A1 PCT/JP2023/041605 JP2023041605W WO2024111540A1 WO 2024111540 A1 WO2024111540 A1 WO 2024111540A1 JP 2023041605 W JP2023041605 W JP 2023041605W WO 2024111540 A1 WO2024111540 A1 WO 2024111540A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
data
determination
cell population
model
Prior art date
Application number
PCT/JP2023/041605
Other languages
French (fr)
Japanese (ja)
Inventor
大地 末政
Original Assignee
Jsr株式会社
株式会社医学生物学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, 株式会社医学生物学研究所 filed Critical Jsr株式会社
Publication of WO2024111540A1 publication Critical patent/WO2024111540A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts

Definitions

  • the present invention relates to a protein recovery determination system, a protein recovery determination method, and a recording medium.
  • Non-Patent Document 1 In the production of proteins such as antigens, there is a method of multiplying cells into which the amino acid sequence of the protein has been introduced using a specific virus having the amino acid sequence of the target protein (see, for example, Non-Patent Document 1).
  • a portion of the cultured host cells is grown, and after a specific time has passed, the host cells are infected with the specific virus. After viral infection, when it is determined that the virus-infected host cells have produced a sufficient amount of protein, the protein is recovered.
  • Figure 17 is a diagram for explaining the protein production process of the conventional method. Conventionally, workers have implicitly determined the time to recover the protein based on the results of observations made using a microscope (see Non-Patent Documents 1 and 2).
  • the timing of recovery was determined by the operator by observing the images, which could vary from operator to operator.
  • problems can arise, such as degradation of the target protein by proteasomes contained within the cells, cell death due to abnormal infection caused by the release of viruses within the cells, and difficulty in purifying the target protein due to contamination of the culture medium by components contained in the cells other than the target protein.
  • proteins there is a demand for proteins to be recovered at the appropriate time (when there is little cell death and the protein has been sufficiently produced by the cells).
  • the present invention was made in consideration of the above problems, and aims to provide a protein recovery determination system that can appropriately determine the timing for recovering a protein, a protein recovery method, and a recording medium that records a trained model.
  • a protein recovery determination system includes a first determination unit that inputs, as first input data, first image data obtained by photographing a culture of a virus-infected cell population in a time series, and determines, as first output data, whether the virus-infected cell population is in a state suitable for recovering a protein, and an acquisition unit that acquires image data by photographing the inside of a culture vessel in a time series, wherein the first determination unit makes a determination using a first model, and the first model is a trained model obtained by deep learning a first neural network using actual values of the first input data and actual values of the first output data as first teacher data.
  • the protein recovery determination system described in (1) above further includes a second determination unit that inputs, as second input data, second image data obtained by photographing the expansion culture of a virus-uninfected cell population in a time series, and determines, as second output data, whether the virus-uninfected cell population is in a suitable state for infecting the virus, and the second determination unit makes a determination using a second model, which is a trained model obtained by deep learning a second neural network using the actual values of the second input data and the actual values of the second output data as second teacher data, and the first determination unit makes a determination after the second determination unit has made a determination.
  • a second model which is a trained model obtained by deep learning a second neural network using the actual values of the second input data and the actual values of the second output data as second teacher data
  • the cells of the cell population are adherent cells.
  • the adherent cells are insect cells.
  • the insect cells are one of Sf (Spodoptera frugiperda) 9 cells, Sf21 cells, Tni (Trichoplusia ni) cells, and High Five cells.
  • the protein recovery determination system described in (1) or (2) above further includes a first learning unit that trains the first neural network.
  • the protein recovery determination system described in (2) above further includes a second learning unit that trains the second neural network.
  • the acquisition unit acquires information indicating whether the cell population is in a virus-uninfected state or a virus-infected state, and selects one of the second determination unit and the first determination unit to be used based on the information acquired by the acquisition unit.
  • a recording medium records a trained model obtained by deep learning a first neural network using the first input data and the first output data as first training data, the first input data being first image data obtained by photographing the culture of a virus-infected cell population in a time series, and the first output data being data determining whether the virus-infected cell population is in a suitable state for recovering a protein.
  • the recording medium records a trained model obtained by deep learning a second neural network using the second input data and the second output data as second training data, the second input data being second image data obtained by photographing the expansion culture of a virus-uninfected cell population in a time series, and the second output data being data determining whether the virus-uninfected cell population is in a suitable state for infecting the virus.
  • a method for determining protein recovery includes photographing a culture of a virus-infected cell population in a time series to obtain first image data, inputting the first image data as first input data to a first determination unit, and determining whether the virus-infected cell population is in a suitable state for recovering a protein as first output data from the first determination unit, the first determination unit making a determination using a first model, and the first model being a trained model obtained by deep learning a first neural network using actual values of the first input data and actual values of the first output data as first teacher data.
  • the protein recovery determination method described in (11) above includes, before determining whether the cell population is in a suitable state for recovering a protein, acquiring second image data obtained by photographing an expansion culture of a virus-uninfected cell population in a time series, inputting the second image data as second input data to a second determination unit, and determining whether the virus-uninfected cell population is in a suitable state for infecting the virus as second output data from the second determination unit, the second determination unit making the determination using a second model, and the second model being a trained model obtained by deep learning a second neural network using actual values of the second input data and actual values of the second output data as second teacher data.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a protein recovery determination system according to an embodiment.
  • FIG. 13 is a diagram showing examples of images (taken by bright-field observation) taken by the imaging device at predetermined time intervals.
  • FIG. 1 is an explanatory diagram of an example of a protein production process by cell engineering.
  • 11 is an example of creating a first model by a first learning unit.
  • FIG. 11 is a diagram illustrating an example of a determination made by a first determination unit;
  • the host cell is a High Five cell, and the image was taken (by bright-field observation) at the early stage of viral infection (for example, the period from time t14 to t15 in Figure 3).
  • FIG. 3 is a flowchart of a processing procedure of the protein recovery determination system.
  • FIG. 1 is a flowchart of a processing procedure of the protein recovery determination system.
  • FIG. 2 is a diagram showing an example of a functional configuration of a protein recovery determination system according to an embodiment, when the system has a protein recovery determination device.
  • 13 is an example of creating a second model by a second learning unit.
  • 11 is a diagram showing a determination example of a second determination circuit according to the embodiment;
  • the host cells are High Five cells, and this is an example of an image (taken using bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in Figure 4).
  • the host cells are Sf9 cells, and the images are example images (taken by bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in FIG. 4).
  • FIG. 13 is a flowchart of a processing procedure performed by a protein recovery determination system according to a second embodiment.
  • FIG. 1 is a diagram for explaining an antigen production process according to a conventional method.
  • FIG. 1 shows the average correct answer rate and the average antibody yield in the determinations using the first model and the second model.
  • Fig. 1 is a diagram showing an example of the configuration of a protein recovery determination system 5 in this embodiment.
  • the protein recovery determination system 5 includes, for example, a protein recovery determination device 1, a photographing device 2, and an external device 3.
  • the protein recovery determination device 1, the photographing device 2, and the external device 3 are connected by wired or wireless lines.
  • the protein recovery determination device 1 includes, for example, an acquisition unit 101, a first determination unit 102, an optional first learning unit 106, an optional storage unit 108, and an output unit 109.
  • the first determination unit 102 executes a first model 104.
  • the first determination unit 102 may have the first model 104.
  • the protein recovery determination device 1 is configured by hardware using an information processing device such as a PC having a circuit such as an IC.
  • the protein recovery determination device 1 is realized by reading a program that realizes a model having a specific function stored in the storage unit 108, etc., and executing the program in each unit such as the acquisition unit 101, the first determination unit 102, and the first learning unit 106.
  • the acquisition unit 101, the first judgment unit 102, the first learning unit 106, and the output unit 109 may be processors such as a CPU, MPU, SoC, and dedicated circuits that execute programs and perform various controls, as well as ICs having a processor.
  • the memory unit 108 may be storage such as a RAM, ROM, HDD, and SSD.
  • the memory unit 108 may be an external memory of the protein recovery judgment system 5.
  • the photographing device 2 photographs the virus-infected cell population in the culture vessel at predetermined times.
  • the photographing device 2 and the protein recovery determination device 1 are connected to each other by wired or wireless lines.
  • the photographed image is also added with the photographing time.
  • the photographed image may be associated with identification information for identifying the subject being photographed.
  • the photographing device 2 includes a photographing means 21 and a culture vessel 22.
  • An example of the photographing device 2 is a device described in JP 2020-156419 A.
  • An example of the photographing means 21 is a digital camera having an imaging element such as a CCD or CMOS, an imaging lens, etc.
  • the inner surface of the culture vessel 22 may be of any shape, but is preferably flat, in which case the cell population can be cultured adherently on the flat inner surface.
  • the inner surface of the culture vessel 22 can also be coated with a surface suitable for adherent culture (e.g., coated with an extracellular matrix that serves as a scaffold for the cells).
  • the image capturing device 2 is preferably fixed in position relative to the inner surface of the culture vessel 22. If the inner surface of the culture vessel 22 is flat, the image capturing direction of the cell population in the culture vessel 22 by the image capturing device 2 is preferably approximately perpendicular to the flat surface.
  • the acquisition unit 101 acquires the image (image data a1) captured by the imaging device 2 at predetermined time intervals (e.g., once every 0.5 to 10 hours).
  • the acquisition unit 101 may store the acquired image in the storage unit 108.
  • the images acquired by the acquisition unit 101 can be used as first teacher data and second teacher data when creating a first model 104 and a second model 105 (described below).
  • the first judgment unit 102 executes the first model 104, inputs the first image data (image data a11) to the first model 104 (trained model a12) acquired from the memory unit 108, and judges whether the virus-infected cell population, which is the first output data, is in a suitable state for recovering proteins.
  • the first image data preferably includes 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more of the culture surface of the cell population, with the upper limit being 60% or less, 70% or less, 80% or less, 90% or less, or 100% or less.
  • the first image data obtained at the same time can be divided into multiple pieces. In order to divide into multiple pieces, the number of images taken at the same time may be multiple (e.g., 2 to 100).
  • image data examples include image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, polarized light observation, relief contrast observation, and fluorescence observation, as well as MIX observation.
  • image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, and relief contrast observation are preferred, because it is preferable not to stain the host cells, the external shape of the host cells changes significantly due to viral infection of the host cells, and this is easily extracted as an inherent feature of the image data in deep learning, and there are also colorless and transparent host cells.
  • the first model 104 is a model that determines a state suitable for protein recovery from image data of a cell population after virus infection in a culture vessel by performing deep learning using a neural network (first neural network) in the first learning unit 106. Since the first input data is unstructured data, the accuracy rate of the first model can be improved by deep learning.
  • the first model 104 is created by the first learning unit 106 through prior learning. Examples of learning methods using deep learning include DNN (Deep Neural Network), RNN (Recurrent Neural Network), CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), and GAN (Generative Adversarial Networks), as well as combinations of two or more of these.
  • the first input data is image data of a cell population containing multiple host cells. Therefore, as a learning method using deep learning, CNN, which is a learning method that can share weights for local receptive fields, is preferable.
  • the first model 104 may be a model obtained by learning in the first learning unit 106 of the protein recovery determination device 1, or may be a model obtained by learning in another device similar to the protein recovery determination device 1.
  • the first model 104 can be re-learned by the first learning unit 106 using teacher data in which the first image data (image data a14) acquired by the acquisition unit 101 is used as input data, and data in which an evaluation is added to the judgment of the first judgment unit 102 is used as output data, and can be updated by a first update unit (not shown) included in the first learning unit 106.
  • Re-learning can be performed every time the acquisition unit 101 acquires the first image data, or it can be recorded in the storage unit 108 after the acquisition unit 101 acquires the first image data and performed as needed (for example, once every January to June).
  • the storage unit 108 stores, for example, programs used by the protein recovery determination device 1 and the protein recovery determination device 1A described below for various processes, thresholds, feature values, image data acquired by the acquisition unit 101, and the trained model a15 acquired by training in the first training unit 106.
  • the output unit 109 outputs information indicating the result of the judgment made by the first judgment unit 102 (data a13 indicating the result of the judgment) to the external device 3 as data a2 indicating the result of the judgment.
  • the output unit 109 may also output image data determined to be in a state suitable for protein recovery, an estimated amount of recovered protein, or an estimated amount of host cell protein (HCP) to the external device 3.
  • HCP host cell protein
  • the external device 3 presents the information output by the protein recovery determination device 1.
  • the external device 3 is, for example, an image display device, a printing device, a tablet terminal, a smartphone, a personal computer, etc.
  • the external device 3 and the protein recovery determination device 1 are connected to each other via a wired or wireless line.
  • FIG. 2 is a diagram showing an example of images (taken by bright field observation) taken by the image taking device 2 at each predetermined time.
  • the host cell in FIG. 2 is High Five.
  • Image g11 is an image taken at time t11 in FIG. 3.
  • Image g12 is an image taken at a time between time t12 and time t13.
  • Image g13 is an image taken at a time between time t12 and time t13.
  • Image g14 is an image taken at time t14.
  • Image g15 is an image taken at a time between time t15 and time t16.
  • Image g16 is an image taken at a time between time t16 and time t17.
  • Note that the host cells and the photographed images shown in FIG. 2 are merely examples, and the photographed images, host cells, etc. are not limited to these.
  • host cells in the protein expression system and the infectious virus used to infect the host cells.
  • host cells include bacterial cells, yeast cells, fungal cells, insect cells, and mammalian cells.
  • the infectious virus can be selected appropriately depending on the host cell. For example, when the host cell is an insect cell, it is preferable to select a nuclear polyhedrosis virus.
  • the host cells are preferably adherent cells, and more preferably insect cells.
  • Adherent culture using adherent cells allows the morphology of the host cells to be fixed before and after viral infection, making it possible to make accurate judgments.
  • the morphology of the virus-infected host cells does not become complicated, as occurs with image data of suspension cultures, resulting in excellent learning efficiency when creating a trained model.
  • the host cells are insect cells, many of them are suitable for adherent culture, and the host cells undergo large morphological changes before and after virus infection. For this reason, when the host cells are insect cells, deep learning is excellent for noise removal and feature selection.
  • insect cells examples include Sf9 cells, Sf21 cells, Tni cells, and High Five cells.
  • Sf9 cells are a cell line derived from the armyworm moth (Spodoptera frugiperda).
  • Tni cells are a cell line derived from the nettle moth (Trichoplusia ni).
  • Time t11 is the time when the proliferation of cells (e.g., High Five cells) that are to be infected with the virus in the host cells begins.
  • the period from time t12 to t13 is the period during which the host cells are expanded.
  • the period from time t13 to t14 is the period during which the confluence rate increases and the host cells are in a suitable state for infecting the virus.
  • Time t14 is the start of viral infection.
  • the period from time t14 onwards is the post-infection period.
  • the period from time t15 to t16 is the period during which viral infection of the host cell progresses.
  • the period from time t16 to t17 is a period suitable for recovering the protein.
  • FIG. 4 shows an example of the first model 104 created by the first learning unit 106.
  • the first learning unit 106 inputs the first training data (actual values) into a first neural network to create a first model 104 that judges whether or not a state is suitable for recovery.
  • the first learning unit 106 preferably performs learning for each pair of a host cell and an infectious virus.
  • An example of a pair of a host cell and a virus is a pair of a host cell being an Sf9 cell and a virus being a nuclear polyhedrosis virus.
  • the training data for whether or not a state is suitable for recovery uses the results of a judgment made by an experienced person.
  • the first model 104 may be a different model for each host cell. In this case, even if the infecting virus is different, the same model can be used as long as the host cell is the same.
  • FIG. 5 is a diagram showing an example of a judgment made by the first judgment unit 102.
  • the first judgment unit 102 executes the first model 104, inputs the captured image to the first model 104 at each predetermined time, and judges whether or not the state is suitable for recovery. If the first model 104 has a model for each host cell, the first judgment unit 102 may select the first model 104 based on information indicating the host cell when making the judgment.
  • the information indicating the host cell may be input by an operator operating the external device 3, for example, and information indicating the host cell may be added to the first image data acquired by the acquisition unit 101 as identification information for identifying the captured subject.
  • Fig. 6 is an image (taken by bright-field observation) of a host cell that is a High Five cell at the early stage of viral infection (e.g., the period from time t14 to t15 in Fig. 3)
  • Fig. 7 is an image (taken by bright-field observation) of a host cell that is a High Five cell in a state suitable for recovery (e.g., the period from time t16 to t17 in Fig. 3).
  • the host cell is High Five
  • the virus extends its tail like a tadpole, and as the viral infection progresses, it shrinks into a circular shape and its outline becomes darker.
  • Fig. 8 shows an example of an image (taken by bright-field observation) of an Sf9 host cell at the early stage of viral infection (e.g., the period from time t14 to t15 in Fig. 3), while Fig. 9 shows an example of an image (taken by bright-field observation) of an Sf9 host cell in a state suitable for recovery (e.g., the period from time t16 to t17 in Fig. 3).
  • the host cell is an Sf9 cell
  • the virus is spherical at the early stage of infection, and as the infection progresses, the outline becomes darker (the virus detaches from the adhesion surface), and as the virus infection progresses, the outline becomes darker still further.
  • Figure 10 is a flowchart of the processing procedure of the protein recovery determination system.
  • Step S1 The imaging device 2 captures images of the virus-infected cell population at predetermined times.
  • Step S2 The acquisition unit 101 acquires images captured by the image capture device 2 at predetermined times.
  • Step S3 The first judgment unit 102 inputs first image data obtained by photographing the virus-infected cell population in a time series into the trained first model 104, and judges whether the virus-infected cell population is in a suitable state for recovering proteins.
  • Step S4 If the first determination unit 102 determines that the state is suitable for collection (Step S4; YES), the process proceeds to Step S5. If the first determination unit 102 determines that it is not time to collect the waste (Step S4; NO), the process returns to Step S1.
  • Step S5 The output unit 109 outputs information indicating that the state determined by the first determination unit 102 is suitable for recovering the protein to the external device 3.
  • the protein can be recovered at the appropriate time (at a stage when there is little cell death and sufficient protein is produced by the cells), so the amount of protein produced by cell engineering can be increased.
  • the first model 104 uses image data captured in a time series, eliminating fluctuations in time caused by the worker and fluctuations caused by the worker's photography skills (such as light intensity and focus). This makes it possible to identify features using deep learning, improving the accuracy rate of the output data.
  • the first model 104 uses time-series image data, so even minute changes that the worker would not notice can be identified as features through deep learning, improving the accuracy rate of the output data.
  • FIG. 11 is a diagram showing a configuration example of a protein recovery determination system according to this embodiment having a protein recovery determination device 1A.
  • the protein recovery determination apparatus 1A further includes, for example, a second determination unit 103, an optional second learning unit 107, and an optional selection unit 110 in addition to the configuration of the protein recovery determination apparatus 1.
  • the second determination unit 103 executes a second model 105.
  • the second determination unit 103 may have the second model 105.
  • the second determination unit 103, the second learning unit 107, and the selection unit 110 may be processors such as a CPU, MPU, SoC, and dedicated circuits that execute programs and perform various controls, as well as ICs having a processor.
  • the imaging device 2 photographs the host cell culture in the culture vessel before it is infected with the virus at predetermined time intervals (e.g., once every 0.5 to 10 hours).
  • the second judgment unit 103 inputs second image data, which is second input data obtained by photographing a virus-uninfected cell population in time series during expansion culture, into the second model 105 (trained model a22) acquired from the memory unit 108, and judges whether the virus-uninfected cell population, which is second output data, is in a suitable state for infecting the virus.
  • the second image data preferably includes 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more of the culture surface of the cell population, with the upper limit being 100%.
  • the second image data acquired at the same time can be divided into multiple pieces. In order to divide it into multiple pieces, the number of images taken at the same time may be multiple (e.g., 2 to 100).
  • image data examples include image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, polarized light observation, relief contrast observation, and fluorescence observation, as well as MIX observation.
  • image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, and relief contrast observation are preferred, because it is preferable not to stain the host cells, the proliferation of host cells causes large changes in their external shape due to the formation of colonies, which makes them easy to extract as features inherent in the image data in deep learning, and there are also colorless and transparent host cells.
  • the second model 105 is a model constructed by deep learning using a neural network (second neural network) that determines the time of viral infection from an image of a cell population being expanded and cultured in a culture vessel. Because the second input data is unstructured data, the accuracy rate of the second model can be improved by deep learning. Examples of learning methods for deep learning include DNN, RNN, CNN, LSTM, and GAN, as well as combinations of two or more of these.
  • the image of the host cell colony contains a limited area (local receptive field).
  • the second input data is image data containing multiple colonies. Therefore, as a learning method using deep learning, CNN, which is a learning method that can share weights for local receptive fields, is preferable.
  • the second model 105 may be a model obtained by learning using a second learning unit 107 included in the protein recovery determination device 1A, or a model obtained by learning using another device similar to the protein recovery determination device 1.
  • the second learning unit 107 uses the second image data (image data a24) acquired by the acquisition unit 101 as input data and data with an evaluation added to the judgment of the second judgment unit 103 as output data to perform re-learning using teacher data, and can update the second model 105 by a second update unit (not shown) included in the second learning unit 107.
  • Re-learning can be performed every time the acquisition unit 101 acquires the second image data, or can be recorded in the storage unit 108 after the acquisition unit 101 acquires the second image data and performed as needed (for example, once every 1-6 months).
  • the second learning unit 107 stores the generated trained model a25 in the storage unit 108.
  • the output unit 109 outputs information indicating the result of the judgment made by the first judgment unit 102 (data a13 indicating the result of the judgment) as well as information indicating the result of the judgment made by the second judgment unit 103 (data a23 indicating the result of the judgment) to the external device 3 as data a2 indicating the result of the judgment.
  • the output unit 109 may also output the captured image and the confluence rate that have been determined to be in a suitable state for infection to the external device 3.
  • the selection unit 110 determines whether the image data a3 acquired by the acquisition unit 101 is the first image data or the second image data, and selects whether to use the first determination unit 102 to determine whether the state is suitable for protein recovery, or the second determination unit 103 to determine whether the state is suitable for infection. If the selection unit 110 selects to make a determination using the first determination unit 102, it outputs the image data a3 acquired by the acquisition unit 101 to the first determination unit 102 as image data a11. On the other hand, if the selection unit 110 selects to make a determination using the second determination unit 103, it outputs the image data a3 acquired by the acquisition unit 101 to the second determination unit 103 as image data a21.
  • Fig. 12 is an example of the creation of a second model by the second learning unit 107.
  • the second learning unit 107 creates a second model 105 by inputting second teacher data (actual values) to the second learning unit 107.
  • the second learning unit 107 can perform learning for each pair of a host cell and an infectious virus. The determination of whether or not a state is suitable for infection is the result of a judgment made by an experienced person.
  • the second model 105 may include multiple models created for each host cell. In this case, even if the infecting virus is different, the same model may be used as long as the host cell is the same.
  • the host cell of the second model 105-1 may be an Sf9 cell
  • the host cell of the second model 105-2 may be a High Five cell
  • the host cell of the second model 105-3 may be an Sf21 cell
  • the host cell of the second model 105-4 may be a Tni cell.
  • FIG. 13 is a diagram showing an example of a judgment made by the second judgment unit 103 according to this embodiment.
  • the second judgment unit 103 executes the second model, inputs the captured image to the second model 105 at each predetermined time, and judges whether or not the state is suitable for infection. If the second model 105 has a model for each host cell, the second judgment unit 103 may select the second model 105 based on information indicating the host cell when making the judgment. Note that the information indicating the host cell may be input, for example, by an operator operating the external device 3, and information indicating the host cell may be added to the second image data acquired by the acquisition unit 101 as identification information for identifying the captured subject.
  • FIG. 14 shows an example of an image (taken by bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in FIG. 4) when the host cells are High Five cells.
  • Figure 15 shows an example of an image (taken using bright-field observation) taken during the infection period (e.g., the period from time t13 to t14 in Figure 4) when the host cell was Sf9 cell.
  • FIG. 16 is a flowchart of the processing procedure performed by the protein recovery determination system according to this embodiment.
  • Step S21 The imaging device 2 captures images of the culture of the virus-uninfected cell population at predetermined times.
  • Step S22 The acquisition unit 101 acquires images captured by the image capture device 2 at predetermined times.
  • the second judgment unit 103 inputs second image data obtained by photographing the culture of a cell population not infected with a virus in a time series into the trained second model 105, and judges the time to collect the cells based on information indicating whether the cells are in a suitable state for infecting the virus.
  • Step S24 If the second judgment unit 103 judges that it is the time of infection (Step S24; YES), the process proceeds to step S25. If the second judgment unit 103 judges that it is not the time of infection (Step S24; NO), the process returns to step S21.
  • Step S25 The output unit 109 outputs information indicating that it is a suitable time to infect the virus determined by the second determination unit 103 to the external device 3. Next, after the virus is introduced into the culture vessel, the processing procedure shown in the flowchart of FIG. 10 is executed.
  • the second determination unit 103 performs a determination, and then the first determination unit 102 performs a determination. That is, the second determination unit 103 and the first determination unit 102 perform their determinations in this order.
  • the accuracy rate of the first learning model obtained by learning the first neural network can be improved. If there are many gaps between cells, there is a problem that not only is the number of cells small, but also the amount of protein recovered is reduced due to cell death caused by weak intercellular response. If there are no gaps between cells, there is a problem that the amount of protein recovered is reduced due to cell death caused by nutrient deficiency caused by insufficient absorption of nutrients from the culture medium. According to this embodiment, the virus can be infected at an appropriate time when the cells can withstand viral infection, so it is possible to obtain the effect of solving these problems.
  • the operator may operate the external device 3 to input or select to determine the time of infection, and the acquisition unit 101 may acquire the input or selection result.
  • the virus infection may be performed automatically by another external device 3 based on the result output by the protein recovery determination device 1A.
  • the protein recovery determination device 1A can determine and acquire whether it is before or after infection.
  • the acquisition unit 101 may acquire information indicating whether it is in a virus-free state or a virus-infected state
  • the selection unit 110 may select whether to determine the protein recovery time by the first judgment unit 102 or to determine the virus infection time by the second judgment unit 103 based on the acquired result.
  • the selection circuit may select based on a learning model that distinguishes information indicating whether it is in a virus-free state or a virus-infected state.
  • the protein recovery determination device 1A can obtain whether to determine the time of viral infection or the time of protein recovery, and select the determination unit, model, and learning unit based on the obtained result.
  • the protein recovery determination systems 5 and 5A are used in the production of proteins using cells (cell engineering).
  • a program for implementing all or part of the functions of the protein recovery determination device 1 (or 1A) of the present invention may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed to perform all or part of the processes performed by the protein recovery determination device 1 (or 1A).
  • the term "computer system” here includes hardware such as an OS and peripheral devices.
  • the term “computer system” also includes a WWW system equipped with a homepage providing environment (or display environment).
  • computer-readable recording medium refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • computer-readable recording medium also includes those that hold a program for a certain period of time, such as volatile memory (RAM) inside a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • RAM volatile memory
  • the above program may also be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium, or by transmission waves in the transmission medium.
  • the "transmission medium” that transmits the program refers to a medium that has the function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may also be one that realizes part of the above-mentioned functions. Furthermore, it may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system, a so-called difference file (difference program).
  • Figure 18 shows the average accuracy rate and average antibody yield of the judgments made by the first and second models.
  • Figure 18 also shows the results of the first and second judgments made by person A (a highly skilled person with over 10 years of experience) and person B (a less skilled person with less than 1 year of experience).
  • indicates the standard deviation of the antibody yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Multimedia (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

This protein collection determination system comprises: a first determination unit that uses first image data obtained by capturing a time series of images of a culture of a cell population infected with a virus as first input data and determines, as first output data, whether a cell population infected with a virus is in a suitable state for collecting a protein; and an acquisition unit that acquires image data obtained by capturing a time series of images of the inside of a culture container. The first determination unit performs determination by means of a first model, and the first model is a trained model obtained by performing deep learning of a first neural network using the actual values of the first input data and the actual values of the first output data as first teacher data.

Description

タンパク質回収判定システム、タンパク質回収判定方法、及び記録媒体Protein recovery determination system, protein recovery determination method, and recording medium
 本発明は、タンパク質回収判定システム、タンパク質回収判定方法、及び記録媒体に関する。 The present invention relates to a protein recovery determination system, a protein recovery determination method, and a recording medium.
 抗原などのタンパク質の製造では、目的のタンパク質のアミノ酸配列を有する所定のウイルスによりタンパク質のアミノ酸配列を導入した細胞を用いて増やす手法がある(例えば非特許文献1参照)。この手法では、例えば、図17のように培養した宿主細胞の一部を増殖し、所定時間経過後に所定のウイルスを宿主細胞に感染させる。ウイルス感染後、ウイルス感染した宿主細胞が十分にタンパク質を作成したと判断されたとき、タンパク質は回収される。図17は、従来手法のタンパク質製造プロセスを説明するための図である。従来、作業者は、このような回収時期を作業者が顕微鏡を使って観察した結果に基づき暗黙知にて判断していた(非特許文献1~2参照)。 In the production of proteins such as antigens, there is a method of multiplying cells into which the amino acid sequence of the protein has been introduced using a specific virus having the amino acid sequence of the target protein (see, for example, Non-Patent Document 1). In this method, for example, as shown in Figure 17, a portion of the cultured host cells is grown, and after a specific time has passed, the host cells are infected with the specific virus. After viral infection, when it is determined that the virus-infected host cells have produced a sufficient amount of protein, the protein is recovered. Figure 17 is a diagram for explaining the protein production process of the conventional method. Conventionally, workers have implicitly determined the time to recover the protein based on the results of observations made using a microscope (see Non-Patent Documents 1 and 2).
 しかしながら、従来技術では、作業者が回収時期を画像観察して判断していたため、作業者毎に異なる場合があった。例えば、ウイルス感染により細胞死が起こると、細胞内に含まれていたプロテアソームによる目的タンパク質の分解や、細胞内のウイルス放出による異常感染による細胞死、細胞に含まれる目的タンパク質以外の成分による培養液汚染による目的タンパク質の精製が困難になる、などの問題が生じる。このため、適切なタイミングで(細胞死が少なく、タンパク質が十分細胞から産生した段階で)タンパク質を回収することが求められている。 However, with conventional technology, the timing of recovery was determined by the operator by observing the images, which could vary from operator to operator. For example, when cell death occurs due to viral infection, problems can arise, such as degradation of the target protein by proteasomes contained within the cells, cell death due to abnormal infection caused by the release of viruses within the cells, and difficulty in purifying the target protein due to contamination of the culture medium by components contained in the cells other than the target protein. For this reason, there is a demand for proteins to be recovered at the appropriate time (when there is little cell death and the protein has been sufficiently produced by the cells).
 本発明は、上記の問題点に鑑みてなされたものであって、タンパク質を回収するタイミングを適切に判定することができるタンパク質回収判定システム、タンパク質回収方法、および学習済みモデルを記録した記録媒体を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a protein recovery determination system that can appropriately determine the timing for recovering a protein, a protein recovery method, and a recording medium that records a trained model.
 本発明は以下の実施形態を含む。
 (1)上記目的を達成するため、本発明の一態様に係るタンパク質回収判定システムは、第1の入力データとして、ウイルス感染した細胞集団の培養を時系列で撮影して得られた第1の画像データを入力し、第1の出力データとして、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定する、第1の判定部と、培養容器内を時系列で撮影して画像データを取得する取得部と、を備え、前記第1の判定部は第1のモデルで判定し、前記第1のモデルは、前記第1の入力データの実績値及び前記第1の出力データの実績値を第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルである。
The present invention includes the following embodiments.
(1) In order to achieve the above-mentioned object, a protein recovery determination system according to one embodiment of the present invention includes a first determination unit that inputs, as first input data, first image data obtained by photographing a culture of a virus-infected cell population in a time series, and determines, as first output data, whether the virus-infected cell population is in a state suitable for recovering a protein, and an acquisition unit that acquires image data by photographing the inside of a culture vessel in a time series, wherein the first determination unit makes a determination using a first model, and the first model is a trained model obtained by deep learning a first neural network using actual values of the first input data and actual values of the first output data as first teacher data.
 (2)上記(1)に記載のタンパク質回収判定システムでは、第2の入力データとして、ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データを入力し、第2の出力データとして、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定する、第2の判定部を、さらに備え、前記第2の判定部は第2のモデルで判定し、前記第2のモデルは、前記第2の入力データの実績値及び前記第2の出力データの実績値を第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルであり、前記第1の判定部は、前記第2の判定部が判定を行った後に判定する。 (2) The protein recovery determination system described in (1) above further includes a second determination unit that inputs, as second input data, second image data obtained by photographing the expansion culture of a virus-uninfected cell population in a time series, and determines, as second output data, whether the virus-uninfected cell population is in a suitable state for infecting the virus, and the second determination unit makes a determination using a second model, which is a trained model obtained by deep learning a second neural network using the actual values of the second input data and the actual values of the second output data as second teacher data, and the first determination unit makes a determination after the second determination unit has made a determination.
 (3)上記(1)または(2)に記載のタンパク質回収判定システムでは、前記細胞集団の細胞が、接着細胞である。 (3) In the protein recovery determination system described in (1) or (2) above, the cells of the cell population are adherent cells.
 (4)上記(3)に記載のタンパク質回収判定システムは、前記接着細胞が、昆虫細胞である。 (4) In the protein recovery determination system described in (3) above, the adherent cells are insect cells.
 (5)上記(4)に記載のタンパク質回収判定システムでは、前記昆虫細胞が、Sf(Spodoptera frugiperda)9細胞、Sf21細胞、Tni(Trichoplusia ni)細胞、およびHigh Five細胞のうちの1つである。 (5) In the protein recovery determination system described in (4) above, the insect cells are one of Sf (Spodoptera frugiperda) 9 cells, Sf21 cells, Tni (Trichoplusia ni) cells, and High Five cells.
 (6)上記(1)または(2)に記載のタンパク質回収判定システムでは、前記第1のニューラルネットワークを学習させる第1の学習部を、さらに備える。 (6) The protein recovery determination system described in (1) or (2) above further includes a first learning unit that trains the first neural network.
 (7)上記(2)に記載のタンパク質回収判定システムは、前記第2のニューラルネットワークを学習させる第2の学習部を、さらに備える。 (7) The protein recovery determination system described in (2) above further includes a second learning unit that trains the second neural network.
 (8)上記(2)に記載のタンパク質回収判定システムは、前記取得部は、細胞集団がウイルス未感染状態であるか、ウイルス感染状態であるかを示す情報を取得し、前記取得部によって取得された情報に基づいて、前記第2の判定部、前記第1の判定部のうち用いる判定部を1つ選択する。 (8) In the protein recovery determination system described in (2) above, the acquisition unit acquires information indicating whether the cell population is in a virus-uninfected state or a virus-infected state, and selects one of the second determination unit and the first determination unit to be used based on the information acquired by the acquisition unit.
 (9)本発明の他の態様に係る記録媒体は、第1の入力データが、ウイルス感染した細胞集団の培養を時系列で撮影して得られた第1の画像データであり、第1の出力データが、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定したデータであり、前記第1の入力データ及び前記第1の出力データを第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルを記録する。 (9) A recording medium according to another aspect of the present invention records a trained model obtained by deep learning a first neural network using the first input data and the first output data as first training data, the first input data being first image data obtained by photographing the culture of a virus-infected cell population in a time series, and the first output data being data determining whether the virus-infected cell population is in a suitable state for recovering a protein.
 (10)本発明の他の態様に係る記録媒体は、第2の入力データが、ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データであり、第2の出力データが、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定したデータであり、前記第2の入力データ及び前記第2の出力データを第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルを記録する。 (10) In another aspect of the present invention, the recording medium records a trained model obtained by deep learning a second neural network using the second input data and the second output data as second training data, the second input data being second image data obtained by photographing the expansion culture of a virus-uninfected cell population in a time series, and the second output data being data determining whether the virus-uninfected cell population is in a suitable state for infecting the virus.
 (11)本発明の他の態様に係るタンパク質回収判定方法は、ウイルス感染した細胞集団の培養を時系列で撮影して第1の画像データを取得し、前記第1の画像データを第1の入力データとして第1の判定部に入力し、前記第1の判定部から第1の出力データとして、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定し、前記第1の判定部は第1のモデルで判定し、前記第1のモデルは、前記第1の入力データの実績値及び前記第1の出力データの実績値を第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルである。 (11) A method for determining protein recovery according to another aspect of the present invention includes photographing a culture of a virus-infected cell population in a time series to obtain first image data, inputting the first image data as first input data to a first determination unit, and determining whether the virus-infected cell population is in a suitable state for recovering a protein as first output data from the first determination unit, the first determination unit making a determination using a first model, and the first model being a trained model obtained by deep learning a first neural network using actual values of the first input data and actual values of the first output data as first teacher data.
 (12)上記(11)に記載のタンパク質回収判定方法は、前記細胞集団がタンパク質を回収するのに適した状態であるかの前記判定を行う前に、ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データを取得し、前記第2の画像データを第2の入力データとして第2の判定部に入力し、前記第2の判定部から第2の出力データとして、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定し、前記第2の判定部は第2のモデルで判定し、前記第2のモデルは、前記第2の入力データの実績値及び前記第2の出力データの実績値を第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルである。 (12) The protein recovery determination method described in (11) above includes, before determining whether the cell population is in a suitable state for recovering a protein, acquiring second image data obtained by photographing an expansion culture of a virus-uninfected cell population in a time series, inputting the second image data as second input data to a second determination unit, and determining whether the virus-uninfected cell population is in a suitable state for infecting the virus as second output data from the second determination unit, the second determination unit making the determination using a second model, and the second model being a trained model obtained by deep learning a second neural network using actual values of the second input data and actual values of the second output data as second teacher data.
 上記(1)~(12)によれば、タンパク質を回収するタイミングを適切に判定することができる。 The above (1) to (12) allow the timing for recovering the protein to be appropriately determined.
実施形態におけるタンパク質回収判定システムの機能構成例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a protein recovery determination system according to an embodiment. 撮影装置が所定時刻毎に撮影した画像の例(明視野観察法で撮影)を示す図である。FIG. 13 is a diagram showing examples of images (taken by bright-field observation) taken by the imaging device at predetermined time intervals. セル・エンジニアリングによるタンパク質製造工程例の説明図である。FIG. 1 is an explanatory diagram of an example of a protein production process by cell engineering. 第1の学習部による第1のモデルの作成例である。11 is an example of creating a first model by a first learning unit. 第1の判定部の判定例を示す図である。FIG. 11 is a diagram illustrating an example of a determination made by a first determination unit; 宿主細胞がHigh Five細胞でありウイルス感染初期(例えば図3の時刻t14~t15の期間)の撮影画像(明視野観察法で撮影)である。The host cell is a High Five cell, and the image was taken (by bright-field observation) at the early stage of viral infection (for example, the period from time t14 to t15 in Figure 3). 宿主細胞がHigh Five細胞であり回収するのに適した状態(例えば図3の時刻t16~t17の間の期間)の撮影画像(明視野観察法で撮影)である。This is an image (taken using bright-field observation) taken when the host cells are High Five cells and in a state suitable for recovery (for example, the period between times t16 and t17 in Figure 3). 宿主細胞がSf9細胞でありウイルス感染初期(例えば図3の時刻t14~t15の期間)の撮影画像例(明視野観察法で撮影)である。The host cells are Sf9 cells, and the images are example images (taken by bright-field observation) taken at the early stage of viral infection (for example, the period from time t14 to t15 in FIG. 3). 宿主細胞がSf9細胞であり回収するのに適した状態(例えば図3の時刻t16~t17の期間)の撮影画像例(明視野観察法で撮影)である。This is an example of an image (taken by bright-field observation) taken when the host cells are Sf9 cells and in a state suitable for recovery (for example, the period from time t16 to t17 in FIG. 3). タンパク質回収判定システムの処理手順のフローチャートである。1 is a flowchart of a processing procedure of the protein recovery determination system. 実施形態に係るタンパク質回収判定システムにおいて、タンパク質回収判定装置を有する場合の機能構成例を示す図である。FIG. 2 is a diagram showing an example of a functional configuration of a protein recovery determination system according to an embodiment, when the system has a protein recovery determination device. 第2の学習部による第2のモデルの作成例である。13 is an example of creating a second model by a second learning unit. 実施形態に係る第2の判定回路の判定例を示す図である。11 is a diagram showing a determination example of a second determination circuit according to the embodiment; FIG. 宿主細胞がHigh Five細胞であり感染時期(例えば図4の時刻t13~t14の期間)の撮影画像例(明視野観察法で撮影)である。The host cells are High Five cells, and this is an example of an image (taken using bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in Figure 4). 宿主細胞がSf9細胞であり感染時期(例えば図4の時刻t13~t14の期間)の撮影画像例(明視野観察法で撮影)である。The host cells are Sf9 cells, and the images are example images (taken by bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in FIG. 4). 第2実施形態に係るタンパク質回収判定システムが行う処理手順のフローチャートである。13 is a flowchart of a processing procedure performed by a protein recovery determination system according to a second embodiment. 従来手法の抗原製造プロセスを説明するための図である。FIG. 1 is a diagram for explaining an antigen production process according to a conventional method. 第1のモデルおよび第2のモデルによる判定の平均正答率と平均抗体収量を示す図である。FIG. 1 shows the average correct answer rate and the average antibody yield in the determinations using the first model and the second model.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
 なお、実施形態を説明するための全図において、同一の機能を有するものは同一符号を用い、繰り返しの説明は省略する。
 また、本明細書中の「XXに基づいて」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づいて」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
 また、本明細書中の「宿主細胞」は「細胞集団の細胞」と同義である。
 また、本明細書中の「画像データ」とは、二次元画像を示す。
 また、本明細書中の「モデル」は「学習済みモデル」と同義である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings used in the following description, the scale of each component is appropriately changed so that each component can be recognized.
In addition, in all the drawings for explaining the embodiments, the same reference numerals are used for the parts having the same functions, and the repeated explanation is omitted.
In addition, "based on XX" in this specification means "based on at least XX" and includes cases where it is based on other elements in addition to XX. Furthermore, "based on XX" is not limited to cases where XX is used directly, but also includes cases where it is based on XX that has been calculated or processed. "XX" is any element (for example, any information).
Additionally, the term "host cell" herein is synonymous with "cells of a cell population."
In addition, in this specification, "image data" refers to a two-dimensional image.
Additionally, in this specification, "model" is synonymous with "trained model."
 図1は、本実施形態におけるタンパク質回収判定システム5の構成例を示す図である。図1のように、タンパク質回収判定システム5は、例えば、タンパク質回収判定装置1と、撮影装置2と、外部装置3を備える。タンパク質回収判定装置1と、撮影装置2と、外部装置3は有線又は無線回線で接続される。
 タンパク質回収判定装置1は、例えば、取得部101と、第1の判定部102と、任意に第1の学習部106と、任意に記憶部108と、出力部109を備える。第1の判定部102は、第1のモデル104を実行する。なお、第1のモデル104は、第1の判定部102が有していてもよい。タンパク質回収判定装置1は、IC等の回路を有するPC等の情報処理装置を用いたハードウェアにより構成される。タンパク質回収判定装置1は記憶部108等に記憶された特定の機能を有するモデルを実現するプロブラムを読み出し、これを取得部101、第1の判定部102、及び第1の学習部106等の各部で実行することで実現される。
Fig. 1 is a diagram showing an example of the configuration of a protein recovery determination system 5 in this embodiment. As shown in Fig. 1, the protein recovery determination system 5 includes, for example, a protein recovery determination device 1, a photographing device 2, and an external device 3. The protein recovery determination device 1, the photographing device 2, and the external device 3 are connected by wired or wireless lines.
The protein recovery determination device 1 includes, for example, an acquisition unit 101, a first determination unit 102, an optional first learning unit 106, an optional storage unit 108, and an output unit 109. The first determination unit 102 executes a first model 104. The first determination unit 102 may have the first model 104. The protein recovery determination device 1 is configured by hardware using an information processing device such as a PC having a circuit such as an IC. The protein recovery determination device 1 is realized by reading a program that realizes a model having a specific function stored in the storage unit 108, etc., and executing the program in each unit such as the acquisition unit 101, the first determination unit 102, and the first learning unit 106.
 取得部101、第1の判定部102、第1の学習部106、及び出力部109としては、プログラムを実行して各種制御を行うCPU、MPU、SoC、及び専用回路等のプロセッサ、並びにプロセッサを有するICを挙げることができる。記憶部108としては、RAM、ROM、HDD、及びSSD等のストレージが挙げられる。記憶部108はタンパク質回収判定システム5の外部メモリであってもよい。 The acquisition unit 101, the first judgment unit 102, the first learning unit 106, and the output unit 109 may be processors such as a CPU, MPU, SoC, and dedicated circuits that execute programs and perform various controls, as well as ICs having a processor. The memory unit 108 may be storage such as a RAM, ROM, HDD, and SSD. The memory unit 108 may be an external memory of the protein recovery judgment system 5.
 撮影装置2は、培養容器内のウイルス感染した細胞集団を、所定時刻毎に撮影する。なお、撮影装置2とタンパク質回収判定装置1は、有線または無線回線で互いに接続されている。また、撮影された画像には、撮影時刻が付加されている。なお、撮影された画像には、撮影対象を識別するための識別情報が関連付けられていてもよい。撮影装置2は撮影手段21と培養容器22を備える。撮影装置2としては、例えば、特開2020-156419号公報に記載の装置が挙げられる。撮影手段21としては、CCD及びCMOS等撮像素子、撮像レンズ等を有するデジタルカメラ等が挙げられる。 The photographing device 2 photographs the virus-infected cell population in the culture vessel at predetermined times. The photographing device 2 and the protein recovery determination device 1 are connected to each other by wired or wireless lines. The photographed image is also added with the photographing time. The photographed image may be associated with identification information for identifying the subject being photographed. The photographing device 2 includes a photographing means 21 and a culture vessel 22. An example of the photographing device 2 is a device described in JP 2020-156419 A. An example of the photographing means 21 is a digital camera having an imaging element such as a CCD or CMOS, an imaging lens, etc.
 培養容器22の内表面は、どのような形状であってもよいが、好ましくは平面であり、この場合、細胞集団を平面の内表面で接着培養することができる。また、培養容器22の内表面は、接着培養に適した表面にコーティング(例えば、細胞の足場となる細胞外マトリックスでコーティング)することができる。 The inner surface of the culture vessel 22 may be of any shape, but is preferably flat, in which case the cell population can be cultured adherently on the flat inner surface. The inner surface of the culture vessel 22 can also be coated with a surface suitable for adherent culture (e.g., coated with an extracellular matrix that serves as a scaffold for the cells).
 撮影装置2は、培養容器22の内表面に対して、位置が固定化されていることが好ましい。培養容器22の内表面が平面である場合、撮影装置2による培養容器22内の細胞集団の撮像方向は、平面に対して、略垂直方向が好ましい。 The image capturing device 2 is preferably fixed in position relative to the inner surface of the culture vessel 22. If the inner surface of the culture vessel 22 is flat, the image capturing direction of the cell population in the culture vessel 22 by the image capturing device 2 is preferably approximately perpendicular to the flat surface.
 取得部101は、撮影装置2が撮影した画像(画像データa1)を、所定時刻毎(例えば0.5時間~10時間に1回)に取得する。取得部101は、取得した画像を記憶部108に記憶させるようにしてもよい。取得部101で取得した画像は、第1のモデル104や第2のモデル105(後述)の作成の際、第1の教師データや第2の教師データとして使用することができる。 The acquisition unit 101 acquires the image (image data a1) captured by the imaging device 2 at predetermined time intervals (e.g., once every 0.5 to 10 hours). The acquisition unit 101 may store the acquired image in the storage unit 108. The images acquired by the acquisition unit 101 can be used as first teacher data and second teacher data when creating a first model 104 and a second model 105 (described below).
 第1の判定部102は、第1のモデル104を実行し、記憶部108から取得された第1のモデル104(学習済みモデルa12)に、第1の画像データ(画像データa11)を入力して、第1の出力データであるウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定する。 The first judgment unit 102 executes the first model 104, inputs the first image data (image data a11) to the first model 104 (trained model a12) acquired from the memory unit 108, and judges whether the virus-infected cell population, which is the first output data, is in a suitable state for recovering proteins.
 第1の画像データは、細胞集団の培養面の、10%以上、20%以上、30%以上、40%以上、50%以上を含むことが好ましく、上限値は60%以下、70%以下、80%以下、90%以下、又は100%以下である。上述の細胞集団の細胞数を第1の画像データに含めるため、同一時刻に取得する第1の画像データは、複数に分割することができる。複数に分割するために、同一時刻に撮影する画像数は、複数枚(例えば、2~100枚)であってもよい。 The first image data preferably includes 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more of the culture surface of the cell population, with the upper limit being 60% or less, 70% or less, 80% or less, 90% or less, or 100% or less. In order to include the number of cells in the above-mentioned cell population in the first image data, the first image data obtained at the same time can be divided into multiple pieces. In order to divide into multiple pieces, the number of images taken at the same time may be multiple (e.g., 2 to 100).
 画像データとしては、明視野観察法、暗視野観察法、位相差観察法、微分干渉観察法、偏向観察法、レリーフコントラスト観察法、及び蛍光観察法、並びにMIX観察法により撮影した画像データが挙げられる。宿主細胞の染色は行わない方が好ましいことと、宿主細胞のウイルス感染により、宿主細胞の外形の変化が大きいことから、深層学習において画像データに内在する特徴量として抽出されやすいこと、無色透明な宿主細胞もあることから、これらの画像データの中でも、明視野観察法、暗視野観察法、位相差観察法、微分干渉観察法、及びレリーフコントラスト観察法により撮影した画像データが好ましい。 Examples of image data include image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, polarized light observation, relief contrast observation, and fluorescence observation, as well as MIX observation. Of these image data, image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, and relief contrast observation are preferred, because it is preferable not to stain the host cells, the external shape of the host cells changes significantly due to viral infection of the host cells, and this is easily extracted as an inherent feature of the image data in deep learning, and there are also colorless and transparent host cells.
 第1のモデル104は、第1の学習部106で、ニューラルネットワーク(第1のニューラルネットワーク)による深層学習を実行することにより培養容器内のウイルス感染後の細胞集団の画像データから、タンパク質回収に適した状態を判定するモデルである。第1の入力データは非構造化データであることから、深層学習により、第1のモデルの正答率を向上させることができる。第1のモデル104は、第1の学習部106によって予め学習して作成されたものである。深層学習による学習方法としては、DNN(Deep Neural Network)、RNN(Recurrent Neural Network)、CNN(Convolutional Neural Network)、LSTM(Long Short Term Memory)、及びGAN(Generative Adversarial Networks)、並びにこれらの2以上の組み合わせ等が挙げられる。 The first model 104 is a model that determines a state suitable for protein recovery from image data of a cell population after virus infection in a culture vessel by performing deep learning using a neural network (first neural network) in the first learning unit 106. Since the first input data is unstructured data, the accuracy rate of the first model can be improved by deep learning. The first model 104 is created by the first learning unit 106 through prior learning. Examples of learning methods using deep learning include DNN (Deep Neural Network), RNN (Recurrent Neural Network), CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), and GAN (Generative Adversarial Networks), as well as combinations of two or more of these.
 宿主細胞はウイルス感染により、時系列で局所的に形態を変える場合が多く、宿主細胞の画像には限定された領域(局所受容野)が含まれる。また、第1の入力データは複数の宿主細胞が含まれる細胞集団の画像データである。よって、深層学習による学習手法としては、局所受容野に対して重みの共有を行える学習手法である、CNNが好ましい。 Host cells often undergo local morphological changes over time due to viral infection, and images of host cells contain limited areas (local receptive fields). In addition, the first input data is image data of a cell population containing multiple host cells. Therefore, as a learning method using deep learning, CNN, which is a learning method that can share weights for local receptive fields, is preferable.
 第1のモデル104は、タンパク質回収判定装置1の第1の学習部106で学習して得られたモデルであってもよく、タンパク質回収判定装置1と同様の別の装置にて学習して得られたモデルであってもよい。 The first model 104 may be a model obtained by learning in the first learning unit 106 of the protein recovery determination device 1, or may be a model obtained by learning in another device similar to the protein recovery determination device 1.
 第1のモデル104は、取得部101で取得した第1の画像データ(画像データa14)を入力データとし、第1の判定部102の判定に対して評価を付与したデータを出力データとする教師データを用いて第1の学習部106で再学習し、第1の学習部106に含まれる第1の更新部(図示せず)により、更新させることができる。再学習は、取得部101で第1の画像データを取得する毎に行うことも、取得部101で第1の画像データを取得した後、記憶部108に記録して、随時(例えば、1~6月に1回)行うこともできる。 The first model 104 can be re-learned by the first learning unit 106 using teacher data in which the first image data (image data a14) acquired by the acquisition unit 101 is used as input data, and data in which an evaluation is added to the judgment of the first judgment unit 102 is used as output data, and can be updated by a first update unit (not shown) included in the first learning unit 106. Re-learning can be performed every time the acquisition unit 101 acquires the first image data, or it can be recorded in the storage unit 108 after the acquisition unit 101 acquires the first image data and performed as needed (for example, once every January to June).
 記憶部108は、例えば、タンパク質回収判定装置1や後述のタンパク質回収判定装置1Aが各種処理に用いるプログラムや、閾値や、特徴量や、取得部101で取得した画像データ、第1の学習部106で学習して得られた学習済みモデルa15等を記憶する。 The storage unit 108 stores, for example, programs used by the protein recovery determination device 1 and the protein recovery determination device 1A described below for various processes, thresholds, feature values, image data acquired by the acquisition unit 101, and the trained model a15 acquired by training in the first training unit 106.
 出力部109は、第1の判定部102が判定した結果を示す情報(判定した結果を示すデータa13)を、判定した結果を示すデータa2として外部装置3へ出力する。出力部109は、タンパク質回収に適した状態であると判定した画像データ、タンパク質回収推定量、又は宿主細胞由来タンパク質(HCP、host cell protein)の推定量も外部装置3に出力するようにしてもよい。 The output unit 109 outputs information indicating the result of the judgment made by the first judgment unit 102 (data a13 indicating the result of the judgment) to the external device 3 as data a2 indicating the result of the judgment. The output unit 109 may also output image data determined to be in a state suitable for protein recovery, an estimated amount of recovered protein, or an estimated amount of host cell protein (HCP) to the external device 3.
 外部装置3は、タンパク質回収判定装置1が出力する情報を提示する。外部装置3は、例えば、画像表示装置、印字装置、タブレット端末、スマートフォン、パーソナルコンピュータ等である。外部装置3とタンパク質回収判定装置1は、有線または無線回線で互いに接続されている。 The external device 3 presents the information output by the protein recovery determination device 1. The external device 3 is, for example, an image display device, a printing device, a tablet terminal, a smartphone, a personal computer, etc. The external device 3 and the protein recovery determination device 1 are connected to each other via a wired or wireless line.
 図2は、撮影装置2が所定時刻毎に撮影した画像の例(明視野観察法で撮影)を示す図である。なお、図2の宿主細胞は、High Fiveである。画像g11は、図3の時刻t11の時に撮影された画像である。画像g12は、時刻t12と時刻t13の間の時刻に撮影された画像である。画像g13は、時刻t12と時刻t13の間の時刻に撮影された画像である。画像g14は、時刻t14の時刻に撮影された画像である。画像g15は、時刻t15と時刻t16の間の時刻に撮影された画像である。画像g16は、時刻t16と時刻t17の間の時刻に撮影された画像である。
 なお、図2に示した宿主細胞や撮影画像は一例であり、撮影画像や宿主細胞等はこれに限らない。
FIG. 2 is a diagram showing an example of images (taken by bright field observation) taken by the image taking device 2 at each predetermined time. The host cell in FIG. 2 is High Five. Image g11 is an image taken at time t11 in FIG. 3. Image g12 is an image taken at a time between time t12 and time t13. Image g13 is an image taken at a time between time t12 and time t13. Image g14 is an image taken at time t14. Image g15 is an image taken at a time between time t15 and time t16. Image g16 is an image taken at a time between time t16 and time t17.
Note that the host cells and the photographed images shown in FIG. 2 are merely examples, and the photographed images, host cells, etc. are not limited to these.
 次に、タンパク質発現系における宿主細胞と、宿主細胞の感染に用いる感染ウイルスを説明する。宿主細胞としては、細菌細胞、酵母細胞、真菌細胞、昆虫細胞、及び哺乳類細胞等が挙げられる。感染ウイルスとしては、宿主細胞に応じて、適宜選択すればよく、例えば、宿主細胞が昆虫細胞の場合、核多角体病ウイルス(Nucleopolyhedrovirus)を選択することが好ましい。 Next, we will explain the host cells in the protein expression system and the infectious virus used to infect the host cells. Examples of host cells include bacterial cells, yeast cells, fungal cells, insect cells, and mammalian cells. The infectious virus can be selected appropriately depending on the host cell. For example, when the host cell is an insect cell, it is preferable to select a nuclear polyhedrosis virus.
 宿主細胞は、好ましくは、接着細胞であり、より好ましくは、昆虫細胞である。接着細胞による接着培養であれば、ウイルス感染前後で宿主細胞の形態を固定化できるため、正しく判定を行うことや、ウイルス感染した宿主細胞の形態が浮遊培養の画像データのように複雑化しないため、学習済みモデルを作成する際の学習効率に優れる。 The host cells are preferably adherent cells, and more preferably insect cells. Adherent culture using adherent cells allows the morphology of the host cells to be fixed before and after viral infection, making it possible to make accurate judgments. In addition, the morphology of the virus-infected host cells does not become complicated, as occurs with image data of suspension cultures, resulting in excellent learning efficiency when creating a trained model.
 宿主細胞が昆虫細胞の場合、昆虫細胞の多くは接着培養に適していること、及びウイルス感染前後での宿主細胞の形態変化が大きいことが特徴である。このため宿主細胞が昆虫細胞の場合、深層学習によるノイズ除去や特徴量の選択性に優れる。 When the host cells are insect cells, many of them are suitable for adherent culture, and the host cells undergo large morphological changes before and after virus infection. For this reason, when the host cells are insect cells, deep learning is excellent for noise removal and feature selection.
 昆虫細胞としては、例えば、Sf9細胞、Sf21細胞、Tni細胞、またはHigh Five細胞が挙げられる。Sf9細胞は、ヨトウガ(Spodoptera frugiperda)由来細胞株である。また、Tni細胞は、イラクサギンウワバ(Trichoplusia ni)由来細胞株である。 Examples of insect cells include Sf9 cells, Sf21 cells, Tni cells, and High Five cells. Sf9 cells are a cell line derived from the armyworm moth (Spodoptera frugiperda). Tni cells are a cell line derived from the nettle moth (Trichoplusia ni).
 図3は、セル・エンジニアリングによるタンパク質製造工程例の説明図である。図3において、横軸は時刻である。
 時刻t11は、宿主細胞に対してウイルスを感染させる対象である細胞(例えばHigh Five細胞)の増殖を開始した時刻である。時刻t12~t13の期間は、宿主細胞を拡大培養中の期間である。時刻t13~t14の期間は、コンフルエント率が上昇し、宿主細胞にウイルスを感染させるのに適した状態にある。
 時刻t14は、ウイルス感染開始時刻である。時刻t14以降は、感染後の期間である。時刻t15~t16の期間は、宿主細胞へのウイルス感染進行中の期間である。時刻t16~t17の期間は、タンパク質を回収するのに適した状態にある。
3 is an explanatory diagram of an example of a protein production process by cell engineering, in which the horizontal axis represents time.
Time t11 is the time when the proliferation of cells (e.g., High Five cells) that are to be infected with the virus in the host cells begins. The period from time t12 to t13 is the period during which the host cells are expanded. The period from time t13 to t14 is the period during which the confluence rate increases and the host cells are in a suitable state for infecting the virus.
Time t14 is the start of viral infection. The period from time t14 onwards is the post-infection period. The period from time t15 to t16 is the period during which viral infection of the host cell progresses. The period from time t16 to t17 is a period suitable for recovering the protein.
 図4は、第1の学習部106による第1のモデル104の作成例である。
 第1の学習部106は、第1の教師データ(実績値)を、第1のニューラルネットワークに入力することで、回収に適した状態か否かを判定する第1のモデル104を作成する。第1の学習部106は、宿主細胞と感染ウイルスとの組毎に学習を行うことが好ましい。宿主細胞とウイルスとの組とは、例えば、宿主細胞がSf9細胞とウイルスが核多角体病ウイルスの組である。回収に適した状態か否かの教師データは、経験者が判断した結果を用いる。
FIG. 4 shows an example of the first model 104 created by the first learning unit 106. In FIG.
The first learning unit 106 inputs the first training data (actual values) into a first neural network to create a first model 104 that judges whether or not a state is suitable for recovery. The first learning unit 106 preferably performs learning for each pair of a host cell and an infectious virus. An example of a pair of a host cell and a virus is a pair of a host cell being an Sf9 cell and a virus being a nuclear polyhedrosis virus. The training data for whether or not a state is suitable for recovery uses the results of a judgment made by an experienced person.
 第1のモデル104は、宿主細胞毎に異なるモデルであってもよい。この場合は、感染ウイルスが異なっていても、宿主細胞が同じであれば、同じモデルを用いることができる。 The first model 104 may be a different model for each host cell. In this case, even if the infecting virus is different, the same model can be used as long as the host cell is the same.
 図5は、第1の判定部102の判定例を示す図である。第1の判定部102は、第1のモデル104を実行し、所定時刻毎に撮影画像を第1のモデル104に入力して、回収に適した状態か否かの判定を行う。なお、第1のモデル104が、宿主細胞毎にモデルを備える場合、判定に際して、第1の判定部102は、宿主細胞を示す情報に基づいて、第1のモデル104を選択するようにしてもよい。なお、宿主細胞を示す情報は、例えば、作業者が外部装置3を操作して入力し、取得部101が取得する第1の画像データに撮影対象を識別するための識別情報として宿主細胞を示す情報を付加してもよい。 FIG. 5 is a diagram showing an example of a judgment made by the first judgment unit 102. The first judgment unit 102 executes the first model 104, inputs the captured image to the first model 104 at each predetermined time, and judges whether or not the state is suitable for recovery. If the first model 104 has a model for each host cell, the first judgment unit 102 may select the first model 104 based on information indicating the host cell when making the judgment. The information indicating the host cell may be input by an operator operating the external device 3, for example, and information indicating the host cell may be added to the first image data acquired by the acquisition unit 101 as identification information for identifying the captured subject.
 次に、ウイルス感染前の撮影画像例と、回収時期の撮影画像例を示す。
 図6は、宿主細胞がHigh Five細胞でありウイルス感染初期(例えば図3の時刻t14~t15の期間)の撮影画像(明視野観察法で撮影)である。図7は、宿主細胞がHigh Five細胞であり回収するのに適した状態(例えば図3の時刻t16~t17の間の期間)の撮影画像(明視野観察法で撮影)である。
 図6、図7のように、宿主細胞がHigh Fiveの場合、ウイルス感染初期はオタマジャクシのようにしっぽをのばし、ウイルス感染が進むと円形に縮み輪郭が濃くなる。
Next, examples of images taken before viral infection and at the time of recovery are shown.
Fig. 6 is an image (taken by bright-field observation) of a host cell that is a High Five cell at the early stage of viral infection (e.g., the period from time t14 to t15 in Fig. 3), and Fig. 7 is an image (taken by bright-field observation) of a host cell that is a High Five cell in a state suitable for recovery (e.g., the period from time t16 to t17 in Fig. 3).
As shown in Figures 6 and 7, when the host cell is High Five, in the early stage of viral infection, the virus extends its tail like a tadpole, and as the viral infection progresses, it shrinks into a circular shape and its outline becomes darker.
 図8は、宿主細胞がSf9細胞でありウイルス感染初期(例えば図3の時刻t14~t15の期間)の撮影画像例(明視野観察法で撮影)である。図9は、宿主細胞がSf9細胞であり回収するのに適した状態(例えば図3の時刻t16~t17の期間)の撮影画像例(明視野観察法で撮影)である。
 図8、図9のように、宿主細胞がSf9細胞の場合、ウイルス感染初期は球形であり、感染が進むと輪郭が濃くなり(接着表面から剥がれる)、ウイルス感染が進むとさらに輪郭が濃くなる。
Fig. 8 shows an example of an image (taken by bright-field observation) of an Sf9 host cell at the early stage of viral infection (e.g., the period from time t14 to t15 in Fig. 3), while Fig. 9 shows an example of an image (taken by bright-field observation) of an Sf9 host cell in a state suitable for recovery (e.g., the period from time t16 to t17 in Fig. 3).
As shown in Figures 8 and 9, when the host cell is an Sf9 cell, the virus is spherical at the early stage of infection, and as the infection progresses, the outline becomes darker (the virus detaches from the adhesion surface), and as the virus infection progresses, the outline becomes darker still further.
 図10は、タンパク質回収判定システムの処理手順のフローチャートである。 Figure 10 is a flowchart of the processing procedure of the protein recovery determination system.
 (ステップS1)撮影装置2は、ウイルス感染した細胞集団を、所定時刻毎に撮影する。 (Step S1) The imaging device 2 captures images of the virus-infected cell population at predetermined times.
 (ステップS2)取得部101は、撮影装置2が撮影した画像を所定時刻毎に取得する。 (Step S2) The acquisition unit 101 acquires images captured by the image capture device 2 at predetermined times.
 (ステップS3)第1の判定部102は、学習済みの第1のモデル104に、ウイルス感染した細胞集団を時系列で撮影した第1の画像データを入力して、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるか否かを判定する。 (Step S3) The first judgment unit 102 inputs first image data obtained by photographing the virus-infected cell population in a time series into the trained first model 104, and judges whether the virus-infected cell population is in a suitable state for recovering proteins.
 (ステップS4)第1の判定部102は、回収するのに適した状態であると判定した場合(ステップS4;YES)、ステップS5の処理に進める。第1の判定部102は、回収時期ではないと判定した場合(ステップS4;NO)、ステップS1の処理に戻す。 (Step S4) If the first determination unit 102 determines that the state is suitable for collection (Step S4; YES), the process proceeds to Step S5. If the first determination unit 102 determines that it is not time to collect the waste (Step S4; NO), the process returns to Step S1.
 (ステップS5)出力部109は、第1の判定部102が判定したタンパク質を回収するのに適した状態であることを示す情報を、外部装置3へ出力する。 (Step S5) The output unit 109 outputs information indicating that the state determined by the first determination unit 102 is suitable for recovering the protein to the external device 3.
 これにより、本実施形態によれば、タンパク質を回収するのに適した状態か否かを判定することができる。そして、本実施形態によれば、適切なタイミングで(細胞死が少なく、タンパク質が十分細胞から産生した段階で)タンパク質を回収することができるので、セル・エンジニアリングによるタンパク質の生産量を増やすことができる。 As a result, according to this embodiment, it is possible to determine whether or not the state is suitable for recovering the protein. Furthermore, according to this embodiment, the protein can be recovered at the appropriate time (at a stage when there is little cell death and sufficient protein is produced by the cells), so the amount of protein produced by cell engineering can be increased.
 第1のモデル104では、時系列で撮影した画像データを用いるようにしたので、作業者による時刻の揺らぎ(fluctuation)、作業者の撮影能力による揺らぎ(光量やフォーカス等)をなくすことができる。このため、ディープラーニングで特徴量を特定することができ、出力データの正答率を向上させることができる。 The first model 104 uses image data captured in a time series, eliminating fluctuations in time caused by the worker and fluctuations caused by the worker's photography skills (such as light intensity and focus). This makes it possible to identify features using deep learning, improving the accuracy rate of the output data.
 また、第1のモデル104では、時系列の画像データを用いるようにしたので、作業者が気付くことができなかった、微細な変化も、ディープラーニングにより特徴量として特定することができ、出力データの正答率を向上させることができる。 In addition, the first model 104 uses time-series image data, so even minute changes that the worker would not notice can be identified as features through deep learning, improving the accuracy rate of the output data.
 図11は、本実施形態に係るタンパク質回収判定システムにおいて、タンパク質回収判定装置1Aを有する場合の構成例を示す図である。
 タンパク質回収判定装置1Aは、例えば、タンパク質回収判定装置1が備えている構成に、さらに、第2の判定部103と、任意に第2の学習部107と、任意に選択部110を備える。第2の判定部103は第2のモデル105を実行する。なお、第2のモデル105は、第2の判定部103が有していてもよい。
FIG. 11 is a diagram showing a configuration example of a protein recovery determination system according to this embodiment having a protein recovery determination device 1A.
The protein recovery determination apparatus 1A further includes, for example, a second determination unit 103, an optional second learning unit 107, and an optional selection unit 110 in addition to the configuration of the protein recovery determination apparatus 1. The second determination unit 103 executes a second model 105. The second determination unit 103 may have the second model 105.
 第2の判定部103、第2の学習部107、及び選択部110としては、プログラムを実行して各種制御を行うCPU、MPU、SoC、及び専用回路等のプロセッサ、並びにプロセッサを有するICを挙げることができる。 The second determination unit 103, the second learning unit 107, and the selection unit 110 may be processors such as a CPU, MPU, SoC, and dedicated circuits that execute programs and perform various controls, as well as ICs having a processor.
 撮影装置2は、培養容器内のウイルス感染させる前の宿主細胞の培養を、所定時刻毎(例えば0.5時間~10時間に1回)に撮影する。 The imaging device 2 photographs the host cell culture in the culture vessel before it is infected with the virus at predetermined time intervals (e.g., once every 0.5 to 10 hours).
 第2の判定部103は、記憶部108から取得された第2のモデル105(学習済みモデルa22)に、第2の入力データである拡大培養中のウイルス未感染の細胞集団を時系列で撮影した第2の画像データを入力して、第2の出力データであるウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるか否かを判定する。 The second judgment unit 103 inputs second image data, which is second input data obtained by photographing a virus-uninfected cell population in time series during expansion culture, into the second model 105 (trained model a22) acquired from the memory unit 108, and judges whether the virus-uninfected cell population, which is second output data, is in a suitable state for infecting the virus.
 第2の画像データは、細胞集団の培養面の、10%以上、20%以上、30%以上、40%以上、50%以上を含むことが好ましく、上限値は100%である。上述の細胞集団の細胞数を第2の画像データに含めるため、同一時刻に取得する第2の画像データは、複数に分割することができる。複数に分割するために、同一時刻に撮影する画像数は、複数枚(例えば、2~100枚)であってもよい。 The second image data preferably includes 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more of the culture surface of the cell population, with the upper limit being 100%. In order to include the number of cells in the above-mentioned cell population in the second image data, the second image data acquired at the same time can be divided into multiple pieces. In order to divide it into multiple pieces, the number of images taken at the same time may be multiple (e.g., 2 to 100).
 画像データとしては、明視野観察法、暗視野観察法、位相差観察法、微分干渉観察法、偏向観察法、レリーフコントラスト観察法、及び蛍光観察法、並びにMIX観察法により撮影した画像データが挙げられる。宿主細胞の染色は行わない方が好ましいことと、宿主細胞の増殖はコロニーの形成により、その外形の変化が大きいことから、深層学習において画像データに内在する特徴量として抽出されやすいこと、無色透明な宿主細胞もあることから、これらの画像データの中でも、明視野観察法、暗視野観察法、位相差観察法、微分干渉観察法、及びレリーフコントラスト観察法により撮影した画像データが好ましい。 Examples of image data include image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, polarized light observation, relief contrast observation, and fluorescence observation, as well as MIX observation. Of these image data, image data taken by bright-field observation, dark-field observation, phase contrast observation, differential interference contrast observation, and relief contrast observation are preferred, because it is preferable not to stain the host cells, the proliferation of host cells causes large changes in their external shape due to the formation of colonies, which makes them easy to extract as features inherent in the image data in deep learning, and there are also colorless and transparent host cells.
 第2のモデル105は、ニューラルネットワーク(第2のニューラルネットワーク)による深層学習により構築した、培養容器内の拡大培養中の細胞集団の画像から、ウイルス感染時期を判定するモデルである。第2の入力データは非構造化データであることから、深層学習により、第2のモデルの正答率を向上させることができる。深層学習の学習方法としては、DNN、RNN、CNN、LSTM、及びGAN、並びにこれらの2以上の組み合わせ等が挙げられる。 The second model 105 is a model constructed by deep learning using a neural network (second neural network) that determines the time of viral infection from an image of a cell population being expanded and cultured in a culture vessel. Because the second input data is unstructured data, the accuracy rate of the second model can be improved by deep learning. Examples of learning methods for deep learning include DNN, RNN, CNN, LSTM, and GAN, as well as combinations of two or more of these.
 コロニー形成により進む宿主細胞の増殖は、時系列でコロニーの形態が変わることから、宿主細胞のコロニーの画像には限定された領域(局所受容野)が含まれる。また、第2の入力データは複数のコロニーが含まれる画像データである。よって、深層学習による学習手法としては、局所受容野に対して重みの共有を行える学習手法である、CNNが好ましい。 Since the proliferation of host cells progresses through colony formation, and the morphology of the colony changes over time, the image of the host cell colony contains a limited area (local receptive field). In addition, the second input data is image data containing multiple colonies. Therefore, as a learning method using deep learning, CNN, which is a learning method that can share weights for local receptive fields, is preferable.
 第2のモデル105は、タンパク質回収判定装置1Aに含まれる第2の学習部107で学習して得られたモデルであっても、タンパク質回収判定装置1と同様の別の装置にて学習して得られたモデルであってもよい。 The second model 105 may be a model obtained by learning using a second learning unit 107 included in the protein recovery determination device 1A, or a model obtained by learning using another device similar to the protein recovery determination device 1.
 第2の学習部107は、取得部101で取得した第2の画像データ(画像データa24)を入力データとし、第2の判定部103の判定に対して評価を付与したデータを出力データとする教師データを用いて再学習させ、第2の学習部107に含まれる第2の更新部(図示せず)により、第2のモデル105を更新することができる。再学習は、取得部101で第2の画像データを取得する毎に行うことも、取得部101で第2の画像データを取得した後、記憶部108に記録して、随時(例えば、1~6月/回)行うこともできる。第2の学習部107は、生成した学習済みモデルa25を、記憶部108に記憶させる。 The second learning unit 107 uses the second image data (image data a24) acquired by the acquisition unit 101 as input data and data with an evaluation added to the judgment of the second judgment unit 103 as output data to perform re-learning using teacher data, and can update the second model 105 by a second update unit (not shown) included in the second learning unit 107. Re-learning can be performed every time the acquisition unit 101 acquires the second image data, or can be recorded in the storage unit 108 after the acquisition unit 101 acquires the second image data and performed as needed (for example, once every 1-6 months). The second learning unit 107 stores the generated trained model a25 in the storage unit 108.
 出力部109は、第1の判定部102が判定した結果を示す情報(判定した結果を示すデータa13)に加え、第2の判定部103が判定した結果を示す情報(判定した結果を示すデータa23)を、判定した結果を示すデータa2として外部装置3へ出力する。出力部109は、感染させるのに適した状態であると判定した撮影画像やコンフルエント率も外部装置3に出力するようにしてもよい。 The output unit 109 outputs information indicating the result of the judgment made by the first judgment unit 102 (data a13 indicating the result of the judgment) as well as information indicating the result of the judgment made by the second judgment unit 103 (data a23 indicating the result of the judgment) to the external device 3 as data a2 indicating the result of the judgment. The output unit 109 may also output the captured image and the confluence rate that have been determined to be in a suitable state for infection to the external device 3.
 選択部110は、取得部101が取得した画像データa3が、第1の画像データか、第2の画像データかを判定し、第1の判定部102を使用してタンパク質回収に適した状態か否かを判定するか、第2の判定部103を使用して感染させるのに適した状態であるか否かを判定するかを選択する。選択部110は、第1の判定部102を使用した判定を行うことを選択した場合、取得部101が取得した画像データa3を、画像データa11として第1の判定部102に出力する。一方、選択部110は、第2の判定部103を使用した判定を行うことを選択した場合、取得部101が取得した画像データa3を、画像データa21として第2の判定部103に出力する。 The selection unit 110 determines whether the image data a3 acquired by the acquisition unit 101 is the first image data or the second image data, and selects whether to use the first determination unit 102 to determine whether the state is suitable for protein recovery, or the second determination unit 103 to determine whether the state is suitable for infection. If the selection unit 110 selects to make a determination using the first determination unit 102, it outputs the image data a3 acquired by the acquisition unit 101 to the first determination unit 102 as image data a11. On the other hand, if the selection unit 110 selects to make a determination using the second determination unit 103, it outputs the image data a3 acquired by the acquisition unit 101 to the second determination unit 103 as image data a21.
 次に、第2の学習部107による第2のモデル105の作成例を説明する。
 図12は、第2の学習部107による第2のモデルの作成例である。図12のように、第2の学習部107は、第2の教師データ(実績値)を、第2の学習部107に入力することで、第2のモデル105を作成する。なお、第2の学習部107は、宿主細胞と感染ウイルスとの組毎に学習を行うことができる。感染させるのに適した状態か否かの判定は、経験者が判断した結果である。
Next, an example of creating the second model 105 by the second learning unit 107 will be described.
Fig. 12 is an example of the creation of a second model by the second learning unit 107. As shown in Fig. 12, the second learning unit 107 creates a second model 105 by inputting second teacher data (actual values) to the second learning unit 107. The second learning unit 107 can perform learning for each pair of a host cell and an infectious virus. The determination of whether or not a state is suitable for infection is the result of a judgment made by an experienced person.
 第2のモデル105は、宿主細胞毎に作成された複数のモデルを備えてもよい。この場合は、感染ウイルスが異なっていても、宿主細胞が同じであれば、同じモデルを用いるようにしてもよい。例えば、第2のモデル105-1の宿主細胞がSf9細胞であり、第2のモデル105-2の宿主細胞がHigh Five細胞であり、第2のモデル105-3の宿主細胞がSf21細胞であり、第2のモデル105-4の宿主細胞がTni細胞であるようにしてもよい。 The second model 105 may include multiple models created for each host cell. In this case, even if the infecting virus is different, the same model may be used as long as the host cell is the same. For example, the host cell of the second model 105-1 may be an Sf9 cell, the host cell of the second model 105-2 may be a High Five cell, the host cell of the second model 105-3 may be an Sf21 cell, and the host cell of the second model 105-4 may be a Tni cell.
 図13は、本実施形態に係る第2の判定部103の判定例を示す図である。第2の判定部103は、第2のモデルを実行し、所定時刻毎に撮影画像を第2のモデル105に入力して、感染させるのに適した状態か否かを判定する。第2のモデル105が、宿主細胞毎にモデルを備える場合、判定に際して、第2の判定部103は、宿主細胞を示す情報に基づいて、第2のモデル105を選択するようにしてもよい。なお、宿主細胞を示す情報は、例えば、作業者が外部装置3を操作して入力し、取得部101が取得する第2の画像データに撮影対象を識別するための識別情報として宿主細胞を示す情報を付加してもよい。 FIG. 13 is a diagram showing an example of a judgment made by the second judgment unit 103 according to this embodiment. The second judgment unit 103 executes the second model, inputs the captured image to the second model 105 at each predetermined time, and judges whether or not the state is suitable for infection. If the second model 105 has a model for each host cell, the second judgment unit 103 may select the second model 105 based on information indicating the host cell when making the judgment. Note that the information indicating the host cell may be input, for example, by an operator operating the external device 3, and information indicating the host cell may be added to the second image data acquired by the acquisition unit 101 as identification information for identifying the captured subject.
 次に、感染時期の撮影画像例を説明する。
 図14は、宿主細胞がHigh Five細胞であり感染時期(例えば図4の時刻t13~t14の期間)の撮影画像例(明視野観察法で撮影)である。
Next, examples of images captured during the infection period will be described.
FIG. 14 shows an example of an image (taken by bright-field observation) taken during the infection period (for example, the period from time t13 to t14 in FIG. 4) when the host cells are High Five cells.
 図15は、宿主細胞がSf9細胞であり感染時期(例えば図4の時刻t13~t14の期間)の撮影画像例(明視野観察法で撮影)である。 Figure 15 shows an example of an image (taken using bright-field observation) taken during the infection period (e.g., the period from time t13 to t14 in Figure 4) when the host cell was Sf9 cell.
 次に、タンパク質回収判定システム5Aが行う処理手順例を説明する。
 図16は、本実施形態に係るタンパク質回収判定システムが行う処理手順のフローチャートである。
Next, an example of a processing procedure performed by the protein recovery determination system 5A will be described.
FIG. 16 is a flowchart of the processing procedure performed by the protein recovery determination system according to this embodiment.
 (ステップS21)撮影装置2は、ウイルス未感染の細胞集団の培養を、所定時刻毎に撮影する。 (Step S21) The imaging device 2 captures images of the culture of the virus-uninfected cell population at predetermined times.
 (ステップS22)取得部101は、撮影装置2が撮影した画像を所定時刻毎に取得する。 (Step S22) The acquisition unit 101 acquires images captured by the image capture device 2 at predetermined times.
 (ステップS23)第2の判定部103は、学習済みの第2のモデル105に、ウイルス未感染の細胞集団の培養を時系列で撮影した第2の画像データを入力して、ウイルスを感染させるのに適した状態であるか否かを示す情報に基づいて回収時期を判定する。 (Step S23) The second judgment unit 103 inputs second image data obtained by photographing the culture of a cell population not infected with a virus in a time series into the trained second model 105, and judges the time to collect the cells based on information indicating whether the cells are in a suitable state for infecting the virus.
 (ステップS24)第2の判定部103は、感染時期であると判定した場合(ステップS24;YES)、ステップS25の処理に進める。第2の判定部103は、感染時期ではないと判定した場合(ステップS24;NO)、ステップS21の処理に戻す。 (Step S24) If the second judgment unit 103 judges that it is the time of infection (Step S24; YES), the process proceeds to step S25. If the second judgment unit 103 judges that it is not the time of infection (Step S24; NO), the process returns to step S21.
 (ステップS25)出力部109は、第2の判定部103が判定したウイルスを感染させるのに適した時期であることを示す情報を、外部装置3へ出力する。次いで、培養容器にウイルスを投入した後、図10に示す処理手順のフローチャートを実行する。 (Step S25) The output unit 109 outputs information indicating that it is a suitable time to infect the virus determined by the second determination unit 103 to the external device 3. Next, after the virus is introduced into the culture vessel, the processing procedure shown in the flowchart of FIG. 10 is executed.
 タンパク質回収判定装置1Aは、第2の判定部103が判定を行った後、第1の判定部102が判定を行う。すなわち、第2の判定部103及び第1の判定部102は、第2の判定部103及び第1の判定部102の順に判定する。 In the protein recovery determination device 1A, the second determination unit 103 performs a determination, and then the first determination unit 102 performs a determination. That is, the second determination unit 103 and the first determination unit 102 perform their determinations in this order.
 ウイルス感染のタイミングが適切である場合は、第1のニューラルネットワークの学習による第1の学習モデルの正答率を向上させることができる。細胞間の隙間が多い場合は、細胞数が少ないことだけでなく、細胞間の応答が弱いことによる細胞死により、タンパク質回収量が減るという問題があった。細胞間の隙間がない場合は、培養液からの養分の吸収が十分に行えないことによる栄養不足による細胞死により、タンパク質回収量が減るという問題があった。本実施形態によれば、細胞がウイルス感染に耐えられる適切な時期にウイルスを感染させることができるので、これらの問題も解決できる効果を得ることができる。 If the timing of viral infection is appropriate, the accuracy rate of the first learning model obtained by learning the first neural network can be improved. If there are many gaps between cells, there is a problem that not only is the number of cells small, but also the amount of protein recovered is reduced due to cell death caused by weak intercellular response. If there are no gaps between cells, there is a problem that the amount of protein recovered is reduced due to cell death caused by nutrient deficiency caused by insufficient absorption of nutrients from the culture medium. According to this embodiment, the virus can be infected at an appropriate time when the cells can withstand viral infection, so it is possible to obtain the effect of solving these problems.
 作業者は、ウイルスを感染させたタイミングを知っているため、例えば、作業者が外部装置3を操作して感染時期の判定を行うことを入力または選択して、取得部101が入力または選択結果を取得するようにしてもよい。なお、ウイルス感染は、タンパク質回収判定装置1Aが出力する結果に基づいて、他の外部装置3が自動的に行ってもよい。この場合は、感染前であるか感染後であるかを、タンパク質回収判定装置1Aが自装置で判定して取得できる。例えば、取得部101がウイルス未感染状態であるかウイルス感染状態であるかを示す情報を取得し、選択部110が取得された結果に基づいて、第1の判定部102によりタンパク質回収時期を判定するか、第2の判定部103によりウイルス感染時期を判定するかを選択するようにしてもよい。選択回路は、ウイルス未感染状態であるかウイルス感染状態であるかを示す情報を判別する学習モデルに基づいて選択することができる。 Since the operator knows the timing of the virus infection, for example, the operator may operate the external device 3 to input or select to determine the time of infection, and the acquisition unit 101 may acquire the input or selection result. Note that the virus infection may be performed automatically by another external device 3 based on the result output by the protein recovery determination device 1A. In this case, the protein recovery determination device 1A can determine and acquire whether it is before or after infection. For example, the acquisition unit 101 may acquire information indicating whether it is in a virus-free state or a virus-infected state, and the selection unit 110 may select whether to determine the protein recovery time by the first judgment unit 102 or to determine the virus infection time by the second judgment unit 103 based on the acquired result. The selection circuit may select based on a learning model that distinguishes information indicating whether it is in a virus-free state or a virus-infected state.
 これにより、タンパク質回収判定装置1Aは、ウイルス感染時期を判定するのか、タンパク質回収時期を判定するのかを取得し、取得した結果に基づいて判定部、モデルおよび学習部を選択するようにしてもよい。 In this way, the protein recovery determination device 1A can obtain whether to determine the time of viral infection or the time of protein recovery, and select the determination unit, model, and learning unit based on the obtained result.
 タンパク質回収判定システム5及び5Aは、細胞を用いたタンパク質の製造(セル・エンジニアリング)で用いられる。 The protein recovery determination systems 5 and 5A are used in the production of proteins using cells (cell engineering).
 本発明におけるタンパク質回収判定装置1(または1A)の機能の全てまたは一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりタンパク質回収判定装置1(または1A)が行う全ての処理または一部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。  A program for implementing all or part of the functions of the protein recovery determination device 1 (or 1A) of the present invention may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed to perform all or part of the processes performed by the protein recovery determination device 1 (or 1A). Note that the term "computer system" here includes hardware such as an OS and peripheral devices. The term "computer system" also includes a WWW system equipped with a homepage providing environment (or display environment). The term "computer-readable recording medium" refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems. The term "computer-readable recording medium" also includes those that hold a program for a certain period of time, such as volatile memory (RAM) inside a computer system that becomes a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The above program may also be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium, or by transmission waves in the transmission medium. Here, the "transmission medium" that transmits the program refers to a medium that has the function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The above program may also be one that realizes part of the above-mentioned functions. Furthermore, it may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system, a so-called difference file (difference program).
 図18は、第1のモデルおよび第2のモデルによる判定の平均正答率と平均抗体収量を示す図である。図18は、撮影装置2により撮影された3枚の画像(n=3)の各々に対して、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかの判定(第1の判定)と、ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるか否かの判定(第2の判定)とを行った結果を示している。図18では、比較のため、第1の判定および第2の判定を、担当者A(10年超の経験を積んだスキルの高い担当者)および担当者B(1年未満の経験の浅いスキルの低い担当者)が行った場合の結果も合わせて示している。また、σは抗体収量の標準偏差を示す。 Figure 18 shows the average accuracy rate and average antibody yield of the judgments made by the first and second models. Figure 18 shows the results of judging whether a virus-infected cell population is in a suitable state for recovering proteins (first judgment) and whether a virus-uninfected cell population is in a suitable state for infecting the virus (second judgment) for each of three images (n=3) taken by the image capture device 2. For comparison, Figure 18 also shows the results of the first and second judgments made by person A (a highly skilled person with over 10 years of experience) and person B (a less skilled person with less than 1 year of experience). σ indicates the standard deviation of the antibody yield.
 図18に示すように、細胞腫「Sf9」とウイルス種「Tif1-r」との組み合わせに対する結果では、第1の判定および第2の判定の両方を担当者Aが行った場合、平均正答率は「100%」となり、平均抗体収量は「15.4」となり、標準偏差σは「2.16」となった。一方、第1の判定および第2の判定を第1のモデルおよび第2のモデルによって行った場合、平均正答率は「93%」となり、平均抗体収量は「14.1」となり、標準偏差σは「2.54」となった。このことから、第1のモデルおよび第2のモデルを用いた場合であっても、高精度な判定を行うことができ、ひいては、高い抗体収量を達成できることを確認できた。同様に、細胞腫「Sf9」とウイルス種「MD5」との組み合わせや、細胞腫「HF」とウイルス種「Mi-2」との組み合わせに対しても、高精度な判定を行うことができ、ひいては、高い抗体収量を達成することができることを確認できた。 As shown in FIG. 18, in the results for the combination of the cell tumor "Sf9" and the virus species "Tif1-r", when both the first and second judgments were performed by person A, the average correct answer rate was "100%," the average antibody yield was "15.4", and the standard deviation σ was "2.16". On the other hand, when the first and second judgments were performed using the first and second models, the average correct answer rate was "93%,", the average antibody yield was "14.1", and the standard deviation σ was "2.54". From this, it was confirmed that even when the first and second models were used, highly accurate judgments could be made, and thus a high antibody yield could be achieved. Similarly, it was confirmed that highly accurate judgments could be made, and thus a high antibody yield could be achieved, for the combination of the cell tumor "Sf9" and the virus species "MD5", and for the combination of the cell tumor "HF" and the virus species "Mi-2".
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。  Although the above describes the form for carrying out the present invention using an embodiment, the present invention is in no way limited to such an embodiment, and various modifications and substitutions can be made without departing from the spirit of the present invention.
5,5A…タンパク質回収判定システム、1,1A…タンパク質回収判定装置、2…撮影装置、3…外部装置、101…取得部、102…第1の判定部、103…第2の判定部、104,104-1,104-2,104-3,104-4…第1のモデル、105,105-1,105-2,105-3,105-4…第2のモデル、106…第1の学習部、107…第2の学習部、108…記憶部、109…出力部、110…選択部、21…撮影手段、22…培養容器、a1,a3…画像データ、a2…判定した結果を示すデータ、a11,a21…画像データ、a12,a22…学習済みモデル、a13,a23…判定した結果を示すデータ、a14,a24…画像データ、a15,a25…学習済みモデル 5, 5A...Protein recovery determination system, 1, 1A...Protein recovery determination device, 2...Photographing device, 3...External device, 101...Acquisition unit, 102...First determination unit, 103...Second determination unit, 104, 104-1, 104-2, 104-3, 104-4...First model, 105, 105-1, 105-2, 105-3, 105-4...Second model, 106...First learning unit, 107...Second learning unit, 108...Storage unit, 109...Output unit, 110...Selection unit, 21...Photographing means, 22...Culture vessel, a1, a3...Image data, a2...Data showing the result of the determination, a11, a21...Image data, a12, a22...Trained model, a13, a23...Data showing the result of the determination, a14, a24...Image data, a15, a25...Trained model

Claims (12)

  1.  第1の入力データとして、ウイルス感染した細胞集団の培養を時系列で撮影して得られた第1の画像データを入力し、第1の出力データとして、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定する、第1の判定部と、
     培養容器内を時系列で撮影して画像データを取得する取得部と、を備え、
     前記第1の判定部は第1のモデルで判定し、
     前記第1のモデルは、前記第1の入力データの実績値及び前記第1の出力データの実績値を第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルである、
     タンパク質回収判定システム。
    a first determination unit that receives as input data first image data obtained by photographing the culture of a virus-infected cell population in a time series, and determines as first output data whether the virus-infected cell population is in a suitable state for recovering a protein;
    An acquisition unit that acquires image data by photographing the inside of the culture vessel in a time series,
    The first determination unit performs determination using a first model,
    The first model is a trained model obtained by deep learning a first neural network using the actual value of the first input data and the actual value of the first output data as first teacher data.
    Protein recovery determination system.
  2.  第2の入力データとして、ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データを入力し、第2の出力データとして、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定する、第2の判定部を、さらに備え、
     前記第2の判定部は第2のモデルで判定し、
     前記第2のモデルは、前記第2の入力データの実績値及び前記第2の出力データの実績値を第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルであり、
     前記第1の判定部は、前記第2の判定部が判定を行った後に判定する、
     請求項1に記載のタンパク質回収判定システム。
    a second determination unit that receives as second input data second image data obtained by photographing the expansion culture of a virus-uninfected cell population in a time series, and determines as second output data whether the virus-uninfected cell population is in a suitable state for infecting the virus,
    The second determination unit performs determination using a second model,
    the second model is a trained model obtained by deep learning a second neural network using actual values of the second input data and actual values of the second output data as second teacher data;
    The first determination unit makes a determination after the second determination unit makes a determination.
    The protein recovery determination system according to claim 1 .
  3.  前記細胞集団の細胞が、接着細胞である、請求項1または請求項2に記載のタンパク質回収判定システム。 The protein recovery determination system according to claim 1 or 2, wherein the cells of the cell population are adherent cells.
  4.  前記接着細胞が、昆虫細胞である、請求項3に記載のタンパク質回収判定システム。 The protein recovery determination system according to claim 3, wherein the adherent cells are insect cells.
  5.  前記昆虫細胞が、Sf(Spodoptera frugiperda)9細胞、Sf21細胞、Tni(Trichoplusia ni)細胞、およびHigh Five細胞のうちの1つである、請求項4に記載のタンパク質回収判定システム。 The protein recovery determination system according to claim 4, wherein the insect cells are one of Sf (Spodoptera frugiperda) 9 cells, Sf21 cells, Tni (Trichoplusia ni) cells, and High Five cells.
  6.  前記第1のニューラルネットワークを学習させる第1の学習部を、さらに備える、請求項1または請求項2に記載のタンパク質回収判定システム。 The protein recovery determination system according to claim 1 or 2, further comprising a first learning unit that trains the first neural network.
  7.  前記第2のニューラルネットワークを学習させる第2の学習部を、さらに備える、請求項2に記載のタンパク質回収判定システム。 The protein recovery determination system according to claim 2, further comprising a second learning unit that trains the second neural network.
  8.  前記取得部は、細胞集団がウイルス未感染状態であるか、ウイルス感染状態であるかを示す情報を取得し、
     前記取得部によって取得された情報に基づいて、前記第1の判定部、及び前記第2の判定部のうち用いる判定部を1つ選択する、請求項2に記載のタンパク質回収判定システム。
    the acquiring unit acquires information indicating whether the cell population is in a virus-uninfected state or a virus-infected state,
    The protein recovery determination system according to claim 2 , further comprising: a determination unit for use selected from the first determination unit and the second determination unit based on the information acquired by the acquisition unit.
  9.  第1の入力データが、ウイルス感染した細胞集団の培養を時系列で撮影して得られた第1の画像データであり、
     第1の出力データが、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定したデータであり、
     前記第1の入力データ及び前記第1の出力データを第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルを記録した記録媒体。
    the first input data is first image data obtained by photographing a culture of a virus-infected cell population in a time series;
    The first output data is data obtained by determining whether the virus-infected cell population is in a state suitable for recovering a protein;
    A recording medium on which a trained model obtained by deep learning of a first neural network using the first input data and the first output data as first teacher data is recorded.
  10.  第2の入力データが、ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データであり、
     第2の出力データが、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定したデータであり、
     前記第2の入力データ及び前記第2の出力データを第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルを記録した記録媒体。
    The second input data is second image data obtained by photographing an expansion culture of a virus-uninfected cell population in a time series,
    The second output data is data obtained by determining whether the state of the virus-uninfected cell population is suitable for infecting the virus,
    A recording medium on which a trained model obtained by deep learning a second neural network using the second input data and the second output data as second teacher data is recorded.
  11.  ウイルス感染した細胞集団の培養を時系列で撮影して第1の画像データを取得し、
     前記第1の画像データを第1の入力データとして第1の判定部に入力し、
     前記第1の判定部から第1の出力データとして、ウイルス感染した細胞集団がタンパク質を回収するのに適した状態であるかを判定し、
     前記第1の判定部は第1のモデルで判定し、
     前記第1のモデルは、前記第1の入力データの実績値及び前記第1の出力データの実績値を第1の教師データとして、第1のニューラルネットワークを深層学習することにより得られた学習済みモデルである、タンパク質回収判定方法。
    acquiring first image data by photographing a culture of the virus-infected cell population over time;
    inputting the first image data as first input data to a first determination unit;
    determining whether the virus-infected cell population is in a state suitable for recovering a protein as first output data from the first determination unit;
    The first determination unit performs determination using a first model,
    the first model is a trained model obtained by deep learning of a first neural network using actual values of the first input data and actual values of the first output data as first teacher data.
  12.  前記細胞集団がタンパク質を回収するのに適した状態であるかの前記判定を行う前に、
     ウイルス未感染の細胞集団の拡大培養を時系列で撮影して得られた第2の画像データを取得し、
     前記第2の画像データを第2の入力データとして第2の判定部に入力し、
     前記第2の判定部から第2の出力データとして、前記ウイルス未感染の細胞集団にウイルスを感染させるのに適した状態であるかを判定し、
     前記第2の判定部は第2のモデルで判定し、
     前記第2のモデルは、前記第2の入力データの実績値及び前記第2の出力データの実績値を第2の教師データとして、第2のニューラルネットワークを深層学習することにより得られた学習済みモデルである、請求項11に記載のタンパク質回収判定方法。
    Prior to said determination of whether said cell population is suitable for recovering a protein,
    acquiring second image data obtained by photographing the expansion culture of the virus-uninfected cell population in a time series;
    inputting the second image data as second input data to a second determination unit;
    determining whether the state is suitable for infecting the virus-uninfected cell population with a virus as second output data from the second determination unit;
    The second determination unit performs determination using a second model,
    The protein recovery determination method according to claim 11, wherein the second model is a trained model obtained by deep learning a second neural network using an actual value of the second input data and an actual value of the second output data as second teacher data.
PCT/JP2023/041605 2022-11-21 2023-11-20 Protein collection determination system, protein collection determination method, and recording medium WO2024111540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022185794 2022-11-21
JP2022-185794 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111540A1 true WO2024111540A1 (en) 2024-05-30

Family

ID=91195629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041605 WO2024111540A1 (en) 2022-11-21 2023-11-20 Protein collection determination system, protein collection determination method, and recording medium

Country Status (1)

Country Link
WO (1) WO2024111540A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044974A (en) * 2007-08-16 2009-03-05 Univ Nagoya Method for constructing prediction model for predicting quality of cell, program for constructing prediction model, recording medium recording the program, and device for constructing prediction model

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044974A (en) * 2007-08-16 2009-03-05 Univ Nagoya Method for constructing prediction model for predicting quality of cell, program for constructing prediction model, recording medium recording the program, and device for constructing prediction model

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CONTRERAS-GóMEZ ANTONIO; BEAS-CATENA ALBA; SáNCHEZ-MIRóN ASTERIO; GARCíA-CAMACHO FRANCISCO; MOLINA GRIMA EMILI: "The use of an artificial neural network to model the infection strategy for baculovirus production in suspended insect cell cultures", CYTOTECHNOLOGY, SPRINGER NETHERLANDS, DORDRECHT, vol. 70, no. 2, 4 August 2017 (2017-08-04), Dordrecht, pages 555 - 565, XP036457385, ISSN: 0920-9069, DOI: 10.1007/s10616-017-0128-x *
DANIEL A. M. PAIS; RUI M. C. PORTELA; MANUEL J. T. CARRONDO; INÊS A. ISIDRO; PAULA M. ALVES: "Enabling PAT in insect cell bioprocesses: In situ monitoring of recombinant adeno‐associated virus production by fluorescence spectroscopy", BIOTECHNOLOGY AND BIOENGINEERING, JOHN WILEY, HOBOKEN, USA, vol. 116, no. 11, 26 July 2019 (2019-07-26), Hoboken, USA, pages 2803 - 2814, XP071131682, ISSN: 0006-3592, DOI: 10.1002/bit.27117 *
LAURA SANDER ; ANNA HARRYSSON: "Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein", CYTOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 54, no. 1, 14 April 2007 (2007-04-14), Do , pages 35 - 48, XP019499831, ISSN: 1573-0778, DOI: 10.1007/s10616-007-9064-5 *
PAIS DANIEL A, GALRÃO PAULO R. S.; KRYZHANSKA ANASTASIYA; BARBAU JÉRÉMIE; ISIDRO INÊS A.; ALVES PAULA M.: "Holographic Imaging of Insect Cell Cultures: Online Non-Invasive Monitoring of Adeno-Associated Virus Production and Cell Concentration", PROCESSES, M D P I AG, CH, vol. 8, no. 4, 22 April 2020 (2020-04-22), CH , pages 487, XP093173002, ISSN: 2227-9717, DOI: 10.3390/pr8040487 *
ÜSTÜN-AYTEKIN ÖZLEM, GÜRHAN İSMET DELILOĞLU; OHURA KAYOKO; IMAI TERUKO; ÖNGEN GAYE: "Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV", CYTOTECHNOLOGY, SPRINGER NETHERLANDS, DORDRECHT, vol. 66, no. 1, 1 January 2014 (2014-01-01), Dordrecht, pages 159 - 168, XP093173003, ISSN: 0920-9069, DOI: 10.1007/s10616-013-9549-3 *

Similar Documents

Publication Publication Date Title
Colson et al. Evidence of SARS-CoV-2 re-infection with a different genotype
US20170061608A1 (en) Cloud-based pathological analysis system and method
WO2022017197A1 (en) Intelligent product quality inspection method and apparatus
KR102503116B1 (en) Automatic Data Set Generation Device and their Control Method for AI Machine Learning Learning
WO2021082428A1 (en) Semi-supervised learning-based image classification method and apparatus, and computer device
EP3706068A1 (en) Land use determination system, land use determination method and program
CN111968096A (en) Surface feature-based prawn white spot syndrome virus detection method and system
CN116863342B (en) Large-scale remote sensing image-based pine wood nematode dead wood extraction method
Lee et al. Helminth egg analysis platform (HEAP): An opened platform for microscopic helminth egg identification and quantification based on the integration of deep learning architectures
Jericević et al. Validation of an imaging system: steps to evaluate and validate a microscope imaging system for quantitative studies.
WO2024111540A1 (en) Protein collection determination system, protein collection determination method, and recording medium
US20220101568A1 (en) Image generation system, image generation method, and non-transitory computer-readable storage medium
Shah et al. Automatic detection and classification of tuberculosis bacilli from camera-enabled Smartphone microscopic images
Ayas et al. Microscopic image segmentation based on firefly algorithm for detection of tuberculosis bacteria
TW201039246A (en) Method for continuously outputting character by video-recording
CN113421221A (en) Method, storage medium and device for detecting quality of early iPSCs
Coberley et al. Identification and expression of immunogenic proteins of a disease-associated marine turtle herpesvirus
Driscoll et al. The airplane information management system: An integrated real-time flight-deck control system
WO2021130978A1 (en) Motion analysis system and motion analysis program
McCracken et al. Rapid in-process measurement of live virus vaccine potency using laser force cytology: paving the way for rapid vaccine development
Song et al. Improved YOLOv7 X-Ray Image Real-Time Detection of Prohibited Items.
Wadhawan et al. Towards interpreting zoonotic potential of betacoronavirus sequences with attention
JP7245749B2 (en) Evaluation support system, evaluation support method, and program
CN117377772A (en) Rapid, automated image-based virus plaque and efficacy assays
Bogdanchikov et al. Face extraction and recognition from public images using HIPI