WO2024111463A1 - Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body - Google Patents

Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body Download PDF

Info

Publication number
WO2024111463A1
WO2024111463A1 PCT/JP2023/040843 JP2023040843W WO2024111463A1 WO 2024111463 A1 WO2024111463 A1 WO 2024111463A1 JP 2023040843 W JP2023040843 W JP 2023040843W WO 2024111463 A1 WO2024111463 A1 WO 2024111463A1
Authority
WO
WIPO (PCT)
Prior art keywords
p3ha
resin composition
resin
poly
based resin
Prior art date
Application number
PCT/JP2023/040843
Other languages
French (fr)
Japanese (ja)
Inventor
郁弥 迫
拓 野村
信雄 中村
遼 大橋
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024111463A1 publication Critical patent/WO2024111463A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring

Definitions

  • the present invention relates to a method for producing molded bodies of poly(3-hydroxyalkanoate)-based resins (hereinafter sometimes referred to as "P3HA-based resins").
  • Biodegradable resins such as P3HA-based resins (for example, polyhydroxyalkanoic acid (hereinafter, sometimes referred to as "PHA” or “P3HA”)) are being increasingly used in various environmentally friendly applications due to their biodegradability.
  • P3HA-based resins When using P3HA-based resins, they may be molded into pellets for transportation or processing.
  • Patent Document 1 describes a method for producing polyester resin molded products by melt extruding a polyester resin composition, in which immediately after melt extrusion, the polyester resin composition is cooled in a medium in which PHA fine particles are dispersed to produce PHA pellets, etc.
  • the present invention aims to provide a technology that can suppress adhesion of molded bodies to each other and to the cutter, and can efficiently manufacture molded bodies of P3HA-based resin.
  • the inventors conducted extensive research to solve the above problems, and discovered that by adding water to the strands (hereinafter sometimes simply referred to as "strands") obtained from a resin composition containing a P3HA-based resin (hereinafter sometimes referred to as a "P3HA-based resin composition”) when cutting the strands, the molded bodies can be prevented from sticking to each other and to the cutter and the molded body discharge section.
  • strands a resin composition containing a P3HA-based resin
  • P3HA-based resin composition a resin composition containing a P3HA-based resin
  • the inventors also discovered that by holding the molded bodies after cutting in a holding tank (agitation tank), the molded bodies can be prevented from sticking to each other more reliably, and this led to the completion of the present invention.
  • one aspect of the present invention is a method for producing a molded product of a P3HA-based resin (hereinafter referred to as "this manufacturing method"), comprising: (i) a melt extrusion step in which a resin composition containing a P3HA-based resin is melted and extruded in an extruder; (ii) a stranding step in which the molten resin composition obtained in step (i) is cooled in a water bath to obtain strands; (iii) a cutting step in which the strands obtained in step (ii) are cut while adding water to a cutter; and (iv) a holding step in which the cut molded product obtained in step (iii) is held at Tc-25°C to Tc+15°C (where Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
  • One aspect of the present invention provides a technology that can suppress adhesion of molded bodies to each other and to the cutter, and can efficiently manufacture molded bodies of P3HA-based resin.
  • the inventors therefore conducted extensive research to solve the above problems, and have succeeded in obtaining the following findings.
  • adding water to the strands and cutter can prevent the molded bodies from adhering to each other and to the cutter or the molded body discharge section.
  • This manufacturing method is extremely advantageous in the manufacture of molded bodies of P3HA-based resin, since it suppresses adhesion between the molded bodies and adhesion to the cutter, and allows molded bodies of P3HA-based resin to be manufactured with high productivity. Furthermore, this manufacturing method does not require the addition of an agent to prevent adhesion between the molded bodies, and therefore molded bodies with high biodegradability can be obtained. Therefore, with the above-mentioned configuration, the amount of plastic waste generated can be reduced, which can contribute to the achievement of Sustainable Development Goals (SDGs), such as Goal 12 "Ensure sustainable consumption and production patterns" and Goal 14 "Conserve and sustainably use the oceans and marine resources for sustainable development".
  • SDGs Sustainable Development Goals
  • Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin.
  • the "crystallization temperature of the resin composition” is a temperature measured by the method described in the Examples).
  • the production method preferably includes the following step in addition to the above steps (i) to (iv).
  • this manufacturing method can suppress adhesion of the molded bodies to each other and to the cutter, and can produce molded bodies of P3HA-based resin with high productivity.
  • Step (i) is a melt extrusion step in which a resin composition containing a P3HA-based resin (hereinafter, sometimes referred to as "the resin composition") is melted in an extruder and extruded.
  • the resin composition a resin composition containing a P3HA-based resin
  • P3HA-based resin refers to a P3HA-based resin having the following formula (1): [—O—CHR—CH 2 —CO—] (1) (wherein R is an alkyl group represented by C n H 2n+1 , and n is an integer of 1 to 15.) means a copolymer having one or more 3-hydroxyalkanoate repeating units as essential structural units.
  • R is an alkyl group represented by C n H 2n+1 , and n is an integer of 1 to 15.
  • P3HA-based resin may also be referred to as "P3HA”.
  • the P3HA-based resin is not particularly limited as long as it is included in the above formula (1).
  • the P3HA-based resin may be a copolymer consisting of two or more types of 3-hydroxyalkanoate repeating units, or a copolymer consisting of a 3-hydroxyalkanoate repeating unit and other repeating units.
  • the "P3HA-based resin” means a polymer (copolymer) containing 50 mol % or more of the 3-hydroxyalkanoate repeating units out of the total monomer repeating units (100 mol %).
  • the P3HA-based resin may be a copolymer consisting of only 3-hydroxyalkanoate repeating units, or a copolymer containing a 3-hydroxyalkanoate repeating unit and other repeating units.
  • the P3HA resin according to the present production method preferably contains a 3-hydroxybutyrate repeating unit (a repeating unit in which R is CH3 in the above formula (1)) as the 3-hydroxyalkanoate repeating unit.
  • the P3HA resin according to the present production method may be a poly(3-hydroxybutyrate) containing only 3-hydroxybutyrate as a repeating unit, or may be a copolymer of 3-hydroxybutyrate and another hydroxyalkanoate.
  • the P3HA-based resin may be a homopolymer, a mixture of a homopolymer and one or more types of copolymers, or a mixture of two or more types of copolymers.
  • the type of copolymerization is not particularly limited, and may be random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization, etc.
  • examples of P3HA-based resins include poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HH), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
  • P3HB poly(3-hydroxybutyrate)
  • P3HB3HP poly(3-hydroxybutyrate-co-3-hydroxypropionate)
  • P3HB3HH poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
  • P3HB3HH poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
  • P3HB3HV poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
  • Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (P3HB3HO), poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) (P3HB3HOD), poly(3-hydroxybutyrate-co-3-hydroxydecanoate) (P3HB3HD), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), etc.
  • P3HB3HH, P3HB4HB, and P3HB3HP are preferred.
  • P3HB3HH and P3HB4HB are particularly preferred because they are easy to produce industrially. From the viewpoint of industrial productivity, in addition to the above, P3HB and P3HB3HV are also preferred.
  • the P3HA resin is preferably produced by a microorganism.
  • the microorganism that produces the P3HA resin is not particularly limited as long as it is a microorganism capable of producing the P3HA resin.
  • the first P3HB3HH-producing bacterium was Bacillus megaterium, which was discovered in 1925, and other natural microorganisms include Cupriavidus necator (formerly classified as Alcaligenes eutrophus and Ralstonia eutropha) and Alcaligenes latus. It is known that P3HB3HH accumulates within the cells of these microorganisms.
  • Aeromonas kiabiei which produces P3HB3HH
  • Aeromonas kiabiei which produces P3HB3HH
  • P3HB4HB-producing bacterium Alcaligenes eutrophus.
  • Alcaligenes eutrophus AC32 (FERM BP-6038) (T. Fukui, Y. Doi, J. Bateriol., 179, pp.
  • P3HB3HH can also be produced by the method described in, for example, International Publication No. 2010/013483.
  • Commercially available products of P3HB3HH include Kaneka Biodegradable Polymer PHBH (registered trademark) manufactured by Kaneka Corporation.
  • the P3HA resin contains 3-hydroxybutyrate units (hereinafter also referred to as "3HB units"), and the content of 3HB units out of 100 mol% of all repeating units in the P3HA resin is preferably 82 mol% or more, more preferably 84 mol% or more, and even more preferably 86 mol% or more.
  • 3HB units 3-hydroxybutyrate units
  • the P3HA resin contains 3HB units, and the content of 3HB units in 100 mol% of all repeating units in the P3HA resin is preferably 99 mol% or less, more preferably 97 mol% or less, and even more preferably 95 mol% or less.
  • the content of 3HB units in the P3HA resin is 99 mol% or less, excellent effects are achieved in terms of the physical properties of the resin composition containing the P3HA resin. Note that when the resin composition is a blend of multiple P3HA resins, it is intended that the average 3HB unit content of all the P3HA resins contained in the resin composition be within this range.
  • the weight average molecular weight (hereinafter sometimes referred to as Mw) of the P3HA resin is not particularly limited, but is preferably 50,000 to 3 million, more preferably 100,000 to 2.5 million, even more preferably 150,000 to 2 million, and most preferably 150,000 to 1 million.
  • Mw weight average molecular weight
  • the mechanical properties such as strength are sufficient and the moldability is excellent.
  • the method for measuring the weight-average molecular weight of P3HA-based resin is not particularly limited, but for example, the weight-average molecular weight can be calculated as polystyrene equivalent by using chloroform as the mobile phase, a Waters GPC system as the system, and Showa Denko Shodex K-804 (polystyrene gel) as the column.
  • the P3HA-based resin may be, for example, any of those described above in the section P3HA-based resin.
  • the above-mentioned resins may be used alone or in combination of two or more kinds.
  • the content of the P3HA-based resin in the resin composition is preferably 80 parts by weight or more, more preferably 85 parts by weight or more, and even more preferably 90 parts by weight or more, per 100 parts by weight of the resin composition.
  • the content of the P3HA-based resin in the resin composition is 80 parts by weight or more, the effect of having high biodegradability is achieved.
  • the upper limit is not particularly limited, and may be, for example, 100 parts by weight.
  • the resin composition may contain a biodegradable resin other than the P3HA-based resin.
  • a biodegradable resin other than the P3HA-based resin examples include, but are not limited to, polybutylene adipate terephthalate (PBAT), polybutylene succinate adipate (PBSA), polybutylene succinate (PBS), polybutylene succinate terephthalate (PBST), polybutylene succinate adipate terephthalate (PBSAT), polybutylene sebacate terephthalate (PBSeT), polybutylene azelate terephthalate (PBAzT), polycaprolactone (PCL), polylactic acid (PLA), etc.
  • PBAT polybutylene adipate terephthalate
  • PBSA polybutylene succinate adipate
  • PBS polybutylene succinate terephthalate
  • PBSAT polybutylene succinate adipate terephthalate
  • PBSeT poly
  • the content of biodegradable resins other than P3HA-based resins in the resin composition is, for example, 30 parts by weight or less, preferably 20 parts by weight or less, and more preferably 10 parts by weight or less, relative to 100 parts by weight of the resin composition.
  • the content of biodegradable resins other than P3HA-based resins in the resin composition is 30 parts by weight or less, an effect of exhibiting good moldability is achieved.
  • the lower limit is not particularly limited, and may be, for example, 0 parts by weight.
  • the amounts of both resins can be adjusted so that the sum of the P3HA-based resin and the biodegradable resin other than the P3HA-based resin is 100 parts by weight.
  • the resin composition may further contain a crystal nucleating agent and/or a lubricant.
  • a crystal nucleating agent the molding processability, productivity, etc. are improved.
  • the resin composition contains a lubricant, the surface smoothness of the molded product is improved.
  • the crystal nucleating agent and/or lubricant are incorporated into the aliphatic polyester resin composition by melt-kneading with the P3HA resin.
  • the crystal nucleating agent is not particularly limited as long as it has the above-mentioned effect, but examples thereof include inorganic substances such as pentaerythritol, boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride, and metal phosphates; sugar alcohol compounds derived from natural products such as erythritol, galactitol, mannitol, and arabitol; polyvinyl alcohol, chitin, chitosan, polyethylene oxide, aliphatic carboxylic acid amides, aliphatic carboxylic acid salts, aliphatic alcohols, aliphatic carboxylic acid esters, dimethyl adipate, dibutyl adipate, and diisodecyl ether.
  • inorganic substances such as pentaerythritol, boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride,
  • the content of the crystal nucleating agent is not particularly limited as long as it can promote the crystallization of the P3HA resin, but is preferably 0.1 to 2.0 parts by weight, more preferably 0.6 to 1.8 parts by weight, even more preferably 0.7 to 1.6 parts by weight, and particularly preferably 0.8 to 1.5 parts by weight, per 100 parts by weight of the resin composition.
  • the content of the crystal nucleating agent is 0.5 parts by weight or more per 100 parts by weight of the resin composition, a sufficient effect as a crystal nucleating agent can be obtained.
  • the content of the crystal nucleating agent is 2.0 parts by weight or less per 100 parts by weight of the resin composition, an appropriate viscosity is maintained during processing, and the effect on the physical properties of the molded product is also reduced.
  • the lubricant contains at least one selected from the group consisting of behenic acid amide, stearic acid amide, erucic acid amide, and oleic acid amide.
  • This provides the resulting molded article with lubricity (particularly external lubricity).
  • behenic acid amide, stearic acid amide, erucic acid amide, and oleic acid amide it is preferable to contain behenic acid amide or erucic acid amide from the viewpoint of improving processability and productivity.
  • the lubricant may be behenic acid amide, stearic acid amide, erucic acid amide, oleic acid amide, or a combination of two or more of these, or may be a combination with a lubricant other than behenic acid amide, stearic acid amide, erucic acid amide, or oleic acid amide (hereinafter referred to as "other lubricants").
  • other lubricants for example, those described in WO 2022/014408 can be used.
  • the amount of lubricant (the total amount when multiple lubricants are used) is not particularly limited as long as it can provide lubricity, but is preferably 0.1 to 2.0 parts by weight, more preferably 0.2 to 1.6 parts by weight, even more preferably 0.3 to 1.4 parts by weight, and particularly preferably 0.4 to 1.2 parts by weight, per 100 parts by weight of the resin composition.
  • the amount of lubricant is 0.1 part by weight or more per 100 parts by weight of the resin composition, a sufficient effect as a lubricant can be obtained.
  • the amount of lubricant is 2.0 parts by weight or less per 100 parts by weight of the resin composition, bleeding out onto the surface of the molded product is avoided, and a molded product with excellent appearance can be obtained.
  • the resin composition may contain other components such as plasticizers, inorganic fillers, antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents, as long as the effects of the present invention are not impaired.
  • plasticizers such as plasticizers, inorganic fillers, antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents, as long as the effects of the present invention are not impaired.
  • inorganic fillers such as plasticizers, inorganic fillers, antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents, as long as the effects of the present invention are not impaired.
  • antioxidants such as antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents
  • the resin composition does not contain an anti-adhesion agent.
  • the melt extrusion in step (i) may be carried out by any apparatus known in the art, including, but not limited to, a twin-screw extruder (e.g., TEM-26SX manufactured by Toshiba Machine Co., Ltd.), a single-screw extruder, and the like.
  • a twin-screw extruder e.g., TEM-26SX manufactured by Toshiba Machine Co., Ltd.
  • a single-screw extruder e.g., TEM-26SX manufactured by Toshiba Machine Co., Ltd.
  • the melting temperature in step (i) may vary depending on the composition of the resin composition, the type of P3HA-based resin contained in the resin composition, etc., but is, for example, 120 to 200°C, and preferably 140 to 180°C.
  • Step (ii) is a stranding step in which the molten resin composition obtained in step (i) is cooled in a water bath to obtain strands.
  • the resin composition is cooled in a water bath in a strand bath to promote crystallization of the resin composition and obtain strands.
  • step (ii) lowering the temperature of the strand bath enables more efficient (space-saving) strand cutting in step (iii).
  • step (iii) allows the strands coming out of the extruder to be rapidly cooled, and the residence time in the strand bath can be shortened (the size of the strand bath can be reduced).
  • the temperature of the water bath in step (ii) is preferably 20 to 60°C, more preferably 22 to 50°C, and even more preferably 25 to 40°C.
  • the temperature of the water bath in step (ii) is set to a low temperature of 20 to 60°C, molded bodies of P3HA-based resin can be manufactured with good productivity.
  • the temperature of the water bath is 20 to 60°C, the residence time in the water bath can be shortened, which has the advantage of allowing the strand bath to be made smaller.
  • the diameter of the strand obtained in step (ii) is preferably 0.5 to 10.0 mm, more preferably 0.6 to 5.0 mm, and even more preferably 0.8 to 3.0 mm.
  • the diameter of the strand is 0.5 to 10.0 mm, the strand can be cooled efficiently in step (ii) without being broken.
  • Step (iii) is a cutting step in which the strand obtained in step (ii) is cut while adding water to the cutter.
  • step (iii) by adding water to the cutter when cutting the strand, adhesion of the molded bodies to each other and to the cutter or the molded body discharge part can be suppressed.
  • while adding water to the cutter means that cutting is performed while water is applied to at least the strand and the blade of the cutter. More preferably, in addition to the above, cutting is performed while water is also applied to the formed body discharge section. Even more preferably, water is continued to be added from the strand cutter to the holding tank. This has the effect of preventing adhesion to the formed body discharge section and suppressing clogging of the formed body discharge section.
  • step (iii) it is preferable that the addition of water in step (iii) is performed on all of the strands, the cutter, and the molded body discharge section.
  • the temperature of the water added to the cutter is preferably Tc-25°C to Tc+15°C, more preferably Tc-20°C to Tc+10°C, and even more preferably Tc-10°C to Tc+5°C.
  • Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin.
  • the absolute temperature of the water added in step (iii) is preferably 50 to 90°C, and more preferably 60 to 80°C. When the absolute temperature of the water added is 50 to 90°C, sufficient crystallization occurs.
  • Step (iv) is a holding step in which the cut molded bodies obtained in step (iii) are held at Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA resin).
  • Tc represents the crystallization temperature of the resin composition containing the P3HA resin.
  • the holding temperature in step (iv) is Tc-25°C to Tc+15°C, preferably Tc-20°C to Tc+10°C, and more preferably Tc-10°C to Tc+5°C.
  • Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin. If the holding temperature is Tc-25°C to Tc+15°C, sufficient crystallization occurs.
  • the absolute temperature of the holding temperature in step (iv) is preferably 50 to 90°C, and more preferably 60 to 80°C. When the absolute temperature of the holding temperature is 50 to 90°C, sufficient crystallization occurs.
  • step (iv) is preferably carried out while stirring the cut molded body obtained in step (iii).
  • the stirring speed during the stirring is not particularly limited, but is, for example, 50 to 800 rpm, and preferably 200 to 600 rpm.
  • the mixing time is not particularly limited, but is, for example, 1 to 10 minutes, and preferably 1.5 to 5 minutes.
  • the device used for the stirring is not particularly limited, but for example, a vertical stirrer, a horizontal stirrer, etc. may be used.
  • Step (v) is a drying step in which the molded body obtained in step (iv) is dried at 40 to 120° C. By this step, a molded body can be obtained as a dried product.
  • the drying temperature in step (v) is preferably 40 to 120°C, more preferably 60 to 100°C, and even more preferably 70 to 90°C. If the drying temperature is 40 to 120°C, moisture can be sufficiently removed.
  • the drying time in step (v) can be changed as appropriate depending on the drying temperature, etc., but is, for example, 3 to 10 hours, and preferably 4 to 6 hours.
  • the device used for drying in step (v) is not particularly limited, but for example, a box dryer, a hopper dryer, etc. may be used.
  • the molded articles obtained by this manufacturing method can be used, for example, as paper, films, sheets, tubes, plates, rods, containers (e.g., bottle containers), food trays, bags, parts, etc.
  • one embodiment of the present invention is as follows. ⁇ 1> (i) a melt extrusion step of melting and extruding a resin composition containing a P3HA-based resin in an extruder; (ii) a stranding step in which the molten resin composition obtained in the step (i) is cooled in a water bath to obtain strands; (iii) a cutting step of cutting the strand obtained in the step (ii) while adding water to a cutter; and (iv) a holding step of holding the cut molded body obtained in the step (iii) at Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
  • a method for producing a molded article of a P3HA resin having the above structure ⁇ 2> The manufacturing method according to ⁇ 1>, wherein in the step (iii), the temperature of the water added to the cutter is Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
  • Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin.
  • the temperature of the water bath is 20 to 60° C.
  • ⁇ 4> The manufacturing method according to any one of ⁇ 1> to ⁇ 3>, wherein the P3HA resin contains 3HB units and the content of 3HB units in the P3HA resin is 82 mol% or more.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the P3HA-based resin is one or more selected from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate).
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein the strand has a diameter of 0.5 to 10.0 mm.
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, further comprising: (v) drying the molded body obtained in the step (iv) at 40 to 120° C.
  • molecular weight 480,000 P3HA-1 was prepared by the method described in Example 1 of WO2022 / 091685, and P3HA-2 was prepared by the method described in Example 1 of WO2021 / 085534.
  • Lubricant Behenic acid amide (Nippon Fine Chemical Co., Ltd.) - Nucleating agent: pentaerythritol (Nippon Synthetic Chemical Industry Co., Ltd.).
  • the crystallization temperature of the P3HA resin composition is a temperature measured using the following apparatus, conditions and method.
  • Measurement method Differential Scanning Calorimetry (DSC) Measurement equipment: Hitachi Hightech Science, EXSTAR6000 series DSC6200 Measurement sample: 5 to 10 mg of P3HA was placed in an aluminum pan, the lid was placed on and crimped.
  • Measurement conditions The temperature is increased from 25° C. to 180° C. at 10° C./min, and then decreased at 10° C./min to 25° C. During the measurement, nitrogen gas is flowed at 50 mL/min. Identification of crystallization temperature: The exothermic peak observed during the temperature drop is taken as the crystallization peak, and the peak top is taken as the crystallization temperature.
  • the compacts discharged from the pelletizer or the mixing tank were extracted and their weights were measured. Among the extracted compacts, those that were not cut were selected and their weights were measured. Then, the mutual adhesion rate (%) of the compacts was calculated based on [weight of the uncut compacts among the extracted compacts]/[weight of all the extracted compacts] ⁇ 100.
  • Example 1 (Melt Extrusion (Step (i))) A twin-screw extruder (TEM-26SX manufactured by Toshiba Machine Co., Ltd.) was used for melt-kneading the P3HA-based resin composition. 60 parts by weight of P3HA-1, 40 parts by weight of P3HA-2, 0.5 parts by weight of behenic acid amide, and 1 part by weight of pentaerythritol were weighed and dry-blended to prepare a P3HA-based resin composition. The adjusted P3HA-based resin composition was fed to the twin-screw extruder, and the P3HA-based resin composition was melt-kneaded at a cylinder temperature of 175°C. The melt-kneaded P3HA-based resin composition at 185°C (crystallization temperature: 70°C) was discharged from the nozzle of the die attached to the tip of the extruder.
  • TEM-26SX manufactured by Toshiba Machine Co., Ltd.
  • the P3HA-based resin composition discharged from the extruder was immersed in a strand bath adjusted to a water temperature of 55° C. for 5 seconds, and then supplied to a wet pelletizer (Tanaka Corporation) (step (ii)).
  • the strands (diameter 3 mm) of the wet pelletizer were cut while supplying water at 60° C. to the blades and strands (diameter 3 mm) of the wet pelletizer (step (iii)).
  • the cut molded body was supplied to a holding tank (stirring tank) and retained in water at 60° C. (step (iv)). After that, the molded body was dehydrated and dried at 80° C. to obtain a molded body (step (v)).
  • the adhesion to the blades and the mutual adhesion rate of the molded body were measured and evaluated.
  • Example 2 A molded article was produced in the same manner as in Example 1, except that the water temperature in the strand bath was 33° C. and the residence time was 1.5 seconds.
  • Comparative Example 1 A molded body was produced in the same manner as in Example 1, except that in the production of the molded body, water was not added to the blades and strands of the wet pelletizer, and retention in the holding tank was not performed.
  • Comparative Example 2 A molded body was produced in the same manner as in Example 1, except that retention in a holding tank was not performed in the production of the molded body.
  • Comparative Example 3 The molded bodies were produced in the same manner as in Example 1, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were 30°C.
  • Comparative Example 4 A molded body was produced in the same manner as in Example 2, except that retention in a holding tank was not performed in the production of the molded body.
  • Comparative Example 5 The molded bodies were produced in the same manner as in Example 2, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were set to 30°C.
  • Comparative Example 6 The molded bodies were produced in the same manner as in Example 2, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were 40°C.
  • the above shows that the method for producing molded bodies of P3HA-based resin according to one embodiment of the present invention can suppress adhesion of the molded bodies to each other and to the cutter, and can produce molded bodies of P3HA-based resin with high productivity.
  • Example 2 Furthermore, a comparison of Example 2 with Comparative Examples 4 to 6 showed that even if the residence time in the strand bath was shortened, there was no adhesion to the blades and the adhesion rate of the molded bodies was also reduced.
  • the manufacturing method of the present invention can be suitably used in the fields of agriculture, fishing, forestry, horticulture, medicine, hygiene products, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of suppressing mutual adhesion of molded bodies and adhesion of a molded body to a cutter and manufacturing a P3HA-based resin molded body with high productivity. The problem is solved by a method for manufacturing a P3HA-based resin molded body, the method comprising: (i) a step for melting and extruding a resin composition; (ii) a step for cooling the melted resin composition with a water bath to obtain a strand; (iii) a step for cutting off the strand while adding water to a cutter; and (iv) a step for retaining a cut-off molded body at a specific temperature.

Description

ポリ(3-ヒドロキシアルカノエート)系樹脂の成形体の製造方法Method for producing molded body of poly(3-hydroxyalkanoate) resin
 本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂(以下、「P3HA系樹脂」と称する場合がある。)の成形体の製造方法に関する。 The present invention relates to a method for producing molded bodies of poly(3-hydroxyalkanoate)-based resins (hereinafter sometimes referred to as "P3HA-based resins").
 P3HA系樹脂(例えば、ポリヒドロキシアルカン酸(以下、「PHA」、「P3HA」等と称する場合がある。))等の生分解性樹脂は、生分解性を有することから、環境を配慮した種々の用途への利用が進んでいる。P3HA系樹脂は、その利用に際して、ペレット形状に成形して輸送や加工に供される場合がある。例えば、特許文献1には、ポリエステル樹脂組成物を溶融押出してポリエステル樹脂成形体を製造する方法において、溶融押出直後に、PHA微粒子が分散した媒体中で冷却して、PHAのペレット等を製造する、ポリエステル樹脂成形体の製造方法が記載されている。 Biodegradable resins such as P3HA-based resins (for example, polyhydroxyalkanoic acid (hereinafter, sometimes referred to as "PHA" or "P3HA")) are being increasingly used in various environmentally friendly applications due to their biodegradability. When using P3HA-based resins, they may be molded into pellets for transportation or processing. For example, Patent Document 1 describes a method for producing polyester resin molded products by melt extruding a polyester resin composition, in which immediately after melt extrusion, the polyester resin composition is cooled in a medium in which PHA fine particles are dispersed to produce PHA pellets, etc.
日本国公開特許公報2016-169374号Japanese Patent Publication No. 2016-169374
 上記技術は優れたものであるが、生産性等の観点から、なお改善の余地がある。 The above technologies are excellent, but there is still room for improvement in terms of productivity, etc.
 そこで、本発明は、成形体の互着およびカッターへの付着を抑制し、生産性よくP3HA系樹脂の成形体を製造する技術を提供することを目的とする。 The present invention aims to provide a technology that can suppress adhesion of molded bodies to each other and to the cutter, and can efficiently manufacture molded bodies of P3HA-based resin.
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、P3HA系樹脂を含む樹脂組成物(以下、「P3HA系樹脂組成物」と称する場合もある。)から得られたストランド(以下、単に、「ストランド」と称する場合もある。)のカッティング時に、前記ストランドおよびカッターに加水することにより、成形体の互着、および成形体のカッターや成形体排出部への付着を抑制できることを見出した。本発明者らはまた、上記カッティング後の成形体を保持槽(撹拌槽)で保持することにより、成形体の互着をより確実に回避できることを見出し、本発明を完成するに至った。 The inventors conducted extensive research to solve the above problems, and discovered that by adding water to the strands (hereinafter sometimes simply referred to as "strands") obtained from a resin composition containing a P3HA-based resin (hereinafter sometimes referred to as a "P3HA-based resin composition") when cutting the strands, the molded bodies can be prevented from sticking to each other and to the cutter and the molded body discharge section. The inventors also discovered that by holding the molded bodies after cutting in a holding tank (agitation tank), the molded bodies can be prevented from sticking to each other more reliably, and this led to the completion of the present invention.
 したがって、本発明の一態様は、(i)P3HA系樹脂を含む樹脂組成物を、押出機中で溶融して押し出す、溶融押出工程、(ii)前記(i)工程で得られた溶融した樹脂組成物を、水浴で冷却してストランドを得る、ストランド化工程、(iii)前記工程(ii)で得られたストランドを、カッターに加水しながら切断する、切断工程、および(iv)前記工程(iii)で得られた切断された成形体を、Tc-25℃~Tc+15℃で保持する、保持工程(ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。)、を有する、P3HA系樹脂の成形体の製造方法(以下、「本製造方法」と称する。)である。 Therefore, one aspect of the present invention is a method for producing a molded product of a P3HA-based resin (hereinafter referred to as "this manufacturing method"), comprising: (i) a melt extrusion step in which a resin composition containing a P3HA-based resin is melted and extruded in an extruder; (ii) a stranding step in which the molten resin composition obtained in step (i) is cooled in a water bath to obtain strands; (iii) a cutting step in which the strands obtained in step (ii) are cut while adding water to a cutter; and (iv) a holding step in which the cut molded product obtained in step (iii) is held at Tc-25°C to Tc+15°C (where Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
 本発明の一態様によれば、成形体の互着およびカッターへの付着を抑制し、生産性よくP3HA系樹脂の成形体を製造する技術を提供することができる。 One aspect of the present invention provides a technology that can suppress adhesion of molded bodies to each other and to the cutter, and can efficiently manufacture molded bodies of P3HA-based resin.
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 One embodiment of the present invention is described in detail below. Note that unless otherwise specified in this specification, "A to B" indicating a numerical range means "A or more, B or less." In addition, all documents described in this specification are incorporated herein by reference.
 〔1.本発明の概要〕
 従来のP3HA系樹脂の成形では、P3HA系樹脂を含む樹脂組成物を溶融押出した後の冷却工程において、ストランドバスを一般に長く設定する必要があった(例えば、特許文献1)。ストランドバスが短い場合、溶融樹脂の固化が不十分となり、その結果、通常のペレタイザーでは、ストランドの切断不良により、カッティングした成形体同士が付着(互着)したり、成形体がカッターや成形体排出部に付着して離れなかったりするとの問題が生じる場合がある。このような成形体の互着、カッターや成形体排出部への成形体の付着が起こると、配管やペレタイザーが閉塞し、生産性が著しく低下してしまう。逆に、ストランドバスを長くすると、設備設置面積が大きくなってしまうという課題もある。一方、上記の課題を解決するために互着防止剤を添加する等の対策が考えられるが、不純物を含有させてしまうという観点から好ましくない。
1. Overview of the Invention
In conventional molding of P3HA resin, in the cooling process after melt extrusion of a resin composition containing P3HA resin, it was generally necessary to set the strand bath long (for example, Patent Document 1). When the strand bath is short, the solidification of the molten resin becomes insufficient, and as a result, in a normal pelletizer, problems may occur such as the cut molded bodies adhering to each other (adhering to each other) or the molded bodies adhering to the cutter or the molded body discharge part and not being separated due to poor cutting of the strands. When such adhesion of the molded bodies to each other or adhesion of the molded bodies to the cutter or the molded body discharge part occurs, the piping or pelletizer is clogged, and productivity is significantly reduced. On the other hand, there is also a problem that the installation area of the equipment becomes large when the strand bath is made long. On the other hand, measures such as adding an agent to prevent adhesion to each other can be considered to solve the above problem, but this is not preferable from the viewpoint of containing impurities.
 そこで、本発明者らは上記問題を解決するために鋭意検討を行った結果、以下の知見を得ることに成功した。 The inventors therefore conducted extensive research to solve the above problems, and have succeeded in obtaining the following findings.
 (1)P3HA系樹脂を含む樹脂組成物から得られたストランドのカッティング時に、前記ストランドおよびカッターに加水することにより、成形体の互着、および成形体のカッターや成形体排出部への付着を抑制できる。 (1) When cutting the strands obtained from a resin composition containing a P3HA-based resin, adding water to the strands and cutter can prevent the molded bodies from adhering to each other and to the cutter or the molded body discharge section.
 (2)上記カッティング後の成形体を保持槽(撹拌槽)で保持することにより、成形体の互着をより確実に回避できる。 (2) By holding the cut molded bodies in a holding tank (mixing tank), adhesion of the molded bodies to each other can be more reliably prevented.
 (3)互着防止剤を添加することなく、P3HA系樹脂含有成形体の製造が可能となる。 (3) It is possible to manufacture molded bodies containing P3HA resin without adding an anti-adhesion agent.
 本製造方法によれば、成形体の互着およびカッターへの付着等を抑制し、生産性よくP3HA系樹脂の成形体を製造できることから、P3HA系樹脂の成形体の製造において極めて有利である。また、本製造方法によれば、互着防止剤を添加する必要がないため、高い生分解性の成形体を得ることができる。したがって、上述したような構成によれば、プラスチックゴミの発生量を低減でき、これにより、例えば、目標12「持続可能な消費生産形態を確保する」や目標14「持続可能な開発のために、海・海洋資源を保全し、持続可能な形で利用する」等の持続可能な開発目標(SDGs)の達成に貢献できる。以下、本製造方法の構成について詳説する。 This manufacturing method is extremely advantageous in the manufacture of molded bodies of P3HA-based resin, since it suppresses adhesion between the molded bodies and adhesion to the cutter, and allows molded bodies of P3HA-based resin to be manufactured with high productivity. Furthermore, this manufacturing method does not require the addition of an agent to prevent adhesion between the molded bodies, and therefore molded bodies with high biodegradability can be obtained. Therefore, with the above-mentioned configuration, the amount of plastic waste generated can be reduced, which can contribute to the achievement of Sustainable Development Goals (SDGs), such as Goal 12 "Ensure sustainable consumption and production patterns" and Goal 14 "Conserve and sustainably use the oceans and marine resources for sustainable development". The configuration of this manufacturing method is explained in detail below.
 〔2.P3HA系樹脂の成形体の製造方法〕
 本製造方法は、以下の工程を含む方法である:
・工程(i):P3HA系樹脂を含む樹脂組成物を、押出機中で溶融して押し出す、溶融押出工程
・工程(ii):前記(i)工程で得られた溶融した樹脂組成物を、水浴で冷却してストランドを得る、ストランド化工程
・工程(iii):前記工程(ii)で得られたストランドを、カッターに加水しながら切断する、切断工程
・工程(iv):前記工程(iii)で得られた切断された成形体を、Tc-25℃~Tc+15℃で保持する、保持工程(ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。なお、本明細書において、「樹脂組成物の結晶化温度」とは、実施例に記載の方法で測定された温度である)。
2. Method for producing molded body of P3HA resin
The present production method includes the following steps:
Step (i): A melt extrusion step in which a resin composition containing a P3HA-based resin is melted and extruded in an extruder. Step (ii): A stranding step in which the molten resin composition obtained in step (i) is cooled in a water bath to obtain strands. Step (iii): A cutting step in which the strands obtained in step (ii) are cut while adding water to a cutter. Step (iv): A holding step in which the cut molded body obtained in step (iii) is held at Tc-25°C to Tc+15°C (here, Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin. In this specification, the "crystallization temperature of the resin composition" is a temperature measured by the method described in the Examples).
 また、本発明の一実施形態において、本製造方法は、上記工程(i)~(iv)に加えて、以下の工程を含むことが好ましい。
・工程(v):前記工程(iv)で得られた成形体を、40~120℃で乾燥させる、乾燥工程。
In one embodiment of the present invention, the production method preferably includes the following step in addition to the above steps (i) to (iv).
Step (v): A drying step of drying the molded body obtained in the step (iv) at 40 to 120°C.
 本製造方法は、上記工程(i)~(iv)または上記工程(i)~(v)を含むことにより、成形体の互着およびカッターへの付着を抑制し、生産性よくP3HA系樹脂の成形体を製造することができる。 By including the above steps (i) to (iv) or (i) to (v), this manufacturing method can suppress adhesion of the molded bodies to each other and to the cutter, and can produce molded bodies of P3HA-based resin with high productivity.
 (2-1.工程(i))
 工程(i)は、P3HA系樹脂を含む樹脂組成物(以下、「本樹脂組成物」と称する場合がある。)を、押出機中で溶融して押し出す、溶融押出工程である。
(2-1. Step (i))
Step (i) is a melt extrusion step in which a resin composition containing a P3HA-based resin (hereinafter, sometimes referred to as "the resin composition") is melted in an extruder and extruded.
 <P3HA系樹脂>
 本明細書において、「P3HA系樹脂」とは、以下の式(1):
 [-O-CHR-CH-CO-]     (1)
 (式中、Rは、C2n+1で表されるアルキル基であり、nは、1~15の整数である。)で示される1種以上の3-ヒドロキシアルカノエート繰り返し単位を必須の構成単位とする共重合体を意味する。また、本明細書において、「P3HA系樹脂」は、「P3HA」と称する場合もある。P3HA系樹脂は、上記の式(1)に含まれるものであれば特に限定されない。P3HA系樹脂は、2種類以上の3-ヒドロキシアルカノエート繰り返し単位、あるいは、3-ヒドロキシアルカノエート繰り返し単位と、その他の繰り返し単位とからなる共重合体であってもよい。なお、本明細書における「P3HA系樹脂」は、3-ヒドロキシアルカノエート繰り返し単位を、全モノマー繰り返し単位(100モル%)のうち50モル%以上含む重合体(共重合体)を意図する。P3HA系樹脂は、3-ヒドロキシアルカノエート繰り返し単位のみからなる共重合体であってもよく、3-ヒドロキシアルカノエート繰り返し単位と、その他の繰り返し単位とを含む共重合体であってもよい。
<P3HA Resin>
In this specification, the term "P3HA-based resin" refers to a P3HA-based resin having the following formula (1):
[—O—CHR—CH 2 —CO—] (1)
(wherein R is an alkyl group represented by C n H 2n+1 , and n is an integer of 1 to 15.) means a copolymer having one or more 3-hydroxyalkanoate repeating units as essential structural units. In this specification, the "P3HA-based resin" may also be referred to as "P3HA". The P3HA-based resin is not particularly limited as long as it is included in the above formula (1). The P3HA-based resin may be a copolymer consisting of two or more types of 3-hydroxyalkanoate repeating units, or a copolymer consisting of a 3-hydroxyalkanoate repeating unit and other repeating units. In this specification, the "P3HA-based resin" means a polymer (copolymer) containing 50 mol % or more of the 3-hydroxyalkanoate repeating units out of the total monomer repeating units (100 mol %). The P3HA-based resin may be a copolymer consisting of only 3-hydroxyalkanoate repeating units, or a copolymer containing a 3-hydroxyalkanoate repeating unit and other repeating units.
 本製造方法に係るP3HA系樹脂は、3-ヒドロキシアルカノエート繰り返し単位として、3-ヒドロキシブチレート繰り返し単位(上記式(1)において、RがCHである繰り返し単位)を含むことが好ましい。本製造方法に係るP3HA系樹脂は、3-ヒドロキシブチレートのみを繰り返し単位とするポリ(3-ヒドロキシブチレート)であってもよいし、3-ヒドロキシブチレートと他のヒドロキシアルカノエートとの共重合体であってもよい。 The P3HA resin according to the present production method preferably contains a 3-hydroxybutyrate repeating unit (a repeating unit in which R is CH3 in the above formula (1)) as the 3-hydroxyalkanoate repeating unit. The P3HA resin according to the present production method may be a poly(3-hydroxybutyrate) containing only 3-hydroxybutyrate as a repeating unit, or may be a copolymer of 3-hydroxybutyrate and another hydroxyalkanoate.
 本発明の一実施形態において、P3HA系樹脂は、単独重合体であってもよいし、単独重合体と1種または2種以上の共重合体との混合物であってもよいし、2種以上の共重合体の混合物であってもよい。共重合の形式は特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等であり得る。 In one embodiment of the present invention, the P3HA-based resin may be a homopolymer, a mixture of a homopolymer and one or more types of copolymers, or a mixture of two or more types of copolymers. The type of copolymerization is not particularly limited, and may be random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization, etc.
 本発明の一実施形態において、P3HA系樹脂としては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシプロピオネート)(P3HB3HP)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)(P3HB3HO)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)(P3HB3HOD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)(P3HB3HD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)等が挙げられる。融点を低く調節でき、加工幅を広くできる観点から、好ましくは、P3HB3HH、P3HB4HB、P3HB3HPである。中でも、工業的に生産が容易であることから、P3HB3HH、P3HB4HBが特に好ましい。工業的な生産性の観点からは、上記に加えて、P3HB、P3HB3HVも好ましい。 In one embodiment of the present invention, examples of P3HA-based resins include poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HH), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (P3HB3HO), poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate) (P3HB3HOD), poly(3-hydroxybutyrate-co-3-hydroxydecanoate) (P3HB3HD), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), etc. are included. From the viewpoint of being able to adjust the melting point low and widen the processing range, P3HB3HH, P3HB4HB, and P3HB3HP are preferred. Among them, P3HB3HH and P3HB4HB are particularly preferred because they are easy to produce industrially. From the viewpoint of industrial productivity, in addition to the above, P3HB and P3HB3HV are also preferred.
 P3HA系樹脂は、好ましくは、微生物により産生される。P3HA系樹脂を生産する微生物としては、P3HA系樹脂の生産能を有する微生物であれば特に限定されない。例えば、P3HB3HH生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネカトール(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus)、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)等の天然微生物が挙げられる。これらの微生物ではP3HB3HHが菌体内に蓄積されることが知られている。 The P3HA resin is preferably produced by a microorganism. The microorganism that produces the P3HA resin is not particularly limited as long as it is a microorganism capable of producing the P3HA resin. For example, the first P3HB3HH-producing bacterium was Bacillus megaterium, which was discovered in 1925, and other natural microorganisms include Cupriavidus necator (formerly classified as Alcaligenes eutrophus and Ralstonia eutropha) and Alcaligenes latus. It is known that P3HB3HH accumulates within the cells of these microorganisms.
 また、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas
 caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HB3HH合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HA系樹脂に合わせて、各種P3HA系樹脂合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をしてもよい。
In addition, as a producer of copolymers of hydroxybutyrate and other hydroxyalkanoates, Aeromonas kiabiei, which produces P3HB3HH, is known.
caviae, and P3HB4HB-producing bacterium Alcaligenes eutrophus. In particular, with regard to P3HB3HH, Alcaligenes eutrophus AC32 (FERM BP-6038) (T. Fukui, Y. Doi, J. Bateriol., 179, pp. 4821-4830 (1997)) into which genes of the P3HB3HH synthase group have been introduced in order to increase the productivity of P3HB3HH is more preferred, and microbial cells in which P3HB3HH has been accumulated by culturing these microorganisms under appropriate conditions are used. In addition to the above, genetically modified microorganisms into which various P3HA resin synthesis-related genes have been introduced may be used according to the P3HA resin to be produced, and culture conditions including the type of substrate may be optimized.
 また、P3HB3HHは、例えば、国際公開第2010/013483号公報に記載された方法によっても製造され得る。P3HB3HHの市販品としては、例えば、株式会社カネカ「カネカ生分解性ポリマーPHBH(登録商標)」等が挙げられる。 P3HB3HH can also be produced by the method described in, for example, International Publication No. 2010/013483. Commercially available products of P3HB3HH include Kaneka Biodegradable Polymer PHBH (registered trademark) manufactured by Kaneka Corporation.
 本発明の一実施形態において、P3HA系樹脂は、3-ヒドロキシブチレート単位(以下、「3HB単位」とも称する。)を含み、前記P3HA系樹脂における全繰り返し単位100mol%のうち、3HB単位の含有割合が、好ましくは82mol%以上であり、より好ましくは84mol%以上であり、さらに好ましくは86mol%以上である。P3HA系樹脂中の3HB単位の含有割合が、82mol%以上であると、P3HA系樹脂を含む樹脂組成物の物性面において優れた効果を奏する。 In one embodiment of the present invention, the P3HA resin contains 3-hydroxybutyrate units (hereinafter also referred to as "3HB units"), and the content of 3HB units out of 100 mol% of all repeating units in the P3HA resin is preferably 82 mol% or more, more preferably 84 mol% or more, and even more preferably 86 mol% or more. When the content of 3HB units in the P3HA resin is 82 mol% or more, excellent effects are achieved in terms of the physical properties of the resin composition containing the P3HA resin.
 また、本発明の一実施形態において、P3HA系樹脂は、3HB単位を含み、前記P3HA系樹脂における全繰り返し単位100mol%のうち、3HB単位の含有割合が、好ましくは99mol%以下であり、より好ましくは97mol%以下であり、さらに好ましくは95mol%以下である。P3HA系樹脂中の3HB単位の含有割合が、99mol%以下であると、P3HA系樹脂を含む樹脂組成物の物性面において優れた効果を奏する。なお、本樹脂組成物が複数のP3HA系樹脂のブレンドである場合、本樹脂組成物に含まれる全P3HA系樹脂の平均の3HB単位含有割合が本範囲であることを意図する。 In one embodiment of the present invention, the P3HA resin contains 3HB units, and the content of 3HB units in 100 mol% of all repeating units in the P3HA resin is preferably 99 mol% or less, more preferably 97 mol% or less, and even more preferably 95 mol% or less. When the content of 3HB units in the P3HA resin is 99 mol% or less, excellent effects are achieved in terms of the physical properties of the resin composition containing the P3HA resin. Note that when the resin composition is a blend of multiple P3HA resins, it is intended that the average 3HB unit content of all the P3HA resins contained in the resin composition be within this range.
 本発明の一実施形態において、P3HA系樹脂の重量平均分子量(以下、Mwと称する場合がある)は特に限定されないが、5万~300万であることが好ましく、10万~250万であることがより好ましく、15万~200万であることがさらに好ましく、15万~100万であることが最も好ましい。P3HA系樹脂の重量平均分子量が5万~300万であると、強度等の機械的特性が十分であり、かつ成形加工性に優れる。 In one embodiment of the present invention, the weight average molecular weight (hereinafter sometimes referred to as Mw) of the P3HA resin is not particularly limited, but is preferably 50,000 to 3 million, more preferably 100,000 to 2.5 million, even more preferably 150,000 to 2 million, and most preferably 150,000 to 1 million. When the weight average molecular weight of the P3HA resin is 50,000 to 3 million, the mechanical properties such as strength are sufficient and the moldability is excellent.
 P3HA系樹脂の重量平均分子量の測定方法は、特に限定されないが、例えば、クロロホルムを移動相として、システムとしてウオーターズ(Waters)社製GPCシステムを用い、カラムに、昭和電工(株)製Shodex K-804(ポリスチレンゲル)を用いることにより、ポリスチレン換算での重量平均分子量として求めることができる。 The method for measuring the weight-average molecular weight of P3HA-based resin is not particularly limited, but for example, the weight-average molecular weight can be calculated as polystyrene equivalent by using chloroform as the mobile phase, a Waters GPC system as the system, and Showa Denko Shodex K-804 (polystyrene gel) as the column.
 <P3HA系樹脂を含む樹脂組成物>
 本樹脂組成物において、P3HA系樹脂は、例えば、上記<P3HA系樹脂>に記載したものが使用できる。P3HA系樹脂として、上記したものを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Resin composition containing P3HA-based resin>
In the present resin composition, the P3HA-based resin may be, for example, any of those described above in the section P3HA-based resin. As the P3HA-based resin, the above-mentioned resins may be used alone or in combination of two or more kinds.
 本発明の一実施形態において、本樹脂組成物中のP3HA系樹脂の含有量は、本樹脂組成物100重量部に対して、80重量部以上であることが好ましく、85重量部以上であることがより好ましく、90重量部以上であることがさらに好ましい。本樹脂組成物中のP3HA系樹脂の含有量が80重量部以上であると、高い生分解性を有するとの効果を奏する。上限値は特に限定されず、例えば、100重量部であってもよい。 In one embodiment of the present invention, the content of the P3HA-based resin in the resin composition is preferably 80 parts by weight or more, more preferably 85 parts by weight or more, and even more preferably 90 parts by weight or more, per 100 parts by weight of the resin composition. When the content of the P3HA-based resin in the resin composition is 80 parts by weight or more, the effect of having high biodegradability is achieved. The upper limit is not particularly limited, and may be, for example, 100 parts by weight.
 [P3HA系樹脂以外の生分解性樹脂]
 本発明の一実施形態において、本樹脂組成物は、P3HA系樹脂以外の生分解性樹脂を含み得る。そのような樹脂としては、特に限定されないが、例えば、ポリブチレンアジペートテレフタレート(PBAT)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートテレフタレート(PBST)、ポリブチレンサクシネートアジペートテレフタレート(PBSAT)、ポリブチレンセバケートテレフタレート(PBSeT)、ポリブチレンアゼレートテレフタレート(PBAzT)、ポリカプロラクトン(PCL)、ポリ乳酸(PLA)等が挙げられる。
[Biodegradable resins other than P3HA-based resins]
In one embodiment of the present invention, the resin composition may contain a biodegradable resin other than the P3HA-based resin. Examples of such resins include, but are not limited to, polybutylene adipate terephthalate (PBAT), polybutylene succinate adipate (PBSA), polybutylene succinate (PBS), polybutylene succinate terephthalate (PBST), polybutylene succinate adipate terephthalate (PBSAT), polybutylene sebacate terephthalate (PBSeT), polybutylene azelate terephthalate (PBAzT), polycaprolactone (PCL), polylactic acid (PLA), etc.
 本発明の一実施形態において、本樹脂組成物中のP3HA系樹脂以外の生分解性樹脂の含有量は、本樹脂組成物100重量部に対して、例えば、30重量部以下であり、20重量部以下であることが好ましく、10重量部以下であることがより好ましい。本樹脂組成物中のP3HA系樹脂以外の生分解性樹脂の含有量が30重量部以下であると、良好な成形性を発現するとの効果を奏する。下限値は特に限定されず、例えば、0重量部であってもよい。 In one embodiment of the present invention, the content of biodegradable resins other than P3HA-based resins in the resin composition is, for example, 30 parts by weight or less, preferably 20 parts by weight or less, and more preferably 10 parts by weight or less, relative to 100 parts by weight of the resin composition. When the content of biodegradable resins other than P3HA-based resins in the resin composition is 30 parts by weight or less, an effect of exhibiting good moldability is achieved. The lower limit is not particularly limited, and may be, for example, 0 parts by weight.
 本発明の一実施形態において、本樹脂組成物が、P3HA系樹脂と、P3HA系樹脂以外の生分解性樹脂と、からなる場合、前記P3HA系樹脂と、前記P3HA系樹脂以外の生分解性樹脂と、を足し合わせて、100重量部となるように、両樹脂の量を調整すればよい。 In one embodiment of the present invention, when the resin composition is composed of a P3HA-based resin and a biodegradable resin other than the P3HA-based resin, the amounts of both resins can be adjusted so that the sum of the P3HA-based resin and the biodegradable resin other than the P3HA-based resin is 100 parts by weight.
 [結晶核剤・滑剤]
 本発明の一実施形態において、本樹脂組成物は、結晶核剤および/または滑剤をさらに含有していてもよい。本樹脂組成物が結晶核剤を含有することにより、成形加工性、生産性等が向上する効果がある。また、本樹脂組成物が滑剤を含有することにより、成形体の表面平滑性が向上する効果がある。
[Nucleating agents/lubricants]
In one embodiment of the present invention, the resin composition may further contain a crystal nucleating agent and/or a lubricant. When the resin composition contains a crystal nucleating agent, the molding processability, productivity, etc. are improved. When the resin composition contains a lubricant, the surface smoothness of the molded product is improved.
 本発明の一実施形態において、結晶核剤および/または滑剤は、P3HA系樹脂と共に溶融混練することにより、本脂肪族ポリエステル系樹脂組成物に含まれる。 In one embodiment of the present invention, the crystal nucleating agent and/or lubricant are incorporated into the aliphatic polyester resin composition by melt-kneading with the P3HA resin.
 結晶核剤としては、上記効果を奏するものであれば特に限定されないが、例えば、ペンタエリスリトール、窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム、金属リン酸塩等の無機物;エリスリトール、ガラクチトール、マンニトール、アラビトール等の天然物由来の糖アルコール化合物;ポリビニルアルコール、キチン、キトサン、ポリエチレンオキシド、脂肪族カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール、脂肪族カルボン酸エステル、ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート、ジブチルセバケート等のジカルボン酸誘導体;インジゴ、キナクリドン、キナクリドンマゼンタ等の官能基C=Oと、NH、SおよびOから選ばれる官能基と、を分子内に有する環状化合物;ビスベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール等のソルビトール系誘導体;ピリジン、トリアジン、イミダゾール等の窒素含有ヘテロ芳香族核を含む化合物;リン酸エステル化合物、高級脂肪酸のビスアミドおよび高級脂肪酸の金属塩;分岐状ポリ乳酸;低分子量ポリ3-ヒドロキシブチレート等が挙げられる。これらの結晶核剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The crystal nucleating agent is not particularly limited as long as it has the above-mentioned effect, but examples thereof include inorganic substances such as pentaerythritol, boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride, and metal phosphates; sugar alcohol compounds derived from natural products such as erythritol, galactitol, mannitol, and arabitol; polyvinyl alcohol, chitin, chitosan, polyethylene oxide, aliphatic carboxylic acid amides, aliphatic carboxylic acid salts, aliphatic alcohols, aliphatic carboxylic acid esters, dimethyl adipate, dibutyl adipate, and diisodecyl ether. Examples of suitable crystal nucleating agents include dicarboxylic acid derivatives such as butyl adipate and dibutyl sebacate; cyclic compounds having a functional group C=O and a functional group selected from NH, S, and O in the molecule, such as indigo, quinacridone, and quinacridone magenta; sorbitol derivatives such as bisbenzylidene sorbitol and bis(p-methylbenzylidene) sorbitol; compounds containing a nitrogen-containing heteroaromatic nucleus, such as pyridine, triazine, and imidazole; phosphate ester compounds, bisamides of higher fatty acids, and metal salts of higher fatty acids; branched polylactic acid; and low molecular weight poly(3-hydroxybutyrate). These crystal nucleating agents may be used alone or in combination of two or more.
 結晶核剤の含有量は、P3HA系樹脂の結晶化を促進できれば特に限定されないが、本樹脂組成物100重量部に対して、0.1~2.0重量部が好ましく、0.6~1.8重量部がより好ましく、0.7~1.6重量部がさらに好ましく、0.8~1.5重量部が特に好ましい。結晶核剤の含有量が、本樹脂組成物100重量部に対して、0.5重量部以上であると、結晶核剤としての十分な効果が得られる。また、結晶核剤の含有量が、本樹脂組成物100重量部に対して、2.0重量部以下であると、加工時に適度な粘度が保たれ、成形体の物性への影響も軽減される。 The content of the crystal nucleating agent is not particularly limited as long as it can promote the crystallization of the P3HA resin, but is preferably 0.1 to 2.0 parts by weight, more preferably 0.6 to 1.8 parts by weight, even more preferably 0.7 to 1.6 parts by weight, and particularly preferably 0.8 to 1.5 parts by weight, per 100 parts by weight of the resin composition. When the content of the crystal nucleating agent is 0.5 parts by weight or more per 100 parts by weight of the resin composition, a sufficient effect as a crystal nucleating agent can be obtained. Furthermore, when the content of the crystal nucleating agent is 2.0 parts by weight or less per 100 parts by weight of the resin composition, an appropriate viscosity is maintained during processing, and the effect on the physical properties of the molded product is also reduced.
 本発明の一実施形態において、滑剤は、ベヘニン酸アミド、ステアリン酸アミド、エルカ酸アミドおよびオレイン酸アミドからなる群より選択される少なくとも1種を含有する。これにより、得られる成形体は、滑性(特に、外部滑性)を備える。ベヘニン酸アミド、ステアリン酸アミド、エルカ酸アミドおよびオレイン酸アミドの中でも、加工性や生産性が向上するという観点から、好ましくは、ベヘニン酸アミド、エルカ酸アミドを含有することが好ましい。 In one embodiment of the present invention, the lubricant contains at least one selected from the group consisting of behenic acid amide, stearic acid amide, erucic acid amide, and oleic acid amide. This provides the resulting molded article with lubricity (particularly external lubricity). Of behenic acid amide, stearic acid amide, erucic acid amide, and oleic acid amide, it is preferable to contain behenic acid amide or erucic acid amide from the viewpoint of improving processability and productivity.
 本発明の一実施形態において、滑剤は、ベヘニン酸アミド、ステアリン酸アミド、エルカ酸アミド、オレイン酸アミドまたはこれらの2種以上の組合せであってもよく、ベヘニン酸アミド、ステアリン酸アミド、エルカ酸アミドおよびオレイン酸アミド以外の滑剤(以下、「その他の滑剤」と称する。)との組み合わせであってもよい。その他の滑剤としては、例えば、国際公開第2022/014408号に記載のものが使用され得る。 In one embodiment of the present invention, the lubricant may be behenic acid amide, stearic acid amide, erucic acid amide, oleic acid amide, or a combination of two or more of these, or may be a combination with a lubricant other than behenic acid amide, stearic acid amide, erucic acid amide, or oleic acid amide (hereinafter referred to as "other lubricants"). As other lubricants, for example, those described in WO 2022/014408 can be used.
 滑剤の含有量(滑剤が複数使用される場合は、その合計含有量)は、滑性を付与できれば特に限定はないが、本樹脂組成物100重量部に対して、0.1~2.0重量部が好ましく、0.2~1.6重量部がより好ましく、0.3~1.4重量部がさらに好ましく、0.4~1.2重量部が特に好ましい。滑剤の含有量が、本樹脂組成物100重量部に対して、0.1重量部以上であると、滑剤としての十分な効果が得られる。また、滑剤の含有量が、本樹脂組成物100重量部に対して、2.0重量部以下であると、成形体表面へのブリードアウトが回避され、優れた外観の成形体が得られる。 The amount of lubricant (the total amount when multiple lubricants are used) is not particularly limited as long as it can provide lubricity, but is preferably 0.1 to 2.0 parts by weight, more preferably 0.2 to 1.6 parts by weight, even more preferably 0.3 to 1.4 parts by weight, and particularly preferably 0.4 to 1.2 parts by weight, per 100 parts by weight of the resin composition. When the amount of lubricant is 0.1 part by weight or more per 100 parts by weight of the resin composition, a sufficient effect as a lubricant can be obtained. Furthermore, when the amount of lubricant is 2.0 parts by weight or less per 100 parts by weight of the resin composition, bleeding out onto the surface of the molded product is avoided, and a molded product with excellent appearance can be obtained.
 [その他の成分]
 本樹脂組成物は、上記P3HA系樹脂、結晶核剤および滑剤の他、本発明の効果を損なわない範囲において、可塑剤;無機充填剤;酸化防止剤;紫外線吸収剤;染料、顔料等の着色剤;帯電防止剤等の他の成分を含有し得る。上記各成分の例示としては、例えば、国際公開第2022/014408号に記載のものが使用され得る。
[Other ingredients]
In addition to the P3HA resin, the crystal nucleating agent, and the lubricant, the resin composition may contain other components such as plasticizers, inorganic fillers, antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents, as long as the effects of the present invention are not impaired. Examples of the above components include those described in International Publication No. WO 2022/014408.
 上記各成分の含有量は、本発明の効果を発現できれば特に限定されず、当業者により適宜設定され得る。 The content of each of the above components is not particularly limited as long as the effects of the present invention can be achieved, and can be appropriately determined by those skilled in the art.
 [その他]
 本発明の一実施形態において、本樹脂組成物は、生分解性の観点から、互着防止剤を含まないことが好ましい。
[others]
In one embodiment of the present invention, from the viewpoint of biodegradability, it is preferable that the resin composition does not contain an anti-adhesion agent.
 <溶融押出>
 工程(i)における溶融押出は、当該技術分野で周知の任意の装置により行われ得る。そのような装置としては、特に限定されないが、例えば、二軸押出機(例えば、東芝機械社製TEM-26SX)、一軸押出機等が挙げられる。
<Melt Extrusion>
The melt extrusion in step (i) may be carried out by any apparatus known in the art, including, but not limited to, a twin-screw extruder (e.g., TEM-26SX manufactured by Toshiba Machine Co., Ltd.), a single-screw extruder, and the like.
 工程(i)における溶融温度は、本樹脂組成物の組成、本樹脂組成物に含まれるP3HA系樹脂の種類等により変化し得るが、例えば、120~200℃であり、140~180℃であることが好ましい。 The melting temperature in step (i) may vary depending on the composition of the resin composition, the type of P3HA-based resin contained in the resin composition, etc., but is, for example, 120 to 200°C, and preferably 140 to 180°C.
 (2-2.工程(ii))
 工程(ii)は、前記(i)工程で得られた溶融した樹脂組成物を、水浴で冷却してストランドを得る、ストランド化工程である。本工程では、上記樹脂組成物をストランドバス中で水浴して冷却することにより、上記樹脂組成物の結晶化を促進し、ストランドを得る。工程(ii)において、ストランドバスの温度を下げることでより効率的に(省スペースで)、工程(iii)でのストランド切断を可能とする。また、ストランドバスの温度を下げることで、押出機から出てきたストランドを急冷でき、ストランドバスの滞留時間を短く(ストランドバスのサイズを小さく)できる。
(2-2. Step (ii))
Step (ii) is a stranding step in which the molten resin composition obtained in step (i) is cooled in a water bath to obtain strands. In this step, the resin composition is cooled in a water bath in a strand bath to promote crystallization of the resin composition and obtain strands. In step (ii), lowering the temperature of the strand bath enables more efficient (space-saving) strand cutting in step (iii). In addition, lowering the temperature of the strand bath allows the strands coming out of the extruder to be rapidly cooled, and the residence time in the strand bath can be shortened (the size of the strand bath can be reduced).
 工程(ii)における水浴の温度は、20~60℃であることが好ましく、22~50℃であることがより好ましく、25~40℃であることがさらに好ましい。本製造方法では、工程(ii)における水浴の温度を20~60℃の低温に設定しても、生産性よくP3HA系樹脂の成形体を製造することができる。上記水浴の温度が20~60℃であると、水浴の滞留時間を短くすることができるため、ストランドバスを小型化できるという利点がある。 The temperature of the water bath in step (ii) is preferably 20 to 60°C, more preferably 22 to 50°C, and even more preferably 25 to 40°C. In this manufacturing method, even if the temperature of the water bath in step (ii) is set to a low temperature of 20 to 60°C, molded bodies of P3HA-based resin can be manufactured with good productivity. When the temperature of the water bath is 20 to 60°C, the residence time in the water bath can be shortened, which has the advantage of allowing the strand bath to be made smaller.
 工程(ii)で得られるストランドの直径は、0.5~10.0mmであることが好ましく、0.6~5.0mmであることがより好ましく、0.8~3.0mmであることがさらに好ましい。上記ストランドの直径が0.5~10.0mmであると、前記工程(ii)でストランドが切れることなく、効率的にストランドを冷却できる。 The diameter of the strand obtained in step (ii) is preferably 0.5 to 10.0 mm, more preferably 0.6 to 5.0 mm, and even more preferably 0.8 to 3.0 mm. When the diameter of the strand is 0.5 to 10.0 mm, the strand can be cooled efficiently in step (ii) without being broken.
 (2-3.工程(iii))
 工程(iii)は、前記工程(ii)で得られたストランドを、カッターに加水しながら切断する、切断工程である。工程(iii)において、ストランドのカッティング時にカッターに加水することにより、成形体の互着、および成形体のカッターや成形体排出部との付着を抑制できる。
(2-3. Step (iii))
Step (iii) is a cutting step in which the strand obtained in step (ii) is cut while adding water to the cutter. In step (iii), by adding water to the cutter when cutting the strand, adhesion of the molded bodies to each other and to the cutter or the molded body discharge part can be suppressed.
 本明細書において、「カッターに加水しながら」とは、少なくともストランドとカッターの刃に水をかけながらカッティングすることを意図する。より好ましくは、上記に加えて、成形体排出部にも水をかけながらカッティングを行う。さらに好ましくは、ストランドカッターから保持槽まで加水を続ける。これにより、成形体排出部への付着を防止し、成形体排出部の詰まりを抑制できる効果がある。 In this specification, "while adding water to the cutter" means that cutting is performed while water is applied to at least the strand and the blade of the cutter. More preferably, in addition to the above, cutting is performed while water is also applied to the formed body discharge section. Even more preferably, water is continued to be added from the strand cutter to the holding tank. This has the effect of preventing adhesion to the formed body discharge section and suppressing clogging of the formed body discharge section.
 本発明の一実施形態において、工程(iii)における加水は、ストランド、カッター、および成形体排出部のすべてに対して行われることが好ましい。 In one embodiment of the present invention, it is preferable that the addition of water in step (iii) is performed on all of the strands, the cutter, and the molded body discharge section.
 本製造方法では、工程(ii)のストランド化工程に供するストランドバスの後段に、工程(iii)の切断工程に供する設備(例えば、湿式ペレタイザー)と、工程(iv)の保持工程に供する結晶化保持槽(撹拌槽)との組み合わせを導入することで、成形体の互着を防ぎ、設備設置面積を大きく削減できる利点がある。 In this manufacturing method, by introducing a combination of equipment used in the cutting step (iii) (e.g., a wet pelletizer) and a crystallization holding tank (agitation tank) used in the holding step (iv) downstream of the strand bath used in the stranding step (ii), it is possible to prevent the compacts from sticking together and to significantly reduce the equipment installation area.
 工程(iii)において、カッターに加水する水の温度は、Tc-25℃~Tc+15℃であることが好ましく、Tc-20℃~Tc+10℃であることがより好ましく、Tc-10℃~Tc+5℃であることがさらに好ましい。ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。上記カッターに加水する水の温度が、Tc-25℃~Tc+15℃であると、十分に結晶化が生じる。 In step (iii), the temperature of the water added to the cutter is preferably Tc-25°C to Tc+15°C, more preferably Tc-20°C to Tc+10°C, and even more preferably Tc-10°C to Tc+5°C. Here, Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin. When the temperature of the water added to the cutter is Tc-25°C to Tc+15°C, sufficient crystallization occurs.
 工程(iii)における加水する水の絶対温度は、50~90℃であることが好ましく、60~80℃であることがより好ましい。上記加水する水の絶対温度が、50~90℃であると、十分に結晶化が生じる。 The absolute temperature of the water added in step (iii) is preferably 50 to 90°C, and more preferably 60 to 80°C. When the absolute temperature of the water added is 50 to 90°C, sufficient crystallization occurs.
 (2-4.工程(iv))
 工程(iv)は、前記工程(iii)で得られた切断された成形体を、Tc-25℃~Tc+15℃で保持する、保持工程である(ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。)。本工程では、P3HA系樹脂含有ストランドを切断後、結晶化保持槽(撹拌槽)で、切断された成形体を水に分散することで、成形体同士の付着を防止しながら、成形体を結晶化させる。本工程において、結晶化保持槽(撹拌槽)中で冷却することにより、成形体の互着をより確実に回避することが可能となる。
(2-4. Step (iv))
Step (iv) is a holding step in which the cut molded bodies obtained in step (iii) are held at Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA resin). In this step, after the P3HA resin-containing strands are cut, the cut molded bodies are dispersed in water in a crystallization holding tank (stirring tank) to crystallize the molded bodies while preventing adhesion between the molded bodies. In this step, by cooling in the crystallization holding tank (stirring tank), it is possible to more reliably prevent the molded bodies from adhering to each other.
 工程(iv)における保持温度は、Tc-25℃~Tc+15℃であり、Tc-20℃~Tc+10℃であることが好ましく、Tc-10℃~Tc+5℃であることがより好ましい。ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。上記保持温度が、Tc-25℃~Tc+15℃であると、十分に結晶化が生じる。 The holding temperature in step (iv) is Tc-25°C to Tc+15°C, preferably Tc-20°C to Tc+10°C, and more preferably Tc-10°C to Tc+5°C. Here, Tc indicates the crystallization temperature of the resin composition containing the P3HA-based resin. If the holding temperature is Tc-25°C to Tc+15°C, sufficient crystallization occurs.
 工程(iv)における保持温度の絶対温度は、50~90℃であることが好ましく、60~80℃であることがより好ましい。上記保持温度の絶対温度が、50~90℃であると、十分に結晶化が生じる。 The absolute temperature of the holding temperature in step (iv) is preferably 50 to 90°C, and more preferably 60 to 80°C. When the absolute temperature of the holding temperature is 50 to 90°C, sufficient crystallization occurs.
 本発明の一実施形態において、工程(iv)は、前記工程(iii)で得られた切断された成形体を撹拌しながら行われることが好ましい。 In one embodiment of the present invention, step (iv) is preferably carried out while stirring the cut molded body obtained in step (iii).
 前記撹拌における撹拌速度は、特に限定されないが、例えば、50~800rpmであり、200~600rpmであることが好ましい。 The stirring speed during the stirring is not particularly limited, but is, for example, 50 to 800 rpm, and preferably 200 to 600 rpm.
 前記撹拌における撹拌時間(撹拌槽での滞留時間)は、特に限定されないが、例えば、1~10分であり、1.5~5分であることが好ましい。 The mixing time (residence time in the mixing tank) is not particularly limited, but is, for example, 1 to 10 minutes, and preferably 1.5 to 5 minutes.
 前記撹拌に供される装置は、特に限定されないが、例えば、縦型撹拌機、横型撹拌機等が使用され得る。 The device used for the stirring is not particularly limited, but for example, a vertical stirrer, a horizontal stirrer, etc. may be used.
 (2-5.工程(v))
 工程(v)は、前記工程(iv)で得られた成形体を、40~120℃で乾燥させる、乾燥工程である。本工程により、乾燥した製品としての成形体を得ることができる。
(2-5. Step (v))
Step (v) is a drying step in which the molded body obtained in step (iv) is dried at 40 to 120° C. By this step, a molded body can be obtained as a dried product.
 工程(v)における乾燥温度は、40~120℃であることが好ましく、60~100℃であることがより好ましく、70~90℃であることがさらに好ましい。上記乾燥温度が、40~120℃であると、水分を十分除去できる。 The drying temperature in step (v) is preferably 40 to 120°C, more preferably 60 to 100°C, and even more preferably 70 to 90°C. If the drying temperature is 40 to 120°C, moisture can be sufficiently removed.
 工程(v)における乾燥時間は、乾燥温度等によって適宜変更され得るが、例えば、3~10時間であり、4~6時間であることが好ましい。 The drying time in step (v) can be changed as appropriate depending on the drying temperature, etc., but is, for example, 3 to 10 hours, and preferably 4 to 6 hours.
 工程(v)の乾燥に供される装置は、特に限定されないが、例えば、箱型乾燥機、ホッパードライヤー等が使用され得る。 The device used for drying in step (v) is not particularly limited, but for example, a box dryer, a hopper dryer, etc. may be used.
 本製造方法により得られる成形体は、例えば、紙、フィルム、シート、チューブ、板、棒、容器(例えば、ボトル容器)、食品用トレー、袋、部品等として利用できる。 The molded articles obtained by this manufacturing method can be used, for example, as paper, films, sheets, tubes, plates, rods, containers (e.g., bottle containers), food trays, bags, parts, etc.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments.
 すなわち、本発明の一実施形態は、以下である。
<1>(i)P3HA系樹脂を含む樹脂組成物を、押出機中で溶融して押し出す、溶融押出工程、
 (ii)前記(i)工程で得られた溶融した樹脂組成物を、水浴で冷却してストランドを得る、ストランド化工程、
 (iii)前記工程(ii)で得られたストランドを、カッターに加水しながら切断する、切断工程、および
 (iv)前記工程(iii)で得られた切断された成形体を、Tc-25℃~Tc+15℃で保持する、保持工程(ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。)、
を有する、P3HA系樹脂の成形体の製造方法。
<2>前記工程(iii)において、カッターに加水する水の温度が、Tc-25℃~Tc+15℃である(ここで、前記Tcは、前記P3HA系樹脂を含む樹脂組成物の結晶化温度を示す。)、<1>に記載の製造方法。
<3>前記工程(ii)において、水浴の温度が20~60℃である、<1>または<2>に記載の製造方法。
<4>前記P3HA系樹脂が、3HB単位を含み、前記P3HA系樹脂における3HB単位の含有割合が82mol%以上である、<1>~<3>のいずれかに記載の製造方法。
<5>前記P3HA系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、および、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシプロピオネート)から選択される1種以上である、<1>~<4>のいずれかに記載の製造方法。
<6>前記ストランドの直径が0.5~10.0mmである、<1>~<5>のいずれかに記載の製造方法。
<7>さらに、(v)前記工程(iv)で得られた成形体を、40~120℃で乾燥させる、乾燥工程を含む、<1>~<6>のいずれかに記載の製造方法。
<8>前記樹脂組成物が結晶核剤および/または滑剤を含む、<1>~<7>のいずれかに記載の製造方法。
<9>前記工程(iv)は、前記工程(iii)で得られた切断された成形体を撹拌しながら行われる、<1>~<8>のいずれかに記載の製造方法。
That is, one embodiment of the present invention is as follows.
<1> (i) a melt extrusion step of melting and extruding a resin composition containing a P3HA-based resin in an extruder;
(ii) a stranding step in which the molten resin composition obtained in the step (i) is cooled in a water bath to obtain strands;
(iii) a cutting step of cutting the strand obtained in the step (ii) while adding water to a cutter; and (iv) a holding step of holding the cut molded body obtained in the step (iii) at Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
A method for producing a molded article of a P3HA resin having the above structure.
<2> The manufacturing method according to <1>, wherein in the step (iii), the temperature of the water added to the cutter is Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the P3HA-based resin).
<3> The method according to <1> or <2>, wherein in the step (ii), the temperature of the water bath is 20 to 60° C.
<4> The manufacturing method according to any one of <1> to <3>, wherein the P3HA resin contains 3HB units and the content of 3HB units in the P3HA resin is 82 mol% or more.
<5> The method according to any one of <1> to <4>, wherein the P3HA-based resin is one or more selected from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate).
<6> The method according to any one of <1> to <5>, wherein the strand has a diameter of 0.5 to 10.0 mm.
<7> The method according to any one of <1> to <6>, further comprising: (v) drying the molded body obtained in the step (iv) at 40 to 120° C.
<8> The method according to any one of <1> to <7>, wherein the resin composition contains a crystal nucleating agent and/or a lubricant.
<9> The method according to any one of <1> to <8>, wherein the step (iv) is performed while stirring the cut molded body obtained in the step (iii).
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 〔使用した原料〕
 (P3HA系樹脂)
・P3HA-1:P3HB3HH(モノマー比率は3HB/3HH=85/15(モル/モル))、分子量66万
 P3HA-2:P3HB3HH(モノマー比率は3HB/3HH=94/6(モル/モル))、分子量48万
 P3HA-1は、WO2022/091685の実施例1に記載の方法で作製し、P3HA-2はWO2021/085534の実施例1に記載の方法で作製した。
[Raw materials used]
(P3HA resin)
・ P3HA-1: P3HB3HH (monomer ratio is 3HB / 3HH = 85 / 15 (mol / mol)), molecular weight 660,000 P3HA-2: P3HB3HH (monomer ratio is 3HB / 3HH = 94 / 6 (mol / mol)), molecular weight 480,000 P3HA-1 was prepared by the method described in Example 1 of WO2022 / 091685, and P3HA-2 was prepared by the method described in Example 1 of WO2021 / 085534.
 (その他)
・滑剤:ベヘニン酸アミド(日本精化株式会社)
・結晶核剤:ペンタエリスリトール(日本合成化学株式会社)。
(others)
Lubricant: Behenic acid amide (Nippon Fine Chemical Co., Ltd.)
- Nucleating agent: pentaerythritol (Nippon Synthetic Chemical Industry Co., Ltd.).
 〔測定および評価方法〕
 (刃への付着)
 成形体の刃への付着は、目視により評価した。
[Measurement and evaluation methods]
(Adhesion to the blade)
The adhesion of the molded article to the blade was evaluated visually.
 (結晶化温度)
 P3HA系樹脂組成物の結晶化温度は、以下の装置、条件、方法で測定される温度である。
・測定方法:示差走査熱分析(DSC,Differential Scanning Calorimetry)
・測定装置:日立ハイテックスサイエンス製、EXSTAR6000シリーズ DSC6200
・測定サンプル:P3HA5~10mgをアルミパンに入れて蓋をしてクリンプしたもの。
・測定条件:25℃から180℃まで、10℃/minで昇温したあとに、10℃/minで25℃まで降温する。測定中、窒素ガスを50mL/minを流す。
・結晶化温度の特定:降温過程で見られる発熱ピークを結晶化ピークとし、ピークトップを結晶化温度とする。
(Crystallization Temperature)
The crystallization temperature of the P3HA resin composition is a temperature measured using the following apparatus, conditions and method.
Measurement method: Differential Scanning Calorimetry (DSC)
Measurement equipment: Hitachi Hightech Science, EXSTAR6000 series DSC6200
Measurement sample: 5 to 10 mg of P3HA was placed in an aluminum pan, the lid was placed on and crimped.
Measurement conditions: The temperature is increased from 25° C. to 180° C. at 10° C./min, and then decreased at 10° C./min to 25° C. During the measurement, nitrogen gas is flowed at 50 mL/min.
Identification of crystallization temperature: The exothermic peak observed during the temperature drop is taken as the crystallization peak, and the peak top is taken as the crystallization temperature.
 (ストランドの直径)
 ストランドバスから出たストランドを鋏で切り、定規を用いて測定した。
(Strand diameter)
The strands emerging from the strand bath were cut with scissors and measured using a ruler.
 (互着率)
 ペレタイザーまたは撹拌槽から排出される成形体を抜き取り、重量を測定した。抜き取った成形体の中で切断されていない成形体を選別し、切断されていない成形体の重量を測定した。その後、[抜き取った成形体のうち切断されていない成形体重量]/[抜き取った全成形体重量]×100に基づいて、成形体の互着率(%)を算出した。
(mutual rate)
The compacts discharged from the pelletizer or the mixing tank were extracted and their weights were measured. Among the extracted compacts, those that were not cut were selected and their weights were measured. Then, the mutual adhesion rate (%) of the compacts was calculated based on [weight of the uncut compacts among the extracted compacts]/[weight of all the extracted compacts]×100.
 〔実施例1〕
 (溶融押出(工程(i)))
 P3HA系樹脂組成物の溶融混練には、二軸押出機(東芝機械社製TEM-26SX)を用いた。60重量部のP3HA-1と、40重量部のP3HA-2と、0.5重量部のベヘニン酸アミドと、1重量部のペンタエリスリトールとを計量し、ドライブレンドして、P3HA系樹脂組成物を調製した。調整したP3HA系樹脂組成物を二軸押出機に供給し、当該P3HA系樹脂組成物をシリンダー温度175℃にて溶融混練した。押出機の先端に取り付けたダイスのノズルから185℃の溶融混練されたP3HA系樹脂組成物(結晶化温度:70℃)を吐出した。
Example 1
(Melt Extrusion (Step (i)))
A twin-screw extruder (TEM-26SX manufactured by Toshiba Machine Co., Ltd.) was used for melt-kneading the P3HA-based resin composition. 60 parts by weight of P3HA-1, 40 parts by weight of P3HA-2, 0.5 parts by weight of behenic acid amide, and 1 part by weight of pentaerythritol were weighed and dry-blended to prepare a P3HA-based resin composition. The adjusted P3HA-based resin composition was fed to the twin-screw extruder, and the P3HA-based resin composition was melt-kneaded at a cylinder temperature of 175°C. The melt-kneaded P3HA-based resin composition at 185°C (crystallization temperature: 70°C) was discharged from the nozzle of the die attached to the tip of the extruder.
 (成形体の作製)
 押出機から吐出したP3HA系樹脂組成物を、水温55℃に調整したストランドバスに5秒浸漬後、湿式ペレタイザー(株式会社タナカ)に供給した(工程(ii))。湿式ペレタイザーの刃およびストランド(直径3mm)には60℃の水を供給しながら、ストランドを切断した(工程(iii))。切断された成形体を保持槽(撹拌槽)に供給し、60℃の水の中で滞留させた(工程(iv))。その後、脱水し、80℃で乾燥した成形体を得た(工程(v))。上記の方法により、刃への付着および成形体の互着率を測定および評価した。
(Preparation of Molded Body)
The P3HA-based resin composition discharged from the extruder was immersed in a strand bath adjusted to a water temperature of 55° C. for 5 seconds, and then supplied to a wet pelletizer (Tanaka Corporation) (step (ii)). The strands (diameter 3 mm) of the wet pelletizer were cut while supplying water at 60° C. to the blades and strands (diameter 3 mm) of the wet pelletizer (step (iii)). The cut molded body was supplied to a holding tank (stirring tank) and retained in water at 60° C. (step (iv)). After that, the molded body was dehydrated and dried at 80° C. to obtain a molded body (step (v)). By the above method, the adhesion to the blades and the mutual adhesion rate of the molded body were measured and evaluated.
 〔実施例2〕
 成形体の作製において、ストランドバスの水温を33℃とし、滞留時間を1.5秒としたこと以外は、実施例1と同様の方法で、成形体を作製した。
Example 2
A molded article was produced in the same manner as in Example 1, except that the water temperature in the strand bath was 33° C. and the residence time was 1.5 seconds.
 〔比較例1〕
 成形体の作製において、湿式ペレタイザーの刃およびストランドへの加水を行わず、保持槽での滞留を行わなかったこと以外は、実施例1と同様の方法で、成形体を作製した。
Comparative Example 1
A molded body was produced in the same manner as in Example 1, except that in the production of the molded body, water was not added to the blades and strands of the wet pelletizer, and retention in the holding tank was not performed.
 〔比較例2〕
 成形体の作製において、保持槽での滞留を行わなかったこと以外は、実施例1と同様の方法で、成形体を作製した。
Comparative Example 2
A molded body was produced in the same manner as in Example 1, except that retention in a holding tank was not performed in the production of the molded body.
 〔比較例3〕
 成形体の作製において、湿式ペレタイザーの刃およびストランドへの加水温度、ならびに保持槽での滞留温度を30℃としたこと以外は、実施例1と同様の方法で、成形体を作製した。
Comparative Example 3
The molded bodies were produced in the same manner as in Example 1, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were 30°C.
 〔比較例4〕
 成形体の作製において、保持槽での滞留を行わなかったこと以外は、実施例2と同様の方法で、成形体を作製した。
Comparative Example 4
A molded body was produced in the same manner as in Example 2, except that retention in a holding tank was not performed in the production of the molded body.
 〔比較例5〕
 成形体の作製において、湿式ペレタイザーの刃およびストランドへの加水温度、ならびに保持槽での滞留温度を30℃としたこと以外は、実施例2と同様の方法で、成形体を作製した。
Comparative Example 5
The molded bodies were produced in the same manner as in Example 2, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were set to 30°C.
 〔比較例6〕
 成形体の作製において、湿式ペレタイザーの刃およびストランドへの加水温度、ならびに保持槽での滞留温度を40℃としたこと以外は、実施例2と同様の方法で、成形体を作製した。
Comparative Example 6
The molded bodies were produced in the same manner as in Example 2, except that the temperature of water added to the blades and strands of the wet pelletizer and the retention temperature in the holding tank were 40°C.
 〔結果〕
 実施例1~2および比較例1~6の結果を、表1に示す。
〔result〕
The results of Examples 1 and 2 and Comparative Examples 1 to 6 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 〔結果〕
 表1より、実施例1~2では、刃への付着がなく、成形体の互着率も低かった。一方、比較例1では、成形体の刃への付着が見られた。また、比較例2~6では、刃への付着は見られなかったものの、成形体の互着率が高かった。
Figure JPOXMLDOC01-appb-T000001
〔result〕
As can be seen from Table 1, in Examples 1 and 2, there was no adhesion to the blade, and the adhesion rate of the molded body was low. On the other hand, adhesion of the molded body to the blade was observed in Comparative Example 1. In Comparative Examples 2 to 6, there was no adhesion to the blade, but the adhesion rate of the molded body was high.
 以上より、本発明の一態様に係るP3HA系樹脂の成形体の製造方法は、成形体の互着およびカッターへの付着を抑制し、生産性よくP3HA系樹脂の成形体を製造できることが示された。 The above shows that the method for producing molded bodies of P3HA-based resin according to one embodiment of the present invention can suppress adhesion of the molded bodies to each other and to the cutter, and can produce molded bodies of P3HA-based resin with high productivity.
 また、実施例2と比較例4~6との比較より、ストランドバスでの滞留時間を短くしても、刃への付着がなく、成形体の互着率も低くなることが示された。 Furthermore, a comparison of Example 2 with Comparative Examples 4 to 6 showed that even if the residence time in the strand bath was shortened, there was no adhesion to the blades and the adhesion rate of the molded bodies was also reduced.
 本発明の製造方法は、農業、漁業、林業、園芸、医学、衛生品、衣料、非衣料、包装、自動車、建材、その他の分野に好適に利用することができる。 The manufacturing method of the present invention can be suitably used in the fields of agriculture, fishing, forestry, horticulture, medicine, hygiene products, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Claims (9)

  1.  (i)ポリ(3-ヒドロキシアルカノエート)系樹脂を含む樹脂組成物を、押出機中で溶融して押し出す、溶融押出工程、
     (ii)前記(i)工程で得られた溶融した樹脂組成物を、水浴で冷却してストランドを得る、ストランド化工程、
     (iii)前記工程(ii)で得られたストランドを、カッターに加水しながら切断する、切断工程、および
     (iv)前記工程(iii)で得られた切断された成形体を、Tc-25℃~Tc+15℃で保持する、保持工程(ここで、前記Tcは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂を含む樹脂組成物の結晶化温度を示す。)、
    を有する、ポリ(3-ヒドロキシアルカノエート)系樹脂の成形体の製造方法。
    (i) a melt extrusion step of melting and extruding a resin composition containing a poly(3-hydroxyalkanoate)-based resin in an extruder;
    (ii) a stranding step in which the molten resin composition obtained in the step (i) is cooled in a water bath to obtain strands;
    (iii) a cutting step of cutting the strand obtained in the step (ii) while adding water to a cutter, and (iv) a holding step of holding the cut molded body obtained in the step (iii) at Tc-25°C to Tc+15°C (wherein Tc represents the crystallization temperature of the resin composition containing the poly(3-hydroxyalkanoate)-based resin).
    The present invention relates to a method for producing a molded article of a poly(3-hydroxyalkanoate) resin having the above formula:
  2.  前記工程(iii)において、カッターに加水する水の温度が、Tc-25℃~Tc+15℃である(ここで、前記Tcは、前記ポリ(3-ヒドロキシアルカノエート)系樹脂を含む樹脂組成物の結晶化温度を示す。)、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in step (iii), the temperature of the water added to the cutter is Tc-25°C to Tc+15°C (where Tc represents the crystallization temperature of the resin composition containing the poly(3-hydroxyalkanoate)-based resin).
  3.  前記工程(ii)において、水浴の温度が20~60℃である、請求項1に記載の製造方法。 The method of claim 1, wherein the temperature of the water bath in step (ii) is 20 to 60°C.
  4.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂が、3-ヒドロキシブチレート単位を含み、前記ポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合が82mol%以上である、請求項1に記載の製造方法。 The method according to claim 1, wherein the poly(3-hydroxyalkanoate) resin contains 3-hydroxybutyrate units, and the content of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin is 82 mol% or more.
  5.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、および、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシプロピオネート)から選択される1種以上である、請求項1に記載の製造方法。 The method of claim 1, wherein the poly(3-hydroxyalkanoate)-based resin is one or more selected from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate).
  6.  前記ストランドの直径が0.5~10.0mmである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the diameter of the strand is 0.5 to 10.0 mm.
  7.  さらに、(v)前記工程(iv)で得られた成形体を、40~120℃で乾燥させる、乾燥工程を含む、請求項1に記載の製造方法。 The method of claim 1 further includes (v) a drying step of drying the molded body obtained in step (iv) at 40 to 120°C.
  8.  前記樹脂組成物が結晶核剤および/または滑剤を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the resin composition contains a crystal nucleating agent and/or a lubricant.
  9.  前記工程(iv)は、前記工程(iii)で得られた切断された成形体を撹拌しながら行われる、請求項1~8のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the step (iv) is carried out while stirring the cut molded body obtained in the step (iii).
PCT/JP2023/040843 2022-11-25 2023-11-14 Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body WO2024111463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188665 2022-11-25
JP2022-188665 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111463A1 true WO2024111463A1 (en) 2024-05-30

Family

ID=91195600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040843 WO2024111463A1 (en) 2022-11-25 2023-11-14 Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body

Country Status (1)

Country Link
WO (1) WO2024111463A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034987A (en) * 2017-08-10 2019-03-07 地方独立行政法人京都市産業技術研究所 Aliphatic polyester resin composition and molded body
JP2022104869A (en) * 2021-09-03 2022-07-12 三菱ケミカル株式会社 Materials for three-dimensional modeling with excellent biodegradability and their modeled products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034987A (en) * 2017-08-10 2019-03-07 地方独立行政法人京都市産業技術研究所 Aliphatic polyester resin composition and molded body
JP2022104869A (en) * 2021-09-03 2022-07-12 三菱ケミカル株式会社 Materials for three-dimensional modeling with excellent biodegradability and their modeled products

Similar Documents

Publication Publication Date Title
JP6273627B2 (en) Polyester resin composition and molded article containing the resin composition
AU2009295910B2 (en) Aliphatic polyester
EP1027384B1 (en) Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
JP7433889B2 (en) Aliphatic polyester resin composition and its use
CN113631657B (en) Polyhydroxyalkanoate-based resin composition, molded article thereof, and film or sheet
JP6866722B2 (en) Resin composition and resin molded products molded using it
CN115232456B (en) Polyhydroxyalkanoate composition containing hydroxy acid nucleating agent, polyhydroxyalkanoate molded body and preparation method thereof
CN114851528B (en) Polyhydroxyalkanoate forming body and preparation method thereof
JP2017222791A (en) Poly-3-hydroxyalkanoate-based resin composition and molded body
WO2023245997A1 (en) Marine degradable polyhydroxyalkanoate composition, molded body and preparation method therefor
CN115803381A (en) Aliphatic polyester resin composition and use thereof
CN113956630A (en) Completely biodegradable film and preparation method thereof
TW202348722A (en) Alcohol nucleating agent-containing polyhydroxyalkanoate composition, polyhydroxyalkanoate forming body and preparation method of polyhydroxyalkanoate forming body
JP2014156539A (en) Polyester resin composition, film obtained by molding resin composition and bag obtained by molding film
CN102007182B (en) Ethylene alkyl acrylate toughened poly(hydroxyalkanoic acid) compositions
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
US20230365806A1 (en) Resin composition for injection molding and injection-molded article
WO2024111463A1 (en) Method for manufacturing poly(3-hydroxyalkanoate)-based resin molded body
JP4326832B2 (en) Method for producing biodegradable polyester resin composition
US20230312916A1 (en) Blow-molded or injection-molded article
JP7218650B2 (en) Polyester resin composition and molded article
JP2022077582A (en) Polyhydroxyalkanoate-based resin composition, and molded article thereof
JP7090523B2 (en) Resin composition and molded product
EP4180703A1 (en) Resin tube
WO2024085052A1 (en) Resin tube