WO2024111388A1 - Message control device and message control method - Google Patents

Message control device and message control method Download PDF

Info

Publication number
WO2024111388A1
WO2024111388A1 PCT/JP2023/039855 JP2023039855W WO2024111388A1 WO 2024111388 A1 WO2024111388 A1 WO 2024111388A1 JP 2023039855 W JP2023039855 W JP 2023039855W WO 2024111388 A1 WO2024111388 A1 WO 2024111388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
message
information
vehicle
control
Prior art date
Application number
PCT/JP2023/039855
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 山城
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024111388A1 publication Critical patent/WO2024111388A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • H04W12/121Wireless intrusion detection systems [WIDS]; Wireless intrusion prevention systems [WIPS]
    • H04W12/122Counter-measures against attacks; Protection against rogue devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • This disclosure relates to a message control device and a message control method in Intelligent Transport Systems (ITS).
  • ITS Intelligent Transport Systems
  • CPS Collective Perception Service
  • ETSI TR 103 562 V2.1.1 2019-12 “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2”, December 18, 2019
  • V2X communications raises concerns about privacy protection because the vehicle's location information (e.g., latitude and longitude) is transmitted to the surrounding area, and various countermeasures are being considered.
  • location information e.g., latitude and longitude
  • tracking For example, there is a risk that a third party could record the V2X messages transmitted by a single vehicle at multiple locations, allowing the movement of the vehicle to be tracked. If tracking is carried out near the vehicle owner's home or workplace, there is a risk that the vehicle owner's home or workplace could be identified.
  • CPMs Collective Perception Messages
  • the messages used in the above-mentioned CPS have not yet been studied in detail, and sufficient consideration has not been given to privacy protection.
  • some of the sensor information contained in CPMs is expressed at a fairly fine resolution, so if a malicious third party receives multiple CPMs sent by a vehicle, there is a risk that the vehicle in question may be identified.
  • one of the objectives of the present disclosure is to provide a message control device and a message control method that can effectively prevent a source vehicle from being tracked in V2X communication.
  • One aspect of the present disclosure is a message control device that has a control unit that generates a message including sensor feature information for a plurality of sensors included in a vehicle in which the message control device is installed, and a communication unit that transmits the message generated by the control unit, and the control unit executes sensor information change control that causes the sensor feature information included in the message to differ between successively transmitted messages.
  • a message control method is a message control method having a step of generating a message including sensor feature information for a plurality of sensors included in a vehicle, in which the sensor feature information included in the message is made different between successively transmitted messages, and a step of transmitting the generated message.
  • tracking of a transmitting vehicle in V2X communication can be effectively prevented.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an intelligent road transportation system 1 according to an embodiment.
  • FIG. 2 is a diagram showing an example of the distance to a target.
  • FIG. 3 is a diagram illustrating an example of a sensor information container.
  • FIG. 4 is a diagram showing an example of the contents of each piece of information included in the vehicle sensor information.
  • FIG. 5A shows an example of the sensor reference position and sensor position indicated by the CPM without distributed transmission and variation of the sensor reference position of the present disclosure.
  • FIG. 5B is a diagram showing an example of distributed transmission of sensor feature information based on an embodiment that combines embodiment 1.2 and embodiment 1.0.
  • FIG. 6A is a diagram showing an example of a sensor position estimated by a receiver when the sensor reference position is not varied.
  • FIG. 6B is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is varied.
  • FIG. 7A is a diagram showing an example of an actual detection area for a corrected detection area according to embodiment 1.4.
  • FIG. 7B is a diagram showing an example of a correction detection area according to embodiment 1.4.
  • FIG. 7C is a diagram showing an example of a correction detection area according to embodiment 1.4.
  • FIG. 8 is a diagram illustrating an example of a vehicle 10 according to an embodiment.
  • Fig. 1 is a diagram showing an example of a schematic configuration of an intelligent transport system 1 according to an embodiment.
  • the intelligent transport system (ITS) 1 shown in Fig. 1 may include a vehicle 10, a roadside unit 20, and an ITS server 30.
  • the intelligent transport system 1 may be interchangeably read as an Intelligent Transport System (hereinafter, ITS), a road transport system, a transport system, and the like.
  • the roadside unit 20 may be called a RoadSide Unit (hereinafter, RSU) 20.
  • RSU RoadSide Unit
  • ITS1 may be called a system in which information (e.g., traffic information, information for autonomous driving, etc.) is shared among multiple vehicles (so-called Cooperative ITS (CITS)).
  • information e.g., traffic information, information for autonomous driving, etc.
  • CITS Cooperative ITS
  • ITS1 communication is carried out using one of the message control methods according to each embodiment of this disclosure described below, or a combination of these.
  • Vehicle 10 is a vehicle that travels on a roadway.
  • Vehicle 10 may be a car, or a vehicle that does not move autonomously (e.g., a bicycle).
  • a car may be one or both of a four-wheeled vehicle and a two-wheeled vehicle.
  • the vehicle 10 has an on-board communication device and can communicate with other vehicles 10, the RSU 20, the ITS server 30, etc., via wireless communication.
  • Wireless communication methods include, for example, Long Term Evolution (LTE), 5th generation mobile communication system (5G), and Wi-Fi (registered trademark).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • Wi-Fi registered trademark
  • the wireless communication method may not only be LTE and 5G, but also other technical specifications (for example, 5G Advanced, 6G, etc.) defined by the Third Generation Partnership Project (3GPP (registered trademark)).
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2X vehicle-to-everything
  • the messages transmitted between the vehicles 10 may include, for example, at least one of the following: Cooperative Awareness Message (CAM), which periodically transmits vehicle position, speed, etc. Decentralized Environmental Notification Message (DENM), which notifies when certain events occur; - Collective Perception Message (CPM) for sharing the environment perceived based on perception sensors.
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • CPM Collective Perception Message
  • CAM is a message sent in the Cooperative Awareness (CA) service proposed by ETSI (European Telecommunications Standards Institute).
  • CA Cooperative Awareness
  • Road users refer to all users on and around the road who are responsible for road safety and control, such as cars, trucks, motorbikes, bicycles, pedestrians, etc.
  • roadside infrastructure refers to facilities such as road signs, traffic lights, barriers, entrances, etc.
  • the CPM is a message sent in the CP service proposed by ETSI.
  • the CP service is a service that notifies the surrounding area of the positions, behavior, and attributes of surrounding road users and other objects detected by the vehicle sending the CPM.
  • the RSU 20 collects information on the congestion status of surrounding roads, information on nearby traffic lights, etc.
  • Traffic light information can include the color of the traffic lights.
  • the RSU 20 also has the function of communicating the collected information with the vehicle 10, other RSUs 20, the ITS server 30, etc. Traffic lights may be called traffic lights. Traffic light information may be called information indicating the traffic light status.
  • the RSU 20 may be equipped with a sensor and collect information using the sensor. This sensor may include a camera. Examples of road conditions are the congestion status of the road, the presence or absence of fallen objects, and the condition of the road surface.
  • the RSU 20 may relay communication between the vehicle 10 and the ITS server 30.
  • the RSU 20 may be communicatively connected to one or both of the traffic lights and sensors via wires or wirelessly.
  • a mobile communication terminal may be used as the communication unit of the RSU 20.
  • the mobile communication terminal is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet terminal.
  • the communication terminal is equipped with one or more sensors such as a camera, and is therefore expected to contribute to providing useful information.
  • the ITS server 30 may provide traffic information, driving assistance information, etc. to the vehicle 10, and control traffic light lights based on information received from the vehicle 10, the RSU 20, etc.
  • the ITS server 30 may be a cloud server or an on-premise server.
  • the entities that perform V2X communication such as the vehicle 10 and the RSU 20, may be referred to as ITS stations (ITS-S).
  • ITS stations ITS stations
  • the ITS architecture used or operated by these entities may be referred to as the ITS-S architecture.
  • ITS 1 shown in FIG. 1 is an example, and the configuration of ITS system 1 is not limited to the configuration shown in FIG. 1.
  • the number of vehicles 10 is not limited to the number shown in FIG. 1.
  • the number of RSUs 20 and ITS servers 30 is not limited to the number shown in FIG. 1.
  • ITS1 may simply be written as ITS
  • vehicle 10 may simply be written as vehicle.
  • vehicle, RSU, etc. may be interchangeably read as ITS-S.
  • the message used in the above-mentioned CPS is called a CPM.
  • the CPM includes a sensor starting position, an x distance, a y distance from the sensor starting position to the target, and the like.
  • a receiving vehicle that receives the CPM can calculate the absolute position of the target from the sensor starting position, and the x distance, and the y distance from the sensor starting position to the target.
  • the target may be interchangeably read as a perceived object.
  • the sensor mounting position may be the sensor starting position.
  • the sensor starting position may be calculated from the absolute position of the vehicle, the mounting position of the sensor in the vehicle, the direction in which the vehicle is facing, etc.
  • the absolute position of the vehicle may be, for example, latitude and longitude obtained by a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), and may be called a GPS positioning position, etc.
  • a positioning system e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the sensor mounting position may also be a position with an offset (e.g., offset in the x-axis/y-axis directions) added based on a reference point for the vehicle.
  • the reference point for the vehicle may be a ground position at the center of the front side of a rectangle (bounding box) surrounding the vehicle, or a GPS positioning position within the vehicle (e.g., the location where the locator is located).
  • the x-axis extends in the longitudinal direction of the vehicle
  • the y-axis extends left and right when looking at the vehicle from the front
  • the z-axis is perpendicular to the x-axis and y-axis.
  • the direction of the sensor axis may also be calculated from the direction in which the vehicle is facing.
  • the start and end opening angles of the sensor detection range may also be used instead of the direction of the sensor axis. Because the sensor is fixed to the vehicle, the direction of the sensor axis relative to the direction in which the vehicle is facing or the start and end opening angles of the sensor detection range are fixed values. Therefore, the direction of the sensor axis or the start and end opening angles of the sensor detection range can be calculated by adding or subtracting a fixed value to the direction in which the vehicle is facing. Note that the direction in which the vehicle is traveling is used as the direction in which the vehicle is facing.
  • FIG. 2 is a diagram showing an example of distances to targets.
  • target A is located at a distance of 1 in the x direction and 1 in the y direction from the vehicle's sensor starting point
  • target B is located at a distance of 2 in the x direction and 2 in the y direction from the vehicle's sensor starting point.
  • the target position may represent the position with the shortest distance from the sensor starting position. However, this is not limited to this. Furthermore, the distance to the target may be the distance from the sensor starting position to the target, or may be calculated from the detection results of the sensor.
  • the sensor starting position, sensor mounting position, sensor axis direction, etc. may differ for each sensor, and the CPM may include information regarding these for each of multiple sensors.
  • a vehicle that receives a CPM from another vehicle may determine the absolute position of the target based on at least one of its own absolute position, the position of the other vehicle (obtained via CAM, etc.), the distance from the other vehicle to the target (obtained via CPM), etc.
  • the CPM may include at least one of the following containers: A management container indicating the source ITS-S station type, reference position, etc. A station data container showing detailed information about the source ITS-S. A sensor information container indicating the type of sensor possessed by the sender ITS-S, detection area, etc. A perceived object container indicating an object detected by a sensor of the transmitting ITS-S, - A free space addendum container that provides additional information about the free space.
  • the CPM includes a management container as a required container.
  • the management container may be called a CPM management container.
  • the station data container, the sensor information container, the perceived target container, and the free space adjunct container are optional containers that may be included in the CPM.
  • the sensor information container, the perceived target container, and the free space adjunct container may be multiple containers.
  • the upper limit of the sensor information container, the perceived target container, and the free space adjunct container that can be included in one CPM message may be set jointly or individually.
  • the upper limit of the number of containers may be, for example, 128.
  • a container may correspond to a set of information that includes one or more parameters.
  • a parameter may also be called a data frame, data element, etc.
  • Figure 3 shows an example of a sensor information container. This example is written using Abstract Syntax Notation One (ASN.1) notation. Note that this is merely an example and is not necessarily a complete description. The same applies to subsequent similar drawings.
  • ASN.1 Abstract Syntax Notation One
  • the sensor information container includes one or more pieces of sensor information (SensorInformation), and the sensor information includes, for example, sensor ID information (sensorID) and detection area information (DetectionArea).
  • the detection area information may include vehicle sensor information (VehicleSensor) related to a sensor mounted on the vehicle.
  • the sensor information container is sometimes called a Field-of-View information container (Field-of-View Container).
  • Sensor feature information is information that represents the features of a sensor. Some or all of the information included in a sensor information container corresponds to sensor feature information. Sensor feature information may include information for identifying a sensor, such as a sensor ID. Sensor feature information may include information indicating the detection characteristics of a sensor. Sensor detection characteristics indicate the characteristics of a sensor related to object detection, such as the sensor's detection range and detection accuracy. Note that sensor feature information does not include information that naturally changes depending on the position of an object to be detected, etc. Therefore, sensor feature information does not include information indicating the position of an object detected by a sensor. Note that sensor feature information is sometimes referred to as sensor information.
  • the vehicle sensor information may include an ID (refPointId) for identifying (specifying) a reference point for the sensor position, offset information (xSensorOffset/ySensorOffset/zSensorOffset) indicating the offset of the mounting position in the x/y/z axis directions from the reference point, and a list (VehicleSensorPropertyList) of information (vehicleSensorProperties) indicating the actual extent of the area covered by a particular sensor.
  • ID defPointId
  • offset information xSensorOffset/ySensorOffset/zSensorOffset/zSensorOffset
  • VehicleSensorPropertyList of information (vehicleSensorProperties) indicating the actual extent of the area covered by a particular sensor.
  • VehicleSensorProperties may include information indicating the distance range detected by the sensor (range), and the opening angle start (horizontal(vertical)OpeningAngleStart)/opening angle end (horizontal(vertical)OpeningAngleEnd) for the horizontal and vertical directions.
  • range may refer to the distance range in the x-axis direction.
  • V2X communication Vehicle position information (e.g., latitude and longitude) is transmitted to the surroundings, which raises concerns about privacy protection, and various countermeasures are being considered.
  • vehicle position information e.g., latitude and longitude
  • One of the concerns is the above-mentioned tracking.
  • BSP Basic System Profile
  • C2CCC CAR 2 CAR Communication Consortium
  • CAM CAM
  • DENM DENM
  • the address included in the message the identifier (Identifier (ID)) included in the message, the message count (sequence number), etc. are randomly regenerated.
  • the address included in the message is, for example, the source Internet Protocol (IP) address, the source Medium Access Control (MAC) address, etc.
  • IP Internet Protocol
  • MAC Medium Access Control
  • the message count may be set to 0.
  • information indicating the travel trajectory for example, CAM path history, DENM traces, etc.
  • event information for example, DENM EventHistory
  • DENM EventHistory DENM EventHistory
  • the certificate may be a security certificate (e.g., an Authorization (Authentication) Ticket (AT)) included in the envelope information (security envelope) of the message (payload).
  • a security certificate e.g., an Authorization (Authentication) Ticket (AT) included in the envelope information (security envelope) of the message (payload).
  • the AT is changed when a certain period of time (e.g., a few seconds) has passed since engine control was activated, and the AT is then changed according to the passage of a certain distance or period of time thereafter, thereby preventing the vehicle from being identified, particularly in the vicinity of the starting point.
  • a certain period of time e.g., a few seconds
  • FIG. 4 is a diagram showing an example of the contents of each piece of information included in the vehicle sensor information.
  • the offset information (xSensorOffset/ySensorOffset/zSensorOffset) included in the vehicle sensor information shown in FIG. 3, information indicating the distance range detected by the sensor (range), and the opening angle start (horizontal(vertical)OpeningAngleStart)/opening angle end (horizontal(vertical)OpeningAngleEnd) for the horizontal/vertical directions are shown.
  • the distance range detected by the sensor is in units of 10 centimeters, while the offset information is in units of 1 centimeter, and the opening angle, which indicates the angle of the sensor's detection area, is in units of 0.1 degrees.
  • offset information, opening angle information, and other information are expressed with a fairly fine resolution.
  • sensor feature information such as offset information and opening angle information often differs depending on the vehicle model, year, grade, and so on. Therefore, a vehicle that receives multiple CPMs may be able to estimate whether the multiple CPMs it receives were sent from the same vehicle, based on the sensor feature information, such as the offset information and opening angle, contained in each CPM. If it can be inferred that multiple CPMs were sent from the same vehicle, there is a risk that the vehicle may be tracked.
  • the inventors therefore came up with a method to make it difficult to infer vehicle information such as the vehicle model, year, and grade from the CPM by restricting or modifying the sensor information contained in the CPM. Furthermore, they came to the conclusion that this idea could also be applied to messages other than CPM.
  • CPM is exemplified as a message transmitted by a vehicle.
  • CPM in this disclosure may be interpreted as any message including sensor characteristic information.
  • the message may be a message defined in CPM, CAM, DENM, Society of Automotive Engineers (SAE), Basic Safety Message (BSM), C2CCC BSP, or other standards.
  • a message control method according to an embodiment of the present disclosure is described below. Each message control method may be applied to the above-mentioned ITS.
  • the first embodiment relates to a method for suppressing association of multiple CPMs.
  • the first embodiment is broadly divided into embodiments 1.0 to 1.5. Each embodiment is explained below.
  • the vehicle may transmit sensor information to be transmitted in one CPM by dividing it into multiple CPMs.
  • the sensor information to be transmitted in one CPM may be information on all sensors used to detect information on the target to be included in the CPM.
  • the sensor information may be each piece of information included in the sensor information container.
  • the vehicle When transmitting sensor information to be transmitted in one CPM by dividing it into multiple CPMs, the vehicle will make the sensor information to be included in the CPMs different for the CPMs to be transmitted successively.
  • the control of making the sensor information to be included in the CPMs different for the CPMs to be transmitted successively is called sensor information change control.
  • the sensor information change control is executed by the control unit 11, which will be described later.
  • One of these separated pieces of sensor information is also referred to as distributed sensor information below.
  • a set of distributed sensor information transmitted using multiple CPMs is also referred to as a sensor information set below.
  • Multiple pieces of distributed sensor information included in a sensor information set may be used to configure sensor information to be transmitted in one CPM described above.
  • the sensor information to be transmitted in one CPM is the sensor information set described above, and is also referred to as all sensor information.
  • multiple pieces of sensor information in which at least some of the sensors that are the subject of the sensor information (i.e., sensor characteristic information) that are characteristic of different sensors, may be distributed and included in multiple CPMs.
  • the sensor that is the subject of the sensor information that is characteristic may be a millimeter wave radar, and in the next CPM to be transmitted, the sensor that is the subject of the sensor information that is characteristic of the sensor information may be a LiDAR.
  • ETSI European Telecommunications Standards Institute
  • the vehicle does not transmit all the sensor information at once in a cycle of 1 second or longer, but transmits at least some of the sensor information at a different timing from the other sensor information.
  • the distributed sensor information may be transmitted at different timings, such as transmitting sensor 1 information 100 ms after transmitting a CPM including target information, and transmitting sensor 2 information another 100 ms after transmitting.
  • the distributed sensor information may be transmitted in such a manner that sensor 1 information is transmitted 100 ms after transmitting a CPM that does not include sensor information, and sensor 2 information is transmitted 200 ms after transmitting a CPM that does not include sensor information.
  • the transmission period of the first distributed sensor information included in the sensor information set is one second or more.
  • the transmission timing of the i-th distributed sensor information (i is a natural number) may be the i-th time offset from the transmission timing of the first distributed sensor information or the transmission timing of the previous distributed sensor information.
  • Information regarding the i-th time offset may be stored in advance in a memory provided in the vehicle transmitting the CPM.
  • the vehicle transmitting the CPM may be notified (set) of the information by another vehicle, an RSU, or an ITS server.
  • the vehicle may determine the i-th time offset based on the information.
  • the transmission cycle of a CPM including a target does not have to be fixed at a cycle of 100 ms.
  • the next CPM may be set to be transmitted when 100 ms or more has elapsed since the previous CPM was transmitted.
  • a CPM including sensor information from sensor 1 and target information may be transmitted, and at the transmission timing of the next CPM, a CPM including sensor information from sensor 2 and target information may be transmitted.
  • the CPM transmitting the sensor information from sensor 2 may be the CPM two CPMs after the transmission of the sensor information from sensor 1.
  • the examples so far have been examples of distributing the distributed sensor information contained in one sensor information set to a CPM that includes a sensor information container and a subsequent CPM that is not supposed to include a sensor information container in the above standard. This makes it possible to transmit all of the sensor information in a short time while distributing it.
  • distributed sensor information included in one sensor information set may be distributed only to CPMs that include a sensor information container.
  • the CPM that transmits sensor information from sensor 2 may be the CPM that transmits sensor information from sensor 1 one second or more after the CPM that transmitted sensor information from sensor 1, and it is time to transmit sensor information again in the above standard. This increases the period until all sensor information is transmitted, which is highly effective in suppressing tracking.
  • the distributed sensor information is simply information obtained by dividing all the sensor information, when all the multiple pieces of distributed sensor information included in the sensor information set are received and combined, all the sensor information can be restored. For this reason, it is preferable to configure distributed sensor information that can suppress restoration.
  • the following embodiments 1.1-1.3 are suitable for suppressing restoration. Note that these embodiments may be used even when distributed sensor information is not used.
  • Embodiment 1.1 when the vehicle sequentially transmits the CPMs processed by the ID, one or more of the multiple CPMs are assigned IDs different from the other CPMs. If the IDs are different, it can be difficult for a third party to link the multiple CPMs. For example, the vehicle may process the CPMs including distributed sensor information with different IDs for each CPM. The different IDs may be generated randomly or according to a pre-defined rule.
  • Processing a CPM with an ID may mean including the ID in the CPM, or may mean using the ID for at least one of the processes from generating the CPM to transmitting it.
  • the process is, for example, encryption.
  • the ID may be a temporary ID, an ID for V2X communication, a vehicle ID, or an ID for a sensor. It may also be multiple IDs among these IDs.
  • the temporary ID may be called a temporary ID (tempID).
  • the ID may be interpreted as at least one of an ITS-S ID, a station ID, a vehicle ID, a sensor ID, a target ID, a network ID, an address (e.g., IP address, MAC address), a certificate ID, a certificate, an ID related to an AT, and the like.
  • the sensor ID is an ID (sensorID) of a sensor having characteristics of each sensor information (SensorInformation) notified using a sensor information container.
  • the target ID is an ID (objectID) of each perceived object information (PerceivedObject) notified using a perceived object container. These IDs may be temporary IDs.
  • the temporary ID may be an ID that is changed from time to time.
  • the sensor ID for the same sensor can be made different between multiple CPMs transmitted from the same vehicle. Therefore, not only IDs that are naturally vehicle-specific, such as the ITS-S ID, but also sensor IDs that are often the same if the vehicle model is the same, can be made different between multiple CPMs transmitted from the same vehicle. This makes it possible to prevent the receiving side from assuming that multiple CPMs transmitted from the same vehicle are CPMs transmitted from the same vehicle based on the IDs contained in those multiple CPMs. Therefore, it is possible to preferably prevent the tracking of the source vehicle that transmits CPMs sequentially.
  • the vehicle makes the sensor reference position included in one or more of the multiple CPMs transmitted sequentially different from the sensor reference position included in the other CPMs.
  • the sensor reference position is a position referenced when determining the position of the sensor.
  • the position of the sensor is specified in the vehicle coordinate system.
  • the position of the sensor may be determined by the sensor reference position and an offset.
  • the sensor reference position may be, for example, a reference position (ReferencePosition) included in a management container.
  • the sensor reference position may also be a reference point (reference point) included in a sensor information container. Note that the reference position and the reference point may be the same position.
  • the reference position may represent the geographical location of the vehicle using latitude and longitude, or latitude, longitude, and altitude.
  • the reference position is a position that is referenced when determining the position of the sensor, and is not information for notifying the surrounding area of the vehicle's location.
  • Other messages such as CAM, are used as messages to notify the surrounding area of the vehicle's location.
  • the reference position may be a specific position inside or outside the vehicle, and may correspond to a position that moves along with the vehicle.
  • an offset is set for each different reference position to determine the relative position of the sensor with respect to the reference position.
  • This offset may be an offset to the reference point with respect to the reference position.
  • the offset also changes according to the change in the reference position.
  • xSensorOffset, ySensoroffset, zSensorOffset which are the offsets from the reference point to the sensor position.
  • the above offsets may also be offsets from the reference position to the sensor position.
  • the reference point is equal to the reference position
  • xSensorOffset, ySensoroffset, zSensorOffset change according to the change in the reference position.
  • the vehicle may determine different sensor reference positions for multiple sensors by randomly varying them based on a reference position.
  • the reference position may be, for example, the center of the vehicle, the GNSS antenna position, or the center of the front end face of the vehicle in the vehicle width direction.
  • the sensor reference position may also be a position that varies each time based on specific rules.
  • embodiment 1.2 can be combined with embodiment 1.0.
  • the sensor reference position included in one CPM may be different from the sensor reference position included in another CPM, and the sensor feature information set may be distributed and transmitted as distributed sensor feature information.
  • Figure 5B is a diagram showing an example of distributed transmission of sensor feature information based on an embodiment that combines embodiment 1.2 and embodiment 1.0.
  • FIG. 5A shows an example of the sensor reference position and the sensor position indicated by the CPM when the distributed transmission and the change in the sensor reference position of the present disclosure are not performed.
  • the sensor reference position is written as the reference position.
  • the vehicle transmits sensor information of all sensors mounted on the vehicle with one CPM.
  • the sensor information is four pieces of sensor information including detection area information corresponding to areas A-D, which are detection areas in which the sensors detect targets.
  • the sensor information also includes an offset indicating the position of each sensor from the sensor reference position.
  • the information indicating the sensor reference position may be included in the sensor information container or may be included in the management container.
  • the sensor positions are indicated by hatched circles. Note that in this example, the sensor positions of the sensor in area A and the sensor positions of area B overlap.
  • the sensor reference position is common to each piece of sensor information.
  • FIG. 5B shows an example of information indicated by each CPM when performing distributed transmission and varying the sensor reference position of the present disclosure.
  • the vehicle in FIG. 5B is the same vehicle as in FIG. 5A.
  • the vehicle separates the sensor information in FIG. 5A into four pieces of distributed sensor information for four sensors, each of which has areas A to D as its detection area.
  • Each piece of distributed sensor information is then transmitted using a different CPM.
  • the sensor reference positions identified by each piece of distributed sensor information are different from each other.
  • FIG. 6A is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is not changed.
  • FIG. 6B is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is changed.
  • the relative positions of Area A and Area B can be correctly estimated by determining the positions of Area A and Area B based on the sensor reference position.
  • the receiver receiving the distributed sensor information can similarly estimate the relative position of Area A and Area B to be the same as the previous time. And because the relative positions of Area A and Area B are the same, it may be possible to estimate that the vehicle that estimated Areas A and B last time and the vehicle that estimated Areas A and B this time are the same vehicle.
  • the sensor information is transmitted in a distributed manner and the sensor reference position is varied as in Figure 6B, if the person receiving the sensor information determines the relative position of area A and area B by considering the sensor reference position to be the same, the relative position of area A and area B will not be the correct relative position, as shown in the rightmost diagram in Figure 6B. If the sensor information set is then transmitted as distributed sensor information, the sensor reference position contained in the distributed sensor information will be a different position from the previous transmission. As a result, the vehicle cannot be tracked even if the relative positions of areas A and B are used as a clue.
  • the vehicle uses an ID different from the ID used for CPM for other messages (e.g., CAM, DENM, BSM, etc.).
  • the other messages may be called other types of messages, messages defined by other standards, etc.
  • the ID used for CPM may be an ID to be included in CPM.
  • the ID is, for example, a Station ID. In CPM, the Station ID is included in the header.
  • the Station ID is an ID that identifies an ITS station, such as a vehicle, i.e., the sender.
  • the ID used for other messages may be an ID to be included in the other messages.
  • the ID to be included in the other messages may be an ID that identifies the sender of the other messages.
  • the ID used for CPM may be changed to make the ID used for CPM different from the ID used for other messages.
  • the ID used for other messages may also be changed.
  • a vehicle may use different IDs for CPM and other messages that are transmitted simultaneously or close to each other. Whether or not the messages are transmitted close to each other may be determined, for example, by whether or not the difference between the transmission times of the messages is equal to or less than a threshold.
  • the threshold may be one or several transmission cycles of the CPM and other messages. Information regarding the threshold may be notified to the vehicle from another vehicle, an RSU, or an ITS server.
  • the ID used for CPM is made different from the ID used for other messages. This prevents a third party who receives the CPM and other messages from linking the CPM to the other messages based on the ID. This prevents a third party from sequentially identifying the vehicles that have sent messages and tracking the vehicles that have sent the messages.
  • the vehicle corrects the detection area information (DetectionArea) corresponding to the same sensor. Correction may also be called adjustment.
  • the vehicle may include detection area information that modifies the range of the actual detection area in the CPM and transmit the same.
  • the modified detection area may be called a modified detection area.
  • the vehicle may change the detection area information for a certain sensor each time it transmits a CPM, either once or multiple times.
  • the vehicle may generate detection area information for the modified detection area by varying, within a certain range, one or more parameters for indicating the range of the actual detection area.
  • the vehicle may generate the changed parameters based on a calculation formula set in advance.
  • the vehicle may also generate the changed parameters randomly.
  • the detection area information for the modified detection area may be generated by multiplying one or more parameters of the detection area information for the actual detection area by a coefficient.
  • the coefficient is, for example, a value near 1.
  • the range that the coefficient can take can be determined in advance. For example, the range that the coefficient can take may be 0.8 to 1.2.
  • the coefficient may be a value near 1 that is equal to or less than 1.
  • the range that the coefficient can take may be 0.8 to 1.
  • the multiple values that the coefficient can take or the range that the coefficient can take may be predetermined in a standard, or information regarding the multiple values that the coefficient can take or the range that the coefficient can take may be notified to the vehicle from another vehicle, an RSU, or an ITS server.
  • the value of the coefficient may be different for each sensor.
  • the vehicle may regenerate the coefficients each time it transmits a CPM, or may regenerate the coefficients when either or both of the certificate and ID are changed.
  • Non-Patent Document 1 only vehicle sensor information (VehicleSensor) is permitted as detection area information for a sensor mounted on a vehicle.
  • This information expresses the sensor detection area by the distance range from the sensor (range) and the opening angle of the sensor detection area, which is the range that the sensor can detect.
  • the above coefficient may be a coefficient multiplied by the range.
  • the detection area information of the CPM transmitted by the vehicle may be notified of a detection area of any shape (such as an n-sided polygon (n is an integer of 3 or more), circle, or ellipse).
  • the detection area information included in the sensor information may be represented by at least one of AreaRadial, AreaPolygon, AreaCircular, AreaEllipse, AreaRectangle, etc. shown in FIG. 3.
  • VehicleSensorProperties may include at least one of AreaRadial, AreaPolygon, AreaCircular, AreaEllipse, AreaRectangle, etc., which indicate the detection area, together with or instead of range, etc.
  • FIGS. 7A-7C are diagrams illustrating the modified detection area according to embodiment 1.4.
  • FIG. 7A shows an example of an actual detection area.
  • FIGS. 7B and 7C show an example of a modified detection area corresponding to FIG. 7A.
  • the modified detection area shown in Figures 7B and 7C is, for example, an area in which the shape of the actual detection area has been randomly changed. More specifically, it is an area in which the shape of the actual detection area has been randomly changed to narrow it.
  • the modified detection area shown in Figure 7B and the detection area shown in Figure 7C have mutually different shapes. Therefore, it is possible to prevent a third party from recognizing that a CPM including detection area information for the modified detection area in Figure 7B and a CPM including detection area information for the modified detection area in Figure 7C are messages sent from the same vehicle. As a result, it is possible to prevent tracking based on the fact that the detection area information is identical.
  • the vehicle sequentially changes the resolution of one or more parameters included in the sensor information. That is, the resolution of one or more parameters included in the sensor information is made coarse or fine. Resolution can also be called granularity.
  • the vehicle may change the resolution of the offset information included in the sensor information from 1 centimeter to 10 centimeters. Conversely, the vehicle may change the resolution of the offset information included in the sensor information from 10 centimeters to 1 centimeter.
  • the vehicle may also change the resolution of the opening angle information included in the sensor information from 0.1 degrees to 1 degree. Conversely, the vehicle may change the resolution of the opening angle information included in the sensor information from 1 degree to 0.1 degrees.
  • the resolution of the parameters included in the first sensor information may be different from the resolution of the parameters included in the second sensor information. In other words, the resolution of the parameters may be different for each sensor.
  • the second embodiment relates to a transmission timing for changing and transmitting sensor information.
  • the sensor information here may correspond to the distributed sensor information of the first embodiment.
  • the vehicle may implement sensor information change control when a sensor information change condition is met.
  • the sensor information change control is a control that sequentially changes the sensor information to be included in the CPM transmitted from the vehicle.
  • the sensor information change control may be at least one of the following:
  • the sensor information change control may be a control for sequentially switching between including the sensor information in the CPM to be sequentially generated and not including the sensor information. As described above, the sensor information may correspond to the distributed sensor information of the first embodiment.
  • the sensor information change control may be a control not to transmit a CPM. Since a CPM is not transmitted, the sensor information that is normally transmitted is changed to a state where it is not transmitted.
  • the sensor information change control may be control that applies at least one of the controls in the first embodiment.
  • the sensor information change condition When the sensor information change condition is met, the sensor information transmitted from the vehicle is restricted compared to when the CPM is transmitted without restriction and the CPM always includes unrestricted sensor information. This reduces the opportunities for third parties to receive sensor information.
  • the sensor information change condition may also be called a sensor information restriction condition.
  • the sensor information change conditions may be exemplified as follows. (1) A certain period of time has not passed since the vehicle power was turned on. (2) The vehicle has not moved a certain distance since the vehicle power was turned on. (3) A certain period of time has not passed since the certificates included in the CPM were changed. (4) You have not moved a certain distance since changing the certificate to be included in the CPM. (5) A period from a certain period before a certificate included in the CPM is changed to the period until the certificate is changed. (6) The vehicle is present at a position from a certain distance before the point at which the certificate to be included in the CPM is to be changed until the certificate is to be changed. (7) A certain period of time has not passed since the ID used for CPM was changed.
  • the ID used for CPM has not been changed and a certain distance has not been moved.
  • a period from a certain period before the ID used for CPM is changed to the period until the ID is changed.
  • the vehicle is present at a position a certain distance before the point where the ID used for CPM is to be changed and up to the point where the ID is to be changed.
  • the vehicle power source may be interpreted as an ignition switch. Turning on the vehicle power source may be determined by the start of engine control. Turning on the vehicle power source may be interpreted as the vehicle departing.
  • the certain period of time may be, for example, 5-6 minutes, or several minutes.
  • the certain distance may be, for example, several hundred meters, or about 1 km.
  • the above (1) or (2) is satisfied from the time the vehicle departs until a certain period of time has passed or until the vehicle has traveled a certain distance. At this time, the transmission of sensor information is suppressed by the sensor information change control. Therefore, it is possible to prevent the vehicle from being tracked based on the CPM containing the sensor information, using the fact that the sensor information is the same as a clue, and to prevent the departure point of the vehicle from being estimated.
  • the sensor information change conditions are not limited to the above (1) to (10).
  • the sensor information change condition may be that the vehicle is not located near an intersection.
  • the sensor information change condition may also be that the vehicle's speed is not low.
  • the distance range from an intersection that is considered to be near the intersection can be set appropriately.
  • the threshold for determining that the vehicle's speed is low can also be set appropriately.
  • the above-mentioned embodiments may be applied to the transmission control of information included in a free space supplemental container of a CPM.
  • the sensor information in each of the above-mentioned embodiments may be read as free space additional information (FreeSpaceAddendum).
  • the detection area information may be read as at least one of free space confidence information (FreeSpaceConfidence) and free space area information (FreeSpaceArea).
  • the above-mentioned embodiments may be applied to the transmission control of information included in a free space supplemental container of a CPM.
  • a message control device A control unit that generates a message including sensor feature information about a plurality of sensors included in a vehicle in which the message control device is installed; A communication unit that transmits a message generated by the control unit, The control unit is a message control device that executes sensor information change control for making the sensor feature information included in the message different between successively transmitted messages.
  • the sensor information change control includes control of distributing and including multiple pieces of sensor feature information, at least some of which are different from each other in the target sensors, in multiple messages.
  • the sensor characteristic information includes an identifier of the sensor; 3.
  • the message control device includes control of changing identifiers of one or more sensors to be included in each of the multiple messages to different values for the same sensor.
  • the sensor characteristic information includes a sensor reference position that is used as a reference when determining the position of the sensor; A message control device described in any one of Supplementary Note 1 to Supplementary Note 3, wherein the sensor information change control includes control for making a sensor reference position included in one or more of a plurality of messages transmitted sequentially different from a sensor reference position included in other messages.
  • the sensor feature information includes detection area information indicating an area in which the sensor detects an object; 5.
  • the message control device includes control for making detection area information corresponding to a certain sensor different among a plurality of messages.
  • the sensor characteristic information includes a resolution of a parameter of the sensor; 6.
  • the message control device includes control for varying a resolution of a parameter of the sensor among a plurality of messages.
  • Appendix 7 A message control device as described in any one of Appendix 1 to Appendix 6, wherein the control unit performs the sensor information change control when a certain period of time has not elapsed since the vehicle power supply of the vehicle was turned on or the vehicle has not moved a certain distance.
  • Appendix 8 A message control device described in any one of Appendix 1 to Appendix 7, in which the control unit performs the sensor information change control when a certain period of time has not elapsed since changing a certificate to be included in the message or an identifier that identifies the sender of the message, or when the vehicle has not moved a certain distance.
  • control unit differentiates an identifier for identifying a sender included in one type of message from an identifier for identifying a sender included in a message of a different type from the message.
  • FIG. 8 is a diagram showing an example of a vehicle 10 according to an embodiment.
  • the vehicle 10 includes a control unit 11, a sensor 12, a locator 13, an input/output unit 14, and a communication unit 15.
  • the block diagram shown in this example shows functional blocks. Each of these functional blocks (components) is realized by any combination of at least one of hardware and software. Note that the "vehicle” described in the above embodiment may be read as any one or more functional blocks (e.g., the control unit 11, the communication unit 15) in the vehicle 10.
  • FIG. 8 shows only the parts necessary for explaining the present disclosure.
  • the vehicle 10 includes parts necessary for driving, such as a drive unit and an operating unit.
  • the drive unit is, for example, one or both of an engine and a motor.
  • the operating unit is, for example, a steering wheel.
  • the control unit 11 is composed of a microprocessor (hereinafter simply referred to as the processor) 111, a memory 112, and a communication interface 113.
  • the communication interface 113 is, for example, an Input/Output (IO) port.
  • the control unit 11 may be called an Electronic Control Unit (ECU), or may be composed of a Central Processing Unit (CPU) including interfaces with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • ECU Electronic Control Unit
  • CPU Central Processing Unit
  • the control unit 11 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and the processing of the processor 111 may be realized using such hardware.
  • the processor 111 may be implemented using at least one of these pieces of hardware.
  • Each function of the vehicle 10 may be realized by, for example, loading specific software (programs) onto hardware such as the processor 111 and memory 112, causing the processor 111 to perform calculations, control communication via the communication unit 15, and/or control the reading and writing of data in the memory 112.
  • the processor 111 may, for example, operate an operating system to control the entire in-vehicle computer.
  • the processor 111 may also read programs, software modules, data, etc. into the memory 112 and execute various processes according to these.
  • the program may be a program for causing the computer to execute at least a portion of the operations described in the above-mentioned embodiments.
  • the program may be read as program code.
  • Memory 112 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM, Random Access Memory (RAM), or other suitable storage medium. Memory 112 may also be referred to as a register, cache, main memory, etc. Memory 112 may store executable programs, software modules, etc. for implementing a method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • RAM Random Access Memory
  • Memory 112 may also be referred to as a register, cache, main memory, etc.
  • Memory 112 may store executable programs, software modules, etc. for implementing a method according to one embodiment of the present disclosure.
  • the control unit 11 may include a storage (auxiliary storage device) that is a computer-readable recording medium with a larger capacity than the memory 112.
  • the control unit 11 may read and write data to and from the memory 112 to the storage.
  • the storage is not limited to being provided in the control unit 11, and may be independent of the control unit 11 and connected to the control unit 11 via a communication line.
  • the communication interface 113 may be called an input/output port, and may be used to exchange information between the control unit 11 and other blocks.
  • the other blocks are, for example, blocks for operation.
  • the control unit 11 may obtain a signal from the sensor 12 via the communication interface 113.
  • the control unit 11 may provide driving assistance functions, autonomous driving functions, etc. based on an inertial navigation system, an artificial intelligence (AI) chip, an AI processor, AI functions, etc.
  • AI artificial intelligence
  • the sensors 12 may include, for example, a current sensor, a wheel rotation speed sensor, a tire pressure sensor, a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, an object detection sensor, and the like. Each sensor may provide a signal (on/off signal, analog signal, digital signal, etc.) obtained by measurement to the control unit 11 via the communication interface 113.
  • the object detection sensor may generate a detection signal when it detects a target such as an obstacle, a vehicle, or a pedestrian.
  • the sensor 12 may include a device capable of providing information on the environment surrounding the vehicle 10, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a gyro system (e.g., an Inertial Measurement Unit (IMU)), etc.
  • a plurality of sensors 12 may be mounted on the vehicle 10, and a plurality of sensors 12 of the same type may be mounted on the vehicle.
  • cameras serving as sensors 12 may be mounted on the front, rear, and both sides of the vehicle 10.
  • the locator 13 acquires location information of the vehicle 10.
  • the location information may include, for example, latitude, longitude, etc.
  • the locator 13 may acquire the location information based on a positioning system (for example, a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), map information (for example, a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), and speed, acceleration, angular velocity, etc. obtained from the sensor 12 described above.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • map information for example, a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.
  • speed, acceleration, angular velocity, etc. obtained from the sensor 12 described above.
  • the input/output unit 14 includes an input device that accepts input from the outside and an output device that performs output to the outside.
  • the input device is, for example, a keyboard, a mouse, a microphone, a switch, a button, or a sensor.
  • the output device is, for example, a display, a speaker, or a Light Emitting Diode (LED) lamp.
  • the input device and the output device may be integrated into one structure (for example, a touch panel).
  • the input/output unit 14 may be composed of various devices for providing various information such as driving information, such as a car navigation system, an audio system, a television, a radio, etc., and one or more ECUs for controlling these devices.
  • the input/output unit 14 may provide various information/services to the occupants of the vehicle 10 by using information obtained from an external device (e.g., an ITS server 30) via the communication unit 15.
  • an external device e.g., an ITS server 30
  • the input/output unit 14 may receive input through user operation, or may be connected to a specific device, storage medium, etc. to receive data input.
  • the input/output unit 14 may output the input result to, for example, the control unit 11.
  • the input/output unit 14 may output data, content, etc. in a format that is perceptible to the user.
  • the communication unit 15 is hardware for communicating wirelessly with an external device (e.g., another vehicle 10, an ITS server 30, etc.), and is also referred to as, for example, a transmission/reception device, a network device, a network controller, a network card, a communication module, etc.
  • the communication unit 15 may be configured to include a high-frequency switch, a duplexer, a filter, an amplifier, a frequency synthesizer, an antenna, etc.
  • the communication unit 15 may be configured by a transmitter/receiver, a transmission/reception circuit, or a transmission/reception device, which are described based on a common understanding in the technical field to which this disclosure relates.
  • the communication unit 15 may be, for example, Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio A Communications may be performed using access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other wireless communication methods, or wireless communication methods extended, modified, created or defined based on these.
  • LTE
  • the communication unit 15 may be controllable by the processor 111 of the control unit 11, and the communication unit 15 may be included in the control unit 11.
  • the communication unit 15 may transmit at least one of the signal from the sensor 12, information obtained based on the signal, and information based on the input from the input/output unit 14 to an external device via wireless communication.
  • the communication unit 15 may receive various information (traffic information, signal information, vehicle distance information, etc.) from an external device and provide it to the control unit 11. This information may be output via the input/output unit 14.
  • the control unit 11 may perform control based on this information.
  • each functional block may be realized using one device that is physically or logically combined, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (for example, using wires, wirelessly, etc.).
  • the functional block may be realized by combining software with the one device or the multiple devices.
  • processor 111 may be implemented by one or more chips.
  • each functional block may be connected by a bus for communicating information.
  • the bus may be configured using a single bus, or may be configured using different buses between each device.
  • the bus may be realized by a wired or wireless system.
  • the RSU 20, ITS server 30, etc. may have the same configuration as the vehicle 10. A person skilled in the art would be able to understand the descriptions related to the vehicle 10 by appropriately interpreting them.
  • the configuration of the vehicle 10 that includes the control unit 11 or the configuration that includes the control unit 11 and the communication unit 15 may be called a message control device.
  • the control unit 11 generates a message that includes information about all or a plurality of sensors 12 included in the vehicle 10 in which the message control device is installed.
  • the control unit 11 executes sensor information change control that causes the sensor information included in the generated message to differ between successively transmitted messages.
  • the sensor information may include each piece of sensor information included in the sensor information container.
  • the sensor information change control may include control to distribute multiple pieces of sensor feature information across multiple messages.
  • the communication unit 15 may transmit multiple messages.
  • the sensor information change control may include control to set one or more sensor identifiers (IDs) included in each of the multiple messages to different values for the same sensor.
  • IDs sensor identifiers
  • the sensor information change control may include control to make the sensor reference position included in one or more of the multiple messages transmitted sequentially different from the sensor reference position included in the other messages.
  • the control unit 11 may differentiate between an identifier for identifying a sender included in one type of message and an identifier for identifying a sender included in a different type of message.
  • the sensor information change control may be a control that causes the detection area information corresponding to a certain sensor to differ among multiple messages that include sensor feature information related to the certain sensor.
  • the sensor information change control may be a control that changes the resolution of a specific parameter included in sensor information related to the same sensor included in multiple messages.
  • the control unit 11 may perform the sensor information change control if a certain period of time has not elapsed since the vehicle power supply of the vehicle was turned on, or if the vehicle has not moved a certain distance.
  • the control unit 11 may perform sensor information change control if a certain period of time has not elapsed since the certificate included in the message or the identifier identifying the sender of the message was changed, or if the vehicle has not moved a certain distance.
  • the control unit 11 may perform sensor information change control when the vehicle is located from a certain period before the certificate to be included in the message or the identifier to identify the sender of the message is changed until the certificate to be included in the message or the identifier to identify the sender of the message is changed, or when the vehicle is located at a certain distance before the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed to the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed.
  • vehicle in this disclosure may be interpreted as any moving object.
  • moving objects include, but are not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body may be a moving body that moves autonomously based on an operating command.
  • the moving body may be a moving body that moves with a person on board, in other words a vehicle (e.g., a car, an airplane, etc.), or it may be an unmanned moving body (e.g., a drone, an autonomous vehicle, etc.).
  • the moving body may be a robot.
  • the robot may be either manned or unmanned.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. Furthermore, the notification of specific information (e.g., notification that "X is the case") is not limited to explicit notification, and may be performed implicitly (e.g., by not notifying the specific information or by notifying other information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A message control device according to an aspect of the present disclosure comprises a control unit that generates a message including sensor feature information regarding a plurality of sensors included in a vehicle on which the message control device is mounted, and a communication unit that transmits the message generated by the control unit. The control unit performs a sensor information change control to make the sensor feature information to be included in the message different between successively transmitted messages.

Description

メッセージ制御装置、及びメッセージ制御方法Message control device and message control method 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 この出願は、2022年11月21日に日本に出願された特許出願第2022-185797号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on patent application No. 2022-185797 filed in Japan on November 21, 2022, and the contents of the original application are incorporated by reference in their entirety.
 本開示は、高度道路交通システム(Intelligent Transport Systems(ITS))におけるメッセージ制御装置、及びメッセージ制御方法に関する。 This disclosure relates to a message control device and a message control method in Intelligent Transport Systems (ITS).
 自動運転、安全運転支援などのために、車両が取得した情報を他の車両と無線を介して共有することが検討されている。例えば、センサに基づく物標及びフリースペースの検出状況を共有する技術(Collective Perception Service(CPS))がある(非特許文献1)。CPSでは、送信元車両に搭載されたセンサの向きと、送信元車両と当該センサによって検出された物標との相対位置関係と、を通信によって送信し、受信車はそれらの情報から算出した物標の相対位置を、衝突回避のために利用できる。 For the purposes of autonomous driving and safe driving support, the sharing of information acquired by vehicles with other vehicles via wireless communication is being considered. For example, there is a technology called Collective Perception Service (CPS) that shares the detection status of targets and free space based on sensors (Non-Patent Document 1). With CPS, the direction of the sensor installed in the sending vehicle and the relative positional relationship between the sending vehicle and the target detected by the sensor are transmitted via communication, and the receiving vehicle can use the relative position of the target calculated from this information to avoid collisions.
 Vehicle-to-Everything(V2X)通信では、車両の位置情報(例えば、緯度、経度)が周囲に送信されることから、プライバシー保護に関する懸念があり、様々な対策が検討されている。当該懸念の1つとして、トラッキングがある。例えば、1つの車両が送信するV2Xメッセージを、第3者が複数の場所で記録することによって、当該車両の移動が追跡される恐れがある。トラッキングが、車両の持ち主の家や職場付近で行われてしまうと、車両の持ち主の家や職場が割り出される恐れがある。 Vehicle-to-Everything (V2X) communications raises concerns about privacy protection because the vehicle's location information (e.g., latitude and longitude) is transmitted to the surrounding area, and various countermeasures are being considered. One such concern is tracking. For example, there is a risk that a third party could record the V2X messages transmitted by a single vehicle at multiple locations, allowing the movement of the vehicle to be tracked. If tracking is carried out near the vehicle owner's home or workplace, there is a risk that the vehicle owner's home or workplace could be identified.
 上述したCPSで用いられるメッセージであるCollective Perception Message(CPM)についてはまだ検討が詳細に進んでおらず、プライバシー保護に関する検討が十分に行われていない。例えば、CPMに含まれるセンサに関する情報の一部は、かなり細かい分解能で表現されているため、ある車両が送信した複数のCPMを悪意のある第3者に受信されると、当該車両が特定されてしまうおそれがある。 Collective Perception Messages (CPMs), the messages used in the above-mentioned CPS, have not yet been studied in detail, and sufficient consideration has not been given to privacy protection. For example, some of the sensor information contained in CPMs is expressed at a fairly fine resolution, so if a malicious third party receives multiple CPMs sent by a vehicle, there is a risk that the vehicle in question may be identified.
 以上からわかるように、CPMについてトラッキングを困難にするための方法が求められているが、検討が十分に行われていない。このような方法が導入されなければ、CPMの利用の普及が進まない可能性がある。CPMが利用されなければ、フリースペースの検出状況が車両間で共有されず、運転の安全性が好適に向上できないおそれがある。 As can be seen from the above, there is a need for methods to make tracking CPM more difficult, but these have not been fully explored. Unless such methods are introduced, the use of CPM may not become widespread. If CPM is not used, the free space detection status will not be shared between vehicles, and there is a risk that driving safety will not be improved appropriately.
 そこで、本開示は、V2X通信において送信元の車両がトラッキングされてしまうことを好適に抑制できるメッセージ制御装置、及びメッセージ制御方法を提供することを目的の1つとする。 Therefore, one of the objectives of the present disclosure is to provide a message control device and a message control method that can effectively prevent a source vehicle from being tracked in V2X communication.
 本開示の一態様は、メッセージ制御装置であって、当該メッセージ制御装置が搭載される車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成する制御部と、制御部が生成したメッセージを送信する通信部と、を有し、制御部は、メッセージに含ませるセンサ特徴情報を、逐次送信するメッセージ間で異ならせるセンサ情報変更制御を実行する、メッセージ制御装置である。 One aspect of the present disclosure is a message control device that has a control unit that generates a message including sensor feature information for a plurality of sensors included in a vehicle in which the message control device is installed, and a communication unit that transmits the message generated by the control unit, and the control unit executes sensor information change control that causes the sensor feature information included in the message to differ between successively transmitted messages.
 本開示の一態様に係るメッセージ制御方法は、車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成するステップであって、メッセージに含ませるセンサ特徴情報を、逐次送信するメッセージ間で異ならせるステップと、生成したメッセージを送信するステップと、を有するメッセージ制御方法である。 A message control method according to one aspect of the present disclosure is a message control method having a step of generating a message including sensor feature information for a plurality of sensors included in a vehicle, in which the sensor feature information included in the message is made different between successively transmitted messages, and a step of transmitting the generated message.
 本開示の一態様によれば、V2X通信において送信元の車両がトラッキングされてしまうことを好適に抑制できる。 According to one aspect of the present disclosure, tracking of a transmitting vehicle in V2X communication can be effectively prevented.
図1は、一実施形態に係る高度道路交通システム1の概略構成の一例を示す図である。FIG. 1 is a diagram showing an example of a schematic configuration of an intelligent road transportation system 1 according to an embodiment. 図2は、物標までの距離の一例を示す図である。FIG. 2 is a diagram showing an example of the distance to a target. 図3は、センサ情報コンテナの一例を示す図である。FIG. 3 is a diagram illustrating an example of a sensor information container. 図4は、車両センサ情報に含まれる各情報の内容の一例を示す図である。FIG. 4 is a diagram showing an example of the contents of each piece of information included in the vehicle sensor information. 図5Aは、本開示の分散送信及びセンサ参照位置の変動を行わない場合のCPMが示すセンサ参照位置及びセンサ位置の一例を示す。FIG. 5A shows an example of the sensor reference position and sensor position indicated by the CPM without distributed transmission and variation of the sensor reference position of the present disclosure. 図5Bは、実施形態1.2と実施形態1.0を組み合わせた実施形態に基づくセンサ特徴情報の分散送信の一例を示す図である。FIG. 5B is a diagram showing an example of distributed transmission of sensor feature information based on an embodiment that combines embodiment 1.2 and embodiment 1.0. 図6Aは、センサ参照位置を変動させない場合に受信者が推定するセンサ位置の一例を示す図である。FIG. 6A is a diagram showing an example of a sensor position estimated by a receiver when the sensor reference position is not varied. 図6Bはセンサ参照位置を変動させた場合に受信者が推定するセンサ位置の一例を示す図である。FIG. 6B is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is varied. 図7Aは、実施形態1.4にかかる修正検出エリアについて、実際の検出エリアの一例を示す図である。FIG. 7A is a diagram showing an example of an actual detection area for a corrected detection area according to embodiment 1.4. 図7Bは、実施形態1.4にかかる修正検出エリアの一例を示す図である。FIG. 7B is a diagram showing an example of a correction detection area according to embodiment 1.4. 図7Cは、実施形態1.4にかかる修正検出エリアの一例を示す図である。FIG. 7C is a diagram showing an example of a correction detection area according to embodiment 1.4. 図8は、一実施形態に係る車両10の一例を示す図である。FIG. 8 is a diagram illustrating an example of a vehicle 10 according to an embodiment.
 以下、本開示の実施の形態について添付図面を参照して詳細に説明する。以下の説明では、同一の部には同一の符号が付される。同一の部は名称、機能などが同じであるため、詳細な説明は繰り返さない。 Below, an embodiment of the present disclosure will be described in detail with reference to the attached drawings. In the following description, identical parts will be given the same reference numerals. Since identical parts have the same names, functions, etc., detailed descriptions will not be repeated.
 (高度道路交通システム)
 図1は、一実施形態に係る高度道路交通システム1の概略構成の一例を示す図である。図1に示す高度道路交通システム(ITS)1は、車両10と、路側機20と、ITSサーバ30と、を含んでもよい。高度道路交通システム1は、Intelligent Transport System(以下、ITS)、道路交通システム、交通システムなどと互いに読み替えられてもよい。路側機20は、RoadSide Unit(以下、RSU)20と呼ばれてもよい。
(Intelligent Transport Systems)
Fig. 1 is a diagram showing an example of a schematic configuration of an intelligent transport system 1 according to an embodiment. The intelligent transport system (ITS) 1 shown in Fig. 1 may include a vehicle 10, a roadside unit 20, and an ITS server 30. The intelligent transport system 1 may be interchangeably read as an Intelligent Transport System (hereinafter, ITS), a road transport system, a transport system, and the like. The roadside unit 20 may be called a RoadSide Unit (hereinafter, RSU) 20.
 ITS1は、情報(例えば、交通情報、自動運転のための情報など)を複数の車両において共有するシステム(いわゆる協調ITS(Cooperative ITS(CITS)))と呼ばれてもよい。 ITS1 may be called a system in which information (e.g., traffic information, information for autonomous driving, etc.) is shared among multiple vehicles (so-called Cooperative ITS (CITS)).
 ITS1においては、本開示の後述の各実施形態に係るメッセージ制御方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 In ITS1, communication is carried out using one of the message control methods according to each embodiment of this disclosure described below, or a combination of these.
 車両10は、車道上を走行する車である。車両10は、自動車であってもよいし、自動では動かない車(例えば自転車)であってもよい。自動車は四輪車両及び二輪車両の一方又は両方であってもよい。 Vehicle 10 is a vehicle that travels on a roadway. Vehicle 10 may be a car, or a vehicle that does not move autonomously (e.g., a bicycle). A car may be one or both of a four-wheeled vehicle and a two-wheeled vehicle.
 車両10は、車載の通信装置を有し、無線通信により、他の車両10、RSU20、ITSサーバ30などと通信できる。無線通信の方式は、例えば、Long Term Evolution(LTE)、5th generation mobile communication system(5G)、Wi-Fi(登録商標)である。また、無線通信の方式はLTE及び5Gだけでなく第3世代パートナーシッププロジェクト(Third Generation Partnership Project,3GPP(登録商標))が規定する他の技術仕様(例えば、5Gアドバンスト、6G等)でもよい。 The vehicle 10 has an on-board communication device and can communicate with other vehicles 10, the RSU 20, the ITS server 30, etc., via wireless communication. Wireless communication methods include, for example, Long Term Evolution (LTE), 5th generation mobile communication system (5G), and Wi-Fi (registered trademark). Furthermore, the wireless communication method may not only be LTE and 5G, but also other technical specifications (for example, 5G Advanced, 6G, etc.) defined by the Third Generation Partnership Project (3GPP (registered trademark)).
 車両10間の直接通信は、Vehicle-to-Vehicle(V2V)通信と呼ばれてもよい。車両10及びRSU20の通信は、Vehicle to Infrastructure(V2I)通信などと呼ばれてもよい。V2V通信及びV2I通信は、Vehicle-to-Everything(V2X)通信と呼ばれてもよい。 Direct communication between vehicles 10 may be referred to as vehicle-to-vehicle (V2V) communication. Communication between vehicles 10 and RSUs 20 may be referred to as vehicle-to-infrastructure (V2I) communication, etc. V2V communication and V2I communication may be referred to as vehicle-to-everything (V2X) communication.
 車両10間で送信されるメッセージとしては、例えば以下の少なくとも1つが用いられてもよい:
 ・車両の位置、速度などを定期的に送信する協調認識メッセージ(Cooperative Awareness Message(CAM))、
 ・特定の事態が生じるときに通知する分散型環境通報メッセージ(Decentralized Environmental Notification Message(DENM))、
 ・知覚センサに基づいて知覚(認識)される環境を共有するための集団知覚メッセージ(Collective Perception Message(CPM))。
The messages transmitted between the vehicles 10 may include, for example, at least one of the following:
Cooperative Awareness Message (CAM), which periodically transmits vehicle position, speed, etc.
Decentralized Environmental Notification Message (DENM), which notifies when certain events occur;
- Collective Perception Message (CPM) for sharing the environment perceived based on perception sensors.
 CAMは、ETSI(European Telecommunications Standards Institute)が提案する協調認識(CA(Cooperative Awareness))サービスにおいて送信されるメッセージである。道路交通における協調認識は、道路利用者及び路側インフラストラクチャが相互の位置、動態及び属性を知ることができることを意味する。道路利用者とは、乗用車、トラック、オートバイ、自転車、歩行者等、交通安全や制御を行う道路上や周辺のあらゆる利用者を指し、路側インフラストラクチャとは、道路標識、信号機、障壁、入口などの設備を指す。 CAM is a message sent in the Cooperative Awareness (CA) service proposed by ETSI (European Telecommunications Standards Institute). Cooperative awareness in road traffic means that road users and roadside infrastructure can know each other's location, movement and attributes. Road users refer to all users on and around the road who are responsible for road safety and control, such as cars, trucks, motorbikes, bicycles, pedestrians, etc., and roadside infrastructure refers to facilities such as road signs, traffic lights, barriers, entrances, etc.
 CPMは、ETSIが提案するCPサービスにおいて送信されるメッセージである。CPサービスは、CPMを送信する車両で検出された周囲の道路利用者や他の物標の位置、挙動、属性を、周囲に通知するサービスである。 CPM is a message sent in the CP service proposed by ETSI. The CP service is a service that notifies the surrounding area of the positions, behavior, and attributes of surrounding road users and other objects detected by the vehicle sending the CPM.
 RSU20は、周辺の道路の混雑状況、周辺の信号機の情報などを収集する。信号機の情報には、信号機の灯色を含めることができる。また、RSU20は、収集した情報を、車両10、他のRSU20、ITSサーバ30などと通信する機能を有する。信号機は交通信号機と呼ばれてもよい。信号機の情報は、交通信号状態を示す情報と呼ばれてもよい。RSU20はセンサを備えて、そのセンサにより情報を収集してよい。このセンサにはカメラが含まれていてもよい。道路状況の一例は道路の混雑状況、落下物の有無、路面の状況である。RSU20は、車両10及びITSサーバ30間の通信を中継してもよい。 The RSU 20 collects information on the congestion status of surrounding roads, information on nearby traffic lights, etc. Traffic light information can include the color of the traffic lights. The RSU 20 also has the function of communicating the collected information with the vehicle 10, other RSUs 20, the ITS server 30, etc. Traffic lights may be called traffic lights. Traffic light information may be called information indicating the traffic light status. The RSU 20 may be equipped with a sensor and collect information using the sensor. This sensor may include a camera. Examples of road conditions are the congestion status of the road, the presence or absence of fallen objects, and the condition of the road surface. The RSU 20 may relay communication between the vehicle 10 and the ITS server 30.
 RSU20は、信号機、センサの一方又は両方と有線又は無線によって通信可能に接続されてもよい。 The RSU 20 may be communicatively connected to one or both of the traffic lights and sensors via wires or wirelessly.
 なお、RSU20が備える通信部として移動通信端末が用いられてもよい。移動通信端末は、例えば、携帯電話、スマートフォン、タブレット型端末などの携帯端末である。通信端末は、カメラなどのセンサを1つ以上搭載しているため、有用な情報の提供に寄与することが期待される。 A mobile communication terminal may be used as the communication unit of the RSU 20. The mobile communication terminal is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet terminal. The communication terminal is equipped with one or more sensors such as a camera, and is therefore expected to contribute to providing useful information.
 ITSサーバ30は、車両10、RSU20などから受信した情報に基づいて、車両10に対して交通情報、運転支援のための情報などを提供したり、信号機の灯火を制御したりしてもよい。ITSサーバ30は、クラウドサーバでもオンプレミスサーバでもよい。 The ITS server 30 may provide traffic information, driving assistance information, etc. to the vehicle 10, and control traffic light lights based on information received from the vehicle 10, the RSU 20, etc. The ITS server 30 may be a cloud server or an on-premise server.
 車両10、RSU20などのV2X通信を行う主体は、ITS局(ITS station(ITS-S))と呼ばれてもよい。これらの主体で用いられる、あるいは、動作するITS向けのアーキテクチャは、ITS-Sアーキテクチャと呼ばれてもよい。 The entities that perform V2X communication, such as the vehicle 10 and the RSU 20, may be referred to as ITS stations (ITS-S). The ITS architecture used or operated by these entities may be referred to as the ITS-S architecture.
 車両10など各装置の機能構成及びハードウェア構成の一例については、後述する。 An example of the functional configuration and hardware configuration of each device, such as the vehicle 10, will be described later.
 なお、図1に示すITS1のシステム構成は一例であり、ITSシステム1の構成は図1に示す構成に限られない。当然、車両10の数は図1に示した数に限られない。また、RSU20、ITSサーバ30の数も、図1に示した数に限られない。 Note that the system configuration of ITS 1 shown in FIG. 1 is an example, and the configuration of ITS system 1 is not limited to the configuration shown in FIG. 1. Naturally, the number of vehicles 10 is not limited to the number shown in FIG. 1. Furthermore, the number of RSUs 20 and ITS servers 30 is not limited to the number shown in FIG. 1.
 本開示の以下の説明において、参照符号は省略されることがある。例えば、ITS1は単にITSと書かれてもよく、車両10は単に車両と書かれてもよい。なお、本開示において、車両、RSUなどは、ITS-Sと互いに読み替えられてもよい。 In the following description of this disclosure, reference symbols may be omitted. For example, ITS1 may simply be written as ITS, and vehicle 10 may simply be written as vehicle. Note that in this disclosure, vehicle, RSU, etc. may be interchangeably read as ITS-S.
 (Collective Perception Message(CPM))
 上述したCPSで用いられるメッセージはCPMと呼ばれる。CPMには、センサ起点位置、センサ起点位置から物標までのx距離、y距離などが含まれる。CPMを受信した受信車両は、これらセンサ起点位置、センサ起点位置から物標までのx距離、y距離から、物標の絶対位置を算出することができる。なお、本開示において、物標は、知覚物体(perceived object)と互いに読み替えられてもよい。センサ搭載位置がセンサ起点位置であってもよい。
(Collective Perception Message (CPM))
The message used in the above-mentioned CPS is called a CPM. The CPM includes a sensor starting position, an x distance, a y distance from the sensor starting position to the target, and the like. A receiving vehicle that receives the CPM can calculate the absolute position of the target from the sensor starting position, and the x distance, and the y distance from the sensor starting position to the target. In this disclosure, the target may be interchangeably read as a perceived object. The sensor mounting position may be the sensor starting position.
 ここで、センサ起点位置は、車両の絶対位置、車両の中のセンサ搭載位置(mounting position)、車両の向いている方向などから算出されてもよい。なお、車両の絶対位置は、例えば、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))によって得られる緯度経度であってもよく、GPS測位位置などと呼ばれてもよい。 Here, the sensor starting position may be calculated from the absolute position of the vehicle, the mounting position of the sensor in the vehicle, the direction in which the vehicle is facing, etc. The absolute position of the vehicle may be, for example, latitude and longitude obtained by a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), and may be called a GPS positioning position, etc.
 また、センサ搭載位置は、車両のための参照ポイント(reference point)を基準に、オフセット(例えば、x軸/y軸方向のオフセット)を加えた位置であってもよい。車両のための参照ポイントは、車両を囲む矩形(バウンディングボックス)の前面側中心の地上位置であってもよいし、車両内のGPS測位位置(例えば、ロケータが存在する位置)であってもよい。 The sensor mounting position may also be a position with an offset (e.g., offset in the x-axis/y-axis directions) added based on a reference point for the vehicle. The reference point for the vehicle may be a ground position at the center of the front side of a rectangle (bounding box) surrounding the vehicle, or a GPS positioning position within the vehicle (e.g., the location where the locator is located).
 なお、車両座標系(vehicle coordinate system)では、x軸は車両前後方向に延びる軸、y軸は車両から正面を見たときに左右に延びる軸、z軸はx軸及びy軸と直交する軸である。 In the vehicle coordinate system, the x-axis extends in the longitudinal direction of the vehicle, the y-axis extends left and right when looking at the vehicle from the front, and the z-axis is perpendicular to the x-axis and y-axis.
 また、センサ軸の方向は、車両が向いている方向から算出されてもよい。また、センサ軸の方向に代えて、センサ検出範囲の開き角度開始と開き角度終了が用いられてもよい。センサは車両に固定されているため、車両が向いている方向に対するセンサ軸の方向あるいはセンサ検出範囲の開き角度開始と開き角度終了は固定値である。よって、センサ軸の方向あるいはセンサ検出範囲の開き角度開始と開き角度終了は、車両が向いている方向に、固定値を加算あるいは減算することで算出できる。なお、車両が向いている方向には、車両が進んでいる方向を用いる。 The direction of the sensor axis may also be calculated from the direction in which the vehicle is facing. The start and end opening angles of the sensor detection range may also be used instead of the direction of the sensor axis. Because the sensor is fixed to the vehicle, the direction of the sensor axis relative to the direction in which the vehicle is facing or the start and end opening angles of the sensor detection range are fixed values. Therefore, the direction of the sensor axis or the start and end opening angles of the sensor detection range can be calculated by adding or subtracting a fixed value to the direction in which the vehicle is facing. Note that the direction in which the vehicle is traveling is used as the direction in which the vehicle is facing.
 図2は、物標までの距離の一例を示す図である。本例では、物標Aは、車両のセンサ起点位置からx方向距離が1かつy方向距離が1の位置に存在し、物標Bは、車両のセンサ起点位置からx方向距離が2かつy方向距離が2の位置に存在する。 FIG. 2 is a diagram showing an example of distances to targets. In this example, target A is located at a distance of 1 in the x direction and 1 in the y direction from the vehicle's sensor starting point, and target B is located at a distance of 2 in the x direction and 2 in the y direction from the vehicle's sensor starting point.
 物標の位置は、センサ起点位置からの最短距離の位置を表してもよい。ただし、これに限られない。また、物標までの距離は、センサ起点位置から物標までの距離であってもよく、センサの検出結果から算出されてもよい。 The target position may represent the position with the shortest distance from the sensor starting position. However, this is not limited to this. Furthermore, the distance to the target may be the distance from the sensor starting position to the target, or may be calculated from the detection results of the sensor.
 センサ起点位置、センサ搭載位置、センサ軸の方向などは、センサごとに異なってもよく、CPMには複数のセンサについてそれぞれこれらに関する情報が含まれてもよい。 The sensor starting position, sensor mounting position, sensor axis direction, etc. may differ for each sensor, and the CPM may include information regarding these for each of multiple sensors.
 他の車両からCPMを受信した車両は、自身の絶対位置、当該他の車両の位置(CAMなどを介して得られる)、当該他の車両から物標までの距離(CPMを介して得られる)などの少なくとも1つに基づいて、物標の絶対位置を判断してもよい。 A vehicle that receives a CPM from another vehicle may determine the absolute position of the target based on at least one of its own absolute position, the position of the other vehicle (obtained via CAM, etc.), the distance from the other vehicle to the target (obtained via CPM), etc.
 CPMは、以下のコンテナの少なくとも1つを含んでもよい:
 ・送信元ITS-Sのステーションタイプ、基準位置などを示す管理コンテナ(management container)、
 ・送信元ITS-Sの詳細情報を示すステーションデータコンテナ(station data container)、
 ・送信元ITS-Sが持つセンサの種別、検出エリアなどを示すセンサ情報コンテナ(sensor information container)、
 ・送信元ITS-Sが持つセンサが検出した物標を示す知覚物標コンテナ(perceived object container)、
 ・フリースペースに関する補足情報を示すフリースペース付属コンテナ(free space addendum container)。
The CPM may include at least one of the following containers:
A management container indicating the source ITS-S station type, reference position, etc.
A station data container showing detailed information about the source ITS-S.
A sensor information container indicating the type of sensor possessed by the sender ITS-S, detection area, etc.
A perceived object container indicating an object detected by a sensor of the transmitting ITS-S,
- A free space addendum container that provides additional information about the free space.
 CPMは、必須のコンテナとして管理コンテナを含む。管理コンテナはCPM管理コンテナと呼ばれてもよい。ステーションデータコンテナ、センサ情報コンテナ、知覚物標コンテナ及びフリースペース付属コンテナは、CPMに含ませることが任意のコンテナである。センサ情報コンテナ、知覚物標コンテナ及びフリースペース付属コンテナは複数のコンテナであってもよい。1つのCPMメッセージに含むことができるセンサ情報コンテナ、知覚物標コンテナ及びフリースペース付属コンテナの上限値が共通に又はそれぞれ個別に設定されていてもよい。コンテナ数の上限値は例えば128であってよい。 CPM includes a management container as a required container. The management container may be called a CPM management container. The station data container, the sensor information container, the perceived target container, and the free space adjunct container are optional containers that may be included in the CPM. The sensor information container, the perceived target container, and the free space adjunct container may be multiple containers. The upper limit of the sensor information container, the perceived target container, and the free space adjunct container that can be included in one CPM message may be set jointly or individually. The upper limit of the number of containers may be, for example, 128.
 なお、コンテナは、1つ以上のパラメータを含む情報のセットに該当してもよい。パラメータは、データフレーム、データエレメントなどと呼ばれてもよい。 Note that a container may correspond to a set of information that includes one or more parameters. A parameter may also be called a data frame, data element, etc.
 図3は、センサ情報コンテナの一例を示す図である。本例は、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている。なお、あくまで例であるため、完全な記載とは限らない。以降の類似する図面も同様である。 Figure 3 shows an example of a sensor information container. This example is written using Abstract Syntax Notation One (ASN.1) notation. Note that this is merely an example and is not necessarily a complete description. The same applies to subsequent similar drawings.
 センサ情報コンテナは、1つ以上のセンサ情報(SensorInformation)を含み、センサ情報は、例えば、センサID情報(sensorID)、検出エリア情報(DetectionArea)などを含む。検出エリア情報は、車両に搭載されるセンサに関する車両センサ情報(VehicleSensor)を含んでもよい。センサ情報コンテナは、視野情報コンテナ(Field-of-View Container)と呼ばれてこともある。 The sensor information container includes one or more pieces of sensor information (SensorInformation), and the sensor information includes, for example, sensor ID information (sensorID) and detection area information (DetectionArea). The detection area information may include vehicle sensor information (VehicleSensor) related to a sensor mounted on the vehicle. The sensor information container is sometimes called a Field-of-View information container (Field-of-View Container).
 図3に例示されている情報は、全部、センサ特徴情報に該当してよい。センサ特徴情報は、センサの特徴を表している情報である。センサ情報コンテナに含まれる情報の一部または全部は、センサ特徴情報に該当する。センサ特徴情報は、センサのIDなど、センサを識別するための情報を含んでよい。センサ特徴情報は、センサの検出特性を示す情報を含んでもよい。センサ検出特性は、センサの検出範囲、センサの検出精度など、センサの物体検出に関する特性を示す。なお、センサ特徴情報は、検出する物体の位置等により当然に変化する情報は含まない。従って、センサ特徴情報には、センサが検出した物体の位置を示す情報は含まない。なお、センサ特徴情報をセンサ情報と記載することもある。 All of the information illustrated in FIG. 3 may correspond to sensor feature information. Sensor feature information is information that represents the features of a sensor. Some or all of the information included in a sensor information container corresponds to sensor feature information. Sensor feature information may include information for identifying a sensor, such as a sensor ID. Sensor feature information may include information indicating the detection characteristics of a sensor. Sensor detection characteristics indicate the characteristics of a sensor related to object detection, such as the sensor's detection range and detection accuracy. Note that sensor feature information does not include information that naturally changes depending on the position of an object to be detected, etc. Therefore, sensor feature information does not include information indicating the position of an object detected by a sensor. Note that sensor feature information is sometimes referred to as sensor information.
 車両センサ情報は、センサ位置の参照ポイントを識別(特定)するためのID(refPointId)、当該参照ポイントからのx/y/z軸方向の搭載位置のオフセットを示すオフセット情報(xSensorOffset/ySensorOffset/zSensorOffset)、特定のセンサがカバーする領域の実際の広がりを示す情報(vehicleSensorProperties)のリスト(VehicleSensorPropertyList)などを含んでもよい。 The vehicle sensor information may include an ID (refPointId) for identifying (specifying) a reference point for the sensor position, offset information (xSensorOffset/ySensorOffset/zSensorOffset) indicating the offset of the mounting position in the x/y/z axis directions from the reference point, and a list (VehicleSensorPropertyList) of information (vehicleSensorProperties) indicating the actual extent of the area covered by a particular sensor.
 VehicleSensorPropertiesは、センサが検出する距離範囲を示す情報(range)、水平/垂直方向についての、開き角度開始(horizontal(vertical)OpeningAngleStart)/開き角度終了(horizontal(vertical)OpeningAngleEnd)を含んでもよい。なお、rangeは、x軸方向の距離範囲を意味してもよい。 VehicleSensorProperties may include information indicating the distance range detected by the sensor (range), and the opening angle start (horizontal(vertical)OpeningAngleStart)/opening angle end (horizontal(vertical)OpeningAngleEnd) for the horizontal and vertical directions. Note that range may refer to the distance range in the x-axis direction.
 (V2X通信のためのプライバシー保護)
 V2X通信では、車両の位置情報(例えば、緯度、経度)が周囲に送信されることから、プライバシー保護に関する懸念があり、様々な対策が検討されている。当該懸念の1つとして、前述したトラッキングがある。
(Privacy protection for V2X communications)
In V2X communication, vehicle position information (e.g., latitude and longitude) is transmitted to the surroundings, which raises concerns about privacy protection, and various countermeasures are being considered. One of the concerns is the above-mentioned tracking.
 トラッキングを防ぐための対策として、例えば、CAR 2 CAR Communication Consortium(C2CCC)の基本システム構成(Basic System Profile(BSP))、CAM、DENMなどの既存の規格では、以下の3つが設けられている:
・証明書と個別の車両を結びつけることを難しくするサーバ側の仕組み。
・使用する証明書をルールに基づいて頻繁に変更する。
・証明書を変更した場合、証明書変更前後のメッセージを関連付ける情報はリセットするか、0にするかランダムに再生成する。例えば、当該メッセージに含まれるアドレス、メッセージに含まれる識別子(Identifier(ID))、メッセージのカウント(シーケンス番号)などはランダム生成しなおす。メッセージに含まれるアドレスは、例えば、送信元Internet Protocol(IP)アドレス、送信元Medium Access Control(MAC)アドレスである。メッセージのカウントは0にしてもよい。また、走行の軌跡を示す情報(例えば、CAMのpath history、DENMのtracesなど)、イベント情報(例えば、DENMのEventHistory)などをリセットする。リセットは、空にすることであってもよく、消去することであってもよい。
As a measure to prevent tracking, the following three measures are provided in existing standards such as the Basic System Profile (BSP) of the CAR 2 CAR Communication Consortium (C2CCC), CAM, and DENM:
- Server-side mechanisms that make it difficult to link certificates to individual vehicles.
- Change the certificates used frequently based on rules.
When a certificate is changed, information relating messages before and after the certificate change is reset, set to 0, or randomly regenerated. For example, the address included in the message, the identifier (Identifier (ID)) included in the message, the message count (sequence number), etc. are randomly regenerated. The address included in the message is, for example, the source Internet Protocol (IP) address, the source Medium Access Control (MAC) address, etc. The message count may be set to 0. In addition, information indicating the travel trajectory (for example, CAM path history, DENM traces, etc.), event information (for example, DENM EventHistory), etc. are reset. The reset may be to empty or erase.
 なお、本開示において、証明書は、メッセージ(ペイロード)のエンベロープ情報(セキュリティエンベロープ)に含まれるセキュリティのための証明書(例えば、Authorization(Authentication) Ticket(AT))であってもよい。 In addition, in this disclosure, the certificate may be a security certificate (e.g., an Authorization (Authentication) Ticket (AT)) included in the envelope information (security envelope) of the message (payload).
 上記の証明書の変更について、例えばBSPでは、エンジン制御がアクティベートされてから一定期間(例えば、数秒)が経過すると、ATを変更したり、その後一定距離の移動/一定期間の経過に応じてATを変更したりして、特に出発地点周辺において車両が特定されることを抑制している。 Regarding the above certificate changes, for example, in the BSP, the AT is changed when a certain period of time (e.g., a few seconds) has passed since engine control was activated, and the AT is then changed according to the passage of a certain distance or period of time thereafter, thereby preventing the vehicle from being identified, particularly in the vicinity of the starting point.
 ところで、V2X通信で送信されるメッセージに含まれる情報のうち、位置情報、速度情報などは常に変化するため、個別の車両を直接特定するためには利用されないと考えられる。一方で、車両の形状(例えば、車両の幅、長さ、高さなど)に関する情報は、詳細すぎると車両の特定につながってしまうので、10センチメートル以上の粗い分解能となっている。これくらいの分解能であれば、同じ情報を送る車両がたくさんいるので、個別の車両の特定は難しいためである。 Incidentally, among the information contained in messages transmitted by V2X communications, location information, speed information, etc. are constantly changing, and therefore are not thought to be used to directly identify individual vehicles. On the other hand, information on the shape of the vehicle (for example, the width, length, height, etc. of the vehicle) has a coarse resolution of 10 centimeters or more, because if it is too detailed it could lead to the identification of the vehicle. This is because with this level of resolution, there are many vehicles sending the same information, making it difficult to identify individual vehicles.
 CPMについてはまだ検討が詳細に進んでおらず、CAMなどの既存のメッセージに比べて、プライバシー保護に関する検討が十分に行われていない。 CPM has yet to be thoroughly explored, and compared to existing messages such as CAM, not enough consideration has been given to privacy protection.
 図4は、車両センサ情報に含まれる各情報の内容の一例を示す図である。図3で示した車両センサ情報に含まれるオフセット情報(xSensorOffset/ySensorOffset/zSensorOffset)、センサが検出する距離範囲を示す情報(range)、水平/垂直方向についての、開き角度開始(horizontal(vertical)OpeningAngleStart)/開き角度終了(horizontal(vertical)OpeningAngleEnd)などが示されている。 FIG. 4 is a diagram showing an example of the contents of each piece of information included in the vehicle sensor information. The offset information (xSensorOffset/ySensorOffset/zSensorOffset) included in the vehicle sensor information shown in FIG. 3, information indicating the distance range detected by the sensor (range), and the opening angle start (horizontal(vertical)OpeningAngleStart)/opening angle end (horizontal(vertical)OpeningAngleEnd) for the horizontal/vertical directions are shown.
 センサが検出する距離範囲は10センチメートル単位である一方で、オフセット情報は1センチメートル単位であり、センサによる検知エリアの角度を示す開き角度は0.1度単位である。 The distance range detected by the sensor is in units of 10 centimeters, while the offset information is in units of 1 centimeter, and the opening angle, which indicates the angle of the sensor's detection area, is in units of 0.1 degrees.
 このように、オフセット情報、開き角度の情報などは、かなり細かい分解能で表現されている。そして、オフセット情報、開き角度の情報などのセンサ特徴情報は、車両モデル、年式、グレードなどにより異なることも多い。そのため、複数のCPMを受信した車両は、それぞれのCPMに含まれているオフセット情報、開き角度などのセンサ特徴情報から、受信した複数のCPMが同一の車両から送信されたのかどうかを推定できる可能性がある。複数のCPMが同一の車両から送信されたことが推定できてしまうと、その車両が追跡すなわちトラッキングされてしまうおそれがある。 In this way, offset information, opening angle information, and other information are expressed with a fairly fine resolution. Furthermore, sensor feature information such as offset information and opening angle information often differs depending on the vehicle model, year, grade, and so on. Therefore, a vehicle that receives multiple CPMs may be able to estimate whether the multiple CPMs it receives were sent from the same vehicle, based on the sensor feature information, such as the offset information and opening angle, contained in each CPM. If it can be inferred that multiple CPMs were sent from the same vehicle, there is a risk that the vehicle may be tracked.
 以上からわかるように、CPMについてトラッキングを困難にするための方法が求められているが、検討が十分に行われていない。トラッキングを困難にするための方法が導入されなければ、CPMの利用の普及が進まない可能性がある。 As can be seen from the above, there is a demand for methods to make tracking CPM more difficult, but these have not been sufficiently considered. Unless methods to make tracking more difficult are introduced, the use of CPM may not become widespread.
 そこで、本発明者は、CPMに含まれるセンサ情報を制限したり、改変したりすることによって、CPMから、車両モデル、年式、グレードなどの車両情報を推測しにくくする方法を着想した。さらに、この着想はCPM以外のメッセージにも適用できるとの考えに至った。 The inventors therefore came up with a method to make it difficult to infer vehicle information such as the vehicle model, year, and grade from the CPM by restricting or modifying the sensor information contained in the CPM. Furthermore, they came to the conclusion that this idea could also be applied to messages other than CPM.
 以下の実施形態の説明において、車両が送信するメッセージとしてはCPMを例示する。しかし、本開示におけるCPMは、センサ特徴情報を含む任意のメッセージで読み替えられてもよい。当該メッセージは、CPM、CAM、DENM、Society of Automotive Engineers(SAE)、Basic Safety Message(BSM)、C2CCC BSPその他の規格において規定されるメッセージであってもよい。 In the following description of the embodiment, CPM is exemplified as a message transmitted by a vehicle. However, CPM in this disclosure may be interpreted as any message including sensor characteristic information. The message may be a message defined in CPM, CAM, DENM, Society of Automotive Engineers (SAE), Basic Safety Message (BSM), C2CCC BSP, or other standards.
 (メッセージ制御方法)
 本開示の一実施形態に係るメッセージ制御方法について、以下で説明する。各メッセージ制御方法は、上述のITSに適用されてもよい。
(Message Control Method)
A message control method according to an embodiment of the present disclosure is described below. Each message control method may be applied to the above-mentioned ITS.
 <第1の実施形態>
 第1の実施形態は、複数のCPMの関連付けを抑制するための方法に関する。
First Embodiment
The first embodiment relates to a method for suppressing association of multiple CPMs.
 第1の実施形態は、実施形態1.0-1.5に大別される。以下ではそれぞれの実施形態を説明する。 The first embodiment is broadly divided into embodiments 1.0 to 1.5. Each embodiment is explained below.
 [実施形態1.0]
 実施形態1.0では、車両は、1つのCPMにおいて送信されるべきセンサ情報を、複数のCPMに分けて送信してもよい。1つのCPMにおいて送信されるべきセンサ情報は、CPMに含める物標に関する情報の検出に使用した全部のセンサに関する情報であってもよい。センサ情報は、センサ情報コンテナに含まれる各情報であってもよい。1つのCPMにおいて送信されるべきセンサ情報を複数のCPMに分けて送信する場合、車両は、CPMに含ませるセンサ情報を逐次送信するCPMで異ならせることになる。CPMに含ませるセンサ情報を逐次送信するCPMで異ならせる制御をセンサ情報変更制御という。センサ情報変更制御は、後述する制御部11が実行する。
[Embodiment 1.0]
In embodiment 1.0, the vehicle may transmit sensor information to be transmitted in one CPM by dividing it into multiple CPMs. The sensor information to be transmitted in one CPM may be information on all sensors used to detect information on the target to be included in the CPM. The sensor information may be each piece of information included in the sensor information container. When transmitting sensor information to be transmitted in one CPM by dividing it into multiple CPMs, the vehicle will make the sensor information to be included in the CPMs different for the CPMs to be transmitted successively. The control of making the sensor information to be included in the CPMs different for the CPMs to be transmitted successively is called sensor information change control. The sensor information change control is executed by the control unit 11, which will be described later.
 このような分けられたセンサ情報の1つのことを、以下では分散センサ情報とも呼ぶ。また、複数のCPMを用いて送信される分散センサ情報のセットのことを、以下ではセンサ情報セットとも呼ぶ。センサ情報セットに含まれる複数の分散センサ情報は、上述の1つのCPMにおいて送信されるべきセンサ情報を構成するために用いられてもよい。1つのCPMにおいて送信されるべきセンサ情報は、上述のセンサ情報セットであり、全てのセンサ情報とも呼ぶ。 One of these separated pieces of sensor information is also referred to as distributed sensor information below. Also, a set of distributed sensor information transmitted using multiple CPMs is also referred to as a sensor information set below. Multiple pieces of distributed sensor information included in a sensor information set may be used to configure sensor information to be transmitted in one CPM described above. The sensor information to be transmitted in one CPM is the sensor information set described above, and is also referred to as all sensor information.
 センサ情報変更制御では、センサ情報(すなわちセンサ特徴情報)が特徴を示す対象とするセンサの少なくとも一部が互いに異なる複数のセンサ情報を、複数のCPMに分散して含めてもよい。たとえば、あるCPMでは、センサ情報が特徴を示す対象とするセンサがミリ波レーダであり、次に送信するCPMでは、センサ情報を示す対象とするセンサがLiDARであってもよい。 In sensor information change control, multiple pieces of sensor information, in which at least some of the sensors that are the subject of the sensor information (i.e., sensor characteristic information) that are characteristic of different sensors, may be distributed and included in multiple CPMs. For example, in one CPM, the sensor that is the subject of the sensor information that is characteristic may be a millimeter wave radar, and in the next CPM to be transmitted, the sensor that is the subject of the sensor information that is characteristic of the sensor information may be a LiDAR.
 次に、センサ情報変更制御でのセンサ情報を含んだCPMの送信タイミングについて説明する。欧州電気通信標準化機構(European Telecommunications Standards Institute(ETSI))の規格では、センサ情報コンテナは1秒あるいはそれよりも長い周期で送信する想定をしている。一方で、上記の規格では、物標に関する情報は、0.1秒の周期、あるいは0.1秒以上であって1秒よりも短い周期で送信する想定をしている。 Next, we will explain the timing of sending CPM containing sensor information in sensor information change control. The European Telecommunications Standards Institute (ETSI) standard assumes that sensor information containers are sent at intervals of 1 second or longer. On the other hand, the above standard assumes that information about targets is sent at intervals of 0.1 seconds, or at intervals of 0.1 seconds or longer but shorter than 1 second.
 実施形態1.0では、車両は、1秒あるいはそれよりも長い周期で全てのセンサ情報を一度に送信するのではなく、少なくとも、全てのセンサ情報のうちの一部のセンサ情報を、他のセンサ情報とは異なるタイミングで送信する。例えば、センサ1の情報を物標の情報を含むCPMを送信してから100ms経過したタイミングで送信し、センサ2の情報をさらに100ms経過したタイミングで送信し、というように、分散センサ情報をそれぞれ異なるタイミングで送信してもよい。つまり、センサ情報を含まないCPMを送信してから100ms経過したタイミングでセンサ1の情報を送信し、センサ情報を含まないCPMを送信してから200ms経過したタイミングでセンサ2の情報を送信し、というように分散センサ情報を送信してもよい。もちろん、センサ情報を含まないCPMは生成せず、センサ1の情報と物標の情報を含むCPMを送信し、その後、100msが経過したタイミングでセンサ2の情報を含むCPMを送信してもよい。 In embodiment 1.0, the vehicle does not transmit all the sensor information at once in a cycle of 1 second or longer, but transmits at least some of the sensor information at a different timing from the other sensor information. For example, the distributed sensor information may be transmitted at different timings, such as transmitting sensor 1 information 100 ms after transmitting a CPM including target information, and transmitting sensor 2 information another 100 ms after transmitting. In other words, the distributed sensor information may be transmitted in such a manner that sensor 1 information is transmitted 100 ms after transmitting a CPM that does not include sensor information, and sensor 2 information is transmitted 200 ms after transmitting a CPM that does not include sensor information. Of course, it is also possible to transmit a CPM including sensor 1 information and target information, and then transmit a CPM including sensor 2 information 100 ms after transmitting the CPM that does not include sensor information, without generating a CPM that does not include sensor information.
 上述の例では、センサ情報セットに含まれる最初の分散センサ情報の送信周期は1秒以上の周期である。一方、i番目(iは自然数)の分散センサ情報の送信タイミングは、最初の分散センサ情報の送信タイミング又は1つ前の分散センサ情報の送信タイミングからi番目の時間オフセットだけ経過したタイミングであってもよい。 In the above example, the transmission period of the first distributed sensor information included in the sensor information set is one second or more. On the other hand, the transmission timing of the i-th distributed sensor information (i is a natural number) may be the i-th time offset from the transmission timing of the first distributed sensor information or the transmission timing of the previous distributed sensor information.
 i番目の時間オフセットに関する情報は、CPMを送信する車両が備えるメモリなどに予め記憶されていてもよい。あるいは、CPMを送信する車両に対して、他の車両、RSU又はITSサーバから通知(設定)されてもよい。車両は、当該情報に基づいて、i番目の時間オフセットを判断してもよい。 Information regarding the i-th time offset may be stored in advance in a memory provided in the vehicle transmitting the CPM. Alternatively, the vehicle transmitting the CPM may be notified (set) of the information by another vehicle, an RSU, or an ITS server. The vehicle may determine the i-th time offset based on the information.
 また、物標を含むCPMの送信周期が100msといった周期に定まっていなくてもよい。次回のCPMは、前回のCPMを送信してから100ms以上経過した場合に送信すると定められていてもよい。この場合、例えば、センサ1のセンサ情報と物標の情報を含むCPMを送信し、次のCPMの送信タイミングで、センサ2のセンサ情報と物標の情報を含むCPMを送信してもよい。もちろん、センサ2のセンサ情報を送信するCPMが、センサ1のセンサ情報を送信した2つ後のCPMであってもよい。 Furthermore, the transmission cycle of a CPM including a target does not have to be fixed at a cycle of 100 ms. The next CPM may be set to be transmitted when 100 ms or more has elapsed since the previous CPM was transmitted. In this case, for example, a CPM including sensor information from sensor 1 and target information may be transmitted, and at the transmission timing of the next CPM, a CPM including sensor information from sensor 2 and target information may be transmitted. Of course, the CPM transmitting the sensor information from sensor 2 may be the CPM two CPMs after the transmission of the sensor information from sensor 1.
 ここまでの例は、1つのセンサ情報セットに含まれる分散センサ情報を、上記の規格においてセンサ情報コンテナを含むCPMとその後のセンサ情報コンテナを含まないはずのCPMに分散させる例であった。これによれば、全部のセンサ情報を分散させて送信させつつも、全部のセンサ情報を短い時間で送信することができる。 The examples so far have been examples of distributing the distributed sensor information contained in one sensor information set to a CPM that includes a sensor information container and a subsequent CPM that is not supposed to include a sensor information container in the above standard. This makes it possible to transmit all of the sensor information in a short time while distributing it.
 しかし、上記の規格においてセンサ情報コンテナを含むCPMのみに、1つのセンサ情報セットに含まれる分散センサ情報を分散させてもよい。例えば、センサ2のセンサ情報を送信するCPMが、センサ1のセンサ情報を送信したCPMから1秒以上経過し、上記の規格において再びセンサ情報を送信するタイミングとなったCPMであってもよい。これによれば、全部のセンサ情報を送信し終えるまでの期間が長くなることから、トラッキングを抑制する効果が高い。 However, in the above standard, distributed sensor information included in one sensor information set may be distributed only to CPMs that include a sensor information container. For example, the CPM that transmits sensor information from sensor 2 may be the CPM that transmits sensor information from sensor 1 one second or more after the CPM that transmitted sensor information from sensor 1, and it is time to transmit sensor information again in the above standard. This increases the period until all sensor information is transmitted, which is highly effective in suppressing tracking.
 分散センサ情報が全てのセンサ情報を単に分割した情報である場合、センサ情報セットに含まれる複数の分散センサ情報を全て受信して結合されると、全てのセンサ情報が復元できてしまう。このため、復元を抑制できる分散センサ情報を構成することが好ましい。例えば以下の実施形態1.1-1.3が復元を抑制するために好適である。なお、これらの実施形態は、分散センサ情報を利用しない場合であっても用いられてもよい。 If the distributed sensor information is simply information obtained by dividing all the sensor information, when all the multiple pieces of distributed sensor information included in the sensor information set are received and combined, all the sensor information can be restored. For this reason, it is preferable to configure distributed sensor information that can suppress restoration. For example, the following embodiments 1.1-1.3 are suitable for suppressing restoration. Note that these embodiments may be used even when distributed sensor information is not used.
 [実施形態1.1]
 実施形態1.1において、車両は、IDにより処理されたCPMを逐次送信する際に、複数のCPMの1つ以上を他のCPMと異なるIDにする。IDが違えば、第3者が複数のCPMを紐づけることを難しくすることができる。例えば、車両は、分散センサ情報を含むCPMを、CPMごとに異なるIDにより処理してもよい。異なるIDは、ランダムに生成してもよいし、事前に設定した規則に従い生成してもよい。
[Embodiment 1.1]
In embodiment 1.1, when the vehicle sequentially transmits the CPMs processed by the ID, one or more of the multiple CPMs are assigned IDs different from the other CPMs. If the IDs are different, it can be difficult for a third party to link the multiple CPMs. For example, the vehicle may process the CPMs including distributed sensor information with different IDs for each CPM. The different IDs may be generated randomly or according to a pre-defined rule.
 CPMをIDにより処理することは、当該CPMに当該IDを含めることを意味してもよいし、CPMを生成してから送信するまでのいずれか少なくとも1つの処理のために当該IDを用いることを意味してもよい。上記処理は、例えば、暗号化である。 Processing a CPM with an ID may mean including the ID in the CPM, or may mean using the ID for at least one of the processes from generating the CPM to transmitting it. The process is, for example, encryption.
 IDは、一時的IDであってもよく、V2X通信のためのIDであってもよく、車両IDであってもよく、センサのためのIDであってもよい。また、これらのIDのうちの複数のIDであってもよい。一時的IDは、temporary ID(tempID)と呼ばれてもよい。IDは、ITS-S ID、ステーションID、車両ID、センサID、物標ID、ネットワークID、アドレス(例えば、IPアドレス、MACアドレス)、証明書ID、証明書、ATに関するIDなどの少なくとも1つで読み替えられてもよい。センサIDはセンサ情報コンテナを用いて通知する各センサ情報(SensorInformation)の特徴を持つセンサのID(sensorID)である。物標IDは、知覚物体コンテナを用いて通知する各知覚物体情報(PerceivedObject)のID(objectID)である。これらのIDは一時的IDであってもよい。一時的IDは、逐次変更されるIDであってもよい。 The ID may be a temporary ID, an ID for V2X communication, a vehicle ID, or an ID for a sensor. It may also be multiple IDs among these IDs. The temporary ID may be called a temporary ID (tempID). The ID may be interpreted as at least one of an ITS-S ID, a station ID, a vehicle ID, a sensor ID, a target ID, a network ID, an address (e.g., IP address, MAC address), a certificate ID, a certificate, an ID related to an AT, and the like. The sensor ID is an ID (sensorID) of a sensor having characteristics of each sensor information (SensorInformation) notified using a sensor information container. The target ID is an ID (objectID) of each perceived object information (PerceivedObject) notified using a perceived object container. These IDs may be temporary IDs. The temporary ID may be an ID that is changed from time to time.
 実施形態1.1によれば、1つ以上のセンサについて、同一のセンサに対するセンサIDを、同じ車両から送信する複数のCPM間で異ならせることができる。よって、例えば、ITS-S IDなど、当然に、車両固有となるIDだけでなく、本来は車種が同じであれば同一であることも多いセンサIDについても、同じ車両から送信する複数のCPM間で異ならせることができる。これにより、同じ車両が送信する複数のCPMが、それら複数のCPMに含まれるIDをもとに同じ車両から送信されたCPMであると受信側で推定されてしまうことを抑制できる。よって、CPMを逐次送信する送信元の車両がトラッキングされてしまうことを好適に抑制できる。 According to embodiment 1.1, for one or more sensors, the sensor ID for the same sensor can be made different between multiple CPMs transmitted from the same vehicle. Therefore, not only IDs that are naturally vehicle-specific, such as the ITS-S ID, but also sensor IDs that are often the same if the vehicle model is the same, can be made different between multiple CPMs transmitted from the same vehicle. This makes it possible to prevent the receiving side from assuming that multiple CPMs transmitted from the same vehicle are CPMs transmitted from the same vehicle based on the IDs contained in those multiple CPMs. Therefore, it is possible to preferably prevent the tracking of the source vehicle that transmits CPMs sequentially.
 [実施形態1.2]
 実施形態1.2において、車両は、逐次送信する複数のCPMの1つ以上に含めるセンサ参照位置を、他のCPMに含めるセンサ参照位置と異ならせる。センサ参照位置は、センサの位置を決定する際に参照する位置である。センサの位置は、車両座標系において特定される。センサの位置は、センサ参照位置とオフセットとによって定まってもよい。センサ参照位置は、例えば、管理コンテナに含めるリファレンスポジション(ReferencePosition)であってよい。また、センサ参照位置は、センサ情報コンテナに含めるリファレンスポイント(reference point)であってもよい。なお、リファレンスポジションとリファレンスポイントが同じ位置であることもある。
[Embodiment 1.2]
In embodiment 1.2, the vehicle makes the sensor reference position included in one or more of the multiple CPMs transmitted sequentially different from the sensor reference position included in the other CPMs. The sensor reference position is a position referenced when determining the position of the sensor. The position of the sensor is specified in the vehicle coordinate system. The position of the sensor may be determined by the sensor reference position and an offset. The sensor reference position may be, for example, a reference position (ReferencePosition) included in a management container. The sensor reference position may also be a reference point (reference point) included in a sensor information container. Note that the reference position and the reference point may be the same position.
 リファレンスポジションは車両の地理的な位置を緯度と経度、あるいは、緯度と経度と高度とにより表してもよい。ただし本実施形態では、リファレンスポジションは、センサの位置を決定する際に参照する位置であり、車両の位置を周囲に通知するための情報ではない。車両の位置を周囲に通知するメッセージには、CAMなどの他のメッセージを用いる。 The reference position may represent the geographical location of the vehicle using latitude and longitude, or latitude, longitude, and altitude. However, in this embodiment, the reference position is a position that is referenced when determining the position of the sensor, and is not information for notifying the surrounding area of the vehicle's location. Other messages, such as CAM, are used as messages to notify the surrounding area of the vehicle's location.
 車両の位置を周囲に通知するための情報ではないので、リファレンスポジションを変動させても、CPMを受信した受信側において不都合は生じにくい。リファレンスポジションは、車両内又は車両外の特定の位置であって、車両とともに移動する位置に該当してもよい。 Since this information is not used to notify the surrounding area of the vehicle's position, changing the reference position is unlikely to cause any inconvenience to the receiving side that receives the CPM. The reference position may be a specific position inside or outside the vehicle, and may correspond to a position that moves along with the vehicle.
 リファレンスポジションをセンサ参照位置として用いる場合、リファレンスポジションを基準としてセンサの相対位置を決定するためのオフセットが、異なるリファレンスポジションごとに設定される。このオフセットは、リファレンスポジションを基準としたリファレンスポイントまでのオフセットであってもよい。この場合、リファレンスポジションの変更に応じて、オフセットも変更になる。しかし、リファレンスポイントからセンサの位置までのオフセットであるxSensorOffset, ySensoroffset, zSensorOffsetを変更する必要がない利点がある。また、上記オフセットは、リファレンスポジションからセンサの位置までのオフセットであってもよい。この場合、リファレンスポイントはリファレンスポジションと等しくなり、xSensorOffset, ySensoroffset, zSensorOffsetをリファレンスポジションの変更に応じて変更する。 When the reference position is used as the sensor reference position, an offset is set for each different reference position to determine the relative position of the sensor with respect to the reference position. This offset may be an offset to the reference point with respect to the reference position. In this case, the offset also changes according to the change in the reference position. However, this has the advantage that there is no need to change xSensorOffset, ySensoroffset, zSensorOffset, which are the offsets from the reference point to the sensor position. The above offsets may also be offsets from the reference position to the sensor position. In this case, the reference point is equal to the reference position, and xSensorOffset, ySensoroffset, zSensorOffset change according to the change in the reference position.
 車両は、複数のセンサ間で異なるセンサ参照位置を、基準となる位置をもとにランダムに変動させて決定してもよい。基準となる位置は、例えば、車両中央、GNSSアンテナ位置、車両前端面の車幅方向中央である。また、センサ参照位置は、特定のルールに基づいて都度変動した位置であってもよい。 The vehicle may determine different sensor reference positions for multiple sensors by randomly varying them based on a reference position. The reference position may be, for example, the center of the vehicle, the GNSS antenna position, or the center of the front end face of the vehicle in the vehicle width direction. The sensor reference position may also be a position that varies each time based on specific rules.
 前述したように、実施形態1.2は実施形態1.0と組み合わせることができる。つまり、1つのCPMに含ませるセンサ参照位置を他のCPMに含ませるセンサ参照位置と異ならせ、かつ、センサ特徴情報セットを分散センサ特徴情報として分散送信してもよい。図5Bは、実施形態1.2と実施形態1.0を組み合わせた実施形態に基づくセンサ特徴情報の分散送信の一例を示す図である。 As mentioned above, embodiment 1.2 can be combined with embodiment 1.0. In other words, the sensor reference position included in one CPM may be different from the sensor reference position included in another CPM, and the sensor feature information set may be distributed and transmitted as distributed sensor feature information. Figure 5B is a diagram showing an example of distributed transmission of sensor feature information based on an embodiment that combines embodiment 1.2 and embodiment 1.0.
 一方、図5Aは、本開示の分散送信及びセンサ参照位置の変動を行わない場合のCPMが示すセンサ参照位置及びセンサ位置の一例を示す。なお、図5A、図5B、図6A、図6Bでは、センサ参照位置を参照位置と表記している。図5Aの例では、車両は、1つのCPMで当該車両が搭載する全てのセンサのセンサ情報を送信する。センサ情報は、具体的には、センサが物標を検出する検出エリアであるエリアA-Dにそれぞれ対応する検出エリア情報を含む4つのセンサ情報である。センサ情報には、センサ参照位置からの各センサの位置を示すオフセットも含まれる。センサ参照位置を示す情報はセンサ情報コンテナに含まれていてもよいし、管理コンテナに含まれていてもよい。図5A、図5Bでは、センサ位置はハッチングされた丸で示されている。なお、本例ではエリアAのセンサとエリアBのセンサ位置は重複している。センサ参照位置は各センサ情報に関して共通である。 On the other hand, FIG. 5A shows an example of the sensor reference position and the sensor position indicated by the CPM when the distributed transmission and the change in the sensor reference position of the present disclosure are not performed. Note that in FIGS. 5A, 5B, 6A, and 6B, the sensor reference position is written as the reference position. In the example of FIG. 5A, the vehicle transmits sensor information of all sensors mounted on the vehicle with one CPM. Specifically, the sensor information is four pieces of sensor information including detection area information corresponding to areas A-D, which are detection areas in which the sensors detect targets. The sensor information also includes an offset indicating the position of each sensor from the sensor reference position. The information indicating the sensor reference position may be included in the sensor information container or may be included in the management container. In FIGS. 5A and 5B, the sensor positions are indicated by hatched circles. Note that in this example, the sensor positions of the sensor in area A and the sensor positions of area B overlap. The sensor reference position is common to each piece of sensor information.
 図5Bは、本開示の分散送信及びセンサ参照位置の変動を行う場合の各CPMが示す情報の一例を示す。図5Bの車両は図5Aと同じ車両である。車両は、図5Aのセンサ情報を、エリアA~Dをそれぞれ検出エリアとする4つのセンサ別に4つの分散センサ情報に分ける。そして各分散センサ情報をそれぞれ異なるCPMを用いて送信する。図5Bに示すように、各分散センサ情報により特定されるセンサ参照位置は互いに異なる。 FIG. 5B shows an example of information indicated by each CPM when performing distributed transmission and varying the sensor reference position of the present disclosure. The vehicle in FIG. 5B is the same vehicle as in FIG. 5A. The vehicle separates the sensor information in FIG. 5A into four pieces of distributed sensor information for four sensors, each of which has areas A to D as its detection area. Each piece of distributed sensor information is then transmitted using a different CPM. As shown in FIG. 5B, the sensor reference positions identified by each piece of distributed sensor information are different from each other.
 図6Aは、センサ参照位置を変動させない場合に受信者が推定するセンサ位置の一例を示す図である。図6Bはセンサ参照位置を変動させた場合に受信者が推定するセンサ位置の一例を示す図である。 FIG. 6A is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is not changed. FIG. 6B is a diagram showing an example of a sensor position estimated by the receiver when the sensor reference position is changed.
 センサ情報を分散送信したとしても、図6Aのように各センサ情報に含まれるセンサ参照位置が同じ場合には、センサ参照位置をもとにエリアAとエリアBの位置を決めることで、エリアAとエリアBの相対位置を正しく推定できる。次にセンサ情報セットを分散センサ情報にして送信したときにも、分散センサ情報を受信した受信者は、同様にして、エリアAとエリアBの相対位置を、前回と同じ位置に推定できる。そして、エリアAとエリアBの相対位置が同じになっていることから、前回、エリアA、Bを推定した車両と、今回、エリアA、Bを推定した車両が同じ車両であることを推定できる可能性がある。 Even if the sensor information is transmitted in a distributed manner, if the sensor reference position included in each piece of sensor information is the same as in Figure 6A, the relative positions of Area A and Area B can be correctly estimated by determining the positions of Area A and Area B based on the sensor reference position. The next time the sensor information set is transmitted as distributed sensor information, the receiver receiving the distributed sensor information can similarly estimate the relative position of Area A and Area B to be the same as the previous time. And because the relative positions of Area A and Area B are the same, it may be possible to estimate that the vehicle that estimated Areas A and B last time and the vehicle that estimated Areas A and B this time are the same vehicle.
 これに対して、センサ情報を分散送信し、かつ、図6Bのようにセンサ参照位置を変動させる場合、センサ情報を受信した者がセンサ参照位置を同一と考えてエリアAとエリアBの相対位置を決めてしまうと、図6Bの最右図に示すように、エリアAとエリアBの相対位置は正しい相対位置にならない。次にセンサ情報セットを分散センサ情報にして送信する場合には、分散センサ情報に含まれるセンサ参照位置は、前回の送信時とは異なる位置になる。そのため、エリアA、Bの相対位置を手掛かりとしても、車両をトラッキングすることはできない。 In contrast, if the sensor information is transmitted in a distributed manner and the sensor reference position is varied as in Figure 6B, if the person receiving the sensor information determines the relative position of area A and area B by considering the sensor reference position to be the same, the relative position of area A and area B will not be the correct relative position, as shown in the rightmost diagram in Figure 6B. If the sensor information set is then transmitted as distributed sensor information, the sensor reference position contained in the distributed sensor information will be a different position from the previous transmission. As a result, the vehicle cannot be tracked even if the relative positions of areas A and B are used as a clue.
 [実施形態1.3]
 実施形態1.3において、車両は、CPMのために用いるIDを、他のメッセージ(例えば、CAM、DENM、BSMなど)のために用いるIDとは異ならせる。他のメッセージは、他の種類のメッセージ、他の規格によって規定されるメッセージなどと呼ばれてもよい。CPMのために用いるIDは、CPMに含ませるIDであってもよい。IDは、例えばStationIDである。CPMにおいてStationIDはヘッダーに含まれている。StationIDは、車両などITS-Stationすなわち送信元を識別するIDである。他のメッセージのために用いるIDは他のメッセージに含ませるIDであってもよい。他のメッセージに含ませるIDは、他のメッセージの送信元を識別するIDであってもよい。
[Embodiment 1.3]
In embodiment 1.3, the vehicle uses an ID different from the ID used for CPM for other messages (e.g., CAM, DENM, BSM, etc.). The other messages may be called other types of messages, messages defined by other standards, etc. The ID used for CPM may be an ID to be included in CPM. The ID is, for example, a Station ID. In CPM, the Station ID is included in the header. The Station ID is an ID that identifies an ITS station, such as a vehicle, i.e., the sender. The ID used for other messages may be an ID to be included in the other messages. The ID to be included in the other messages may be an ID that identifies the sender of the other messages.
 CPMのために用いるIDと他のメッセージのために用いるIDとを異ならせるために、CPMのために用いるIDを変更してもよい。また、他のメッセージのために用いるIDを変更してもよい。CPMのために用いるIDと他のメッセージのために用いるIDとを異ならせるために、例えば、車両は、同時に又は互いに近い時間に送信するCPM及び他のメッセージに、異なるIDを用いてもよい。互いに近い時間に送信することになるかどうかは、例えば、互いの送信時間の差が閾値以下であるかどうかにより判定してよい。閾値は、CPM及び他のメッセージの送信周期の1回分あるいは数回分であってよい。当該閾値に関する情報は、車両に対して、他の車両、RSU又はITSサーバから通知されてもよい。 The ID used for CPM may be changed to make the ID used for CPM different from the ID used for other messages. The ID used for other messages may also be changed. To make the ID used for CPM different from the ID used for other messages, for example, a vehicle may use different IDs for CPM and other messages that are transmitted simultaneously or close to each other. Whether or not the messages are transmitted close to each other may be determined, for example, by whether or not the difference between the transmission times of the messages is equal to or less than a threshold. The threshold may be one or several transmission cycles of the CPM and other messages. Information regarding the threshold may be notified to the vehicle from another vehicle, an RSU, or an ITS server.
 同一の車両から送信されるメッセージを多く組み合わせるほど、その組み合わせは、他の車両から送信されるメッセージの組み合わせとは区別できる特徴が生じやすい。よって、CPMと他のメッセージとが組み合わせられた場合には、この組み合わせにより、メッセージを送信した車両を特定しやすくなる。 The more messages sent from the same vehicle are combined, the more likely the combination will have characteristics that can be distinguished from combinations of messages sent from other vehicles. Therefore, when a CPM is combined with other messages, this combination makes it easier to identify the vehicle that sent the message.
 しかし、実施形態1.3によれば、CPMのために用いるIDを、他のメッセージのために用いるIDとは異ならせる。よって、CPM及び他のメッセージを受信した第3者が、IDをもとに、CPMと他のメッセージとを紐づけることを抑制できる。これにより、第3者が、メッセージを送信した車両を逐次特定し、メッセージを送信した車両をトラッキングしてしまうことを抑制できる。 However, according to embodiment 1.3, the ID used for CPM is made different from the ID used for other messages. This prevents a third party who receives the CPM and other messages from linking the CPM to the other messages based on the ID. This prevents a third party from sequentially identifying the vehicles that have sent messages and tracking the vehicles that have sent the messages.
 [実施形態1.4]
 実施形態1.4において、車両は、同じセンサに対応する検出エリア情報(DetectionArea)を修正する。修正は調整と言い換えてもよい。
[Embodiment 1.4]
In embodiment 1.4, the vehicle corrects the detection area information (DetectionArea) corresponding to the same sensor. Correction may also be called adjustment.
 車両は、実際の検出エリアの範囲を示す検出エリア情報をそのままCPMに含めるのではなく、実際の検出エリアの範囲を修正した検出エリア情報をCPMに含めて送信してもよい。修正した検出エリアは修正検出エリアと呼ばれてもよい。車両は、あるセンサについての検出エリア情報を、1回あるいは複数回、CPMを送信するごとに異ならせてもよい。 Instead of including detection area information indicating the range of the actual detection area directly in the CPM, the vehicle may include detection area information that modifies the range of the actual detection area in the CPM and transmit the same. The modified detection area may be called a modified detection area. The vehicle may change the detection area information for a certain sensor each time it transmits a CPM, either once or multiple times.
 車両は、修正検出エリアについての検出エリア情報を、実際の検出エリアの範囲を示すための1つ以上のパラメータを一定の範囲で変化させて生成してもよい。車両は変化後のパラメータを事前に設定した算出式に基づいて生成してもよい。また、車両は、変化後のパラメータをランダムに生成してもよい。修正検出エリアについての検出エリア情報は、実際の検出エリアについての検出エリア情報の1つ以上のパラメータに係数を乗算して生成してもよい。当該係数は、例えば1付近の値である。当該係数がとり得る範囲は、事前に決定することができる。例えば、当該係数の取り得る範囲は0.8~1.2であってよい。当該係数は、1付近の値のうち1以下の値に該当してもよい。例えば、当該係数の取り得る範囲は0.8~1であってよい。 The vehicle may generate detection area information for the modified detection area by varying, within a certain range, one or more parameters for indicating the range of the actual detection area. The vehicle may generate the changed parameters based on a calculation formula set in advance. The vehicle may also generate the changed parameters randomly. The detection area information for the modified detection area may be generated by multiplying one or more parameters of the detection area information for the actual detection area by a coefficient. The coefficient is, for example, a value near 1. The range that the coefficient can take can be determined in advance. For example, the range that the coefficient can take may be 0.8 to 1.2. The coefficient may be a value near 1 that is equal to or less than 1. For example, the range that the coefficient can take may be 0.8 to 1.
 なお、当該係数がとり得る複数の値又は当該係数がとり得る範囲は、規格において予め定められてもよいし、当該係数がとり得る複数の値又は当該係数がとり得る範囲に関する情報が、車両に対して他の車両、RSU又はITSサーバから通知されてもよい。センサごとに、上記係数の値が異なってもよい。 The multiple values that the coefficient can take or the range that the coefficient can take may be predetermined in a standard, or information regarding the multiple values that the coefficient can take or the range that the coefficient can take may be notified to the vehicle from another vehicle, an RSU, or an ITS server. The value of the coefficient may be different for each sensor.
 車両は、CPM送信のたびに上記係数を生成し直してもよいし、証明書及びIDの一方又は両方の変更のタイミングにおいて上記係数を生成し直してもよい。 The vehicle may regenerate the coefficients each time it transmits a CPM, or may regenerate the coefficients when either or both of the certificate and ID are changed.
 なお、非特許文献1では、車両に搭載されるセンサの検出エリア情報としては車両センサ情報(VehicleSensor)だけが許容されている。この情報は、センサが検出できる範囲をセンサからの距離範囲(range)及びセンサ検出エリアの開き角により、センサ検出エリアを表現する。上記係数は、rangeに乗じる係数であってよい。 In addition, in Non-Patent Document 1, only vehicle sensor information (VehicleSensor) is permitted as detection area information for a sensor mounted on a vehicle. This information expresses the sensor detection area by the distance range from the sensor (range) and the opening angle of the sensor detection area, which is the range that the sensor can detect. The above coefficient may be a coefficient multiplied by the range.
 ただし、車両が送信するCPMの検出エリア情報として、任意の形状(n角形(nは3以上の整数)、円、楕円など)の検出エリアを通知できてもよい。センサ情報に含まれる検出エリア情報は、図3に示したAreaRadial、AreaPolygon、AreaCircular、AreaEllipse、AreaRectangleなどの少なくとも1つによって表されてもよい。また、VehicleSensorPropertiesに、rangeなどとともに又は代わりに、検出エリアを示すAreaRadial、AreaPolygon、AreaCircular、AreaEllipse、AreaRectangleなどの少なくとも1つが含まれてもよい。 However, the detection area information of the CPM transmitted by the vehicle may be notified of a detection area of any shape (such as an n-sided polygon (n is an integer of 3 or more), circle, or ellipse). The detection area information included in the sensor information may be represented by at least one of AreaRadial, AreaPolygon, AreaCircular, AreaEllipse, AreaRectangle, etc. shown in FIG. 3. In addition, VehicleSensorProperties may include at least one of AreaRadial, AreaPolygon, AreaCircular, AreaEllipse, AreaRectangle, etc., which indicate the detection area, together with or instead of range, etc.
 図7A-7Cは、実施形態1.4に係る修正検出エリアを説明する図である。図7Aは、実際の検出エリアの一例を示す。図7B及び7Cは、図7Aに対応する修正検出エリアの一例を示す。 FIGS. 7A-7C are diagrams illustrating the modified detection area according to embodiment 1.4. FIG. 7A shows an example of an actual detection area. FIGS. 7B and 7C show an example of a modified detection area corresponding to FIG. 7A.
 図7B及び7Cに示す修正検出エリアは、例えば、ランダムに実際の検出エリアの形状を変化させたエリアである。より詳しくは、ランダムに実際の検出エリアの形状を狭くする変化をさせたエリアである。図7Bに示す修正検出エリアと、図7Cに示す検出エリアは、相互に異なる形状である。したがって、図7Bの修正検出エリアについての検出エリア情報を含むCPMと、図7Cの修正検出エリアについての検出エリア情報を含むCPMと、が同じ車両から送信されたメッセージであると第3者が認識することを抑制できる。その結果、検出エリア情報が同一であることを手掛かりにトラッキングされてしまうことを抑制できる。 The modified detection area shown in Figures 7B and 7C is, for example, an area in which the shape of the actual detection area has been randomly changed. More specifically, it is an area in which the shape of the actual detection area has been randomly changed to narrow it. The modified detection area shown in Figure 7B and the detection area shown in Figure 7C have mutually different shapes. Therefore, it is possible to prevent a third party from recognizing that a CPM including detection area information for the modified detection area in Figure 7B and a CPM including detection area information for the modified detection area in Figure 7C are messages sent from the same vehicle. As a result, it is possible to prevent tracking based on the fact that the detection area information is identical.
 [実施形態1.5]
 実施形態1.5において、車両は、センサ情報に含まれる1つ以上のパラメータの分解能を逐次変化させる。つまり、センサ情報に含まれる1つ以上のパラメータの分解能を、粗くしたり、細かくしたりする。分解能は粒度と言い換えることもできる。
[Embodiment 1.5]
In embodiment 1.5, the vehicle sequentially changes the resolution of one or more parameters included in the sensor information. That is, the resolution of one or more parameters included in the sensor information is made coarse or fine. Resolution can also be called granularity.
 例えば、車両は、センサ情報に含まれるオフセット情報の分解能を、1センチメートル単位から10センチメートル単位に変更してもよい。その逆に、車両は、センサ情報に含まれるオフセット情報の分解能を、10センチメートル単位から1センチメートル単位に変更してもよい。また、車両は、センサ情報に含まれる開き角度の情報の分解能を、0.1度単位から1度単位に変更してもよい。その逆に、車両は、センサ情報に含まれる開き角度の情報の分解能を1度単位から0.1度単位に変更してもよい。 For example, the vehicle may change the resolution of the offset information included in the sensor information from 1 centimeter to 10 centimeters. Conversely, the vehicle may change the resolution of the offset information included in the sensor information from 10 centimeters to 1 centimeter. The vehicle may also change the resolution of the opening angle information included in the sensor information from 0.1 degrees to 1 degree. Conversely, the vehicle may change the resolution of the opening angle information included in the sensor information from 1 degree to 0.1 degrees.
 なお、第1のセンサ情報に含まれるパラメータの分解能と、第2のセンサ情報に含まれるパラメータの分解能と、は異なってもよい。言い換えると、センサごとにパラメータの分解能は異なってもよい。 Note that the resolution of the parameters included in the first sensor information may be different from the resolution of the parameters included in the second sensor information. In other words, the resolution of the parameters may be different for each sensor.
 以上説明した第1の実施形態によれば、第3者が複数のCPMを受信した場合であっても、これらが同じ車両に対応する情報を含むと特定することを好適に抑制できる。 According to the first embodiment described above, even if a third party receives multiple CPMs, it is possible to effectively prevent the third party from identifying them as containing information corresponding to the same vehicle.
 <第2の実施形態>
 第2の実施形態は、センサ情報を変更して送信する送信タイミングに関する。なお、ここでのセンサ情報は、第1の実施形態の分散センサ情報に該当してもよい。
Second Embodiment
The second embodiment relates to a transmission timing for changing and transmitting sensor information. Note that the sensor information here may correspond to the distributed sensor information of the first embodiment.
 第2の実施形態において、車両は、センサ情報変更条件が成立する場合、センサ情報変更制御を実施してもよい。センサ情報変更制御は、車両から送信するCPMに含ませるセンサ情報を逐次変更する制御である。センサ情報変更制御は、以下の少なくとも1つであってもよい。 In the second embodiment, the vehicle may implement sensor information change control when a sensor information change condition is met. The sensor information change control is a control that sequentially changes the sensor information to be included in the CPM transmitted from the vehicle. The sensor information change control may be at least one of the following:
(A)センサ情報変更制御は、逐次生成するCPMに、センサ情報を含める場合と、センサ情報を含めない場合とを逐次切り替える制御であってもよい。なお、前述のように、センサ情報は第1の実施形態の分散センサ情報に該当してもよい。
(B)センサ情報変更制御は、CPMを送信しない制御であってもよい。CPMを送信しないので、本来は送信されるセンサ情報が送信されない状態に変更になる。
(C)センサ情報変更制御は、第1の実施形態のうち、少なくとも1つの制御を適用する制御であってもよい。
(A) The sensor information change control may be a control for sequentially switching between including the sensor information in the CPM to be sequentially generated and not including the sensor information. As described above, the sensor information may correspond to the distributed sensor information of the first embodiment.
(B) The sensor information change control may be a control not to transmit a CPM. Since a CPM is not transmitted, the sensor information that is normally transmitted is changed to a state where it is not transmitted.
(C) The sensor information change control may be control that applies at least one of the controls in the first embodiment.
 センサ情報変更条件が成立すると、CPMが制限なく送信され、かつ、CPMに常に制限しないセンサ情報が含まれる場合に比較して、車両から送信されるセンサ情報が制限される。したがって、第3者がセンサ情報を受信する機会を減らすことができる。センサ情報変更条件はセンサ情報制限条件と呼ばれてもよい。センサ情報を受信する機会が減ることで、第3者は、逐次受信するCPMをセンサ情報に基づいて同一の車両から送信されたものであると推定することが難しくなる。よって、トラッキングを抑制できる。 When the sensor information change condition is met, the sensor information transmitted from the vehicle is restricted compared to when the CPM is transmitted without restriction and the CPM always includes unrestricted sensor information. This reduces the opportunities for third parties to receive sensor information. The sensor information change condition may also be called a sensor information restriction condition. By reducing the opportunities to receive sensor information, it becomes difficult for third parties to infer that successively received CPMs were transmitted from the same vehicle based on the sensor information. This reduces tracking.
 センサ情報変更条件は、例えば、以下を例示できる。
(1)車両電源がオンになってから一定期間が経過していない。
(2)車両電源がオンになってから車両が一定距離移動していない。
(3)CPMに含める証明書を変更してから一定期間が経過していない。
(4)CPMに含める証明書を変更してから一定距離移動していない。
(5)CPMに含める証明書を変更する一定期間前から証明書を変更するまでの期間である。
(6)CPMに含める証明書を変更する地点の一定距離前から証明書を変更するまでの位置に車両が存在する。
(7)CPMのために用いるIDを変更してから一定期間が経過していない。
(8)CPMのために用いるIDを変更してから一定距離移動していない。
(9)CPMのために用いるIDを変更する一定期間前からIDを変更するまでの期間である。
(10)CPMのために用いるIDを変更する地点の一定距離前からIDを変更するまでの位置に車両が存在する。
The sensor information change conditions may be exemplified as follows.
(1) A certain period of time has not passed since the vehicle power was turned on.
(2) The vehicle has not moved a certain distance since the vehicle power was turned on.
(3) A certain period of time has not passed since the certificates included in the CPM were changed.
(4) You have not moved a certain distance since changing the certificate to be included in the CPM.
(5) A period from a certain period before a certificate included in the CPM is changed to the period until the certificate is changed.
(6) The vehicle is present at a position from a certain distance before the point at which the certificate to be included in the CPM is to be changed until the certificate is to be changed.
(7) A certain period of time has not passed since the ID used for CPM was changed.
(8) The ID used for CPM has not been changed and a certain distance has not been moved.
(9) A period from a certain period before the ID used for CPM is changed to the period until the ID is changed.
(10) The vehicle is present at a position a certain distance before the point where the ID used for CPM is to be changed and up to the point where the ID is to be changed.
 車両電源はイグニッションスイッチと読み替えてもよい。車両電源がオンになったことを、エンジン制御が開始されたことで判断してもよい。車両電源がオンになったことを、車両が出発したことと読み替えてもよい。一定期間は、例えば、5-6分、あるいは、数分であってよい。一定距離は、例えば、数百メートル、1km程度であってよい。 The vehicle power source may be interpreted as an ignition switch. Turning on the vehicle power source may be determined by the start of engine control. Turning on the vehicle power source may be interpreted as the vehicle departing. The certain period of time may be, for example, 5-6 minutes, or several minutes. The certain distance may be, for example, several hundred meters, or about 1 km.
 出発地点では車両電源がオンになるので、車両が出発してから、一定期間が経過するまで、又は一定距離移動するまでは上記(1)又は(2)を満たす。このとき、センサ情報変更制御により、センサ情報の送信が抑制される。よって、センサ情報が同一であることを手掛かりにセンサ情報を含むCPMをもとに車両がトラッキングされて、車両の出発地点が推定されてしまうことを抑制できる。 Since the vehicle power supply is turned on at the departure point, the above (1) or (2) is satisfied from the time the vehicle departs until a certain period of time has passed or until the vehicle has traveled a certain distance. At this time, the transmission of sensor information is suppressed by the sensor information change control. Therefore, it is possible to prevent the vehicle from being tracked based on the CPM containing the sensor information, using the fact that the sensor information is the same as a clue, and to prevent the departure point of the vehicle from being estimated.
 上記(3)、(4)、(5)及び(6)によれば、CPMに含める証明書を変更したにも関わらず、CPMに含まれているセンサ情報が同一であることを手掛かりに、証明書の変更前後のCPMが同一の車両から送信されたCPMであると推定されてしまうことを抑制できる。したがって、CPMに含ませる証明書を変更する前後の車両がトラッキングされてしまうことを抑制できる。 According to (3), (4), (5), and (6) above, even if the certificate included in the CPM has been changed, it is possible to prevent the CPM before and after the certificate change from being assumed to have been sent from the same vehicle, based on the fact that the sensor information included in the CPM is the same. This makes it possible to prevent vehicles before and after the certificate included in the CPM has been changed from being tracked.
 上記(7)、(8)、(9)及び(10)によれば、CPMのために用いるIDを変更したにも関わらず、CPMに含まれているセンサ情報が同一であることを手掛かりに、IDの変更前後のCPMが同一の車両から送信されたCPMであると推定されてしまうことを抑制できる。したがって、CPMのために用いるIDを変更する前後の車両がトラッキングされてしまうことを抑制できる。 According to (7), (8), (9), and (10) above, even if the ID used for CPM has been changed, it is possible to prevent the CPM before and after the ID change from being assumed to have been sent from the same vehicle, based on the fact that the sensor information contained in the CPM is the same. Therefore, it is possible to prevent vehicles before and after the ID used for CPM is changed from being tracked.
 センサ情報変更条件は、上記(1)~(10)に限られない。センサ情報変更条件は、例えば、車両が交差点付近に位置していないという条件であってもよい。また、センサ情報変更条件は、車両の速度が低速ではないという条件であってもよい。第3者がセンサ情報を受信する機会を減らすことができればよいので、交差点からの距離がどの範囲を交差点付近とするかは適宜設定することができる。車両の速度を低速と判断する閾値も適宜設定することができる。 The sensor information change conditions are not limited to the above (1) to (10). For example, the sensor information change condition may be that the vehicle is not located near an intersection. The sensor information change condition may also be that the vehicle's speed is not low. As long as it is possible to reduce the opportunities for a third party to receive sensor information, the distance range from an intersection that is considered to be near the intersection can be set appropriately. The threshold for determining that the vehicle's speed is low can also be set appropriately.
 <補足>
 上述の各実施形態では、CPMのセンサ情報コンテナに含まれる情報の送信制御について説明したが、これに限られない。上述の各実施形態は、CPMの任意のコンテナに含まれる情報の送信制御に適用されてもよい。
<Additional Information>
In the above-described embodiments, the transmission control of information included in the sensor information container of the CPM has been described, but the present invention is not limited to this. Each of the above-described embodiments may be applied to the transmission control of information included in any container of the CPM.
 例えば、上述の各実施形態に代えて、CPMのフリースペース補足コンテナに含まれる情報の送信制御に上述の実施形態を適用してもよい。この場合、上述の各実施形態におけるセンサ情報はフリースペース付属情報(FreeSpaceAddendum)と読み替えられてもよい。また、検出エリア情報はフリースペース信頼度情報(FreeSpaceConfidence)及びフリースペースエリア情報(FreeSpaceArea)の少なくとも一方に読み替えられてもよい。また、上述の各実施形態に加えて、CPMのフリースペース補足コンテナに含まれる情報の送信制御に上述の実施形態を適用してもよい。 For example, instead of each of the above-mentioned embodiments, the above-mentioned embodiments may be applied to the transmission control of information included in a free space supplemental container of a CPM. In this case, the sensor information in each of the above-mentioned embodiments may be read as free space additional information (FreeSpaceAddendum). Furthermore, the detection area information may be read as at least one of free space confidence information (FreeSpaceConfidence) and free space area information (FreeSpaceArea). Furthermore, in addition to each of the above-mentioned embodiments, the above-mentioned embodiments may be applied to the transmission control of information included in a free space supplemental container of a CPM.
 (付記)
 本開示の一実施形態に関して、以下を付記する。
[付記1]
 メッセージ制御装置であって、
 当該メッセージ制御装置が搭載される車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成する制御部と、
 制御部が生成したメッセージを送信する通信部と、を有し、
 制御部は、メッセージに含ませるセンサ特徴情報を、逐次送信するメッセージ間で異ならせるセンサ情報変更制御を実行する、メッセージ制御装置。
[付記2]
 センサ情報変更制御は、対象とするセンサの少なくとも一部が互いに異なる複数のセンサ特徴情報を、複数のメッセージに分散して含める制御を含む、付記1に記載のメッセージ制御装置。
[付記3]
 センサ特徴情報にはセンサの識別子が含まれ、
 センサ情報変更制御は、複数のメッセージのそれぞれに含める1つ以上のセンサの識別子を、同一のセンサに対して異なる値とする制御を含む、付記1又は付記2に記載のメッセージ制御装置。
[付記4]
 センサ特徴情報にはセンサの位置を決定する際に参照するセンサ参照位置が含まれ、
 センサ情報変更制御は、逐次送信する複数のメッセージの1つ以上に含めるセンサ参照位置を、他のメッセージに含めるセンサ参照位置と異ならせる制御を含む、付記1から付記3のいずれか1つに記載のメッセージ制御装置。
[付記5]
 センサ特徴情報にはセンサが物体を検出するエリアを示す検出エリア情報が含まれ、
 センサ情報変更制御は、あるセンサに対応する検出エリア情報を、複数のメッセージ間で異ならせる制御を含む、付記1から付記4のいずれか1つに記載のメッセージ制御装置。
[付記6]
 センサ特徴情報にはセンサのパラメータの分解能が含まれ、
 センサ情報変更制御は、センサのパラメータの分解能を、複数のメッセージ間で異ならせる制御を含む、付記1から付記5のいずれか1つに記載のメッセージ制御装置。
[付記7]
 制御部は、センサ情報変更制御を、車両の車両電源がオンになってから、一定期間が経過していない、又は車両が一定距離移動していない場合に実施する付記1から付記6のいずれか1つに記載のメッセージ制御装置。
[付記8]
 制御部は、センサ情報変更制御を、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更してから、一定期間が経過していない、又は車両が一定距離移動していない場合に実施する付記1から付記7のいずれか1つに記載のメッセージ制御装置。
[付記9]
 制御部は、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する一定期間前からメッセージに含める証明書又はメッセージの送信元を識別する識別子を変更するまで、又は、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する地点の一定距離前からメッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する地点までの位置に車両が存在する場合にセンサ情報変更制御を実施する、付記1から付記8のいずれか1つに記載のメッセージ制御装置。
[付記10]
 制御部は、1つの種類のメッセージに含ませる送信元を識別する識別子と、メッセージとは別の種類のメッセージに含ませる送信元を識別する識別子とを異ならせる、付記1から付記9のいずれか1つに記載のメッセージ制御装置。
[付記11]
 車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成するステップであって、メッセージに含ませるセンサ特徴情報を、逐次送信するメッセージ間で異ならせるステップと、
 生成したメッセージを送信するステップと、を有するメッセージ制御方法。
(Additional Note)
The following is noted regarding one embodiment of the present disclosure.
[Appendix 1]
A message control device,
A control unit that generates a message including sensor feature information about a plurality of sensors included in a vehicle in which the message control device is installed;
A communication unit that transmits a message generated by the control unit,
The control unit is a message control device that executes sensor information change control for making the sensor feature information included in the message different between successively transmitted messages.
[Appendix 2]
The message control device according to claim 1, wherein the sensor information change control includes control of distributing and including multiple pieces of sensor feature information, at least some of which are different from each other in the target sensors, in multiple messages.
[Appendix 3]
The sensor characteristic information includes an identifier of the sensor;
3. The message control device according to claim 1, wherein the sensor information change control includes control of changing identifiers of one or more sensors to be included in each of the multiple messages to different values for the same sensor.
[Appendix 4]
The sensor characteristic information includes a sensor reference position that is used as a reference when determining the position of the sensor;
A message control device described in any one of Supplementary Note 1 to Supplementary Note 3, wherein the sensor information change control includes control for making a sensor reference position included in one or more of a plurality of messages transmitted sequentially different from a sensor reference position included in other messages.
[Appendix 5]
The sensor feature information includes detection area information indicating an area in which the sensor detects an object;
5. The message control device according to claim 1, wherein the sensor information change control includes control for making detection area information corresponding to a certain sensor different among a plurality of messages.
[Appendix 6]
The sensor characteristic information includes a resolution of a parameter of the sensor;
6. The message control device according to claim 1, wherein the sensor information change control includes control for varying a resolution of a parameter of the sensor among a plurality of messages.
[Appendix 7]
A message control device as described in any one of Appendix 1 to Appendix 6, wherein the control unit performs the sensor information change control when a certain period of time has not elapsed since the vehicle power supply of the vehicle was turned on or the vehicle has not moved a certain distance.
[Appendix 8]
A message control device described in any one of Appendix 1 to Appendix 7, in which the control unit performs the sensor information change control when a certain period of time has not elapsed since changing a certificate to be included in the message or an identifier that identifies the sender of the message, or when the vehicle has not moved a certain distance.
[Appendix 9]
A message control device described in any one of Supplementary Note 1 to Supplementary Note 8, wherein the control unit performs sensor information change control when the vehicle is located from a certain period before the certificate to be included in the message or the identifier to identify the sender of the message is changed until the certificate to be included in the message or the identifier to identify the sender of the message is changed, or when the vehicle is located from a certain distance before the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed to the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed.
[Appendix 10]
10. The message control device according to any one of claims 1 to 9, wherein the control unit differentiates an identifier for identifying a sender included in one type of message from an identifier for identifying a sender included in a message of a different type from the message.
[Appendix 11]
A step of generating a message including sensor feature information for a plurality of sensors included in the vehicle, the step of making the sensor feature information included in the message different between successively transmitted messages;
and transmitting the generated message.
 (ハードウェア構成)
 図8は、一実施形態に係る車両10の一例を示す図である。車両10は、制御部11、センサ12、ロケータ13、入力/出力部14、通信部15を備える。本例が示すブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)はそれぞれ、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。なお、上述の実施形態において説明した「車両」は、車両10の中のいずれか又は複数の機能ブロック(例えば、制御部11、通信部15)と互いに読み替えられてもよい。
(Hardware configuration)
FIG. 8 is a diagram showing an example of a vehicle 10 according to an embodiment. The vehicle 10 includes a control unit 11, a sensor 12, a locator 13, an input/output unit 14, and a communication unit 15. The block diagram shown in this example shows functional blocks. Each of these functional blocks (components) is realized by any combination of at least one of hardware and software. Note that the "vehicle" described in the above embodiment may be read as any one or more functional blocks (e.g., the control unit 11, the communication unit 15) in the vehicle 10.
 図8には本開示の説明に必要な部分のみが示されている。車両10は、運転のために必要な部分、例えば、駆動部及び操作部を含む。駆動部は、例えば、エンジン及びモータの一方又は両方である。操作部は、例えば、ステアリングホイールである。 FIG. 8 shows only the parts necessary for explaining the present disclosure. The vehicle 10 includes parts necessary for driving, such as a drive unit and an operating unit. The drive unit is, for example, one or both of an engine and a motor. The operating unit is, for example, a steering wheel.
 制御部11は、マイクロプロセッサ(以下、単にプロセッサ)111、メモリ112、通信インターフェース113で構成される。通信インターフェース113は、例えば、例えば、入出力(Input/Output(IO))ポートである。制御部11は、電子制御ユニット(Electronic Control Unit(ECU))と呼ばれてもよいし、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。 The control unit 11 is composed of a microprocessor (hereinafter simply referred to as the processor) 111, a memory 112, and a communication interface 113. The communication interface 113 is, for example, an Input/Output (IO) port. The control unit 11 may be called an Electronic Control Unit (ECU), or may be composed of a Central Processing Unit (CPU) including interfaces with peripheral devices, a control device, an arithmetic unit, registers, etc.
 制御部11は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて上記プロセッサ111の処理が実現されてもよい。例えば、プロセッサ111は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The control unit 11 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and the processing of the processor 111 may be realized using such hardware. For example, the processor 111 may be implemented using at least one of these pieces of hardware.
 車両10などにおける各機能(例えば、メッセージの生成、センサ12からの情報に基づく処理)は、例えば、プロセッサ111、メモリ112などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ111が演算を行い、通信部15を介する通信を制御したり、メモリ112におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現されてもよい。 Each function of the vehicle 10 (e.g., message generation, processing based on information from the sensor 12) may be realized by, for example, loading specific software (programs) onto hardware such as the processor 111 and memory 112, causing the processor 111 to perform calculations, control communication via the communication unit 15, and/or control the reading and writing of data in the memory 112.
 プロセッサ111は、例えば、オペレーティングシステムを動作させて車載のコンピュータ全体を制御してもよい。また、プロセッサ111は、プログラム、ソフトウェアモジュール、データなどをメモリ112に読み出し、これらに従って各種の処理を実行してもよい。当該プログラムは、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるためのプログラムであってもよい。プログラムはプログラムコードと読み替えてもよい。 The processor 111 may, for example, operate an operating system to control the entire in-vehicle computer. The processor 111 may also read programs, software modules, data, etc. into the memory 112 and execute various processes according to these. The program may be a program for causing the computer to execute at least a portion of the operations described in the above-mentioned embodiments. The program may be read as program code.
 メモリ112は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ112は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ112は、本開示の一実施形態に係る方法を実施するために実行可能なプログラム、ソフトウェアモジュールなどを保存することができる。 Memory 112 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM, Random Access Memory (RAM), or other suitable storage medium. Memory 112 may also be referred to as a register, cache, main memory, etc. Memory 112 may store executable programs, software modules, etc. for implementing a method according to one embodiment of the present disclosure.
 なお、制御部11には、メモリ112より大容量のコンピュータ読み取り可能な記録媒体であるストレージ(補助記憶装置)が含まれてもよい。制御部11は、メモリ112において読み書きするデータを当該ストレージとの間で読み書きしてもよい。ストレージについては制御部11が備えることに限定されず、制御部11とは独立しており、通信線で制御部11と接続されていてもよい。 The control unit 11 may include a storage (auxiliary storage device) that is a computer-readable recording medium with a larger capacity than the memory 112. The control unit 11 may read and write data to and from the memory 112 to the storage. The storage is not limited to being provided in the control unit 11, and may be independent of the control unit 11 and connected to the control unit 11 via a communication line.
 通信インターフェース113は、入出力ポートと呼ばれてもよく、制御部11と他のブロックとの情報のやり取りに用いられてもよい。他のブロックは、例えば運転のためにブロックである。例えば、制御部11は、通信インターフェース113を介して、センサ12からの信号を取得してもよい。 The communication interface 113 may be called an input/output port, and may be used to exchange information between the control unit 11 and other blocks. The other blocks are, for example, blocks for operation. For example, the control unit 11 may obtain a signal from the sensor 12 via the communication interface 113.
 制御部11は、慣性航法装置(Inertial Navigation System)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサ、AI機能などに基づいて、運転支援機能、自動運転機能などを提供してもよい。 The control unit 11 may provide driving assistance functions, autonomous driving functions, etc. based on an inertial navigation system, an artificial intelligence (AI) chip, an AI processor, AI functions, etc.
 センサ12は、例えば、電流センサ、車輪の回転数センサ、タイヤの空気圧センサ、車両の速度センサ、加速度センサ、角速度センサ、物体検知センサなどを含んでもよい。各センサは、それぞれ計測によって得られた信号(オンオフ信号、アナログ信号、デジタル信号など)を、通信インターフェース113を介して制御部11に与えてもよい。例えば、物体検知センサは、障害物、車両、歩行者などの物標を検出すると検出信号を生成してもよい。 The sensors 12 may include, for example, a current sensor, a wheel rotation speed sensor, a tire pressure sensor, a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, an object detection sensor, and the like. Each sensor may provide a signal (on/off signal, analog signal, digital signal, etc.) obtained by measurement to the control unit 11 via the communication interface 113. For example, the object detection sensor may generate a detection signal when it detects a target such as an obstacle, a vehicle, or a pedestrian.
 なお、センサ12は、車両10の周辺環境の情報を提供できるデバイスを含んでもよく、例えば、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU)))などを含んでもよい。センサ12は車両10に複数搭載されていてもよく、同一種別のセンサ12が車両に複数搭載されてもよい。例えば、センサ12としてのカメラが、車両10前方、後方及び両側方に搭載されてもよい。 The sensor 12 may include a device capable of providing information on the environment surrounding the vehicle 10, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a gyro system (e.g., an Inertial Measurement Unit (IMU)), etc. A plurality of sensors 12 may be mounted on the vehicle 10, and a plurality of sensors 12 of the same type may be mounted on the vehicle. For example, cameras serving as sensors 12 may be mounted on the front, rear, and both sides of the vehicle 10.
 ロケータ13は、車両10の位置情報を取得する。本開示において、位置情報は、例えば、緯度、経度などを含んでもよい。ロケータ13は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、上述のセンサ12から得られる速度、加速度、角速度などに基づいて、上記位置情報を取得してもよい。 The locator 13 acquires location information of the vehicle 10. In the present disclosure, the location information may include, for example, latitude, longitude, etc. The locator 13 may acquire the location information based on a positioning system (for example, a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), map information (for example, a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), and speed, acceleration, angular velocity, etc. obtained from the sensor 12 described above.
 入力/出力部14は、外部からの入力を受け付ける入力デバイス、外部への出力を実施する出力デバイスを含む。入力デバイスは、例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサである。出力デバイスは、例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプである。入力デバイス及び出力デバイスは、一体となった構成(例えば、タッチパネル)であってもよい。 The input/output unit 14 includes an input device that accepts input from the outside and an output device that performs output to the outside. The input device is, for example, a keyboard, a mouse, a microphone, a switch, a button, or a sensor. The output device is, for example, a display, a speaker, or a Light Emitting Diode (LED) lamp. The input device and the output device may be integrated into one structure (for example, a touch panel).
 入力/出力部14は、カーナビゲーションシステム、オーディオシステム、テレビ、ラジオなどといった、運転情報などの各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成されてもよい。入力/出力部14は。外部装置(例えば、ITSサーバ30)から通信部15を介して取得した情報を利用して、車両10の乗員に各種情報/サービスを提供してもよい。 The input/output unit 14 may be composed of various devices for providing various information such as driving information, such as a car navigation system, an audio system, a television, a radio, etc., and one or more ECUs for controlling these devices. The input/output unit 14 may provide various information/services to the occupants of the vehicle 10 by using information obtained from an external device (e.g., an ITS server 30) via the communication unit 15.
 入力/出力部14は、ユーザからの操作により入力を受け付けてもよいし、所定の機器、記憶媒体などと接続されてデータの入力を受け付けてもよい。入力/出力部14は、入力結果を例えば制御部11に出力してもよい。 The input/output unit 14 may receive input through user operation, or may be connected to a specific device, storage medium, etc. to receive data input. The input/output unit 14 may output the input result to, for example, the control unit 11.
 入力/出力部14は、ユーザに対して知覚できる形式でデータ、コンテンツなどの出力を行ってもよい。 The input/output unit 14 may output data, content, etc. in a format that is perceptible to the user.
 通信部15は、無線を介して外部装置(例えば、他の車両10、ITSサーバ30など)との通信を行うためのハードウェアであり、例えば、送受信デバイス、ネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信部15は、高周波スイッチ、デュプレクサ、フィルタ、アンプ、周波数シンセサイザ、アンテナなどを含んで構成されてもよい。通信部15は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置により構成することができる。 The communication unit 15 is hardware for communicating wirelessly with an external device (e.g., another vehicle 10, an ITS server 30, etc.), and is also referred to as, for example, a transmission/reception device, a network device, a network controller, a network card, a communication module, etc. The communication unit 15 may be configured to include a high-frequency switch, a duplexer, a filter, an amplifier, a frequency synthesizer, an antenna, etc. The communication unit 15 may be configured by a transmitter/receiver, a transmission/reception circuit, or a transmission/reception device, which are described based on a common understanding in the technical field to which this disclosure relates.
 通信部15は、例えば、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の無線通信方式、又はこれらに基づいて拡張、修正、作成又は規定された無線通信方式を用いて通信を行ってもよい。 The communication unit 15 may be, for example, Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio A Communications may be performed using access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other wireless communication methods, or wireless communication methods extended, modified, created or defined based on these.
 通信部15は、制御部11のプロセッサ111によって制御可能であってもよい、通信部15は、制御部11に含まれてもよい。 The communication unit 15 may be controllable by the processor 111 of the control unit 11, and the communication unit 15 may be included in the control unit 11.
 通信部15は、センサ12からの信号、当該信号に基づいて得られる情報、入力/出力部14からの入力に基づく情報などの少なくとも1つを、無線通信を介して外部装置へ送信してもよい。 The communication unit 15 may transmit at least one of the signal from the sensor 12, information obtained based on the signal, and information based on the input from the input/output unit 14 to an external device via wireless communication.
 通信部15は、外部装置から受信した種々の情報(交通情報、信号情報、車間情報など)を受信し、制御部11に提供してもよい。これらの情報は、入力/出力部14を介して出力されてもよい。制御部11は、これらの情報に基づいて制御を行ってもよい。 The communication unit 15 may receive various information (traffic information, signal information, vehicle distance information, etc.) from an external device and provide it to the control unit 11. This information may be output via the input/output unit 14. The control unit 11 may perform control based on this information.
 なお、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically combined, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (for example, using wires, wirelessly, etc.). The functional block may be realized by combining software with the one device or the multiple devices.
 例えば、プロセッサ111は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ111は、1以上のチップによって実装されてもよい。 For example, although only one processor 111 is shown, there may be multiple processors. Furthermore, processing may be performed by one processor, or processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Furthermore, processor 111 may be implemented by one or more chips.
 各機能ブロックのハードウェアは、情報を通信するためのバスによって接続されてもよい。バスは、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。バスは、有線又は無線によって実現されてもよい。 The hardware of each functional block may be connected by a bus for communicating information. The bus may be configured using a single bus, or may be configured using different buses between each device. The bus may be realized by a wired or wireless system.
 なお、RSU20、ITSサーバ30なども、車両10と同様の構成を有してもよい。当業者であれば、車両10関連の記載を、適宜読み替えて理解できる。 Note that the RSU 20, ITS server 30, etc. may have the same configuration as the vehicle 10. A person skilled in the art would be able to understand the descriptions related to the vehicle 10 by appropriately interpreting them.
 なお、車両10のうち、制御部11を含む構成又は制御部11と通信部15を含む構成は、メッセージ制御装置と呼ばれてもよい。 In addition, the configuration of the vehicle 10 that includes the control unit 11 or the configuration that includes the control unit 11 and the communication unit 15 may be called a message control device.
 制御部11は、当該メッセージ制御装置が搭載される車両10に含まれる全ての又は複数のセンサ12に関する情報を含ませたメッセージを生成する。制御部11は、生成するメッセージに含ませるセンサ情報を、逐次送信するメッセージ間で異ならせるセンサ情報変更制御を実行する。センサ情報は、センサ情報コンテナに含まれる各センサ情報を含んでいてもよい。 The control unit 11 generates a message that includes information about all or a plurality of sensors 12 included in the vehicle 10 in which the message control device is installed. The control unit 11 executes sensor information change control that causes the sensor information included in the generated message to differ between successively transmitted messages. The sensor information may include each piece of sensor information included in the sensor information container.
 センサ情報変更制御は、複数のセンサ特徴情報を、複数のメッセージに分散して含める制御を含んでいてもよい。通信部15は、複数のメッセージを送信してもよい。 The sensor information change control may include control to distribute multiple pieces of sensor feature information across multiple messages. The communication unit 15 may transmit multiple messages.
 センサ情報変更制御は、複数のメッセージのそれぞれに含める1つ以上のセンサの識別子(ID)を、同一のセンサに対して異なる値とする制御を含んでいてもよい。 The sensor information change control may include control to set one or more sensor identifiers (IDs) included in each of the multiple messages to different values for the same sensor.
 センサ情報変更制御は、逐次送信する複数のメッセージの1つ以上に含めるセンサ参照位置を、他のメッセージに含めるセンサ参照位置と異ならせる制御を含んでいてもよい。 The sensor information change control may include control to make the sensor reference position included in one or more of the multiple messages transmitted sequentially different from the sensor reference position included in the other messages.
 制御部11は、1つの種類のメッセージに含ませる送信元を識別する識別子と、そのメッセージとは別の種類のメッセージに含ませる送信元を識別する識別子とを異ならせてもよい。 The control unit 11 may differentiate between an identifier for identifying a sender included in one type of message and an identifier for identifying a sender included in a different type of message.
 センサ情報変更制御は、あるセンサに対応する検出エリア情報を、当該あるセンサに関するセンサ特徴情報を含む複数のメッセージ間で異ならせる制御であってもよい。 The sensor information change control may be a control that causes the detection area information corresponding to a certain sensor to differ among multiple messages that include sensor feature information related to the certain sensor.
 センサ情報変更制御は、複数のメッセージ間で、メッセージに含まれる同一のセンサに関するセンサ情報に含まれる特定のパラメータの分解能を異ならせる制御であってもよい。 The sensor information change control may be a control that changes the resolution of a specific parameter included in sensor information related to the same sensor included in multiple messages.
 制御部11は、センサ情報変更制御を、車両の車両電源がオンになってから一定期間が経過していない、又は車両が一定距離移動していない場合に実施してもよい。 The control unit 11 may perform the sensor information change control if a certain period of time has not elapsed since the vehicle power supply of the vehicle was turned on, or if the vehicle has not moved a certain distance.
 制御部11は、センサ情報変更制御を、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更してから一定期間が経過していない、又は車両が一定距離移動していない場合に実施してもよい。 The control unit 11 may perform sensor information change control if a certain period of time has not elapsed since the certificate included in the message or the identifier identifying the sender of the message was changed, or if the vehicle has not moved a certain distance.
 制御部11は、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する一定期間前からメッセージに含める証明書又はメッセージの送信元を識別する識別子を変更するまで、又は、メッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する地点の一定距離前からメッセージに含める証明書又はメッセージの送信元を識別する識別子を変更する地点までの位置に車両が存在する場合に、センサ情報変更制御を実施してもよい。 The control unit 11 may perform sensor information change control when the vehicle is located from a certain period before the certificate to be included in the message or the identifier to identify the sender of the message is changed until the certificate to be included in the message or the identifier to identify the sender of the message is changed, or when the vehicle is located at a certain distance before the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed to the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed.
 (変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
(Modification)
In addition, terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings.
 本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。 In this disclosure, terms such as apparatus, circuit, device, section, and unit may be read interchangeably.
 本開示の車両は、任意の移動体(moving object)で読み替えられてもよい。移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。 The term "vehicle" in this disclosure may be interpreted as any moving object. Examples of moving objects include, but are not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
 移動体は、運行指令に基づいて自律走行する移動体であってもよい。移動体は、人が搭乗して動く移動体、換言すれば乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよい。移動体はロボットであってもよい。ロボットは有人型でも無人型でもよい。 The moving body may be a moving body that moves autonomously based on an operating command. The moving body may be a moving body that moves with a person on board, in other words a vehicle (e.g., a car, an airplane, etc.), or it may be an unmanned moving body (e.g., a drone, an autonomous vehicle, etc.). The moving body may be a robot. The robot may be either manned or unmanned.
 本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 The information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。 The names used for parameters and the like in this disclosure are not limiting in any way. Furthermore, the formulas and the like that use these parameters may differ from those explicitly disclosed in this disclosure.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. Furthermore, the notification of specific information (e.g., notification that "X is the case") is not limited to explicit notification, and may be performed implicitly (e.g., by not notifying the specific information or by notifying other information).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the noun following these articles is in the plural form.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
 以上、本開示について詳細に説明したが、当業者は、本開示の趣旨及び範囲を逸脱することなく実施形態を修正及び変更態様として実施することができる。 Although the present disclosure has been described in detail above, those skilled in the art can implement the embodiments in modified and altered forms without departing from the spirit and scope of the present disclosure.

Claims (11)

  1.  メッセージ制御装置であって、
     当該メッセージ制御装置が搭載される車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成する制御部と、
     前記制御部が生成したメッセージを送信する通信部と、を有し、
     前記制御部は、前記メッセージに含ませる前記センサ特徴情報を、逐次送信する前記メッセージ間で異ならせるセンサ情報変更制御を実行する、メッセージ制御装置。
    A message control device,
    A control unit that generates a message including sensor feature information about a plurality of sensors included in a vehicle in which the message control device is installed;
    A communication unit that transmits a message generated by the control unit,
    The control unit executes sensor information change control to make the sensor feature information included in the message different between the messages transmitted successively.
  2.  前記センサ情報変更制御は、対象とする前記センサの少なくとも一部が互いに異なる複数の前記センサ特徴情報を、複数の前記メッセージに分散して含める制御を含む、請求項1に記載のメッセージ制御装置。 The message control device according to claim 1, wherein the sensor information change control includes control for distributing and including multiple pieces of sensor characteristic information, at least some of which are different from each other for the target sensors, in multiple messages.
  3.  前記センサ特徴情報には前記センサの識別子が含まれ、
     前記センサ情報変更制御は、複数の前記メッセージのそれぞれに含める1つ以上の前記センサの識別子を、同一の前記センサに対して異なる値とする制御を含む、請求項1に記載のメッセージ制御装置。
    the sensor characteristic information includes an identifier of the sensor;
    The message control device according to claim 1 , wherein the sensor information change control includes control for changing identifiers of one or more of the sensors to different values for the same sensor, the identifiers being included in each of the plurality of messages.
  4.  前記センサ特徴情報には前記センサの位置を決定する際に参照するセンサ参照位置が含まれ、
     前記センサ情報変更制御は、逐次送信する複数の前記メッセージの1つ以上に含める前記センサ参照位置を、他のメッセージに含める前記センサ参照位置と異ならせる制御を含む、請求項1に記載のメッセージ制御装置。
    the sensor characteristic information includes a sensor reference position that is referenced when determining the position of the sensor;
    The message control device according to claim 1 , wherein the sensor information change control includes control for making the sensor reference position included in one or more of the plurality of messages transmitted sequentially different from the sensor reference position included in other messages.
  5.  前記センサ特徴情報には前記センサが物体を検出するエリアを示す検出エリア情報が含まれ、
     前記センサ情報変更制御は、あるセンサに対応する前記検出エリア情報を、複数の前記メッセージ間で異ならせる制御を含む、請求項1に記載のメッセージ制御装置。
    the sensor characteristic information includes detection area information indicating an area in which the sensor detects an object;
    The message control device according to claim 1 , wherein the sensor information change control includes control for making the detection area information corresponding to a certain sensor different among a plurality of the messages.
  6.  前記センサ特徴情報には前記センサのパラメータの分解能が含まれ、
     前記センサ情報変更制御は、前記センサのパラメータの分解能を、複数の前記メッセージ間で異ならせる制御を含む、請求項1に記載のメッセージ制御装置。
    the sensor characteristic information includes a resolution of a parameter of the sensor;
    The message control device according to claim 1 , wherein the sensor information change control includes control for making a resolution of the parameter of the sensor different among the plurality of messages.
  7.  前記制御部は、前記センサ情報変更制御を、前記車両の車両電源がオンになってから、一定期間が経過していない、又は前記車両が一定距離移動していない場合に実施する請求項1から請求項6のいずれか1項に記載のメッセージ制御装置。 The message control device according to any one of claims 1 to 6, wherein the control unit performs the sensor information change control when a certain period of time has not elapsed since the vehicle power supply of the vehicle was turned on, or when the vehicle has not moved a certain distance.
  8.  前記制御部は、前記センサ情報変更制御を、前記メッセージに含める証明書又は前記メッセージの送信元を識別する識別子を変更してから、一定期間が経過していない、又は前記車両が一定距離移動していない場合に実施する請求項1から請求項6のいずれか1項に記載のメッセージ制御装置。 The message control device according to any one of claims 1 to 6, wherein the control unit performs the sensor information change control when a certain period of time has not elapsed since the certificate included in the message or the identifier identifying the sender of the message was changed, or when the vehicle has not moved a certain distance.
  9.  前記制御部は、前記メッセージに含める証明書又は前記メッセージの送信元を識別する識別子を変更する一定期間前から前記メッセージに含める証明書又は前記メッセージの送信元を識別する識別子を変更するまで、又は、前記メッセージに含める証明書又は前記メッセージの送信元を識別する識別子を変更する地点の一定距離前から前記メッセージに含める証明書又は前記メッセージの送信元を識別する識別子を変更する地点までの位置に前記車両が存在する場合に前記センサ情報変更制御を実施する、請求項1から請求項6のいずれか1項に記載のメッセージ制御装置。 The message control device according to any one of claims 1 to 6, wherein the control unit performs the sensor information change control when the vehicle is present at a position from a certain period before the certificate to be included in the message or the identifier to identify the sender of the message is changed until the certificate to be included in the message or the identifier to identify the sender of the message is changed, or from a certain distance before the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed to the point at which the certificate to be included in the message or the identifier to identify the sender of the message is changed.
  10.  前記制御部は、1つの種類の前記メッセージに含ませる送信元を識別する識別子と、前記メッセージとは別の種類のメッセージに含ませる前記送信元を識別する識別子とを異ならせる、請求項1から請求項6のいずれか1項に記載のメッセージ制御装置。 The message control device according to any one of claims 1 to 6, wherein the control unit differentiates an identifier for identifying a sender included in one type of message from an identifier for identifying a sender included in a type of message different from the message.
  11.  車両に含まれる複数のセンサについてのセンサ特徴情報を含ませたメッセージを生成するステップであって、前記メッセージに含ませる前記センサ特徴情報を、逐次送信する前記メッセージ間で異ならせるステップと、
     生成した前記メッセージを送信するステップと、を有するメッセージ制御方法。
    A step of generating a message including sensor feature information for a plurality of sensors included in the vehicle, the sensor feature information being varied among the messages to be transmitted successively;
    and transmitting the generated message.
PCT/JP2023/039855 2022-11-21 2023-11-06 Message control device and message control method WO2024111388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-185797 2022-11-21
JP2022185797A JP2024074554A (en) 2022-11-21 2022-11-21 Message control device and message control method

Publications (1)

Publication Number Publication Date
WO2024111388A1 true WO2024111388A1 (en) 2024-05-30

Family

ID=91195510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039855 WO2024111388A1 (en) 2022-11-21 2023-11-06 Message control device and message control method

Country Status (2)

Country Link
JP (1) JP2024074554A (en)
WO (1) WO2024111388A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151942A (en) * 2016-02-24 2017-08-31 株式会社Kddi総合研究所 Communication system, terminal device, privacy protection device, privacy protection method, and program
WO2021073839A1 (en) * 2019-10-18 2021-04-22 Robert Bosch Gmbh Method for providing an object message about an object detected in the environment of a road user in a communication network for communication with other road users
EP3937524A1 (en) * 2020-07-07 2022-01-12 Canon Research Centre France Transmitting method in an intelligent transport system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151942A (en) * 2016-02-24 2017-08-31 株式会社Kddi総合研究所 Communication system, terminal device, privacy protection device, privacy protection method, and program
WO2021073839A1 (en) * 2019-10-18 2021-04-22 Robert Bosch Gmbh Method for providing an object message about an object detected in the environment of a road user in a communication network for communication with other road users
EP3937524A1 (en) * 2020-07-07 2022-01-12 Canon Research Centre France Transmitting method in an intelligent transport system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETSI. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Analysis of the Collective Perception Service (CPS); Release 2 [online]. ETSI TR 103 562. December 2019, [retrieved on 11 December 2023] *
SHIMPEI ARII, TSUKADA MANABU; OCHIAI, HIDEYA; EZAKI H.: "Detection of fraud using cognitive information sharing under the use environment of pseudonym ID of cooperative ITS", PROCEEDINGS OF MULTIMEDIA, DISTRIBUTED, COOPERATIVE, AND MOBILE SYMPOSIUM (DICOMO2021), 1 January 2021 (2021-01-01), pages 960 - 968, XP093172422, Retrieved from the Internet <URL:https://tlab.hongo.wide.ad.jp/papers/shim_dicomo2021.pdf> *

Also Published As

Publication number Publication date
JP2024074554A (en) 2024-05-31

Similar Documents

Publication Publication Date Title
US10789848B2 (en) Multi-level hybrid vehicle-to-anything communications for cooperative perception
JP6747531B2 (en) Beam alignment based on shared driving intention in inter-vehicle millimeter-wave communication
US10625674B2 (en) System and method for generation of a preventive alert
JP7437892B2 (en) Intermediate vehicle repeater for off-range vehicles
US20200104289A1 (en) Sharing classified objects perceived by autonomous vehicles
US11244565B2 (en) Method and system for traffic behavior detection and warnings
CN107921968B (en) System and method for driving assistance along a path
US11212654B2 (en) Coordinated driving through driver-to-driver V2X communication
US11113969B2 (en) Data-to-camera (D2C) based filters for improved object detection in images based on vehicle-to-everything communication
CN111161008A (en) AR/VR/MR ride sharing assistant
CN111559383A (en) Method and system for determining Autonomous Vehicle (AV) motion based on vehicle and edge sensor data
CN107809796B (en) Adaptive transmit power control for vehicle communications
KR20190035115A (en) Vehicle control system, external electronic control unit, vehicle control method, and application
CN113498017A (en) Device and method for supporting vehicle-to-anything communication and system comprising the device
CN111417065A (en) Matching first and second networked devices based on V2X message variables
CN110944298B (en) V2X full duplex location assistance for vehicle to all V2X recipients
US20220345861A1 (en) Passenger support system
CN114866366A (en) System and computer-implemented method for use in a vehicle
WO2024111388A1 (en) Message control device and message control method
US11535112B2 (en) Managing power of electronic devices on a vehicle
WO2024070539A1 (en) Message control device, message control method, and vehicle
KR20190115435A (en) Electronic device for vehicle and method for operating the same
WO2024070538A1 (en) Message control device and message control method
US20240160219A1 (en) Automated platooning system and method thereof
DK180220B1 (en) Sharing classified objects perceived by autonomous vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894400

Country of ref document: EP

Kind code of ref document: A1