WO2024111271A1 - Light detector and electronic appliance - Google Patents

Light detector and electronic appliance Download PDF

Info

Publication number
WO2024111271A1
WO2024111271A1 PCT/JP2023/036790 JP2023036790W WO2024111271A1 WO 2024111271 A1 WO2024111271 A1 WO 2024111271A1 JP 2023036790 W JP2023036790 W JP 2023036790W WO 2024111271 A1 WO2024111271 A1 WO 2024111271A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor substrate
shielding
region
attenuation
Prior art date
Application number
PCT/JP2023/036790
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 矢田
尊明 下村
有志 井芹
和弘 大澤
大輔 萩原
淳平 田中
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024111271A1 publication Critical patent/WO2024111271A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • This disclosure relates to a light detection device and electronic equipment.
  • the photodetection device described in Patent Document 1 describes a configuration in which a polarizer having multiple wires arranged in parallel with each other is disposed as a light-attenuating structure between an on-chip lens and a photoelectric conversion unit.
  • the present disclosure aims to provide a light detection device and electronic device that can more appropriately attenuate incident light.
  • the photodetector disclosed herein comprises (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple focusing units each having an on-chip lens and disposed on the light incident surface side of the semiconductor substrate, and (c) a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) a light-focusing spot of light generated by the focusing units and the light-attenuating structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
  • Another photodetector device disclosed herein includes (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple light-collecting units each having an on-chip lens and disposed on the light-incident surface side of the semiconductor substrate, and (c) a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate, and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) the light-shielding pattern has a portion in which the proportion of the light-shielding region is different from other portions.
  • the electronic device disclosed herein comprises (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple focusing units each having an on-chip lens and disposed on the light incident surface side of the semiconductor substrate, (c) and a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) a light detection device in which the light-focusing spot of the focusing units and the light-attenuating structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
  • FIG. 1 is a diagram showing an overall configuration of a solid-state imaging device according to a first embodiment
  • 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device taken along line AA in FIG. 1.
  • 1 is a diagram showing a cross-sectional configuration of a solid-state imaging device when broken at the position of a light incidence surface of a light-attenuating structural body.
  • FIG. 13 is a diagram showing the overall configuration of a solid-state imaging device when a light-attenuating structural body is disposed at a position overlapping with a focused spot.
  • FIG. 5 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of a light incidence surface of the light attenuation structural body shown in FIG.
  • FIG. 1 is a diagram showing the overall configuration of a solid-state imaging device in which a light-attenuating structural body is disposed at a position overlapping with a focused spot when light is incident from an oblique direction;
  • FIG. 7 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of the light incidence surface of the light attenuation structural body shown in FIG. 6 .
  • FIG. FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity.
  • 1 is a diagram showing the overall configuration of a solid-state imaging device when light is incident from an oblique direction.
  • FIG. 10 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of a light incidence surface of the light attenuation structural body shown in FIG. 9 .
  • FIG. FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity.
  • FIG. 11 is a diagram showing a method for adjusting the degree of light attenuation.
  • FIG. 11 is a diagram showing a method for adjusting the degree of light attenuation.
  • FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
  • FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity.
  • FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
  • FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
  • FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
  • FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example.
  • 13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example.
  • FIG. 13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example.
  • FIG. 13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example.
  • FIG. 13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example.
  • FIG. 13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example.
  • FIG. FIG. 11 is a diagram showing an overall configuration of an electronic device according to a second embodiment.
  • FIG. 1 is a diagram showing an overall configuration of the solid-state imaging device 1 according to the first embodiment.
  • the solid-state imaging device 1 in Fig. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor. As shown in Fig.
  • CMOS Complementary Metal Oxide Semiconductor
  • the solid-state imaging device 1 captures image light (incident light) from a subject via a lens group 1001, converts the amount of incident light focused on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal.
  • the solid-state imaging device 1 includes a pixel region 2, a vertical drive circuit 3, a column signal processing circuit 4, a horizontal drive circuit 5, an output circuit 6, and a control circuit .
  • the pixel region 2 has a plurality of pixels 8 arranged in a two-dimensional array.
  • Each pixel 8 has a photoelectric conversion unit 22 (see FIG. 2) and a plurality of pixel transistors (e.g., a transfer transistor, a reset transistor, an amplification transistor, and a selection transistor).
  • the pixels 8 have two types of pixels: a high sensitivity pixel 8H and a low sensitivity pixel 8L having a lower sensitivity than the high sensitivity pixel 8H.
  • the vertical drive circuit 3 is configured, for example, by a shift register, and sequentially selects each pixel 8 in the pixel region 2 on a row-by-row basis by, for example, sequentially outputting selection pulses to pixel drive wirings 9, and outputs pixel signals of the selected pixels 8 to the column signal processing circuit 4 through vertical signal lines 10.
  • the pixel signals are signals obtained by electricity (for example, electrons) generated in the photoelectric conversion units 22.
  • the column signal processing circuit 4 is arranged, for example, for each column of pixels 8, and performs signal processing such as noise removal for each pixel column on signals output from one row of pixels 8. For example, correlated double sampling (CDS) for removing fixed pattern noise specific to each pixel and AD (Analog-Digital) conversion can be used as the signal processing.
  • the horizontal drive circuit 5 is, for example, composed of a shift register, and sequentially outputs horizontal scanning pulses to the column signal processing circuits 4, selects the column signal processing circuits 4 in order, and causes the selected column signal processing circuit 4 to output pixel signals that have been subjected to signal processing to the horizontal signal line 11.
  • the output circuit 6 performs various signal processing on each of the pixel signals sequentially output from the column signal processing circuit 4 through the horizontal signal line 11.
  • various types of digital signal processing such as buffering, black level adjustment, column variation correction, etc. can be used.
  • the control circuit 7 generates clock signals and control signals that serve as a reference for the operation of the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc., based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Then, the control circuit 7 outputs the generated clock signals and control signals to the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc.
  • Fig. 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 taken along line AA in Fig. 1.
  • the solid-state imaging device 1 has an insulating film 13, a light-shielding film 14, a planarizing film 15, an inner lens 16, a planarizing film 17, a color filter 18, and an on-chip lens 19 laminated in this order on a light incident surface (hereinafter also referred to as "back surface S1") of a semiconductor substrate 12.
  • a wiring layer 20 is disposed on a surface (hereinafter also referred to as "front surface S2") opposite to the back surface S1 of the semiconductor substrate 12.
  • a light-shielding structure 21 having a predetermined light-shielding pattern is disposed immediately below the color filter 18 in the portion of the low sensitivity pixel 8L. That is, the light-shielding structure 21 is disposed between some of the on-chip lenses 19 and the semiconductor substrate 12.
  • the semiconductor substrate 12 is made of, for example, a silicon (Si) substrate.
  • a photoelectric conversion unit 22 is formed in each region of the semiconductor substrate 12 where each pixel 8 is located. That is, a plurality of photoelectric conversion units 22 are arranged in a two-dimensional array on the semiconductor substrate 12.
  • the photoelectric conversion unit 22 has a p-type semiconductor region and an n-type semiconductor region, and the pn junction between these forms a photodiode, which performs photoelectric conversion to generate charge according to the amount of light received.
  • the photoelectric conversion unit 22 also accumulates the charge generated by photoelectric conversion in the electrostatic capacitance generated by the pn junction.
  • the insulating film 13 continuously covers the entire back surface S1 side of the semiconductor substrate 12.
  • the insulating film 13 may be made of a material such as silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • the light-shielding film 14 is formed in a lattice shape on a part of the light incident surface (hereinafter also referred to as "rear surface S3") side of the insulating film 13 so as to open the light incident surface (rear surface S1) of each of the multiple photoelectric conversion units 22. That is, the light-shielding film 14 is disposed on the rear surface S1 side of the semiconductor substrate 12, and is formed so as to cover the region between adjacent photoelectric conversion units 22 in a plan view.
  • the planarization film 15 covers the rear surface S3 of the insulating film 13 and the light-shielding film 14, and makes the surface on the inner lens 16 side (hereinafter also referred to as the "rear surface S4") a flat surface without any irregularities.
  • the material for the planarization film 15 include silicon oxide ( SiO2 ) and silicon nitride (SiN).
  • the inner lenses 16 are arranged in a two-dimensional array so as to correspond to each pixel 8.
  • the inner lenses 16 collect light transmitted through the on-chip lenses 19 and cause the collected transmitted light to enter the corresponding photoelectric conversion unit 22.
  • FIG. 2 illustrates a case in which the position of a light collecting spot 25 of the light 23 by the light collecting unit 24 is located at a depth where the light shielding film 14 is arranged in a direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 2). That is, in a direction perpendicular to the rear surface S 1 of the semiconductor substrate 12 , a light spot 25 of the light 23 focused by the light focusing portion 24 is positioned closer to the semiconductor substrate 12 than the light attenuation structural body 21 .
  • the planarization film 17 covers the light incidence surface (hereinafter also referred to as the "rear surface S5") of the inner lens 16, and makes the surface on the color filter 18 side (hereinafter also referred to as the "rear surface S6") a flat surface without irregularities.
  • the planarization film 17 can be made of the same material as the planarization film 15, for example.
  • the planarization film 15, the inner lens 16, and the planarization film 17 are partitioned into a plurality of regions corresponding to the pixels 8, and a partition wall 27 is disposed between adjacent regions. That is, the partition wall 27 is formed in a lattice shape so as to surround each region. This makes it possible to suppress the light 23 incident on a certain region from leaking out to an adjacent region, thereby suppressing optical color mixing.
  • the end of the partition wall 27 on the semiconductor substrate 12 side is in contact with the light-shielding film 14 and is electrically connected to the light-shielding film 14.
  • metals such as aluminum (Al), tungsten (W), and copper (Cu) can be used as the material of the partition wall 27.
  • the color filters 18 are arranged in a two-dimensional array so as to correspond to each pixel 8.
  • FIG. 2 illustrates a case where a shared color filter 18 is arranged between the high-sensitivity pixel 8H and the low-sensitivity pixel 8L.
  • the color filter 18 transmits only light of a predetermined wavelength different from each other. For example, an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light can be given.
  • the color filter 18 transmits light of a predetermined wavelength according to the transmission characteristics, and the transmitted light is made incident on the corresponding photoelectric conversion unit 22.
  • FIG. 2 illustrates a case where a G filter is used as the color filter 18 shared between the high-sensitivity pixel 8H and the low-sensitivity pixel 8L, but is not limited thereto.
  • an R filter or a B filter may be used, and a color filter other than RGB may be used.
  • the on-chip lenses 19 are arranged in a two-dimensional array so as to correspond to each pixel 8.
  • the on-chip lenses 19 collect image light (light 23) from a subject, and cause the collected image light (light 23) to enter the corresponding photoelectric conversion unit 22 via the color filter 18 or the like.
  • the wiring layer 20 is disposed on the surface S2 side of the semiconductor substrate 12.
  • the wiring layer 20 has an interlayer insulating film and wirings stacked in multiple layers with the interlayer insulating film interposed therebetween.
  • the wiring layer 20 drives pixel transistors (not shown) of each pixel 8 via the multiple layers of wiring.
  • the light-reducing structure 21 is disposed between the inner lens 16 and the color filter 18, and is formed so as to cover the entire surface (hereinafter also referred to as "surface S7") of the color filter 18 on the planarization film 17 side in the low-sensitivity pixel 8L.
  • surface S7 the entire surface of the color filter 18 on the planarization film 17 side in the low-sensitivity pixel 8L.
  • the light-reducing structure 21 a structure having a light-shielding pattern by a transmission region 30 that transmits light and a light-shielding region 31 that partially blocks light is used. As a result, the light-reducing structure 21 attenuates the light 23 according to the light-shielding pattern, and causes the attenuated light 23 to enter the inner lens 16.
  • a mesh-shaped structure 21a in which a mesh-shaped light-shielding pattern is formed by the transmission region 30 and the light-shielding region 31 can be adopted.
  • FIG. 3 illustrates an example of a mesh-shaped light-shielding pattern in which, in a plan view, a frame formed of a frame-shaped light-shielding region 31 is arranged in the outer edge region, and two linear band-shaped light-shielding regions 31 extending along the vertical and horizontal directions are arranged at a constant pitch in the inner region surrounded by the frame, thereby arranging opening regions (transmitting regions 30) in a two-dimensional matrix of 3 ⁇ 3.
  • the ratio of the transmitting region 30 to the light-shielding region 31 is constant in the entire region of the mesh-shaped structure 21a.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when the light-attenuating structure 21 is broken at the position of the rear surface S8.
  • the material of the light-attenuating structure 21 for example, metals such as aluminum (Al), tungsten (W), and copper (Cu), and light-absorbing materials such as black resin can be used.
  • Al aluminum
  • W tungsten
  • Cu copper
  • black resin a light-absorbing material
  • reflection of light 23 by the dimming structure 21 can be suppressed, reducing the possibility of flare caused by reflected light.
  • the incident light 23 passes through the on-chip lens 19, the color filter 18, and the inner lens 16, and the transmitted light 23 is photoelectrically converted in the photoelectric conversion unit 22 to generate a signal charge.
  • the generated signal charge is then output as a pixel signal from the vertical signal line 10 in FIG. 1 formed by the wiring of the wiring layer 20.
  • the incident light 23 passes through the on-chip lens 19, the color filter 18, the inner lens 16, and also the light-reducing structure 21 to be incident on the photoelectric conversion unit 22. Therefore, the sensitivity of the low-sensitivity pixel 8L is lower than that of the high-sensitivity pixel 8H.
  • the light attenuation structure 21 is disposed at a depth where the light-shielding film 14 is located, and the light-focusing spot 25 of the light 23 by the light-focusing unit 24 overlaps with the position of the light attenuation structure 21 in a direction perpendicular to the back surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 4).
  • the diameter of the region of the light attenuation structure 21 where the light 23 hits (hereinafter also referred to as the "irradiation region 26") becomes smaller than the width of the transmission region 30 and the width of the light-shielding region 31. Therefore, for example, as shown in FIG. 4 and FIG.
  • FIG. 5 is a diagram showing the light shielding pattern and the irradiation area 26 of the light attenuation structure 21 at the position of the light incident surface (hereinafter, "rear surface S8") of the light attenuation structure 21 shown in FIG. 4.
  • the condensed spot 25 of the light 23 moves laterally, and when the condensed spot 25 of the light 23 moves to a position where it overlaps with the light-shielding region 31 of the light-attenuating structure 21 as shown in Figs. 6 and 7, most of the light 23 is blocked by the light-shielding region 31, and only a small amount of the light 23 that has passed through the surrounding transparent region 30 is incident on the photoelectric conversion unit 22.
  • FIG. 7 is a diagram showing the light-shielding pattern and the irradiation region 26 of the light-attenuating structure 21 at the position of the back surface S8 of the light-attenuating structure 21 shown in Fig. 6.
  • a change in the amount of light 23 incident on the photoelectric conversion unit 22 occurs periodically according to the change in the angle of incidence of the light 23, since it is due to the position of the light-attenuating spot 25 and the light-shielding pattern of the light-attenuating structure 21. Therefore, the change in the amount of light 23 incident on the photoelectric conversion unit 22 causes the sensitivity of the pixel 8 (low-sensitivity pixel 8L) to change periodically according to the angle of incidence of the light 23, as shown in Fig. 8.
  • the sensitivity of the pixel 8 may vary depending on its position within the pixel region 2, which may result in a deterioration in the image quality of the captured image.
  • the condensed spot 25 of the light 23 by the condensing unit 24 and the light attenuation structure 21 are separated from each other in the direction perpendicular to the back surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 2).
  • the region (irradiation region 26) of the light attenuation structure 21 on which the light 23 hits can be made larger than when, for example, the light attenuation structure 21 is disposed at a depth where the light shielding film 14 is located (the configuration shown in FIG. 4). Therefore, the diameter of the irradiation region 26 can be made larger than the width of the transmission region 30 and the width of the light shielding region 31. Therefore, for example, as shown in FIG. 2, FIG. 3, FIG.
  • FIG. 2 and FIG. 3 are diagrams showing the case where the angle of incidence of the light 23 is the same as the light 23 shown in FIG. 4, and FIG. 9 and FIG. 10 are diagrams showing the case where the angle of incidence of the light 23 is the same as the light 23 shown in FIG. 6.
  • FIG. 10 is a diagram showing the light-shielding pattern and the irradiation region 26 of the light-attenuating structure 21 at the position of the back surface S8 of the light-attenuating structure 21 shown in FIG. 9.
  • the light is reduced using the light-reducing structure 21 having a light-shielding pattern made up of the transmission region 30 and the light-shielding region 31. Therefore, unlike a configuration in which light is reduced using a gray filter, for example, light can be reduced without changing the spectrum.
  • the light attenuation structure 21 is configured to use a mesh-like structure 21a that forms a mesh-like light-shielding pattern by means of transmissive regions 30 and light-shielding regions 31. Therefore, the degree of attenuation of light 23 by the light attenuation structure 21 can be adjusted by changing the width of the line-like portions (light-shielding regions 31) that make up the mesh and the width of the openings (transmissive regions 30), as shown in FIG. 12, for example. Alternatively, it can also be adjusted by changing the number of line-like portions (light-shielding regions 31) and the number of openings (transmissive regions 30), as shown in FIG. 13, for example.
  • the light-reducing structure 21 is disposed between the inner lens 16 and the color filter 18, but other configurations may be adopted.
  • the light-reducing structure 21 may be disposed between the semiconductor substrate 12 and the inner lens 16, and may be formed to cover the entire surface (hereinafter, also referred to as "surface S9") of the inner lens 16 on the planarization film 15 side in the low-sensitivity pixel 8L.
  • FIG. 14 illustrates a case in which the light-reducing structure 21 is disposed directly below the inner lens 16.
  • the region (irradiation region 26) of the light-reducing structure 21 on which the light 23 hits can be made larger. Therefore, by using the same principle as in the case where the light attenuation structure 21 is disposed between the inner lens 16 and the color filter 18 (the configuration shown in FIG. 2 ), as shown in FIG. 15 , it is possible to suppress periodic changes in the sensitivity of the pixel 8 (low sensitivity pixel 8L) depending on the angle of incidence of the light 23. In addition, according to the configuration shown in FIG.
  • the light attenuation structure 21 is disposed at a deeper position from the light incidence surface of the on-chip lens 19 than in the configuration shown in FIG. 2 , so that it is possible to weaken the reflected light due to the light 23 reflected by the light attenuation structure 21, and it is possible to reduce the possibility of flare occurring due to the reflected light.
  • the light attenuation structure 21 may be disposed between the on-chip lens 19 and the color filter 18, and may be formed so as to cover the entire light incidence surface (hereinafter also referred to as "surface S10") of the color filter 18 in the low-sensitivity pixel 8L.
  • FIG. 16 illustrates a case in which the light attenuation structure 21 is disposed directly above the color filter 18.
  • the light-attenuating structure 21 may be disposed at a depth where the light-shielding film 14 is located, and may be formed to cover the entire light-incident surface (rear surface S3) of the insulating film 13 in the low-sensitivity pixel 8L.
  • FIG. 17 and FIG. 18 show an example in which the light-attenuating structure 21 is formed in a part of the metal film forming the light-shielding film 14.
  • the light-concentrating portion 24 is formed so that the light-concentrating spot 25 of the light 23 by the light-concentrating portion 24 is located within the semiconductor substrate 12 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG.
  • the light-concentrating portion 24 is formed so that the light-concentrating spot 25 of the light 23 by the light-concentrating portion 24 is located closer to the light-concentrating portion 24 than the light-attenuating structure 21 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 18). 17 and 18, the inner lens 16 shown in FIG. 2 is omitted, and the light collecting portion 24 is formed only by the on-chip lens 19. Also, the light collecting portion 24 can be formed only by the on-chip lens 19 in the configuration in which the light attenuation structure 21 is disposed directly under the color filter 18 (the configuration shown in FIG. 2). Also, in the configuration shown in FIG. 2 and the configuration shown in FIG. 14, the light collecting spot 25 of the light 23 by the light collecting portion 24 may be located within the semiconductor substrate 12 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12.
  • the back surface S1 of the semiconductor substrate 12 is a flat surface, but other configurations can be adopted.
  • a plurality of inverted pyramid-shaped recesses 32 may be formed on the back surface S1 side of the semiconductor substrate 12, and a moth-eye structure anti-reflection portion may be provided.
  • the semiconductor substrate 12 has pixel separation portions 33 disposed between adjacent photoelectric conversion portions 22.
  • the pixel separation portions 33 are formed in a lattice shape so as to surround each of the photoelectric conversion portions 22.
  • Metals such as aluminum (Al), tungsten (W), and copper (Cu) can be used as the material of the pixel separation portions 33.
  • the recesses 32 and the pixel separation portions 33 increase the amount of refraction of the incident light (light 23), and the light 23 is reflected between the pixel separation portions 33, thereby increasing the optical path length. In addition, the reflection of the incident light (light 23) can be prevented, and the light utilization efficiency can be improved.
  • the light-reducing structure 21 is formed at the tip of the inverted pyramid-shaped recess 32. In other words, the tip of the inverted pyramid-shaped recess 32 becomes the light-shielding region 31, and the space between adjacent light-shielding regions 31 becomes the transmission region 30.
  • a mesh-shaped light-shielding pattern is formed on the entire light-attenuating structure 21, and the ratio of the transmission region 30 to the light-shielding region 31 is constant in the entire region of the light-attenuating structure 21.
  • the light-shielding structure 21 may be configured such that the ratio of the transmission region 30 to the light-shielding region 31 differs between the center side 34 and the outer periphery side 35 of the light-attenuating structure 21.
  • Figs. 20 to 23 illustrate a case in which the ratio of the light-shielding region 31 on the center side 34 of the light-attenuating structure 21 (hereinafter also referred to as the "first ratio”) is greater than the ratio of the light-shielding region 31 on the outer periphery side 35 (hereinafter also referred to as the "second ratio").
  • FIG. 20 illustrates an example in which the light-attenuating structure 21 is an FZP-like structure 21b in which a light-shielding pattern constituting a Fresnel zone plate (FZP) is formed by a transmission region 30 and a light-shielding region 31.
  • FZP Fresnel zone plate
  • the FZP-like structure 21b is a structure in which annular transmission regions 30 and light-shielding regions 31 are alternately arranged concentrically around a circular light-shielding region 31, and the width of these concentric circles (zones) becomes narrower as they approach the outer periphery.
  • a light-attenuating effect can be obtained while maintaining optical symmetry.
  • the Fresnel zone plate collects light 23
  • a color mixing reduction effect can also be obtained.
  • the light-shielding pattern of the FZP-like structure 21b may be a pattern that connects the entire layout as a pattern that is easy to process. Fig.
  • FIG. 21 illustrates a case in which a linear light-shielding region 31 that penetrates all of the circular or annular light-shielding regions 31 and is electrically connected to the partition wall 27 is added to the FZP-like structure 21b shown in Fig. 20.
  • FIG. 22 illustrates a case where the light-attenuating structure 21 is a radial structure 21c in which the transmission region 30 and the light-shielding region 31 form a radial light-shielding pattern extending from the center to the outer periphery of the light-attenuating structure 21.
  • the radial structure 21c By using the radial structure 21c, it is possible to obtain a light-attenuating effect while maintaining optical symmetry.
  • the radial structure 21c as shown in FIG. 22, a structure in which linear band-shaped light-shielding regions 31 are radially arranged along the vertical direction, horizontal direction, right diagonal direction, and left diagonal direction in a plan view is given.
  • the ends of the linear band-shaped light-shielding regions 31 constituting the radial structure 21c are in contact with the side surfaces of the partition wall 27 and are electrically connected to the partition wall 27. This prevents the light-shielding pattern (light-shielding region 31) of the radial structure 21c from being in a floating state.
  • 23 illustrates an example in which the light attenuation structure 21 is a deformed mesh structure 21d in which a mesh-shaped light-shielding pattern is formed on the central side 34 of the light attenuation structure 21 by the transmission region 30 and the light-shielding region 31, and another light-shielding pattern is formed on the peripheral side 35.
  • the degree of light attenuation of the light 23 incident on the photoelectric conversion unit 22 can be adjusted when the incidence angle (CRA) of the light 23 is small and large, and the sensitivity of the pixel 8 (low-sensitivity pixel 8L) can be adjusted.
  • CRA incidence angle
  • the deformed mesh structure 21d As an example of the deformed mesh structure 21d, as shown in FIG. 23, a mesh-shaped light-shielding pattern in which the transmission regions 30 are arranged in a two-dimensional matrix of 4 ⁇ 4 is formed on the central side 34, and a light-shielding pattern in which the transmission regions 30 are arranged on the entire peripheral side 35 except for the corners is formed. According to the configuration of this example, the sensitivity of the pixel 8 (low-sensitivity pixel 8L) can be improved when the incidence angle of the light 23 is large.
  • this technology can be applied to light detection devices in general, including distance measurement sensors that measure distance, also known as ToF (Time of Flight) sensors, in addition to the solid-state imaging device 1 as the image sensor described above.
  • a distance measurement sensor is a sensor that emits light toward an object, detects the reflected light that is reflected back from the surface of the object, and calculates the distance to the object based on the flight time from when the light is emitted to when the reflected light is received.
  • the structure of pixel 8 (low sensitivity pixel 8L) described above can be adopted as the light receiving pixel structure of this distance measurement sensor.
  • FIG. 24 is a diagram showing an example of a schematic configuration of an imaging device (such as a video camera or a digital still camera) as an electronic device to which the present technology is applied.
  • the imaging device 1000 includes a lens group 1001, a solid-state imaging device 1002 (solid-state imaging device 1 according to the first embodiment), a DSP (Digital Signal Processor) circuit 1003, a frame memory 1004, a monitor 1005, and a memory 1006.
  • the DSP circuit 1003, the frame memory 1004, the monitor 1005, and the memory 1006 are connected to each other via a bus line 1007.
  • the lens group 1001 guides incident light (image light) from a subject to the solid-state imaging device 1002 , and forms an image on the light incident surface (pixel region) of the solid-state imaging device 1002 .
  • the solid-state imaging device 1002 is made up of the CMOS image sensor according to the first embodiment described above.
  • the solid-state imaging device 1002 converts the amount of incident light focused on the light incident surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal to the DSP circuit 1003 as a pixel signal.
  • the DSP circuit 1003 performs predetermined image processing on the pixel signals supplied from the solid-state imaging device 1002.
  • the DSP circuit 1003 supplies the image signals after the image processing to a frame memory 1004 on a frame-by-frame basis, and temporarily stores the image signals in the frame memory 1004.
  • the monitor 1005 is formed of a panel-type display device such as a liquid crystal panel, an organic EL (Electro Luminescence) panel, etc.
  • the monitor 1005 displays an image (moving image) of a subject based on pixel signals in frame units temporarily stored in the frame memory 1004.
  • the memory 1006 is composed of a DVD, a flash memory, etc.
  • the memory 1006 reads out and records the pixel signals temporarily stored in the frame memory 1004 on a frame-by-frame basis.
  • the electronic device to which the solid-state imaging device 1 can be applied is not limited to the imaging device 1000, but can also be applied to other electronic devices.
  • the solid-state imaging device 1 according to the first embodiment is used as the solid-state imaging device 1002, other configurations can also be adopted.
  • it may be configured to use other light detection devices to which the present technology is applied, such as the solid-state imaging device 1 according to a modified example.
  • the present disclosure may be configured as follows. (1) A semiconductor substrate having a plurality of photoelectric conversion units formed thereon; a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate; a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light, a spot of light focused by said light focusing portion and said light attenuation structure body are spaced apart from each other in a direction perpendicular to a light incident surface of said semiconductor substrate.
  • the light detection device wherein a spot of light focused by the light focusing portion is located closer to the semiconductor substrate than the light attenuation structural body in a direction perpendicular to a light incident surface of the semiconductor substrate.
  • the light detection device wherein a spot of light focused by the light focusing portion is located closer to the light focusing portion than the light attenuation structural body in a direction perpendicular to a light incident surface of the semiconductor substrate.
  • the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens, The light detection device according to any one of (1) to (3), wherein the light-attenuating structure is disposed between the semiconductor substrate and the inner lens.
  • the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens, A color filter is disposed between the inner lens and the on-chip lens,
  • the attenuation structure defines a mesh-shaped light blocking pattern by the transmission regions and the light blocking regions.
  • the attenuation structure body forms a light blocking pattern that constitutes a Fresnel zone plate by the transmission region and the light blocking region.
  • the attenuation structure body forms a radial light-shielding pattern extending from a center portion to an outer periphery of the attenuation structure body by the transmission region and the light-shielding region.
  • the attenuation structure has a mesh-shaped light-shielding pattern formed on a central portion side of the attenuation structure by the transmission region and the light-shielding region, and another light-shielding pattern formed on an outer periphery side of the attenuation structure.
  • a semiconductor substrate having a plurality of photoelectric conversion units formed thereon; a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate; a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light,
  • the light-shielding structure has a ratio of the transmission region to the light-shielding region that differs between a central portion and an outer periphery of the light-attenuating structure.
  • the attenuation structural body forms a radial light blocking pattern extending from a center portion to an outer periphery of the attenuation structural body by the transmission region and the light blocking region.
  • the attenuation structure has a mesh-shaped light-shielding pattern formed on a central portion side of the attenuation structure by the transmission region and the light-shielding region, and another light-shielding pattern formed on an outer periphery side of the attenuation structure.
  • An electronic device comprising: a photodetector comprising: a semiconductor substrate on which a plurality of photoelectric conversion units are formed; a plurality of light collecting units each having an on-chip lens and disposed on a light incident surface side of the semiconductor substrate; and a light attenuation structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light shielding pattern with a light transmitting region that transmits light and a light shielding region that blocks some of the light, wherein a light collecting spot of light by the light collecting units and the light attenuation structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
  • 1...solid-state imaging device 2...pixel area, 3...vertical drive circuit, 4...column signal processing circuit, 5...horizontal drive circuit, 6...output circuit, 7...control circuit, 8...pixel, 8H...high sensitivity pixel, 8L...low sensitivity pixel, 9...pixel drive wiring, 10...vertical signal line, 11...horizontal signal line, 12...semiconductor substrate, 13...insulating film, 14...light-shielding film, 15...planarization film, 16...inner lens, 17...planarization film, 18...color filter layer, 19...lens array, 20...wiring layer, 21...light-attenuating structure, 21a...mesh structure, 21b...FZP structure, 21c...radial structure, 21d...deformed mesh structure, 22...photoelectric conversion section, 23...light, 24...light-collecting section, 25...light-collecting spot, 26...irradiation area, 27...partition wall, 30...transmission area, 31...light-shielding area, 32...reces

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a light detector capable of more adequately reducing incident light. Specifically, the light detector has a configuration comprising a semiconductor substrate having a plurality of photoelectric conversion parts formed thereon, a plurality of light-collecting parts disposed on the light-entrance-surface side of the semiconductor substrate and having on-chip lenses, and a light reduction structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light-shielding pattern consisting of transmission regions for transmitting light and light-shielding regions for shielding some of the light, wherein the light convergence spot attributable to each light-collecting part is separated from the light reduction structure along a direction orthogonal to the light entrance surface of the semiconductor substrate.

Description

光検出装置及び電子機器Photodetection device and electronic device
 本開示は、光検出装置及び電子機器に関する。 This disclosure relates to a light detection device and electronic equipment.
 従来、イメージセンサのハイダイナミックレンジを実現するために、画素間に感度差を生じさせる減光構造体を導入した光検出装置が提案されている。例えば、特許文献1に記載の光検出装置では、オンチップレンズと光電変換部との間に、減光構造体として、互いに並列に並べられた複数のワイヤを有する偏光子を配置した構成が記載されている。  In the past, in order to realize a high dynamic range of an image sensor, a photodetection device has been proposed that introduces a light-attenuating structure that generates a sensitivity difference between pixels. For example, the photodetection device described in Patent Document 1 describes a configuration in which a polarizer having multiple wires arranged in parallel with each other is disposed as a light-attenuating structure between an on-chip lens and a photoelectric conversion unit.
特表2011-526105号公報JP 2011-526105 A
 このような光検出装置では、入射光の減光をより適切に行うことが求められている。 In such photodetection devices, there is a need to more appropriately attenuate the incoming light.
 本開示は、入射光の減光をより適切に行うことが可能な光検出装置及び電子機器を提供することを目的とする。 The present disclosure aims to provide a light detection device and electronic device that can more appropriately attenuate incident light.
 本開示の光検出装置は、(a)複数の光電変換部が形成された半導体基板と、(b)半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、(c)一部のオンチップレンズと半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、(d)半導体基板の光入射面と直交する方向において、集光部による光の集光スポットと、減光構造体とが互いに離れていることを要旨とする。 The photodetector disclosed herein comprises (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple focusing units each having an on-chip lens and disposed on the light incident surface side of the semiconductor substrate, and (c) a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) a light-focusing spot of light generated by the focusing units and the light-attenuating structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
 本開示の他の光検出装置は、(a)複数の光電変換部が形成された半導体基板と、(b)半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、(c)一部のオンチップレンズと半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、(d)遮光パターンは、遮光領域の割合が他の部分と異なっている部分を有することを要旨とする。 Another photodetector device disclosed herein includes (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple light-collecting units each having an on-chip lens and disposed on the light-incident surface side of the semiconductor substrate, and (c) a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate, and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) the light-shielding pattern has a portion in which the proportion of the light-shielding region is different from other portions.
 本開示の電子機器は、(a)複数の光電変換部が形成された半導体基板、(b)半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部、(c)並びに一部のオンチップレンズと半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体を備え、(d)半導体基板の光入射面と直交する方向において、集光部による光の集光スポットと、減光構造体とが互いに離れている光検出装置を有することを要旨とする。 The electronic device disclosed herein comprises (a) a semiconductor substrate on which multiple photoelectric conversion units are formed, (b) multiple focusing units each having an on-chip lens and disposed on the light incident surface side of the semiconductor substrate, (c) and a light-attenuating structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light-shielding pattern with a light-transmitting region that transmits light and a light-shielding region that blocks some of the light, and (d) a light detection device in which the light-focusing spot of the focusing units and the light-attenuating structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
第1の実施形態に係る固体撮像装置の全体構成を示す図である。1 is a diagram showing an overall configuration of a solid-state imaging device according to a first embodiment; 図1のA-A線で破断した場合の、固体撮像装置の断面構成を示す図である。2 is a diagram showing a cross-sectional configuration of the solid-state imaging device taken along line AA in FIG. 1. 減光構造体の光入射面の位置で破断した場合の、固体撮像装置の断面構成を示す図である。1 is a diagram showing a cross-sectional configuration of a solid-state imaging device when broken at the position of a light incidence surface of a light-attenuating structural body. FIG. 集光スポットと重なる位置に減光構造体が配置された場合の固体撮像装置の全体構成を示す図である。13 is a diagram showing the overall configuration of a solid-state imaging device when a light-attenuating structural body is disposed at a position overlapping with a focused spot. FIG. 図4に示した減光構造体の光入射面の位置における、減光構造体の遮光パターンと入射領域とを示した図である。5 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of a light incidence surface of the light attenuation structural body shown in FIG. 4 . FIG. 光が斜め方向から入射した場合の、集光スポットと重なる位置に減光構造体が配置された場合の固体撮像装置の全体構成を示す図である。1 is a diagram showing the overall configuration of a solid-state imaging device in which a light-attenuating structural body is disposed at a position overlapping with a focused spot when light is incident from an oblique direction; FIG. 図6に示した減光構造体の光入射面の位置における、減光構造体の遮光パターンと入射領域とを示した図である。7 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of the light incidence surface of the light attenuation structural body shown in FIG. 6 . FIG. 光の入射角度と感度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity. 光が斜め方向から入射した場合の、固体撮像装置の全体構成を示す図である。1 is a diagram showing the overall configuration of a solid-state imaging device when light is incident from an oblique direction. 図9に示した減光構造体の光入射面の位置における、減光構造体の遮光パターンと入射領域とを示した図である。10 is a diagram showing a light blocking pattern and an incidence area of the light attenuation structural body at the position of a light incidence surface of the light attenuation structural body shown in FIG. 9 . FIG. 光の入射角度と感度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity. 減光度合いの調整方法を示す図である。FIG. 11 is a diagram showing a method for adjusting the degree of light attenuation. 減光度合いの調整方法を示す図である。FIG. 11 is a diagram showing a method for adjusting the degree of light attenuation. 変形例に係る固体撮像装置の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example. 光の入射角度と感度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the incident angle of light and sensitivity. 変形例に係る固体撮像装置の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example. 変形例に係る固体撮像装置の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example. 変形例に係る固体撮像装置の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example. 変形例に係る固体撮像装置の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of a solid-state imaging device according to a modified example. 変形例に係る減光構造体の光入射面の位置における、減光構造体の遮光パターンを示した図である。13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example. FIG. 変形例に係る減光構造体の光入射面の位置における、減光構造体の遮光パターンを示した図である。13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example. FIG. 変形例に係る減光構造体の光入射面の位置における、減光構造体の遮光パターンを示した図である。13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example. FIG. 変形例に係る減光構造体の光入射面の位置における、減光構造体の遮光パターンを示した図である。13 is a diagram showing a light blocking pattern of a light attenuation structural body at the position of a light incident surface of the light attenuation structural body according to the modified example. FIG. 第2の実施形態に係る電子機器の全体構成を示す図である。FIG. 11 is a diagram showing an overall configuration of an electronic device according to a second embodiment.
 以下に、本開示の実施形態に係る光検出装置及び電子機器の一例を、図1~図24を参照しながら説明する。本開示の実施形態は以下の順序で説明する。なお、本開示は以下の例に限定されるものではない。また、本明細書に記載された効果は例示であって限定されるものではなく、また他の効果があってもよい。
1.第1の実施形態:固体撮像装置
 1-1 固体撮像装置の全体の構成
 1-2 要部の構成
 1-3 変形例
2.第2の実施形態:電子機器への応用例
An example of a light detection device and an electronic device according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 24. The embodiments of the present disclosure will be described in the following order. Note that the present disclosure is not limited to the following examples. In addition, the effects described in this specification are examples and are not limiting, and other effects may also be present.
1. First embodiment: solid-state imaging device 1-1 Overall configuration of solid-state imaging device 1-2 Configuration of main parts 1-3 Modifications 2. Second embodiment: Application to electronic devices
〈1.第1の実施形態:固体撮像装置〉
[1-1 固体撮像装置の全体の構成]
 本開示の第1の実施形態に係る固体撮像装置1(広義には「光検出装置」)について説明する。図1は、第1の実施形態に係る固体撮像装置1の全体構成を示す図である。
 図1の固体撮像装置1は、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。図24に示すように、固体撮像装置1(1002)はレンズ群1001を介して、被写体からの像光(入射光)を取り込み、撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
 図1に示すように、固体撮像装置1は、画素領域2と、垂直駆動回路3と、カラム信号処理回路4と、水平駆動回路5と、出力回路6と、制御回路7とを備えている。
1. First embodiment: solid-state imaging device
[1-1 Overall configuration of solid-state imaging device]
A solid-state imaging device 1 (or, in a broader sense, a "photodetector") according to a first embodiment of the present disclosure will be described below. Fig. 1 is a diagram showing an overall configuration of the solid-state imaging device 1 according to the first embodiment.
The solid-state imaging device 1 in Fig. 1 is a back-illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor. As shown in Fig. 24, the solid-state imaging device 1 (1002) captures image light (incident light) from a subject via a lens group 1001, converts the amount of incident light focused on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal.
As shown in FIG. 1, the solid-state imaging device 1 includes a pixel region 2, a vertical drive circuit 3, a column signal processing circuit 4, a horizontal drive circuit 5, an output circuit 6, and a control circuit .
 画素領域2は、二次元アレイ状に配置された複数の画素8を有している。画素8は、光電変換部22(図2参照)と、複数の画素トランジスタ(例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、選択トランジスタ)とを有している。画素8としては、イメージセンサのハイダイナミックレンジを実現するために、高感度画素8Hと、高感度画素8Hよりも感度が低い低感度画素8Lとの2種類の画素を有している。
 垂直駆動回路3は、例えば、シフトレジスタによって構成され、選択パルスを画素駆動配線9に順次出力する等して、画素領域2の各画素8を行単位で順次選択し、選択した画素8の画素信号を、垂直信号線10を通してカラム信号処理回路4に出力する。画素信号は、光電変換部22で生成した電化(例えば、電子)によって得られる信号である。
The pixel region 2 has a plurality of pixels 8 arranged in a two-dimensional array. Each pixel 8 has a photoelectric conversion unit 22 (see FIG. 2) and a plurality of pixel transistors (e.g., a transfer transistor, a reset transistor, an amplification transistor, and a selection transistor). In order to realize a high dynamic range of the image sensor, the pixels 8 have two types of pixels: a high sensitivity pixel 8H and a low sensitivity pixel 8L having a lower sensitivity than the high sensitivity pixel 8H.
The vertical drive circuit 3 is configured, for example, by a shift register, and sequentially selects each pixel 8 in the pixel region 2 on a row-by-row basis by, for example, sequentially outputting selection pulses to pixel drive wirings 9, and outputs pixel signals of the selected pixels 8 to the column signal processing circuit 4 through vertical signal lines 10. The pixel signals are signals obtained by electricity (for example, electrons) generated in the photoelectric conversion units 22.
 カラム信号処理回路4は、例えば、画素8の列毎に配置されており、1行分の画素8から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。信号処理としては、例えば、画素固有の固定パターンノイズを除去するための相関二重サンプリング (CDS:Correlated Double Sampling)、AD(Analog Digital)変換を採用できる。
 水平駆動回路5は、例えば、シフトレジスタによって構成され、水平走査パルスをカラム信号処理回路4に順次出力して、カラム信号処理回路4を順番に選択し、選択したカラム信号処理回路4に、信号処理が行われた画素信号を水平信号線11に出力させる。
The column signal processing circuit 4 is arranged, for example, for each column of pixels 8, and performs signal processing such as noise removal for each pixel column on signals output from one row of pixels 8. For example, correlated double sampling (CDS) for removing fixed pattern noise specific to each pixel and AD (Analog-Digital) conversion can be used as the signal processing.
The horizontal drive circuit 5 is, for example, composed of a shift register, and sequentially outputs horizontal scanning pulses to the column signal processing circuits 4, selects the column signal processing circuits 4 in order, and causes the selected column signal processing circuit 4 to output pixel signals that have been subjected to signal processing to the horizontal signal line 11.
 出力回路6は、カラム信号処理回路4から水平信号線11を通して順次出力される画素信号それぞれに対して各種信号処理を行う。信号処理としては、例えば、バファリング、黒レベル調整、列ばらつき補正等の各種デジタル信号処理を用いることができる。
 制御回路7は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路3、カラム信号処理回路4、及び水平駆動回路5等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路7は、生成したクロック信号や制御信号を、垂直駆動回路3、カラム信号処理回路4、及び水平駆動回路5等に出力する。
The output circuit 6 performs various signal processing on each of the pixel signals sequentially output from the column signal processing circuit 4 through the horizontal signal line 11. As the signal processing, various types of digital signal processing such as buffering, black level adjustment, column variation correction, etc. can be used.
The control circuit 7 generates clock signals and control signals that serve as a reference for the operation of the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc., based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Then, the control circuit 7 outputs the generated clock signals and control signals to the vertical drive circuit 3, the column signal processing circuit 4, the horizontal drive circuit 5, etc.
[1-2 要部の構成]
 次に、固体撮像装置1の詳細構造について説明する。図2は、図1のA-A線で破断した場合の、固体撮像装置1の断面構成を示す図である。
 図2に示すように、固体撮像装置1は、半導体基板12の光入射面(以下、「裏面S1」とも呼ぶ)に、絶縁膜13、遮光膜14、平坦化膜15、インナーレンズ16、平坦化膜17、カラーフィルタ18及びオンチップレンズ19がこの順に積層されている。また、半導体基板12の裏面S1と反対側の面(以下、「表面S2」とも呼ぶ)には、配線層20が配置されている。また、固体撮像装置1の各画素8(高感度画素8H、低感度画素8L)のうちの、低感度画素8Lの部分には、カラーフィルタ18の直下に、所定の遮光パターン(図5参照)を有する減光構造体21が配置されている。即ち、減光構造体21は、一部のオンチップレンズ19と半導体基板12との間に配置されている。
[1-2 Configuration of main parts]
Next, there will be described a detailed structure of the solid-state imaging device 1. Fig. 2 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 taken along line AA in Fig. 1.
As shown in Fig. 2, the solid-state imaging device 1 has an insulating film 13, a light-shielding film 14, a planarizing film 15, an inner lens 16, a planarizing film 17, a color filter 18, and an on-chip lens 19 laminated in this order on a light incident surface (hereinafter also referred to as "back surface S1") of a semiconductor substrate 12. A wiring layer 20 is disposed on a surface (hereinafter also referred to as "front surface S2") opposite to the back surface S1 of the semiconductor substrate 12. Also, of the pixels 8 (high sensitivity pixel 8H, low sensitivity pixel 8L) of the solid-state imaging device 1, a light-shielding structure 21 having a predetermined light-shielding pattern (see Fig. 5) is disposed immediately below the color filter 18 in the portion of the low sensitivity pixel 8L. That is, the light-shielding structure 21 is disposed between some of the on-chip lenses 19 and the semiconductor substrate 12.
 半導体基板12は、例えば、シリコン(Si)基板によって構成されている。半導体基板12には、各画素8が位置している領域それぞれに光電変換部22が形成されている。即ち、半導体基板12には、複数の光電変換部22が二次元アレイ状に配置されている。光電変換部22は、p型半導体領域とn型半導体領域とを有し、これらのpn接合によってフォトダイオードを構成し、受光量に応じた電荷を生成する光電変換を行う。また、光電変換部22は、pn接合で生じた静電容量に光電変換で生成した電荷を蓄積する。 The semiconductor substrate 12 is made of, for example, a silicon (Si) substrate. A photoelectric conversion unit 22 is formed in each region of the semiconductor substrate 12 where each pixel 8 is located. That is, a plurality of photoelectric conversion units 22 are arranged in a two-dimensional array on the semiconductor substrate 12. The photoelectric conversion unit 22 has a p-type semiconductor region and an n-type semiconductor region, and the pn junction between these forms a photodiode, which performs photoelectric conversion to generate charge according to the amount of light received. The photoelectric conversion unit 22 also accumulates the charge generated by photoelectric conversion in the electrostatic capacitance generated by the pn junction.
 絶縁膜13は、半導体基板12の裏面S1側全体を連続的に被覆している。絶縁膜13の材料としては、例えば、酸化シリコン(SiO2)、窒化シリコン(SiN)を採用できる。
 遮光膜14は、絶縁膜13の光入射面(以下、「裏面S3」とも呼ぶ)側の一部に、複数の光電変換部22それぞれの光入射面(裏面S1)を開口するように、格子状に形成されている。即ち、遮光膜14は、半導体基板12の裏面S1側に配置され、平面視で、隣り合う光電変換部22間の領域を覆うように形成されている。遮光膜14の材料としては、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の金属を採用できる。
 平坦化膜15は、絶縁膜13の裏面S3と遮光膜14とを被覆し、インナーレンズ16側の面(以下、「裏面S4」とも呼ぶ)を凹凸がない平坦面としている。平坦化膜15の材料としては、例えば、酸化シリコン(SiO2)、窒化シリコン(SiN)を採用できる。
The insulating film 13 continuously covers the entire back surface S1 side of the semiconductor substrate 12. The insulating film 13 may be made of a material such as silicon oxide (SiO 2 ) or silicon nitride (SiN).
The light-shielding film 14 is formed in a lattice shape on a part of the light incident surface (hereinafter also referred to as "rear surface S3") side of the insulating film 13 so as to open the light incident surface (rear surface S1) of each of the multiple photoelectric conversion units 22. That is, the light-shielding film 14 is disposed on the rear surface S1 side of the semiconductor substrate 12, and is formed so as to cover the region between adjacent photoelectric conversion units 22 in a plan view. As the material for the light-shielding film 14, for example, a metal such as aluminum (Al), tungsten (W), or copper (Cu) can be used.
The planarization film 15 covers the rear surface S3 of the insulating film 13 and the light-shielding film 14, and makes the surface on the inner lens 16 side (hereinafter also referred to as the "rear surface S4") a flat surface without any irregularities. Examples of the material for the planarization film 15 include silicon oxide ( SiO2 ) and silicon nitride (SiN).
 インナーレンズ16は、画素8それぞれに対応するように二次元アレイ状に配置されている。インナーレンズ16は、オンチップレンズ19の透過光を集光し、集光した透過光を、対応する光電変換部22内に入射させる。インナーレンズ16は、オンチップレンズ19とともに、画素8毎に入射光(以下、「光23」とも呼ぶ)を集光する集光部24を構成している。これにより、半導体基板12の裏面S1側に、オンチップレンズ19と、半導体基板12とオンチップレンズ19との間に配置されたインナーレンズ16とを有する複数の集光部24が配置された構成となっている。図2では、半導体基板12の裏面S1と直交する方向(図2の上下方向)において、集光部24による光23の集光スポット25の位置が、遮光膜14が配置されている深さに位置する場合を例示している。即ち、半導体基板12の裏面S1と直交する方向において、集光部24による光23の集光スポット25が、減光構造体21よりも半導体基板12側に位置する構成となっている。
 平坦化膜17は、インナーレンズ16の光入射面(以下、「裏面S5」とも呼ぶ)を被覆し、カラーフィルタ18側の面(以下、「裏面S6」とも呼ぶ)を凹凸がない平坦面としている。平坦化膜17の材料としては、例えば平坦化膜15と同じ材料を採用できる。
The inner lenses 16 are arranged in a two-dimensional array so as to correspond to each pixel 8. The inner lenses 16 collect light transmitted through the on-chip lenses 19 and cause the collected transmitted light to enter the corresponding photoelectric conversion unit 22. The inner lenses 16, together with the on-chip lenses 19, form a light collecting unit 24 that collects incident light (hereinafter also referred to as "light 23") for each pixel 8. This results in a configuration in which a plurality of light collecting units 24 having the on-chip lenses 19 and the inner lenses 16 arranged between the semiconductor substrate 12 and the on-chip lenses 19 are arranged on the rear surface S1 side of the semiconductor substrate 12. FIG. 2 illustrates a case in which the position of a light collecting spot 25 of the light 23 by the light collecting unit 24 is located at a depth where the light shielding film 14 is arranged in a direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 2). That is, in a direction perpendicular to the rear surface S 1 of the semiconductor substrate 12 , a light spot 25 of the light 23 focused by the light focusing portion 24 is positioned closer to the semiconductor substrate 12 than the light attenuation structural body 21 .
The planarization film 17 covers the light incidence surface (hereinafter also referred to as the "rear surface S5") of the inner lens 16, and makes the surface on the color filter 18 side (hereinafter also referred to as the "rear surface S6") a flat surface without irregularities. The planarization film 17 can be made of the same material as the planarization film 15, for example.
 また、平坦化膜15、インナーレンズ16及び平坦化膜17は、画素8それぞれに対応するように複数の領域に区画されており、隣り合う領域の間に隔壁部27が配置されている。即ち、隔壁部27は、各領域それぞれを囲むように、格子状に形成されている。これにより、ある領域に入射した光23が隣の領域へ漏れ出ることを抑制でき、光学混色を抑制できる。また、隔壁部27の半導体基板12側の端部は、遮光膜14と接触し、遮光膜14と電気的に接続されている。隔壁部27の材料としては、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の金属を採用できる。隔壁部27の材料として遮光膜14と同じ金属を用いる場合には、隔壁部27と遮光膜14とを一体に形成してもよい。
 カラーフィルタ18は、画素8それぞれに対応するように二次元アレイ状に配置されている。図2では、高感度画素8Hと低感度画素8Lとに共有のカラーフィルタ18を配置した場合を例示している。カラーフィルタ18は、互いに異なる所定波長の光のみを透過させる。例えば、赤色光を透過させるRフィルタ、緑色光を透過させるGフィルタ、青色光を透過させるBフィルタが挙げられる。これにより、カラーフィルタ18は、透過特性に応じた所定波長の光を透過し、透過した光を、対応する光電変換部22に入射させる。なお、図2では、高感度画素8Hと低感度画素8Lとで共有されるカラーフィルタ18としてGフィルタを用いた場合を例示しているが、これに限られるものではなく、例えば、RフィルタやBフィルタを用いてもよく、RGB以外のカラーフィルタを用いてもよい。
 オンチップレンズ19は、画素8それぞれに対応するように二次元アレイ状に配置されている。オンチップレンズ19は、被写体からの像光(光23)を集光し、集光した像光(光23)を、カラーフィルタ18等を介し、対応する光電変換部22内に入射させる。
 配線層20は、半導体基板12の表面S2側に配置されている。配線層20は、層間絶縁膜と、層間絶縁膜を介して複数層に積層された配線とを有している。そして、配線層20は、複数層の配線を介して、各画素8の画素トランジスタ(不図示)を駆動する。
In addition, the planarization film 15, the inner lens 16, and the planarization film 17 are partitioned into a plurality of regions corresponding to the pixels 8, and a partition wall 27 is disposed between adjacent regions. That is, the partition wall 27 is formed in a lattice shape so as to surround each region. This makes it possible to suppress the light 23 incident on a certain region from leaking out to an adjacent region, thereby suppressing optical color mixing. In addition, the end of the partition wall 27 on the semiconductor substrate 12 side is in contact with the light-shielding film 14 and is electrically connected to the light-shielding film 14. For example, metals such as aluminum (Al), tungsten (W), and copper (Cu) can be used as the material of the partition wall 27. When the same metal as the light-shielding film 14 is used as the material of the partition wall 27, the partition wall 27 and the light-shielding film 14 may be formed integrally.
The color filters 18 are arranged in a two-dimensional array so as to correspond to each pixel 8. FIG. 2 illustrates a case where a shared color filter 18 is arranged between the high-sensitivity pixel 8H and the low-sensitivity pixel 8L. The color filter 18 transmits only light of a predetermined wavelength different from each other. For example, an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light can be given. As a result, the color filter 18 transmits light of a predetermined wavelength according to the transmission characteristics, and the transmitted light is made incident on the corresponding photoelectric conversion unit 22. Note that FIG. 2 illustrates a case where a G filter is used as the color filter 18 shared between the high-sensitivity pixel 8H and the low-sensitivity pixel 8L, but is not limited thereto. For example, an R filter or a B filter may be used, and a color filter other than RGB may be used.
The on-chip lenses 19 are arranged in a two-dimensional array so as to correspond to each pixel 8. The on-chip lenses 19 collect image light (light 23) from a subject, and cause the collected image light (light 23) to enter the corresponding photoelectric conversion unit 22 via the color filter 18 or the like.
The wiring layer 20 is disposed on the surface S2 side of the semiconductor substrate 12. The wiring layer 20 has an interlayer insulating film and wirings stacked in multiple layers with the interlayer insulating film interposed therebetween. The wiring layer 20 drives pixel transistors (not shown) of each pixel 8 via the multiple layers of wiring.
 減光構造体21は、インナーレンズ16とカラーフィルタ18との間に配置され、低感度画素8Lにおいて、カラーフィルタ18の平坦化膜17側の面(以下、「表面S7」とも呼ぶ)全体を覆うように形成されている。これにより、半導体基板12の裏面S1と直交する方向(図2の上下方向)において、集光部24による光の集光スポット25と、減光構造体21とが互いに離れた構成となっている。図2では、減光構造体21が、カラーフィルタ18の直下に配置されている場合を例示している。減光構造体21としては、光を透過させる透過領域30、及び光を一部遮断する遮光領域31による遮光パターンを有する構造体が用いられる。これにより、減光構造体21は、遮光パターンに応じて光23を減光し、減光した光23を、インナーレンズ16に入射させる。減光構造体21の一例としては、例えば、図3に示すように、透過領域30と遮光領域31とによってメッシュ状の遮光パターンを形成しているメッシュ状構造体21aを採用できる。図3では、メッシュ状の遮光パターンとして、平面視で、外縁の領域に額縁状の遮光領域31で形成された枠体が配置され、その枠体で囲まれた内側の領域に縦方向・横方向のそれぞれに沿って延びる直線帯状の遮光領域31が一定のピッチで2つずつ配置されることで、3×3の二次元マトリックス状に開口領域(透過領域30)が配置された遮光パターンを用いた場合を例示している。これにより、メッシュ状構造体21aでは、メッシュ状構造体21aの全領域において、透過領域30と遮光領域31との割合が一定となっている。また、メッシュ状構造体21aの外周部は、隔壁部27の側面と接触し、隔壁部27と電気的に接続されている。図3は、減光構造体21の裏面S8の位置で破断した場合の、固体撮像装置1の断面構成を示す図である。減光構造体21の材料としては、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の金属、黒色樹脂等の光吸収材料を採用できる。例えば、光吸収材が採用された場合には、減光構造体21による光23の反射を抑制でき、反射光によるフレア発生の可能性を低減することができる。 The light-reducing structure 21 is disposed between the inner lens 16 and the color filter 18, and is formed so as to cover the entire surface (hereinafter also referred to as "surface S7") of the color filter 18 on the planarization film 17 side in the low-sensitivity pixel 8L. As a result, in a direction perpendicular to the back surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 2), the light-condensing spot 25 of the light-condensing portion 24 and the light-reducing structure 21 are configured to be separated from each other. FIG. 2 illustrates a case in which the light-reducing structure 21 is disposed directly below the color filter 18. As the light-reducing structure 21, a structure having a light-shielding pattern by a transmission region 30 that transmits light and a light-shielding region 31 that partially blocks light is used. As a result, the light-reducing structure 21 attenuates the light 23 according to the light-shielding pattern, and causes the attenuated light 23 to enter the inner lens 16. As an example of the light-reducing structure 21, for example, as shown in FIG. 3, a mesh-shaped structure 21a in which a mesh-shaped light-shielding pattern is formed by the transmission region 30 and the light-shielding region 31 can be adopted. 3 illustrates an example of a mesh-shaped light-shielding pattern in which, in a plan view, a frame formed of a frame-shaped light-shielding region 31 is arranged in the outer edge region, and two linear band-shaped light-shielding regions 31 extending along the vertical and horizontal directions are arranged at a constant pitch in the inner region surrounded by the frame, thereby arranging opening regions (transmitting regions 30) in a two-dimensional matrix of 3×3. As a result, in the mesh-shaped structure 21a, the ratio of the transmitting region 30 to the light-shielding region 31 is constant in the entire region of the mesh-shaped structure 21a. In addition, the outer periphery of the mesh-shaped structure 21a is in contact with the side surface of the partition wall 27 and is electrically connected to the partition wall 27. FIG. 3 is a diagram showing a cross-sectional configuration of the solid-state imaging device 1 when the light-attenuating structure 21 is broken at the position of the rear surface S8. As the material of the light-attenuating structure 21, for example, metals such as aluminum (Al), tungsten (W), and copper (Cu), and light-absorbing materials such as black resin can be used. For example, if a light absorbing material is used, reflection of light 23 by the dimming structure 21 can be suppressed, reducing the possibility of flare caused by reflected light.
 以上の構成を有する固体撮像装置1では、高感度画素8Hに光23が入射すると、入射した光23がオンチップレンズ19、カラーフィルタ18及びインナーレンズ16を透過し、透過した光23が光電変換部22で光電変換されて信号電荷が生成される。そして、生成された信号電荷が、配線層20の配線で形成された図1の垂直信号線10から画素信号として出力される。また、低感度画素8Lに光23が入射すると、入射した光23は、オンチップレンズ19、カラーフィルタ18及びインナーレンズ16に加えて、減光構造体21も透過して光電変換部22に入射される。それゆえ、低感度画素8Lの感度は、高感度画素8Hの感度よりも低くなる。これにより、低感度画素8Lと高感度画素8Hとに感度差をつけることができ、高感度画素8Hの画素信号と低感度画素8Lの画素信号とを用いることで、イメージセンサのハイダイナミックレンジを実現することができる。 In the solid-state imaging device 1 having the above configuration, when light 23 is incident on the high-sensitivity pixel 8H, the incident light 23 passes through the on-chip lens 19, the color filter 18, and the inner lens 16, and the transmitted light 23 is photoelectrically converted in the photoelectric conversion unit 22 to generate a signal charge. The generated signal charge is then output as a pixel signal from the vertical signal line 10 in FIG. 1 formed by the wiring of the wiring layer 20. Also, when light 23 is incident on the low-sensitivity pixel 8L, the incident light 23 passes through the on-chip lens 19, the color filter 18, the inner lens 16, and also the light-reducing structure 21 to be incident on the photoelectric conversion unit 22. Therefore, the sensitivity of the low-sensitivity pixel 8L is lower than that of the high-sensitivity pixel 8H. This allows a sensitivity difference to be created between the low-sensitivity pixel 8L and the high-sensitivity pixel 8H, and a high dynamic range of the image sensor can be realized by using the pixel signal of the high-sensitivity pixel 8H and the pixel signal of the low-sensitivity pixel 8L.
 ここで、例えば、図4に示すように、減光構造体21を遮光膜14が位置する深さに配置し、半導体基板12の裏面S1と直交する方向(図4の上下方向)において、集光部24による光23の集光スポット25が、減光構造体21の位置と重なる構成とした場合を考える。このような構成とした場合、減光構造体21のうちの光23が当たる領域(以下、「照射領域26」とも呼ぶ)の直径が、透過領域30の幅や遮光領域31の幅よりも小さくなる。それゆえ、例えば、図4及び図5に示すように、光23の入射角度(CRA)が所定角度になると、光23の集光スポット25が減光構造体21の透過領域30内に位置することになり、透過領域30を光23がそのまま透過して、光電変換部22に光23が入射される。図5は、図4に示した減光構造体21の光入射面(以下、「裏面S8」)の位置における、減光構造体21の遮光パターンと照射領域26とを示した図である。 Here, for example, as shown in FIG. 4, consider a configuration in which the light attenuation structure 21 is disposed at a depth where the light-shielding film 14 is located, and the light-focusing spot 25 of the light 23 by the light-focusing unit 24 overlaps with the position of the light attenuation structure 21 in a direction perpendicular to the back surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 4). In such a configuration, the diameter of the region of the light attenuation structure 21 where the light 23 hits (hereinafter also referred to as the "irradiation region 26") becomes smaller than the width of the transmission region 30 and the width of the light-shielding region 31. Therefore, for example, as shown in FIG. 4 and FIG. 5, when the incidence angle (CRA) of the light 23 becomes a predetermined angle, the light-focusing spot 25 of the light 23 is located within the transmission region 30 of the light attenuation structure 21, and the light 23 passes through the transmission region 30 as it is, and the light 23 is incident on the photoelectric conversion unit 22. FIG. 5 is a diagram showing the light shielding pattern and the irradiation area 26 of the light attenuation structure 21 at the position of the light incident surface (hereinafter, "rear surface S8") of the light attenuation structure 21 shown in FIG. 4.
 また、例えば、光23の入射角度を上記の所定角度から変化させていくと、光23の集光スポット25が横方向に移動し、図6及び図7に示すように、光23の集光スポット25が減光構造体21の遮光領域31と重なった位置まで移動すると、遮光領域31で光23のほとんどが遮断されて、光電変換部22には、周囲の透過領域30を透過した僅かな光23が入射されるだけとなる。図7は、図6に示した減光構造体21の裏面S8の位置における、減光構造体21の遮光パターンと照射領域26とを示した図である。このような、光電変換部22に入射される光23の量の変化は、集光スポット25の位置と、減光構造体21の遮光パターンとによるものであるため、光23の入射角度の変化に応じて周期的に発生する。それゆえ、光電変換部22に入射される光23の量が変化することで、図8に示すように、光23の入射角度に応じて、画素8(低感度画素8L)の感度が周期的に変化することになる。そのため、図4に示した構成の固体撮像装置1では、同じ減光構造体21を用いた画素8(低感度画素8L)であっても、画素領域2内の位置によって画素8(低感度画素8L)の感度が変化し、撮像画像の画質低下を招く可能性がある。 Also, for example, when the angle of incidence of the light 23 is changed from the above-mentioned predetermined angle, the condensed spot 25 of the light 23 moves laterally, and when the condensed spot 25 of the light 23 moves to a position where it overlaps with the light-shielding region 31 of the light-attenuating structure 21 as shown in Figs. 6 and 7, most of the light 23 is blocked by the light-shielding region 31, and only a small amount of the light 23 that has passed through the surrounding transparent region 30 is incident on the photoelectric conversion unit 22. Fig. 7 is a diagram showing the light-shielding pattern and the irradiation region 26 of the light-attenuating structure 21 at the position of the back surface S8 of the light-attenuating structure 21 shown in Fig. 6. Such a change in the amount of light 23 incident on the photoelectric conversion unit 22 occurs periodically according to the change in the angle of incidence of the light 23, since it is due to the position of the light-attenuating spot 25 and the light-shielding pattern of the light-attenuating structure 21. Therefore, the change in the amount of light 23 incident on the photoelectric conversion unit 22 causes the sensitivity of the pixel 8 (low-sensitivity pixel 8L) to change periodically according to the angle of incidence of the light 23, as shown in Fig. 8. Therefore, in the solid-state imaging device 1 having the configuration shown in FIG. 4, even if the pixel 8 (low-sensitivity pixel 8L) uses the same light-attenuating structure 21, the sensitivity of the pixel 8 (low-sensitivity pixel 8L) may vary depending on its position within the pixel region 2, which may result in a deterioration in the image quality of the captured image.
 これに対し、第1の実施形態では、半導体基板12の裏面S1と直交する方向(図2の上下方向)において、集光部24による光23の集光スポット25と、減光構造体21とが互いに離れている構成とした。これにより、例えば、減光構造体21を遮光膜14が位置する深さに配置した場合(図4に示した構成)に比べ、減光構造体21のうちの光23が当たる領域(照射領域26)を大きくすることができる。それゆえ、照射領域26の直径を、透過領域30の幅や遮光領域31の幅よりも大きくすることができる。そのため、例えば、図2、図3、図9及び図10に示すように、光23の入射角度を変化させたときの、照射領域26に含まれる透過領域30の割合や遮光領域31の割合の変動を抑制できる。図2及び図3は、光23の入射角度が図4に示した光23と同一であるときを示す図であり、図9及び図10は、図6に示した光23と同一であるときを示す図である。
 その結果、光23の入射角度の変化に応じた、光電変換部22に入射される光23の量の変化を抑制でき、図11に示すように、光23の入射角度に応じて、画素8(低感度画素8L)の感度が周期的に変化することを抑制できる。したがって、第1の実施形態に係る固体撮像装置1によれば、入射光(光23)の減光をより適切に行うことができる。それゆえ、画素領域2内の位置による画素8(低感度画素8L)の感度の変化を抑制でき、撮像画像の画質低下を抑制できる。図10は、図9に示した減光構造体21の裏面S8の位置における、減光構造体21の遮光パターンと照射領域26とを示した図である。
 また、第1の実施形態では、透過領域30と遮光領域31とによる遮光パターンを有する減光構造体21を用いて減光を行う構成とした。それゆえ、例えば、グレーフィルタを用いて減光を行う構成と異なり、分光を変化させることなく、減光を行うことができる。
In contrast, in the first embodiment, the condensed spot 25 of the light 23 by the condensing unit 24 and the light attenuation structure 21 are separated from each other in the direction perpendicular to the back surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 2). As a result, the region (irradiation region 26) of the light attenuation structure 21 on which the light 23 hits can be made larger than when, for example, the light attenuation structure 21 is disposed at a depth where the light shielding film 14 is located (the configuration shown in FIG. 4). Therefore, the diameter of the irradiation region 26 can be made larger than the width of the transmission region 30 and the width of the light shielding region 31. Therefore, for example, as shown in FIG. 2, FIG. 3, FIG. 9, and FIG. 10, the variation in the ratio of the transmission region 30 and the ratio of the light shielding region 31 included in the irradiation region 26 when the angle of incidence of the light 23 is changed can be suppressed. FIG. 2 and FIG. 3 are diagrams showing the case where the angle of incidence of the light 23 is the same as the light 23 shown in FIG. 4, and FIG. 9 and FIG. 10 are diagrams showing the case where the angle of incidence of the light 23 is the same as the light 23 shown in FIG. 6.
As a result, the change in the amount of light 23 incident on the photoelectric conversion unit 22 according to the change in the angle of incidence of the light 23 can be suppressed, and as shown in FIG. 11, the periodic change in the sensitivity of the pixel 8 (low-sensitivity pixel 8L) according to the angle of incidence of the light 23 can be suppressed. Therefore, according to the solid-state imaging device 1 according to the first embodiment, it is possible to more appropriately attenuate the incident light (light 23). Therefore, the change in the sensitivity of the pixel 8 (low-sensitivity pixel 8L) according to the position in the pixel region 2 can be suppressed, and the deterioration of the image quality of the captured image can be suppressed. FIG. 10 is a diagram showing the light-shielding pattern and the irradiation region 26 of the light-attenuating structure 21 at the position of the back surface S8 of the light-attenuating structure 21 shown in FIG. 9.
In the first embodiment, the light is reduced using the light-reducing structure 21 having a light-shielding pattern made up of the transmission region 30 and the light-shielding region 31. Therefore, unlike a configuration in which light is reduced using a gray filter, for example, light can be reduced without changing the spectrum.
 また、第1の実施形態では、減光構造体21として、透過領域30と遮光領域31とによってメッシュ状の遮光パターンを形成するメッシュ状構造体21aを用いる構成とした。それゆえ、減光構造体21による光23の減光度合いは、例えば、図12に示すように、メッシュを構成するライン状の部分(遮光領域31)の幅と開口(透過領域30)の幅とを変更することで調整できる。または、例えば、図13に示すように、ライン状の部分(遮光領域31)の数と開口(透過領域30)の数とを変更することでも調整できる。 In the first embodiment, the light attenuation structure 21 is configured to use a mesh-like structure 21a that forms a mesh-like light-shielding pattern by means of transmissive regions 30 and light-shielding regions 31. Therefore, the degree of attenuation of light 23 by the light attenuation structure 21 can be adjusted by changing the width of the line-like portions (light-shielding regions 31) that make up the mesh and the width of the openings (transmissive regions 30), as shown in FIG. 12, for example. Alternatively, it can also be adjusted by changing the number of line-like portions (light-shielding regions 31) and the number of openings (transmissive regions 30), as shown in FIG. 13, for example.
[1-3 変形例]
(1)なお、第1の実施形態では、減光構造体21を、インナーレンズ16とカラーフィルタ18との間に配置する例を示したが、他の構成を採用することもできる。例えば、図14に示すように、減光構造体21を、半導体基板12とインナーレンズ16との間に配置し、低感度画素8Lにおいて、インナーレンズ16の平坦化膜15側の面(以下、「表面S9」とも呼ぶ)全体を覆うように形成した構成としてもよい。図14では、減光構造体21が、インナーレンズ16の直下に配置されている場合を例示している。減光構造体21を半導体基板12とインナーレンズ16との間に配置することにより、例えば、減光構造体21を遮光膜14が位置する深さに配置した場合(図4に示した構成)に比べ、減光構造体21のうちの光23が当たる領域(照射領域26)を大きくすることができる。それゆえ、減光構造体21をインナーレンズ16とカラーフィルタ18との間に配置した場合(図2に示した構成)と同様の原理により、図15に示すように、光23の入射角度に応じて、画素8(低感度画素8L)の感度が周期的に変化することを抑制できる。また、図14に示した構成によれば、図2に示した構成よりも、減光構造体21がオンチップレンズ19の光入射面から深い位置に配置されるため、減光構造体21で反射された光23による反射光を弱めることができ、反射光によるフレア発生の可能性を低減できる。
 また例えば、図16に示すように、減光構造体21を、オンチップレンズ19とカラーフィルタ18との間に配置し、低感度画素8Lにおいて、カラーフィルタ18の光入射面(以下「表面S10」とも呼ぶ)全体を覆うように形成した構成としてもよい。図16では、減光構造体21がカラーフィルタ18の直上に配置されている場合を例示している。
[1-3 Modifications]
(1) In the first embodiment, the light-reducing structure 21 is disposed between the inner lens 16 and the color filter 18, but other configurations may be adopted. For example, as shown in FIG. 14, the light-reducing structure 21 may be disposed between the semiconductor substrate 12 and the inner lens 16, and may be formed to cover the entire surface (hereinafter, also referred to as "surface S9") of the inner lens 16 on the planarization film 15 side in the low-sensitivity pixel 8L. FIG. 14 illustrates a case in which the light-reducing structure 21 is disposed directly below the inner lens 16. By disposing the light-reducing structure 21 between the semiconductor substrate 12 and the inner lens 16, for example, compared to the case in which the light-reducing structure 21 is disposed at a depth where the light-shielding film 14 is located (the configuration shown in FIG. 4), the region (irradiation region 26) of the light-reducing structure 21 on which the light 23 hits can be made larger. Therefore, by using the same principle as in the case where the light attenuation structure 21 is disposed between the inner lens 16 and the color filter 18 (the configuration shown in FIG. 2 ), as shown in FIG. 15 , it is possible to suppress periodic changes in the sensitivity of the pixel 8 (low sensitivity pixel 8L) depending on the angle of incidence of the light 23. In addition, according to the configuration shown in FIG. 14 , the light attenuation structure 21 is disposed at a deeper position from the light incidence surface of the on-chip lens 19 than in the configuration shown in FIG. 2 , so that it is possible to weaken the reflected light due to the light 23 reflected by the light attenuation structure 21, and it is possible to reduce the possibility of flare occurring due to the reflected light.
16, for example, the light attenuation structure 21 may be disposed between the on-chip lens 19 and the color filter 18, and may be formed so as to cover the entire light incidence surface (hereinafter also referred to as "surface S10") of the color filter 18 in the low-sensitivity pixel 8L. FIG. 16 illustrates a case in which the light attenuation structure 21 is disposed directly above the color filter 18.
(2)また、例えば、図17及び図18に示すように、減光構造体21を、遮光膜14が位置する深さに配置し、低感度画素8Lにおいて、絶縁膜13の光入射面(裏面S3)全体を覆うように形成した構成としてもよい。図17及び図18では、減光構造体21を、遮光膜14を形成している金属膜の一部に形成した場合を例示している。この場合、図17に示すように、半導体基板12の裏面S1と直交する方向(図17の上下方向)において、集光部24による光23の集光スポット25が、半導体基板12内に位置するように集光部24を形成する。または、図18に示すように、半導体基板12の裏面S1と直交する方向(図18の上下方向)において、集光部24による光23の集光スポット25が、減光構造体21よりも集光部24側に位置するように集光部24を形成する。なお、図17及び図18では、図2に示したインナーレンズ16が省略され、集光部24がオンチップレンズ19のみで形成された構成となっている。また、減光構造体21をカラーフィルタ18の直下に配置した構成(図2に示した構成)にも、集光部24をオンチップレンズ19のみで形成された構成を採用できる。また、図2に示した構成や図14に示した構成においても、半導体基板12の裏面S1と直交する方向において、集光部24による光23の集光スポット25が、半導体基板12内に位置するような構造としてもよい。 (2) For example, as shown in FIG. 17 and FIG. 18, the light-attenuating structure 21 may be disposed at a depth where the light-shielding film 14 is located, and may be formed to cover the entire light-incident surface (rear surface S3) of the insulating film 13 in the low-sensitivity pixel 8L. FIG. 17 and FIG. 18 show an example in which the light-attenuating structure 21 is formed in a part of the metal film forming the light-shielding film 14. In this case, as shown in FIG. 17, the light-concentrating portion 24 is formed so that the light-concentrating spot 25 of the light 23 by the light-concentrating portion 24 is located within the semiconductor substrate 12 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 17). Alternatively, as shown in FIG. 18, the light-concentrating portion 24 is formed so that the light-concentrating spot 25 of the light 23 by the light-concentrating portion 24 is located closer to the light-concentrating portion 24 than the light-attenuating structure 21 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12 (the vertical direction in FIG. 18). 17 and 18, the inner lens 16 shown in FIG. 2 is omitted, and the light collecting portion 24 is formed only by the on-chip lens 19. Also, the light collecting portion 24 can be formed only by the on-chip lens 19 in the configuration in which the light attenuation structure 21 is disposed directly under the color filter 18 (the configuration shown in FIG. 2). Also, in the configuration shown in FIG. 2 and the configuration shown in FIG. 14, the light collecting spot 25 of the light 23 by the light collecting portion 24 may be located within the semiconductor substrate 12 in the direction perpendicular to the rear surface S1 of the semiconductor substrate 12.
(3)また、第1の実施形態では、半導体基板12の裏面S1を平坦面とする例を示したが、他の構成を採用することもできる。例えば、図19に示すように、半導体基板12の裏面S1側に逆ピラミッド状の凹部32を複数形成し、モスアイ構造の反射防止部を有する構成としてもよい。この場合、半導体基板12には、隣り合う光電変換部22の間に画素分離部33を配置する。画素分離部33は、各光電変換部22それぞれを囲むように、格子状に形成する。画素分離部33の材料としては、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の金属を採用できる。凹部32及び画素分離部33により、入射光(光23)の屈折量を増大し、光23を画素分離部33の間で反射させ、光路長を増大できる。また、入射光(光23)の反射を防止でき、光利用効率を向上できる。また、半導体基板12の裏面S1を凹部32が形成された構造とする場合、減光構造体21は、逆ピラミッド状の凹部32の先端部に形成する。即ち、逆ピラミッド状の凹部32の先端部が遮光領域31となり、隣り合う遮光領域31の間が透過領域30となる構造とする。 (3) In the first embodiment, the back surface S1 of the semiconductor substrate 12 is a flat surface, but other configurations can be adopted. For example, as shown in FIG. 19, a plurality of inverted pyramid-shaped recesses 32 may be formed on the back surface S1 side of the semiconductor substrate 12, and a moth-eye structure anti-reflection portion may be provided. In this case, the semiconductor substrate 12 has pixel separation portions 33 disposed between adjacent photoelectric conversion portions 22. The pixel separation portions 33 are formed in a lattice shape so as to surround each of the photoelectric conversion portions 22. Metals such as aluminum (Al), tungsten (W), and copper (Cu) can be used as the material of the pixel separation portions 33. The recesses 32 and the pixel separation portions 33 increase the amount of refraction of the incident light (light 23), and the light 23 is reflected between the pixel separation portions 33, thereby increasing the optical path length. In addition, the reflection of the incident light (light 23) can be prevented, and the light utilization efficiency can be improved. In addition, when the rear surface S1 of the semiconductor substrate 12 has a structure in which a recess 32 is formed, the light-reducing structure 21 is formed at the tip of the inverted pyramid-shaped recess 32. In other words, the tip of the inverted pyramid-shaped recess 32 becomes the light-shielding region 31, and the space between adjacent light-shielding regions 31 becomes the transmission region 30.
(4)また、第1の実施形態では、減光構造体21の全体にメッシュ状の遮光パターンを形成して、減光構造体21の全領域において、透過領域30と遮光領域31との割合を一定とする例を示したが、他の構成を採用できる。例えば、図20、図22、図23に示すように、遮光構造体21を、透過領域30と遮光領域31との割合が、減光構造体21の中心部側34と外周部側35とで異なっている構成としてもよい。これにより、入射光(光23)の入射角度(CRA)に対する光23の減光度合いを制御でき、光23の減光をより適切に行うことができる。図20~図23は、減光構造体21の中心部側34の遮光領域31の割合(以下、「第1の割合」とも呼ぶ)>外周部側35の遮光領域31の割合(以下、「第2の割合」とも呼ぶ)とした場合を例示している。第1の割合>第2の割合とすることにより、例えば、光23の入射角度が大きくなる高像高側の画素8(低感度画素8L)の感度を向上でき、減光構造体21で感度が低くなりすぎることを抑制できる。
 図20では、減光構造体21が、透過領域30と遮光領域31とによってフレネルゾーンプレート(FZP:Fresnel zone plate)を構成する遮光パターンを形成しているFZP状構造体21bである場合を例示している。FZP状構造体21bは、円形状の遮光領域31の周囲に輪帯状の透過領域30と遮光領域31とが交互に同心円状に配置され、これらの同心円(輪帯)の幅が外周に近づくほど細くなる構造体である。FZP状構造体21bを用いることにより、光学対称性を保ったまま、減光効果を得ることができる。また、フレネルゾーンプレートが光23を集光するため、混色低減効果も得ることができる。
 また、例えば図21に示すように、FZP状構造体21bの遮光パターンを、プロセス上容易なパターンとして全レイアウトを繋いだパターンとしてもよい。図21では、図20に示したFZP状構造体21bに、円形状や輪帯状の遮光領域31すべてを貫通して隔壁部27に電気的に接続された直線状の遮光領域31が付加された場合を例示している。
(4) In the first embodiment, a mesh-shaped light-shielding pattern is formed on the entire light-attenuating structure 21, and the ratio of the transmission region 30 to the light-shielding region 31 is constant in the entire region of the light-attenuating structure 21. However, other configurations can be adopted. For example, as shown in Figs. 20, 22, and 23, the light-shielding structure 21 may be configured such that the ratio of the transmission region 30 to the light-shielding region 31 differs between the center side 34 and the outer periphery side 35 of the light-attenuating structure 21. This makes it possible to control the degree of attenuation of the light 23 relative to the incidence angle (CRA) of the incident light (light 23), and to more appropriately attenuate the light 23. Figs. 20 to 23 illustrate a case in which the ratio of the light-shielding region 31 on the center side 34 of the light-attenuating structure 21 (hereinafter also referred to as the "first ratio") is greater than the ratio of the light-shielding region 31 on the outer periphery side 35 (hereinafter also referred to as the "second ratio"). By making the first ratio greater than the second ratio, for example, it is possible to improve the sensitivity of the pixel 8 (low sensitivity pixel 8L) on the high image height side where the angle of incidence of the light 23 is larger, and it is possible to prevent the sensitivity of the dimming structure 21 from becoming too low.
FIG. 20 illustrates an example in which the light-attenuating structure 21 is an FZP-like structure 21b in which a light-shielding pattern constituting a Fresnel zone plate (FZP) is formed by a transmission region 30 and a light-shielding region 31. The FZP-like structure 21b is a structure in which annular transmission regions 30 and light-shielding regions 31 are alternately arranged concentrically around a circular light-shielding region 31, and the width of these concentric circles (zones) becomes narrower as they approach the outer periphery. By using the FZP-like structure 21b, a light-attenuating effect can be obtained while maintaining optical symmetry. In addition, since the Fresnel zone plate collects light 23, a color mixing reduction effect can also be obtained.
Also, for example, as shown in Fig. 21, the light-shielding pattern of the FZP-like structure 21b may be a pattern that connects the entire layout as a pattern that is easy to process. Fig. 21 illustrates a case in which a linear light-shielding region 31 that penetrates all of the circular or annular light-shielding regions 31 and is electrically connected to the partition wall 27 is added to the FZP-like structure 21b shown in Fig. 20.
 また、図22では、減光構造体21が、透過領域30と遮光領域31とによって減光構造体21の中心部から外周部に延びている放射線状の遮光パターンを形成している放射線状構造体21cである場合を例示している。放射線状構造体21cを用いることにより、光学対称性を保ったまま、減光効果を得ることができ。放射線状構造体21cの一例としては、図22に示すように、平面視で、直線帯状の遮光領域31が縦方向・横方向・右斜め方向・左斜め方向のそれぞれに沿うように放射線状に配置された構造体が挙げられる。また、放射線状構造体21cを構成する直線帯状の遮光領域31の端部は、隔壁部27の側面と接触し、隔壁部27と電気的に接続されている。これにより、放射線状構造体21cの遮光パターン(遮光領域31)が、フローティング状態となることが防止される。
 また、図23では、減光構造体21が、透過領域30と遮光領域31とによって減光構造体21の中心部側34にメッシュ状の遮光パターンを形成し、外周部側35に他の遮光パターンを形成している変形メッシュ状構造体21dである場合を例示している。変形メッシュ状構造体21dを用いることにより、光23の入射角度(CRA)が小さいときと大きいときで、光電変換部22に入射される光23の減光度合いを調整でき、画素8(低感度画素8L)の感度を調整できる。変形メッシュ状構造体21dの一例としては、図23に示すように、中心部側34に、4×4の二次元マトリックス状に透過領域30が配置されたメッシュ状の遮光パターンが形成され、外周部側35に、角部を除いた全体に透過領域30が配置された遮光パターンが形成された構造体が挙げられる。この一例の構成によれば、光23の入射角度が大きいときの画素8(低感度画素8L)の感度を向上できる。
FIG. 22 illustrates a case where the light-attenuating structure 21 is a radial structure 21c in which the transmission region 30 and the light-shielding region 31 form a radial light-shielding pattern extending from the center to the outer periphery of the light-attenuating structure 21. By using the radial structure 21c, it is possible to obtain a light-attenuating effect while maintaining optical symmetry. As an example of the radial structure 21c, as shown in FIG. 22, a structure in which linear band-shaped light-shielding regions 31 are radially arranged along the vertical direction, horizontal direction, right diagonal direction, and left diagonal direction in a plan view is given. In addition, the ends of the linear band-shaped light-shielding regions 31 constituting the radial structure 21c are in contact with the side surfaces of the partition wall 27 and are electrically connected to the partition wall 27. This prevents the light-shielding pattern (light-shielding region 31) of the radial structure 21c from being in a floating state.
23 illustrates an example in which the light attenuation structure 21 is a deformed mesh structure 21d in which a mesh-shaped light-shielding pattern is formed on the central side 34 of the light attenuation structure 21 by the transmission region 30 and the light-shielding region 31, and another light-shielding pattern is formed on the peripheral side 35. By using the deformed mesh structure 21d, the degree of light attenuation of the light 23 incident on the photoelectric conversion unit 22 can be adjusted when the incidence angle (CRA) of the light 23 is small and large, and the sensitivity of the pixel 8 (low-sensitivity pixel 8L) can be adjusted. As an example of the deformed mesh structure 21d, as shown in FIG. 23, a mesh-shaped light-shielding pattern in which the transmission regions 30 are arranged in a two-dimensional matrix of 4×4 is formed on the central side 34, and a light-shielding pattern in which the transmission regions 30 are arranged on the entire peripheral side 35 except for the corners is formed. According to the configuration of this example, the sensitivity of the pixel 8 (low-sensitivity pixel 8L) can be improved when the incidence angle of the light 23 is large.
(5)また、本技術は、上述したイメージセンサとしての固体撮像装置1の他、ToF(Time of Flight)センサとも呼ばれる距離を測定する測距センサ等も含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射され返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの受光画素構造として、上述した画素8(低感度画素8L)の構造を採用できる。 (5) Furthermore, this technology can be applied to light detection devices in general, including distance measurement sensors that measure distance, also known as ToF (Time of Flight) sensors, in addition to the solid-state imaging device 1 as the image sensor described above. A distance measurement sensor is a sensor that emits light toward an object, detects the reflected light that is reflected back from the surface of the object, and calculates the distance to the object based on the flight time from when the light is emitted to when the reflected light is received. The structure of pixel 8 (low sensitivity pixel 8L) described above can be adopted as the light receiving pixel structure of this distance measurement sensor.
〈2.第2の実施形態:電子機器への応用例〉
 本開示に係る技術(本技術)は、各種の電子機器に適用されてもよい。
 図24は、本技術を適用した電子機器としての撮像装置(ビデオカメラ、デジタルスチルカメラ等)の概略的な構成の一例を示す図である。
 図24に示すように、撮像装置1000は、レンズ群1001と、固体撮像装置1002(第1の実施形態に係る固体撮像装置1)と、DSP(Digital Signal Processor)回路1003と、フレームメモリ1004と、モニタ1005と、メモリ1006とを備えている。DSP回路1003、フレームメモリ1004、モニタ1005及びメモリ1006は、バスライン1007を介して相互に接続されている。
2. Second embodiment: Application example to electronic device
The technology according to the present disclosure (the present technology) may be applied to various electronic devices.
FIG. 24 is a diagram showing an example of a schematic configuration of an imaging device (such as a video camera or a digital still camera) as an electronic device to which the present technology is applied.
24, the imaging device 1000 includes a lens group 1001, a solid-state imaging device 1002 (solid-state imaging device 1 according to the first embodiment), a DSP (Digital Signal Processor) circuit 1003, a frame memory 1004, a monitor 1005, and a memory 1006. The DSP circuit 1003, the frame memory 1004, the monitor 1005, and the memory 1006 are connected to each other via a bus line 1007.
 レンズ群1001は、被写体からの入射光(像光)を固体撮像装置1002に導き、固体撮像装置1002の光入射面(画素領域)に結像させる。
 固体撮像装置1002は、上述した第1の実施の形態のCMOSイメージセンサからなる。固体撮像装置1002は、レンズ群1001によって光入射面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1003に供給する。
 DSP回路1003は、固体撮像装置1002から供給される画素信号に対して所定の画像処理を行う。そして、DSP回路1003は、画像処理後の画像信号をフレーム単位でフレームメモリ1004に供給し、フレームメモリ1004に一時的に記憶させる。
 モニタ1005は、例えば、液晶パネルや、有機EL(Electro Luminescence)パネル等のパネル型表示装置からなる。モニタ1005は、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号に基づいて、被写体の画像(動画)を表示する。
 メモリ1006は、DVD、フラッシュメモリ等からなる。メモリ1006は、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号を読み出して記録する。
The lens group 1001 guides incident light (image light) from a subject to the solid-state imaging device 1002 , and forms an image on the light incident surface (pixel region) of the solid-state imaging device 1002 .
The solid-state imaging device 1002 is made up of the CMOS image sensor according to the first embodiment described above. The solid-state imaging device 1002 converts the amount of incident light focused on the light incident surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal to the DSP circuit 1003 as a pixel signal.
The DSP circuit 1003 performs predetermined image processing on the pixel signals supplied from the solid-state imaging device 1002. Then, the DSP circuit 1003 supplies the image signals after the image processing to a frame memory 1004 on a frame-by-frame basis, and temporarily stores the image signals in the frame memory 1004.
The monitor 1005 is formed of a panel-type display device such as a liquid crystal panel, an organic EL (Electro Luminescence) panel, etc. The monitor 1005 displays an image (moving image) of a subject based on pixel signals in frame units temporarily stored in the frame memory 1004.
The memory 1006 is composed of a DVD, a flash memory, etc. The memory 1006 reads out and records the pixel signals temporarily stored in the frame memory 1004 on a frame-by-frame basis.
 なお、固体撮像装置1を適用できる電子機器としては、撮像装置1000に限られるものではなく、他の電子機器にも適用できる。また、固体撮像装置1002として、第1の実施形態に係る固体撮像装置1を用いる構成としたが、他の構成を採用することもできる。例えば、変形例に係る固体撮像装置1等、本技術を適用した他の光検出装置を用いる構成としてもよい。 The electronic device to which the solid-state imaging device 1 can be applied is not limited to the imaging device 1000, but can also be applied to other electronic devices. In addition, although the solid-state imaging device 1 according to the first embodiment is used as the solid-state imaging device 1002, other configurations can also be adopted. For example, it may be configured to use other light detection devices to which the present technology is applied, such as the solid-state imaging device 1 according to a modified example.
 なお、本開示は、以下のような構成であってもよい。
(1)
 複数の光電変換部が形成された半導体基板と、
 前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、
 一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、
 前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットと、前記減光構造体とが互いに離れている
 光検出装置。
(2)
 前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットは、前記減光構造体よりも前記半導体基板側に位置している
 前記(1)に記載の光検出装置。
(3)
 前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットは、前記減光構造体よりも前記集光部側に位置している
 前記(1)に記載の光検出装置。
(4)
 前記集光部は、前記オンチップレンズと、前記半導体基板と前記オンチップレンズとの間に配置されたインナーレンズとを有し、
 前記減光構造体は、前記半導体基板と前記インナーレンズとの間に配置されている
 前記(1)から(3)の何れかに記載の光検出装置。
(5)
 前記集光部は、前記オンチップレンズと、前記半導体基板と前記オンチップレンズとの間に配置されたインナーレンズとを有し、
 前記インナーレンズと前記オンチップレンズとの間に配置されたカラーフィルタを備え、
 前記減光構造体は、前記インナーレンズと前記カラーフィルタとの間に配置されている 前記(1)から(3)の何れかに記載の光検出装置。
(6)
 前記減光構造体は、前記透過領域と前記遮光領域とによってメッシュ状の遮光パターンを形成している
 前記(1)から(5)の何れかに記載の光検出装置。
(7)
 前記減光構造体は、前記透過領域と前記遮光領域とによってフレネルゾーンプレートを構成する遮光パターンを形成している
 前記(1)から(5)の何れかに記載の光検出装置。
(8)
 前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部から外周部に延びている放射線状の遮光パターンを形成している
 前記(1)から(5)の何れかに記載の光検出装置。
(9)
 前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部側にメッシュ状の遮光パターンを形成し、外周部側に他の遮光パターンを形成している
 前記(1)から(5)の何れかに記載の光検出装置。
(10)
 複数の光電変換部が形成された半導体基板と、
 前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、
 一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、
 前記遮光構造体は、前記透過領域と前記遮光領域との割合が、前記減光構造体の中心部側と外周部側とで異なっている
 光検出装置。
(11)
 前記減光構造体は、前記透過領域と前記遮光領域とによってフレネルゾーンプレートを構成する遮光パターンを形成している
 前記(10)に記載の光検出装置。
(12)
 前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部から外周部に延びている放射線状の遮光パターンを形成している
 前記(10)に記載の光検出装置。
(13)
 前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部側にメッシュ状の遮光パターンを形成し、外周部側に他の遮光パターンを形成している
 前記(10)に記載の光検出装置。
(14)
 複数の光電変換部が形成された半導体基板、前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部、並びに一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体を備え、前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットと、前記減光構造体とが互いに離れている光検出装置を有する
 電子機器。
The present disclosure may be configured as follows.
(1)
A semiconductor substrate having a plurality of photoelectric conversion units formed thereon;
a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate;
a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light,
a spot of light focused by said light focusing portion and said light attenuation structure body are spaced apart from each other in a direction perpendicular to a light incident surface of said semiconductor substrate.
(2)
The light detection device according to (1), wherein a spot of light focused by the light focusing portion is located closer to the semiconductor substrate than the light attenuation structural body in a direction perpendicular to a light incident surface of the semiconductor substrate.
(3)
The light detection device according to (1), wherein a spot of light focused by the light focusing portion is located closer to the light focusing portion than the light attenuation structural body in a direction perpendicular to a light incident surface of the semiconductor substrate.
(4)
the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens,
The light detection device according to any one of (1) to (3), wherein the light-attenuating structure is disposed between the semiconductor substrate and the inner lens.
(5)
the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens,
A color filter is disposed between the inner lens and the on-chip lens,
The light detection device according to any one of (1) to (3), wherein the light-attenuating structure is disposed between the inner lens and the color filter.
(6)
The light detection device according to any one of (1) to (5), wherein the attenuation structure defines a mesh-shaped light blocking pattern by the transmission regions and the light blocking regions.
(7)
The light detection device according to any one of (1) to (5), wherein the attenuation structure body forms a light blocking pattern that constitutes a Fresnel zone plate by the transmission region and the light blocking region.
(8)
The light detection device according to any one of (1) to (5), wherein the attenuation structure body forms a radial light-shielding pattern extending from a center portion to an outer periphery of the attenuation structure body by the transmission region and the light-shielding region.
(9)
The light detection device according to any one of (1) to (5), wherein the attenuation structure has a mesh-shaped light-shielding pattern formed on a central portion side of the attenuation structure by the transmission region and the light-shielding region, and another light-shielding pattern formed on an outer periphery side of the attenuation structure.
(10)
A semiconductor substrate having a plurality of photoelectric conversion units formed thereon;
a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate;
a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light,
The light-shielding structure has a ratio of the transmission region to the light-shielding region that differs between a central portion and an outer periphery of the light-attenuating structure.
(11)
The light detection device according to (10), wherein the attenuation structure body forms a light blocking pattern that constitutes a Fresnel zone plate by the transmission regions and the light blocking regions.
(12)
The light detection device according to (10), wherein the attenuation structural body forms a radial light blocking pattern extending from a center portion to an outer periphery of the attenuation structural body by the transmission region and the light blocking region.
(13)
The light detection device according to (10), wherein the attenuation structure has a mesh-shaped light-shielding pattern formed on a central portion side of the attenuation structure by the transmission region and the light-shielding region, and another light-shielding pattern formed on an outer periphery side of the attenuation structure.
(14)
1. An electronic device comprising: a photodetector comprising: a semiconductor substrate on which a plurality of photoelectric conversion units are formed; a plurality of light collecting units each having an on-chip lens and disposed on a light incident surface side of the semiconductor substrate; and a light attenuation structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light shielding pattern with a light transmitting region that transmits light and a light shielding region that blocks some of the light, wherein a light collecting spot of light by the light collecting units and the light attenuation structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
 1…固体撮像装置、2…画素領域、3…垂直駆動回路、4…カラム信号処理回路、5…水平駆動回路、6…出力回路、7…制御回路、8…画素、8H…高感度画素、8L…低感度画素、9…画素駆動配線、10…垂直信号線、11…水平信号線、12…半導体基板、13…絶縁膜、14…遮光膜、15…平坦化膜、16…インナーレンズ、17…平坦化膜、18…カラーフィルタ層、19…レンズアレイ、20…配線層、21…減光構造体、21a…メッシュ状構造体、21b…FZP状構造体、21c…放射線状構造体、21d…変形メッシュ状構造体、22…光電変換部、23…光、24…集光部、25…集光スポット、26…照射領域、27…隔壁部、30…透過領域、31…遮光領域、32…凹部、33…画素分離部、34…中心部側、35…外周部側 1...solid-state imaging device, 2...pixel area, 3...vertical drive circuit, 4...column signal processing circuit, 5...horizontal drive circuit, 6...output circuit, 7...control circuit, 8...pixel, 8H...high sensitivity pixel, 8L...low sensitivity pixel, 9...pixel drive wiring, 10...vertical signal line, 11...horizontal signal line, 12...semiconductor substrate, 13...insulating film, 14...light-shielding film, 15...planarization film, 16...inner lens, 17...planarization film, 18...color filter layer, 19...lens array, 20...wiring layer, 21...light-attenuating structure, 21a...mesh structure, 21b...FZP structure, 21c...radial structure, 21d...deformed mesh structure, 22...photoelectric conversion section, 23...light, 24...light-collecting section, 25...light-collecting spot, 26...irradiation area, 27...partition wall, 30...transmission area, 31...light-shielding area, 32...recess, 33...pixel separation section, 34...center side, 35...periphery side

Claims (14)

  1.  複数の光電変換部が形成された半導体基板と、
     前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、
     一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、
     前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットと、前記減光構造体とが互いに離れている
     光検出装置。
    A semiconductor substrate having a plurality of photoelectric conversion units formed thereon;
    a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate;
    a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light,
    a spot of light focused by said light focusing portion and said light attenuation structure body are spaced apart from each other in a direction perpendicular to a light incident surface of said semiconductor substrate.
  2.  前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットは、前記減光構造体よりも前記半導体基板側に位置している
     請求項1に記載の光検出装置。
    The light detection device according to claim 1 , wherein a spot of light focused by said light focusing portion is located closer to said semiconductor substrate than said light attenuation structural body in a direction perpendicular to a light incident surface of said semiconductor substrate.
  3.  前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットは、前記減光構造体よりも前記集光部側に位置している
     請求項1に記載の光検出装置。
    The light detection device according to claim 1 , wherein a spot of light focused by the light focusing portion is located closer to the light focusing portion than the light attenuation structural body in a direction perpendicular to a light incident surface of the semiconductor substrate.
  4.  前記集光部は、前記オンチップレンズと、前記半導体基板と前記オンチップレンズとの間に配置されたインナーレンズとを有し、
     前記減光構造体は、前記半導体基板と前記インナーレンズとの間に配置されている
     請求項1に記載の光検出装置。
    the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens,
    The light detection device according to claim 1 , wherein the light-attenuating structure is disposed between the semiconductor substrate and the inner lens.
  5.  前記集光部は、前記オンチップレンズと、前記半導体基板と前記オンチップレンズとの間に配置されたインナーレンズとを有し、
     前記インナーレンズと前記オンチップレンズとの間に配置されたカラーフィルタを備え、
     前記減光構造体は、前記インナーレンズと前記カラーフィルタとの間に配置されている
     請求項1に記載の光検出装置。
    the light collecting unit has the on-chip lens and an inner lens disposed between the semiconductor substrate and the on-chip lens,
    A color filter is disposed between the inner lens and the on-chip lens,
    The light detection device according to claim 1 , wherein the light-attenuating structure is disposed between the inner lens and the color filter.
  6.  前記減光構造体は、前記透過領域と前記遮光領域とによってメッシュ状の遮光パターンを形成している
     請求項1に記載の光検出装置。
    The light detection device according to claim 1 , wherein the attenuation structure defines a mesh-shaped light blocking pattern by the transmission regions and the light blocking regions.
  7.  前記減光構造体は、前記透過領域と前記遮光領域とによってフレネルゾーンプレートを構成する遮光パターンを形成している
     請求項1に記載の光検出装置。
    2. The light detection device according to claim 1, wherein the attenuation structure body forms a light blocking pattern that constitutes a Fresnel zone plate by the transmission regions and the light blocking regions.
  8.  前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部から外周部に延びている放射線状の遮光パターンを形成している
     請求項1に記載の光検出装置。
    The light detection device according to claim 1 , wherein the light-attenuating structural body forms a radial light-shielding pattern extending from a center portion to an outer periphery of the light-attenuating structural body by the transmission region and the light-shielding region.
  9.  前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部側にメッシュ状の遮光パターンを形成し、外周部側に他の遮光パターンを形成している
     請求項1に記載の光検出装置。
    The light detection device according to claim 1 , wherein the attenuation structural body has a mesh-shaped light-shielding pattern formed by the transmission region and the light-shielding region at a central portion of the attenuation structural body, and another light-shielding pattern formed at an outer periphery thereof.
  10.  複数の光電変換部が形成された半導体基板と、
     前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部と、
     一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体と、を備え、
     前記遮光構造体は、前記透過領域と前記遮光領域との割合が、前記減光構造体の中心部側と外周部側とで異なっている
     光検出装置。
    A semiconductor substrate having a plurality of photoelectric conversion units formed thereon;
    a plurality of light collecting units each having an on-chip lens, the light collecting units being disposed on a light incident surface side of the semiconductor substrate;
    a light-attenuating structure disposed between a part of the on-chip lenses and the semiconductor substrate, the light-attenuating structure having a light-transmitting region that transmits light and a light-shielding region that partially blocks light,
    The light-shielding structure has a ratio of the transmission region to the light-shielding region that differs between a central portion and an outer periphery of the light-attenuating structure.
  11.  前記減光構造体は、前記透過領域と前記遮光領域とによってフレネルゾーンプレートを構成する遮光パターンを形成している
     請求項10に記載の光検出装置。
    The light detection device according to claim 10 , wherein the attenuation structure body forms a light blocking pattern that constitutes a Fresnel zone plate by the transmission regions and the light blocking regions.
  12.  前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部から外周部に延びている放射線状の遮光パターンを形成している
     請求項10に記載の光検出装置。
    The light detection device according to claim 10 , wherein the light-attenuating structural body forms a radial light-shielding pattern extending from a center portion to an outer periphery of the light-attenuating structural body by the transmission region and the light-shielding region.
  13.  前記減光構造体は、前記透過領域と前記遮光領域とによって前記減光構造体の中心部側にメッシュ状の遮光パターンを形成し、外周部側に他の遮光パターンを形成している
     請求項10に記載の光検出装置。
    The light detection device according to claim 10 , wherein the attenuation structural body has a mesh-shaped light-shielding pattern formed by the transmission region and the light-shielding region at a central portion of the attenuation structural body, and another light-shielding pattern formed at an outer periphery thereof.
  14.  複数の光電変換部が形成された半導体基板、前記半導体基板の光入射面側に配置され、オンチップレンズを有する複数の集光部、並びに一部の前記オンチップレンズと前記半導体基板との間に配置され、光を透過させる透過領域、及び光を一部遮断する遮光領域による遮光パターンを有する減光構造体を備え、前記半導体基板の光入射面と直交する方向において、前記集光部による光の集光スポットと、前記減光構造体とが互いに離れている光検出装置を有する
     電子機器。
    1. An electronic device comprising: a photodetector comprising: a semiconductor substrate on which a plurality of photoelectric conversion units are formed; a plurality of light collecting units each having an on-chip lens and disposed on a light incident surface side of the semiconductor substrate; and a light attenuation structure disposed between some of the on-chip lenses and the semiconductor substrate and having a light shielding pattern with a light transmitting region that transmits light and a light shielding region that blocks some of the light, wherein a light collecting spot of light by the light collecting units and the light attenuation structure are separated from each other in a direction perpendicular to the light incident surface of the semiconductor substrate.
PCT/JP2023/036790 2022-11-21 2023-10-10 Light detector and electronic appliance WO2024111271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-185476 2022-11-21
JP2022185476 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111271A1 true WO2024111271A1 (en) 2024-05-30

Family

ID=91195408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036790 WO2024111271A1 (en) 2022-11-21 2023-10-10 Light detector and electronic appliance

Country Status (1)

Country Link
WO (1) WO2024111271A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022840A (en) * 2000-07-04 2002-01-23 Shimadzu Corp X-ray ccd camera
JP2010181485A (en) * 2009-02-03 2010-08-19 Nikon Corp Image-pickup device and imaging element
JP2015076475A (en) * 2013-10-08 2015-04-20 ソニー株式会社 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2017138370A1 (en) * 2016-02-09 2017-08-17 ソニー株式会社 Solid-state imaging element, method for manufacturing same, and electronic device
JP2022138852A (en) * 2021-03-11 2022-09-26 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging element and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022840A (en) * 2000-07-04 2002-01-23 Shimadzu Corp X-ray ccd camera
JP2010181485A (en) * 2009-02-03 2010-08-19 Nikon Corp Image-pickup device and imaging element
JP2015076475A (en) * 2013-10-08 2015-04-20 ソニー株式会社 Solid-state imaging device, method of manufacturing the same, and electronic apparatus
WO2017138370A1 (en) * 2016-02-09 2017-08-17 ソニー株式会社 Solid-state imaging element, method for manufacturing same, and electronic device
JP2022138852A (en) * 2021-03-11 2022-09-26 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging element and electronic apparatus

Similar Documents

Publication Publication Date Title
KR101893325B1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US10074682B2 (en) Phase difference detection in pixels
CN106068563B (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP4538353B2 (en) Photoelectric conversion film stacked color solid-state imaging device
US9287302B2 (en) Solid-state imaging device
JP2010186818A (en) Solid-state imaging apparatus and method of manufacturing the same, and electronic equipment
JP2010067827A (en) Solid-state imaging device and imaging apparatus
JP2015065270A (en) Solid state image pickup device and manufacturing method of the same, and electronic apparatus
KR20070112066A (en) Photoelectric-conversion-layer-stack-type color solid-state imaging device
JP5725123B2 (en) Solid-state imaging device and electronic device
KR20160139266A (en) Image sensor and electronic device having the same
JP5360102B2 (en) Solid-state imaging device and electronic device
JP5287923B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP5418527B2 (en) Solid-state imaging device and electronic device
JP2014022649A (en) Solid-state image sensor, imaging device, and electronic apparatus
US20220246659A1 (en) Imaging device and imaging apparatus
JP4264249B2 (en) MOS type image sensor and digital camera
WO2024111271A1 (en) Light detector and electronic appliance
JP2020027937A (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2011135100A (en) Solid-state imaging device and electronic apparatus
JP5282797B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
US11676988B2 (en) Image sensor
WO2022224501A1 (en) Light detection apparatus and electronic device
JP2012004437A (en) Solid-state image pickup device
WO2024057735A1 (en) Light detection device and electronic apparatus