WO2024111122A1 - Light branching rate adjustment method and light branching rate adjustment device - Google Patents

Light branching rate adjustment method and light branching rate adjustment device Download PDF

Info

Publication number
WO2024111122A1
WO2024111122A1 PCT/JP2022/043611 JP2022043611W WO2024111122A1 WO 2024111122 A1 WO2024111122 A1 WO 2024111122A1 JP 2022043611 W JP2022043611 W JP 2022043611W WO 2024111122 A1 WO2024111122 A1 WO 2024111122A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
unit
intensity
optical
Prior art date
Application number
PCT/JP2022/043611
Other languages
French (fr)
Japanese (ja)
Inventor
卓威 植松
一貴 納戸
裕之 飯田
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/043611 priority Critical patent/WO2024111122A1/en
Publication of WO2024111122A1 publication Critical patent/WO2024111122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals

Definitions

  • This disclosure relates to an optical branching ratio adjustment method and an optical branching ratio adjustment device.
  • Non-patent documents 1 and 2 are related documents of this technology and discuss a side polishing method for optical fibers.
  • the optical branching ratio of the optical fiber branch may change due to factors such as changes in the external environment.
  • conventional technology was unable to detect changes in the optical branching ratio. Even if it was possible to detect changes in the optical branching ratio, it was also unable to restore the optical branching ratio to its original value.
  • This disclosure has been made in consideration of the above circumstances, and aims to provide an optical branching ratio adjustment method and optical branching ratio adjustment device that can return the optical branching ratio in an optical fiber branch to its original value even if the optical branching ratio changes.
  • a method for adjusting an optical branching ratio includes measuring the intensity of test light passing through a second optical fiber while a first polished surface formed on a side of a first optical fiber and a second polished surface formed on a side of a second optical fiber are in slidable contact with each other, and moving one of the first polished surface and the second polished surface relative to the other so that the difference between the intensity and a predetermined reference value is reduced.
  • An optical branching rate adjustment device includes a first holding part that holds the first optical fiber and a second holding part that holds the second optical fiber, with a first polished surface formed on the side of the first optical fiber and a second polished surface formed on the side of the second optical fiber in slidable contact with each other, a light source that generates test light that is incident on the second optical fiber, a light intensity measurement part that includes a light receiving part that measures the intensity of the test light that has passed through the second optical fiber, and a position adjustment part that moves one of the first holding part and the second holding part relative to the other so that the difference between the intensity and a predetermined reference value is reduced.
  • an optical branching ratio adjustment method and an optical branching ratio adjustment device that can return the optical branching ratio to its original value even if the optical branching ratio in an optical fiber branch changes.
  • FIG. 1 is a cross-sectional view illustrating an example optical fiber branch according to an embodiment of the present disclosure.
  • FIG. 2A is a perspective view showing an example of a polishing apparatus.
  • FIG. 2B is a cross-sectional view of the holding portion shown in FIG. 2A.
  • FIG. 3A is a block diagram showing an example of the configuration of an optical branching ratio adjusting device according to this embodiment.
  • FIG. 3B is a block diagram showing the configuration of the control unit shown in FIG. 3A.
  • FIG. 3C is a perspective view showing an example of the configuration of the optical branching ratio adjustment device according to the present embodiment.
  • FIG. 4 is a flowchart illustrating an example of a process of an optical branching ratio adjustment method according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view showing two polishing surfaces and their surroundings according to this embodiment.
  • FIG. 6 is a perspective view showing the configuration of a light branching ratio adjustment device according to a modified example of this embodiment.
  • optical fibers that have already been installed in a network are sometimes called current optical fibers.
  • Current optical fibers are installed in facilities that build a network, such as utility tunnels and overhead lines. They may be installed either indoors or outdoors. Current optical fibers may already be used for optical communications in the network, or may be installed and unused.
  • Optical fibers that are newly connected to current optical fibers are sometimes called branch fibers. Branch fibers are optical fibers that branch off from a route (transmission route) built by the current optical fiber, or that build a route that merges into that route.
  • the X, Y, and Z directions are defined as being orthogonal to each other.
  • the X and Z directions are the directions in which one of the two holding parts 41, 42 according to this embodiment moves relative to the other.
  • the Y direction is the arrangement direction of the two holding parts 41, 42.
  • the Z direction is also the extension direction of the two optical fibers 10, 20 and the extension direction of the V-groove 34 formed in each holding part 41 (42).
  • the optical fiber branch 1 is a so-called optical fiber coupler that branches light propagating through one optical fiber into two optical fibers, or merges light propagating through two optical fibers into one optical fiber.
  • FIG. 1 is a cross-sectional view of the optical fiber branch 1.
  • the optical fiber branch 1 includes an optical fiber (first optical fiber) 10 and an optical fiber (second optical fiber) 20.
  • the cross-sectional view shown in FIG. 1 includes the central axis 10a of the optical fiber 10 and the central axis 20a of the optical fiber 20.
  • the optical fiber 10 is, for example, the above-mentioned currently used optical fiber, and has already been laid in a network (not shown).
  • the optical fiber 10 has a core (first core) 11, a cladding (first cladding) 12, and a coating (first coating) 13.
  • the optical fiber 10 is a single-mode optical fiber or a multimode optical fiber.
  • the optical fiber 20 is, for example, the branch fiber described above, and is newly connected to the optical fiber 10 as an additional path of a network (not shown).
  • the optical fiber 20 has a core (second core) 21, a cladding (second cladding) 22, and a coating (second coating) 23.
  • the optical fiber 20 is also a single-mode optical fiber or a multimode optical fiber.
  • the optical fiber 10 has a polished surface (first polished surface) 14 on a side surface 15.
  • the polished surface 14 is formed by polishing the side surface 15. This polishing process can be performed, for example, by a polishing device 30 (see FIGS. 2A and 2B ) described below. By this polishing process, the coating 13 is removed from the polished surface 14, and a part of the cladding 12 remains.
  • the minimum thickness of the cladding 12 from the polished surface 14 to the core 11 is defined as the remaining cladding thickness (first remaining cladding thickness) d lv (see FIG. 5 ).
  • the optical fiber 20 has a polished surface (second polished surface) 24 on a side surface 25.
  • the polished surface 24 is formed by polishing the side surface 25.
  • This polishing process can also be performed by, for example, a polishing device 30 described below.
  • the coating 23 is removed from the polished surface 24, and a part of the cladding 22 remains.
  • the minimum value of the thickness of the cladding 22 from the polished surface 24 to the core 21 is defined as the remaining cladding thickness (second remaining cladding thickness) d br .
  • the optical fiber 10 extends in the Z direction while being bent with a radius of curvature (first radius of curvature) R lv at least in a portion including the polished surface 14.
  • the polished surface 14 is formed by polishing a side surface 15 of the optical fiber 10 placed in a state in which the optical fiber 10 is bent with the radius of curvature R lv . Therefore, when the optical fiber 10 is bent with the radius of curvature R lv , the polished surface 14 forms an elliptical plane extending in the longitudinal direction of the optical fiber 10.
  • the optical fiber 20 extends in the Z direction while being bent with a radius of curvature (second radius of curvature) R br at least in a portion including the polished surface 24.
  • the polished surface 24 is formed by polishing a side surface 25 of the optical fiber 20 placed in a state in which the optical fiber 20 is bent with the radius of curvature R br . Therefore, when the optical fiber 20 is bent with the radius of curvature R br , the polished surface 24 forms an elliptical plane extending in the longitudinal direction of the optical fiber 20.
  • a refractive index matching agent (not shown) is interposed between polished surface 14 and polished surface 24.
  • the refractive index matching agent may be a viscous liquid or a deformable solid.
  • the refractive index of the refractive index matching agent is smaller than the refractive indexes of cladding 12 and cladding 22. This prevents an increase in insertion loss.
  • the polished surface 14 and the polished surface 24 are in contact with each other via a refractive index matching material (not shown). Therefore, the cores 11 and 21 are positioned with a core distance d (see FIG. 5 ).
  • the core distance d is the distance between the cores 11 and 21, and its minimum value is the sum of the remaining cladding thickness d lv of the cladding 12, the remaining cladding thickness d br of the cladding 22, and the thickness of the refractive index matching material (not shown).
  • the core spacing d By making the core spacing d sufficiently small, evanescent coupling between core 11 and core 21 is obtained. That is, core 11 and core 21 are optically coupled, enabling the multiplexing or demultiplexing of light, which is the function of optical fiber branch 1.
  • the coupling efficiency between core 11 and core 21 depends on the core spacing d.
  • the core spacing d at which 100% coupling efficiency is obtained depends on the wavelength of light. For example, when the wavelength of light is 1260 nm, the core spacing d at which 100% coupling efficiency is obtained is 2.6 ⁇ m or less.
  • FIG. 2A is a perspective view showing an example of a polishing device 30 used to form the polishing surface 14 (24).
  • FIG. 2B is a cross-sectional view of the holding part 32 shown in FIG. 2A.
  • the polishing device 30 includes a polishing table 31 and a holding part 32.
  • the formation of the polishing surface 14 will be described as an example.
  • the polishing table 31 has a flat upper surface 31a, on which a polishing sheet 33 is placed.
  • the holding part 32 has a flat surface 32a facing the upper surface 31a of the polishing table 31, and a V-shaped groove 34 curved with a radius R is formed on the flat surface 32a.
  • the radius R is slightly smaller than the radius of curvature Rlv .
  • the material of the polishing table 31 and the holding part 32 is, for example, glass.
  • the V-groove 34 is formed so that its depth from the plane 32a is shallowest near the center of the plane 32a. Also, as shown in Fig. 2B, the minimum depth of the V-groove 34 is set to a value that allows the cladding 12 to have a remaining cladding thickness d lv .
  • the polishing process of the optical fiber 10 using the polishing device 30 is performed at the site where the optical fiber 20 is connected to the optical fiber 10.
  • a state is prepared for measuring the leaked light from the optical fiber 10. Specifically, the optical fiber 10 is bent while laser light (for convenience, referred to as propagating light) is propagating through the optical fiber 10, and the intensity of the laser light (for convenience, referred to as leaked light) leaking from the bent portion is measured with a light intensity meter (not shown).
  • the optical fiber 10 is an optical fiber in use. Therefore, the light propagating through the optical fiber 10 is either communication light 81 propagating through the network or pseudo communication light introduced using a specified light source. In either case, a bend that causes a loss that does not affect communication is imparted to the optical fiber 10, and the intensity of the leaked light from the bent portion is measured until polishing is completed.
  • adhesive 35 (see FIG. 5) is filled into the V-groove 34 of the holding portion 32, and the optical fiber 10 is fixed in the V-groove 34.
  • the adhesive 35 hardens and the optical fiber 10 is fixed in the V-groove 34, a part of the side surface 15 of the optical fiber 10 is exposed from the flat surface 32a of the holding portion 32 (see FIG. 2B).
  • the flat surface 32a of the holding portion 32 is opposed to the polishing sheet 33 placed on the polishing table 31. After that, the side surface 15 of the optical fiber 10 exposed from the flat surface 32a of the holding portion 32 is pressed against the polishing sheet 33 and polished.
  • the polishing of the side surface 15 is performed while monitoring the intensity of the leaking communication light 81. As the polishing progresses, the polished surface approaches the core 11 (i.e., the remaining cladding thickness d lv decreases), and the intensity of the leaked light being measured gradually decreases. Then, when the intensity of the leaked light reaches a predetermined value, the polishing is stopped and the bend is released. Through this series of steps, the formation of the polished surface 14 is completed.
  • the polished surface 24 of the optical fiber 20 having the remaining cladding thickness d br is also formed through the same process as described above.
  • the polished surface 24 is formed using a holding part 32 in which a V-groove 34 having a radius R slightly smaller than the radius of curvature R br is formed.
  • the polished surface 24 may be formed in advance at a remote location such as a factory. In this case, more precise processing is possible than on-site processing.
  • the optical branching rate adjustment device 40 will be described.
  • the optical branching rate adjustment device 40 will be simply referred to as the adjustment device 40.
  • FIG. 3A is a block diagram showing an example of the configuration of the adjustment device 40 according to this embodiment.
  • FIG. 3B is a block diagram showing the configuration of the control unit 50 shown in FIG. 3A.
  • FIG. 3C is a perspective view showing an example of the configuration of the adjustment device 40.
  • the adjustment device 40 includes a holding unit (first holding unit) 41, a holding unit (second holding unit) 42, a light source 43, a light intensity measuring unit 44, and a position adjustment unit (position adjustment device) 45.
  • the holding portion 41 is the same as the holding portion 32 that holds the optical fiber 10.
  • the holding portion 42 is the same as the holding portion 32 that holds the optical fiber 20. That is, the holding portion 41 is the holding portion 32 in which the V groove 34 having a radius R slightly smaller than the radius of curvature Rlv is formed, and the holding portion 42 is the holding portion 32 in which the V groove 34 having a radius R slightly smaller than the radius of curvature Rbr is formed.
  • the holding part 41 holds the optical fiber 10 after the above-mentioned polishing process has been completed. That is, the holding part 41 holds the optical fiber 10 with the polished surface 14 exposed on the plane 41a.
  • the plane 41a is parallel to the XZ plane.
  • the holding part 42 holds the optical fiber 10 with the polished surface 24 exposed on the plane 42a.
  • the plane 42a is also parallel to the XZ plane.
  • the holding part 41 and the holding part 42 hold the corresponding optical fiber with the polished surface 14 and the polished surface 24 in slidable contact with each other.
  • the holding part 41 and the holding part 42 are lined up in the Y direction with their respective planes 41a, 42a in slidable contact with each other. For example, when the Y direction is parallel to the direction of gravity, the holding part 41 is stacked on the holding part 42.
  • the light source 43 is a laser light source having a known configuration, and generates test light 80 to be incident on the optical fiber 20.
  • the test light 80 may be incident on either end of the optical fiber 20.
  • the optical fiber 10 is an active optical fiber
  • the light source 43 is connected to the end of the optical fiber 20 (i.e., the branch fiber) located on the opposite side of the optical fiber branch 1 from the optical network unit (ONU) on the telecommunications carrier side that connects to the optical fiber 10.
  • the light source 43 may be controlled by the control unit 50.
  • the optical line terminal on the subscriber side may be used as the light source 43.
  • the optical line terminal is usually installed indoors and operates by receiving power from a commercial power source.
  • this optical line terminal is used as the light source 43, there is no need to prepare a separate dedicated light source.
  • the optical branching rate adjustment device 40 can be made smaller.
  • the light intensity measuring unit 44 is a so-called light intensity meter, and includes a light receiving unit 46 that receives the test light 80 that has passed through the optical fiber 20.
  • the light intensity measuring unit 44 measures (calculates) the intensity of the test light 80 received by the light receiving unit 46, and outputs the measurement result to the control unit 50.
  • the light receiving unit 46 may be configured with a photoelectric conversion element that converts the test light 80 into electricity.
  • the light intensity measurement unit 44 includes a power storage unit 47 such as a supercapacitor, and the power storage unit 47 stores the power output from the light receiving unit 46. Furthermore, the light intensity measurement unit 44 supplies the power stored in the power storage unit 47 to the position adjustment unit 45. This power supply makes it possible to operate the position adjustment unit 45 without receiving power from a commercial power source, and the adjustment device 40 can be installed in an environment where it is difficult to supply power, such as outdoors.
  • the position adjustment unit 45 includes an operation unit 48 and a control unit 50 that controls the operation unit 48.
  • the position adjustment unit 45 moves one of the holding unit 41 (i.e., the polished surface 14) and the holding unit 42 (i.e., the polished surface 24) relative to the other so that the difference between the intensity of the test light 80 and a predetermined reference value P rf decreases.
  • the predetermined reference value P rf is the intensity of the test light 80 measured by the light intensity measurement unit 44 when the optical branching ratio set in the optical fiber branch 1 is obtained.
  • the operation unit 48 operates the position of the holding unit 41 or the holding unit 42.
  • the operation unit 48 includes a linear actuator 58 and a stage 59 operated by the linear actuator 58.
  • the linear actuator 58 is composed of, for example, a motor and a micrometer head, and moves the stage 59 along the X direction under the control of the control unit 50.
  • the upper surface 59a of the stage 59 is parallel to the XZ plane.
  • the holding part 41 or the holding part 42 is placed on this upper surface 59a.
  • the holding part 42 is placed on the stage 59 and fixed to the stage 59 using a holding means such as a clamp (not shown) or an adhesive.
  • the holding part 41 is placed on the holding part 42.
  • the movement of the holding part 41 in all directions is restricted by a stopper (not shown).
  • the control unit 50 is, for example, a general-purpose computer as shown in FIG. 3B.
  • the computer serving as the control unit 50 comprises a CPU (Central Processing Unit, processor) 51, memory 52, storage 53 (HDD: Hard Disk Drive, SSD: Solid State Drive), a communication unit 54, an input unit 55, and an output unit 56.
  • the memory 52 and storage 53 are storage devices.
  • the CPU 51 executes a specific program loaded onto the memory 52, thereby realizing the various functions of the adjustment device 40, such as measuring the intensity of the test light 80 and controlling the operation unit 48.
  • the programs executed by the control unit 50 may be stored in a computer-readable recording medium such as a Universal Serial Bus (USB) memory, a Compact Disc (CD), or a Digital Versatile Disc (DVD), and may be distributed to the control unit 50 via a network.
  • a computer-readable recording medium such as a Universal Serial Bus (USB) memory, a Compact Disc (CD), or a Digital Versatile Disc (DVD), and may be distributed to the control unit 50 via a network.
  • the computer-readable recording medium is, for example, a non-transitory recording medium.
  • the storage 53 stores the relative position of the holding unit 42 (i.e., the polishing surface 24) with respect to the holding unit 41 (i.e., the polishing surface 14) when a predetermined reference value P rf of the test light 80 is obtained by constructing the optical fiber branch 1.
  • the storage 53 also stores the tendency of change (increase or decrease) in the test light 80 when the holding unit 42 is moved along the X direction based on the relative position (for example, a set of the coordinates of the holding unit 42 and the intensity P th of the test light 80).
  • the above-mentioned information stored in the storage 53 is the same when the object of operation of the position adjustment unit 45 is the holding unit 41.
  • control unit 50 uses these relative positions to determine in which direction and by how much the operation target should be moved along the X direction when the intensity Pth of the test light 80 measured by the light intensity measuring unit 44 is less than the reference value Prf or exceeds the reference value Prf .
  • Fig. 4 is a flow chart showing an example of a process of the optical branching ratio adjusting method according to the present embodiment.
  • Fig. 5 is a cross-sectional view showing the polished surface 14, the polished surface 24 and their surroundings.
  • the holding unit 42 is placed on the stage 59, and the holding unit 41 is placed on the holding unit 42.
  • the holding unit 42 moves in the X direction by operating the stage 59 with the operation unit 48. Meanwhile, the movement of the holding unit 41 is restricted by a stopper (not shown). In other words, the holding unit 41 is stationary.
  • communication light 81 may or may not be propagating through the optical fiber 10.
  • test light 80 having a preset intensity P in is input to the optical fiber 20.
  • the test light 80 propagates through the optical fiber 20 and is input to the light receiving unit 46 of the light intensity measuring unit 44.
  • the light intensity measuring unit 44 measures the intensity P th of the test light 80 input to the light receiving unit 46, and outputs the intensity P th to the control unit 50.
  • the optical branching ratio can be estimated from the results of using a formula expressed as 1-(P th /P in ).
  • control unit 50 compares the intensity Pth of the test light 80 measured by the light intensity measurement unit 44 with a predetermined reference value Prf (step S1). If the intensity Pth is equal to the reference value Prf (YES in step S1), it is determined that the desired light branching ratio is maintained, and the process ends.
  • the control unit 50 judges whether the intensity Pth is greater than the reference value Prf (step S2). In this case, the control unit 50 may judge whether the intensity Pth is smaller than the reference value Prf .
  • the control unit 50 controls the position adjustment unit 45 so that the core spacing d decreases (step S4). Specifically, the position adjustment unit 45 moves the holding unit 42 (i.e., the polishing surface 24) closer to the holding unit 41 (i.e., the polishing surface 14).
  • the control unit 50 While the position adjustment unit 45 is adjusting the position of the holding unit 42, the control unit 50 compares the intensity Pth with the reference value Prf (step S5). If the intensity Pth is equal to the reference value Prf (YES in step S5), the control unit 50 stops the control of the position adjustment unit 45 (i.e., the position adjustment of the holding unit 42) and ends the process. On the other hand, if the intensity Pth has not reached the reference value Prf (NO in step S5), the control unit 50 continues to control the position adjustment unit 45 to reduce the core interval d (step S6). After that, the process returns to step S5, and the processes of steps S5 and S6 are repeated until the intensity Pth reaches the reference value Prf .
  • the control unit 50 controls the position adjustment unit 45 so as to increase the core spacing d (step S3). That is, the position adjustment unit 45 moves the holding unit 42 (i.e., the polishing surface 24) away from the holding unit 41 (i.e., the polishing surface 14).
  • the control unit 50 While the position adjustment unit 45 is adjusting the position of the holding unit 42, the control unit 50 compares the intensity Pth with the reference value Prf (step S5). If the intensity Pth is equal to the reference value Prf (YES in step S5), the control unit 50 stops the control of the position adjustment unit 45 (i.e., the position adjustment of the holding unit 42) and ends the process. On the other hand, if the intensity Pth has not reached the reference value Prf (NO in step S5), the control unit 50 continues to control the position adjustment unit 45 to increase the core interval d (step S6). After that, the process returns to step S5, and the processes of steps S5 and S6 are repeated until the intensity Pth reaches the reference value Prf .
  • optical branching ratio in optical fiber branch 1 changes, the optical branching ratio can be restored to its original value.
  • FIG. 6 is a perspective view showing the configuration of a light branching rate adjustment device according to a modified example of this embodiment.
  • the operation unit 48 of the position adjustment unit 45 may further include a linear actuator 60 and a stage 61 operated by the linear actuator 60.
  • the linear actuator 60 is, for example, composed of a motor and a micrometer head, and moves the stage 61 along the Z direction under the control of the control unit 50.
  • the operation unit 48 according to the modified example includes a two-axis stage capable of moving the holding unit 41 or the holding unit 42 in the X direction and the Z direction.
  • the operation target of the position adjustment unit 45 is the holding unit 42 will be described as an example.
  • Changes in the optical branching ratio in optical fiber branch 1 occur both when there is a relative axial misalignment between core 11 and core 21 along the X direction, and when there is a relative axial misalignment between core 11 and core 21 along the Z direction.
  • changes in the optical branching ratio are more dependent on the relative axial misalignment along the X direction than on the relative axial misalignment along the Z direction.
  • the optical branching ratio changes more rapidly with an axial misalignment along the X direction than with an axial misalignment along the Z direction. Therefore, although it depends on the movement resolution of the operation unit 48, it may be difficult to fine-tune the optical branching ratio by simply adjusting the position of the holding unit 42 along the X direction.
  • the position adjustment of the holding part 42 by the linear actuator 58 is regarded as a rough adjustment
  • the position adjustment of the holding part 42 by the linear actuator 60 is regarded as a fine adjustment, and these adjustments are used in combination.
  • the position adjustment of the holding part 42 along the X direction is performed using the linear actuator 58, and the intensity Pth is brought closer to the reference value Prf .
  • the position adjustment of the holding part 42 along the Z direction is performed using the linear actuator 60 until the intensity Pth reaches the reference value Prf .
  • the intensity Pth can be matched to the reference value Prf with high accuracy. That is, high-precision adjustment until a desired optical branching ratio is obtained is possible.
  • the storage 53 stores a tendency of change (increase or decrease) in the test light 80 when the holder 42 is moved along the Z direction based on the relative position of the holder 42 (i.e., the polishing surface 24) with respect to the holder 41 (i.e., the polishing surface 14) (for example, a set of the coordinates of the holder 42 and the intensity Pth of the test light 80).
  • the above-mentioned information stored in the storage 53 is also the same when the object to be operated by the position adjustment unit 45 is the holder 41.
  • control unit 50 determines in which direction and by how much the object to be operated (i.e., the holding unit 41 or the holding unit 42) should be moved along the Z direction when the intensity Pth of the test light 80 measured by the light intensity measuring unit 44 is less than the reference value Prf or exceeds the reference value Prf.
  • Optical fiber branch 10 Optical fiber (first optical fiber) 11 core (first core) 12 Clad (first clad) 13 Coating (first coating) 14 Polishing surface (first polishing surface) 15 Side surface 20
  • Adhesive 40 Optical branching rate adjustment device (adjustment device) 41 Holding portion (first holding portion) 42 holding portion (second holding portion) 43 Light source 44 Light intensity measuring unit 45 Position adjustment unit (position adjustment device) 46 Light receiving unit 47 Power storage unit 48 Operation unit 50 Control unit 58 Linear actuator 59 Stage 60 Linear actuator 61 Stage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This light branching rate adjustment method includes: measuring the intensity of test light (80) having passed through an optical fiber (20) in a state where a polished surface (14) formed on a side surface (15) of an optical fiber (10) and a polished surface (24) formed on a side surface (25) of the optical fiber (20) are in contact with each other so as to be slidable; and moving one of the polished surface (14) and the polished surface (24) relative to the other such that the difference between the intensity of the test light (80) and a prescribed reference value is reduced.

Description

光分岐率調整方法および光分岐率調整装置Optical branching ratio adjusting method and optical branching ratio adjusting device
 本開示は、光分岐率調整方法および光分岐率調整装置に関する。 This disclosure relates to an optical branching ratio adjustment method and an optical branching ratio adjustment device.
 道路の拡幅工事などの種々の工事に伴う光ファイバのルート変更などにより、屋外に敷設されている光ファイバを一時的に切断することがある。しかしながら、光ファイバを切断すると通信サービスが一時的に停止してしまうため、光ファイバを切断することなく当該光ファイバの経路を分岐させる或いは他の経路と合流させる技術が求められている。非特許文献1、2は、この技術の関連文献であり、光ファイバの側面研磨法について検討している。 Optical fibers laid outdoors may be temporarily cut due to changes in the optical fiber route associated with various construction works such as road widening. However, cutting the optical fiber temporarily stops communication services, so there is a demand for technology that can branch the route of the optical fiber or merge it with another route without cutting the optical fiber. Non-patent documents 1 and 2 are related documents of this technology and discuss a side polishing method for optical fibers.
 光ファイバ分岐を構築した後、外部環境の変化などの要因によって当該光ファイバ分岐における光分岐率が変化する場合がある。しかしながら、従来の技術では光分岐率の変化を検知できなかった。また、光分岐率の変化を検知できたとしても、その光分岐率を元の値に戻すこともできなかった。 After constructing an optical fiber branch, the optical branching ratio of the optical fiber branch may change due to factors such as changes in the external environment. However, conventional technology was unable to detect changes in the optical branching ratio. Even if it was possible to detect changes in the optical branching ratio, it was also unable to restore the optical branching ratio to its original value.
 本開示は上述の事情を鑑みて成されたものであり、光ファイバ分岐における光分岐率が変化しても、当該光分岐率を元の値に戻すことが可能な光分岐率調整方法および光分岐率調整装置の提供を目的とする。 This disclosure has been made in consideration of the above circumstances, and aims to provide an optical branching ratio adjustment method and optical branching ratio adjustment device that can return the optical branching ratio in an optical fiber branch to its original value even if the optical branching ratio changes.
 本開示の一態様に係る光分岐率調整方法は、第1光ファイバの側面に形成された第1研磨面と第2光ファイバの側面に形成された第2研磨面とが互いに摺動可能に接触した状態で、前記第2光ファイバを通過した試験光の強度を測定し、前記強度と所定の基準値の間の差が減少するように、前記第1研磨面と前記第2研磨面のうちの一方を、その他方に対して相対的に移動させることを含む。 A method for adjusting an optical branching ratio according to one aspect of the present disclosure includes measuring the intensity of test light passing through a second optical fiber while a first polished surface formed on a side of a first optical fiber and a second polished surface formed on a side of a second optical fiber are in slidable contact with each other, and moving one of the first polished surface and the second polished surface relative to the other so that the difference between the intensity and a predetermined reference value is reduced.
 本開示の一態様に係る光分岐率調整装置は、第1光ファイバの側面に形成された第1研磨面と第2光ファイバの側面に形成された第2研磨面が互いに摺動可能に接触した状態で、前記第1光ファイバを保持する第1保持部及び前記第2光ファイバを保持する第2保持部と、前記第2光ファイバに入射する試験光を生成する光源と、前記第2光ファイバを通過した前記試験光の強度を測定する受光部を含む光強度測定部と、前記強度と所定の基準値の間の差が減少するように、前記第1保持部と前記第2保持部のうちの一方を、その他方に対して相対的に移動させる位置調整部とを備える。 An optical branching rate adjustment device according to one aspect of the present disclosure includes a first holding part that holds the first optical fiber and a second holding part that holds the second optical fiber, with a first polished surface formed on the side of the first optical fiber and a second polished surface formed on the side of the second optical fiber in slidable contact with each other, a light source that generates test light that is incident on the second optical fiber, a light intensity measurement part that includes a light receiving part that measures the intensity of the test light that has passed through the second optical fiber, and a position adjustment part that moves one of the first holding part and the second holding part relative to the other so that the difference between the intensity and a predetermined reference value is reduced.
 本開示によれば、光ファイバ分岐における光分岐率が変化しても、当該光分岐率を元の値に戻すことが可能な光分岐率調整方法および光分岐率調整装置を提供することができる。 According to the present disclosure, it is possible to provide an optical branching ratio adjustment method and an optical branching ratio adjustment device that can return the optical branching ratio to its original value even if the optical branching ratio in an optical fiber branch changes.
図1は、本開示の実施形態に係る光ファイバ分岐の一例を示す断面図である。FIG. 1 is a cross-sectional view illustrating an example optical fiber branch according to an embodiment of the present disclosure. 図2Aは、研磨装置の一例を示す斜視図である。FIG. 2A is a perspective view showing an example of a polishing apparatus. 図2Bは、図2Aに示す保持部の断面図である。FIG. 2B is a cross-sectional view of the holding portion shown in FIG. 2A. 図3Aは、本実施形態に係る光分岐率調整装置の構成の一例を示すブロック図である。FIG. 3A is a block diagram showing an example of the configuration of an optical branching ratio adjusting device according to this embodiment. 図3Bは、図3Aに示す制御部の構成を示すブロック図である。FIG. 3B is a block diagram showing the configuration of the control unit shown in FIG. 3A. 図3Cは、本実施形態に係る光分岐率調整装置の構成の一例を示す斜視図である。FIG. 3C is a perspective view showing an example of the configuration of the optical branching ratio adjustment device according to the present embodiment. 図4は、本開示の実施形態に係る光分岐率調整方法の処理の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of a process of an optical branching ratio adjustment method according to an embodiment of the present disclosure. 図5は、本実施形態に係る2つの研磨面とその周辺を示す断面図である。FIG. 5 is a cross-sectional view showing two polishing surfaces and their surroundings according to this embodiment. 図6は、本実施形態の変形例に係る光分岐率調整装置の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of a light branching ratio adjustment device according to a modified example of this embodiment.
 以下、本開示の実施形態に係る光分岐率調整方法および光分岐率調整装置について説明する。なお、各図において共通する部分には同一の符号を付し、重複する説明を省略する。 Below, an optical branching ratio adjustment method and an optical branching ratio adjustment device according to an embodiment of the present disclosure will be described. Note that common parts in each figure are given the same reference numerals, and duplicated explanations will be omitted.
 説明の便宜上、ネットワークに既に敷設された光ファイバを現用光ファイバと称することがある。現用光ファイバは、共同溝や架空線などのネットワークを構築する設備に敷設されている。敷設場所は屋内、屋外の何れでもよい。現用光ファイバは、ネットワークの光通信に既に使用されていてもよく、敷設された状態で使用されていなくてもよい。また、現用光ファイバに新たに接続される光ファイバを分岐ファイバと称することがある。分岐ファイバは現用光ファイバが構築した方路(伝送路)から分岐する又は当該方路に合流する方路を構築する光ファイバである。 For ease of explanation, optical fibers that have already been installed in a network are sometimes called current optical fibers. Current optical fibers are installed in facilities that build a network, such as utility tunnels and overhead lines. They may be installed either indoors or outdoors. Current optical fibers may already be used for optical communications in the network, or may be installed and unused. Optical fibers that are newly connected to current optical fibers are sometimes called branch fibers. Branch fibers are optical fibers that branch off from a route (transmission route) built by the current optical fiber, or that build a route that merges into that route.
 また、説明の便宜上、互いに直交するX方向、Y方向、Z方向を定義する。X方向及びZ方向は、本実施形態に係る2つの保持部41、42のうちの一方に対する他方の移動方向である。Y方向は、2つの保持部41、42の配列方向である。また、Z方向は、2本の光ファイバ10、20の延伸方向、各保持部41(42)に形成されるV溝34の延伸方向でもある。 For ease of explanation, the X, Y, and Z directions are defined as being orthogonal to each other. The X and Z directions are the directions in which one of the two holding parts 41, 42 according to this embodiment moves relative to the other. The Y direction is the arrangement direction of the two holding parts 41, 42. The Z direction is also the extension direction of the two optical fibers 10, 20 and the extension direction of the V-groove 34 formed in each holding part 41 (42).
 まず、本実施形態に係る光ファイバ分岐1について説明する。光ファイバ分岐1は、1本の光ファイバを伝播する光を2本の光ファイバに分岐する、或いは2本の光ファイバを伝播する光を1本の光ファイバに合流させる、所謂光ファイバカプラである。図1は、光ファイバ分岐1の断面図である。図1に示すように、光ファイバ分岐1は、光ファイバ(第1光ファイバ)10と、光ファイバ(第2光ファイバ)20とを備えている。なお、図1に示す断面図は、光ファイバ10の中心軸10aと光ファイバ20の中心軸20aを含んでいる。 First, the optical fiber branch 1 according to this embodiment will be described. The optical fiber branch 1 is a so-called optical fiber coupler that branches light propagating through one optical fiber into two optical fibers, or merges light propagating through two optical fibers into one optical fiber. FIG. 1 is a cross-sectional view of the optical fiber branch 1. As shown in FIG. 1, the optical fiber branch 1 includes an optical fiber (first optical fiber) 10 and an optical fiber (second optical fiber) 20. The cross-sectional view shown in FIG. 1 includes the central axis 10a of the optical fiber 10 and the central axis 20a of the optical fiber 20.
 光ファイバ10は、例えば上述の現用光ファイバであり、ネットワーク(図示せず)に既に敷設されている。光ファイバ10は、コア(第1コア)11と、クラッド(第1クラッド)12と、被覆(第1被覆)13とを備えている。光ファイバ10は、シングルモード光ファイバ又はマルチモード光ファイバである。 The optical fiber 10 is, for example, the above-mentioned currently used optical fiber, and has already been laid in a network (not shown). The optical fiber 10 has a core (first core) 11, a cladding (first cladding) 12, and a coating (first coating) 13. The optical fiber 10 is a single-mode optical fiber or a multimode optical fiber.
 光ファイバ20は、例えば上述の分岐ファイバであり、ネットワーク(図示せず)の追加経路として光ファイバ10に新たに接続する。光ファイバ20は、コア(第2コア)21と、クラッド(第2クラッド)22と、被覆(第2被覆)23とを備えている。光ファイバ20も、シングルモード光ファイバ又はマルチモード光ファイバである。 The optical fiber 20 is, for example, the branch fiber described above, and is newly connected to the optical fiber 10 as an additional path of a network (not shown). The optical fiber 20 has a core (second core) 21, a cladding (second cladding) 22, and a coating (second coating) 23. The optical fiber 20 is also a single-mode optical fiber or a multimode optical fiber.
 光ファイバ10は、研磨面(第1研磨面)14を側面15に有する。研磨面14は、側面15の研磨によって形成される。この研磨加工は、例えば後述の研磨装置30(図2A及び図2B参照)によって遂行することができる。この研磨加工により、研磨面14において被覆13が除去され、クラッド12の一部が残存する。ここで、研磨面14からコア11までのクラッド12の厚さの最小値を、残存クラッド厚(第1残存クラッド厚)dlvと定義する(図5参照)。 The optical fiber 10 has a polished surface (first polished surface) 14 on a side surface 15. The polished surface 14 is formed by polishing the side surface 15. This polishing process can be performed, for example, by a polishing device 30 (see FIGS. 2A and 2B ) described below. By this polishing process, the coating 13 is removed from the polished surface 14, and a part of the cladding 12 remains. Here, the minimum thickness of the cladding 12 from the polished surface 14 to the core 11 is defined as the remaining cladding thickness (first remaining cladding thickness) d lv (see FIG. 5 ).
 光ファイバ10と同様に、光ファイバ20は、研磨面(第2研磨面)24を側面25に有する。研磨面24は、側面25の研磨によって形成される。この研磨加工も、例えば後述の研磨装置30によって遂行することができる。この研磨加工により、研磨面24において被覆23が除去され、クラッド22の一部が残存する。ここで、研磨面24からコア21までのクラッド22の厚さの最小値を、残存クラッド厚(第2残存クラッド厚)dbrと定義する。 Like the optical fiber 10, the optical fiber 20 has a polished surface (second polished surface) 24 on a side surface 25. The polished surface 24 is formed by polishing the side surface 25. This polishing process can also be performed by, for example, a polishing device 30 described below. By this polishing process, the coating 23 is removed from the polished surface 24, and a part of the cladding 22 remains. Here, the minimum value of the thickness of the cladding 22 from the polished surface 24 to the core 21 is defined as the remaining cladding thickness (second remaining cladding thickness) d br .
 光ファイバ10は、少なくとも研磨面14を含む部分において曲率半径(第1曲率半径)Rlvで曲げられつつ、Z方向に延伸している。研磨面14は、曲率半径Rlvで曲げられた状態に置かれた光ファイバ10の側面15への研磨によって形成される。従って、光ファイバ10が曲率半径Rlvで曲げられた状態で、研磨面14は、光ファイバ10の長手方向に延びる楕円状の平面を形成する。 The optical fiber 10 extends in the Z direction while being bent with a radius of curvature (first radius of curvature) R lv at least in a portion including the polished surface 14. The polished surface 14 is formed by polishing a side surface 15 of the optical fiber 10 placed in a state in which the optical fiber 10 is bent with the radius of curvature R lv . Therefore, when the optical fiber 10 is bent with the radius of curvature R lv , the polished surface 14 forms an elliptical plane extending in the longitudinal direction of the optical fiber 10.
 光ファイバ20は、少なくとも研磨面24を含む部分において曲率半径(第2曲率半径)Rbrで曲げられつつ、Z方向に延伸している。研磨面24は、曲率半径Rbrで曲げられた状態に置かれた光ファイバ20の側面25への研磨によって形成される。従って、光ファイバ20が曲率半径Rbrで曲げられた状態で、研磨面24は、光ファイバ20の長手方向に延びる楕円状の平面を形成する。 The optical fiber 20 extends in the Z direction while being bent with a radius of curvature (second radius of curvature) R br at least in a portion including the polished surface 24. The polished surface 24 is formed by polishing a side surface 25 of the optical fiber 20 placed in a state in which the optical fiber 20 is bent with the radius of curvature R br . Therefore, when the optical fiber 20 is bent with the radius of curvature R br , the polished surface 24 forms an elliptical plane extending in the longitudinal direction of the optical fiber 20.
 なお、研磨面14と研磨面24の間には、屈折率整合剤(図示せず)が介在している。屈折率整合剤は粘性を持つ液状でもよく、変形可能な固形状でもよい。屈折率整合剤の屈折率は、クラッド12及びクラッド22の各屈折率よりも小さい。これにより挿入損失の増加が抑制される。 In addition, a refractive index matching agent (not shown) is interposed between polished surface 14 and polished surface 24. The refractive index matching agent may be a viscous liquid or a deformable solid. The refractive index of the refractive index matching agent is smaller than the refractive indexes of cladding 12 and cladding 22. This prevents an increase in insertion loss.
 研磨面14と研磨面24は屈折率整合剤(図示せず)を介して互いに接触する。従って、コア11とコア21は、コア間隔d(図5参照)を置いて互いに位置することになる。コア間隔dは、コア11とコア21の間隔であり、その最小値はクラッド12の残存クラッド厚dlvと、クラッド22の残存クラッド厚dbrと、屈折率整合剤(図示せず)の厚さの総和である。 The polished surface 14 and the polished surface 24 are in contact with each other via a refractive index matching material (not shown). Therefore, the cores 11 and 21 are positioned with a core distance d (see FIG. 5 ). The core distance d is the distance between the cores 11 and 21, and its minimum value is the sum of the remaining cladding thickness d lv of the cladding 12, the remaining cladding thickness d br of the cladding 22, and the thickness of the refractive index matching material (not shown).
 コア間隔dを十分に小さくすることにより、コア11とコア21の間のエバネッセント結合が得られる。即ち、コア11とコア21は光学的に結合し、光ファイバ分岐1の機能である光の合波又は分波が可能となる。なお、コア11とコア21の間の結合効率はコア間隔dに依存する。また、100%の結合効率が得られるコア間隔dは光の波長に依存する。例えば、光の波長が1260nmのとき、100%の結合効率が得られるコア間隔dは2.6μm以下である。 By making the core spacing d sufficiently small, evanescent coupling between core 11 and core 21 is obtained. That is, core 11 and core 21 are optically coupled, enabling the multiplexing or demultiplexing of light, which is the function of optical fiber branch 1. Note that the coupling efficiency between core 11 and core 21 depends on the core spacing d. Furthermore, the core spacing d at which 100% coupling efficiency is obtained depends on the wavelength of light. For example, when the wavelength of light is 1260 nm, the core spacing d at which 100% coupling efficiency is obtained is 2.6 μm or less.
 次に、研磨面14(24)の形成方法について説明する。図2Aは、研磨面14(24)の形成に用いる研磨装置30の一例を示す斜視図である。図2Bは、図2Aに示す保持部32の断面図である。図2Aに示すように、研磨装置30は、研磨台31と、保持部32とを備える。以下、研磨面14の形成を例に挙げて説明する。 Next, a method for forming the polishing surface 14 (24) will be described. FIG. 2A is a perspective view showing an example of a polishing device 30 used to form the polishing surface 14 (24). FIG. 2B is a cross-sectional view of the holding part 32 shown in FIG. 2A. As shown in FIG. 2A, the polishing device 30 includes a polishing table 31 and a holding part 32. Below, the formation of the polishing surface 14 will be described as an example.
 研磨台31は平坦な上面31aを有し、この上面31aには研磨シート33が載置される。保持部32は、研磨台31の上面31aに対向する平面32aを有し、この平面32aには、半径Rで湾曲したV溝34が形成されている。半径Rは、曲率半径Rlvよりも僅かに小さい。なお、研磨台31及び保持部32の材質は、例えばガラスである。 The polishing table 31 has a flat upper surface 31a, on which a polishing sheet 33 is placed. The holding part 32 has a flat surface 32a facing the upper surface 31a of the polishing table 31, and a V-shaped groove 34 curved with a radius R is formed on the flat surface 32a. The radius R is slightly smaller than the radius of curvature Rlv . The material of the polishing table 31 and the holding part 32 is, for example, glass.
 図2Aに示すように、V溝34は、平面32aからの深さが平面32aの中央付近で最も浅くなるように形成されている。また、図2Bに示すように、このV溝34の最小深さは、クラッド12が残存クラッド厚dlvを有することができる値に設定される。 As shown in Fig. 2A, the V-groove 34 is formed so that its depth from the plane 32a is shallowest near the center of the plane 32a. Also, as shown in Fig. 2B, the minimum depth of the V-groove 34 is set to a value that allows the cladding 12 to have a remaining cladding thickness d lv .
 研磨装置30を用いた光ファイバ10の研磨加工は、光ファイバ10に光ファイバ20を接続する現場で行われる。まず、研磨前の準備工程として、光ファイバ10からの漏洩光を測定する状態を準備する。具体的には、光ファイバ10にレーザ光(便宜上、伝播光と称する)が伝播している状態で光ファイバ10に曲げを付与し、曲げられた部分から漏洩するレーザ光(便宜上、漏洩光と称する)の強度を光強度計(図示せず)によって測定する。 The polishing process of the optical fiber 10 using the polishing device 30 is performed at the site where the optical fiber 20 is connected to the optical fiber 10. First, as a preparation step before polishing, a state is prepared for measuring the leaked light from the optical fiber 10. Specifically, the optical fiber 10 is bent while laser light (for convenience, referred to as propagating light) is propagating through the optical fiber 10, and the intensity of the laser light (for convenience, referred to as leaked light) leaking from the bent portion is measured with a light intensity meter (not shown).
 上述の通り、光ファイバ10は現用光ファイバである。従って、光ファイバ10を伝播する光は、そのネットワークを伝播する通信光81又は所定の光源を用いて導入された疑似的な通信光である。何れの場合も、通信に影響を与えない程度の損失が生じる曲げを光ファイバ10に付与し、曲げられた部分からの漏洩光の強度測定を、研磨が終了するまで行う。 As described above, the optical fiber 10 is an optical fiber in use. Therefore, the light propagating through the optical fiber 10 is either communication light 81 propagating through the network or pseudo communication light introduced using a specified light source. In either case, a bend that causes a loss that does not affect communication is imparted to the optical fiber 10, and the intensity of the leaked light from the bent portion is measured until polishing is completed.
 次に、保持部32のV溝34内に接着剤35(図5参照)を充填し、V溝34内に光ファイバ10を固定する。接着剤35が硬化し、光ファイバ10がV溝34に固定されると、光ファイバ10の側面15の一部が保持部32の平面32aから露出する(図2B参照)。 Next, adhesive 35 (see FIG. 5) is filled into the V-groove 34 of the holding portion 32, and the optical fiber 10 is fixed in the V-groove 34. When the adhesive 35 hardens and the optical fiber 10 is fixed in the V-groove 34, a part of the side surface 15 of the optical fiber 10 is exposed from the flat surface 32a of the holding portion 32 (see FIG. 2B).
 次に、側面15の一部が保持部32の平面32aから露出した状態で、保持部32の平面32aを、研磨台31に載置した研磨シート33に対向させる。その後、保持部32の平面32aから露出した光ファイバ10の側面15を研磨シート33に押し当てて研磨する。 Next, with a portion of the side surface 15 exposed from the flat surface 32a of the holding portion 32, the flat surface 32a of the holding portion 32 is opposed to the polishing sheet 33 placed on the polishing table 31. After that, the side surface 15 of the optical fiber 10 exposed from the flat surface 32a of the holding portion 32 is pressed against the polishing sheet 33 and polished.
 側面15の研磨は、漏洩する通信光81の強度を監視しながら行われる。研磨が進むと、研磨面がコア11に近づき(即ち残存クラッド厚dlvが減少し)、測定中の漏洩光の強度が徐々に減少する。そして、漏洩光の強度が所定の値に達したときに、研磨を終了し、曲げを解放する。これら一連の工程により研磨面14の形成が完了する。 The polishing of the side surface 15 is performed while monitoring the intensity of the leaking communication light 81. As the polishing progresses, the polished surface approaches the core 11 (i.e., the remaining cladding thickness d lv decreases), and the intensity of the leaked light being measured gradually decreases. Then, when the intensity of the leaked light reaches a predetermined value, the polishing is stopped and the bend is released. Through this series of steps, the formation of the polished surface 14 is completed.
 残存クラッド厚dbrを有する光ファイバ20の研磨面24も、上述した工程と同様の工程を経て形成される。但し、研磨面24は、曲率半径Rbrよりも僅かに小さい半径Rを持つV溝34が形成された保持部32を用いて形成される。研磨面24は、工場等の遠隔地で予め形成されてもよい。この場合、現場での加工よりも精密な加工が可能となる。 The polished surface 24 of the optical fiber 20 having the remaining cladding thickness d br is also formed through the same process as described above. However, the polished surface 24 is formed using a holding part 32 in which a V-groove 34 having a radius R slightly smaller than the radius of curvature R br is formed. The polished surface 24 may be formed in advance at a remote location such as a factory. In this case, more precise processing is possible than on-site processing.
 次に、本実施形態に係る光分岐率調整装置40について説明する。なお、説明の便宜上、光分岐率調整装置40を単に調整装置40と称する。 Next, the optical branching rate adjustment device 40 according to this embodiment will be described. For ease of explanation, the optical branching rate adjustment device 40 will be simply referred to as the adjustment device 40.
 図3Aは、本実施形態に係る調整装置40の構成の一例を示すブロック図である。図3Bは、図3Aに示す制御部50の構成を示すブロック図である。図3Cは、調整装置40の構成の一例を示す斜視図である。図3Aに示すように、調整装置40は、保持部(第1保持部)41と、保持部(第2保持部)42と、光源43と、光強度測定部44と、位置調整部(位置調整装置)45とを備える。 FIG. 3A is a block diagram showing an example of the configuration of the adjustment device 40 according to this embodiment. FIG. 3B is a block diagram showing the configuration of the control unit 50 shown in FIG. 3A. FIG. 3C is a perspective view showing an example of the configuration of the adjustment device 40. As shown in FIG. 3A, the adjustment device 40 includes a holding unit (first holding unit) 41, a holding unit (second holding unit) 42, a light source 43, a light intensity measuring unit 44, and a position adjustment unit (position adjustment device) 45.
 図3Cに示すように、保持部41は、光ファイバ10を保持した上述の保持部32がそのまま流用される。同様に、保持部42は、光ファイバ20を保持した上述の保持部32がそのまま流用される。即ち、保持部41は、曲率半径Rlvよりも僅かに小さい半径Rを持つV溝34が形成された保持部32であり、保持部42は、曲率半径Rbrよりも僅かに小さい半径Rを持つV溝34が形成された保持部32である。 3C , the holding portion 41 is the same as the holding portion 32 that holds the optical fiber 10. Similarly, the holding portion 42 is the same as the holding portion 32 that holds the optical fiber 20. That is, the holding portion 41 is the holding portion 32 in which the V groove 34 having a radius R slightly smaller than the radius of curvature Rlv is formed, and the holding portion 42 is the holding portion 32 in which the V groove 34 having a radius R slightly smaller than the radius of curvature Rbr is formed.
 保持部41は、上述の研磨加工が終了した光ファイバ10を保持する。即ち、保持部41は、研磨面14が平面41a上に露出した光ファイバ10を保持する。平面41aはXZ平面に平行である。同様に、保持部42は、研磨面24が平面42a上に露出した光ファイバ10を保持する。平面42aもXZ平面に平行である。保持部41と保持部42は、研磨面14と研磨面24が互いに摺動可能に接触した状態で、対応する光ファイバを保持している。換言すれば、保持部41と保持部42は、それぞれの平面41a、42aが互いに摺動可能に接触した状態でY方向に並んでいる。例えば、Y方向が重力の方向に平行な場合、保持部41は保持部42に積み重ねられる。 The holding part 41 holds the optical fiber 10 after the above-mentioned polishing process has been completed. That is, the holding part 41 holds the optical fiber 10 with the polished surface 14 exposed on the plane 41a. The plane 41a is parallel to the XZ plane. Similarly, the holding part 42 holds the optical fiber 10 with the polished surface 24 exposed on the plane 42a. The plane 42a is also parallel to the XZ plane. The holding part 41 and the holding part 42 hold the corresponding optical fiber with the polished surface 14 and the polished surface 24 in slidable contact with each other. In other words, the holding part 41 and the holding part 42 are lined up in the Y direction with their respective planes 41a, 42a in slidable contact with each other. For example, when the Y direction is parallel to the direction of gravity, the holding part 41 is stacked on the holding part 42.
 光源43は周知の構成を有するレーザ光源であり、光ファイバ20に入射する試験光80を生成する。試験光80は、光ファイバ20の両端のうちの何れに入射してもよい。例えば、光ファイバ10が現用光ファイバである場合、光源43は、光ファイバ分岐1を挟んで、光ファイバ10に接続する通信事業者側の光回線終端装置(ONU: Optical Network Unit)と反対側に位置する光ファイバ20(即ち、分岐ファイバ)の端部に接続する。なお、図3Aにおいて点線で示すように、光源43は制御部50によって制御されてもよい。 The light source 43 is a laser light source having a known configuration, and generates test light 80 to be incident on the optical fiber 20. The test light 80 may be incident on either end of the optical fiber 20. For example, if the optical fiber 10 is an active optical fiber, the light source 43 is connected to the end of the optical fiber 20 (i.e., the branch fiber) located on the opposite side of the optical fiber branch 1 from the optical network unit (ONU) on the telecommunications carrier side that connects to the optical fiber 10. As shown by the dotted line in Figure 3A, the light source 43 may be controlled by the control unit 50.
 また、加入者側の光回線終端装置が、光源43として利用されてもよい。光回線終端装置は通常、屋内に設置され、商用電源からの電力供給を受けて動作している。この光回線終端装置を光源43として使用した場合、専用の光源を別途用意する必要が無い。つまり、光分岐率調整装置40を小型化できる。 Also, the optical line terminal on the subscriber side may be used as the light source 43. The optical line terminal is usually installed indoors and operates by receiving power from a commercial power source. When this optical line terminal is used as the light source 43, there is no need to prepare a separate dedicated light source. In other words, the optical branching rate adjustment device 40 can be made smaller.
 光強度測定部44は所謂光強度計であり、光ファイバ20を通過した試験光80を受ける受光部46を含む。光強度測定部44は、受光部46が受けた試験光80の強度を測定(算出)し、その測定結果を制御部50に出力する。 The light intensity measuring unit 44 is a so-called light intensity meter, and includes a light receiving unit 46 that receives the test light 80 that has passed through the optical fiber 20. The light intensity measuring unit 44 measures (calculates) the intensity of the test light 80 received by the light receiving unit 46, and outputs the measurement result to the control unit 50.
 なお、受光部46は、試験光80を電力に変換する光電変換素子によって構成されてもよい。この場合、光強度測定部44は、スーパーキャパシタ等の蓄電部47を含み、蓄電部47は受光部46から出力された電力を蓄積する。更に、光強度測定部44は、蓄電部47に蓄積された電力を位置調整部45に供給する。この電力供給によって、商用電源からの電力供給を受けずに、位置調整部45を稼働させることができ、調整装置40を屋外などの電力供給が難しい環境に設置することができる。 The light receiving unit 46 may be configured with a photoelectric conversion element that converts the test light 80 into electricity. In this case, the light intensity measurement unit 44 includes a power storage unit 47 such as a supercapacitor, and the power storage unit 47 stores the power output from the light receiving unit 46. Furthermore, the light intensity measurement unit 44 supplies the power stored in the power storage unit 47 to the position adjustment unit 45. This power supply makes it possible to operate the position adjustment unit 45 without receiving power from a commercial power source, and the adjustment device 40 can be installed in an environment where it is difficult to supply power, such as outdoors.
 位置調整部45は、操作部48と、操作部48を制御する制御部50とを含む。位置調整部45は、試験光80の強度と所定の基準値Prfの間の差が減少するように、保持部41(即ち、研磨面14)と保持部42(即ち、研磨面24)のうちの一方を、その他方に対して相対的に移動させる。ここで、所定の基準値Prfとは、光ファイバ分岐1に設定された光分岐率が得られたときに、光強度測定部44によって測定された試験光80の強度である。 The position adjustment unit 45 includes an operation unit 48 and a control unit 50 that controls the operation unit 48. The position adjustment unit 45 moves one of the holding unit 41 (i.e., the polished surface 14) and the holding unit 42 (i.e., the polished surface 24) relative to the other so that the difference between the intensity of the test light 80 and a predetermined reference value P rf decreases. Here, the predetermined reference value P rf is the intensity of the test light 80 measured by the light intensity measurement unit 44 when the optical branching ratio set in the optical fiber branch 1 is obtained.
 操作部48は、保持部41又は保持部42の位置を操作する。例えば図3Cに示すように、操作部48は、リニアアクチュエータ58と、リニアアクチュエータ58によって操作されるステージ59とを含む。リニアアクチュエータ58は、例えば、モータとマイクロメータヘッドによって構成され、制御部50の制御によってステージ59をX方向に沿って移動させる。 The operation unit 48 operates the position of the holding unit 41 or the holding unit 42. For example, as shown in FIG. 3C, the operation unit 48 includes a linear actuator 58 and a stage 59 operated by the linear actuator 58. The linear actuator 58 is composed of, for example, a motor and a micrometer head, and moves the stage 59 along the X direction under the control of the control unit 50.
 ステージ59の上面59aはXZ平面と平行である。この上面59aには、保持部41又は保持部42が載置される。例えば、図3Cに示すように、保持部42がステージ59に載置され、クランプ等の保持手段(図示せず)又は接着剤を用いてステージ59に固定される。この場合、保持部41は保持部42上に載置される。ただし、保持部41はストッパ(図示せず)によりあらゆる方向の移動が規制されている。 The upper surface 59a of the stage 59 is parallel to the XZ plane. The holding part 41 or the holding part 42 is placed on this upper surface 59a. For example, as shown in FIG. 3C, the holding part 42 is placed on the stage 59 and fixed to the stage 59 using a holding means such as a clamp (not shown) or an adhesive. In this case, the holding part 41 is placed on the holding part 42. However, the movement of the holding part 41 in all directions is restricted by a stopper (not shown).
 制御部50は、例えば、図3Bに示すような汎用的なコンピュータである。制御部50としてのコンピュータは、CPU(Central Processing Unit、プロセッサ)51と、メモリ52と、ストレージ53(HDD: Hard Disk Drive, SSD: Solid State Drive)と、通信部54と、入力部55と、出力部56とを備える。メモリ52及びストレージ53は記憶装置である。このコンピュータにおいて、CPU51がメモリ52上にロードされた所定のプログラムを実行することにより、試験光80の強度測定、操作部48の制御などの調整装置40の諸機能が実現される。 The control unit 50 is, for example, a general-purpose computer as shown in FIG. 3B. The computer serving as the control unit 50 comprises a CPU (Central Processing Unit, processor) 51, memory 52, storage 53 (HDD: Hard Disk Drive, SSD: Solid State Drive), a communication unit 54, an input unit 55, and an output unit 56. The memory 52 and storage 53 are storage devices. In this computer, the CPU 51 executes a specific program loaded onto the memory 52, thereby realizing the various functions of the adjustment device 40, such as measuring the intensity of the test light 80 and controlling the operation unit 48.
 なお、制御部50によって実行されるプログラムは、USB (Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶されていてもよく、ネットワークを介して制御部50に配信されてもよい。コンピュータ読取り可能な記録媒体は、例えば非一時的な(non-transitory)記録媒体である。 The programs executed by the control unit 50 may be stored in a computer-readable recording medium such as a Universal Serial Bus (USB) memory, a Compact Disc (CD), or a Digital Versatile Disc (DVD), and may be distributed to the control unit 50 via a network. The computer-readable recording medium is, for example, a non-transitory recording medium.
 位置調整部45の操作対象が保持部42である場合、ストレージ53は、光ファイバ分岐1の構築によって試験光80の所定の基準値Prfが得られたときの、保持部41(即ち、研磨面14)に対する保持部42(即ち、研磨面24)の相対位置を記憶している。また、ストレージ53は、当該相対位置を基準としてX方向に沿って保持部42を移動させたときの試験光80の変化(増減)の傾向(例えば保持部42の座標と試験光80の強度Pthの組)を記憶している。ストレージ53が記憶する上述の情報は、位置調整部45の操作対象が保持部41である場合も同様である。 When the object of operation of the position adjustment unit 45 is the holding unit 42, the storage 53 stores the relative position of the holding unit 42 (i.e., the polishing surface 24) with respect to the holding unit 41 (i.e., the polishing surface 14) when a predetermined reference value P rf of the test light 80 is obtained by constructing the optical fiber branch 1. The storage 53 also stores the tendency of change (increase or decrease) in the test light 80 when the holding unit 42 is moved along the X direction based on the relative position (for example, a set of the coordinates of the holding unit 42 and the intensity P th of the test light 80). The above-mentioned information stored in the storage 53 is the same when the object of operation of the position adjustment unit 45 is the holding unit 41.
 これらの相対位置は、光強度測定部44によって測定された試験光80の強度Pthが、基準値Prf未満、或いは基準値Prfを超えたときに、操作対象をX方向に沿ってどの向きに、どの程度移動させるべきかを制御部50が決定する際の情報として利用される。 These relative positions are used as information for the control unit 50 to determine in which direction and by how much the operation target should be moved along the X direction when the intensity Pth of the test light 80 measured by the light intensity measuring unit 44 is less than the reference value Prf or exceeds the reference value Prf .
 次に、調整装置40による光分岐率調整方法について説明する。
 図4は、本実施形態に係る光分岐率調整方法の処理の一例を示すフローチャートである。図5は、研磨面14及び研磨面24とその周辺を示す断面図である。
Next, a method for adjusting the optical branching ratio by the adjustment device 40 will be described.
Fig. 4 is a flow chart showing an example of a process of the optical branching ratio adjusting method according to the present embodiment. Fig. 5 is a cross-sectional view showing the polished surface 14, the polished surface 24 and their surroundings.
 以下、位置調整部45の操作対象が保持部42である場合を例に挙げて説明する。従って、ステージ59には保持部42が載置され、保持部42には保持部41が載置される。保持部42は、操作部48によるステージ59の操作によってX方向に沿って移動する。一方、保持部41は、ストッパ(図示せず)によって移動が制限されている。即ち、保持部41は静止している。 The following describes an example in which the object of operation of the position adjustment unit 45 is the holding unit 42. Therefore, the holding unit 42 is placed on the stage 59, and the holding unit 41 is placed on the holding unit 42. The holding unit 42 moves in the X direction by operating the stage 59 with the operation unit 48. Meanwhile, the movement of the holding unit 41 is restricted by a stopper (not shown). In other words, the holding unit 41 is stationary.
 光ファイバ分岐1の光分岐率を評価する際、光ファイバ10には通信光81(図3C参照)が伝播していてもよく、伝播していなくてもよい。一方、光ファイバ20には、予め設定された強度Pinをもつ試験光80が入射されている。試験光80は、光ファイバ20を伝播し、光強度測定部44の受光部46に入射する。光強度測定部44は、受光部46に入射した試験光80の強度Pthを測定し、その強度Pthを制御部50に出力する。なお、光分岐率は、1-(Pth/Pin)で表される数式を用いた結果から推定することができる。 When evaluating the optical branching ratio of the optical fiber branch 1, communication light 81 (see FIG. 3C) may or may not be propagating through the optical fiber 10. Meanwhile, test light 80 having a preset intensity P in is input to the optical fiber 20. The test light 80 propagates through the optical fiber 20 and is input to the light receiving unit 46 of the light intensity measuring unit 44. The light intensity measuring unit 44 measures the intensity P th of the test light 80 input to the light receiving unit 46, and outputs the intensity P th to the control unit 50. The optical branching ratio can be estimated from the results of using a formula expressed as 1-(P th /P in ).
 まず、制御部50は、光強度測定部44によって測定された試験光80の強度Pthと所定の基準値Prfを比較する(ステップS1)。強度Pthが基準値Prfに等しい場合(ステップS1においてYES)、所望の光分岐率が維持されていると判断し、処理が終了する。 First, the control unit 50 compares the intensity Pth of the test light 80 measured by the light intensity measurement unit 44 with a predetermined reference value Prf (step S1). If the intensity Pth is equal to the reference value Prf (YES in step S1), it is determined that the desired light branching ratio is maintained, and the process ends.
 一方、強度Pthが、測定誤差を考慮しても基準値Prfと異なる場合(ステップS1においてNO)、制御部50は、強度Pthが基準値Prfよりも大きいか否かを判断する(ステップS2)。この場合、制御部50は、強度Pthが基準値Prfよりも小さいか否かを判断してもよい。 On the other hand, if the intensity Pth is different from the reference value Prf even when the measurement error is taken into consideration (NO in step S1), the control unit 50 judges whether the intensity Pth is greater than the reference value Prf (step S2). In this case, the control unit 50 may judge whether the intensity Pth is smaller than the reference value Prf .
 強度Pthが基準値Prfよりも大きい場合(ステップS2においてYES)、光分岐率は当初の値から減少している。つまり、コア間隔d(図5参照)が、当初の値から増加している。従って、制御部50は、コア間隔dが縮小するように、位置調整部45を制御する(ステップS4)。具体的には、位置調整部45は、保持部42(即ち、研磨面24)を保持部41(即ち、研磨面14)に接近させる。 If the intensity Pth is greater than the reference value Prf (YES in step S2), the optical branching ratio has decreased from the initial value. In other words, the core spacing d (see FIG. 5) has increased from the initial value. Therefore, the control unit 50 controls the position adjustment unit 45 so that the core spacing d decreases (step S4). Specifically, the position adjustment unit 45 moves the holding unit 42 (i.e., the polishing surface 24) closer to the holding unit 41 (i.e., the polishing surface 14).
 位置調整部45による保持部42の位置調整が行われている間も、制御部50は強度Pthと基準値Prfを比較する(ステップS5)。そして、強度Pthが基準値Prfに等しくなった場合(ステップS5においてYES)、制御部50は、位置調整部45の制御(即ち、保持部42の位置調整)を停止し、処理を終了する。一方、強度Pthが基準値Prfに達していない場合(ステップS5においてNO)、制御部50はコア間隔dを縮小させる位置調整部45の制御を続行する(ステップS6)。その後、処理はステップS5に戻り、強度Pthが基準値Prfに達するまで、ステップS5とステップS6の処理を繰り返す。 While the position adjustment unit 45 is adjusting the position of the holding unit 42, the control unit 50 compares the intensity Pth with the reference value Prf (step S5). If the intensity Pth is equal to the reference value Prf (YES in step S5), the control unit 50 stops the control of the position adjustment unit 45 (i.e., the position adjustment of the holding unit 42) and ends the process. On the other hand, if the intensity Pth has not reached the reference value Prf (NO in step S5), the control unit 50 continues to control the position adjustment unit 45 to reduce the core interval d (step S6). After that, the process returns to step S5, and the processes of steps S5 and S6 are repeated until the intensity Pth reaches the reference value Prf .
 また、強度Pthが基準値Prfよりも小さい場合(ステップS2においてNO)、光分岐率は当初の値から増加している。つまり、コア間隔dが、当初の値から減少している。従って、制御部50は、コア間隔dが拡大するように、位置調整部45を制御する(ステップS3)。即ち、位置調整部45は、保持部42(即ち、研磨面24)を保持部41(即ち、研磨面14)から離隔させる。 On the other hand, if the intensity Pth is smaller than the reference value Prf (NO in step S2), the optical branching ratio has increased from the initial value. In other words, the core spacing d has decreased from the initial value. Therefore, the control unit 50 controls the position adjustment unit 45 so as to increase the core spacing d (step S3). That is, the position adjustment unit 45 moves the holding unit 42 (i.e., the polishing surface 24) away from the holding unit 41 (i.e., the polishing surface 14).
 位置調整部45による保持部42の位置調整が行われている間も、制御部50は強度Pthと基準値Prfを比較する(ステップS5)。そして、強度Pthが基準値Prfに等しくなった場合(ステップS5においてYES)、制御部50は、位置調整部45の制御(即ち、保持部42の位置調整)を停止し、処理を終了する。一方、強度Pthが基準値Prfに達していない場合(ステップS5においてNO)、制御部50はコア間隔dを拡大させる位置調整部45の制御を続行する(ステップS6)。その後、処理はステップS5に戻り、強度Pthが基準値Prfに達するまで、ステップS5とステップS6の処理を繰り返す。 While the position adjustment unit 45 is adjusting the position of the holding unit 42, the control unit 50 compares the intensity Pth with the reference value Prf (step S5). If the intensity Pth is equal to the reference value Prf (YES in step S5), the control unit 50 stops the control of the position adjustment unit 45 (i.e., the position adjustment of the holding unit 42) and ends the process. On the other hand, if the intensity Pth has not reached the reference value Prf (NO in step S5), the control unit 50 continues to control the position adjustment unit 45 to increase the core interval d (step S6). After that, the process returns to step S5, and the processes of steps S5 and S6 are repeated until the intensity Pth reaches the reference value Prf .
 このような一連の処理を定期的に繰り返し実行することによって、光ファイバ分岐1における光分岐率が変化しても、当該光分岐率を元の値に戻すことができる。 By periodically repeating this series of processes, even if the optical branching ratio in optical fiber branch 1 changes, the optical branching ratio can be restored to its original value.
 次に本実施形態の変形例について説明する。
 図6は、本実施形態の変形例に係る光分岐率調整装置の構成を示す斜視図である。図6に示すように、位置調整部45の操作部48は、リニアアクチュエータ60と、リニアアクチュエータ60によって操作されるステージ61とを更に含んでもよい。リニアアクチュエータ60は、例えば、モータとマイクロメータヘッドによって構成され、制御部50の制御によってステージ61をZ方向に沿って移動させる。つまり、変形例に係る操作部48は、X方向とZ方向に保持部41又は保持部42を移動させることが可能な2軸ステージを含む。以下、位置調整部45の操作対象が保持部42である場合を例に挙げて説明する。
Next, a modification of this embodiment will be described.
6 is a perspective view showing the configuration of a light branching rate adjustment device according to a modified example of this embodiment. As shown in FIG. 6, the operation unit 48 of the position adjustment unit 45 may further include a linear actuator 60 and a stage 61 operated by the linear actuator 60. The linear actuator 60 is, for example, composed of a motor and a micrometer head, and moves the stage 61 along the Z direction under the control of the control unit 50. In other words, the operation unit 48 according to the modified example includes a two-axis stage capable of moving the holding unit 41 or the holding unit 42 in the X direction and the Z direction. Hereinafter, a case where the operation target of the position adjustment unit 45 is the holding unit 42 will be described as an example.
 光ファイバ分岐1における光分岐率の変化は、X方向に沿ったコア11とコア21の相対的な軸ずれ、及びZ方向に沿ったコア11とコア21の相対的な軸ずれの何れにおいても発生する。但し、非特許文献2に示されている通り、光分岐率の変化は、Z方向に沿った相対的な軸ずれよりも、X方向に沿った相対的な軸ずれに大きく依存している。即ち、光分岐率は、Z方向に沿った軸ずれよりも、X方向に沿って軸ずれの方が急激に変化する。従って、操作部48の移動分解能次第ではあるが、X方向に沿った保持部42の位置調整だけでは、光分岐率の微調整が困難な場合が考えられる。 Changes in the optical branching ratio in optical fiber branch 1 occur both when there is a relative axial misalignment between core 11 and core 21 along the X direction, and when there is a relative axial misalignment between core 11 and core 21 along the Z direction. However, as shown in Non-Patent Document 2, changes in the optical branching ratio are more dependent on the relative axial misalignment along the X direction than on the relative axial misalignment along the Z direction. In other words, the optical branching ratio changes more rapidly with an axial misalignment along the X direction than with an axial misalignment along the Z direction. Therefore, although it depends on the movement resolution of the operation unit 48, it may be difficult to fine-tune the optical branching ratio by simply adjusting the position of the holding unit 42 along the X direction.
 そこで、Z方向に沿った軸ずれによる光分岐率の変化が緩慢な点に着目し、本変形例では、リニアアクチュエータ58による保持部42の位置調整を粗調整、リニアアクチュエータ60による保持部42の位置調整を微調整として捉え、これらの調整を併用する。例えば、リニアアクチュエータ58を用いてX方向に沿った保持部42の位置調整を行い、強度Pthを基準値Prfに近付ける。その後、強度Pthが基準値Prfに達するまでリニアアクチュエータ60を用いてZ方向に沿った保持部42の位置調整を行う。このような操作を行うことによって、リニアアクチュエータ58、60やステージ59、61などの移動分解能が比較的大きくても、強度Pthを高精度に基準値Prfに合わせることができる。即ち、所望の光分岐率を得るまでの高精度な調整が可能となる。 Therefore, focusing on the fact that the change in the optical branching ratio due to the axial misalignment along the Z direction is gradual, in this modified example, the position adjustment of the holding part 42 by the linear actuator 58 is regarded as a rough adjustment, and the position adjustment of the holding part 42 by the linear actuator 60 is regarded as a fine adjustment, and these adjustments are used in combination. For example, the position adjustment of the holding part 42 along the X direction is performed using the linear actuator 58, and the intensity Pth is brought closer to the reference value Prf . Then, the position adjustment of the holding part 42 along the Z direction is performed using the linear actuator 60 until the intensity Pth reaches the reference value Prf . By performing such an operation, even if the movement resolution of the linear actuators 58, 60 and the stages 59, 61 is relatively large, the intensity Pth can be matched to the reference value Prf with high accuracy. That is, high-precision adjustment until a desired optical branching ratio is obtained is possible.
 なお、リニアアクチュエータ58とリニアアクチュエータ60を併用するため、ストレージ53は、ストレージ53は、保持部41(即ち、研磨面14)に対する保持部42(即ち、研磨面24)の相対位置を基準としてZ方向に沿って保持部42を移動させたときの試験光80の変化(増減)の傾向(例えば保持部42の座標と試験光80の強度Pthの組)を記憶している。ストレージ53が記憶する上述の情報は、位置調整部45の操作対象が保持部41である場合も同様である。 In order to use the linear actuator 58 and the linear actuator 60 in combination, the storage 53 stores a tendency of change (increase or decrease) in the test light 80 when the holder 42 is moved along the Z direction based on the relative position of the holder 42 (i.e., the polishing surface 24) with respect to the holder 41 (i.e., the polishing surface 14) (for example, a set of the coordinates of the holder 42 and the intensity Pth of the test light 80). The above-mentioned information stored in the storage 53 is also the same when the object to be operated by the position adjustment unit 45 is the holder 41.
 これらの相対位置は、光強度測定部44によって測定された試験光80の強度Pthが、基準値Prf未満、或いは基準値Prfを超えたときに、操作対象(即ち、保持部41又は保持部42)をZ方向に沿ってどの向きに、どの程度移動させるべきかを制御部50が決定する際の情報として利用される。 These relative positions are used as information by the control unit 50 to determine in which direction and by how much the object to be operated (i.e., the holding unit 41 or the holding unit 42) should be moved along the Z direction when the intensity Pth of the test light 80 measured by the light intensity measuring unit 44 is less than the reference value Prf or exceeds the reference value Prf.
 なお、本開示は上述の実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含む。 Note that this disclosure is not limited to the above-described embodiments, but is set forth in the claims, and includes all modifications within the meaning and scope equivalent to the claims.
1 光ファイバ分岐
10 光ファイバ(第1光ファイバ)
11 コア(第1コア)
12 クラッド(第1クラッド)
13 被覆(第1被覆)
14 研磨面(第1研磨面)
15 側面
20 光ファイバ(第2光ファイバ)
21 コア(第2コア)
22 クラッド(第2クラッド)
23 被覆(第2被覆)
24 研磨面(第2研磨面)
25 側面
30 研磨装置
32 保持部
34 V溝
35 接着剤
40 光分岐率調整装置(調整装置)
41 保持部(第1保持部)
42 保持部(第2保持部)
43 光源
44 光強度測定部
45 位置調整部(位置調整装置)
46 受光部
47 蓄電部
48 操作部
50 制御部
58 リニアアクチュエータ
59 ステージ
60 リニアアクチュエータ
61 ステージ
1 Optical fiber branch 10 Optical fiber (first optical fiber)
11 core (first core)
12 Clad (first clad)
13 Coating (first coating)
14 Polishing surface (first polishing surface)
15 Side surface 20 Optical fiber (second optical fiber)
21 core (second core)
22 Clad (second clad)
23 Coating (second coating)
24 Polishing surface (second polishing surface)
25 Side surface 30 Polishing device 32 Holding portion 34 V-groove 35 Adhesive 40 Optical branching rate adjustment device (adjustment device)
41 Holding portion (first holding portion)
42 holding portion (second holding portion)
43 Light source 44 Light intensity measuring unit 45 Position adjustment unit (position adjustment device)
46 Light receiving unit 47 Power storage unit 48 Operation unit 50 Control unit 58 Linear actuator 59 Stage 60 Linear actuator 61 Stage

Claims (5)

  1.  第1光ファイバの側面に形成された第1研磨面と第2光ファイバの側面に形成された第2研磨面とが互いに摺動可能に接触した状態で、前記第2光ファイバを通過した試験光の強度を測定し、
     前記強度と所定の基準値の間の差が減少するように、前記第1研磨面と前記第2研磨面のうちの一方を、その他方に対して相対的に移動させる
    光分岐率調整方法。
    measuring an intensity of a test light passing through the second optical fiber while a first polished surface formed on a side surface of the first optical fiber and a second polished surface formed on a side surface of the second optical fiber are in slidable contact with each other;
    A method for adjusting a light branching ratio, comprising moving one of the first polishing surface and the second polishing surface relative to the other so that a difference between the intensity and a predetermined reference value is reduced.
  2.  前記第2光ファイバを通過した前記試験光を電力に変換し、
     前記第1研磨面と前記第2研磨面のうちの前記一方を移動させる位置調整装置に前記電力を供給する
    請求項1に記載の光分岐率調整方法。
    converting the test light passing through the second optical fiber into electrical power;
    The method for adjusting a light branching ratio according to claim 1 , wherein the power is supplied to a position adjustment device that moves the one of the first polishing surface and the second polishing surface.
  3.  前記第2光ファイバに接続した光回線終端装置によって前記試験光を発生させる
    請求項1又は2に記載の光分岐率調整方法。
    3. The method for adjusting an optical branching ratio according to claim 1, wherein the test light is generated by an optical line terminal connected to the second optical fiber.
  4.  第1光ファイバの側面に形成された第1研磨面と第2光ファイバの側面に形成された第2研磨面が互いに摺動可能に接触した状態で、前記第1光ファイバを保持する第1保持部及び前記第2光ファイバを保持する第2保持部と、
     前記第2光ファイバに入射する試験光を生成する光源と、
     前記第2光ファイバを通過した前記試験光を受ける受光部を含み、前記試験光の強度を測定する光強度測定部と、
     前記強度と所定の基準値の間の差が減少するように、前記第1保持部と前記第2保持部のうちの一方を、その他方に対して相対的に移動させる位置調整部と
    を備える光分岐率調整装置。
    a first holding part that holds the first optical fiber and a second holding part that holds the second optical fiber in a state in which a first polished surface formed on a side surface of the first optical fiber and a second polished surface formed on a side surface of the second optical fiber are in slidable contact with each other;
    a light source that generates test light that is incident on the second optical fiber;
    a light intensity measuring unit including a light receiving unit that receives the test light that has passed through the second optical fiber and measures the intensity of the test light;
    a position adjustment unit that moves one of the first holding unit and the second holding unit relative to the other so that a difference between the intensity and a predetermined reference value is reduced.
  5.  前記受光部は、前記第2光ファイバを通過した前記試験光を電力に変換する光電変換素子であり、
     前記位置調整部は、前記受光部が生成した電力によって動作する
    請求項4に記載の光分岐率調整装置。
    the light receiving unit is a photoelectric conversion element that converts the test light that has passed through the second optical fiber into electric power,
    The optical branching ratio adjusting device according to claim 4 , wherein the position adjusting section is operated by power generated by the light receiving section.
PCT/JP2022/043611 2022-11-25 2022-11-25 Light branching rate adjustment method and light branching rate adjustment device WO2024111122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043611 WO2024111122A1 (en) 2022-11-25 2022-11-25 Light branching rate adjustment method and light branching rate adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043611 WO2024111122A1 (en) 2022-11-25 2022-11-25 Light branching rate adjustment method and light branching rate adjustment device

Publications (1)

Publication Number Publication Date
WO2024111122A1 true WO2024111122A1 (en) 2024-05-30

Family

ID=91195955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043611 WO2024111122A1 (en) 2022-11-25 2022-11-25 Light branching rate adjustment method and light branching rate adjustment device

Country Status (1)

Country Link
WO (1) WO2024111122A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221308A (en) * 1987-03-11 1988-09-14 Fujikura Ltd Optical fiber coupler
US6968103B1 (en) * 2002-10-10 2005-11-22 General Dynamics Advanced Information Systems, Inc. Optical fiber coupler and method for making same
WO2021064916A1 (en) * 2019-10-02 2021-04-08 日本電信電話株式会社 Optical branching circuit manufacturing method and optical branching circuit manufacturing device
WO2022009367A1 (en) * 2020-07-09 2022-01-13 日本電信電話株式会社 Optical network system, method for operating optical network system, and optical line terminal
WO2022034660A1 (en) * 2020-08-12 2022-02-17 日本電信電話株式会社 Branching ratio measurement device, branching ratio measurement method, and optical multiplexing/demultiplexing circuit manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221308A (en) * 1987-03-11 1988-09-14 Fujikura Ltd Optical fiber coupler
US6968103B1 (en) * 2002-10-10 2005-11-22 General Dynamics Advanced Information Systems, Inc. Optical fiber coupler and method for making same
WO2021064916A1 (en) * 2019-10-02 2021-04-08 日本電信電話株式会社 Optical branching circuit manufacturing method and optical branching circuit manufacturing device
WO2022009367A1 (en) * 2020-07-09 2022-01-13 日本電信電話株式会社 Optical network system, method for operating optical network system, and optical line terminal
WO2022034660A1 (en) * 2020-08-12 2022-02-17 日本電信電話株式会社 Branching ratio measurement device, branching ratio measurement method, and optical multiplexing/demultiplexing circuit manufacturing method

Similar Documents

Publication Publication Date Title
Li et al. Silica-based optical integrated circuits
US11092748B2 (en) Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
CA2995292C (en) Photonic chip having a monolithically integrated reflector unit and method of manufacturing a reflector unit
US11747564B2 (en) Manufacturing method and manufacturing apparatus of optical splitters
JP5856823B2 (en) Optical fiber coupling method
Trappen et al. 3D-printed optical probes for wafer-level testing of photonic integrated circuits
JP6438374B2 (en) Optical fiber side input / output device and optical fiber side input / output method
WO2024111122A1 (en) Light branching rate adjustment method and light branching rate adjustment device
JP7375939B2 (en) Branching ratio measuring device, branching ratio measuring method, and optical multiplexing/demultiplexing circuit manufacturing method
WO2019165205A1 (en) 3d printed fiber optic connector end face and method of manufacture
Hsu et al. Multiple fiber end fire coupling with single‐mode channel waveguides
WO2021195121A1 (en) Multiple fiber connectivity based on 2-photon, 3d printed, tapered fiber tips
Shiraishi et al. A micro light-beam spot-size converter using a hemicylindrical GRIN-slab tip with high-index contrast
US20220276436A1 (en) Optical Connection Structure and Method for Manufacturing the Same
WO2024111125A1 (en) Optical fiber position adjustment device and optical fiber position adjustment method
US20220390670A1 (en) Optical Module
Uematsu et al. Optical coupling technique based on fiber side-polishing without service interruption
Schröder Fiber optic pigtailing and packaging of photonic integrated circuits
CN1702441A (en) Apparatus and method for testing fiber optic insulator
JP2620321B2 (en) Light switch
WO2023238213A1 (en) Optical fiber branching creation method, optical fiber branching creation device, and optical fiber branching creation program
WO2024105776A1 (en) Optical fiber coupler, optical fiber coupler production method, and optical multiplexing/demultiplexing method
Wang et al. A robust strategy for realizing highly-efficient passive alignment of fiber ribbons to integrated polymer waveguides
JP5613639B2 (en) Optical path length adjusting device and optical path length adjusting method
Dong et al. Effect of V-Groove positioning error on coupling loss