WO2024111089A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2024111089A1
WO2024111089A1 PCT/JP2022/043387 JP2022043387W WO2024111089A1 WO 2024111089 A1 WO2024111089 A1 WO 2024111089A1 JP 2022043387 W JP2022043387 W JP 2022043387W WO 2024111089 A1 WO2024111089 A1 WO 2024111089A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
commercial power
unit
air conditioner
Prior art date
Application number
PCT/JP2022/043387
Other languages
French (fr)
Japanese (ja)
Inventor
郁実 星野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/043387 priority Critical patent/WO2024111089A1/en
Publication of WO2024111089A1 publication Critical patent/WO2024111089A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • This disclosure relates to air conditioners.
  • the power supply voltage of air conditioners equipped with indoor and outdoor units may become abnormal. For example, if the power supply voltage becomes excessive and voltage is applied to the air conditioner, the withstand voltage of electrical or functional components may be exceeded, causing the components to break down.
  • the regularity and maximum value of the power supply voltage value are unknown, and the regularity and maximum value vary depending on the region and time, even within the same country.
  • surge voltage resistance measures can be taken using varistors, etc.
  • an overvoltage is applied that rises gradually over a long period of time, such as tens of milliseconds, the components can be protected by stopping the operation control action and then cutting off the power supply with a switch, etc.
  • the air conditioning device described in Patent Document 1 determines that a voltage abnormality has occurred in the commercial power line to which the inverter circuit is connected when the DC bus voltage of the inverter circuit meets the overvoltage condition and the motor control state meets a specified condition, and cuts off the connection between the DC bus of the inverter circuit and the commercial power line.
  • Patent Document 1 when control is being performed to stop the motor, it is determined that a certain condition is met, and the connection between the commercial power line and the DC bus is cut off. For this reason, in the technology of Patent Document 1, when an abnormality occurs in the power supply voltage, it takes time to control the motor to stop, and there is a problem that the protection of components in the air conditioning device cannot be completed in time, causing the components to break down.
  • the present disclosure has been made in consideration of the above, and aims to provide an air conditioner that can adequately protect components and prevent component failure even if an abnormality occurs in the power supply voltage.
  • the air conditioner of the present disclosure includes an outdoor unit connected to a commercial power source, and an indoor unit connected to the commercial power source via the outdoor unit.
  • the outdoor unit has a main circuit that generates a voltage for driving functional components using a voltage supplied from the commercial power source, a switch that is arranged on a connection line connecting the main circuit of the outdoor unit and the commercial power source and switches between connected and disconnected, and a control unit that controls the switch.
  • the control unit protects components downstream of the switch by giving priority to opening the switch without taking into account the control state and operating state of the functional components.
  • the air conditioner disclosed herein has the advantage of being able to properly protect components and prevent component failure even if an abnormality occurs in the power supply voltage.
  • FIG. 1 is a diagram showing a configuration example of an air conditioner according to a first embodiment. A flowchart showing an example of an operation processing procedure of the air conditioner according to the first embodiment.
  • FIG. 13 is a diagram showing a configuration example of an air conditioner according to a second embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a processing circuit provided in a control unit of an outdoor unit according to the first and second embodiments, in the case where the processing circuit is realized by a processor and a memory.
  • FIG. 1 is a diagram showing an example of a processing circuit provided in a control unit of an outdoor unit according to the first and second embodiments, in the case where the processing circuit is configured with dedicated hardware.
  • FIG. 1 is a diagram showing an example of the configuration of an air conditioner according to the first embodiment.
  • the air conditioner 1A includes an indoor unit 10A having the function of an indoor unit, and an outdoor unit 20A having the function of an outdoor unit.
  • the outdoor unit 20A is connected to a commercial power source 30, and the indoor unit 10A is connected to the commercial power source 30 via the outdoor unit 20A.
  • the indoor unit 10A has an indoor unit board 11A, a terminal block 15, and multiple functional parts (not shown) that are driven using power sent from an AC or DC power source.
  • the functional parts are a compressor motor, a fan motor, etc.
  • the functional parts of the indoor unit 10A may be arranged on the indoor unit board 11A.
  • the terminal block 15 may also be arranged on the indoor unit board 11A.
  • the indoor unit board 11A has a main circuit 12, a control unit 13, a communication unit 14, an AC voltage detection unit 16, a DC voltage detection unit 17, a switch SW1, and a timer 45A.
  • the outdoor unit 20A has an outdoor unit board 21A, a terminal block 25, and a number of functional components (not shown) that are driven using power sent from an AC or DC power source.
  • the functional components of the outdoor unit 20A may be arranged on the outdoor unit board 21A.
  • the terminal block 25 may also be arranged on the outdoor unit board 21A.
  • the outdoor unit board 21A includes a main circuit 22, a control unit 23, a communication unit 24, an AC voltage detection unit 26, a DC voltage detection unit 27, switches SW2 and SW3, and a timer 46A.
  • the air conditioner 1A may be equipped with only one of the timers 45A and 46A.
  • the air conditioner 1A may not be equipped with the timers 45A and 46A.
  • the indoor unit 10A may be equipped with either the DC voltage detection unit 17 or the AC voltage detection unit 16. As long as the indoor unit 10A is equipped with the timer 45A, it may not be equipped with the DC voltage detection unit 17 or the AC voltage detection unit 16.
  • the outdoor unit 20A may be equipped with either the DC voltage detection unit 27 or the AC voltage detection unit 26.
  • the terminal block 15 of the indoor unit 10A is connected to the terminal block 25 of the outdoor unit 20A.
  • the terminal block 15 has three terminals. Specifically, the terminal block 15 has a first terminal (the terminal on the left side of the terminal block 15 in FIG. 1) 151, a second terminal (the terminal in the center of the terminal block 15 in FIG. 1) 152, and a third terminal (the terminal on the right side of the terminal block 15 in FIG. 1) 153.
  • the terminal block 25 has three terminals. Specifically, the terminal block 25 has a first terminal (the terminal on the left side of the terminal block 25 in FIG. 1) 251, a second terminal (the terminal in the center of the terminal block 25 in FIG. 1) 252, and a third terminal (the terminal on the right side of the terminal block 25 in FIG. 1) 253.
  • the first terminal 151 of the terminal block 15 is connected to the first terminal 251 of the terminal block 25.
  • the second terminal 152 of the terminal block 15 is connected to the second terminal 252 of the terminal block 25.
  • the third terminal 153 of the terminal block 15 is connected to the third terminal 253 of the terminal block 25.
  • connection point 39 is located on one of the two connection lines connecting the terminal block 15 and the main circuit 12, and the connection line of the switch SW1 is connected to this connection point 39.
  • Figure 1 shows the case where the connection point 39 is located on the connection line connecting the main circuit 12 and the second terminal 152.
  • the first terminal 151 connected to the main circuit 12 is connected to the commercial power supply 30 via the first terminal 251, and the second terminal 152 connected to the main circuit 12 is connected to the commercial power supply 30 via the second terminal 252.
  • the main circuit 12 can receive power sent from the commercial power supply 30 via the first terminal 151 and the second terminal 152.
  • the main circuit 12 is a circuit that generates a voltage for driving functional components and the like using a voltage supplied from a commercial power source 30.
  • the main circuit 12 supplies the generated voltage to the functional components, the control unit 13, the communication unit 14, the AC voltage detection unit 16, the DC voltage detection unit 17, and the switch SW1. Note that in FIG. 1, the power lines (electrical wiring) used when the main circuit 12 supplies power are not shown.
  • the main circuit 12 includes a converter with a rectifier circuit, an inverter, and the like.
  • the converter converts the input AC voltage into DC voltage
  • the inverter converts the DC voltage into AC voltage. That is, the converter rectifies the AC power sent from the commercial power source 30 and converts it into DC power, and the inverter reconverts the DC power into AC power to drive a motor, etc.
  • the DC voltage detection unit 17 is connected to a connection point 38 on the connection line connecting the converter and the inverter, and detects the DC voltage converted by the converter.
  • the DC voltage detection unit 17 sends the voltage value of the detected DC voltage to the control unit 13. Note that the connection line between the control unit 13 and the DC voltage detection unit 17 is not shown in FIG. 1.
  • the AC voltage detection unit 16 is disposed between the main circuit 12 and the terminal block 15, and detects the AC voltage sent to the converter of the main circuit 12.
  • FIG. 1 shows the case where the AC voltage detection unit 16 is connected to a connection point 36 on a connection line connecting the main circuit 12 and the first terminal 151, and a connection point 40 on a connection line connecting the main circuit 12 and the second terminal 152. Note that FIG. 1 omits the illustration of the connection lines connecting the AC voltage detection unit 16 to the connection points 36 and 40.
  • the AC voltage detection unit 16 sends the voltage value of the detected AC voltage to the control unit 13. Note that the connection wire between the control unit 13 and the AC voltage detection unit 16 is not shown in FIG. 1.
  • the switch SW1 is connected to the third terminal 153 of the terminal block 15 and the communication unit 14.
  • the switch SW1 is also connectable to the connection point 39.
  • the switch SW1 switches whether or not the third terminal 153 is connected to the connection point 39. Since the switch SW1 is connected to the third terminal 153 and the communication unit 14, if the outdoor unit board 21A connects the third terminal 253 and the communication unit 24, the communication units 14 and 24 will be connected.
  • the switch SW1 can send power sent from the commercial power source 30 to the outdoor unit 20A via the second terminal 152 and the third terminal 153.
  • the switch SW1 is open, leaving the third terminal 153 and the connection point 39 in a disconnected state.
  • the switch SW1 When high voltage is applied from the commercial power supply 30 to the air conditioner 1A and the switch SW2 is opened, and then when normal voltage is applied from the commercial power supply 30, the switch SW1 is controlled to connect the third terminal 153 to the connection point 39. That is, the switch SW1 is closed during the recovery operation of the outdoor unit 20A when the abnormal voltage state transitions to the normal voltage state.
  • the switch SW1 connects the third terminal 153 to the connection point 39, the voltage from the commercial power supply 30 is supplied to the outdoor unit 20A, and the outdoor unit 20A can perform the recovery operation by itself. That is, the outdoor unit 20A can control the switch SW2 to the closed state (short-circuit state) using the voltage sent from the commercial power supply 30 via the indoor unit 10A.
  • the switch SW1 may be in a normally closed state.
  • the control unit 13 controls the main circuit 12.
  • the control unit 13 also controls the communication unit 14 and the switch SW1 based on the voltage value detected by the AC voltage detection unit 16, the DC voltage detection unit 17, or the outdoor unit 20A. Note that the connection line between the switch SW1 and the control unit 13 is not shown in FIG. 1.
  • the communication unit 14 communicates with the outdoor unit 20A.
  • the timer 45A starts measuring time simultaneously with or immediately after the switch SW2 is opened.
  • the timer 45A sends the measured time to the control units 13, 23.
  • the control unit 13 connects the switch SW1 to the connection point 39.
  • the switch SW1 connects the third terminal 153 and the second terminal 152 of the terminal block 15 via the connection point 39.
  • the timer 45A may be disposed outside the indoor unit board 11A.
  • the main circuit 22 is a circuit that generates a voltage for driving functional components using a voltage supplied from a commercial power source 30.
  • the main circuit 22 supplies the generated voltage to the functional components, the control unit 23, the communication unit 24, the AC voltage detection unit 26, the DC voltage detection unit 27, and the switches SW2 and SW3. Note that in FIG. 1, the power lines used by the main circuit 22 to supply power are not shown.
  • the DC voltage detection unit 27 is connected to a connection point 37 on the connection line connecting the converter and the inverter, and detects the DC voltage converted by the converter.
  • the DC voltage detection unit 27 sends the voltage value of the detected DC voltage to the control unit 23. Note that in FIG. 1, the connection line between the control unit 23 and the DC voltage detection unit 27 is not shown.
  • the AC voltage detection unit 26 is connected to a connection point 42 on the connection line connecting the main circuit 22 and the first terminal 251 and a connection point 44 on the connection line connecting the main circuit 22 and the second terminal 252, and detects the AC voltage (voltage before rectification) sent to the converter of the main circuit 22.
  • the AC voltage detection unit 26 may be connected to a connection point on the connection line connecting the main circuit 22 and the second terminal 252.
  • the AC voltage detection unit 26 sends the voltage value of the detected AC voltage to the control unit 23.
  • the connection line between the control unit 23 and the AC voltage detection unit 26 is not shown in FIG. 1.
  • the first terminal 251 and the second terminal 252 are connected to the commercial power source 30.
  • the first terminal 251 is connected to the main circuit 22 via a connection point 42.
  • the second terminal 252 is connected to the main circuit 22 via a switch SW2 and connection points 41 and 44.
  • the third terminal 253 is connected to a switch SW3.
  • the connection point 41 is a connection point on a connection line connecting the switch SW2 and the main circuit 22, and the connection line of the switch SW3 is connected to this connection point 41.
  • the connection point 44 is a connection point on a connection line connecting the connection point 41 and the main circuit 22, and the AC voltage detection unit 26 is connected to this connection point 44.
  • Switch SW2 is a switch for protecting components such as the main circuit 22 and functional components.
  • Switch SW2 is placed on the connection line connecting the main circuit 22 of the outdoor unit 20A to the commercial power source 30, and switches between connected (closed state) and disconnected (open state).
  • Switch SW2 is connected to the second terminal 252.
  • Switch SW2 is also connected to the main circuit 22 via connection points 41 and 44.
  • Switch SW2 is opened when high voltage is applied from commercial power source 30, thereby protecting the functional components of outdoor unit 20A and the electrical components of outdoor unit 20A (main circuit 22, control unit 23, communication unit 24, AC voltage detection unit 26, DC voltage detection unit 27), etc. In this way, by opening switch SW2, the air conditioner 1A can protect the components following switch SW2.
  • Air conditioner 1A executes control of functional components such as the compressor motor and fan motor, and control of switch SW2 independently. That is, air conditioner 1A executes control according to the voltage value for functional components such as the compressor motor and fan motor, and control according to the voltage value for switch SW2, separately. In embodiment 1, in any case, such as when the functional components are stopped, when the functional components are operating normally, when the functional components are operating at low speed, etc., air conditioner 1A controls switch SW2 independently without taking into account the control state and operation state of the functional components. In the following description, the components downstream of switch SW2 that are protected by opening switch SW2 may be referred to as downstream protection components.
  • the outdoor unit 20A or the indoor unit 10A detects a voltage value equal to or greater than the threshold value (first threshold value)
  • the outdoor unit 20A executes the protection function with priority without taking into account the control state and operation state of the functional parts. That is, when at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 detects a voltage value equal to or greater than the threshold value, the control unit 23 of the outdoor unit 20A opens the switch SW2 with priority without considering the state of the outdoor unit 20A.
  • the AC voltage detection units 16, 26 or the DC voltage detection units 17, 27 may be referred to as voltage detection units.
  • the voltage value detected by the voltage detection unit is the voltage value of the voltage that corresponds to the voltage supplied from the commercial power source 30.
  • the switch SW3 is connected to the third terminal 153 of the terminal block 15.
  • the switch SW3 can also be connected to the connection point 41.
  • the switch SW3 can also be connected to the communication unit 24. Note that the connection line between the switch SW3 and the control unit 23 is not shown in FIG. 1.
  • Switch SW3 switches the connection of the third terminal 253 between connecting to the communication unit 24 or to the connection point 41. By connecting the third terminal 253 to the communication unit 24, switch SW3 connects the communication unit 24 to the indoor unit board 11A. In this case, when the third terminal 153 and the communication unit 14 are connected on the indoor unit board 11A, the communication units 14 and 24 are connected.
  • the switch SW3 can send the power sent from the commercial power source 30 to the main circuit 22 via the second terminal 252, the second terminal 152, the third terminal 153, and the third terminal 253.
  • the power sent from the commercial power source 30 is also sent to the control unit 23 via the main circuit 22.
  • switch SW3 connects the third terminal 253 to connection point 41.
  • switch SW2 When switch SW2 is closed, switch SW3 connects the third terminal 253 to communication unit 24.
  • Communication unit 24 communicates with communication unit 14 of indoor unit 10A.
  • switch SW3 When communication process is not performed between communication units 14 and 24 due to an abnormality in the power supply voltage, switch SW3 connects the third terminal 253 to connection point 41 when switch SW2 is opened.
  • the timer 46A starts measuring time simultaneously with or immediately after the switch SW2 is opened.
  • the timer 46A sends the measured time to the control units 13 and 23.
  • the control unit 23 closes the switch SW2. This causes the switch SW2 to connect the commercial power source 30 and the main circuit 22.
  • the timer 46A may be disposed outside the outdoor unit board 21A.
  • the control unit 23 controls the main circuit 22.
  • the control unit 23 also controls the communication unit 24 and the switches SW2 and SW3 based on the voltage values detected by the AC voltage detection unit 26, the DC voltage detection unit 27, or the indoor unit 10A.
  • switch SW2 is placed on the AC power line, and switch SW2 electrically disconnects the voltage from commercial power supply 30 at switch SW2 and subsequent switches when high voltage is applied.
  • control unit 23 determines that there is an abnormality in the power supply voltage, it opens switch SW2 to electrically disconnect commercial power supply 30 from switch SW2 and subsequent switches.
  • the threshold values applied to the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 when determining whether to open the switch SW2 may be different values or may be the same value. Note that it is sufficient for the air conditioner 1A to be equipped with at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27.
  • the third terminal 153 of the terminal block 15 When the third terminal 153 of the terminal block 15 is connected to the connection point 39 by switching with the switch SW1, the third terminal 153 is connected to the second terminal 152 via the switch SW1.
  • the switch SW3 switches the connection with the third terminal 253 of the terminal block 25 to the main circuit 22
  • the commercial power source 30 is connected to the main circuit 22 via the second terminal 252, the second terminal 152, the connection point 39, the switch SW1, the third terminal 153, the third terminal 253, the switch SW3, and the connection point 41.
  • FIG. 1 shows the state in which switch SW1 is connected to connection point 39 and switch SW3 is connected to connection point 41. That is, FIG. 1 shows the state in which commercial power supply 30 is connected to main circuit 22 via indoor unit board 11A.
  • air conditioner 1A when the voltage from commercial power supply 30 returns to a normal value from an abnormal value, in order to restore outdoor unit 20A, commercial power supply 30 is connected to main circuit 22 via indoor unit board 11A.
  • the main circuit 22 is connected to the commercial power source 30 via the first terminal 251, regardless of the switching of the switches SW1 and SW2. Therefore, when the third terminal 153 is connected to the connection point 39 by switching the switch SW1, and the third terminal 253 is connected to the connection point 41 by switching the switch SW3, the main circuit 22 can receive power sent from the commercial power source 30.
  • the control unit 23 controls the switch SW2 using power from the main circuit 22. In this case, the control unit 23 closes the switch SW2 and connects the second terminal 252 to the main circuit 22. This connects the commercial power source 30 to the main circuit 22. The control unit 23 then switches the connection of the switch SW3 to the communication unit 24. This allows the air conditioner 1A to return to normal operation.
  • FIG. 2 is a flowchart showing an example of the operational processing procedure of the air conditioner according to the first embodiment.
  • the air conditioner 1A When the air conditioner 1A starts operation, it detects a voltage to determine whether or not to execute a protection function (step S10). Specifically, at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 detects a voltage value.
  • the AC voltage detection unit 26 detects the AC voltage
  • the AC voltage detection unit 16 or the DC voltage detection units 17, 27 may also detect the voltage value.
  • the AC voltage detection unit 26 sends the voltage value of the detected AC voltage (detected voltage) to the control unit 23. Note that when the DC voltage detection unit 27 detects the voltage value of the DC voltage, the detected voltage value is also sent to the control unit 23. Also, when the AC voltage detection unit 16 or the DC voltage detection unit 17 detects a voltage value, the detected voltage value is sent to the control unit 23 via the control unit 13, the communication unit 14, and the communication unit 24.
  • the control unit 23 determines whether the voltage (voltage value) detected by the AC voltage detection unit 26 is equal to or greater than the threshold value (step S20). If the control unit 23 determines that the detected voltage is not equal to or greater than the threshold value (step S20, No), the AC voltage detection unit 26 continues detecting the voltage (step S10). In other words, the air conditioner 1A continues normal operation.
  • control unit 23 determines that the detected voltage is equal to or greater than the threshold voltage (step S20, Yes) If the control unit 23 determines that the detected voltage is equal to or greater than the threshold voltage (step S20, Yes), it opens the protective switch SW2 to protect the main circuit 12 and downstream protective components including the functional components (step S30).
  • control unit 23 stops functional components such as the compressor motor and fan motor (step S40).
  • the control unit 23 also causes the communication unit 24 to start communication between the indoor unit 10A and the outdoor unit 20A (step S50). Either the process of step S40 or the process of step S50 may be executed first, or they may be executed simultaneously.
  • the process of step S40 by the control unit 23 and the process of step S50 by the control unit 23 and the communication unit 24 are executed using the remaining voltage (the voltage remaining in the main circuit 22).
  • the control unit 23 then executes forced discharge control (step S60).
  • the air conditioner 1A performs a protective function by opening switch SW2 without taking into account the control state and operating state of the functional components.
  • the air conditioner 1A lowers the priority of the processes in the following examples 1 to 3 compared to the protection of the downstream protective components.
  • Example 1 Control to stop the operation of motors such as compressor motors and fan motors
  • Example 2 Transmission of abnormal conditions of power supply voltage from the outdoor unit 20A to the indoor unit 10A
  • Example 3 Control to start up stopped functional parts, electrical parts, etc.
  • An abnormal state of the power supply voltage occurs when the power supply voltage reaches an abnormal value.
  • Power supply voltage abnormalities occur when the voltage value of the commercial power supply 30 becomes larger or smaller than normal (a specific value), when the voltage changes abruptly or gradually, when a power outage occurs, etc.
  • the air conditioner 1A determines that the power supply voltage is abnormal when, for example, the voltage detection unit detects a voltage value equal to or greater than a first value, detects a voltage value equal to or greater than a second value for a specific period of time, or detects a voltage value that is increasing at a rate equal to or greater than a specific value.
  • the air conditioner 1A may determine that the power supply voltage is abnormal when, for example, the voltage detection unit detects a voltage value equal to or lower than a third value, detects a voltage value equal to or lower than a fourth value for a specific period of time, or detects a voltage value that is decreasing at a rate higher than a specific value.
  • the air conditioner 1A is equipped with the switch SW2 between the commercial power source 30 and the main circuit 22, so when the power supply voltage (the voltage of the commercial power source 30) becomes an overvoltage and is applied to the main circuit 22 and beyond, the main circuit 22 and beyond can be protected as a top priority.
  • the air conditioner 1A can immediately protect the downstream of the switch SW2, so that even in cases where the voltage rises sharply to a high voltage and continues to be applied for a specific period of time, downstream protection components downstream of the main circuit 22 can be protected from the high voltage.
  • This allows the air conditioner 1A to improve the success rate of protection.
  • the air conditioner 1A can reduce the impact on users in the event of a breakdown.
  • it is possible to reduce the cost of functional components and the like when manufacturing the air conditioner 1A and the size of the air conditioner 1A (device).
  • the maximum voltage value of the commercial power source 30, the duration of application of the overvoltage, the degree of rise in the overvoltage, and so on vary depending on regional factors such as temperature, the relationship between power supply and power demand, and population, and there are even differences within the same country.
  • the air conditioner 1A of embodiment 1 gives top priority to protection from overvoltage over other controls and operations, and controls the operation of functional components and the like after protecting the downstream protective components to be protected. In this way, the air conditioner 1A can increase the success rate of the protection function, reduce failure complaints from users, and improve user satisfaction.
  • the air conditioner 1A of embodiment 1 can increase the success rate of protecting downstream protection components without increasing the protection response speed when it comes to overvoltages that are difficult to predict and without increasing the component withstand voltage.
  • the air conditioner 1A may stop the operation of functional parts in operation, such as the compressor motor, fan motor, and four-way valve of the outdoor unit 20A, immediately after opening switch SW2.
  • the air conditioner 1A executes communication transmission between the indoor unit 10A and the outdoor unit 20A immediately after opening switch SW2, or simultaneously with opening switch SW2, and the outdoor unit 20A transmits the abnormal state of the power supply voltage and the protection state of the outdoor unit 20A to the indoor unit 10A.
  • the air conditioner 1A can delay the drop in the residual voltage in the outdoor unit 20A by stopping the operation of functional components such as the compressor motor. This allows the outdoor unit 20A to send information about the execution status of the protection function to the indoor unit 10A using the residual voltage. Therefore, the air conditioner 1A becomes able to share information about the execution status of the protection function between the indoor unit 10A and the outdoor unit 20A.
  • the air conditioner 1A stops the operation of functional components and delays the drop in the residual voltage, making it possible to share information about the execution status of the protection function using the residual voltage. Furthermore, the air conditioner 1A can effectively utilize the residual voltage, thereby achieving energy conservation effects.
  • the air conditioner 1A of embodiment 1 prioritizes the protection of the downstream protection components, and controls the functional components simultaneously with the protection of the downstream protection components or after the protection is performed. This allows the air conditioner 1A to increase the possibility of protecting the downstream protection components.
  • the air conditioner 1A may gradually stop the operation of functional components such as the compressor motor and fan motor immediately after opening switch SW2. In this way, the air conditioner 1A prioritizes the protection of downstream protective components, and by continuing the operation of the functional components, it is possible to prevent vibrations that occur when the functional components suddenly stop and reduce the risk of rupture due to metal fatigue in the piping of the functional components. Furthermore, by continuing the operation of the fan motor, the air conditioner 1A can dissipate heat from the heat exchanger of the refrigerant circuit.
  • control unit 23 of the air conditioner 1A may open the switch SW2 to cut off the electrical connection between the commercial power source 30 and the downstream protective components after the switch SW2, and then determine whether the voltage value detected by the voltage detection unit of the indoor unit 10A or the outdoor unit 20A is normal.
  • the control unit 13 determines that the voltage value has returned to a normal value using the voltage detection unit (AC voltage detection unit 16 or DC voltage detection unit 17) of the indoor unit 10A, it executes the recovery operation described above.
  • the threshold value (second threshold value) used to determine whether the voltage value (power supply voltage value) is a normal value upon recovery is a value equal to or less than the threshold value (first threshold value) used to determine whether to execute the protection function.
  • control unit 23 may use the voltage detection unit (AC voltage detection unit 26) of the outdoor unit 20A to determine whether the voltage value has returned to a normal value. In this case, after determining that the voltage value is normal, the control unit 23 connects the switch SW2 to supply power from the commercial power source 30 to the downstream protection components.
  • AC voltage detection unit 26 AC voltage detection unit 26
  • control unit 23 determines whether the voltage value is normal based on the voltage value detected by the AC voltage detection unit 26, a separate main circuit different from the main circuit 22 is arranged in the outdoor unit 20A.
  • This separate main circuit is not the object of protection, and even when the voltage value is abnormal, it operates using power from the commercial power source 30 and supplies power to the control unit 23 and the AC voltage detection unit 26.
  • the control unit 23 determines whether the voltage value has returned to the normal value based on the voltage value detected by the AC voltage detection unit 26, and after determining that the voltage value is normal, connects the switch SW2 to supply power from the commercial power source 30 to the downstream protection component.
  • the control unit 23 when connecting the switch SW2, the control unit 23 notifies the indoor unit 10A that the outdoor unit 20A is performing a recovery operation.
  • the switch SW3 when a separate main circuit is arranged, the switch SW3 may not be arranged in the outdoor unit 20A, and the communication unit 24 may be directly connected to the third terminal 253.
  • the air conditioner 1A After the downstream protection components are protected (switch SW2 is opened) when the voltage value is abnormal, if the air conditioner 1A is operating under high load, communication between the indoor unit 10A and the outdoor unit 20A may fail, and information on the abnormal voltage value and protection state may not be shared. Even in this case, if the indoor unit 10A has an AC voltage detection unit 16 or a DC voltage detection unit 17, the indoor unit 10A can estimate that the outdoor unit 20A has been protected if the voltage value detected by the AC voltage detection unit 16 or the DC voltage detection unit 17 is abnormal. In this case, the air conditioner 1A does not need to communicate between the indoor unit 10A and the outdoor unit 20A. Therefore, the air conditioner 1A can prioritize the stop control of the downstream protection components over communication.
  • the air conditioner 1A is equipped with a timer 45A in the indoor unit 10A, so it can start measuring time simultaneously with or immediately after the switch SW2 is opened. After the switch SW2 is opened, the air conditioner 1A connects the switch SW1 and supplies power from the commercial power source 30 to the downstream protection components of the outdoor unit 20A after a specific time has elapsed (e.g., 5 minutes) when it is assumed that the voltage value will return from an abnormal value to a stable normal value.
  • a specific time elapsed (e.g., 5 minutes) when it is assumed that the voltage value will return from an abnormal value to a stable normal value.
  • the air conditioner 1A may connect switch SW2 when the time measured by timer 46A of outdoor unit 20A reaches a specific time. In this case, when the voltage value reaches an abnormal value and switch SW2 is opened, the control unit 23 keeps switch SW3 connected to communication unit 24. In other words, switch SW3 constantly connects communication unit 24 to third terminal 253. Note that switch SW3 may not be provided for outdoor unit 20A, and communication unit 24 may be directly connected to third terminal 253.
  • the timer 46A starts measuring time simultaneously with or immediately after the switch SW2 is opened.
  • the control unit 23 connects the switch SW2, and the communication unit 24 notifies the control unit 13 via the communication unit 14 that the specific time has passed and the outdoor unit 20A has returned to normal.
  • a separate main circuit different from the main circuit 22 is arranged in the outdoor unit 20A, and the separate main circuit supplies power from the commercial power source 30 to the communication unit 24, the control unit 23, and the timer 46A.
  • the air conditioner 1A is equipped with a timer 45A, it can start the recovery operation of the outdoor unit 20A based on the time measured by the timer 45A even if the indoor unit 10A does not have a DC voltage detection unit 17 or a DC voltage detection unit 27. For example, if a communication abnormality occurs between the indoor unit 10A and the outdoor unit 20A, the timer 45A starts measuring time after the communication abnormality is detected. When the time measured by the timer 45A reaches a specific time, the air conditioner 1A transitions to the recovery sequence for the outdoor unit 20A.
  • the outdoor unit 20A will not recover, or communication will not be restored even if the outdoor unit 20A recovers.
  • recovery occurs after a specific time has elapsed, so the power supply voltage value may not have returned to a normal value after recovery.
  • the air conditioner 1A continues to protect the downstream protection component without recovering the outdoor unit 20A.
  • the downstream protection component has just started operating at low speed and is not in a high-load operating state, so communication between the indoor unit 10A and the outdoor unit 20A is successful.
  • the air conditioner 1A restores the outdoor unit 20A based on the time measured by the timer 45A, the restoration may start in an overvoltage state, but even in this case, the protection of downstream protective components such as the main circuit 22 is prioritized over the control of functional components, so the main circuit 22 can be reliably protected.
  • the air conditioner 1A is equipped with a timer 45A, the voltage detection unit in either the indoor unit 10A or the outdoor unit 20A is sufficient, so the component costs and circuit board area of the air conditioner 1A can be reduced.
  • the air conditioner 1A may continue the fan operation by the indoor unit 10A after opening switch SW2 to cut off the electrical connection between the commercial power source 30 and the downstream protective components after switch SW2. That is, the indoor unit 10A may perform the fan operation during operation and continue the fan operation even after switch SW2 is opened. This prevents the user of the air conditioner 1A from mistakenly thinking that the air conditioner 1A is broken even if the power supply voltage value becomes abnormal, so that the user is less stressed and there are no complaints from the user. In addition, while the main circuit 22 is stopped, the indoor temperature rises, but the air conditioner 1A continues the fan operation to circulate the air, allowing the user to spend time comfortably.
  • the switch SW2 connected between the commercial power supply 30 and the main circuit 22 is opened as a top priority. This allows the air conditioner 1A to protect downstream protective components downstream of the switch SW2 even when current flows for a long time (when a high voltage continues for a long time) or when an unexpected and sudden overvoltage occurs.
  • the air conditioner 1A of embodiment 1 opens the switch SW2 connected between the commercial power supply 30 and the main circuit 22 as a top priority. This allows the air conditioner 1A to properly protect the components downstream of the switch SW2 and prevent failure of the components downstream of the switch SW2 even when an abnormality occurs in the power supply voltage.
  • the indoor unit is connected to a commercial power source 30, and has a switch connected to the commercial power source 30 and the outdoor unit.
  • the indoor unit of the second embodiment opens the switch connected to the commercial power source 30 and the outdoor unit with the highest priority.
  • FIG. 3 is a diagram showing an example of the configuration of an air conditioner according to the second embodiment.
  • those components that achieve the same functions as those in the air conditioner 1A according to the first embodiment shown in FIG. 1 are given the same reference numerals, and duplicated explanations will be omitted.
  • the air conditioner 1B of the second embodiment includes an indoor unit 10B and an outdoor unit 20B.
  • the indoor unit 10B is connected to a commercial power source 30, and the outdoor unit 20B is connected to the commercial power source 30 via the indoor unit 10B.
  • the indoor unit 10B has an indoor unit board 11B, a terminal block 15, and multiple functional components (not shown) that are driven using power sent from an AC or DC power source.
  • the functional components of the indoor unit 10B may be arranged on the indoor unit board 11B.
  • the terminal block 15 may be arranged on the indoor unit board 11B.
  • the indoor unit board 11B has a main circuit 12, a control unit 13, a communication unit 14, an AC voltage detection unit 16, a DC voltage detection unit 17, a switch SW4, and a timer 45B.
  • the indoor unit board 11B does not have to have the DC voltage detection unit 17.
  • the AC voltage detection unit 16 is disposed between the main circuit 12 and the commercial power source 30, and detects the AC voltage sent to the converter of the main circuit 12.
  • FIG. 3 shows the case where the AC voltage detection unit 16 is connected to a connection point 36 on a connection line connecting the main circuit 12 and the switch SW4, and to a connection point 40 on a connection line connecting the main circuit 12 and a connection point 43. Note that the connection line connecting the AC voltage detection unit 16 and the connection point 36 is not shown in FIG. 3.
  • the outdoor unit 20B has an outdoor unit board 21B, a terminal block 25, and a number of functional components (not shown) that are driven using power sent from an AC or DC power source.
  • the functional components of the outdoor unit 20B may be arranged on the outdoor unit board 21B.
  • the terminal block 25 may be arranged on the outdoor unit board 21B.
  • the outdoor unit board 21B has a main circuit 22, a control unit 23, a communication unit 24, an AC voltage detection unit 26, a DC voltage detection unit 27, and a timer 46B.
  • the outdoor unit board 21B does not have to have the DC voltage detection unit 27.
  • the air conditioner 1B may be equipped with only one of the timers 45B and 46B. In addition, the air conditioner 1B may not be equipped with the timers 45B and 46B.
  • the terminal block 15 of the indoor unit 10B is connected to the terminal block 25 of the outdoor unit 20B.
  • the first terminal 151 of the three terminals of the terminal block 15 is connected to a connection point 43 on the connection line connecting the commercial power source 30 and the main circuit 12.
  • the connection point 40 is disposed on the connection line connecting the commercial power source 30 and the main circuit 12.
  • the second terminal 152 is connected to the switch SW4, and the third terminal 153 is connected to the communication unit 14.
  • Switch SW4 is a switch for protecting components such as the main circuit 22 of the outdoor unit 20B and the functional components of the outdoor unit 20B. Switch SW4 can switch between connecting and disconnecting the commercial power source 30 and the second terminal 152. Switch SW4 also connects the commercial power source 30 and the main circuit 12.
  • Switch SW4 switches whether the commercial power supply 30 is connected to the main circuit 12 and the second terminal 152, or to the main circuit 12 only.
  • switch SW4 constantly connects the commercial power supply 30 to the main circuit 12, and opens the connection between the commercial power supply 30 and the second terminal 152 when a high voltage is applied from the commercial power supply 30.
  • switch SW4 protects the main circuit 22 and functional components of the outdoor unit 20B when a high voltage is applied from the commercial power supply 30.
  • the air conditioner 1B can protect the downstream protection components that are the components subsequent to switch SW4.
  • the control unit 13 in the second embodiment controls the communication unit 14 and the switch SW4 based on the voltage value detected by the AC voltage detection unit 16, the DC voltage detection unit 17, or the outdoor unit 20B.
  • the timer 45B starts measuring time simultaneously with or immediately after the switch SW4 is opened.
  • the timer 45B sends the measured time to the control unit 13.
  • the control unit 13 reconnects the switch SW4.
  • the timer 45B may be disposed outside the indoor unit board 11B.
  • the third terminal 153 is connected to the communication unit 14, and the communication unit 14 communicates with the outdoor unit 20B.
  • the first terminal 251 is connected to the main circuit 22 via the connection point 42.
  • the second terminal 252 is connected to the main circuit 22 via the connection point 44.
  • the third terminal 253 is connected to the communication unit 24.
  • switch SW4 When switch SW4 is closed, power from the commercial power source 30 is sent to the main circuit 22 via the second terminal 252. On the other hand, when switch SW4 is open, power from the commercial power source 30 is not sent to the main circuit 22.
  • the outdoor unit 20B executes the protection function without taking into account the control state and operation state of the functional components.
  • the control unit 23 of the outdoor unit 20B opens the switch SW4 without considering the state of the outdoor unit 20B.
  • the control unit 23 in the second embodiment controls the communication unit 24 based on the voltage value detected by the AC voltage detection unit 26, the DC voltage detection unit 27, or the indoor unit 10B.
  • the timer 46B may start measuring time simultaneously with or immediately after the switch SW4 is opened.
  • the timer 46B sends the measured time to the control unit 13 via the communication unit 24 and the communication unit 14.
  • the control unit 13 reconnects the switch SW4.
  • a separate main body circuit different from the main body circuit 22 is arranged in the outdoor unit 20B, and the separate main body circuit supplies power from the commercial power source 30 to the communication unit 24, the control unit 23, and the timer 46B.
  • the timer 46B may be arranged outside the outdoor unit board 21B.
  • switch SW4 is placed on the AC power line, and switch SW4 electrically cuts off the voltage from commercial power source 30 at switch SW4 and beyond when high voltage is applied.
  • Air conditioner 1B needs to be equipped with at least one of AC voltage detection units 16 and 26.
  • Air conditioner 1B needs to be equipped with at least one of DC voltage detection units 17 and 27.
  • the main circuit 22 is connected to the commercial power source 30 via the first terminal 251 regardless of whether the switch SW4 is switched. Therefore, when the second terminal 152 is connected to the commercial power source 30 by switching the switch SW4, the main circuit 22 can receive power sent from the commercial power source 30.
  • air conditioner 1B operates according to the same processing procedure as air conditioner 1A, a description of the operating processing procedure of air conditioner 1B will be omitted.
  • the air conditioner 1B of embodiment 2 opens the switch SW4 connected between the commercial power supply 30 and the main circuit 22 as a top priority.
  • the air conditioner 1B can appropriately protect the components downstream of the switch SW4 and prevent failure of the components downstream of the switch SW4 even when an abnormality occurs in the power supply voltage.
  • control unit 23 is realized by a processing circuit.
  • This processing circuit may be a processor and memory that executes a program stored in a memory, or it may be dedicated hardware.
  • the processing circuit is also called a control circuit.
  • FIG. 4 is a diagram showing an example of the configuration of a processing circuit in the control unit of the outdoor unit according to the first and second embodiments, when the processing circuit is realized by a processor and a memory.
  • the processing circuit 90 shown in FIG. 4 is a control circuit and includes a processor 91 and a memory 92.
  • each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • the processing circuit 90 includes a memory 92 for storing a control program that results in the processing of the control unit 23.
  • This control program can also be said to be a program for causing the control unit 23 to execute each function realized by the processing circuit 90.
  • This control program may be provided by a storage medium in which the program is stored, or by other means such as a communication medium.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 92 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically EPROM), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • FIG. 5 is a diagram showing an example of a processing circuit provided in the control unit of the outdoor unit according to the first and second embodiments, configured with dedicated hardware.
  • the processing circuit 93 shown in FIG. 5 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
  • the processing circuits 90 and 93 may be partially realized by dedicated hardware and partially realized by software or firmware. In this way, the processing circuits 90 and 93 can realize the above-mentioned functions by dedicated hardware, software, firmware, or a combination of these. Note that some of the functions of the control unit 23 may be realized by separate processing circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner (1A) comprises an outdoor machine unit (20A) that is connected to a commercial power supply (30), and an indoor machine unit (10A) that is connected to the commercial power supply (30) via the outdoor machine unit (20A). The outdoor machine unit (20A) has: a main circuit (22) that, by using a voltage supplied from the commercial power supply (30), generates a voltage for driving functional components; a switch (SW2) that switches between being connected and being open, the switch (SW2) being positioned on a connection line for connecting the commercial power supply (30) and the main circuit (22) of the outdoor machine unit (20A); and a control unit (23) that controls the switch (SW2). If the voltage value of a voltage corresponding to the voltage supplied from the commercial power supply (30) is equal to or greater than a first threshold value, the control unit (23) opens the switch (SW2) in a prioritized manner without consideration for a control state or operation state of the functional components, thereby protecting components downstream of the switch (SW2).

Description

空気調和機Air conditioners
 本開示は、空気調和機に関する。 This disclosure relates to air conditioners.
 室内機および室外機を備えた空気調和機は、電源設備または送電線環境が未熟で商用の電源電圧が不安定な地域などでは、電源電圧が異常値になる場合がある。例えば、電源電圧が過電圧になった状態で空気調和機に電圧が印加されると、電気部品または機能部品といった部品の耐圧を超えてしまい、部品が故障する可能性がある。 In areas where the power supply equipment or power line environment is immature and the commercial power supply voltage is unstable, the power supply voltage of air conditioners equipped with indoor and outdoor units may become abnormal. For example, if the power supply voltage becomes excessive and voltage is applied to the air conditioner, the withstand voltage of electrical or functional components may be exceeded, causing the components to break down.
 電源電圧が異常となる場合の電源電圧値は、規則性、最大値などが不明であり、規則性、最大値などは、同じ国内でも地域および時期によって変動する。急峻な過電圧が数ミリ秒のように短時間のみ印加される場合は、バリスタなどでサージ耐圧対策を講じることができる。また、過電圧が数十ミリ秒のように長時間に渡って緩やかに上昇しながら印加される場合は、運転制御動作を停止させた後にスイッチ等によって電源が切り離されることで部品が保護される。 When the power supply voltage becomes abnormal, the regularity and maximum value of the power supply voltage value are unknown, and the regularity and maximum value vary depending on the region and time, even within the same country. When a steep overvoltage is applied for only a short period of time, such as a few milliseconds, surge voltage resistance measures can be taken using varistors, etc. In addition, when an overvoltage is applied that rises gradually over a long period of time, such as tens of milliseconds, the components can be protected by stopping the operation control action and then cutting off the power supply with a switch, etc.
 特許文献1に記載の空気調和装置は、インバータ回路の直流バス電圧が過電圧の条件を満たし且つモータの制御状態が所定条件を満たすときに、インバータ回路が接続されている商用電源ラインに電圧異常が発生していると判断し、インバータ回路の直流バスと商用電源ラインとの間の接続を遮断している。 The air conditioning device described in Patent Document 1 determines that a voltage abnormality has occurred in the commercial power line to which the inverter circuit is connected when the DC bus voltage of the inverter circuit meets the overvoltage condition and the motor control state meets a specified condition, and cuts off the connection between the DC bus of the inverter circuit and the commercial power line.
特許第5724933号公報Japanese Patent No. 5724933
 しかしながら、上記特許文献1の技術では、モータを停止状態にする制御を行っている場合に所定条件を満たすと判断し、商用電源ラインと直流バスとの間の接続を遮断している。このため、上記特許文献1の技術では、電源電圧の異常が発生した場合に、モータを停止状態にする制御に時間がかかり、空気調和装置が備える部品の保護が間に合わず部品を故障させてしまう場合があるという問題があった。 However, in the technology of Patent Document 1, when control is being performed to stop the motor, it is determined that a certain condition is met, and the connection between the commercial power line and the DC bus is cut off. For this reason, in the technology of Patent Document 1, when an abnormality occurs in the power supply voltage, it takes time to control the motor to stop, and there is a problem that the protection of components in the air conditioning device cannot be completed in time, causing the components to break down.
 本開示は、上記に鑑みてなされたものであって、電源電圧の異常が発生した場合であっても、部品を適切に保護して部品の故障を防止することができる空気調和機を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to provide an air conditioner that can adequately protect components and prevent component failure even if an abnormality occurs in the power supply voltage.
 上述した課題を解決し、目的を達成するために、本開示の空気調和機は、商用電源に接続された室外機ユニットと、室外機ユニットを介して商用電源に接続された室内機ユニットと、を備える。室外機ユニットは、商用電源から供給される電圧を用いて機能部品を駆動するための電圧を生成する本体回路と、室外機ユニットの本体回路と商用電源とを接続する接続線上に配置されて、接続と開放とを切り替えるスイッチと、スイッチを制御する制御部と、を有する。制御部は、商用電源から供給される電圧に対応する電圧の電圧値が第1の閾値以上になると、機能部品の制御状態および動作状態を加味せず優先してスイッチを開放させることで、スイッチよりも下流の部品を保護する。 In order to solve the above-mentioned problems and achieve the object, the air conditioner of the present disclosure includes an outdoor unit connected to a commercial power source, and an indoor unit connected to the commercial power source via the outdoor unit. The outdoor unit has a main circuit that generates a voltage for driving functional components using a voltage supplied from the commercial power source, a switch that is arranged on a connection line connecting the main circuit of the outdoor unit and the commercial power source and switches between connected and disconnected, and a control unit that controls the switch. When the voltage value of the voltage corresponding to the voltage supplied from the commercial power source becomes equal to or greater than a first threshold value, the control unit protects components downstream of the switch by giving priority to opening the switch without taking into account the control state and operating state of the functional components.
 本開示にかかる空気調和機は、電源電圧の異常が発生した場合であっても、部品を適切に保護して部品の故障を防止することができるという効果を奏する。 The air conditioner disclosed herein has the advantage of being able to properly protect components and prevent component failure even if an abnormality occurs in the power supply voltage.
実施の形態1にかかる空気調和機の構成例を示す図FIG. 1 is a diagram showing a configuration example of an air conditioner according to a first embodiment. 実施の形態1にかかる空気調和機の動作処理手順例を示すフローチャートA flowchart showing an example of an operation processing procedure of the air conditioner according to the first embodiment. 実施の形態2にかかる空気調和機の構成例を示す図FIG. 13 is a diagram showing a configuration example of an air conditioner according to a second embodiment. 実施の形態1,2にかかる室外機ユニットの制御部が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図FIG. 1 is a diagram showing an example of the configuration of a processing circuit provided in a control unit of an outdoor unit according to the first and second embodiments, in the case where the processing circuit is realized by a processor and a memory. 実施の形態1,2にかかる室外機ユニットの制御部が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図FIG. 1 is a diagram showing an example of a processing circuit provided in a control unit of an outdoor unit according to the first and second embodiments, in the case where the processing circuit is configured with dedicated hardware.
 以下に、本開示の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。 Below, an air conditioner according to an embodiment of the present disclosure is described in detail with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる空気調和機の構成例を示す図である。空気調和機1Aは、室内機の機能を有した室内機ユニット10Aと、室外機の機能を有した室外機ユニット20Aとを備えている。空気調和機1Aでは、室外機ユニット20Aが商用電源30に接続されており、室内機ユニット10Aは、室外機ユニット20Aを介して商用電源30に接続されている。
Embodiment 1.
Fig. 1 is a diagram showing an example of the configuration of an air conditioner according to the first embodiment. The air conditioner 1A includes an indoor unit 10A having the function of an indoor unit, and an outdoor unit 20A having the function of an outdoor unit. In the air conditioner 1A, the outdoor unit 20A is connected to a commercial power source 30, and the indoor unit 10A is connected to the commercial power source 30 via the outdoor unit 20A.
 室内機ユニット10Aは、室内機基板11Aと、端子台15と、交流電源または直流電源から送られてくる電力を用いて駆動する複数の機能部品(図示せず)とを有している。機能部品は、圧縮機モータ、ファンモータなどである。なお、室内機ユニット10Aの機能部品は、室内機基板11Aに配置されてもよい。また、端子台15は、室内機基板11Aに配置されてもよい。室内機基板11Aは、本体回路12と、制御部13と、通信部14と、交流電圧検出部16と、直流電圧検出部17と、スイッチSW1と、タイマ45Aとを具備している。 The indoor unit 10A has an indoor unit board 11A, a terminal block 15, and multiple functional parts (not shown) that are driven using power sent from an AC or DC power source. The functional parts are a compressor motor, a fan motor, etc. The functional parts of the indoor unit 10A may be arranged on the indoor unit board 11A. The terminal block 15 may also be arranged on the indoor unit board 11A. The indoor unit board 11A has a main circuit 12, a control unit 13, a communication unit 14, an AC voltage detection unit 16, a DC voltage detection unit 17, a switch SW1, and a timer 45A.
 室外機ユニット20Aは、室外機基板21Aと、端子台25と、交流電源または直流電源から送られてくる電力を用いて駆動する複数の機能部品(図示せず)とを有している。なお、室外機ユニット20Aの機能部品は、室外機基板21Aに配置されてもよい。また、端子台25は、室外機基板21Aに配置されてもよい。室外機基板21Aは、本体回路22と、制御部23と、通信部24と、交流電圧検出部26と、直流電圧検出部27と、スイッチSW2,SW3と、タイマ46Aとを具備している。 The outdoor unit 20A has an outdoor unit board 21A, a terminal block 25, and a number of functional components (not shown) that are driven using power sent from an AC or DC power source. The functional components of the outdoor unit 20A may be arranged on the outdoor unit board 21A. The terminal block 25 may also be arranged on the outdoor unit board 21A. The outdoor unit board 21A includes a main circuit 22, a control unit 23, a communication unit 24, an AC voltage detection unit 26, a DC voltage detection unit 27, switches SW2 and SW3, and a timer 46A.
 なお、空気調和機1Aは、タイマ45A,46Aの何れか一方のみを具備していてもよい。また、空気調和機1Aは、タイマ45A,46Aを具備していなくてもよい。また、室内機ユニット10Aは、直流電圧検出部17と交流電圧検出部16との何れか一方を備えていてもよい。また、室内機ユニット10Aは、タイマ45Aを具備していれば、直流電圧検出部17および交流電圧検出部16を備えていなくてもよい。また、室外機ユニット20Aは、直流電圧検出部27と交流電圧検出部26との何れか一方を備えていてもよい。 The air conditioner 1A may be equipped with only one of the timers 45A and 46A. The air conditioner 1A may not be equipped with the timers 45A and 46A. The indoor unit 10A may be equipped with either the DC voltage detection unit 17 or the AC voltage detection unit 16. As long as the indoor unit 10A is equipped with the timer 45A, it may not be equipped with the DC voltage detection unit 17 or the AC voltage detection unit 16. The outdoor unit 20A may be equipped with either the DC voltage detection unit 27 or the AC voltage detection unit 26.
 室内機ユニット10Aの端子台15は、室外機ユニット20Aの端子台25に接続されている。端子台15は、3つの端子を有している。具体的には、端子台15は、第1の端子(図1では端子台15の左側の端子)151、第2の端子(図1では端子台15の中央の端子)152、および第3の端子(図1では端子台15の右側の端子)153を有している。また、端子台25は、3つの端子を有している。具体的には、端子台25は、第1の端子(図1では端子台25の左側の端子)251、第2の端子(図1では端子台25の中央の端子)252、および第3の端子(図1では端子台25の右側の端子)253を有している。 The terminal block 15 of the indoor unit 10A is connected to the terminal block 25 of the outdoor unit 20A. The terminal block 15 has three terminals. Specifically, the terminal block 15 has a first terminal (the terminal on the left side of the terminal block 15 in FIG. 1) 151, a second terminal (the terminal in the center of the terminal block 15 in FIG. 1) 152, and a third terminal (the terminal on the right side of the terminal block 15 in FIG. 1) 153. The terminal block 25 has three terminals. Specifically, the terminal block 25 has a first terminal (the terminal on the left side of the terminal block 25 in FIG. 1) 251, a second terminal (the terminal in the center of the terminal block 25 in FIG. 1) 252, and a third terminal (the terminal on the right side of the terminal block 25 in FIG. 1) 253.
 端子台15が有する第1の端子151は、端子台25が有する第1の端子251に接続されている。また、端子台15が有する第2の端子152は、端子台25が有する第2の端子252に接続されている。また、端子台15が有する第3の端子153は、端子台25が有する第3の端子253に接続されている。 The first terminal 151 of the terminal block 15 is connected to the first terminal 251 of the terminal block 25. The second terminal 152 of the terminal block 15 is connected to the second terminal 252 of the terminal block 25. The third terminal 153 of the terminal block 15 is connected to the third terminal 253 of the terminal block 25.
 端子台15が有する3つの端子のうち、第1の端子151および第2の端子152は、本体回路12に接続され、第3の端子153はスイッチSW1に接続されている。端子台15と本体回路12とを接続する2本の接続線のうち1本の接続線には、接続点39が配置されており、この接続点39にスイッチSW1の接続線が接続されている。図1では、接続点39が、本体回路12と第2の端子152とを接続する接続線上に配置されている場合を示している。 Of the three terminals of the terminal block 15, the first terminal 151 and the second terminal 152 are connected to the main circuit 12, and the third terminal 153 is connected to the switch SW1. A connection point 39 is located on one of the two connection lines connecting the terminal block 15 and the main circuit 12, and the connection line of the switch SW1 is connected to this connection point 39. Figure 1 shows the case where the connection point 39 is located on the connection line connecting the main circuit 12 and the second terminal 152.
 本体回路12に接続されている第1の端子151は、第1の端子251を介して商用電源30に接続されており、本体回路12に接続されている第2の端子152は、第2の端子252を介して商用電源30に接続されている。この構成により、本体回路12は、商用電源30から送られてくる電力を、第1の端子151および第2の端子152を介して受け付けることができる。 The first terminal 151 connected to the main circuit 12 is connected to the commercial power supply 30 via the first terminal 251, and the second terminal 152 connected to the main circuit 12 is connected to the commercial power supply 30 via the second terminal 252. With this configuration, the main circuit 12 can receive power sent from the commercial power supply 30 via the first terminal 151 and the second terminal 152.
 本体回路12は、商用電源30から供給される電圧を用いて機能部品などを駆動するための電圧を生成する回路である。本体回路12は、生成した電圧を、機能部品、制御部13、通信部14、交流電圧検出部16、直流電圧検出部17、およびスイッチSW1に供給する。なお、図1では、本体回路12が、電力を供給する際に用いられる電力線(電気配線)の図示を省略している。 The main circuit 12 is a circuit that generates a voltage for driving functional components and the like using a voltage supplied from a commercial power source 30. The main circuit 12 supplies the generated voltage to the functional components, the control unit 13, the communication unit 14, the AC voltage detection unit 16, the DC voltage detection unit 17, and the switch SW1. Note that in FIG. 1, the power lines (electrical wiring) used when the main circuit 12 supplies power are not shown.
 本体回路12は、整流回路を有したコンバータ、インバータなどを備えている。本体回路12では、コンバータが、入力された交流電圧を直流電圧に変換し、インバータが直流電圧を交流電圧に変換する。すなわち、コンバータは、商用電源30から送られてくる交流電源を整流して直流電源に変換し、インバータは、直流電源を交流電源に再変換してモータなどを駆動する。直流電圧検出部17は、コンバータとインバータとの間を接続する接続線上の接続点38に接続されており、コンバータが変換した直流電圧を検出する。直流電圧検出部17は、検出した直流電圧の電圧値を制御部13に送る。なお、図1では、制御部13と直流電圧検出部17との接続線の図示を省略している。 The main circuit 12 includes a converter with a rectifier circuit, an inverter, and the like. In the main circuit 12, the converter converts the input AC voltage into DC voltage, and the inverter converts the DC voltage into AC voltage. That is, the converter rectifies the AC power sent from the commercial power source 30 and converts it into DC power, and the inverter reconverts the DC power into AC power to drive a motor, etc. The DC voltage detection unit 17 is connected to a connection point 38 on the connection line connecting the converter and the inverter, and detects the DC voltage converted by the converter. The DC voltage detection unit 17 sends the voltage value of the detected DC voltage to the control unit 13. Note that the connection line between the control unit 13 and the DC voltage detection unit 17 is not shown in FIG. 1.
 交流電圧検出部16は、本体回路12と端子台15との間に配置されており、本体回路12のコンバータに送られる交流電圧を検出する。図1では、交流電圧検出部16が、本体回路12と第1の端子151とを接続する接続線上の接続点36と、本体回路12と第2の端子152とを接続する接続線上の接続点40に接続されている場合を示している。なお、図1では、交流電圧検出部16と接続点36,40とを接続する接続線の図示を省略している。 The AC voltage detection unit 16 is disposed between the main circuit 12 and the terminal block 15, and detects the AC voltage sent to the converter of the main circuit 12. FIG. 1 shows the case where the AC voltage detection unit 16 is connected to a connection point 36 on a connection line connecting the main circuit 12 and the first terminal 151, and a connection point 40 on a connection line connecting the main circuit 12 and the second terminal 152. Note that FIG. 1 omits the illustration of the connection lines connecting the AC voltage detection unit 16 to the connection points 36 and 40.
 交流電圧検出部16は、検出した交流電圧の電圧値を制御部13に送る。なお、図1では、制御部13と交流電圧検出部16との接続線の図示を省略している。 The AC voltage detection unit 16 sends the voltage value of the detected AC voltage to the control unit 13. Note that the connection wire between the control unit 13 and the AC voltage detection unit 16 is not shown in FIG. 1.
 スイッチSW1は、端子台15の第3の端子153および通信部14に接続されている。また、スイッチSW1は、接続点39に接続可能となっている。スイッチSW1は、第3の端子153を、接続点39に接続するか否かを切り替える。スイッチSW1は、第3の端子153および通信部14に接続されているので、室外機基板21Aが、第3の端子253と通信部24とを接続していれば、通信部14,24が接続されることとなる。 The switch SW1 is connected to the third terminal 153 of the terminal block 15 and the communication unit 14. The switch SW1 is also connectable to the connection point 39. The switch SW1 switches whether or not the third terminal 153 is connected to the connection point 39. Since the switch SW1 is connected to the third terminal 153 and the communication unit 14, if the outdoor unit board 21A connects the third terminal 253 and the communication unit 24, the communication units 14 and 24 will be connected.
 スイッチSW1は、第3の端子153を接続点39に接続することにより、商用電源30から送られてくる電力を第2の端子152および第3の端子153を介して室外機ユニット20Aに送ることができる。スイッチSW1は、通常運転時は、開放されており、第3の端子153と接続点39とを非接続の状態にしておく。 By connecting the third terminal 153 to the connection point 39, the switch SW1 can send power sent from the commercial power source 30 to the outdoor unit 20A via the second terminal 152 and the third terminal 153. During normal operation, the switch SW1 is open, leaving the third terminal 153 and the connection point 39 in a disconnected state.
 空気調和機1Aは、商用電源30から高電圧が印加されてスイッチSW2を開放し、その後、商用電源30から正常な電圧が印加されると、スイッチSW1を制御することによって第3の端子153を接続点39に接続する。すなわち、スイッチSW1は、異常電圧の状態から正常電圧の状態に移行した際の、室外機ユニット20Aの復帰動作時に閉状態にされる。スイッチSW1が第3の端子153を接続点39に接続することで、室外機ユニット20Aに商用電源30からの電圧が供給され、これにより、室外機ユニット20Aは、自ら復帰動作を実行することが可能となる。すなわち、室外機ユニット20Aは、室内機ユニット10Aを介して商用電源30から送られてくる電圧を用いてスイッチSW2を閉状態(短絡状態)に制御することができる。なお、スイッチSW1は、常時閉状態となっていてもよい。 When high voltage is applied from the commercial power supply 30 to the air conditioner 1A and the switch SW2 is opened, and then when normal voltage is applied from the commercial power supply 30, the switch SW1 is controlled to connect the third terminal 153 to the connection point 39. That is, the switch SW1 is closed during the recovery operation of the outdoor unit 20A when the abnormal voltage state transitions to the normal voltage state. When the switch SW1 connects the third terminal 153 to the connection point 39, the voltage from the commercial power supply 30 is supplied to the outdoor unit 20A, and the outdoor unit 20A can perform the recovery operation by itself. That is, the outdoor unit 20A can control the switch SW2 to the closed state (short-circuit state) using the voltage sent from the commercial power supply 30 via the indoor unit 10A. The switch SW1 may be in a normally closed state.
 制御部13は、本体回路12を制御する。また、制御部13は、交流電圧検出部16、直流電圧検出部17、または室外機ユニット20Aが検出した電圧値に基づいて、通信部14およびスイッチSW1を制御する。なお、図1では、スイッチSW1と制御部13との接続線の図示を省略している。通信部14は、室外機ユニット20Aとの間で通信を実行する。 The control unit 13 controls the main circuit 12. The control unit 13 also controls the communication unit 14 and the switch SW1 based on the voltage value detected by the AC voltage detection unit 16, the DC voltage detection unit 17, or the outdoor unit 20A. Note that the connection line between the switch SW1 and the control unit 13 is not shown in FIG. 1. The communication unit 14 communicates with the outdoor unit 20A.
 タイマ45Aは、スイッチSW2の開放と同時または開放後直ちに時間計測を開始する。タイマ45Aは、計測した時間を制御部13,23に送る。タイマ45Aが計測した時間が特定時間(例えば5分)になると、制御部13は、スイッチSW1を接続点39に接続させる。これにより、スイッチSW1は、端子台15の第3の端子153と第2の端子152とを、接続点39を介して接続する。なお、タイマ45Aは、室内機基板11Aの外部に配置されてもよい。 The timer 45A starts measuring time simultaneously with or immediately after the switch SW2 is opened. The timer 45A sends the measured time to the control units 13, 23. When the time measured by the timer 45A reaches a specific time (e.g., 5 minutes), the control unit 13 connects the switch SW1 to the connection point 39. As a result, the switch SW1 connects the third terminal 153 and the second terminal 152 of the terminal block 15 via the connection point 39. The timer 45A may be disposed outside the indoor unit board 11A.
 本体回路22は、商用電源30から供給される電圧を用いて機能部品を駆動するための電圧を生成する回路である。本体回路22は、生成した電圧を、機能部品、制御部23、通信部24、交流電圧検出部26、直流電圧検出部27、およびスイッチSW2,SW3に供給する。なお、図1では、本体回路22が、電力を供給する際に用いられる電力線の図示を省略している。 The main circuit 22 is a circuit that generates a voltage for driving functional components using a voltage supplied from a commercial power source 30. The main circuit 22 supplies the generated voltage to the functional components, the control unit 23, the communication unit 24, the AC voltage detection unit 26, the DC voltage detection unit 27, and the switches SW2 and SW3. Note that in FIG. 1, the power lines used by the main circuit 22 to supply power are not shown.
 本体回路22は、本体回路12と同様に、整流回路を有したコンバータ、インバータなどを備えている。直流電圧検出部27は、コンバータとインバータとを接続する接続線上の接続点37に接続されており、コンバータが変換した直流電圧を検出する。直流電圧検出部27は、検出した直流電圧の電圧値を制御部23に送る。なお、図1では、制御部23と直流電圧検出部27との接続線の図示を省略している。 The main circuit 22, like the main circuit 12, includes a converter with a rectifier circuit, an inverter, and the like. The DC voltage detection unit 27 is connected to a connection point 37 on the connection line connecting the converter and the inverter, and detects the DC voltage converted by the converter. The DC voltage detection unit 27 sends the voltage value of the detected DC voltage to the control unit 23. Note that in FIG. 1, the connection line between the control unit 23 and the DC voltage detection unit 27 is not shown.
 交流電圧検出部26は、本体回路22と第1の端子251とを接続する接続線上の接続点42と、本体回路22と第2の端子252とを接続する接続線上の接続点44とに接続されており、本体回路22のコンバータに送られる交流電圧(整流前の電圧)を検出する。なお、交流電圧検出部26は、本体回路22と第2の端子252とを接続する接続線上の接続点に接続されてもよい。交流電圧検出部26は、検出した交流電圧の電圧値を制御部23に送る。なお、図1では、制御部23と交流電圧検出部26との接続線の図示を省略している。 The AC voltage detection unit 26 is connected to a connection point 42 on the connection line connecting the main circuit 22 and the first terminal 251 and a connection point 44 on the connection line connecting the main circuit 22 and the second terminal 252, and detects the AC voltage (voltage before rectification) sent to the converter of the main circuit 22. The AC voltage detection unit 26 may be connected to a connection point on the connection line connecting the main circuit 22 and the second terminal 252. The AC voltage detection unit 26 sends the voltage value of the detected AC voltage to the control unit 23. The connection line between the control unit 23 and the AC voltage detection unit 26 is not shown in FIG. 1.
 端子台25が有する3つの端子のうち、第1の端子251および第2の端子252が商用電源30に接続されている。第1の端子251は、接続点42を介して本体回路22に接続されている。また、第2の端子252は、スイッチSW2および接続点41,44を介して本体回路22に接続されている。また、第3の端子253は、スイッチSW3に接続されている。接続点41は、スイッチSW2と本体回路22とを接続する接続線上の接続点であり、この接続点41にスイッチSW3の接続線が接続されている。接続点44は、接続点41と本体回路22とを接続する接続線上の接続点であり、この接続点44に交流電圧検出部26が接続されている。 Of the three terminals of the terminal block 25, the first terminal 251 and the second terminal 252 are connected to the commercial power source 30. The first terminal 251 is connected to the main circuit 22 via a connection point 42. The second terminal 252 is connected to the main circuit 22 via a switch SW2 and connection points 41 and 44. The third terminal 253 is connected to a switch SW3. The connection point 41 is a connection point on a connection line connecting the switch SW2 and the main circuit 22, and the connection line of the switch SW3 is connected to this connection point 41. The connection point 44 is a connection point on a connection line connecting the connection point 41 and the main circuit 22, and the AC voltage detection unit 26 is connected to this connection point 44.
 スイッチSW2は、本体回路22、機能部品といった部品を保護するためのスイッチである。スイッチSW2は、室外機ユニット20Aの本体回路22と商用電源30とを接続する接続線上に配置されており、接続(閉状態)と開放(開状態)とを切り替える。 Switch SW2 is a switch for protecting components such as the main circuit 22 and functional components. Switch SW2 is placed on the connection line connecting the main circuit 22 of the outdoor unit 20A to the commercial power source 30, and switches between connected (closed state) and disconnected (open state).
 スイッチSW2は、第2の端子252に接続されている。また、スイッチSW2は、接続点41,44を介して本体回路22に接続されている。スイッチSW2は、商用電源30から高電圧が印加された場合に、開放され、これにより、室外機ユニット20Aの機能部品、室外機ユニット20Aの電気部品(本体回路22、制御部23、通信部24、交流電圧検出部26、直流電圧検出部27)などを保護する。このように、空気調和機1Aは、スイッチSW2を開放することで、スイッチSW2以降の部品を保護することができる。 Switch SW2 is connected to the second terminal 252. Switch SW2 is also connected to the main circuit 22 via connection points 41 and 44. Switch SW2 is opened when high voltage is applied from commercial power source 30, thereby protecting the functional components of outdoor unit 20A and the electrical components of outdoor unit 20A (main circuit 22, control unit 23, communication unit 24, AC voltage detection unit 26, DC voltage detection unit 27), etc. In this way, by opening switch SW2, the air conditioner 1A can protect the components following switch SW2.
 空気調和機1Aは、圧縮機モータやファンモータといった機能部品への制御と、スイッチSW2への制御とを独立して実行する。すなわち、空気調和機1Aは、圧縮機モータやファンモータといった機能部品に対する電圧値に応じた制御と、スイッチSW2への電圧値に応じた制御とを別々に実行する。実施の形態1では、機能部品が停止している場合、機能部品が通常運転している場合、機能部品が低速で運転している場合など、何れの場合であっても、空気調和機1Aは、機能部品の制御状態および動作状態を加味せず、独立してスイッチSW2を制御する。以下の説明では、スイッチSW2の開放によって保護される、スイッチSW2よりも下流の部品を下流保護部品という場合がある。 Air conditioner 1A executes control of functional components such as the compressor motor and fan motor, and control of switch SW2 independently. That is, air conditioner 1A executes control according to the voltage value for functional components such as the compressor motor and fan motor, and control according to the voltage value for switch SW2, separately. In embodiment 1, in any case, such as when the functional components are stopped, when the functional components are operating normally, when the functional components are operating at low speed, etc., air conditioner 1A controls switch SW2 independently without taking into account the control state and operation state of the functional components. In the following description, the components downstream of switch SW2 that are protected by opening switch SW2 may be referred to as downstream protection components.
 スイッチSW2が閉じている場合には、商用電源30からの電力が第2の端子252を介して本体回路22に送られる。一方、スイッチSW2が開いている場合には、商用電源30からの電力は、本体回路22に送られない。実施の形態1では、室外機ユニット20Aまたは室内機ユニット10Aが、閾値(第1の閾値)以上の電圧値を検出した場合、室外機ユニット20Aは、機能部品の制御状態および動作状態を加味せず、優先して保護機能を実行する。すなわち、交流電圧検出部16,26および直流電圧検出部17,27の少なくとも1つが閾値以上の電圧値を検出すると、室外機ユニット20Aの制御部23は、室外機ユニット20Aの状態を考慮することなく、優先してスイッチSW2を開放させる。なお、以下では交流電圧検出部16,26および直流電圧検出部17,27を区別する必要がない場合には、交流電圧検出部16,26または直流電圧検出部17,27を電圧検出部という場合がある。電圧検出部が検出する電圧値が、商用電源30から供給される電圧に対応する電圧の電圧値である。 When the switch SW2 is closed, power from the commercial power source 30 is sent to the main circuit 22 via the second terminal 252. On the other hand, when the switch SW2 is open, power from the commercial power source 30 is not sent to the main circuit 22. In the first embodiment, when the outdoor unit 20A or the indoor unit 10A detects a voltage value equal to or greater than the threshold value (first threshold value), the outdoor unit 20A executes the protection function with priority without taking into account the control state and operation state of the functional parts. That is, when at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 detects a voltage value equal to or greater than the threshold value, the control unit 23 of the outdoor unit 20A opens the switch SW2 with priority without considering the state of the outdoor unit 20A. In the following, when it is not necessary to distinguish between the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27, the AC voltage detection units 16, 26 or the DC voltage detection units 17, 27 may be referred to as voltage detection units. The voltage value detected by the voltage detection unit is the voltage value of the voltage that corresponds to the voltage supplied from the commercial power source 30.
 スイッチSW3は、端子台15の第3の端子153に接続されている。また、スイッチSW3は、接続点41に接続可能となっている。また、スイッチSW3は、通信部24に接続可能となっている。なお、図1では、スイッチSW3と制御部23との接続線の図示を省略している。 The switch SW3 is connected to the third terminal 153 of the terminal block 15. The switch SW3 can also be connected to the connection point 41. The switch SW3 can also be connected to the communication unit 24. Note that the connection line between the switch SW3 and the control unit 23 is not shown in FIG. 1.
 スイッチSW3は、第3の端子253との接続を、通信部24に接続するか、接続点41に接続するか切り替える。スイッチSW3は、第3の端子253を通信部24に接続することにより、通信部24と室内機基板11Aとを接続する。この場合、室内機基板11Aにおいて第3の端子153と通信部14とが接続されている場合、通信部14,24が接続されることとなる。 Switch SW3 switches the connection of the third terminal 253 between connecting to the communication unit 24 or to the connection point 41. By connecting the third terminal 253 to the communication unit 24, switch SW3 connects the communication unit 24 to the indoor unit board 11A. In this case, when the third terminal 153 and the communication unit 14 are connected on the indoor unit board 11A, the communication units 14 and 24 are connected.
 スイッチSW3は、端子台25の第3の端子253を接続点41に接続することにより、商用電源30から送られてくる電力を、第2の端子252、第2の端子152、第3の端子153、および第3の端子253を介して本体回路22に送ることができる。この場合、商用電源30から送られてくる電力は、本体回路22を介して制御部23にも送られる。 By connecting the third terminal 253 of the terminal block 25 to the connection point 41, the switch SW3 can send the power sent from the commercial power source 30 to the main circuit 22 via the second terminal 252, the second terminal 152, the third terminal 153, and the third terminal 253. In this case, the power sent from the commercial power source 30 is also sent to the control unit 23 via the main circuit 22.
 スイッチSW3は、スイッチSW2が開放されて通信処理が完了した後に、第3の端子253を接続点41に接続する。また、スイッチSW3は、スイッチSW2が閉じられた場合に、第3の端子253を通信部24に接続する。通信部24は、室内機ユニット10Aの通信部14との間で通信を実行する。なお、スイッチSW3は、電源電圧の異常の際に通信部14,24の間で通信処理が実行されない場合には、スイッチSW2が開放された際に、第3の端子253を接続点41に接続する。 After switch SW2 is opened and the communication process is completed, switch SW3 connects the third terminal 253 to connection point 41. When switch SW2 is closed, switch SW3 connects the third terminal 253 to communication unit 24. Communication unit 24 communicates with communication unit 14 of indoor unit 10A. When communication process is not performed between communication units 14 and 24 due to an abnormality in the power supply voltage, switch SW3 connects the third terminal 253 to connection point 41 when switch SW2 is opened.
 タイマ46Aは、スイッチSW2の開放と同時または開放後直ちに時間計測を開始する。タイマ46Aは、計測した時間を制御部13,23に送る。タイマ46Aが計測した時間が特定時間(例えば5分)になると、制御部23は、スイッチSW2を閉じる。これにより、スイッチSW2は、商用電源30と本体回路22とを接続する。なお、タイマ46Aは、室外機基板21Aの外部に配置されてもよい。 The timer 46A starts measuring time simultaneously with or immediately after the switch SW2 is opened. The timer 46A sends the measured time to the control units 13 and 23. When the time measured by the timer 46A reaches a specific time (e.g., 5 minutes), the control unit 23 closes the switch SW2. This causes the switch SW2 to connect the commercial power source 30 and the main circuit 22. The timer 46A may be disposed outside the outdoor unit board 21A.
 制御部23は、本体回路22を制御する。また、制御部23は、交流電圧検出部26、直流電圧検出部27、または室内機ユニット10Aが検出した電圧値に基づいて、通信部24およびスイッチSW2,SW3を制御する。 The control unit 23 controls the main circuit 22. The control unit 23 also controls the communication unit 24 and the switches SW2 and SW3 based on the voltage values detected by the AC voltage detection unit 26, the DC voltage detection unit 27, or the indoor unit 10A.
 このように、空気調和機1Aでは、交流電源のライン上にスイッチSW2が配置されており、スイッチSW2は、高圧時に、商用電源30からの電圧をスイッチSW2以降で電気的に切断する。すなわち、制御部23は、電源電圧の異常と判断した場合は、スイッチSW2を開放して商用電源30とスイッチSW2以降とを電気的に切断する。 In this way, in air conditioner 1A, switch SW2 is placed on the AC power line, and switch SW2 electrically disconnects the voltage from commercial power supply 30 at switch SW2 and subsequent switches when high voltage is applied. In other words, when control unit 23 determines that there is an abnormality in the power supply voltage, it opens switch SW2 to electrically disconnect commercial power supply 30 from switch SW2 and subsequent switches.
 スイッチSW2を開放するか否かの判定の際に交流電圧検出部16,26および直流電圧検出部17,27に適用される閾値は、それぞれ異なる値であってもよいし、同じ値であってもよい。なお、空気調和機1Aは、交流電圧検出部16,26、直流電圧検出部17,27の少なくとも1つを備えていればよい。 The threshold values applied to the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 when determining whether to open the switch SW2 may be different values or may be the same value. Note that it is sufficient for the air conditioner 1A to be equipped with at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27.
 スイッチSW3が、端子台25の第3の端子253との接続を通信部24に切り替えた場合、室内機ユニット10Aの通信部14は、室外機ユニット20Aの通信部24に接続される。これにより、通信部14,24間で通信が可能な状態となる。 When switch SW3 switches the connection with the third terminal 253 of the terminal block 25 to the communication unit 24, the communication unit 14 of the indoor unit 10A is connected to the communication unit 24 of the outdoor unit 20A. This enables communication between the communication units 14 and 24.
 スイッチSW1による切り替えによって端子台15の第3の端子153が接続点39に接続された場合、第3の端子153は、スイッチSW1を介して第2の端子152に接続される。この場合において、スイッチSW3が、端子台25の第3の端子253との接続を本体回路22に切り替えた場合、商用電源30は、第2の端子252、第2の端子152、接続点39、スイッチSW1、第3の端子153、第3の端子253、スイッチSW3、および接続点41を介して本体回路22に接続される。 When the third terminal 153 of the terminal block 15 is connected to the connection point 39 by switching with the switch SW1, the third terminal 153 is connected to the second terminal 152 via the switch SW1. In this case, when the switch SW3 switches the connection with the third terminal 253 of the terminal block 25 to the main circuit 22, the commercial power source 30 is connected to the main circuit 22 via the second terminal 252, the second terminal 152, the connection point 39, the switch SW1, the third terminal 153, the third terminal 253, the switch SW3, and the connection point 41.
 図1では、スイッチSW1が接続点39に接続され、スイッチSW3が接続点41に接続された状態を点線で図示している。すなわち、図1では、商用電源30が、室内機基板11Aを介して本体回路22に接続された状態を示している。空気調和機1Aでは、商用電源30からの電圧が異常値から正常値に戻った際に、室外機ユニット20Aを復帰させるために、商用電源30が、室内機基板11Aを介して本体回路22に接続される。 In FIG. 1, the state in which switch SW1 is connected to connection point 39 and switch SW3 is connected to connection point 41 is shown by dotted lines. That is, FIG. 1 shows the state in which commercial power supply 30 is connected to main circuit 22 via indoor unit board 11A. In air conditioner 1A, when the voltage from commercial power supply 30 returns to a normal value from an abnormal value, in order to restore outdoor unit 20A, commercial power supply 30 is connected to main circuit 22 via indoor unit board 11A.
 この場合において、本体回路22は、スイッチSW1,SW2の切り替えにかかわらず、第1の端子251を介して商用電源30に接続されている。したがって、スイッチSW1の切り替えによって第3の端子153が接続点39に接続され、スイッチSW3の切り替えによって第3の端子253が接続点41に接続された場合、本体回路22は、商用電源30から送られてくる電力を受け付けることができる。 In this case, the main circuit 22 is connected to the commercial power source 30 via the first terminal 251, regardless of the switching of the switches SW1 and SW2. Therefore, when the third terminal 153 is connected to the connection point 39 by switching the switch SW1, and the third terminal 253 is connected to the connection point 41 by switching the switch SW3, the main circuit 22 can receive power sent from the commercial power source 30.
 これにより、本体回路22は、制御部23に電力を供給することができる。そして、制御部23は、本体回路22からの電力を用いてスイッチSW2を制御する。この場合の制御部23は、スイッチSW2を閉状態にし、第2の端子252と本体回路22とを接続させる。これにより、商用電源30と本体回路22とが接続される。この後、制御部23は、スイッチSW3の接続を、通信部24に切り替える。これにより、空気調和機1Aは、通常の動作に復帰できる。 This allows the main circuit 22 to supply power to the control unit 23. The control unit 23 then controls the switch SW2 using power from the main circuit 22. In this case, the control unit 23 closes the switch SW2 and connects the second terminal 252 to the main circuit 22. This connects the commercial power source 30 to the main circuit 22. The control unit 23 then switches the connection of the switch SW3 to the communication unit 24. This allows the air conditioner 1A to return to normal operation.
 図2は、実施の形態1にかかる空気調和機の動作処理手順例を示すフローチャートである。空気調和機1Aは、運転を開始すると、保護機能を実行するか否かを判定するための電圧を検出する(ステップS10)。具体的には、交流電圧検出部16,26および直流電圧検出部17,27の少なくとも1つが電圧値を検出する。ここでは、交流電圧検出部26が交流電圧を検出する場合について説明するが、交流電圧検出部16、または直流電圧検出部17,27が電圧値を検出してもよい。 FIG. 2 is a flowchart showing an example of the operational processing procedure of the air conditioner according to the first embodiment. When the air conditioner 1A starts operation, it detects a voltage to determine whether or not to execute a protection function (step S10). Specifically, at least one of the AC voltage detection units 16, 26 and the DC voltage detection units 17, 27 detects a voltage value. Here, a case is described in which the AC voltage detection unit 26 detects the AC voltage, but the AC voltage detection unit 16 or the DC voltage detection units 17, 27 may also detect the voltage value.
 交流電圧検出部26は、検出した交流電圧(検出電圧)の電圧値を制御部23に送る。なお、直流電圧検出部27が直流電圧の電圧値を検出する場合も、検出された電圧値は、制御部23に送られる。また、交流電圧検出部16または直流電圧検出部17が電圧値を検出する場合、検出された電圧値は、制御部13、通信部14、および通信部24を介して制御部23に送られる。 The AC voltage detection unit 26 sends the voltage value of the detected AC voltage (detected voltage) to the control unit 23. Note that when the DC voltage detection unit 27 detects the voltage value of the DC voltage, the detected voltage value is also sent to the control unit 23. Also, when the AC voltage detection unit 16 or the DC voltage detection unit 17 detects a voltage value, the detected voltage value is sent to the control unit 23 via the control unit 13, the communication unit 14, and the communication unit 24.
 制御部23は、交流電圧検出部26による検出電圧(電圧値)が閾値以上であるか否かを判定する(ステップS20)。制御部23が、検出電圧が閾値以上でないと判定した場合(ステップS20、No)、交流電圧検出部26は、電圧の検出を継続する(ステップS10)。すなわち、空気調和機1Aは、通常の運転を継続する。 The control unit 23 determines whether the voltage (voltage value) detected by the AC voltage detection unit 26 is equal to or greater than the threshold value (step S20). If the control unit 23 determines that the detected voltage is not equal to or greater than the threshold value (step S20, No), the AC voltage detection unit 26 continues detecting the voltage (step S10). In other words, the air conditioner 1A continues normal operation.
 制御部23は、検出電圧が閾値以上であると判定した場合(ステップS20、Yes)、本体回路12および機能部品を含む下流保護部品を保護するための保護用のスイッチSW2を開放する(ステップS30)。 If the control unit 23 determines that the detected voltage is equal to or greater than the threshold voltage (step S20, Yes), it opens the protective switch SW2 to protect the main circuit 12 and downstream protective components including the functional components (step S30).
 この後、制御部23は、圧縮機モータやファンモータなどの機能部品を停止させる(ステップS40)。また、制御部23は、通信部24に、室内機ユニット10Aと室外機ユニット20Aとの間で通信を開始させる(ステップS50)。なお、ステップS40の処理と、ステップS50の処理とは、何れが先に実行されてもよく、また同時に実行されてもよい。制御部23によるステップS40の処理、制御部23および通信部24によるステップS50の処理は、残電圧(本体回路22に残留している電圧)を用いて実行される。この後、制御部23は、強制放電制御を実行する(ステップS60)。 Then, the control unit 23 stops functional components such as the compressor motor and fan motor (step S40). The control unit 23 also causes the communication unit 24 to start communication between the indoor unit 10A and the outdoor unit 20A (step S50). Either the process of step S40 or the process of step S50 may be executed first, or they may be executed simultaneously. The process of step S40 by the control unit 23 and the process of step S50 by the control unit 23 and the communication unit 24 are executed using the remaining voltage (the voltage remaining in the main circuit 22). The control unit 23 then executes forced discharge control (step S60).
 このように、空気調和機1Aは、室内機ユニット10Aまたは室外機ユニット20Aの電圧検出部が閾値以上の電圧値を検出した場合に、機能部品の制御状態および動作状態を加味せず、スイッチSW2を開放することで保護機能を実行する。 In this way, when the voltage detection section of the indoor unit 10A or the outdoor unit 20A detects a voltage value equal to or greater than the threshold, the air conditioner 1A performs a protective function by opening switch SW2 without taking into account the control state and operating state of the functional components.
 空気調和機1Aは、下流保護部品の保護よりも以下の例1から例3の処理の優先順位を下げる。
 <例1>圧縮機モータ、ファンモータなどのモータの動作を停止させる制御
 <例2>室外機ユニット20Aから室内機ユニット10Aへの電源電圧の異常状態などの伝達
 <例3>停止した機能部品、電気部品などを起動する制御
The air conditioner 1A lowers the priority of the processes in the following examples 1 to 3 compared to the protection of the downstream protective components.
<Example 1> Control to stop the operation of motors such as compressor motors and fan motors <Example 2> Transmission of abnormal conditions of power supply voltage from the outdoor unit 20A to the indoor unit 10A <Example 3> Control to start up stopped functional parts, electrical parts, etc.
 電源電圧の異常状態は、電源電圧が異常値となる場合である。電源電圧が異常となる場合とは、商用電源30の電圧値が通常時(特定値)よりも大きな値または小さな値になる場合、電圧変化が急峻または徐々に遷移する場合、停電した場合などである。 An abnormal state of the power supply voltage occurs when the power supply voltage reaches an abnormal value. Power supply voltage abnormalities occur when the voltage value of the commercial power supply 30 becomes larger or smaller than normal (a specific value), when the voltage changes abruptly or gradually, when a power outage occurs, etc.
 空気調和機1Aは、例えば、電圧検出部が、第1の値以上の電圧値を検出した場合、第2の値以上の電圧値を特定時間に渡って検出した場合、特定値以上の上昇率で上昇する電圧値を検出した場合などに電源電圧の異常状態であると判断する。 The air conditioner 1A determines that the power supply voltage is abnormal when, for example, the voltage detection unit detects a voltage value equal to or greater than a first value, detects a voltage value equal to or greater than a second value for a specific period of time, or detects a voltage value that is increasing at a rate equal to or greater than a specific value.
 なお、空気調和機1Aは、例えば、電圧検出部が、第3の値以下の電圧値を検出した場合、第4の値以下の電圧値を特定時間に渡って検出した場合、特定値よりも高い下降率で下降する電圧値を検出した場合などに電源電圧の異常状態であると判断してもよい。 The air conditioner 1A may determine that the power supply voltage is abnormal when, for example, the voltage detection unit detects a voltage value equal to or lower than a third value, detects a voltage value equal to or lower than a fourth value for a specific period of time, or detects a voltage value that is decreasing at a rate higher than a specific value.
 このように、空気調和機1Aは、商用電源30と本体回路22との間にスイッチSW2を備えているので、電源電圧(商用電源30の電圧)が過電圧になり本体回路22以降に印加された際に、本体回路22以降を最優先で保護することができる。 In this way, the air conditioner 1A is equipped with the switch SW2 between the commercial power source 30 and the main circuit 22, so when the power supply voltage (the voltage of the commercial power source 30) becomes an overvoltage and is applied to the main circuit 22 and beyond, the main circuit 22 and beyond can be protected as a top priority.
 また、空気調和機1Aは、保護機能の制御を優先的に講じることにより、スイッチSW2よりも下流を直ちに保護できるので、急峻に高電圧まで上昇して特定時間に渡って電圧印加が継続されるような場合であっても、本体回路22よりも下流の下流保護部品を高電圧から保護できる。これにより、空気調和機1Aは、保護の成功率を向上させることができる。空気調和機1Aは、保護の成功率を向上させることにより、故障時のユーザへの影響を抑制できる。また、保護対策用に高耐圧の機能部品などを用いなくてもよいので、空気調和機1Aを製造する際の機能部品などのコストアップ、空気調和機1A(装置)のサイズアップなどを抑制できる。 In addition, by prioritizing control of the protection function, the air conditioner 1A can immediately protect the downstream of the switch SW2, so that even in cases where the voltage rises sharply to a high voltage and continues to be applied for a specific period of time, downstream protection components downstream of the main circuit 22 can be protected from the high voltage. This allows the air conditioner 1A to improve the success rate of protection. By improving the success rate of protection, the air conditioner 1A can reduce the impact on users in the event of a breakdown. Furthermore, because there is no need to use high-voltage functional components for protection measures, it is possible to reduce the cost of functional components and the like when manufacturing the air conditioner 1A and the size of the air conditioner 1A (device).
 商用電源30の最大電圧値、過電圧の印加持続時間、過電圧の上昇度合などは、気温、電力供給と電力需要との関係、人口など地域性によって種々異なるものであり、同じ国内でも差が生じてしまう。実施の形態1の空気調和機1Aは、空気調和機1Aの故障を最悪ケースと位置づけることで、他の制御および動作よりも過電圧からの保護を最優先に実行し、機能部品などの動作の制御は保護対象の下流保護部品を保護した後に行う。これにより、空気調和機1Aは、保護機能の成功率を高め、ユーザからの故障クレームを減らしユーザの満足度を向上させることができる。 The maximum voltage value of the commercial power source 30, the duration of application of the overvoltage, the degree of rise in the overvoltage, and so on vary depending on regional factors such as temperature, the relationship between power supply and power demand, and population, and there are even differences within the same country. By positioning a failure of the air conditioner 1A as the worst case scenario, the air conditioner 1A of embodiment 1 gives top priority to protection from overvoltage over other controls and operations, and controls the operation of functional components and the like after protecting the downstream protective components to be protected. In this way, the air conditioner 1A can increase the success rate of the protection function, reduce failure complaints from users, and improve user satisfaction.
 一般的に、予測が難しい過電圧に対しては、保護の応答速度を高速化すること、部品耐圧を上げることには限度がある。実施の形態1の空気調和機1Aは、予測が難しい過電圧に対して保護の応答速度を高速化することなく、また部品耐圧を上げることなく、下流保護部品を保護する成功率を高めることができる。 Generally, there is a limit to how quickly the protection response speed can be increased and how much the component withstand voltage can be increased when it comes to overvoltages that are difficult to predict. The air conditioner 1A of embodiment 1 can increase the success rate of protecting downstream protection components without increasing the protection response speed when it comes to overvoltages that are difficult to predict and without increasing the component withstand voltage.
 なお、空気調和機1Aは、スイッチSW2の開放後直ちに、室外機ユニット20Aの圧縮機モータ、ファンモータ、四方弁などの動作中の機能部品の動作を停止させてもよい。この場合、空気調和機1Aは、スイッチSW2の開放後直ちに、またはスイッチSW2の開放と同時に、室内機ユニット10Aと室外機ユニット20Aとの間で通信伝達を実行して、室外機ユニット20Aが、室内機ユニット10Aに電源電圧の異常状態と、室外機ユニット20Aの保護状態とを伝達する。 In addition, the air conditioner 1A may stop the operation of functional parts in operation, such as the compressor motor, fan motor, and four-way valve of the outdoor unit 20A, immediately after opening switch SW2. In this case, the air conditioner 1A executes communication transmission between the indoor unit 10A and the outdoor unit 20A immediately after opening switch SW2, or simultaneously with opening switch SW2, and the outdoor unit 20A transmits the abnormal state of the power supply voltage and the protection state of the outdoor unit 20A to the indoor unit 10A.
 このように、空気調和機1Aは、圧縮機モータなどの機能部品の動作を停止させることで、室外機ユニット20Aでの残電圧の降下を遅延させることができる。これにより、室外機ユニット20Aは、残電圧を用いて保護機能の実行状態の情報を室内機ユニット10Aに送ることができる。したがって、空気調和機1Aは、室内機ユニット10Aと室外機ユニット20Aとの間で保護機能の実行状態の情報を共有することが可能になる。 In this way, the air conditioner 1A can delay the drop in the residual voltage in the outdoor unit 20A by stopping the operation of functional components such as the compressor motor. This allows the outdoor unit 20A to send information about the execution status of the protection function to the indoor unit 10A using the residual voltage. Therefore, the air conditioner 1A becomes able to share information about the execution status of the protection function between the indoor unit 10A and the outdoor unit 20A.
 保護機能を優先して実行する場合、室内機ユニット10Aと室外機ユニット20Aとの間で保護機能の実行状態の情報を共有できなくなってしまうことが懸念されるが、空気調和機1Aは、機能部品の動作を停止させて残電圧の降下を遅延させることで、残電圧を用いて保護機能の実行状態の情報を共有することが可能になる。また、空気調和機1Aは、残電圧を有効利用することができるので、省エネルギー効果を得ることができる。 When the protection function is given priority, there is a concern that information about the execution status of the protection function cannot be shared between the indoor unit 10A and the outdoor unit 20A. However, the air conditioner 1A stops the operation of functional components and delays the drop in the residual voltage, making it possible to share information about the execution status of the protection function using the residual voltage. Furthermore, the air conditioner 1A can effectively utilize the residual voltage, thereby achieving energy conservation effects.
 商用電源30の異常電圧の検出から通信完了までの間、下流保護部品の保護処理が待機されると下流保護部品の保護が間に合わなくなってしまう。実施の形態1の空気調和機1Aは、下流保護部品の保護を優先し、機能部品の制御は、下流保護部品の保護と同時または保護の実行後に行う。これにより、空気調和機1Aは、下流保護部品を保護できる可能性を高めることができる。 If the protection process for the downstream protection components is put on hold between the detection of an abnormal voltage in the commercial power source 30 and the completion of communication, the protection of the downstream protection components will not be completed in time. The air conditioner 1A of embodiment 1 prioritizes the protection of the downstream protection components, and controls the functional components simultaneously with the protection of the downstream protection components or after the protection is performed. This allows the air conditioner 1A to increase the possibility of protecting the downstream protection components.
 また、空気調和機1Aは、スイッチSW2の開放後直ちに、圧縮機モータ、ファンモータなどの機能部品の運転の動作を徐々に停止させてもよい。これにより、空気調和機1Aは、下流保護部品の保護を優先したうえで、機能部品の運転を継続させることで、機能部品の急停止時に生じる振動を防止し、機能部品が有する配管の金属疲労による破裂を軽減することができる。また、空気調和機1Aは、ファンモータの運転を継続させることで、冷媒回路の熱交換器の熱を放熱させることができる。 Furthermore, the air conditioner 1A may gradually stop the operation of functional components such as the compressor motor and fan motor immediately after opening switch SW2. In this way, the air conditioner 1A prioritizes the protection of downstream protective components, and by continuing the operation of the functional components, it is possible to prevent vibrations that occur when the functional components suddenly stop and reduce the risk of rupture due to metal fatigue in the piping of the functional components. Furthermore, by continuing the operation of the fan motor, the air conditioner 1A can dissipate heat from the heat exchanger of the refrigerant circuit.
 また、空気調和機1Aの制御部23は、スイッチSW2を開放して商用電源30とスイッチSW2以降の下流保護部品との電気的接続を切断した後に、室内機ユニット10Aまたは室外機ユニット20Aの電圧検出部で検出した電圧値が正常値であるか否かを判定してもよい。 In addition, the control unit 23 of the air conditioner 1A may open the switch SW2 to cut off the electrical connection between the commercial power source 30 and the downstream protective components after the switch SW2, and then determine whether the voltage value detected by the voltage detection unit of the indoor unit 10A or the outdoor unit 20A is normal.
 空気調和機1Aでは、制御部13が、室内機ユニット10Aの電圧検出部(交流電圧検出部16または直流電圧検出部17)を用いて電圧値が正常値に戻ったと判定した場合、上述した復帰動作を実行する。復帰時に電圧値(電源電圧値)が正常値であるか否かを判定するために用いる閾値(第2の閾値)は、保護機能を実行するか否かの判定に用いた閾値(第1の閾値)以下の値である。 In the air conditioner 1A, when the control unit 13 determines that the voltage value has returned to a normal value using the voltage detection unit (AC voltage detection unit 16 or DC voltage detection unit 17) of the indoor unit 10A, it executes the recovery operation described above. The threshold value (second threshold value) used to determine whether the voltage value (power supply voltage value) is a normal value upon recovery is a value equal to or less than the threshold value (first threshold value) used to determine whether to execute the protection function.
 また、空気調和機1Aでは、制御部23が、室外機ユニット20Aの電圧検出部(交流電圧検出部26)を用いて電圧値が正常値に戻ったか否かを判定してもよい。この場合、制御部23は、電圧値が正常値であると判断した後に、スイッチSW2を接続して商用電源30の電力を下流保護部品に供給する。 In addition, in the air conditioner 1A, the control unit 23 may use the voltage detection unit (AC voltage detection unit 26) of the outdoor unit 20A to determine whether the voltage value has returned to a normal value. In this case, after determining that the voltage value is normal, the control unit 23 connects the switch SW2 to supply power from the commercial power source 30 to the downstream protection components.
 制御部23が、交流電圧検出部26が検出した電圧値に基づいて電圧値が正常値であるか否かを判定する場合、室外機ユニット20Aへは、本体回路22とは異なる別の本体回路を配置しておく。この別の本体回路は、保護対象ではなく、電圧値が異常値の場合も商用電源30からの電力を用いて動作し、制御部23および交流電圧検出部26に電力を供給する。これにより、制御部23は、交流電圧検出部26が検出した電圧値に基づいて電圧値が正常値に戻ったか否かを判定し、電圧値が正常値であると判断した後に、スイッチSW2を接続して商用電源30の電力を下流保護部品に供給する。この場合、制御部23は、スイッチSW2を接続する際に、室外機ユニット20Aが復帰動作を実行していることを室内機ユニット10Aに通知する。なお、別の本体回路が配置される場合、室外機ユニット20Aへは、スイッチSW3を配置せず、通信部24と第3の端子253とを直接接続しておいてもよい。 When the control unit 23 determines whether the voltage value is normal based on the voltage value detected by the AC voltage detection unit 26, a separate main circuit different from the main circuit 22 is arranged in the outdoor unit 20A. This separate main circuit is not the object of protection, and even when the voltage value is abnormal, it operates using power from the commercial power source 30 and supplies power to the control unit 23 and the AC voltage detection unit 26. As a result, the control unit 23 determines whether the voltage value has returned to the normal value based on the voltage value detected by the AC voltage detection unit 26, and after determining that the voltage value is normal, connects the switch SW2 to supply power from the commercial power source 30 to the downstream protection component. In this case, when connecting the switch SW2, the control unit 23 notifies the indoor unit 10A that the outdoor unit 20A is performing a recovery operation. Note that when a separate main circuit is arranged, the switch SW3 may not be arranged in the outdoor unit 20A, and the communication unit 24 may be directly connected to the third terminal 253.
 なお、空気調和機1Aでは、電圧値の異常時に下流保護部品の保護が実行(スイッチSW2が開放)された後に、空気調和機1Aが高負荷状態で運転していると、室内機ユニット10Aと室外機ユニット20Aとの間で通信が失敗して電圧値の異常状態および保護状態の情報を共有できない場合が起こり得る。この場合であっても、室内機ユニット10Aが、交流電圧検出部16または直流電圧検出部17を有していれば、室内機ユニット10Aは、交流電圧検出部16または直流電圧検出部17が検出した電圧値が異常値である場合に室外機ユニット20Aが保護されたことを推定できる。この場合、空気調和機1Aは、室内機ユニット10Aと室外機ユニット20Aとの間での通信を行う必要がなくなる。このため、空気調和機1Aは、下流保護部品の停止制御を、通信よりも優先して実行できる。 In the air conditioner 1A, after the downstream protection components are protected (switch SW2 is opened) when the voltage value is abnormal, if the air conditioner 1A is operating under high load, communication between the indoor unit 10A and the outdoor unit 20A may fail, and information on the abnormal voltage value and protection state may not be shared. Even in this case, if the indoor unit 10A has an AC voltage detection unit 16 or a DC voltage detection unit 17, the indoor unit 10A can estimate that the outdoor unit 20A has been protected if the voltage value detected by the AC voltage detection unit 16 or the DC voltage detection unit 17 is abnormal. In this case, the air conditioner 1A does not need to communicate between the indoor unit 10A and the outdoor unit 20A. Therefore, the air conditioner 1A can prioritize the stop control of the downstream protection components over communication.
 また、空気調和機1Aは、室内機ユニット10Aにタイマ45Aを備えているので、スイッチSW2の開放と同時または開放後直ちに時間計測を開始することができる。空気調和機1Aは、スイッチSW2が開放された後、電圧値が異常値から安定した正常値に戻ると想定される特定時間の経過後(例えば、5分後)に、スイッチSW1を接続して商用電源30からの電力を室外機ユニット20Aの下流保護部品に供給する。 In addition, the air conditioner 1A is equipped with a timer 45A in the indoor unit 10A, so it can start measuring time simultaneously with or immediately after the switch SW2 is opened. After the switch SW2 is opened, the air conditioner 1A connects the switch SW1 and supplies power from the commercial power source 30 to the downstream protection components of the outdoor unit 20A after a specific time has elapsed (e.g., 5 minutes) when it is assumed that the voltage value will return from an abnormal value to a stable normal value.
 なお、空気調和機1Aは、室外機ユニット20Aのタイマ46Aが計測した時間が特定時間となった場合に、スイッチSW2を接続してもよい。この場合、制御部23は、電圧値が異常値になってスイッチSW2を開放した際に、スイッチSW3を通信部24に接続したままにしておく。すなわち、スイッチSW3は、通信部24と第3の端子253とを常時接続しておく。なお、室外機ユニット20Aへは、スイッチSW3を配置せず、通信部24と第3の端子253とを直接接続しておいてもよい。 The air conditioner 1A may connect switch SW2 when the time measured by timer 46A of outdoor unit 20A reaches a specific time. In this case, when the voltage value reaches an abnormal value and switch SW2 is opened, the control unit 23 keeps switch SW3 connected to communication unit 24. In other words, switch SW3 constantly connects communication unit 24 to third terminal 253. Note that switch SW3 may not be provided for outdoor unit 20A, and communication unit 24 may be directly connected to third terminal 253.
 タイマ46Aは、スイッチSW2の開放と同時または開放後直ちに時間計測を開始する。タイマ46Aが特定時間を計測すると、制御部23は、スイッチSW2を接続し、通信部24は、特定時間が経過して室外機ユニット20Aが復帰したことを、通信部14を介して制御部13に通知する。 The timer 46A starts measuring time simultaneously with or immediately after the switch SW2 is opened. When the timer 46A measures a specific time, the control unit 23 connects the switch SW2, and the communication unit 24 notifies the control unit 13 via the communication unit 14 that the specific time has passed and the outdoor unit 20A has returned to normal.
 この場合も、室外機ユニット20Aへは、本体回路22とは異なる別の本体回路を配置しておき、別の本体回路が、商用電源30からの電力を、通信部24、制御部23、およびタイマ46Aに供給する。 In this case, a separate main circuit different from the main circuit 22 is arranged in the outdoor unit 20A, and the separate main circuit supplies power from the commercial power source 30 to the communication unit 24, the control unit 23, and the timer 46A.
 空気調和機1Aは、商用電源30から下流保護部品への電力供給を再開した後、電圧値が正常値に戻っていなかった場合は、再度スイッチSW2を開放することで下流保護部品への保護を実行する。 If the voltage value has not returned to the normal value after the air conditioner 1A resumes the power supply from the commercial power source 30 to the downstream protection components, it again opens switch SW2 to protect the downstream protection components.
 空気調和機1Aは、タイマ45Aを備えている場合、室内機ユニット10Aが直流電圧検出部17または直流電圧検出部27を有していなくても、タイマ45Aが計測した時間に基づいて、室外機ユニット20Aの復帰動作を開始することができる。例えば、室内機ユニット10Aと室外機ユニット20Aとの間に通信異常が発生した場合、タイマ45Aは、通信異常が検出された後、時間計測を開始する。空気調和機1Aは、タイマ45Aが計測した時間が特定時間になると、室外機ユニット20Aの復帰シーケンスに移行する。 If the air conditioner 1A is equipped with a timer 45A, it can start the recovery operation of the outdoor unit 20A based on the time measured by the timer 45A even if the indoor unit 10A does not have a DC voltage detection unit 17 or a DC voltage detection unit 27. For example, if a communication abnormality occurs between the indoor unit 10A and the outdoor unit 20A, the timer 45A starts measuring time after the communication abnormality is detected. When the time measured by the timer 45A reaches a specific time, the air conditioner 1A transitions to the recovery sequence for the outdoor unit 20A.
 空気調和機1Aでは、通信異常が継続している場合、室外機ユニット20Aの復帰が成立しないか、または室外機ユニット20Aが復帰しても通信は復旧しない。空気調和機1Aでは、特定時間が経過した後の復帰のため、復帰後に電源電圧値が正常値に戻っていない場合がある。この場合、空気調和機1Aは、室外機ユニット20Aを復帰させることなく、下流保護部品の保護を継続する。この後の復帰時には、下流保護部品が低速で動作を開始したばかりであり、下流保護部品が高負荷運転状態となっていないので、室内機ユニット10Aと室外機ユニット20Aとの間の通信は成功する。 In the air conditioner 1A, if the communication abnormality continues, the outdoor unit 20A will not recover, or communication will not be restored even if the outdoor unit 20A recovers. In the air conditioner 1A, recovery occurs after a specific time has elapsed, so the power supply voltage value may not have returned to a normal value after recovery. In this case, the air conditioner 1A continues to protect the downstream protection component without recovering the outdoor unit 20A. At the time of this subsequent recovery, the downstream protection component has just started operating at low speed and is not in a high-load operating state, so communication between the indoor unit 10A and the outdoor unit 20A is successful.
 このように、空気調和機1Aは、タイマ45Aが計測した時間に基づいて室外機ユニット20Aを復帰させる場合、過電圧状態で復帰を開始する場合があるが、この場合であっても機能部品の制御よりも本体回路22などの下流保護部品の保護を優先するので、本体回路22を確実に保護できる。 In this way, when the air conditioner 1A restores the outdoor unit 20A based on the time measured by the timer 45A, the restoration may start in an overvoltage state, but even in this case, the protection of downstream protective components such as the main circuit 22 is prioritized over the control of functional components, so the main circuit 22 can be reliably protected.
 また、空気調和機1Aは、タイマ45Aを備えている場合、電圧検出部が室内機ユニット10Aと室外機ユニット20Aとの何れか一方で十分になるので、空気調和機1Aの部品コストおよび基板面積を削減できる。 In addition, if the air conditioner 1A is equipped with a timer 45A, the voltage detection unit in either the indoor unit 10A or the outdoor unit 20A is sufficient, so the component costs and circuit board area of the air conditioner 1A can be reduced.
 また、空気調和機1Aは、スイッチSW2を開放して商用電源30とスイッチSW2以降の下流保護部品との電気的接続を切断した後、室内機ユニット10Aによる送風運転を継続させてもよい。すなわち、室内機ユニット10Aは、運転中に送風運転を実行し、スイッチSW2が開放された後も送風運転を継続してもよい。これにより、空気調和機1Aのユーザは、電源電圧値が異常値となった場合であっても、空気調和機1Aの故障であると勘違いすることがなくなるので、ストレスを受けにくくなり、また、ユーザからのクレームとならない。また、本体回路22の停止中は、室内温度が上昇してしまうが、空気調和機1Aが送風運転を継続して空気を循環させることで、ユーザは快適に過ごすことができる。 In addition, the air conditioner 1A may continue the fan operation by the indoor unit 10A after opening switch SW2 to cut off the electrical connection between the commercial power source 30 and the downstream protective components after switch SW2. That is, the indoor unit 10A may perform the fan operation during operation and continue the fan operation even after switch SW2 is opened. This prevents the user of the air conditioner 1A from mistakenly thinking that the air conditioner 1A is broken even if the power supply voltage value becomes abnormal, so that the user is less stressed and there are no complaints from the user. In addition, while the main circuit 22 is stopped, the indoor temperature rises, but the air conditioner 1A continues the fan operation to circulate the air, allowing the user to spend time comfortably.
 スイッチSW2を用いた保護を行うことができない空気調和機では、サージ対策部品に長時間電流が流れるとサージ対策部品が破壊に至り、また、予期できないような急峻に印加される過電圧に対してサージ対策部品の保護が間に合わずにサージ対策部品が故障する場合がある。このような、空気調和機では、1度でも保護に失敗して故障すると、ユーザは、サービスマンによる修理が完了するまでの期間、空気調和機を使用できなくなる。また、保護の代替または併用を行うために、機能部品または電気部品に高耐圧品が採用されると、コストアップおよびサイズアップが生じてしまう。 In air conditioners that cannot provide protection using switch SW2, if current flows through the surge protection components for a long period of time, the surge protection components may be destroyed. Also, if an unexpected, sudden overvoltage is applied, the surge protection components may not be able to protect in time and may break down. In such an air conditioner, if protection fails even once and the air conditioner breaks down, the user will not be able to use the air conditioner for the period until a service technician completes repairs. Furthermore, if high-voltage components are used for functional or electrical components to provide alternative or additional protection, this results in increased costs and size.
 一方、実施の形態1の空気調和機1Aは、電源電圧に異常が発生すると、商用電源30と本体回路22との間に接続されたスイッチSW2を最優先で開放している。これにより、空気調和機1Aは、長時間電流が流れる場合(長時間に渡って高電圧が継続する場合)、および予期できないような急峻に印加される過電圧が発生した場合であっても、スイッチSW2よりも下流の下流保護部品を保護することができる。 On the other hand, in the air conditioner 1A of embodiment 1, when an abnormality occurs in the power supply voltage, the switch SW2 connected between the commercial power supply 30 and the main circuit 22 is opened as a top priority. This allows the air conditioner 1A to protect downstream protective components downstream of the switch SW2 even when current flows for a long time (when a high voltage continues for a long time) or when an unexpected and sudden overvoltage occurs.
 このように、実施の形態1の空気調和機1Aは、電源電圧に異常が発生すると、商用電源30と本体回路22との間に接続されたスイッチSW2を最優先で開放する。これにより、空気調和機1Aは、電源電圧の異常が発生した場合であっても、スイッチSW2よりも下流の部品を適切に保護して、スイッチSW2よりも下流の部品の故障を防止することができる。 In this way, when an abnormality occurs in the power supply voltage, the air conditioner 1A of embodiment 1 opens the switch SW2 connected between the commercial power supply 30 and the main circuit 22 as a top priority. This allows the air conditioner 1A to properly protect the components downstream of the switch SW2 and prevent failure of the components downstream of the switch SW2 even when an abnormality occurs in the power supply voltage.
実施の形態2.
 つぎに、図3を用いて実施の形態2について説明する。実施の形態2では、室内機ユニットが商用電源30に接続されており、室内機ユニットは、商用電源30と室外機ユニットとに接続されたスイッチを有している。実施の形態2の室内機ユニットは、電源電圧に異常が発生すると、商用電源30と室外機ユニットとに接続されたスイッチを最優先で開放する。
Embodiment 2.
Next, a second embodiment will be described with reference to Fig. 3. In the second embodiment, the indoor unit is connected to a commercial power source 30, and has a switch connected to the commercial power source 30 and the outdoor unit. When an abnormality occurs in the power source voltage, the indoor unit of the second embodiment opens the switch connected to the commercial power source 30 and the outdoor unit with the highest priority.
 図3は、実施の形態2にかかる空気調和機の構成例を示す図である。図3の各構成要素のうち図1に示す実施の形態1の空気調和機1Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。 FIG. 3 is a diagram showing an example of the configuration of an air conditioner according to the second embodiment. Among the components in FIG. 3, those components that achieve the same functions as those in the air conditioner 1A according to the first embodiment shown in FIG. 1 are given the same reference numerals, and duplicated explanations will be omitted.
 実施の形態2の空気調和機1Bは、室内機ユニット10Bと、室外機ユニット20Bとを備えている。空気調和機1Bでは、室内機ユニット10Bが商用電源30に接続されており、室外機ユニット20Bは、室内機ユニット10Bを介して商用電源30に接続されている。 The air conditioner 1B of the second embodiment includes an indoor unit 10B and an outdoor unit 20B. In the air conditioner 1B, the indoor unit 10B is connected to a commercial power source 30, and the outdoor unit 20B is connected to the commercial power source 30 via the indoor unit 10B.
 室内機ユニット10Bは、室内機基板11Bと、端子台15と、交流電源または直流電源から送られてくる電力を用いて駆動する複数の機能部品(図示せず)とを有している。なお、室内機ユニット10Bの機能部品は、室内機基板11Bに配置されてもよい。また、端子台15は、室内機基板11Bに配置されてもよい。室内機基板11Bは、本体回路12と、制御部13と、通信部14と、交流電圧検出部16と、直流電圧検出部17と、スイッチSW4と、タイマ45Bとを具備している。なお、室内機基板11Bは、直流電圧検出部17を具備していなくてもよい。 The indoor unit 10B has an indoor unit board 11B, a terminal block 15, and multiple functional components (not shown) that are driven using power sent from an AC or DC power source. The functional components of the indoor unit 10B may be arranged on the indoor unit board 11B. The terminal block 15 may be arranged on the indoor unit board 11B. The indoor unit board 11B has a main circuit 12, a control unit 13, a communication unit 14, an AC voltage detection unit 16, a DC voltage detection unit 17, a switch SW4, and a timer 45B. The indoor unit board 11B does not have to have the DC voltage detection unit 17.
 交流電圧検出部16は、本体回路12と商用電源30との間に配置されており、本体回路12のコンバータに送られる交流電圧を検出する。図3では、交流電圧検出部16が、本体回路12とスイッチSW4とを接続する接続線上の接続点36と、本体回路12と接続点43とを接続する接続線上の接続点40に接続されている場合を示している。なお、図3では、交流電圧検出部16と接続点36とを接続する接続線の図示を省略している。 The AC voltage detection unit 16 is disposed between the main circuit 12 and the commercial power source 30, and detects the AC voltage sent to the converter of the main circuit 12. FIG. 3 shows the case where the AC voltage detection unit 16 is connected to a connection point 36 on a connection line connecting the main circuit 12 and the switch SW4, and to a connection point 40 on a connection line connecting the main circuit 12 and a connection point 43. Note that the connection line connecting the AC voltage detection unit 16 and the connection point 36 is not shown in FIG. 3.
 室外機ユニット20Bは、室外機基板21Bと、端子台25と、交流電源または直流電源から送られてくる電力を用いて駆動する複数の機能部品(図示せず)とを有している。なお、室外機ユニット20Bの機能部品は、室外機基板21Bに配置されてもよい。また、端子台25は、室外機基板21Bに配置されてもよい。室外機基板21Bは、本体回路22と、制御部23と、通信部24と、交流電圧検出部26と、直流電圧検出部27と、タイマ46Bとを具備している。なお、室外機基板21Bは、直流電圧検出部27を具備していなくてもよい。 The outdoor unit 20B has an outdoor unit board 21B, a terminal block 25, and a number of functional components (not shown) that are driven using power sent from an AC or DC power source. The functional components of the outdoor unit 20B may be arranged on the outdoor unit board 21B. The terminal block 25 may be arranged on the outdoor unit board 21B. The outdoor unit board 21B has a main circuit 22, a control unit 23, a communication unit 24, an AC voltage detection unit 26, a DC voltage detection unit 27, and a timer 46B. The outdoor unit board 21B does not have to have the DC voltage detection unit 27.
 なお、空気調和機1Bは、タイマ45B,46Bの何れか一方のみを具備していてもよい。また、空気調和機1Bは、タイマ45B,46Bを具備していなくてもよい。 In addition, the air conditioner 1B may be equipped with only one of the timers 45B and 46B. In addition, the air conditioner 1B may not be equipped with the timers 45B and 46B.
 実施の形態2でも実施の形態1と同様に、室内機ユニット10Bの端子台15は、室外機ユニット20Bの端子台25に接続されている。室内機ユニット10Bでは、端子台15が有する3つの端子のうち、第1の端子151が、商用電源30と本体回路12とを接続する接続線上の接続点43に接続されている。実施の形態2では、接続点40が、商用電源30と本体回路12とを接続する接続線上に配置されている。 In the second embodiment, as in the first embodiment, the terminal block 15 of the indoor unit 10B is connected to the terminal block 25 of the outdoor unit 20B. In the indoor unit 10B, the first terminal 151 of the three terminals of the terminal block 15 is connected to a connection point 43 on the connection line connecting the commercial power source 30 and the main circuit 12. In the second embodiment, the connection point 40 is disposed on the connection line connecting the commercial power source 30 and the main circuit 12.
 また、室内機ユニット10Bでは、端子台15が有する3つの端子のうち、第2の端子152が、スイッチSW4に接続され、第3の端子153が通信部14に接続されている。 Furthermore, in the indoor unit 10B, of the three terminals on the terminal block 15, the second terminal 152 is connected to the switch SW4, and the third terminal 153 is connected to the communication unit 14.
 スイッチSW4は、室外機ユニット20Bの本体回路22、室外機ユニット20Bの機能部品といった部品を保護するためのスイッチである。スイッチSW4は、商用電源30と第2の端子152との接続と、非接続とを切り替えることができる。また、スイッチSW4は、商用電源30と本体回路12とを接続している。 Switch SW4 is a switch for protecting components such as the main circuit 22 of the outdoor unit 20B and the functional components of the outdoor unit 20B. Switch SW4 can switch between connecting and disconnecting the commercial power source 30 and the second terminal 152. Switch SW4 also connects the commercial power source 30 and the main circuit 12.
 スイッチSW4は、商用電源30を、本体回路12および第2の端子152に接続するか、本体回路12のみに接続するかを切り替える。すなわち、スイッチSW4は、商用電源30と本体回路12とを常時接続するとともに、商用電源30から高電圧が印加された場合に、商用電源30と第2の端子152との間の接続を開放する。これにより、スイッチSW4は、商用電源30から高電圧が印加された場合に、室外機ユニット20Bの本体回路22および機能部品を保護する。このように、スイッチSW4が開放されることで、空気調和機1Bは、スイッチSW4以降の部品である下流保護部品を保護することができる。 Switch SW4 switches whether the commercial power supply 30 is connected to the main circuit 12 and the second terminal 152, or to the main circuit 12 only. In other words, switch SW4 constantly connects the commercial power supply 30 to the main circuit 12, and opens the connection between the commercial power supply 30 and the second terminal 152 when a high voltage is applied from the commercial power supply 30. In this way, switch SW4 protects the main circuit 22 and functional components of the outdoor unit 20B when a high voltage is applied from the commercial power supply 30. In this way, by opening switch SW4, the air conditioner 1B can protect the downstream protection components that are the components subsequent to switch SW4.
 実施の形態2の制御部13は、交流電圧検出部16、直流電圧検出部17、または室外機ユニット20Bが検出した電圧値に基づいて、通信部14、およびスイッチSW4を制御する。 The control unit 13 in the second embodiment controls the communication unit 14 and the switch SW4 based on the voltage value detected by the AC voltage detection unit 16, the DC voltage detection unit 17, or the outdoor unit 20B.
 タイマ45Bは、スイッチSW4の開放と同時または開放後直ちに時間計測を開始する。タイマ45Bは、計測した時間を制御部13に送る。タイマ45Bが計測した時間が特定時間になると、制御部13は、スイッチSW4を再接続させる。なお、タイマ45Bは、室内機基板11Bの外部に配置されてもよい。 The timer 45B starts measuring time simultaneously with or immediately after the switch SW4 is opened. The timer 45B sends the measured time to the control unit 13. When the time measured by the timer 45B reaches a specific time, the control unit 13 reconnects the switch SW4. The timer 45B may be disposed outside the indoor unit board 11B.
 実施の形態2では、第3の端子153が通信部14に接続されており、通信部14が、室外機ユニット20Bとの間で通信を実行する。 In the second embodiment, the third terminal 153 is connected to the communication unit 14, and the communication unit 14 communicates with the outdoor unit 20B.
 室外機ユニット20Bでは、第1の端子251が、接続点42を介して本体回路22に接続されている。また、室外機ユニット20Bでは、第2の端子252が、接続点44を介して本体回路22に接続されている。また、室外機ユニット20Bでは、第3の端子253が、通信部24に接続されている。 In the outdoor unit 20B, the first terminal 251 is connected to the main circuit 22 via the connection point 42. In the outdoor unit 20B, the second terminal 252 is connected to the main circuit 22 via the connection point 44. In the outdoor unit 20B, the third terminal 253 is connected to the communication unit 24.
 スイッチSW4が閉じている場合には、商用電源30からの電力が第2の端子252を介して本体回路22に送られる。一方、スイッチSW4が開いている場合には、商用電源30からの電力は、本体回路22に送られない。 When switch SW4 is closed, power from the commercial power source 30 is sent to the main circuit 22 via the second terminal 252. On the other hand, when switch SW4 is open, power from the commercial power source 30 is not sent to the main circuit 22.
 実施の形態2では、室外機(室外機ユニット20B)または室内機(室内機ユニット10B)の電圧検出部が閾値以上の電圧値を検出した場合、室外機ユニット20Bは、機能部品の制御状態および動作状態を加味せず、保護機能を実行する。すなわち、交流電圧検出部16,26および直流電圧検出部17,27の何れかが閾値以上の電圧値を検出すると、室外機ユニット20Bの制御部23は、室外機ユニット20Bの状態を考慮することなく、スイッチSW4を開放させる。 In the second embodiment, when the voltage detection unit of the outdoor unit (outdoor unit 20B) or the indoor unit (indoor unit 10B) detects a voltage value equal to or greater than the threshold, the outdoor unit 20B executes the protection function without taking into account the control state and operation state of the functional components. In other words, when either the AC voltage detection units 16, 26 or the DC voltage detection units 17, 27 detects a voltage value equal to or greater than the threshold, the control unit 23 of the outdoor unit 20B opens the switch SW4 without considering the state of the outdoor unit 20B.
 実施の形態2の制御部23は、交流電圧検出部26、直流電圧検出部27、または室内機ユニット10Bが検出した電圧値に基づいて、通信部24を制御する。 The control unit 23 in the second embodiment controls the communication unit 24 based on the voltage value detected by the AC voltage detection unit 26, the DC voltage detection unit 27, or the indoor unit 10B.
 なお、室外機基板21Bが、タイマ46Bを備えている場合、タイマ46Bは、スイッチSW4の開放と同時または開放後直ちに時間計測を開始してもよい。タイマ46Bは、計測した時間を通信部24および通信部14を介して制御部13に送る。タイマ46Bが計測した時間が特定時間になると、制御部13は、スイッチSW4を再接続させる。この場合、室外機ユニット20Bへは、本体回路22とは異なる別の本体回路を配置しておき、別の本体回路が、商用電源30からの電力を、通信部24、制御部23、およびタイマ46Bに供給する。なお、タイマ46Bは、室外機基板21Bの外部に配置されてもよい。 If the outdoor unit board 21B is equipped with a timer 46B, the timer 46B may start measuring time simultaneously with or immediately after the switch SW4 is opened. The timer 46B sends the measured time to the control unit 13 via the communication unit 24 and the communication unit 14. When the time measured by the timer 46B reaches a specific time, the control unit 13 reconnects the switch SW4. In this case, a separate main body circuit different from the main body circuit 22 is arranged in the outdoor unit 20B, and the separate main body circuit supplies power from the commercial power source 30 to the communication unit 24, the control unit 23, and the timer 46B. The timer 46B may be arranged outside the outdoor unit board 21B.
 このように、空気調和機1Bでは、交流電源のライン上にスイッチSW4が配置されており、スイッチSW4は、高圧時に、商用電源30からの電圧をスイッチSW4以降で電気的に切断する。なお、空気調和機1Bは、交流電圧検出部16,26の少なくとも1つを備えていればよい。また、空気調和機1Bは、直流電圧検出部17,27の少なくとも1つを備えていればよい。 In this way, in air conditioner 1B, switch SW4 is placed on the AC power line, and switch SW4 electrically cuts off the voltage from commercial power source 30 at switch SW4 and beyond when high voltage is applied. Air conditioner 1B needs to be equipped with at least one of AC voltage detection units 16 and 26. Air conditioner 1B needs to be equipped with at least one of DC voltage detection units 17 and 27.
 本体回路22は、スイッチSW4の切り替えにかかわらず、第1の端子251を介して商用電源30に接続されている。したがって、スイッチSW4の切り替えによって第2の端子152が商用電源30に接続された場合、本体回路22は、商用電源30から送られてくる電力を受け付けることができる。 The main circuit 22 is connected to the commercial power source 30 via the first terminal 251 regardless of whether the switch SW4 is switched. Therefore, when the second terminal 152 is connected to the commercial power source 30 by switching the switch SW4, the main circuit 22 can receive power sent from the commercial power source 30.
 なお、空気調和機1Bは、空気調和機1Aと同様の処理手順によって動作するので、空気調和機1Bの動作処理手順の説明は省略する。 Incidentally, since air conditioner 1B operates according to the same processing procedure as air conditioner 1A, a description of the operating processing procedure of air conditioner 1B will be omitted.
 このように、実施の形態2の空気調和機1Bは、電源電圧に異常が発生すると、商用電源30と本体回路22との間に接続されたスイッチSW4を最優先で開放する。これにより、空気調和機1Bは、空気調和機1Aと同様に、電源電圧の異常が発生した場合であっても、スイッチSW4よりも下流の部品を適切に保護して、スイッチSW4よりも下流の部品の故障を防止することができる。 In this way, when an abnormality occurs in the power supply voltage, the air conditioner 1B of embodiment 2 opens the switch SW4 connected between the commercial power supply 30 and the main circuit 22 as a top priority. As a result, like the air conditioner 1A, the air conditioner 1B can appropriately protect the components downstream of the switch SW4 and prevent failure of the components downstream of the switch SW4 even when an abnormality occurs in the power supply voltage.
 つづいて、制御部13,23のハードウェア構成について説明する。なお、制御部13,23は、同様のハードウェア構成を有しているので、ここでは、制御部23のハードウェア構成について説明する。制御部23は、処理回路により実現される。この処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。 Next, the hardware configuration of the control units 13 and 23 will be described. Note that the control units 13 and 23 have the same hardware configuration, so here, the hardware configuration of the control unit 23 will be described. The control unit 23 is realized by a processing circuit. This processing circuit may be a processor and memory that executes a program stored in a memory, or it may be dedicated hardware. The processing circuit is also called a control circuit.
 図4は、実施の形態1,2にかかる室外機ユニットの制御部が備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図である。図4に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、制御部23の処理が結果的に実行されることになる制御プログラムを格納するためのメモリ92を備える。この制御プログラムは、処理回路90により実現される各機能を制御部23に実行させるためのプログラムであるともいえる。この制御プログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。 FIG. 4 is a diagram showing an example of the configuration of a processing circuit in the control unit of the outdoor unit according to the first and second embodiments, when the processing circuit is realized by a processor and a memory. The processing circuit 90 shown in FIG. 4 is a control circuit and includes a processor 91 and a memory 92. When the processing circuit 90 is configured with the processor 91 and the memory 92, each function of the processing circuit 90 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit 90, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit 90 includes a memory 92 for storing a control program that results in the processing of the control unit 23. This control program can also be said to be a program for causing the control unit 23 to execute each function realized by the processing circuit 90. This control program may be provided by a storage medium in which the program is stored, or by other means such as a communication medium.
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). Also, the memory 92 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable ROM), an EEPROM (registered trademark) (Electrically EPROM), a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
 図5は、実施の形態1,2にかかる室外機ユニットの制御部が備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図である。図5に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。 FIG. 5 is a diagram showing an example of a processing circuit provided in the control unit of the outdoor unit according to the first and second embodiments, configured with dedicated hardware. The processing circuit 93 shown in FIG. 5 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
 処理回路90,93については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路90,93は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。なお、制御部23が有する機能の一部は、別々の処理回路により実現されてもよい。 The processing circuits 90 and 93 may be partially realized by dedicated hardware and partially realized by software or firmware. In this way, the processing circuits 90 and 93 can realize the above-mentioned functions by dedicated hardware, software, firmware, or a combination of these. Note that some of the functions of the control unit 23 may be realized by separate processing circuits.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
 1A,1B 空気調和機、10A,10B 室内機ユニット、11A,11B 室内機基板、12,22 本体回路、13,23 制御部、14,24 通信部、15,25 端子台、16,26 交流電圧検出部、17,27 直流電圧検出部、20A,20B 室外機ユニット、21A,21B 室外機基板、30 商用電源、36~44 接続点、45A,45B,46A,46B タイマ、90,93 処理回路、91 プロセッサ、92 メモリ、151,251 第1の端子、152,252 第2の端子、153,253 第3の端子、SW1~SW4 スイッチ。 1A, 1B air conditioner, 10A, 10B indoor unit, 11A, 11B indoor circuit board, 12, 22 main circuit, 13, 23 control unit, 14, 24 communication unit, 15, 25 terminal block, 16, 26 AC voltage detection unit, 17, 27 DC voltage detection unit, 20A, 20B outdoor unit, 21A, 21B outdoor circuit board, 30 commercial power supply, 36-44 connection points, 45A, 45B, 46A, 46B timer, 90, 93 processing circuit, 91 processor, 92 memory, 151, 251 first terminal, 152, 252 second terminal, 153, 253 third terminal, SW1-SW4 switches.

Claims (8)

  1.  商用電源に接続された室外機ユニットと、
     前記室外機ユニットを介して前記商用電源に接続された室内機ユニットと、
     を備え、
     前記室外機ユニットは、
     前記商用電源から供給される電圧を用いて機能部品を駆動するための電圧を生成する本体回路と、
     前記室外機ユニットの本体回路と前記商用電源とを接続する接続線上に配置されて、接続と開放とを切り替えるスイッチと、
     前記スイッチを制御する制御部と、
     を有し、
     前記制御部は、前記商用電源から供給される電圧に対応する電圧の電圧値が第1の閾値以上になると、前記機能部品の制御状態および動作状態を加味せず優先して前記スイッチを開放させることで、前記スイッチよりも下流の部品を保護する、
     空気調和機。
    An outdoor unit connected to a commercial power source;
    an indoor unit connected to the commercial power source via the outdoor unit;
    Equipped with
    The outdoor unit includes:
    a main circuit that generates a voltage for driving functional components using a voltage supplied from the commercial power source;
    a switch that is disposed on a connection line that connects a main circuit of the outdoor unit and the commercial power source, and that switches between connection and disconnection;
    A control unit that controls the switch;
    having
    when a voltage value of a voltage corresponding to a voltage supplied from the commercial power source becomes equal to or greater than a first threshold value, the control unit opens the switch by giving priority to the switch without taking into account a control state and an operation state of the functional component, thereby protecting components downstream of the switch.
    Air conditioner.
  2.  商用電源に接続された室内機ユニットと、
     前記室内機ユニットを介して前記商用電源に接続された室外機ユニットと、
     を備え、
     前記室外機ユニットは、
     前記商用電源から供給される電圧を用いて機能部品を駆動するための電圧を生成する本体回路を有し、
     前記室内機ユニットは、
     前記室外機ユニットの本体回路と前記商用電源とを接続する接続線上に配置されて、接続と開放とを切り替えるスイッチと、
     前記スイッチを制御する制御部と、
     を有し、
     前記制御部は、前記商用電源から供給される電圧に対応する電圧の電圧値が第1の閾値以上になると、前記機能部品の制御状態および動作状態を加味せず優先して前記スイッチを開放させることで、前記スイッチよりも下流の部品を保護する、
     空気調和機。
    An indoor unit connected to a commercial power source;
    an outdoor unit connected to the commercial power source via the indoor unit;
    Equipped with
    The outdoor unit includes:
    a main circuit that generates a voltage for driving a functional component using a voltage supplied from the commercial power source;
    The indoor unit includes:
    a switch that is disposed on a connection line that connects a main circuit of the outdoor unit and the commercial power source, and that switches between connection and disconnection;
    A control unit that controls the switch;
    having
    when a voltage value of a voltage corresponding to a voltage supplied from the commercial power source becomes equal to or greater than a first threshold value, the control unit opens the switch by giving priority to the switch without taking into account a control state and an operation state of the functional component, thereby protecting components downstream of the switch.
    Air conditioner.
  3.  前記制御部は、前記スイッチを開放した後直ちに前記機能部品の動作を停止させる、
     請求項1または2に記載の空気調和機。
    The control unit stops the operation of the functional component immediately after opening the switch.
    3. The air conditioner according to claim 1 or 2.
  4.  前記制御部は、前記スイッチを開放した後、前記機能部品の動作を徐々に停止させる、
     請求項1または2に記載の空気調和機。
    The control unit gradually stops the operation of the functional components after opening the switch.
    3. The air conditioner according to claim 1 or 2.
  5.  前記室外機ユニットは、前記スイッチが開放された後直ちに、または前記スイッチの開放と同時に、前記室内機ユニットとの間で通信を実行して、前記商用電源が異常状態で前記スイッチよりも下流の部品が保護されている状態を前記室内機ユニットに伝達する、
     請求項1から4の何れか1つに記載の空気調和機。
    The outdoor unit communicates with the indoor unit immediately after the switch is opened or simultaneously with the opening of the switch, and notifies the indoor unit that the commercial power supply is in an abnormal state and that components downstream of the switch are protected.
    5. An air conditioner according to any one of claims 1 to 4.
  6.  前記制御部は、前記スイッチを開放した後、前記商用電源から供給される電圧に対応する電圧の電圧値が第2の閾値以下になると、前記スイッチを接続して前記商用電源からの電圧を前記室外機ユニットに供給する、
     請求項1から5の何れか1つに記載の空気調和機。
    When a voltage value of a voltage corresponding to the voltage supplied from the commercial power source becomes equal to or lower than a second threshold value after the switch is opened, the control unit closes the switch to supply the voltage from the commercial power source to the outdoor unit.
    6. An air conditioner according to any one of claims 1 to 5.
  7.  前記スイッチの開放と同時、または開放後直ちに時間の計測を開始するタイマをさらに備え、
     前記制御部は、前記タイマが特定時間を計測すると、前記スイッチを接続して前記商用電源からの電圧を前記室外機ユニットに供給する、
     請求項1から5の何れか1つに記載の空気調和機。
    A timer is further provided which starts measuring time simultaneously with or immediately after the switch is opened,
    When the timer measures a specific time, the control unit closes the switch to supply voltage from the commercial power source to the outdoor unit.
    6. An air conditioner according to any one of claims 1 to 5.
  8.  前記室内機ユニットは、運転中に送風運転を実行し、前記スイッチが開放された後も前記送風運転を継続する、
     請求項1から7の何れか1つに記載の空気調和機。
    The indoor unit performs an air blowing operation during operation, and continues the air blowing operation even after the switch is opened.
    8. An air conditioner according to any one of claims 1 to 7.
PCT/JP2022/043387 2022-11-24 2022-11-24 Air conditioner WO2024111089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043387 WO2024111089A1 (en) 2022-11-24 2022-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043387 WO2024111089A1 (en) 2022-11-24 2022-11-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2024111089A1 true WO2024111089A1 (en) 2024-05-30

Family

ID=91196012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043387 WO2024111089A1 (en) 2022-11-24 2022-11-24 Air conditioner

Country Status (1)

Country Link
WO (1) WO2024111089A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053624A (en) * 1991-09-06 1993-01-08 Sanyo Electric Co Ltd Protective device for air conditioner
JPH0599518A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Air conditioner
JP2001268934A (en) * 2000-03-24 2001-09-28 Daikin Ind Ltd Drive circuit and method of air conditioner
JP2014023392A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Power-supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053624A (en) * 1991-09-06 1993-01-08 Sanyo Electric Co Ltd Protective device for air conditioner
JPH0599518A (en) * 1991-10-09 1993-04-20 Matsushita Refrig Co Ltd Air conditioner
JP2001268934A (en) * 2000-03-24 2001-09-28 Daikin Ind Ltd Drive circuit and method of air conditioner
JP2014023392A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Power-supply device

Similar Documents

Publication Publication Date Title
US8988836B2 (en) Power circuit, and computer-readable recording medium storing a control program for power circuits
CN110594953A (en) Compressor driving device, compressor pressure protection method and air conditioner
US11486600B2 (en) Air conditioner
JP2003088093A (en) Intelligent power module and its control circuit
JP2015129600A (en) Air conditioner
US8004808B2 (en) Control apparatus
WO2024111089A1 (en) Air conditioner
WO2021039277A1 (en) Discharge control circuit, and electric power converting device
JP2008515374A (en) Power supply device having overload protection function
US5679985A (en) Power supply with automatic recovery system
US6680589B2 (en) Relay contact monitoring device
WO2024111090A1 (en) Air conditioner
US20150354579A1 (en) Hermetic compressor driving device
WO2024111091A1 (en) Air conditioner
JP6567930B2 (en) Air conditioner
WO2019112746A1 (en) System and method for managing power consumption during a fault condition
JP2000002188A (en) Control device of air-conditioner
JP3581858B2 (en) Inverter device
JP2011016391A (en) Circuit breaker
JP2002101550A (en) Control device for air conditioner
JP6106981B2 (en) Electronic circuit equipment
WO2024105816A1 (en) Air conditioner and protection board
JP2010252567A (en) Power circuit
JP2007305451A (en) Secondary battery pack with overcharge protection function
JP5999141B2 (en) Power converter