WO2024111014A1 - Machining load determination system - Google Patents

Machining load determination system Download PDF

Info

Publication number
WO2024111014A1
WO2024111014A1 PCT/JP2022/042945 JP2022042945W WO2024111014A1 WO 2024111014 A1 WO2024111014 A1 WO 2024111014A1 JP 2022042945 W JP2022042945 W JP 2022042945W WO 2024111014 A1 WO2024111014 A1 WO 2024111014A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
load information
unit
actual
machining
Prior art date
Application number
PCT/JP2022/042945
Other languages
French (fr)
Japanese (ja)
Inventor
淳一郎 河野
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/042945 priority Critical patent/WO2024111014A1/en
Publication of WO2024111014A1 publication Critical patent/WO2024111014A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • This disclosure relates to a processing load determination system.
  • Patent Document 1 discloses a technology in which an actual machine part and a simulation part are arranged in parallel, the same command is input to the actual machine part and the simulation part, the internal state quantities of the actual machine part and the simulation part are compared, and the internal state quantity comparison value is compared with a preset detection threshold value to detect contact or collision of the moving part with another object. It is believed that this technology makes it possible to detect whether there is a difference between the results obtained by simulation and the results obtained in actual machining. Patent Document 1 also discloses that the calculation formula of the model of the simulation part is simple, resulting in short processing time.
  • the simulation of the simulation unit needs to be performed in real time in accordance with the operation of the actual machine.
  • the processing time for a simulation that uses a three-dimensional model as a virtual space is relatively long. Therefore, in the technology disclosed in Patent Document 1, as described above, the calculation formula of the model of the simulation unit is simplified to shorten the processing time in accordance with the operation time of the actual machine.
  • the accuracy of the simulation is limited in a real-time simulation of actual machining, and as a result, the difference between the simulation and the actual machining may not be detected correctly. Therefore, it is desirable to improve the accuracy of detecting the difference between the simulation and the actual machining without limiting the accuracy of the simulation.
  • the machining load judgment system disclosed herein comprises an actual machining unit having a movable part on which a tool or a workpiece is mounted, and which machines the workpiece by moving the tool and the workpiece relative to each other based on operation data; a simulation unit which performs a machining simulation of the virtual workpiece by moving the virtual tool and the virtual workpiece relative to each other based on the operation data in a virtual space including virtual tools, virtual workpieces, and virtual moving parts corresponding to the tool, the workpiece, and the moving part, respectively; a virtual load acquisition unit which acquires virtual load information occurring on the virtual moving part obtained by the machining simulation by the simulation unit; an actual load acquisition unit which acquires actual load information occurring on the moving part obtained by machining by the actual machining unit; and a load information judgment unit which compares the virtual load information with the actual load information and judges whether there is a difference between these pieces of information.
  • the simulation unit calculates the virtual load information and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information, the virtual load acquisition unit acquires the virtual load information in association with the comparison point identification data, the actual load acquisition unit acquires the actual load information in association with the comparison point identification data, and the load information determination unit compares the virtual load information with the actual load information based on the comparison point identification data.
  • FIG. 1 is a diagram showing an overview of an industrial machinery system according to an embodiment of the present invention
  • 1 is a diagram showing a configuration of a processing load determination system according to an embodiment of the present invention
  • 11A and 11B are diagrams illustrating an example of virtual load information and comparison portion identification data.
  • 11A and 11B are diagrams illustrating an example of actual load information and comparison location identification data.
  • 11A and 11B are diagrams illustrating a first example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part);
  • FIG. 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which contact is detected only in the simulation part).
  • FIG. 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which contact is detected only in the actual machining part).
  • 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which a workpiece floats up);
  • FIG. 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which a workpiece
  • FIG. 13A and 13B are diagrams illustrating a second example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part);
  • FIG. 11 is a diagram showing Example 2 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the simulation part).
  • FIG. 11 is a diagram showing Example 2 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the actual machining part).
  • FIG. 13A and 13B are diagrams illustrating a third example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part);
  • FIG. 11 is a diagram showing Example 3 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the simulation part).
  • FIG. 11 is a diagram showing Example 3 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the actual machining part).
  • FIG. 11 is a diagram showing Example 4 of the processing load judgment process by the processing load judgment system according to the present embodiment.
  • FIG. 11 is a diagram showing Example 5 of the processing load judgment process by the processing load judgment system according to the present embodiment.
  • Fig. 1 is a diagram showing an overview of the industrial machinery system according to the present embodiment.
  • the industrial machinery system 100 includes a numerical control device 110, a drive unit 120, and a machine tool (industrial machinery) 130.
  • the machine tool 130 is the actual machining section described below, and performs removal machining of the workpiece W by moving the tool T and the workpiece W relative to one another based on the operating data.
  • an M-series (machining center) machine is used as an example of the machine tool, but this embodiment is not limited to this.
  • This embodiment is also applicable to a T-series (lathe) machine tool.
  • a machine tool is used as an example of the industrial machine, but this embodiment is not limited to this.
  • This embodiment is also applicable to various industrial machines, such as electric discharge machines, in which the tool T and the workpiece W come into contact with each other to machine the workpiece W.
  • the machine tool 130 includes a motor 132, a tool mounting portion 134, and a table 136.
  • the mounting portion 134 or the table 136 is a movable portion, and a tool T is attached to the mounting portion 134, and a workpiece W is provided on the table 136.
  • the motor 132 is a motor for feeding the movable part of the mounting part 134 or the table 136, i.e., the tool T or the workpiece W, and may include, for example, multiple motors for X-axis movement, Y-axis movement, and Z-axis movement.
  • the motor 132 is driven by the drive part 120.
  • the numerical control device 110 generates position commands along the relative movement path of the tool T with respect to the workpiece W in the machine tool 130 based on the machining program.
  • the driving unit 120 drives the motor 132 in the machine tool 130 based on a position command from the numerical control device 110.
  • the driving unit 120 may include multiple driving units for each motor of the machine tool 130 (e.g., an X-axis motor, a Y-axis motor, and a Z-axis motor).
  • the driving unit 120 is, for example, a servo control unit, and performs drive control of the motor 132 based on the position command and position feedback detected by an encoder provided on the motor 132.
  • FIG. 2 is a diagram showing the configuration of the machining load judgment system according to the present embodiment.
  • the machining load judgment system 10 includes an actual machining unit 12, a simulation unit 14, an actual load acquisition unit 16, a virtual load acquisition unit 18, a storage unit 20, a load information judgment unit 22, an operation control unit 24, a correction unit 26, and a display unit 28.
  • the actual machining unit 12 is the machine tool 130 described above. As described above, the actual machining unit 12 uses the mounting unit 134 on which the tool T is mounted or the table 136 on which the workpiece W is mounted as a movable unit, and performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other based on the operating data.
  • the simulation unit 14 may be provided in the above-mentioned numerical control device 110, or may be configured by a computer different from the numerical control device 110.
  • the simulation unit 14 has a virtual space VS including a virtual tool Ts, a virtual workpiece Ws, a virtual mounting part (virtual movable part) 134s, and a table (virtual movable part) 136s, which respectively simulate the tool T, the workpiece W, the mounting part (movable part) 134, and the table (movable part) 136 in the actual machining part 12, as shown in FIG. 4A described later.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by relatively moving the virtual tool Ts and the virtual workpiece Ws in the virtual space VS based on the operation data. As shown in FIG. 3A, the simulation unit 14 calculates virtual load information generated in the virtual movable parts 134s and 136s, and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information. The details of the virtual load information and the comparison point identification data will be described later.
  • the actual load acquisition unit 16 is provided in the drive unit (servo control unit) 120 described above. As shown in FIG. 3B, the actual load acquisition unit 16 acquires actual load information generated in the movable parts 134, 136 obtained by processing by the actual processing unit 12. Specifically, the actual load acquisition unit 16 acquires virtual load information in association with comparison location identification data. Details of the actual load information and comparison location identification data will be described later.
  • the virtual load acquisition unit 18 may be provided in the numerical control device 110 described above, or may be provided in a computer constituting the simulation unit 14, or may be constituted by a computer different from the numerical control device 110 and the simulation unit 14. As shown in FIG. 3A, the virtual load acquisition unit 18 acquires virtual load information generated in the virtual moving parts 134s, 136s obtained by the machining simulation by the simulation unit 14. Specifically, the virtual load acquisition unit 18 acquires the virtual load information in association with the comparison location identification data.
  • the load information determination unit 22 may be provided in the above-mentioned numerical control device 110, or in the drive unit (servo control unit) 120, or may be configured by a computer different from the numerical control device 110 and the drive unit 120.
  • the load information determination unit 22 compares the virtual load information with the actual load information based on the comparison point identification data, and determines whether or not there is a difference between these pieces of information. In other words, the load information determination unit 22 determines whether or not there is a difference between the load information of the movable parts 134, 136 in the actual machining unit 12 and the load information of the virtual movable parts 134s, 136s in the simulation unit 14.
  • the operation control unit 24 is provided in the drive unit (servo control unit) 130 described above.
  • the operation control unit 24 performs at least one of the following in the actual machining unit 12: limiting the output for operating the movable units 134, 136 (e.g., torque limiting), performing a retraction operation (retraction) of the movable units 134, 136 that is set in advance in the machining program, or immediately decelerating and stopping the operation of the movable units 134, 136.
  • the correction unit 26 may be provided in the above-mentioned numerical control device 110, or may be configured by a computer different from the numerical control device 110.
  • the correction unit 26 changes (corrects) the preconditions for the machining simulation in the simulation unit 14, for example, the preconditions related to the virtual tool Ts, the virtual workpiece Ws, and the virtual movable parts 134s and 136s in the operation data.
  • the above-mentioned simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 are configured with an arithmetic processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field-Programmable Gate Array).
  • the various functions of the simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 are realized, for example, by executing a predetermined software (program) stored in the storage unit 20.
  • the various functions of the simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 may be realized by a combination of hardware and software, or may be realized only by hardware (electronic circuits).
  • the memory unit 20 is composed of memory such as a ROM (Read Only Memory), HDD (Hard Disk Drive), or SSD (Solid State Drive).
  • the memory unit 20 stores predetermined software (programs) that realize the various functions of the simulation unit 14, the actual load acquisition unit 16, the virtual load acquisition unit 18, the load information determination unit 22, the operation control unit 24, and the correction unit 26.
  • the memory unit 20 also stores the virtual load information and comparison point identification data shown in FIG. 3A acquired by the virtual load acquisition unit 18, and the actual load information and comparison point identification data shown in FIG. 3B acquired by the actual load acquisition unit 16.
  • the display unit 28 is configured, for example, with a liquid crystal display or an organic EL display.
  • the display unit 28 displays the comparison point identification data for which the load information determination unit 22 has determined that there is a difference between the virtual load information and the actual load information in a different display mode according to the difference. For example, the display unit 28 highlights and displays in a different display mode (for example, color, blinking, etc.) in the program (operation data) the blocks corresponding to the comparison point identification data for which it has been determined that there is a difference between the virtual load information and the actual load information, from blocks with no difference.
  • a different display mode for example, color, blinking, etc.
  • FIGS. 4A to 4D are diagrams showing Example 1 of processing load judgment processing by the processing load judgment system according to this embodiment
  • Figs. 5A to 5C are diagrams showing Example 2 of processing load judgment processing by the processing load judgment system according to this embodiment
  • Figs. 6A to 6C are diagrams showing Example 3 of processing load judgment processing by the processing load judgment system according to this embodiment
  • Fig. 7 is a diagram showing Example 4 of processing load judgment processing by the processing load judgment system according to this embodiment
  • Fig. 8 is a diagram showing Example 5 of processing load judgment processing by the processing load judgment system according to this embodiment.
  • Fig. 4A is a diagram showing a case where there is no difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part
  • Fig. 4B is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part).
  • FIG. 4C is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the real machining part), and Fig. 4D is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where the workpiece floats up).
  • the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14.
  • the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120.
  • i and j are any integers from 1 to n.
  • n is an integer of 1 or more.
  • Xs(i) and Xr(j) are q-dimensional arrays, and the mechanical coordinate of the p-th axis of the virtual moving part can be expressed as Xsp(i), and the mechanical coordinate of the p-th axis of the moving part can be expressed as Xrp(j).
  • q is an integer of 1 or more and indicates the number of axes of the machine.
  • p is an arbitrary integer from 1 to q.
  • the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data).
  • this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
  • the simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
  • the simulation unit 14 also calculates a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information.
  • the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the time Ts(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact with each other in the simulation unit 14 with the time Tr(j) at which the tool T and the workpiece W come into contact with each other in the actual machining unit 12 in a one-to-one manner.
  • the comparison location identification data is data that identifies the time Ts(i) and the time Tr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the time Ts(i) with the actual load information at the time Tr(j) based on the comparison location identification data.
  • the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
  • the numerical control device 110 acquires the contact flag 0/1 (virtual load information) in association with the time Ts(i) (comparison point identification data) as shown in FIG. 4A.
  • the simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance.
  • the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
  • the driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110.
  • the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
  • the driving unit 120 acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
  • the drive unit 120 acquires the contact signal (actual load information) in association with the time Tr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in Fig. 4A, the numerical control device 110 (load information determination unit 22) acquires a contact signal (actual load information) between times Ts(i-1) and Ts(i) based on the times Tr(j) and Ts(i) (comparison point identification data), and since the contact flag (virtual load information) at this time is 1, it determines that there is no difference between these pieces of information.
  • the load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
  • the load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
  • the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
  • the load information determination unit 22 calculates the time Tr(j) at which a contact signal is detected in the actual machining unit 12 on the drive unit 120 side, and may determine that there is no difference between the actual load information and the virtual load information if this time Tr(j) and the times Ts(i-1), Ts(i) at which the contact flag changes from 0 to 1 in the simulation unit 14 satisfy the following equation: Ts(i-1) ⁇ Tr(j) ⁇ Ts(i)
  • the period for acquiring the position of the movable part in the actual machining unit is shorter than the simulation period, so the error (delay time) of the time Tr(j) at which the contact signal is detected in the actual machining unit 12 can be ignored.
  • the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information if there is a time Ts(i) at which the contact flag becomes 1 in the simulation unit 14 between times Tr(j-1) and Tr(j) in the actual machining unit 12.
  • the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information based on a determination based on the contact position as described below, in addition to the determination based on the contact time described above. For example, the load information determination unit 22 may further determine that there is no difference between the actual load information and the virtual load information when the machine coordinate Xr(j) at which a contact signal is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) at which the contact flag changes from 0 to 1 in the simulation unit 14 satisfy the following equation for all axes p in operation between i-1 and i:
  • the numerical controller 110 creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14.
  • the numerical controller 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the time Ts(i) (comparison point identification data), as shown in FIG. 4B.
  • the driving unit 120 and the actual machining unit 12 machine the workpiece W
  • the driving unit 120 acquires a contact signal (actual load information) in association with time Tr(j) (comparison point identification data).
  • a contact signal actual load information
  • Tr(j) comparison point identification data
  • the numerical controller 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4B, the numerical controller 110 (load information determination unit 22) does not acquire a contact signal (actual load information) between times Ts(i-1) and Ts(i), and the contact flag (virtual load information) at this time is 1, so it determines that there is a difference between these pieces of information.
  • the numerical control device 110 decelerates and stops the machine tool 130.
  • the numerical control device 110 may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) limits the output to operate the movable parts 134, 136 in the actual machining unit 12, performs a preset retraction operation of the movable parts 134, 136, or immediately decelerates and stops the operation of the movable parts 134, 136.
  • the machine tool operator can recognize whether the tool T has been attached incorrectly or is damaged by comparing the machine coordinates where contact (interference) was detected in the machining simulation with the machine coordinates where contact (interference) was not detected in the actual machining, which correspond to the machine coordinates where contact (interference) was detected in the actual machining.
  • the numerical controller 110 creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14.
  • the numerical controller 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with a time Ts(i) (comparison point identification data) as shown in Fig. 4A.
  • the simulation unit 14 sets the contact flag to 0.
  • the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with time Tr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4B, the numerical control device 110 (load information determination unit 22) detects that a contact signal (actual load information) has been acquired between times Ts(i-1) and Ts(i) even though the contact flag (virtual load information) has not been set, and determines that there is a difference between these pieces of information.
  • the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
  • the numerical controller 110 creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14.
  • the numerical controller 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with a time Ts(i) (comparison point identification data) as shown in Fig. 4A.
  • the simulation unit 14 sets the contact flag to 0.
  • the driving unit 120 and the actual machining unit 12 machine the workpiece W
  • the driving unit 120 acquires a contact signal (actual load information) in association with the time Tr(j) (comparison point identification data).
  • a contact signal actual load information
  • the driving unit 120 outputs a contact signal to the numerical control device 110 earlier than in the simulation.
  • the driving unit 120 (actual load acquisition unit 16) outputs a contact signal to the numerical control device 110 later than in the simulation.
  • the numerical controller 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the time Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4D, when the tool T and the workpiece W come into contact with each other earlier than the simulation, the numerical controller 110 (load information determination unit 22) detects that the contact signal (actual load information) has been acquired even though the contact flag (virtual load information) has not been set between the time Ts(i-1) and Ts(i), and determines that there is a difference between these pieces of information.
  • the numerical controller 110 (load information determination unit 22) does not acquire the contact signal (actual load information) between the time Ts(i-1) and Ts(i), and the contact flag (virtual load information) at this time is 1, so that it determines that there is a difference between these pieces of information.
  • the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
  • FIG. 5A is a diagram showing a case where there is no difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part
  • FIG. 5B is a diagram showing a case where there is a difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part)
  • FIG. 5C is a diagram showing a case where there is a difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the actual machining part).
  • the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14.
  • the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120.
  • i and j are any integers from 1 to n.
  • n is an integer of 1 or more.
  • the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data).
  • this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
  • the simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
  • the simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information.
  • the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the machine coordinate Xs(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact in the simulation unit 14 with the machine coordinate Xr(j) at which the tool T and the workpiece W come into contact in the actual machining unit 12 in a one-to-one manner.
  • the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as a comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
  • the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
  • the numerical control device 110 acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data), as shown in FIG. 5A.
  • the simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance.
  • the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
  • the driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110.
  • the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
  • the driving unit 120 acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
  • the drive unit 120 acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in FIG.
  • the numerical control device 110 determines that there is no difference between the actual load information and the virtual load information based on the machine coordinates Xr(j), Xs(i) (comparison point identification data), since the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 satisfy the following inequality for all axes p operating between i-1 and i.
  • the load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
  • the load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
  • the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
  • the load information determination unit 22 may be provided in the numerical control device 110, or in the drive unit 120 (servo control unit, amplifier), or may be configured by a computer separate from the numerical control device 110 and the drive unit 120.
  • the numerical control device 110 creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14.
  • the numerical control device 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data), as shown in FIG. 5B.
  • the driving unit 120 and the actual machining unit 12 machine the workpiece W
  • the driving unit 120 acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • a contact signal actual load information
  • the driving unit 120 does not acquire a contact signal and does not output the contact signal to the numerical control device 110.
  • the drive unit 120 may output a contact signal (actual load information) and machine coordinates Xr(k) (comparison location identification data) to the numerical control device 110.
  • the numerical control device 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig. 5B, the numerical control device 110 (load information determination unit 22) does not acquire a contact signal (actual load information) in the actual machining unit 12, while the simulation unit 14 has a contact flag (virtual load information) of 1, and therefore determines that there is a difference between these pieces of information.
  • the numerical control device 110 determines that there is a difference between the actual load information and the virtual load information because the machine coordinate Xr(k) (comparison point identification data) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 do not satisfy the following inequality for all axes p operating between i-1 and i:
  • the numerical control device 110 decelerates and stops the machine tool 130.
  • the numerical control device 110 may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) performs output restriction for operating the movable parts 134, 136 in the actual machining unit 12, a preset retraction operation of the movable parts 134, 136, or an immediate deceleration and stop of the operation of the movable parts 134, 136.
  • the machine tool operator can recognize whether the tool T has been attached incorrectly or is damaged by comparing the machine coordinates where contact (interference) was detected in the machining simulation with the machine coordinates where contact (interference) was not detected in the actual machining, which correspond to the machine coordinates where contact (interference) was detected in the actual machining.
  • the numerical controller 110 creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14.
  • the numerical controller 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with the machine coordinate Xs(i) (comparison point identification data) as shown in Fig. 5B.
  • the simulation unit 14 sets the contact flag to 0.
  • the numerical control device 110 may acquire a contact flag 1 (virtual load information) in association with the machine coordinate Xs(k) (comparison location identification data) where the contact was detected.
  • the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig.
  • the numerical control device 110 determines that there is a difference between these pieces of information because the contact flag (virtual load information) is 0 in the machine coordinates Xs(i) (comparison point identification data) in the simulation unit 14, which corresponds to the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) was detected in the actual machining unit 12.
  • the numerical control device 110 determines that there is a difference between the actual load information and the virtual load information because the machine coordinate Xr(j) (comparison point identification data) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(k-1), Xs(k) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 do not satisfy the following inequality for all axes p operating between i-1 and i:
  • the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
  • the operation data is used as the comparison location identification data.
  • FIG. 6A is a diagram showing a case where there is no difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part
  • FIG. 6B is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part).
  • FIG. 6C is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the real machining part).
  • the simulation unit 14 analyzes the machining program, and creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14.
  • the numerical control device 110 analyzes the machining program, and creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs them to the drive unit 120.
  • i and j are any integers from 1 to n.
  • n is an integer of 1 or more.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data).
  • the simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact as virtual load information occurring on the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i).
  • the simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information.
  • the simulation unit 14 adds the coordinate of the machine coordinate Xs(j) in the format of ",Ln X_Y_Z_" in association with the command block in the operation data (virtual load information and comparison location identification data).
  • n is an integer of 1 or more, and when contact occurs multiple times during one block, n is incremented and multiple entries are made.
  • the coordinates of the machine coordinates Xs(j) may be added in units of one block instead of in units of command blocks (virtual load information and comparison point identification data).
  • this embodiment can also be applied to cases in which there are four or more feed axes.
  • the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that creates a one-to-one correspondence between the machine coordinate Xs(i) where the virtual tool Ts and virtual workpiece Ws come into contact in the simulation unit 14 and the machine coordinate Xr(j) where the tool T and workpiece W come into contact in the actual machining unit 12. In other words, the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
  • the numerical control device 110 acquires ",Ln X_Y_Z_" (virtual load information and comparison location identification data) that has been added to the operation data, as shown in FIG. 6A.
  • the simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance.
  • the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
  • the driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110.
  • the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
  • the driving unit 120 acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
  • the drive unit 120 acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data), and determines whether or not there is a difference between these pieces of information. For example, in FIG.
  • the numerical control device 110 determines that there is no difference between the actual load information and the virtual load information because the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) was detected in the actual machining unit 12 and the machine coordinates Xs(i) (comparison point identification data) indicated by ",Ln X_Y_Z_" added to the operation data in the simulation unit 14 satisfy the following inequality for all axes p operating between i-1 and i.
  • the load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
  • the load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
  • the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
  • the period for acquiring the position of the movable part in the actual machining unit is shorter than the simulation period, so the error in the machine coordinate Xr(j) at which a contact signal is detected in the actual machining unit 12 can be ignored.
  • the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information when a machine coordinate Xs(i) that contacts in the simulation unit 14 exists between the machine coordinates Xr(j-1) and Xr(j) in the actual machining unit 12. In other words, it may be confirmed that the following equation holds for all axes p that operate between i-1 and i.
  • the simulation unit 14 in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14.
  • the numerical control device 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires “,Ln X_Y_Z_” (virtual load information and comparison point identification data) added to the operation data, as shown in FIG. 6B.
  • the driving unit 120 and the actual machining unit 12 machine the workpiece W
  • the driving unit 120 acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • a contact signal actual load information
  • the driving unit 120 does not acquire a contact signal and does not output the contact signal to the numerical control device 110.
  • the numerical control device 110 compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig.
  • the numerical control device 110 determines that there is a difference between these pieces of information because the drive unit 120 (actual load acquisition unit 16) does not acquire a contact signal in the actual machining unit 12 even though the block (comparison point identification data) corresponding to the block in which ",Ln X_Y_Z_" (virtual load information and comparison point identification data) is written in the operation data of the simulation unit 14 has passed.
  • the numerical control device 110 decelerates and stops the machine tool 130.
  • the numerical control device 110 may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) limits the output to operate the movable parts 134, 136 in the actual machining unit 12, performs a preset retraction operation of the movable parts 134, 136, or immediately decelerates and stops the operation of the movable parts 134, 136.
  • the display unit 28 may also display the machine coordinates Xs(i) of operation data in which contact (interference) between the virtual tool Ts and the virtual workpiece Ws has been detected in the simulation unit 14 in a color different from that of other operation data, or may display them in a flashing color. This allows the operator of the machine tool to easily recognize the machine coordinates Xs(i) of operation data in which contact (interference) between the virtual tool Ts and the virtual workpiece Ws has been detected in the simulation unit 14.
  • the simulation unit 14 in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14.
  • the numerical control device 110 in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires ",Ln X_Y_Z_" (virtual load information and comparison location identification data) added to the operation data as shown in Fig. 6C.
  • the numerical control device 110 virtual load acquisition unit 18
  • the virtual tool Ts does not enter the inside of the virtual workpiece Ws from the outside, and there is no description of ",Ln X_Y_Z_" (virtual load information and comparison location identification data) in the operation data, so the numerical control device 110 (virtual load acquisition unit 18) does not acquire ",Ln X_Y_Z_” (virtual load information and comparison location identification data) added to the operation data.
  • the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • the numerical control device 110 compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig.
  • the numerical control device 110 determines that there is a difference between these pieces of information because ",Ln X_Y_Z_" (virtual load information and comparison point identification data) is not written in the block of the operation data of the simulation unit 14 corresponding to the machine coordinates Xr(j) (comparison point identification data) where the contact signal (actual load information) was detected in the actual machining unit 12.
  • the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
  • the display unit 28 may display the machine coordinate Xr(j) at which contact (interference) between the tool T and the workpiece W is detected in the actual machining unit 12 in a color different from other operation data, or may display it in a flashing color. This allows the operator of the machine tool to easily recognize the machine coordinate Xr(j) at which contact (interference) between the tool T and the workpiece W is detected in the actual machining unit 12.
  • the magnitude of the load (energy) generated on the moving part when machining the workpiece is used as the actual load information
  • the magnitude of the load (energy) generated on the virtual moving part when machining the virtual workpiece is used as the virtual load information.
  • the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14.
  • the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120.
  • i and j are any integers from 1 to n.
  • n is an integer of 1 or more.
  • the numerical control device 110 analyzes the machining program and creates time series data (operation data) of the machine coordinates.
  • this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time series data (operation data) of the machine coordinates.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
  • the simulation unit 14 calculates the total amount of virtual load Ws(i) [J/s] (energy Ws ⁇ t) as virtual load information generated on the virtual moving parts 134s and 136s at a certain machine coordinate Xs(i) at a certain time Ts(i).
  • the first item is the energy required to remove the virtual workpiece Ws
  • the second item is the change in kinetic energy
  • the third item is the change in potential energy
  • the fourth item is the energy consumed by the movement of the virtual moving part.
  • Vs(i) is the volume of the removal area, which is the overlapping area of the area through which the virtual tool Ts passed between Ts(i-1) and Ts(i) and the area of the virtual workpiece Ws.
  • Vs(i) is the speed of i and can be expressed by the following formula.
  • the simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information.
  • the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the time Ts(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact with each other in the simulation unit 14 with the time Tr(j) at which the tool T and the workpiece W come into contact with each other in the actual machining unit 12 in a one-to-one manner.
  • the comparison location identification data is data that identifies the time Ts(i) and the time Tr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the time Ts(i) with the actual load information at the time Tr(j) based on the comparison location identification data.
  • the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
  • the numerical control device 110 acquires the load Ws(i) [J/s] (energy Ws x t) (virtual load information) in association with the time Ts(i) (comparison point identification data) as shown in FIG. 7.
  • the simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance.
  • the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
  • the driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110.
  • the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
  • the driving unit 120 calculates the total motor load Wr(j) [J/s] (energy Wr x t) as actual load information occurring on the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j).
  • the calculation of the load Wr(j) [J/s] (energy Wr x t) may be the same as the example of the calculation of the load Ws(i) [J/s] (energy Ws x t) described above.
  • the machine tool is an EDM machine, simply add the power flowing through the tool to the total motor load.
  • the drive unit 120 acquires the load Wr(j) [J/s] (energy Wr ⁇ t) (actual load information) in association with the time Tr(j) (comparison point identification data).
  • the numerical control device 110 (load information determination unit 22) compares the load Wr(j) [J/s] (energy Wr ⁇ t) (actual load information) with the load Ws(i) [J/s] (energy Ws ⁇ t) (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data), and determines whether there is a difference between these pieces of information. For example, in Fig. 7, the numerical control device 110 (load information determination unit 22) finds the minimum j (jmin) and maximum j (jmax) that satisfy the following formula at the time Ts(i). Ts(i-1) ⁇ Tr(j) ⁇ Ts(i)
  • the numerical control device 110 determines whether the following formula is satisfied at i. If the following formula is satisfied, the numerical control device 110 (load information determination unit 22) determines that there is no difference between the actual load information and the virtual load information.
  • jmin and jmax are the minimum and maximum j that satisfy Ts(i-1) ⁇ Tr(j) ⁇ Ts(i)
  • ⁇ Ts is the simulation period
  • ⁇ Tr is the period for acquiring the motor output in the actual machining section
  • ⁇ W[J] is a certain threshold value indicating the motor load. Note that the above formula is based on the premise that ⁇ Ts> ⁇ Tr.
  • the load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
  • the load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
  • the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
  • the load information determination unit 22 may be provided in the numerical control device 110, or in the drive unit 120 (servo control unit, amplifier), or may be configured by a computer separate from the numerical control device 110 and the drive unit 120.
  • Example 5 In the above-mentioned first to fourth embodiments, the operation of the actual machining is restricted on the assumption that there is a problem in the actual machining. In the fifth embodiment, when there is a problem in the settings of the machining simulation, the settings of the machining simulation are changed (corrected). In this way, the difference between the actual load information and the virtual load information is reflected in the machining simulation, thereby improving the simulation accuracy.
  • the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14.
  • the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120.
  • i and j are any integers from 1 to n.
  • n is an integer of 1 or more.
  • the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data).
  • this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
  • the driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110.
  • the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
  • the driving unit 120 acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and sets the contact signal to 0 if the output of the motor 132 does not exceed a certain threshold, and determines that the tool T and workpiece W are in contact and sets the contact signal to 1 if the output of the motor 132 exceeds a certain threshold.
  • the drive unit 120 acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
  • the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that creates a one-to-one correspondence between the machine coordinate Xs(i) where the virtual tool Ts and virtual workpiece Ws come into contact in the simulation unit 14 and the machine coordinate Xr(j) where the tool T and workpiece W come into contact in the actual machining unit 12. In other words, the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
  • the simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
  • the simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
  • the simulation unit 14 calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison point specifying data for specifying a comparison point between the virtual load information and the actual load information.
  • the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
  • the numerical control device 110 acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data).
  • the simulation unit 14 compares the contact signal (actual load information) with the contact flag (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in Fig.
  • the numerical control device 110 determines that there is a difference between the actual load information and the virtual load information based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) when the machine coordinate Xr(j) (comparison point identification data) at which the contact signal (actual load information) is detected in the actual machining unit 12 is different from the machine coordinate Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14.
  • the load information determination unit 22 may extract and compare only the virtual load information and actual load information for a specific section in the comparison point identification data.
  • the simulation unit 14 changes (corrects) the preconditions of the simulation unit 14.
  • the preconditions of the simulation unit 14 are, for example, items described in the operation data, and include preconditions related to the virtual tool, virtual workpiece, and virtual moving parts.
  • the simulation unit 14 calculates the difference between the machine coordinate in the simulation unit 14 corresponding to the machine coordinate Xr(j) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate of the boundary of the virtual workpiece Ws, and reflects this difference in the preconditions of the simulation unit so as to change the setting value of the radius R of the virtual tool Ts.
  • the simulation unit 14 may calculate the difference between the machine coordinate Xr(j) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate Xs(i) at which a contact flag (virtual load information) is detected in the simulation unit 14, and use this difference as a correction amount for the virtual tool Ts, and reflect this difference in the preconditions of the simulation unit so as to change (correct) the setting value of the virtual tool Ts by this correction amount.
  • the simulation unit 14 may identify a process in the operation data where there is a difference in information based on the machine coordinate Xr(j) (comparison location identification data) where a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate Xs(i) (comparison location identification data) where the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14, and change (correct) the preconditions for the machining simulation.
  • the machining load judgment system 10 of this embodiment virtual load information of the machining simulation is acquired in association with the comparison location identification data, and actual load information of the actual machining is acquired in association with the comparison location identification data, so that these load information can be appropriately compared based on the comparison location identification data without performing a machining simulation in real time for the actual machining. Therefore, the machining simulation can be performed in advance before the actual machining, there is no need to shorten the processing time of the machining simulation to match the operating time of the actual machining, and the accuracy of the machining simulation is not limited, that is, the accuracy of the machining simulation can be improved. Therefore, the accuracy of detection of the difference between the machining simulation and actual machining can be improved, and malfunctions that could not be prevented in the past can be correctly detected.
  • Patent Document 1 when repeating the same operation with the same operating data, it is necessary to constantly perform the same simulation, which requires resources. In this regard, in this embodiment, it is not necessary to perform a machining simulation every time actual machining is performed, and resources can be reduced compared to the technology disclosed in Patent Document 1.
  • the processing load determination system (10) comprises: an actual machining unit (12) having a movable unit (134, 136) on which a tool (T) or a workpiece (W) is provided, and machining the workpiece (W) by relatively moving the tool (T) and the workpiece (W) based on operation data; a simulation unit (14) that performs a machining simulation of the virtual workpiece (Ws) by relatively moving the virtual tool (Ts) and the virtual workpiece (Ws) based on the operation data in a virtual space (VS) including a virtual tool (Ts), a virtual workpiece (Ws), and a virtual movable part (134s, 136s) corresponding to the tool (T), the workpiece (W), and the movable part (134, 136), respectively; a virtual load acquisition unit (18) that acquires virtual load information generated on the virtual moving parts (134s, 136s), the virtual load information being obtained by
  • the comparison point identification data for the actual load information includes at least one of position information or time information of the movable portion (134, 136),
  • the comparison point specifying data for the virtual load information includes at least one of position information, time information, and the operation data of the virtual moving parts (134s, 136s).
  • the actual load information includes energy generated in the movable parts (134, 136) when the workpiece (W) is machined
  • the virtual load information includes energy generated in the virtual moving parts (134s, 136s) when machining the virtual workpiece (Ws).
  • the actual load information is contact information indicating whether or not the tool (T) and the workpiece (W) are in contact with each other
  • the virtual load information is contact information indicating whether or not the virtual tool (Ts) and the virtual workpiece (Ws) are in contact with each other.
  • the load information determination unit (22) performs the determination in real time while the actual machining unit (12) is in operation.
  • the actual processing unit (12) performs at least one of limiting the output for operating the movable parts (134, 136), performing a preset retraction operation of the movable parts (134, 136), or immediately decelerating and stopping the operation of the movable parts (134, 136).
  • the simulation unit (14) performs the machining simulation based on the operation data including preconditions related to the virtual tool (Ts), the virtual workpiece (Ws), and the virtual moving part (134s, 136s);
  • the load information determination unit (22) determines that there is a difference between the virtual load information and the actual load information, a process in the operation data where there is a difference between these pieces of information is identified based on the comparison point identification data, and a prerequisite for the processing simulation is changed.
  • the actual load information is contact information indicating whether or not the tool (T) and the workpiece (W) are in contact with each other
  • the virtual load information is contact information indicating whether or not the virtual tool (Ts) and the virtual workpiece (Ws) are in contact with each other
  • the comparison point specifying data for the actual load information includes position information of the movable parts (134, 136)
  • the comparison point specifying data for the virtual load information includes position information of the virtual moving parts (134s, 136s)
  • the simulation unit (14) performs the machining simulation based on the operation data including preconditions related to the virtual tool (Ts), the virtual workpiece (Ws), and the virtual moving part (134s, 136s); when the load information determination unit (22) determines that there is a difference between the virtual load information and the actual load information, a difference is calculated between a machine coordinate at which the tool (t) and the workpiece (W) in the actual machining unit (12) come into contact with each other and a machine coordinate
  • the simulation unit (14) performs the machining simulation based on the operation data before the actual machining unit (12) operates, and calculates the comparison location data and the virtual load information.
  • the virtual load acquisition unit (18) writes at least one of the comparison point identification data and the virtual load information in the operation data.
  • the display unit (28) displays, in a different display mode according to the difference, comparison point identification data for which the load information determination unit (22) has determined that there is a difference between the virtual load information and the actual load information.
  • the load information determination unit (22) extracts and compares only the virtual load information and the actual load information for a specific section in the comparison point identification data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This invention provides a system which increases a detection precision of a difference between simulation and actual machining without limiting a precision of the simulation. This machining load determination system comprises: an actual machining unit which includes a movable unit provided with a tool or a workpiece; a simulation unit which has a virtual space including a virtual tool, a virtual workpiece, and a virtual movable unit; a virtual load acquisition unit which acquires information relating to a virtual load occurring to the virtual movable unit; an actual load acquisition unit which acquires information relating to an actual load occurring to the movable unit; and a load information determination unit which determines whether or not a difference exists between the virtual load information and the actual load information. The simulation unit calculates the virtual load information and comparison position specification data which specifies a position for comparing the virtual load information and the actual load information with each other. The virtual load acquisition unit acquires the virtual load information in association with the comparison position specification data. The actual load acquisition unit acquires the actual load information in association with the comparison position specification data. The load information determination unit compares the virtual load information and the actual load information with each other on the basis of the comparison position specification data.

Description

加工負荷判定システムMachining load judgment system
 本開示は、加工負荷判定システムに関する。 This disclosure relates to a processing load determination system.
 工具または被加工物が設けられた可動部を有し、工具と被加工物とを相対移動させることによって被加工物の加工を行う産業機械(例えば、工作機械、放電加工機など)がある。このような産業機械において、実際の加工を行う環境と同様の環境を3次元モデルで再現した仮想空間を用いて加工シミュレーションを行い、運転データ(例えば、加工プログラム)に問題がないか確認する技術がある。 There are industrial machines (e.g., machine tools, electric discharge machines, etc.) that have moving parts on which tools or workpieces are mounted, and process the workpieces by moving the tools and workpieces relative to one another. For such industrial machines, there is a technology that performs a processing simulation using a virtual space that reproduces an environment similar to the environment in which actual processing is performed using a 3D model, and checks for any problems with the operating data (e.g., the processing program).
 このような技術において、種々の要因により、シミュレーション用に定義された仮想空間の3次元モデルと実際の環境とに意図しない差異が生じる場合がある。種々の要因としては、例えば、実際の環境において加工中に被加工物が浮き上がってしまうこと、仮想空間の3次元モデルにおいて工具の摩耗補正の反映をし忘れてしまうことが挙げられる。この場合、シミュレーションによって得られた結果と実加工において得られた結果とに差異が生じてしまうことがある。 In this type of technology, various factors can cause unintended differences between the 3D model in the virtual space defined for the simulation and the actual environment. For example, the workpiece may float up during machining in the actual environment, or tool wear compensation may be forgotten to be reflected in the 3D model in the virtual space. In such cases, differences can occur between the results obtained by simulation and the results obtained in actual machining.
 この点に関し、特許文献1には、実機部とシミュレーション部とを並列に配置し、実機部とシミュレーション部とに同一の指令を入力し、実機部とシミュレーション部との内部状態量を比較し、内部状態量比較値と予め設定された検出しきい値と比較して、可動部が他の物体と接触・衝突することを検出する技術が開示されている。この技術により、シミュレーションによって得られた結果と実加工において得られた結果とに差異があるか否かを検出することができると考えられる。また、特許文献1には、シミュレーション部のモデルの演算式が簡単で処理時間が短いことが開示されている。 In this regard, Patent Document 1 discloses a technology in which an actual machine part and a simulation part are arranged in parallel, the same command is input to the actual machine part and the simulation part, the internal state quantities of the actual machine part and the simulation part are compared, and the internal state quantity comparison value is compared with a preset detection threshold value to detect contact or collision of the moving part with another object. It is believed that this technology makes it possible to detect whether there is a difference between the results obtained by simulation and the results obtained in actual machining. Patent Document 1 also discloses that the calculation formula of the model of the simulation part is simple, resulting in short processing time.
特開2004-364396号公報JP 2004-364396 A
 特許文献1に開示の技術では、シミュレーション部のシミュレーションを実機部の動作に合わせてリアルタイムに行う必要がある。仮想空間として3次元モデルを用いるシミュレーションの処理時間は、比較的に長い。そのため、特許文献1に開示の技術では、上述したように、シミュレーション部のモデルの演算式を簡単にして、実機部の動作時間に合わせて処理時間を短くしている。 In the technology disclosed in Patent Document 1, the simulation of the simulation unit needs to be performed in real time in accordance with the operation of the actual machine. The processing time for a simulation that uses a three-dimensional model as a virtual space is relatively long. Therefore, in the technology disclosed in Patent Document 1, as described above, the calculation formula of the model of the simulation unit is simplified to shorten the processing time in accordance with the operation time of the actual machine.
 このように、実際の加工に対してリアルタイムのシミュレーションでは、シミュレーションの精度が限定される。その結果、シミュレーションと実加工との差異を正しく検出できない場合がある。
 そこで、シミュレーションの精度を限定せず、シミュレーションと実加工との差異の検出精度を高めることが望まれている。
As described above, the accuracy of the simulation is limited in a real-time simulation of actual machining, and as a result, the difference between the simulation and the actual machining may not be detected correctly.
Therefore, it is desirable to improve the accuracy of detecting the difference between the simulation and the actual machining without limiting the accuracy of the simulation.
 本開示の加工負荷判定システムは、工具または被加工物が設けられた可動部を有し、運転データに基づいて前記工具と前記被加工物とを相対移動させることによって前記被加工物の加工を行う実加工部と、前記工具、前記被加工物および前記可動部にそれぞれ対応した仮想工具、仮想被加工物および仮想可動部を含む仮想空間において、前記運転データに基づいて前記仮想工具と前記仮想被加工物とを相対移動させることによって前記仮想被加工物の加工シミュレーションを行うシミュレーション部と、前記シミュレーション部による加工シミュレーションによって得られた、前記仮想可動部に生じる仮想負荷情報を取得する仮想負荷取得部と、前記実加工部による加工によって得られた、前記可動部に生じる実負荷情報を取得する実負荷取得部と、前記仮想負荷情報と前記実負荷情報とを比較し、これらの情報に差異があるか否かの判定を行う負荷情報判定部とを備える。前記シミュレーション部は、前記仮想負荷情報と、前記仮想負荷情報と前記実負荷情報との比較箇所を特定する比較箇所特定データとを計算し、前記仮想負荷取得部は、前記仮想負荷情報を前記比較箇所特定データと関連付けて取得し、前記実負荷取得部は、前記実負荷情報を前記比較箇所特定データと関連付けて取得し、前記負荷情報判定部は、前記比較箇所特定データに基づいて、前記仮想負荷情報と前記実負荷情報とを比較する。 The machining load judgment system disclosed herein comprises an actual machining unit having a movable part on which a tool or a workpiece is mounted, and which machines the workpiece by moving the tool and the workpiece relative to each other based on operation data; a simulation unit which performs a machining simulation of the virtual workpiece by moving the virtual tool and the virtual workpiece relative to each other based on the operation data in a virtual space including virtual tools, virtual workpieces, and virtual moving parts corresponding to the tool, the workpiece, and the moving part, respectively; a virtual load acquisition unit which acquires virtual load information occurring on the virtual moving part obtained by the machining simulation by the simulation unit; an actual load acquisition unit which acquires actual load information occurring on the moving part obtained by machining by the actual machining unit; and a load information judgment unit which compares the virtual load information with the actual load information and judges whether there is a difference between these pieces of information. The simulation unit calculates the virtual load information and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information, the virtual load acquisition unit acquires the virtual load information in association with the comparison point identification data, the actual load acquisition unit acquires the actual load information in association with the comparison point identification data, and the load information determination unit compares the virtual load information with the actual load information based on the comparison point identification data.
本実施形態に係る産業機械システムの概要を示す図である。1 is a diagram showing an overview of an industrial machinery system according to an embodiment of the present invention; 本実施形態に係る加工負荷判定システムの構成を示す図である。1 is a diagram showing a configuration of a processing load determination system according to an embodiment of the present invention; 仮想負荷情報と比較箇所特定データとの一例を示す図である。11A and 11B are diagrams illustrating an example of virtual load information and comparison portion identification data. 実負荷情報と比較箇所特定データとの一例を示す図である。11A and 11B are diagrams illustrating an example of actual load information and comparison location identification data. 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例1を示す図である(実加工部とシミュレーション部の差異がない場合)。11A and 11B are diagrams illustrating a first example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part); 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例1を示す図である(実加工部とシミュレーション部の差異がある場合:シミュレーション部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which contact is detected only in the simulation part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例1を示す図である(実加工部とシミュレーション部の差異がある場合:実加工部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which contact is detected only in the actual machining part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例1を示す図である(実加工部とシミュレーション部の差異がある場合:ワークの浮き上がりが発生するパターン)。11 is a diagram showing Example 1 of a machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between an actual machining part and a simulation part: a pattern in which a workpiece floats up); FIG. 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例2を示す図である(実加工部とシミュレーション部の差異がない場合)。13A and 13B are diagrams illustrating a second example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part); 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例2を示す図である(実加工部とシミュレーション部の差異がある場合:シミュレーション部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 2 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the simulation part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例2を示す図である(実加工部とシミュレーション部の差異がある場合:実加工部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 2 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the actual machining part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例3を示す図である(実加工部とシミュレーション部の差異がない場合)。13A and 13B are diagrams illustrating a third example of a machining load judgment process performed by the machining load judgment system according to the present embodiment (when there is no difference between an actual machining part and a simulation part); 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例3を示す図である(実加工部とシミュレーション部の差異がある場合:シミュレーション部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 3 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the simulation part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例3を示す図である(実加工部とシミュレーション部の差異がある場合:実加工部でのみ接触が検出されるパターン)。FIG. 11 is a diagram showing Example 3 of the machining load judgment process by the machining load judgment system according to the present embodiment (when there is a difference between the actual machining part and the simulation part: a pattern in which contact is detected only in the actual machining part). 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例4を示す図である。FIG. 11 is a diagram showing Example 4 of the processing load judgment process by the processing load judgment system according to the present embodiment. 本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例5を示す図である。FIG. 11 is a diagram showing Example 5 of the processing load judgment process by the processing load judgment system according to the present embodiment.
 以下、添付の図面を参照して本実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。 Below, an example of this embodiment will be described with reference to the attached drawings. Note that the same or equivalent parts in each drawing will be given the same reference numerals.
[産業機械システムの概要]
 まず、本実施形態に係る産業機械システムの概要について説明する。図1は、本実施形態に係る産業機械システムの概要を示す図である。図1に示すように、産業機械システム100は、数値制御装置110と、駆動部120と、工作機械(産業機械)130とを備える。
[Outline of Industrial Machinery System]
First, an overview of the industrial machinery system according to the present embodiment will be described. Fig. 1 is a diagram showing an overview of the industrial machinery system according to the present embodiment. As shown in Fig. 1, the industrial machinery system 100 includes a numerical control device 110, a drive unit 120, and a machine tool (industrial machinery) 130.
 工作機械130は、後述する実加工部であり、運転データに基づいて工具Tとワーク(被加工物)Wとを相対移動させることによってワークWの除去加工を行う。以下では、工作機械としてM系(マシニングセンタ系)の機械を例示するが、本実施形態はこれに限定されない。本実施形態は、T系(旋盤系)の工作機械にも適用可能である。また、以下では、産業機械として工作機械を例示するが、本実施形態はこれに限定されない。本実施形態は、工具TとワークWとが接触してワークWの加工を行う種々の産業機械、例えば放電加工機等にも適用可能である。 The machine tool 130 is the actual machining section described below, and performs removal machining of the workpiece W by moving the tool T and the workpiece W relative to one another based on the operating data. In the following, an M-series (machining center) machine is used as an example of the machine tool, but this embodiment is not limited to this. This embodiment is also applicable to a T-series (lathe) machine tool. In the following, a machine tool is used as an example of the industrial machine, but this embodiment is not limited to this. This embodiment is also applicable to various industrial machines, such as electric discharge machines, in which the tool T and the workpiece W come into contact with each other to machine the workpiece W.
 工作機械130は、モータ132と、工具の取付部134と、テーブル136とを備える。取付部134またはテーブル136は可動部であり、取付部134には工具Tが取り付けられ、テーブル136にはワークWが設けられる。 The machine tool 130 includes a motor 132, a tool mounting portion 134, and a table 136. The mounting portion 134 or the table 136 is a movable portion, and a tool T is attached to the mounting portion 134, and a workpiece W is provided on the table 136.
 モータ132は、取付部134またはテーブル136の可動部、すなわち工具TまたはワークW、の送り用のモータであり、例えばX軸移動、Y軸移動およびZ軸移動のための複数のモータを含んでいてもよい。モータ132は、駆動部120によって駆動される。 The motor 132 is a motor for feeding the movable part of the mounting part 134 or the table 136, i.e., the tool T or the workpiece W, and may include, for example, multiple motors for X-axis movement, Y-axis movement, and Z-axis movement. The motor 132 is driven by the drive part 120.
 数値制御装置110は、加工プログラムに基づいて、工作機械130におけるワークWに対する工具Tの相対的な移動経路に沿った位置指令を生成する。 The numerical control device 110 generates position commands along the relative movement path of the tool T with respect to the workpiece W in the machine tool 130 based on the machining program.
 駆動部120は、数値制御装置110からの位置指令に基づいて、工作機械130におけるモータ132を駆動する。駆動部120は、工作機械130のモータ(例えば、X軸用モータ、Y軸用モータ、Z軸用モータ)ごとに複数の駆動部を含んでいてもよい。駆動部120は、例えばサーボ制御部であり、位置指令と、モータ132に設けられたエンコーダによって検出された位置フィードバックとに基づいて、モータ132の駆動制御を行う。 The driving unit 120 drives the motor 132 in the machine tool 130 based on a position command from the numerical control device 110. The driving unit 120 may include multiple driving units for each motor of the machine tool 130 (e.g., an X-axis motor, a Y-axis motor, and a Z-axis motor). The driving unit 120 is, for example, a servo control unit, and performs drive control of the motor 132 based on the position command and position feedback detected by an encoder provided on the motor 132.
[加工負荷判定システム]
 図2は、本実施形態に係る加工負荷判定システムの構成を示す図である。図2に示すように、加工負荷判定システム10は、実加工部12と、シミュレーション部14と、実負荷取得部16と、仮想負荷取得部18と、記憶部20と、負荷情報判定部22と、動作制御部24と、補正部26と、表示部28とを備える。
[Processing load judgment system]
2 is a diagram showing the configuration of the machining load judgment system according to the present embodiment. As shown in Fig. 2, the machining load judgment system 10 includes an actual machining unit 12, a simulation unit 14, an actual load acquisition unit 16, a virtual load acquisition unit 18, a storage unit 20, a load information judgment unit 22, an operation control unit 24, a correction unit 26, and a display unit 28.
 実加工部12は、上述した工作機械130である。実加工部12は、上述したように、工具Tが設けられた取付部134またはワークWが設けられたテーブル136を可動部とし、運転データに基づいて工具TとワークWとを相対移動させることによって、ワークWの加工を行う。 The actual machining unit 12 is the machine tool 130 described above. As described above, the actual machining unit 12 uses the mounting unit 134 on which the tool T is mounted or the table 136 on which the workpiece W is mounted as a movable unit, and performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other based on the operating data.
 シミュレーション部14は、上述した数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。シミュレーション部14は、例えば後述する図4Aに示すように、実加工部12における工具T、ワークW、取付部(可動部)134およびテーブル(可動部)136をそれぞれ模擬した仮想工具Ts、仮想ワークWs、仮想取付部(仮想可動部)134sおよびテーブル(仮想可動部)136sを含む仮想空間VSを備える。シミュレーション部14は、仮想空間VSにおいて、運転データに基づいて仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。シミュレーション部14は、図3Aに示すように、仮想可動部134s、136sに生じる仮想負荷情報と、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとを計算する。仮想負荷情報および比較箇所特定データの詳細は後述する。 The simulation unit 14 may be provided in the above-mentioned numerical control device 110, or may be configured by a computer different from the numerical control device 110. The simulation unit 14 has a virtual space VS including a virtual tool Ts, a virtual workpiece Ws, a virtual mounting part (virtual movable part) 134s, and a table (virtual movable part) 136s, which respectively simulate the tool T, the workpiece W, the mounting part (movable part) 134, and the table (movable part) 136 in the actual machining part 12, as shown in FIG. 4A described later. The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by relatively moving the virtual tool Ts and the virtual workpiece Ws in the virtual space VS based on the operation data. As shown in FIG. 3A, the simulation unit 14 calculates virtual load information generated in the virtual movable parts 134s and 136s, and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information. The details of the virtual load information and the comparison point identification data will be described later.
 実負荷取得部16は、上述した駆動部(サーボ制御部)120に設けられる。実負荷取得部16は、図3Bに示すように、実加工部12による加工によって得られた、可動部134、136に生じる実負荷情報を取得する。具体的には、実負荷取得部16は、仮想負荷情報を比較箇所特定データと関連付けて取得する。実負荷情報および比較箇所特定データの詳細は後述する。 The actual load acquisition unit 16 is provided in the drive unit (servo control unit) 120 described above. As shown in FIG. 3B, the actual load acquisition unit 16 acquires actual load information generated in the movable parts 134, 136 obtained by processing by the actual processing unit 12. Specifically, the actual load acquisition unit 16 acquires virtual load information in association with comparison location identification data. Details of the actual load information and comparison location identification data will be described later.
 仮想負荷取得部18は、上述した数値制御装置110に設けられてもよいし、シミュレーション部14を構成するコンピュータに設けられてもよいし、数値制御装置110およびシミュレーション部14とは異なるコンピュータによって構成されてもよい。仮想負荷取得部18は、図3Aに示すように、シミュレーション部14による加工シミュレーションによって得られた、仮想可動部134s、136sに生じる仮想負荷情報を取得する。具体的には、仮想負荷取得部18は、仮想負荷情報を比較箇所特定データと関連付けて取得する。 The virtual load acquisition unit 18 may be provided in the numerical control device 110 described above, or may be provided in a computer constituting the simulation unit 14, or may be constituted by a computer different from the numerical control device 110 and the simulation unit 14. As shown in FIG. 3A, the virtual load acquisition unit 18 acquires virtual load information generated in the virtual moving parts 134s, 136s obtained by the machining simulation by the simulation unit 14. Specifically, the virtual load acquisition unit 18 acquires the virtual load information in association with the comparison location identification data.
 負荷情報判定部22は、上述した数値制御装置110に設けられてもよいし、駆動部(サーボ制御部)120に設けられてもよいし、数値制御装置110および駆動部120とは異なるコンピュータによって構成されてもよい。負荷情報判定部22は、比較箇所特定データに基づいて、仮想負荷情報と実負荷情報とを比較し、これらの情報に差異があるか否かの判定を行う。すなわち、負荷情報判定部22は、実加工部12における可動部134、136の負荷情報と、シミュレーション部14における仮想可動部134s、136sの負荷情報とに差分があるか否かを判定する。 The load information determination unit 22 may be provided in the above-mentioned numerical control device 110, or in the drive unit (servo control unit) 120, or may be configured by a computer different from the numerical control device 110 and the drive unit 120. The load information determination unit 22 compares the virtual load information with the actual load information based on the comparison point identification data, and determines whether or not there is a difference between these pieces of information. In other words, the load information determination unit 22 determines whether or not there is a difference between the load information of the movable parts 134, 136 in the actual machining unit 12 and the load information of the virtual movable parts 134s, 136s in the simulation unit 14.
 動作制御部24は、上述した駆動部(サーボ制御部)130に設けられる。動作制御部24は、負荷情報判定部22によって仮想負荷情報と実負荷情報とに差異があると判定された場合、実加工部12において、可動部134、136を動作させるための出力の制限(例えば、トルク制限)、予め加工プログラムに設定された可動部134、136の退避動作(リトラクト)、または可動部134、136の動作の即時の減速停止、の少なくともいずれかを行う。 The operation control unit 24 is provided in the drive unit (servo control unit) 130 described above. When the load information determination unit 22 determines that there is a difference between the virtual load information and the actual load information, the operation control unit 24 performs at least one of the following in the actual machining unit 12: limiting the output for operating the movable units 134, 136 (e.g., torque limiting), performing a retraction operation (retraction) of the movable units 134, 136 that is set in advance in the machining program, or immediately decelerating and stopping the operation of the movable units 134, 136.
 補正部26は、上述した数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。補正部26は、負荷情報判定部22によって仮想負荷情報と実負荷情報とに差異があると判定された場合、シミュレーション部14において、加工シミュレーションの前提条件、例えば運転データにおける仮想工具Ts、仮想ワークWsおよび仮想可動部134s、136sに関する前提条件、を変更(補正)する。 The correction unit 26 may be provided in the above-mentioned numerical control device 110, or may be configured by a computer different from the numerical control device 110. When the load information determination unit 22 determines that there is a difference between the virtual load information and the actual load information, the correction unit 26 changes (corrects) the preconditions for the machining simulation in the simulation unit 14, for example, the preconditions related to the virtual tool Ts, the virtual workpiece Ws, and the virtual movable parts 134s and 136s in the operation data.
 上述したシミュレーション部14と、実負荷取得部16と、仮想負荷取得部18と、負荷情報判定部22と、動作制御部24と、補正部26とは、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)等の演算プロセッサで構成される。シミュレーション部14と、実負荷取得部16と、仮想負荷取得部18と、負荷情報判定部22と、動作制御部24と、補正部26との各種機能は、例えば記憶部20に格納された所定のソフトウェア(プログラム)を実行することで実現される。シミュレーション部14と、実負荷取得部16と、仮想負荷取得部18と、負荷情報判定部22と、動作制御部24と、補正部26との各種機能は、ハードウェアとソフトウェアとの協働で実現されてもよいし、ハードウェア(電子回路)のみで実現されてもよい。 The above-mentioned simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 are configured with an arithmetic processor such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field-Programmable Gate Array). The various functions of the simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 are realized, for example, by executing a predetermined software (program) stored in the storage unit 20. The various functions of the simulation unit 14, actual load acquisition unit 16, virtual load acquisition unit 18, load information determination unit 22, operation control unit 24, and correction unit 26 may be realized by a combination of hardware and software, or may be realized only by hardware (electronic circuits).
 記憶部20は、例えば、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)等のメモリで構成される。記憶部20は、シミュレーション部14と、実負荷取得部16と、仮想負荷取得部18と、負荷情報判定部22と、動作制御部24と、補正部26との各種機能を実現する所定のソフトウェア(プログラム)を記憶する。また、記憶部20は、仮想負荷取得部18によって取得された、図3Aに示す仮想負荷情報および比較箇所特定データ、および、実負荷取得部16によって取得された、図3Bに示す実負荷情報および比較箇所特定データを記憶する。 The memory unit 20 is composed of memory such as a ROM (Read Only Memory), HDD (Hard Disk Drive), or SSD (Solid State Drive). The memory unit 20 stores predetermined software (programs) that realize the various functions of the simulation unit 14, the actual load acquisition unit 16, the virtual load acquisition unit 18, the load information determination unit 22, the operation control unit 24, and the correction unit 26. The memory unit 20 also stores the virtual load information and comparison point identification data shown in FIG. 3A acquired by the virtual load acquisition unit 18, and the actual load information and comparison point identification data shown in FIG. 3B acquired by the actual load acquisition unit 16.
 表示部28は、例えば、液晶ディスプレイまたは有機ELディスプレイで構成される。表示部28は、負荷情報判定部22によって仮想負荷情報と実負荷情報とに差異があると判定された比較箇所特定データを、差異に応じた異なる表示態様で表示する。例えば、表示部28は、プログラム(運転データ)において、仮想負荷情報と実負荷情報とに差異があると判定された比較箇所特定データに対応するブロックを、差異がないブロックとは異なる表示態様(例えば、色、点滅など)で強調して表示する。 The display unit 28 is configured, for example, with a liquid crystal display or an organic EL display. The display unit 28 displays the comparison point identification data for which the load information determination unit 22 has determined that there is a difference between the virtual load information and the actual load information in a different display mode according to the difference. For example, the display unit 28 highlights and displays in a different display mode (for example, color, blinking, etc.) in the program (operation data) the blocks corresponding to the comparison point identification data for which it has been determined that there is a difference between the virtual load information and the actual load information, from blocks with no difference.
 次に、図4A~図8を参照して、上述した加工負荷判定システム10による加工負荷判定処理のいくつかの例について説明する。図4A~図4Dは、本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例1を示す図であり、図5A~図5Cは、本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例2を示す図であり、図6A~図6Cは、本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例3を示す図である。図7は、本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例4を示す図であり、図8は、本実施形態に係る加工負荷判定システムによる加工負荷判定処理の実施例5を示す図である。 Next, several examples of processing load judgment processing by the above-mentioned processing load judgment system 10 will be described with reference to Figs. 4A to 8. Figs. 4A to 4D are diagrams showing Example 1 of processing load judgment processing by the processing load judgment system according to this embodiment, Figs. 5A to 5C are diagrams showing Example 2 of processing load judgment processing by the processing load judgment system according to this embodiment, and Figs. 6A to 6C are diagrams showing Example 3 of processing load judgment processing by the processing load judgment system according to this embodiment. Fig. 7 is a diagram showing Example 4 of processing load judgment processing by the processing load judgment system according to this embodiment, and Fig. 8 is a diagram showing Example 5 of processing load judgment processing by the processing load judgment system according to this embodiment.
[実施例1]
 実施例1では、比較箇所特定データとして、プログラム運転の経過時間(時間情報)を用いる。図4Aは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がない場合について示す図であり、図4Bは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(シミュレーション部でのみ接触が検出されるパターン)について示す図である。図4Cは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(実加工部でのみ接触が検出されるパターン)について示す図であり、図4Dは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(ワークの浮き上がりが発生するパターン)について示す図である。
[Example 1]
In the first embodiment, the elapsed time (time information) of the program operation is used as the comparison point identification data. Fig. 4A is a diagram showing a case where there is no difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part, and Fig. 4B is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part). Fig. 4C is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the real machining part), and Fig. 4D is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where the workpiece floats up).
(実加工部とシミュレーション部の差異がない場合)
<1-1>
 図4Aに示すように、例えば数値制御装置110は、加工プログラムを解析し、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成し、シミュレーション部14に出力する。また、例えば数値制御装置110は、加工プログラムを解析し、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成し、駆動部120に出力する。ここで、i、jは、1からnまでの任意の整数である。nは、1以上の整数である。Xs(i)、Xr(j)はq次元配列であり、仮想可動部の第p軸の機械座標はXsp(i)で表せ、可動部の第p軸の機械座標はXrp(j)で表せる。qは1以上の整数であり、機械の軸数を示す。pは1からqまでの任意の整数である。
(When there is no difference between the actual machining part and the simulation part)
<1-1>
As shown in FIG. 4A, for example, the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14. Also, for example, the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120. Here, i and j are any integers from 1 to n. n is an integer of 1 or more. Xs(i) and Xr(j) are q-dimensional arrays, and the mechanical coordinate of the p-th axis of the virtual moving part can be expressed as Xsp(i), and the mechanical coordinate of the p-th axis of the moving part can be expressed as Xrp(j). q is an integer of 1 or more and indicates the number of axes of the machine. p is an arbitrary integer from 1 to q.
 なお、本実施形態では、数値制御装置110が、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成する形態を例示した。しかし、本実施形態はこれに限定されず、シミュレーション部14を構成するコンピュータまたはその他のコンピュータが、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成してもよい。 In this embodiment, the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data). However, this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
<1-2>
 シミュレーション部14は、数値制御装置110から出力された機械座標Xs(0)~Xs(n)(運転データ)に基づいて、仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。
<1-2>
The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
 シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)において、仮想可動部134s、136sに生じる仮想負荷情報として、仮想工具Tsと仮想ワークWsとが接触しているか否かを示す接触情報を計算する。例えば、シミュレーション部14は、仮想工具Tsが仮想ワークWsの外部にある場合には接触フラグを0にし、仮想工具Tsが仮想ワークWsの外部から内部に移動する場合には接触フラグを1にする。 The simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
 また、シミュレーション部14は、ある時刻Ts(i)を、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとして計算する。具体的には、比較箇所特定データは、仮想負荷情報と実負荷情報との時系列または加工位置の対応づけを行うデータである。より具体的には、比較箇所特定データは、シミュレーション部14において仮想工具Tsと仮想ワークWsとが接触する時刻Ts(i)と、実加工部12において工具TとワークWとが接触する時刻Tr(j)とを1対1で対応させるデータある。すなわち、比較箇所特定データは、仮想負荷情報と実負荷情報との比較箇所として、時刻Ts(i)と時刻Tr(j)とを特定するデータである。これにより、負荷情報判定部22は、比較箇所特定データに基づいて、時刻Ts(i)の仮想負荷情報と時刻Tr(j)の実負荷情報とを適切に比較することができる。
なお、上述したように、シミュレーション部14は、数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。
The simulation unit 14 also calculates a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information. Specifically, the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the time Ts(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact with each other in the simulation unit 14 with the time Tr(j) at which the tool T and the workpiece W come into contact with each other in the actual machining unit 12 in a one-to-one manner. That is, the comparison location identification data is data that identifies the time Ts(i) and the time Tr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the time Ts(i) with the actual load information at the time Tr(j) based on the comparison location identification data.
As described above, the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
 数値制御装置110(仮想負荷取得部18)は、図4Aに示すように、接触フラグ0/1(仮想負荷情報)を、時刻Ts(i)(比較箇所特定データ)と関連付けて取得する。 The numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the time Ts(i) (comparison point identification data) as shown in FIG. 4A.
 シミュレーション部14は、実加工部12が運転データに基づいて運転する前に上述の加工シミュレーションを行い、仮想負荷情報と比較箇所データとを予め計算しておく。また、仮想負荷取得部18は、実加工部12が運転データに基づいて運転する前に、仮想負荷情報を比較箇所特定データと関連付けて予め取得しておき、記憶部20に一時的に記憶させてもよい。 The simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance. In addition, the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
<1-3>
 駆動部120は、数値制御装置110から出力された機械座標Xr(0)~Xr(n)(運転データ)に基づいて、実加工部12のモータ132および可動部134、136を駆動する。これにより、実加工部12は、工具TとワークWとを相対移動させることによって、ワークWの加工を行う。
<1-3>
The driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110. As a result, the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
 駆動部120(実負荷取得部16)は、ある時刻Tr(j)のある機械座標Xr(j)において、可動部134、136に生じる負荷情報として、工具TとワークWとが接触しているか否かを示す接触情報を取得する。例えば、駆動部120(実負荷取得部16)は、モータ132の出力(指令またはフィードバック情報)を監視し、モータ132の出力がある閾値を超えた場合に工具TとワークWが接触したと判定し、接触信号を数値制御装置110に出力する。 The driving unit 120 (actual load acquisition unit 16) acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
 駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、時刻Tr(j)(比較箇所特定データ)と関連付けて取得する。 The drive unit 120 (actual load acquisition unit 16) acquires the contact signal (actual load information) in association with the time Tr(j) (comparison point identification data).
<1-4>
 数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図4Aでは、数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、時刻Ts(i-1)からTs(i)の間に接触信号(実負荷情報)を取得し、このときの接触フラグ(仮想負荷情報)が1であるので、これらの情報に差異がないと判定する。
<1-4>
The numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in Fig. 4A, the numerical control device 110 (load information determination unit 22) acquires a contact signal (actual load information) between times Ts(i-1) and Ts(i) based on the times Tr(j) and Ts(i) (comparison point identification data), and since the contact flag (virtual load information) at this time is 1, it determines that there is no difference between these pieces of information.
 負荷情報判定部22は、シミュレーション部14によって予め得られた仮想負荷情報と、実加工部12によってリアルタイムに得られている実負荷情報とに基づいて、実加工部12の動作中にリアルタイムに上述の判定を行う。
 負荷情報判定部22は、比較箇所特定データにおけるある特定の区間の仮想負荷情報と実負荷情報のみを抽出して比較してもよい。
The load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
The load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
 実負荷情報と仮想負荷情報とに差異がない場合、数値制御装置110(動作制御部24)は、動作制限を行わない。 If there is no difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
 なお、上述したように、負荷情報判定部22は、数値制御装置110に設けられてもよいし、駆動部120(サーボ制御部、アンプ)に設けられてもよいし、数値制御装置110および駆動部120とは異なるコンピュータによって構成されてもよい。 As mentioned above, the load information determination unit 22 may be provided in the numerical control device 110, or in the drive unit 120 (servo control unit, amplifier), or may be configured by a computer separate from the numerical control device 110 and the drive unit 120.
 負荷情報判定部22が駆動部120(サーボ制御部、アンプ)に設けられる場合、負荷情報判定部22は、実加工部12において接触信号が検知された時刻Tr(j)を駆動部120側で算出し、この時刻Tr(j)と、シミュレーション部14において接触フラグが0から1となる時刻Ts(i-1)、Ts(i)とが以下の等式を満たす場合に、実負荷情報と仮想負荷情報とに差異がないと判定してもよい。
Ts(i-1)≦Tr(j)≦Ts(i)
When the load information determination unit 22 is provided in the drive unit 120 (servo control unit, amplifier), the load information determination unit 22 calculates the time Tr(j) at which a contact signal is detected in the actual machining unit 12 on the drive unit 120 side, and may determine that there is no difference between the actual load information and the virtual load information if this time Tr(j) and the times Ts(i-1), Ts(i) at which the contact flag changes from 0 to 1 in the simulation unit 14 satisfy the following equation:
Ts(i-1)≦Tr(j)≦Ts(i)
 通常、シミュレーション周期よりも実加工部における可動部の位置の取得周期の方が短いため、実加工部12において接触信号が検知された時刻Tr(j)の誤差(遅れ時間)を無視することができる。しかし、シミュレーション部14の誤差よりも実加工部の誤差(遅れ時間)の方が小さい場合、負荷情報判定部22は、実加工部12における時刻Tr(j-1)からTr(j)の間に、シミュレーション部14において接触フラグが1となる時刻Ts(i)が存在する場合に、実負荷情報と仮想負荷情報とに差異がないと判定してもよい。 Normally, the period for acquiring the position of the movable part in the actual machining unit is shorter than the simulation period, so the error (delay time) of the time Tr(j) at which the contact signal is detected in the actual machining unit 12 can be ignored. However, if the error (delay time) of the actual machining unit is smaller than the error of the simulation unit 14, the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information if there is a time Ts(i) at which the contact flag becomes 1 in the simulation unit 14 between times Tr(j-1) and Tr(j) in the actual machining unit 12.
 また、負荷情報判定部22は、上述した接触時刻による判定に加え、更に以下のように接触位置による判定にも基づいて、実負荷情報と仮想負荷情報とに差異がないと判定してもよい。例えば、負荷情報判定部22は、更に、実加工部12において接触信号が検知された機械座標Xr(j)と、シミュレーション部14において接触フラグが0から1となる機械座標Xs(i-1)、Xs(i)とがi-1からiの間に動作中の全ての軸pにおいて以下の等式を満たす場合に、実負荷情報と仮想負荷情報とに差異がないと判定してもよい。
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
これにより、ミスが重なった結果たまたま接触時間(衝突時間)が一致したというケースを除くことができる。
Furthermore, the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information based on a determination based on the contact position as described below, in addition to the determination based on the contact time described above. For example, the load information determination unit 22 may further determine that there is no difference between the actual load information and the virtual load information when the machine coordinate Xr(j) at which a contact signal is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) at which the contact flag changes from 0 to 1 in the simulation unit 14 satisfy the following equation for all axes p in operation between i-1 and i:
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
This makes it possible to eliminate cases where multiple mistakes result in the same contact time (collision time).
(実加工部とシミュレーション部の差異がある場合)(シミュレーション部でのみ接触が検出されるパターン)
<1-1>
 図4Bに示すように、例えば数値制御装置110は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。また、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the simulation part)
<1-1>
4B, for example, the numerical controller 110, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14. Also, for example, the numerical controller 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
<1-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図4Bに示すように、接触フラグ0/1(仮想負荷情報)を、時刻Ts(i)(比較箇所特定データ)と関連付けて取得する。
<1-2>
As described above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the time Ts(i) (comparison point identification data), as shown in FIG. 4B.
<1-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、時刻Tr(j)(比較箇所特定データ)と関連付けて取得する。例えば図4Bでは、工具の破損または取り付け間違い等により、工具TとワークWとが接触せず、駆動部120(実負荷取得部16)は、接触信号を取得せず、接触信号を数値制御装置110に出力しない。
<1-3>
Similarly to the above, the driving unit 120 and the actual machining unit 12 machine the workpiece W, and the driving unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with time Tr(j) (comparison point identification data). For example, in FIG. 4B, the tool T and the workpiece W do not come into contact with each other due to damage to the tool or incorrect installation, and the driving unit 120 (actual load acquisition unit 16) does not acquire a contact signal and does not output the contact signal to the numerical control device 110.
<1-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図4Bでは、数値制御装置110(負荷情報判定部22)は、時刻Ts(i-1)からTs(i)の間に接触信号(実負荷情報)を取得せず、このときの接触フラグ(仮想負荷情報)が1であるので、これらの情報に差異があると判定する。
<1-4>
As described above, the numerical controller 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4B, the numerical controller 110 (load information determination unit 22) does not acquire a contact signal (actual load information) between times Ts(i-1) and Ts(i), and the contact flag (virtual load information) at this time is 1, so it determines that there is a difference between these pieces of information.
 実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。数値制御装置110(動作制御部24)は、モータの出力を即時停止させてもよいし、予め定められた緊急停止動作を行ってもよい。すなわち、数値制御装置110(動作制御部24)は、実加工部12において、可動部134、136を動作させるための出力の制限、予め設定された可動部134、136の退避動作、または可動部134、136の動作の即時の減速停止を行う。 If there is a difference between the actual load information and the virtual load information, the numerical control device 110 (motion control unit 24) decelerates and stops the machine tool 130. The numerical control device 110 (motion control unit 24) may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) limits the output to operate the movable parts 134, 136 in the actual machining unit 12, performs a preset retraction operation of the movable parts 134, 136, or immediately decelerates and stops the operation of the movable parts 134, 136.
 このとき、工作機械のオペレータは、加工シミュレーションにおいて接触(干渉)が検出された機械座標に対応する、実加工において接触(干渉)が検出されなかった機械座標と、実加工において接触(干渉)が検出された機械座標とを見比べることにより、工具Tの付け違いまたは破損等を認知できる。 At this time, the machine tool operator can recognize whether the tool T has been attached incorrectly or is damaged by comparing the machine coordinates where contact (interference) was detected in the machining simulation with the machine coordinates where contact (interference) was not detected in the actual machining, which correspond to the machine coordinates where contact (interference) was detected in the actual machining.
(実加工部とシミュレーション部の差異がある場合)(実加工部でのみ接触が検出されるパターン)
<1-1>
 図4Cに示すように、例えば数値制御装置110は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。また、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the actual machining part)
<1-1>
4C, for example, the numerical controller 110, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14. Also, for example, the numerical controller 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
<1-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図4Aに示すように、接触フラグ0/1(仮想負荷情報)を、時刻Ts(i)(比較箇所特定データ)と関連付けて取得する。例えば図4Cでは、ある時刻Ts(i)のある機械座標Xs(i)において、仮想工具Tsが仮想ワークWsの外部から内部に移動せず、シミュレーション部14は、接触フラグを0にする。
<1-2>
As described above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with a time Ts(i) (comparison point identification data) as shown in Fig. 4A. For example, in Fig. 4C, at a certain machine coordinate Xs(i) at a certain time Ts(i), the virtual tool Ts does not move from the outside to the inside of the virtual workpiece Ws, and the simulation unit 14 sets the contact flag to 0.
<1-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、時刻Tr(j)(比較箇所特定データ)と関連付けて取得する。
<1-3>
As described above, the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with time Tr(j) (comparison point identification data).
<1-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図4Bでは、数値制御装置110(負荷情報判定部22)は、時刻Ts(i-1)からTs(i)の間において、接触フラグ(仮想負荷情報)が設定されていないにもかかわらず、接触信号(実負荷情報)を取得したことを検知し、これらの情報に差異があると判定する。
<1-4>
As described above, the numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4B, the numerical control device 110 (load information determination unit 22) detects that a contact signal (actual load information) has been acquired between times Ts(i-1) and Ts(i) even though the contact flag (virtual load information) has not been set, and determines that there is a difference between these pieces of information.
 上述同様に、実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。 As described above, if there is a difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
(実加工部とシミュレーション部の差異がある場合)(ワークの浮き上がりが発生するパターン)
<1-1>
 図4Cに示すように、例えば数値制御装置110は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。また、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining area and the simulation area) (Pattern in which the workpiece floats up)
<1-1>
4C, for example, the numerical controller 110, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14. Also, for example, the numerical controller 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
<1-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図4Aに示すように、接触フラグ0/1(仮想負荷情報)を、時刻Ts(i)(比較箇所特定データ)と関連付けて取得する。例えば図4Dでは、ある時刻Ts(i)のある機械座標Xs(i)において、仮想工具Tsが仮想ワークWsの外部から内部に移動せず、シミュレーション部14は、接触フラグを0にする。
<1-2>
Similarly to the above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with a time Ts(i) (comparison point identification data) as shown in Fig. 4A. For example, in Fig. 4D, at a certain machine coordinate Xs(i) at a certain time Ts(i), the virtual tool Ts does not move from the outside to the inside of the virtual workpiece Ws, and the simulation unit 14 sets the contact flag to 0.
<1-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、時刻Tr(j)(比較箇所特定データ)と関連付けて取得する。例えば図4Dでは、切りくず等によってワークWがテーブル136から浮き上がる場合、或いは可動部134、136または工具Tが浮き上がる場合、シミュレーションよりも早く工具TとワークWとが接触し、駆動部120(実負荷取得部16)は、シミュレーションよりも早く、接触信号を数値制御装置110に出力する。或いは、シミュレーションよりも遅く工具TとワークWとが接触し、駆動部120(実負荷取得部16)は、シミュレーションよりも遅く、接触信号を数値制御装置110に出力する。
<1-3>
Similarly to the above, the driving unit 120 and the actual machining unit 12 machine the workpiece W, and the driving unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the time Tr(j) (comparison point identification data). For example, in FIG. 4D, when the workpiece W is lifted from the table 136 by chips or the like, or when the movable units 134, 136 or the tool T is lifted, the tool T and the workpiece W come into contact with each other earlier than in the simulation, and the driving unit 120 (actual load acquisition unit 16) outputs a contact signal to the numerical control device 110 earlier than in the simulation. Alternatively, the tool T and the workpiece W come into contact with each other later than in the simulation, and the driving unit 120 (actual load acquisition unit 16) outputs a contact signal to the numerical control device 110 later than in the simulation.
<1-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図4Dでは、シミュレーションよりも早く工具TとワークWとが接触する場合、数値制御装置110(負荷情報判定部22)は、時刻Ts(i-1)からTs(i)の間において、接触フラグ(仮想負荷情報)が設定されていないにもかかわらず、接触信号(実負荷情報)を取得したことを検知し、これらの情報に差異があると判定する。或いは、シミュレーションよりも遅く工具TとワークWとが接触する場合、数値制御装置110(負荷情報判定部22)は、時刻Ts(i-1)からTs(i)の間に接触信号(実負荷情報)を取得せず、このときの接触フラグ(仮想負荷情報)が1であるので、これらの情報に差異があると判定する。
<1-4>
Similarly to the above, the numerical controller 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the time Tr(j) and Ts(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in FIG. 4D, when the tool T and the workpiece W come into contact with each other earlier than the simulation, the numerical controller 110 (load information determination unit 22) detects that the contact signal (actual load information) has been acquired even though the contact flag (virtual load information) has not been set between the time Ts(i-1) and Ts(i), and determines that there is a difference between these pieces of information. Alternatively, when the tool T and the workpiece W come into contact with each other later than the simulation, the numerical controller 110 (load information determination unit 22) does not acquire the contact signal (actual load information) between the time Ts(i-1) and Ts(i), and the contact flag (virtual load information) at this time is 1, so that it determines that there is a difference between these pieces of information.
 上述同様に、実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。 As described above, if there is a difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
[実施例2]
 実施例2では、比較箇所特定データとして、機械座標(可動部の位置情報)を用いる。これにより、工作機械の外部要因により、シミュレーションと実加工との時間(遅れ)の差が顕著な場合であっても、実負荷情報と仮想負荷情報とに差異があるか否かの判定を正確に行うことができる。図5Aは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がない場合について示す図であり、図5Bは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(シミュレーション部でのみ接触が検出されるパターン)について示す図である。図5Cは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(実加工部でのみ接触が検出されるパターン)について示す図である。
[Example 2]
In the second embodiment, machine coordinates (position information of the moving part) are used as the comparison location identification data. This makes it possible to accurately determine whether there is a difference between the actual load information and the virtual load information even when the difference in time (delay) between the simulation and the actual machining is significant due to factors external to the machine tool. FIG. 5A is a diagram showing a case where there is no difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part, and FIG. 5B is a diagram showing a case where there is a difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part). FIG. 5C is a diagram showing a case where there is a difference between the actual load information of the moving part in the actual machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the actual machining part).
(実加工部とシミュレーション部の差異がない場合)
<2-1>
 図5Aに示すように、例えば数値制御装置110は、加工プログラムを解析し、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成し、シミュレーション部14に出力する。また、例えば数値制御装置110は、加工プログラムを解析し、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成し、駆動部120に出力する。ここで、i、jは、1からnまでの任意の整数である。nは、1以上の整数である。
(When there is no difference between the actual machining part and the simulation part)
<2-1>
As shown in FIG. 5A, for example, the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14. Also, for example, the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120. Here, i and j are any integers from 1 to n. n is an integer of 1 or more.
 なお、本実施形態では、数値制御装置110が、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成する形態を例示した。しかし、本実施形態はこれに限定されず、シミュレーション部14を構成するコンピュータまたはその他のコンピュータが、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成してもよい。 In this embodiment, the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data). However, this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
<2-2>
 シミュレーション部14は、数値制御装置110から出力された機械座標Xs(0)~Xs(n)(運転データ)に基づいて、仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。
<2-2>
The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
 シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)において、仮想可動部134s、136sに生じる仮想負荷情報として、仮想工具Tsと仮想ワークWsとが接触しているか否かを示す接触情報を計算する。例えば、シミュレーション部14は、仮想工具Tsが仮想ワークWsの外部にある場合には接触フラグを0にし、仮想工具Tsが仮想ワークWsの外部から内部に移動する場合には接触フラグを1にする。 The simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
 また、シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)を、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとして計算する。具体的には、比較箇所特定データは、仮想負荷情報と実負荷情報との時系列または加工位置の対応づけを行うデータである。より具体的には、比較箇所特定データは、シミュレーション部14において仮想工具Tsと仮想ワークWsとが接触する機械座標Xs(i)と、実加工部12において工具TとワークWとが接触する機械座標Xr(j)とを1対1で対応させるデータある。すなわち、比較箇所特定データは、仮想負荷情報と実負荷情報との比較箇所として、機械座標Xs(i)と機械座標Xr(j)とを特定するデータである。これにより、負荷情報判定部22は、比較箇所特定データに基づいて、機械座標Xs(i)の仮想負荷情報と機械座標Xr(j)の実負荷情報とを適切に比較することができる。
なお、上述したように、シミュレーション部14は、数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。
The simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information. Specifically, the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the machine coordinate Xs(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact in the simulation unit 14 with the machine coordinate Xr(j) at which the tool T and the workpiece W come into contact in the actual machining unit 12 in a one-to-one manner. That is, the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as a comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
As described above, the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
 数値制御装置110(仮想負荷取得部18)は、図5Aに示すように、接触フラグ0/1(仮想負荷情報)を、機械座標Xs(i)(比較箇所特定データ)と関連付けて取得する。 The numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data), as shown in FIG. 5A.
 シミュレーション部14は、実加工部12が運転データに基づいて運転する前に上述の加工シミュレーションを行い、仮想負荷情報と比較箇所データとを予め計算しておく。また、仮想負荷取得部18は、実加工部12が運転データに基づいて運転する前に、仮想負荷情報を比較箇所特定データと関連付けて予め取得しておき、記憶部20に一時的に記憶させてもよい。 The simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance. In addition, the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
<2-3>
 駆動部120は、数値制御装置110から出力された機械座標Xr(0)~Xr(n)(運転データ)に基づいて、実加工部12のモータ132および可動部134、136を駆動する。これにより、実加工部12は、工具TとワークWとを相対移動させることによって、ワークWの加工を行う。
<2-3>
The driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110. As a result, the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
 駆動部120(実負荷取得部16)は、ある時刻Tr(j)のある機械座標Xr(j)において、可動部134、136に生じる負荷情報として、工具TとワークWとが接触しているか否かを示す接触情報を取得する。例えば、駆動部120(実負荷取得部16)は、モータ132の出力(指令またはフィードバック情報)を監視し、モータ132の出力がある閾値を超えた場合に工具TとワークWが接触したと判定し、接触信号を数値制御装置110に出力する。 The driving unit 120 (actual load acquisition unit 16) acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
 駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。 The drive unit 120 (actual load acquisition unit 16) acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
<2-4>
 数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図5Aでは、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)と、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(i-1)、Xs(i)(比較箇所特定データ)とがi-1からiの間に動作する全ての軸pにおいて以下の不等式を満たすので、実負荷情報と仮想負荷情報とに差異がないと判定する。
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
<2-4>
The numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in FIG. 5A, the numerical control device 110 (load information determination unit 22) determines that there is no difference between the actual load information and the virtual load information based on the machine coordinates Xr(j), Xs(i) (comparison point identification data), since the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 satisfy the following inequality for all axes p operating between i-1 and i.
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
 なお、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(i)(比較箇所特定データ)が複数ある場合、接触した順番に上記判定を行ってもよい。 In addition, if there are multiple machine coordinates Xr(j) (comparison location identification data) where a contact signal (actual load information) is detected in the actual machining unit 12, and multiple machine coordinates Xs(i) (comparison location identification data) where the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14, the above judgment may be performed in the order of contact.
 負荷情報判定部22は、シミュレーション部14によって予め得られた仮想負荷情報と、実加工部12によってリアルタイムに得られている実負荷情報とに基づいて、実加工部12の動作中にリアルタイムに上述の判定を行う。
 負荷情報判定部22は、比較箇所特定データにおけるある特定の区間の仮想負荷情報と実負荷情報のみを抽出して比較してもよい。
The load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
The load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
 実負荷情報と仮想負荷情報とに差異がない場合、数値制御装置110(動作制御部24)は、動作制限を行わない。 If there is no difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
 なお、上述したように、負荷情報判定部22は、数値制御装置110に設けられてもよいし、駆動部120(サーボ制御部、アンプ)に設けられてもよいし、数値制御装置110および駆動部120とは異なるコンピュータによって構成されてもよい。 As mentioned above, the load information determination unit 22 may be provided in the numerical control device 110, or in the drive unit 120 (servo control unit, amplifier), or may be configured by a computer separate from the numerical control device 110 and the drive unit 120.
(実加工部とシミュレーション部の差異がある場合)(シミュレーション部でのみ接触が検出されるパターン)
<2-1>
 図5Bに示すように、例えば数値制御装置110は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。また、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the simulation part)
<2-1>
5B, for example, the numerical control device 110, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14. Also, for example, the numerical control device 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
<2-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図5Bに示すように、接触フラグ0/1(仮想負荷情報)を、機械座標Xs(i)(比較箇所特定データ)と関連付けて取得する。
<2-2>
As described above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data), as shown in FIG. 5B.
<2-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。例えば図5Bでは、工具の破損または取り付け間違い等により、工具TとワークWとが接触せず、駆動部120(実負荷取得部16)は、接触信号を取得せず、接触信号を数値制御装置110に出力しない。
<2-3>
Similarly to the above, the driving unit 120 and the actual machining unit 12 machine the workpiece W, and the driving unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data). For example, in Fig. 5B, the tool T and the workpiece W do not come into contact with each other due to damage to the tool or incorrect installation, and the driving unit 120 (actual load acquisition unit 16) does not acquire a contact signal and does not output the contact signal to the numerical control device 110.
 なお、ある程度加工が進んだ後に、別の箇所で接触が検知された場合、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)と機械座標Xr(k)(比較箇所特定データ)とを数値制御装置110に出力してもよい。 If contact is detected at another location after machining has progressed to a certain extent, the drive unit 120 (actual load acquisition unit 16) may output a contact signal (actual load information) and machine coordinates Xr(k) (comparison location identification data) to the numerical control device 110.
<2-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図5Bでは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)を取得せず、一方、シミュレーション部14において接触フラグ(仮想負荷情報)1があるので、これらの情報に差異があると判定する。或いは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(k)(比較箇所特定データ)と、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(i-1)、Xs(i)(比較箇所特定データ)とがi-1からiの間に動作する全ての軸pにおいて以下の不等式を満たさないので、実負荷情報と仮想負荷情報とに差異があると判定する。
|Xrp(k)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
<2-4>
As described above, the numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig. 5B, the numerical control device 110 (load information determination unit 22) does not acquire a contact signal (actual load information) in the actual machining unit 12, while the simulation unit 14 has a contact flag (virtual load information) of 1, and therefore determines that there is a difference between these pieces of information. Alternatively, the numerical control device 110 (load information determination unit 22) determines that there is a difference between the actual load information and the virtual load information because the machine coordinate Xr(k) (comparison point identification data) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(i-1), Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 do not satisfy the following inequality for all axes p operating between i-1 and i:
|Xrp(k)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
 実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。数値制御装置110(動作制御部24)は、モータの出力を即時停止させてもよいし、予め定められた緊急停止動作を行ってもよい。すなわち、数値制御装置110(動作制御部24)は、実加工部12において、可動部134、136を動作させるための出力の制限、予め設定された可動部134、136の退避動作、または可動部134、136の動作の即時の減速停止を行う。 If there is a difference between the actual load information and the virtual load information, the numerical control device 110 (motion control unit 24) decelerates and stops the machine tool 130. The numerical control device 110 (motion control unit 24) may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) performs output restriction for operating the movable parts 134, 136 in the actual machining unit 12, a preset retraction operation of the movable parts 134, 136, or an immediate deceleration and stop of the operation of the movable parts 134, 136.
 このとき、工作機械のオペレータは、加工シミュレーションにおいて接触(干渉)が検出された機械座標に対応する、実加工において接触(干渉)が検出されなかった機械座標と、実加工において接触(干渉)が検出された機械座標とを見比べることにより、工具Tの付け違いまたは破損等を認知できる。 At this time, the machine tool operator can recognize whether the tool T has been attached incorrectly or is damaged by comparing the machine coordinates where contact (interference) was detected in the machining simulation with the machine coordinates where contact (interference) was not detected in the actual machining, which correspond to the machine coordinates where contact (interference) was detected in the actual machining.
(実加工部とシミュレーション部の差異がある場合)(実加工部でのみ接触が検出されるパターン)
<2-1>
 図5Cに示すように、例えば数値制御装置110は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。また、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the actual machining part)
<2-1>
5C, for example, the numerical controller 110, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14. Also, for example, the numerical controller 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12.
<2-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図5Bに示すように、接触フラグ0/1(仮想負荷情報)を、機械座標Xs(i)(比較箇所特定データ)と関連付けて取得する。図5Cでは、ある時刻Ts(i)のある機械座標Xs(i)において、仮想工具Tsが仮想ワークWsの外部から内部に移動せず、シミュレーション部14は、接触フラグを0にする。
<2-2>
As described above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires a contact flag 0/1 (virtual load information) in association with the machine coordinate Xs(i) (comparison point identification data) as shown in Fig. 5B. In Fig. 5C, at a certain machine coordinate Xs(i) at a certain time Ts(i), the virtual tool Ts does not move from the outside to the inside of the virtual workpiece Ws, and the simulation unit 14 sets the contact flag to 0.
 なお、ある程度加工が進んだ後に、別の箇所で接触が検知された場合、数値制御装置110(仮想負荷取得部18)は、接触フラグ1(仮想負荷情報)を、接触が検知された機械座標Xs(k)(比較箇所特定データ)と関連付けて取得してもよい。 If contact is detected at another location after machining has progressed to a certain extent, the numerical control device 110 (virtual load acquisition unit 18) may acquire a contact flag 1 (virtual load information) in association with the machine coordinate Xs(k) (comparison location identification data) where the contact was detected.
<2-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。
<2-3>
As described above, the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
<2-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図5Cでは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)に対応する、シミュレーション部14における機械座標Xs(i)(比較箇所特定データ)において、接触フラグ(仮想負荷情報)が0であるので、これらの情報に差異があると判定する。或いは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)と、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(k-1)、Xs(k)(比較箇所特定データ)とがi-1からiの間に動作する全ての軸pにおいて以下の不等式を満たさないので、実負荷情報と仮想負荷情報とに差異があると判定する。
|Xrp(j)-Xsp(k)|≦|Xsp(k)-Xsp(k-1)|
<2-4>
Similarly to the above, the numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) and the contact flag (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig. 5C, the numerical control device 110 (load information determination unit 22) determines that there is a difference between these pieces of information because the contact flag (virtual load information) is 0 in the machine coordinates Xs(i) (comparison point identification data) in the simulation unit 14, which corresponds to the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) was detected in the actual machining unit 12. Alternatively, the numerical control device 110 (load information determination unit 22) determines that there is a difference between the actual load information and the virtual load information because the machine coordinate Xr(j) (comparison point identification data) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinates Xs(k-1), Xs(k) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14 do not satisfy the following inequality for all axes p operating between i-1 and i:
|Xrp(j)-Xsp(k)|≦|Xsp(k)-Xsp(k-1)|
 上述同様に、実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。 As described above, if there is a difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
[実施例3]
 実施例3では、比較箇所特定データとして、運転データを用いる。運転データに機械座標を記載することにより、加工データの問題箇所の特定が容易となる。図6Aは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がない場合について示す図であり、図6Bは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(シミュレーション部でのみ接触が検出されるパターン)について示す図である。図6Cは、実加工部における可動部の実負荷情報とシミュレーション部における仮想可動部の仮想負荷情報との差異がある場合(実加工部でのみ接触が検出されるパターン)について示す図である。
[Example 3]
In the third embodiment, the operation data is used as the comparison location identification data. By recording the machine coordinates in the operation data, it becomes easy to identify the problem location of the machining data. FIG. 6A is a diagram showing a case where there is no difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part, and FIG. 6B is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the simulation part). FIG. 6C is a diagram showing a case where there is a difference between the actual load information of the moving part in the real machining part and the virtual load information of the virtual moving part in the simulation part (a pattern where contact is detected only in the real machining part).
(実加工部とシミュレーション部の差異がない場合)
<3-1>
 図6Aに示すように、例えばシミュレーション部14は、加工プログラムを解析し、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。一方、例えば数値制御装置110は、加工プログラムを解析し、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成し、駆動部120に出力する。ここで、i、jは、1からnまでの任意の整数である。nは、1以上の整数である。
(When there is no difference between the actual machining part and the simulation part)
<3-1>
As shown in FIG. 6A, for example, the simulation unit 14 analyzes the machining program, and creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14. On the other hand, for example, the numerical control device 110 analyzes the machining program, and creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs them to the drive unit 120. Here, i and j are any integers from 1 to n. n is an integer of 1 or more.
<3-2>
 シミュレーション部14は、機械座標Xs(0)~Xs(n)(運転データ)に基づいて、仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。
<3-2>
The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data).
 シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)において、仮想可動部134s、136sに生じる仮想負荷情報として、仮想工具Tsと仮想ワークWsとが接触しているか否かを示す接触情報を計算する。また、シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)を、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとして計算する。例えば、シミュレーション部14は、機械座標Xs(j-1)からXs(j)の間において、仮想工具Tsが仮想ワークWsの外部から内部に侵入する場合には、運転データ中の指令ブロックに関連付けて機械座標Xs(j)の座標を「,Ln X_Y_Z_」のフォーマットで追記する(仮想負荷情報および比較箇所特定データ)。ここで、nは1以上の整数であり、1ブロックの間に接触が複数回発生する場合にはnをインクリメントして複数記述する。 The simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact as virtual load information occurring on the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). The simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information. For example, when the virtual tool Ts invades the virtual workpiece Ws from the outside to the inside between the machine coordinates Xs(j-1) and Xs(j), the simulation unit 14 adds the coordinate of the machine coordinate Xs(j) in the format of ",Ln X_Y_Z_" in association with the command block in the operation data (virtual load information and comparison location identification data). Here, n is an integer of 1 or more, and when contact occurs multiple times during one block, n is incremented and multiple entries are made.
 なお、運転データが微小線分の場合には、指令ブロック単位に代えて1ブロック単位で機械座標Xs(j)の座標を追記してもよい(仮想負荷情報および比較箇所特定データ)。また、送り軸が3軸の場合について例示したが、本実施形態は、送り軸が4軸以上の場合にも適用可能である。 In addition, when the operation data is a minute line segment, the coordinates of the machine coordinates Xs(j) may be added in units of one block instead of in units of command blocks (virtual load information and comparison point identification data). Also, although an example has been given of a case in which there are three feed axes, this embodiment can also be applied to cases in which there are four or more feed axes.
 比較箇所特定データは、仮想負荷情報と実負荷情報との時系列または加工位置の対応づけを行うデータである。より具体的には、比較箇所特定データは、シミュレーション部14において仮想工具Tsと仮想ワークWsとが接触する機械座標Xs(i)と、実加工部12において工具TとワークWとが接触する機械座標Xr(j)とを1対1で対応させるデータある。すなわち、比較箇所特定データは、仮想負荷情報と実負荷情報との比較箇所として、機械座標Xs(i)と機械座標Xr(j)とを特定するデータである。これにより、負荷情報判定部22は、比較箇所特定データに基づいて、機械座標Xs(i)の仮想負荷情報と機械座標Xr(j)の実負荷情報とを適切に比較することができる。 The comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that creates a one-to-one correspondence between the machine coordinate Xs(i) where the virtual tool Ts and virtual workpiece Ws come into contact in the simulation unit 14 and the machine coordinate Xr(j) where the tool T and workpiece W come into contact in the actual machining unit 12. In other words, the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
 数値制御装置110(仮想負荷取得部18)は、図6Aに示すように、運転データに追記された「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)を取得する。 The numerical control device 110 (virtual load acquisition unit 18) acquires ",Ln X_Y_Z_" (virtual load information and comparison location identification data) that has been added to the operation data, as shown in FIG. 6A.
 シミュレーション部14は、実加工部12が運転データに基づいて運転する前に上述の加工シミュレーションを行い、仮想負荷情報と比較箇所データとを予め計算しておく。また、仮想負荷取得部18は、実加工部12が運転データに基づいて運転する前に、仮想負荷情報を比較箇所特定データと関連付けて予め取得しておき、記憶部20に一時的に記憶させてもよい。 The simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance. In addition, the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
<3-3>
 駆動部120は、数値制御装置110から出力された機械座標Xr(0)~Xr(n)(運転データ)に基づいて、実加工部12のモータ132および可動部134、136を駆動する。これにより、実加工部12は、工具TとワークWとを相対移動させることによって、ワークWの加工を行う。
<3-3>
The driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110. As a result, the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
 駆動部120(実負荷取得部16)は、ある時刻Tr(j)のある機械座標Xr(j)において、可動部134、136に生じる負荷情報として、工具TとワークWとが接触しているか否かを示す接触情報を取得する。例えば、駆動部120(実負荷取得部16)は、モータ132の出力(指令またはフィードバック情報)を監視し、モータ132の出力がある閾値を超えた場合に工具TとワークWが接触したと判定し、接触信号を数値制御装置110に出力する。 The driving unit 120 (actual load acquisition unit 16) acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and when the output of the motor 132 exceeds a certain threshold, it determines that the tool T and workpiece W are in contact, and outputs a contact signal to the numerical control device 110.
 駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。 The drive unit 120 (actual load acquisition unit 16) acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
<3-4>
 数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触の有無(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図6Aでは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)と、シミュレーション部14において運転データに追記された「,Ln X_Y_Z_」が示す機械座標Xs(i)(比較箇所特定データ)とがi-1からiの間に動作する全ての軸pにおいて以下の不等式を満たすので、実負荷情報と仮想負荷情報とに差異がないと判定する。
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
なお、運転データに複数の「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)が記載されている場合、nの値が小さい順に上記判定が行われればよい。
<3-4>
The numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data), and determines whether or not there is a difference between these pieces of information. For example, in FIG. 6A, the numerical control device 110 (load information determination unit 22) determines that there is no difference between the actual load information and the virtual load information because the machine coordinates Xr(j) (comparison point identification data) at which the contact signal (actual load information) was detected in the actual machining unit 12 and the machine coordinates Xs(i) (comparison point identification data) indicated by ",Ln X_Y_Z_" added to the operation data in the simulation unit 14 satisfy the following inequality for all axes p operating between i-1 and i.
|Xrp(j)-Xsp(i)|≦|Xsp(i)-Xsp(i-1)|
When a plurality of ",Ln X_Y_Z" (virtual load information and comparison location specifying data) are described in the operation data, the above determination may be performed in ascending order of the value of n.
 負荷情報判定部22は、シミュレーション部14によって予め得られた仮想負荷情報と、実加工部12によってリアルタイムに得られている実負荷情報とに基づいて、実加工部12の動作中にリアルタイムに上述の判定を行う。
 負荷情報判定部22は、比較箇所特定データにおけるある特定の区間の仮想負荷情報と実負荷情報のみを抽出して比較してもよい。
The load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
The load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
 実負荷情報と仮想負荷情報とに差異がない場合、数値制御装置110(動作制御部24)は、動作制限を行わない。 If there is no difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
 通常、シミュレーション周期よりも実加工部における可動部の位置の取得周期の方が短いため、実加工部12において接触信号が検知された機械座標Xr(j)の誤差を無視することができる。しかし、シミュレーション部14の誤差の方が実加工部の誤差よりも小さい場合、負荷情報判定部22は、実加工部12における機械座標Xr(j-1)からXr(j)の間に、シミュレーション部14において接触する機械座標Xs(i)が存在する場合に、実負荷情報と仮想負荷情報とに差異がないと判定してもよい。すなわち、i-1からiの間に動作する全ての軸pにおいて以下の等式が成立することを確認しても良い。
|Xrp(j)-Xsp(i)|≦|Xrp(j)-Xrp(j-1)|
Usually, the period for acquiring the position of the movable part in the actual machining unit is shorter than the simulation period, so the error in the machine coordinate Xr(j) at which a contact signal is detected in the actual machining unit 12 can be ignored. However, when the error in the simulation unit 14 is smaller than the error in the actual machining unit, the load information determination unit 22 may determine that there is no difference between the actual load information and the virtual load information when a machine coordinate Xs(i) that contacts in the simulation unit 14 exists between the machine coordinates Xr(j-1) and Xr(j) in the actual machining unit 12. In other words, it may be confirmed that the following equation holds for all axes p that operate between i-1 and i.
|Xrp(j)-Xsp(i)|≦|Xrp(j)-Xrp(j-1)|
(実加工部とシミュレーション部の差異がある場合)(シミュレーション部でのみ接触が検出されるパターン)
<3-1>
 図6Bに示すように、例えばシミュレーション部14は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。一方、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the simulation part)
<3-1>
6B, for example, the simulation unit 14, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14. On the other hand, for example, the numerical control device 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
<3-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図6Bに示すように、運転データに追記された「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)を取得する。
<3-2>
As described above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires “,Ln X_Y_Z_” (virtual load information and comparison point identification data) added to the operation data, as shown in FIG. 6B.
<3-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。例えば図6Bでは、工具の破損または取り付け間違い等により、工具TとワークWとが接触せず、駆動部120(実負荷取得部16)は、接触信号を取得せず、接触信号を数値制御装置110に出力しない。
<3-3>
Similarly to the above, the driving unit 120 and the actual machining unit 12 machine the workpiece W, and the driving unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data). For example, in Fig. 6B, the tool T and the workpiece W do not come into contact with each other due to damage to the tool or incorrect installation, and the driving unit 120 (actual load acquisition unit 16) does not acquire a contact signal and does not output the contact signal to the numerical control device 110.
<3-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触の有無(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図6Bでは、数値制御装置110(負荷情報判定部22)は、実加工部12において、シミュレーション部14の運転データにおける「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)が記載されたブロックに対応するブロック(比較箇所特定データ)を過ぎたにもかかわらず、駆動部120(実負荷取得部16)が接触信号を取得しないので、これらの情報に差異があると判定する。
<3-4>
As described above, the numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig. 6B, the numerical control device 110 (load information determination unit 22) determines that there is a difference between these pieces of information because the drive unit 120 (actual load acquisition unit 16) does not acquire a contact signal in the actual machining unit 12 even though the block (comparison point identification data) corresponding to the block in which ",Ln X_Y_Z_" (virtual load information and comparison point identification data) is written in the operation data of the simulation unit 14 has passed.
 実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。数値制御装置110(動作制御部24)は、モータの出力を即時停止させてもよいし、予め定められた緊急停止動作を行ってもよい。すなわち、数値制御装置110(動作制御部24)は、実加工部12において、可動部134、136を動作させるための出力の制限、予め設定された可動部134、136の退避動作、または可動部134、136の動作の即時の減速停止を行う。 If there is a difference between the actual load information and the virtual load information, the numerical control device 110 (motion control unit 24) decelerates and stops the machine tool 130. The numerical control device 110 (motion control unit 24) may immediately stop the motor output, or may perform a predetermined emergency stop operation. That is, the numerical control device 110 (motion control unit 24) limits the output to operate the movable parts 134, 136 in the actual machining unit 12, performs a preset retraction operation of the movable parts 134, 136, or immediately decelerates and stops the operation of the movable parts 134, 136.
 また、表示部28は、シミュレーション部14において仮想工具Tsと仮想ワークWsとの接触(干渉)が検出された運転データの機械座標Xs(i)を他の運転データとは異なる色で表示したり、点滅表示してもよい。これにより、工作機械のオペレータは、シミュレーション部14において仮想工具Tsと仮想ワークWsとの接触(干渉)が検出された運転データの機械座標Xs(i)を容易に認知できる。 The display unit 28 may also display the machine coordinates Xs(i) of operation data in which contact (interference) between the virtual tool Ts and the virtual workpiece Ws has been detected in the simulation unit 14 in a color different from that of other operation data, or may display them in a flashing color. This allows the operator of the machine tool to easily recognize the machine coordinates Xs(i) of operation data in which contact (interference) between the virtual tool Ts and the virtual workpiece Ws has been detected in the simulation unit 14.
(実加工部とシミュレーション部の差異がある場合)(実加工部でのみ接触が検出されるパターン)
<3-1>
 図6Cに示すように、例えばシミュレーション部14は、上述同様に、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成する。一方、例えば数値制御装置110は、上述同様に、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成する。
(When there is a difference between the actual machining part and the simulation part) (Pattern in which contact is detected only in the actual machining part)
<3-1>
6C, for example, the simulation unit 14, in the same manner as described above, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s from the start time Ts(0) to the time Ts(i) seconds later as operation data for the simulation unit 14. Meanwhile, for example, the numerical control device 110, in the same manner as described above, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 from the start time Tr(0) to the time Tr(j) seconds later as operation data for the actual machining unit 12.
<3-2>
 上述同様に、シミュレーション部14は、仮想ワークWsの加工シミュレーションを行い、数値制御装置110(仮想負荷取得部18)は、図6Cに示すように、運転データに追記された「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)を取得する。例えば図6Cでは、仮想工具Tsが仮想ワークWsの外部から内部に侵入せず、運転データに「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)の記載がないので、数値制御装置110(仮想負荷取得部18)は、運転データに追記された「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)を取得しない。
<3-2>
Similarly to the above, the simulation unit 14 performs a machining simulation of the virtual workpiece Ws, and the numerical control device 110 (virtual load acquisition unit 18) acquires ",Ln X_Y_Z_" (virtual load information and comparison location identification data) added to the operation data as shown in Fig. 6C. For example, in Fig. 6C, the virtual tool Ts does not enter the inside of the virtual workpiece Ws from the outside, and there is no description of ",Ln X_Y_Z_" (virtual load information and comparison location identification data) in the operation data, so the numerical control device 110 (virtual load acquisition unit 18) does not acquire ",Ln X_Y_Z_" (virtual load information and comparison location identification data) added to the operation data.
<3-3>
 上述同様に、駆動部120および実加工部12は、ワークWの加工を行い、駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。
<3-3>
As described above, the drive unit 120 and the actual processing unit 12 process the workpiece W, and the drive unit 120 (actual load acquisition unit 16) acquires a contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
<3-4>
 上述同様に、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触の有無(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図6Cでは、数値制御装置110(負荷情報判定部22)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)に対応する、シミュレーション部14の運転データのブロックに「,Ln X_Y_Z_」(仮想負荷情報および比較箇所特定データ)が記載されていないので、これらの情報に差異があると判定する。
<3-4>
As described above, the numerical control device 110 (load information determination unit 22) compares the contact signal (actual load information) with the presence or absence of contact (virtual load information) based on the machine coordinates Xr(j) and Xs(i) (comparison point identification data) and determines whether or not there is a difference between these pieces of information. For example, in Fig. 6C, the numerical control device 110 (load information determination unit 22) determines that there is a difference between these pieces of information because ",Ln X_Y_Z_" (virtual load information and comparison point identification data) is not written in the block of the operation data of the simulation unit 14 corresponding to the machine coordinates Xr(j) (comparison point identification data) where the contact signal (actual load information) was detected in the actual machining unit 12.
 上述同様に、実負荷情報と仮想負荷情報とに差異がある場合、数値制御装置110(動作制御部24)は、工作機械130を減速停止する。 As described above, if there is a difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) decelerates and stops the machine tool 130.
 また、上述同様に、表示部28は、実加工部12において工具TとワークWとの接触(干渉)が検出された機械座標Xr(j)を他の運転データとは異なる色で表示したり、点滅表示してもよい。これにより、工作機械のオペレータは、実加工部12において工具TとワークWとの接触(干渉)が検出された機械座標Xr(j)を容易に認知できる。 Furthermore, as described above, the display unit 28 may display the machine coordinate Xr(j) at which contact (interference) between the tool T and the workpiece W is detected in the actual machining unit 12 in a color different from other operation data, or may display it in a flashing color. This allows the operator of the machine tool to easily recognize the machine coordinate Xr(j) at which contact (interference) between the tool T and the workpiece W is detected in the actual machining unit 12.
[実施例4]
 実施例4では、実負荷情報として、ワークを加工するときに可動部に生じる負荷(エネルギー)の大きさを用い、仮想負荷情報として、仮想ワークを加工するときに仮想可動部に生じる負荷(エネルギー)の大きさを用いる。接触の有無に代えて、負荷(エネルギー)の大きさを取得することにより、例えば徐々に切り込む場合に、工具とワークとの接触をより正確に判定することが可能となる。
[Example 4]
In the fourth embodiment, the magnitude of the load (energy) generated on the moving part when machining the workpiece is used as the actual load information, and the magnitude of the load (energy) generated on the virtual moving part when machining the virtual workpiece is used as the virtual load information. By acquiring the magnitude of the load (energy) instead of the presence or absence of contact, it becomes possible to more accurately determine the contact between the tool and the workpiece, for example, when cutting in gradually.
<4-1>
 図7に示すように、例えば数値制御装置110は、加工プログラムを解析し、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成し、シミュレーション部14に出力する。また、例えば数値制御装置110は、加工プログラムを解析し、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成し、駆動部120に出力する。ここで、i、jは、1からnまでの任意の整数である。nは、1以上の整数である。
<4-1>
As shown in FIG. 7, for example, the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14. Also, for example, the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120. Here, i and j are any integers from 1 to n. n is an integer of 1 or more.
 なお、本実施形態では、数値制御装置110が、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成する形態を例示した。しかし、本実施形態はこれに限定されず、シミュレーション部14を構成するコンピュータまたはその他のコンピュータが、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成してもよい。 In this embodiment, the numerical control device 110 analyzes the machining program and creates time series data (operation data) of the machine coordinates. However, this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time series data (operation data) of the machine coordinates.
<4-2>
 シミュレーション部14は、数値制御装置110から出力された機械座標Xs(0)~Xs(n)(運転データ)に基づいて、仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。
<4-2>
The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
 シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)において、仮想可動部134s、136sに生じる仮想負荷情報として、仮想的な負荷の総量Ws(i)[J/s](エネルギーWs×t)を計算する。 The simulation unit 14 calculates the total amount of virtual load Ws(i) [J/s] (energy Ws × t) as virtual load information generated on the virtual moving parts 134s and 136s at a certain machine coordinate Xs(i) at a certain time Ts(i).
 以下に、仮想的な負荷の総量Ws(i)[J/s](エネルギーWs×t)の計算の一例を示す。
仮想可動部134s、136sが、時刻Ts(i-1)の機械座標Xs(i-1)から時刻Ts(i)の機械座標Xs(i)に移動する場合を考える。仮想ワークWsを除去加工するエネルギーは除去する体積に比例(比例定数k)し、質量がmの可動部を動作する場合の摩擦係数の総量は常に一定(n)と仮定すると、時刻T(i-1)からT(i)にかけての時間当たりの仮想的な負荷の総量Ws(i)は以下の式で表せる。
Figure JPOXMLDOC01-appb-M000001
An example of calculation of the total amount of virtual load Ws(i) [J/s] (energy Ws×t) is shown below.
Consider the case where the virtual movable parts 134s, 136s move from the machine coordinate Xs(i-1) at time Ts(i-1) to the machine coordinate Xs(i) at time Ts(i). Assuming that the energy required to remove and machine the virtual workpiece Ws is proportional to the volume to be removed (proportionality constant k), and that the total friction coefficient when operating a movable part with mass m is always constant (n), the total virtual load Ws(i) per unit time from time T(i-1) to T(i) can be expressed by the following formula.
Figure JPOXMLDOC01-appb-M000001
 上記式の右辺の分子において、1項目は、仮想ワークWsを除去加工するためのエネルギーであり、2項目は、運動エネルギーの変化量であり、3項目は、位置エネルギーの変化量であり、4項目は仮想可動部の運動によって消費されるエネルギーである。 In the numerator on the right side of the above equation, the first item is the energy required to remove the virtual workpiece Ws, the second item is the change in kinetic energy, the third item is the change in potential energy, and the fourth item is the energy consumed by the movement of the virtual moving part.
 Vs(i)は除去領域の体積であり、Ts(i-1)からTs(i)の間に仮想工具Tsが通過した領域と仮想ワークWsの領域とが重複した領域である。Vs(i)はiの速度であり、以下の式で表せる。
Figure JPOXMLDOC01-appb-M000002
Vs(i) is the volume of the removal area, which is the overlapping area of the area through which the virtual tool Ts passed between Ts(i-1) and Ts(i) and the area of the virtual workpiece Ws. Vs(i) is the speed of i and can be expressed by the following formula.
Figure JPOXMLDOC01-appb-M000002
 また、シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)を、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとして計算する。具体的には、比較箇所特定データは、仮想負荷情報と実負荷情報との時系列または加工位置の対応づけを行うデータである。より具体的には、比較箇所特定データは、シミュレーション部14において仮想工具Tsと仮想ワークWsとが接触する時刻Ts(i)と、実加工部12において工具TとワークWとが接触する時刻Tr(j)とを1対1で対応させるデータある。すなわち、比較箇所特定データは、仮想負荷情報と実負荷情報との比較箇所として、時刻Ts(i)と時刻Tr(j)とを特定するデータである。これにより、負荷情報判定部22は、比較箇所特定データに基づいて、時刻Ts(i)の仮想負荷情報と時刻Tr(j)の実負荷情報とを適切に比較することができる。
なお、上述したように、シミュレーション部14は、数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。
The simulation unit 14 also calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison location identification data that identifies a comparison location between the virtual load information and the actual load information. Specifically, the comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that associates the time Ts(i) at which the virtual tool Ts and the virtual workpiece Ws come into contact with each other in the simulation unit 14 with the time Tr(j) at which the tool T and the workpiece W come into contact with each other in the actual machining unit 12 in a one-to-one manner. That is, the comparison location identification data is data that identifies the time Ts(i) and the time Tr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the time Ts(i) with the actual load information at the time Tr(j) based on the comparison location identification data.
As described above, the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
 数値制御装置110(仮想負荷取得部18)は、図7に示すように、負荷Ws(i)[J/s](エネルギーWs×t)(仮想負荷情報)を、時刻Ts(i)(比較箇所特定データ)と関連付けて取得する。 The numerical control device 110 (virtual load acquisition unit 18) acquires the load Ws(i) [J/s] (energy Ws x t) (virtual load information) in association with the time Ts(i) (comparison point identification data) as shown in FIG. 7.
 シミュレーション部14は、実加工部12が運転データに基づいて運転する前に上述の加工シミュレーションを行い、仮想負荷情報と比較箇所データとを予め計算しておく。また、仮想負荷取得部18は、実加工部12が運転データに基づいて運転する前に、仮想負荷情報を比較箇所特定データと関連付けて予め取得しておき、記憶部20に一時的に記憶させてもよい。 The simulation unit 14 performs the above-mentioned machining simulation before the actual machining unit 12 operates based on the operation data, and calculates the virtual load information and the comparison location data in advance. In addition, the virtual load acquisition unit 18 may acquire the virtual load information in advance in association with the comparison location identification data and temporarily store it in the storage unit 20 before the actual machining unit 12 operates based on the operation data.
<4-3>
 駆動部120は、数値制御装置110から出力された機械座標Xr(0)~Xr(n)(運転データ)に基づいて、実加工部12のモータ132および可動部134、136を駆動する。これにより、実加工部12は、工具TとワークWとを相対移動させることによって、ワークWの加工を行う。
<4-3>
The driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110. As a result, the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
 駆動部120(実負荷取得部16)は、ある時刻Tr(j)のある機械座標Xr(j)において、可動部134、136に生じる実負荷情報として、モータの負荷の総量Wr(j)[J/s](エネルギーWr×t)を計算する。負荷Wr(j)[J/s](エネルギーWr×t)の計算は、上述した負荷Ws(i)[J/s](エネルギーWs×t)の計算の一例と同様であればよい。 The driving unit 120 (actual load acquisition unit 16) calculates the total motor load Wr(j) [J/s] (energy Wr x t) as actual load information occurring on the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). The calculation of the load Wr(j) [J/s] (energy Wr x t) may be the same as the example of the calculation of the load Ws(i) [J/s] (energy Ws x t) described above.
工作機械が放電加工機の場合、モータの負荷の総量に、工具に流れる電力を加算すればよい。 If the machine tool is an EDM machine, simply add the power flowing through the tool to the total motor load.
 駆動部120(実負荷取得部16)は、図7に示すように、負荷Wr(j)[J/s](エネルギーWr×t)(実負荷情報)を、時刻Tr(j)(比較箇所特定データ)と関連付けて取得する。 As shown in FIG. 7, the drive unit 120 (actual load acquisition unit 16) acquires the load Wr(j) [J/s] (energy Wr×t) (actual load information) in association with the time Tr(j) (comparison point identification data).
<4-4>
 数値制御装置110(負荷情報判定部22)は、時刻Tr(j)、Ts(i)(比較箇所特定データ)に基づいて、負荷Wr(j)[J/s](エネルギーWr×t)(実負荷情報)と負荷Ws(i)[J/s](エネルギーWs×t)(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図7では、数値制御装置110(負荷情報判定部22)は、Ts(i)の時刻に以下の数式を満たす最小のj(jmin)と最大のj(jmax)を求める。
Ts(i-1)≦Tr(j)<Ts(i)
<4-4>
The numerical control device 110 (load information determination unit 22) compares the load Wr(j) [J/s] (energy Wr×t) (actual load information) with the load Ws(i) [J/s] (energy Ws×t) (virtual load information) based on the times Tr(j) and Ts(i) (comparison point identification data), and determines whether there is a difference between these pieces of information. For example, in Fig. 7, the numerical control device 110 (load information determination unit 22) finds the minimum j (jmin) and maximum j (jmax) that satisfy the following formula at the time Ts(i).
Ts(i-1)≦Tr(j)<Ts(i)
 数値制御装置110(負荷情報判定部22)は、iにおいて、以下の式を満たすか否かを判定する。以下の式を満たす場合、数値制御装置110(負荷情報判定部22)は、実負荷情報と仮想負荷情報とに差異がないと判定する。
Figure JPOXMLDOC01-appb-M000003
ここで、jminとjmaxはTs(i-1)≦Tr(j)<Ts(i)を満たす最小と最大のjであり、ΔTsはシミュレーション周期であり、ΔTrは実加工部でモータ出力を取得する周期であり、ΔW[J]はモータの負荷を示すある閾値である。なお、上記式は、ΔTs>ΔTrの前提とする。
The numerical control device 110 (load information determination unit 22) determines whether the following formula is satisfied at i. If the following formula is satisfied, the numerical control device 110 (load information determination unit 22) determines that there is no difference between the actual load information and the virtual load information.
Figure JPOXMLDOC01-appb-M000003
Here, jmin and jmax are the minimum and maximum j that satisfy Ts(i-1)≦Tr(j)<Ts(i), ΔTs is the simulation period, ΔTr is the period for acquiring the motor output in the actual machining section, and ΔW[J] is a certain threshold value indicating the motor load. Note that the above formula is based on the premise that ΔTs>ΔTr.
 なお、モータ出力がある閾値より小さい場合、実加工部でワークと工具が接触していないと考え、比較を行わないとしてもよい。 If the motor output is less than a certain threshold, it is possible to assume that the workpiece and tool are not in contact with each other in the actual machining area, and no comparison is made.
 負荷情報判定部22は、シミュレーション部14によって予め得られた仮想負荷情報と、実加工部12によってリアルタイムに得られている実負荷情報とに基づいて、実加工部12の動作中にリアルタイムに上述の判定を行う。
 負荷情報判定部22は、比較箇所特定データにおけるある特定の区間の仮想負荷情報と実負荷情報のみを抽出して比較してもよい。
The load information determination unit 22 makes the above-mentioned determination in real time while the actual machining unit 12 is operating, based on the virtual load information obtained in advance by the simulation unit 14 and the actual load information obtained in real time by the actual machining unit 12.
The load information determining unit 22 may extract and compare only the virtual load information and the actual load information of a specific section in the comparison point specifying data.
 実負荷情報と仮想負荷情報とに差異がない場合、数値制御装置110(動作制御部24)は、動作制限を行わない。 If there is no difference between the actual load information and the virtual load information, the numerical control device 110 (operation control unit 24) does not impose any operational restrictions.
 なお、上述したように、負荷情報判定部22は、数値制御装置110に設けられてもよいし、駆動部120(サーボ制御部、アンプ)に設けられてもよいし、数値制御装置110および駆動部120とは異なるコンピュータによって構成されてもよい。 As mentioned above, the load information determination unit 22 may be provided in the numerical control device 110, or in the drive unit 120 (servo control unit, amplifier), or may be configured by a computer separate from the numerical control device 110 and the drive unit 120.
[実施例5]
 上述した実施例1~4では、実加工に不具合があると想定して、実加工の動作制限を行う形態を例示した。実施例5では、加工シミュレーションの設定に不具合がある場合に、加工シミュレーションの設定を変更(補正)する。このように、実負荷情報と仮想負荷情報との差異を加工シミュレーションに反映することにより、シミュレーション精度を向上することができる。
[Example 5]
In the above-mentioned first to fourth embodiments, the operation of the actual machining is restricted on the assumption that there is a problem in the actual machining. In the fifth embodiment, when there is a problem in the settings of the machining simulation, the settings of the machining simulation are changed (corrected). In this way, the difference between the actual load information and the virtual load information is reflected in the machining simulation, thereby improving the simulation accuracy.
<5-1>
 図8に示すように、例えば数値制御装置110は、加工プログラムを解析し、シミュレーション部14のための運転データとして、開始時刻Ts(0)から時刻Ts(i)秒後の仮想可動部134s、136sの機械座標Xs(i)の時系列データXs(0)、Xs(1)~Xs(n)を作成し、シミュレーション部14に出力する。また、例えば数値制御装置110は、加工プログラムを解析し、実加工部12のための運転データとして、開始時刻Tr(0)から時刻Tr(j)秒後の可動部134、136の機械座標Xr(j)の時系列データXr(0)、Xr(1)~Xr(n)を作成し、駆動部120に出力する。ここで、i、jは、1からnまでの任意の整数である。nは、1以上の整数である。
<5-1>
As shown in FIG. 8, for example, the numerical control device 110 analyzes the machining program, creates time series data Xs(0), Xs(1) to Xs(n) of the machine coordinates Xs(i) of the virtual movable parts 134s, 136s after the time Ts(i) seconds from the start time Ts(0) as operation data for the simulation unit 14, and outputs the data to the simulation unit 14. Also, for example, the numerical control device 110 analyzes the machining program, creates time series data Xr(0), Xr(1) to Xr(n) of the machine coordinates Xr(j) of the movable parts 134, 136 after the time Tr(j) seconds from the start time Tr(0) as operation data for the actual machining unit 12, and outputs the data to the drive unit 120. Here, i and j are any integers from 1 to n. n is an integer of 1 or more.
 なお、本実施形態では、数値制御装置110が、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成する形態を例示した。しかし、本実施形態はこれに限定されず、シミュレーション部14を構成するコンピュータまたはその他のコンピュータが、加工プログラムを解析して機械座標の時系列データ(運転データ)を作成してもよい。 In this embodiment, the numerical control device 110 analyzes the machining program and creates time-series data of machine coordinates (operation data). However, this embodiment is not limited to this, and the computer constituting the simulation unit 14 or another computer may analyze the machining program and create time-series data of machine coordinates (operation data).
<5-2>
 駆動部120は、数値制御装置110から出力された機械座標Xr(0)~Xr(n)(運転データ)に基づいて、実加工部12のモータ132および可動部134、136を駆動する。これにより、実加工部12は、工具TとワークWとを相対移動させることによって、ワークWの加工を行う。
<5-2>
The driving unit 120 drives the motor 132 and the movable units 134, 136 of the actual machining unit 12 based on the machine coordinates Xr(0) to Xr(n) (operation data) output from the numerical control device 110. As a result, the actual machining unit 12 performs machining of the workpiece W by moving the tool T and the workpiece W relative to each other.
 駆動部120(実負荷取得部16)は、ある時刻Tr(j)のある機械座標Xr(j)において、可動部134、136に生じる負荷情報として、工具TとワークWとが接触しているか否かを示す接触情報を取得する。例えば、駆動部120(実負荷取得部16)は、モータ132の出力(指令またはフィードバック情報)を監視し、モータ132の出力がある閾値を超えない場合には接触信号を0とし、モータ132の出力がある閾値を超えた場合に工具TとワークWが接触したと判定して接触信号を1とする。 The driving unit 120 (actual load acquisition unit 16) acquires contact information indicating whether or not the tool T and workpiece W are in contact as load information generated in the movable parts 134, 136 at a certain machine coordinate Xr(j) at a certain time Tr(j). For example, the driving unit 120 (actual load acquisition unit 16) monitors the output (command or feedback information) of the motor 132, and sets the contact signal to 0 if the output of the motor 132 does not exceed a certain threshold, and determines that the tool T and workpiece W are in contact and sets the contact signal to 1 if the output of the motor 132 exceeds a certain threshold.
 駆動部120(実負荷取得部16)は、接触信号(実負荷情報)を、機械座標Xr(j)(比較箇所特定データ)と関連付けて取得する。 The drive unit 120 (actual load acquisition unit 16) acquires the contact signal (actual load information) in association with the machine coordinates Xr(j) (comparison point identification data).
 比較箇所特定データは、仮想負荷情報と実負荷情報との時系列または加工位置の対応づけを行うデータである。より具体的には、比較箇所特定データは、シミュレーション部14において仮想工具Tsと仮想ワークWsとが接触する機械座標Xs(i)と、実加工部12において工具TとワークWとが接触する機械座標Xr(j)とを1対1で対応させるデータある。すなわち、比較箇所特定データは、仮想負荷情報と実負荷情報との比較箇所として、機械座標Xs(i)と機械座標Xr(j)とを特定するデータである。これにより、負荷情報判定部22は、比較箇所特定データに基づいて、機械座標Xs(i)の仮想負荷情報と機械座標Xr(j)の実負荷情報とを適切に比較することができる。 The comparison location identification data is data that associates the virtual load information with the actual load information in terms of time series or machining positions. More specifically, the comparison location identification data is data that creates a one-to-one correspondence between the machine coordinate Xs(i) where the virtual tool Ts and virtual workpiece Ws come into contact in the simulation unit 14 and the machine coordinate Xr(j) where the tool T and workpiece W come into contact in the actual machining unit 12. In other words, the comparison location identification data is data that identifies the machine coordinate Xs(i) and the machine coordinate Xr(j) as the comparison location between the virtual load information and the actual load information. This allows the load information determination unit 22 to appropriately compare the virtual load information at the machine coordinate Xs(i) with the actual load information at the machine coordinate Xr(j) based on the comparison location identification data.
<5-3>
 シミュレーション部14は、数値制御装置110から出力された機械座標Xs(0)~Xs(n)(運転データ)に基づいて、仮想工具Tsと仮想ワークWsとを相対移動させることによって、仮想ワークWsの加工シミュレーションを行う。
<5-3>
The simulation unit 14 performs a machining simulation of the virtual workpiece Ws by moving the virtual tool Ts and the virtual workpiece Ws relatively based on the machine coordinates Xs(0) to Xs(n) (operation data) output from the numerical control device 110.
 シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)において、仮想可動部134s、136sに生じる仮想負荷情報として、仮想工具Tsと仮想ワークWsとが接触しているか否かを示す接触情報を計算する。例えば、シミュレーション部14は、仮想工具Tsが仮想ワークWsの外部にある場合には接触フラグを0にし、仮想工具Tsが仮想ワークWsの外部から内部に移動する場合には接触フラグを1にする。 The simulation unit 14 calculates contact information indicating whether or not the virtual tool Ts and the virtual workpiece Ws are in contact with each other as virtual load information generated in the virtual movable parts 134s, 136s at a certain machine coordinate Xs(i) at a certain time Ts(i). For example, the simulation unit 14 sets the contact flag to 0 when the virtual tool Ts is outside the virtual workpiece Ws, and sets the contact flag to 1 when the virtual tool Ts moves from the outside to the inside of the virtual workpiece Ws.
 また、シミュレーション部14は、ある時刻Ts(i)のある機械座標Xs(i)を、仮想負荷情報と実負荷情報との比較箇所を特定する比較箇所特定データとして計算する。
なお、上述したように、シミュレーション部14は、数値制御装置110に設けられてもよいし、数値制御装置110とは異なるコンピュータによって構成されてもよい。
Furthermore, the simulation unit 14 calculates a certain machine coordinate Xs(i) at a certain time Ts(i) as comparison point specifying data for specifying a comparison point between the virtual load information and the actual load information.
As described above, the simulation unit 14 may be provided in the numerical control device 110 or may be configured by a computer different from the numerical control device 110.
 数値制御装置110(仮想負荷取得部18)は、接触フラグ0/1(仮想負荷情報)を、機械座標Xs(i)(比較箇所特定データ)と関連付けて取得する。 The numerical control device 110 (virtual load acquisition unit 18) acquires the contact flag 0/1 (virtual load information) in association with the machine coordinates Xs(i) (comparison point identification data).
<5-4>
 シミュレーション部14(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、接触信号(実負荷情報)と接触フラグ(仮想負荷情報)とを比較し、これらの情報に差異があるか否かの判定を行う。例えば図8では、数値制御装置110(負荷情報判定部22)は、機械座標Xr(j)、Xs(i)(比較箇所特定データ)に基づいて、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)と、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(i)(比較箇所特定データ)とが異なる場合、実負荷情報と仮想負荷情報とに差異があると判定する。
<5-4>
The simulation unit 14 (load information determination unit 22) compares the contact signal (actual load information) with the contact flag (virtual load information) based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) and determines whether there is a difference between these pieces of information. For example, in Fig. 8, the numerical control device 110 (load information determination unit 22) determines that there is a difference between the actual load information and the virtual load information based on the machine coordinates Xr(j), Xs(i) (comparison point identification data) when the machine coordinate Xr(j) (comparison point identification data) at which the contact signal (actual load information) is detected in the actual machining unit 12 is different from the machine coordinate Xs(i) (comparison point identification data) at which the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14.
 負荷情報判定部22は、比較箇所特定データにおけるある特定の区間の仮想負荷情報と実負荷情報のみを抽出して比較してもよい。 The load information determination unit 22 may extract and compare only the virtual load information and actual load information for a specific section in the comparison point identification data.
 実負荷情報と仮想負荷情報とに差異がある場合、シミュレーション部14(補正部26)は、シミュレーション部14の前提条件を変更(補正)する。シミュレーション部14の前提条件としては、例えば運転データに記載された事項であり、仮想工具、仮想ワークおよび仮想可動部に関する前提条件を含む。 If there is a difference between the actual load information and the virtual load information, the simulation unit 14 (correction unit 26) changes (corrects) the preconditions of the simulation unit 14. The preconditions of the simulation unit 14 are, for example, items described in the operation data, and include preconditions related to the virtual tool, virtual workpiece, and virtual moving parts.
 例えば図8では、シミュレーション部14(補正部26)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)に対応する、シミュレーション部14における機械座標と、仮想ワークWsの境界の機械座標との差分を計算し、この差分を仮想工具Tsの半径Rの設定値として変更するように、シミュレーション部の前提条件に反映する。 For example, in FIG. 8, the simulation unit 14 (correction unit 26) calculates the difference between the machine coordinate in the simulation unit 14 corresponding to the machine coordinate Xr(j) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate of the boundary of the virtual workpiece Ws, and reflects this difference in the preconditions of the simulation unit so as to change the setting value of the radius R of the virtual tool Ts.
 或いは、シミュレーション部14(補正部26)は、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)と、シミュレーション部14において接触フラグ(仮想負荷情報)が検知された機械座標Xs(i)との差分を計算し、この差分を仮想工具Tsの補正量として、この補正量だけ仮想工具Tsの設定値を変更(補正)するように、シミュレーション部の前提条件に反映してもよい。 Alternatively, the simulation unit 14 (correction unit 26) may calculate the difference between the machine coordinate Xr(j) at which a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate Xs(i) at which a contact flag (virtual load information) is detected in the simulation unit 14, and use this difference as a correction amount for the virtual tool Ts, and reflect this difference in the preconditions of the simulation unit so as to change (correct) the setting value of the virtual tool Ts by this correction amount.
 或いは、シミュレーション部14(補正部26)は、運転データにおいて、実加工部12において接触信号(実負荷情報)が検知された機械座標Xr(j)(比較箇所特定データ)と、シミュレーション部14において接触フラグ(仮想負荷情報)が0から1となる機械座標Xs(i)(比較箇所特定データ)とに基づいて、これらの情報の差異がある工程を特定し、加工シミュレーションの前提条件を変更(補正)してもよい。 Alternatively, the simulation unit 14 (correction unit 26) may identify a process in the operation data where there is a difference in information based on the machine coordinate Xr(j) (comparison location identification data) where a contact signal (actual load information) is detected in the actual machining unit 12 and the machine coordinate Xs(i) (comparison location identification data) where the contact flag (virtual load information) changes from 0 to 1 in the simulation unit 14, and change (correct) the preconditions for the machining simulation.
 以上説明したように、本実施形態の加工負荷判定システム10によれば、加工シミュレーションの仮想負荷情報を比較箇所特定データと関連付けて取得し、実加工の実負荷情報を比較箇所特定データと関連付けて取得するので、実加工に対してリアルタイムに加工シミュレーションを行わずとも、比較箇所特定データに基づいてこれらの負荷情報を適切に比較することができる。そのため、実加工の前に加工シミュレーションを予め行うことができ、実加工の動作時間に合わせて加工シミュレーションの処理時間を短くする必要がなく、加工シミュレーションの精度が限定されない、すなわち加工シミュレーションの精度を高めることができる。そのため、加工シミュレーションと実加工との差異の検出精度を高めることができ、従来防げなかった誤動作を正しく検出できる。 As described above, according to the machining load judgment system 10 of this embodiment, virtual load information of the machining simulation is acquired in association with the comparison location identification data, and actual load information of the actual machining is acquired in association with the comparison location identification data, so that these load information can be appropriately compared based on the comparison location identification data without performing a machining simulation in real time for the actual machining. Therefore, the machining simulation can be performed in advance before the actual machining, there is no need to shorten the processing time of the machining simulation to match the operating time of the actual machining, and the accuracy of the machining simulation is not limited, that is, the accuracy of the machining simulation can be improved. Therefore, the accuracy of detection of the difference between the machining simulation and actual machining can be improved, and malfunctions that could not be prevented in the past can be correctly detected.
 ここで、特許文献1に開示の技術では、同じ運転データで同じ動作を繰り返す場合、常に同じシミュレーションをし続ける必要があり、そのためのリソースが必要となる。この点に関し、本実施形態では、実加工のたびに加工シミュレーションを行う必要がなく、特許文献1に開示の技術と比較してリソースを削減できる。 In the technology disclosed in Patent Document 1, when repeating the same operation with the same operating data, it is necessary to constantly perform the same simulation, which requires resources. In this regard, in this embodiment, it is not necessary to perform a machining simulation every time actual machining is performed, and resources can be reduced compared to the technology disclosed in Patent Document 1.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値または数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the spirit of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used to explain the above-mentioned embodiments.
 上記実施形態および変形例に関し、更に以下の付記を開示する。
(付記1)
 加工負荷判定システム(10)は、
 工具(T)または被加工物(W)が設けられた可動部(134、136)を有し、運転データに基づいて前記工具(T)と前記被加工物(W)とを相対移動させることによって前記被加工物(W)の加工を行う実加工部(12)と、
 前記工具(T)、前記被加工物(W)および前記可動部(134、136)にそれぞれ対応した仮想工具(Ts)、仮想被加工物(Ws)および仮想可動部(134s、136s)を含む仮想空間(VS)において、前記運転データに基づいて前記仮想工具(Ts)と前記仮想被加工物(Ws)とを相対移動させることによって前記仮想被加工物(Ws)の加工シミュレーションを行うシミュレーション部(14)と、
 前記シミュレーション部(14)による加工シミュレーションによって得られた、前記仮想可動部(134s、136s)に生じる仮想負荷情報を取得する仮想負荷取得部(18)と、
 前記実加工部(12)による加工によって得られた、前記可動部(134、136)に生じる実負荷情報を取得する実負荷取得部(16)と、
 前記仮想負荷情報と前記実負荷情報とを比較し、これらの情報に差異があるか否かの判定を行う負荷情報判定部(22)と、
を備え、
 前記シミュレーション部(14)は、前記仮想負荷情報と、前記仮想負荷情報と前記実負荷情報との比較箇所を特定する比較箇所特定データとを計算し、
 前記仮想負荷取得部(18)は、前記仮想負荷情報を前記比較箇所特定データと関連付けて取得し、
 前記実負荷取得部(16)は、前記実負荷情報を前記比較箇所特定データと関連付けて取得し、
 前記負荷情報判定部(22)は、前記比較箇所特定データに基づいて、前記仮想負荷情報と前記実負荷情報とを比較する。
The following supplementary notes are further disclosed regarding the above-described embodiment and modified examples.
(Appendix 1)
The processing load determination system (10) comprises:
an actual machining unit (12) having a movable unit (134, 136) on which a tool (T) or a workpiece (W) is provided, and machining the workpiece (W) by relatively moving the tool (T) and the workpiece (W) based on operation data;
a simulation unit (14) that performs a machining simulation of the virtual workpiece (Ws) by relatively moving the virtual tool (Ts) and the virtual workpiece (Ws) based on the operation data in a virtual space (VS) including a virtual tool (Ts), a virtual workpiece (Ws), and a virtual movable part (134s, 136s) corresponding to the tool (T), the workpiece (W), and the movable part (134, 136), respectively;
a virtual load acquisition unit (18) that acquires virtual load information generated on the virtual moving parts (134s, 136s), the virtual load information being obtained by a machining simulation performed by the simulation unit (14);
an actual load acquisition unit (16) that acquires actual load information generated on the movable unit (134, 136) obtained by machining by the actual machining unit (12);
a load information determination unit (22) for comparing the virtual load information with the actual load information and determining whether or not there is a difference between these pieces of information;
Equipped with
The simulation unit (14) calculates the virtual load information and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information,
The virtual load acquisition unit (18) acquires the virtual load information in association with the comparison point identification data,
The actual load acquisition unit (16) acquires the actual load information in association with the comparison point identification data,
The load information determination unit (22) compares the virtual load information with the actual load information based on the comparison point specifying data.
(付記2)
 上記の加工負荷判定システム(10)において、
 前記実負荷情報のための前記比較箇所特定データは、前記可動部(134、136)の位置情報または時間情報の少なくともいずれかを含み、
 前記仮想負荷情報のための前記比較箇所特定データは、前記仮想可動部(134s、136s)の位置情報、時間情報、または前記運転データの少なくともいずれかを含む。
(Appendix 2)
In the above processing load judgment system (10),
the comparison point identification data for the actual load information includes at least one of position information or time information of the movable portion (134, 136),
The comparison point specifying data for the virtual load information includes at least one of position information, time information, and the operation data of the virtual moving parts (134s, 136s).
(付記3)
 上記の加工負荷判定システム(10)において、
 前記実負荷情報は、前記被加工物(W)を加工するときに前記可動部(134、136)に生じるエネルギーを含み、
 前記仮想負荷情報は、前記仮想被加工物(Ws)を加工するときに前記仮想可動部(134s、136s)に生じるエネルギーを含む。
(Appendix 3)
In the above processing load judgment system (10),
The actual load information includes energy generated in the movable parts (134, 136) when the workpiece (W) is machined,
The virtual load information includes energy generated in the virtual moving parts (134s, 136s) when machining the virtual workpiece (Ws).
(付記4)
 上記の加工負荷判定システム(10)において、
 前記実負荷情報は、前記工具(T)と前記被加工物(W)とが接触しているか否かを示す接触情報であり、
 前記仮想負荷情報は、前記仮想工具(Ts)と前記仮想被加工物(Ws)とが接触しているか否かを示す接触情報である。
(Appendix 4)
In the above processing load judgment system (10),
The actual load information is contact information indicating whether or not the tool (T) and the workpiece (W) are in contact with each other,
The virtual load information is contact information indicating whether or not the virtual tool (Ts) and the virtual workpiece (Ws) are in contact with each other.
(付記5)
 上記の加工負荷判定システム(10)において、
 前記負荷情報判定部(22)は、前記実加工部(12)の動作中にリアルタイムに前記判定を行う。
(Appendix 5)
In the above processing load judgment system (10),
The load information determination unit (22) performs the determination in real time while the actual machining unit (12) is in operation.
(付記6)
 上記の加工負荷判定システム(10)において、
 前記負荷情報判定部(22)によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記実加工部(12)において、前記可動部(134、136)を動作させるための出力の制限、予め設定された前記可動部(134、136)の退避動作、または前記可動部(134、136)の動作の即時の減速停止の少なくともいずれかを行う。
(Appendix 6)
In the above processing load judgment system (10),
When the load information determination unit (22) determines that there is a difference between the virtual load information and the actual load information, the actual processing unit (12) performs at least one of limiting the output for operating the movable parts (134, 136), performing a preset retraction operation of the movable parts (134, 136), or immediately decelerating and stopping the operation of the movable parts (134, 136).
(付記7)
 上記の加工負荷判定システム(10)において、
 前記シミュレーション部(14)は、前記仮想工具(Ts)、前記仮想被加工物(Ws)および前記仮想可動部(134s、136s)に関する前提条件を含む前記運転データに基づいて前記加工シミュレーションを行い、
 前記負荷情報判定部(22)によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記運転データにおいて、前記比較箇所特定データに基づいてこれらの情報の差異がある工程を特定し、前記加工シミュレーションの前提条件を変更する。
(Appendix 7)
In the above processing load judgment system (10),
the simulation unit (14) performs the machining simulation based on the operation data including preconditions related to the virtual tool (Ts), the virtual workpiece (Ws), and the virtual moving part (134s, 136s);
When the load information determination unit (22) determines that there is a difference between the virtual load information and the actual load information, a process in the operation data where there is a difference between these pieces of information is identified based on the comparison point identification data, and a prerequisite for the processing simulation is changed.
(付記8)
 上記の加工負荷判定システム(10)において、
 前記実負荷情報は、前記工具(T)と前記被加工物(W)とが接触しているか否かを示す接触情報であり、
 前記仮想負荷情報は、前記仮想工具(Ts)と前記仮想被加工物(Ws)とが接触しているか否かを示す接触情報であり、
 前記実負荷情報のための前記比較箇所特定データは、前記可動部(134、136)の位置情報を含み、
 前記仮想負荷情報のための前記比較箇所特定データは、前記仮想可動部(134s、136s)の位置情報を含み、
 前記シミュレーション部(14)は、前記仮想工具(Ts)、前記仮想被加工物(Ws)および前記仮想可動部(134s、136s)に関する前提条件を含む前記運転データに基づいて前記加工シミュレーションを行い、
 前記負荷情報判定部(22)によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記実加工部(12)における前記工具(t)と前記被加工物W)とが接触した機械座標と、前記シミュレーション部(14)における前記仮想工具(Ts)と前記仮想被加工物(Ws)とが接触した機械座標との差分を計算し、
 前記差分を前記仮想工具(Ts)の補正量として前記仮想工具(Ts)の前記前提条件を変更する。
(Appendix 8)
In the above processing load judgment system (10),
The actual load information is contact information indicating whether or not the tool (T) and the workpiece (W) are in contact with each other,
the virtual load information is contact information indicating whether or not the virtual tool (Ts) and the virtual workpiece (Ws) are in contact with each other;
The comparison point specifying data for the actual load information includes position information of the movable parts (134, 136),
The comparison point specifying data for the virtual load information includes position information of the virtual moving parts (134s, 136s),
the simulation unit (14) performs the machining simulation based on the operation data including preconditions related to the virtual tool (Ts), the virtual workpiece (Ws), and the virtual moving part (134s, 136s);
when the load information determination unit (22) determines that there is a difference between the virtual load information and the actual load information, a difference is calculated between a machine coordinate at which the tool (t) and the workpiece (W) in the actual machining unit (12) come into contact with each other and a machine coordinate at which the virtual tool (Ts) and the virtual workpiece (Ws) in the simulation unit (14) come into contact with each other;
The difference is used as a correction amount for the virtual tool (Ts) to change the prerequisites for the virtual tool (Ts).
(付記9)
 上記の加工負荷判定システム(10)において、
 前記シミュレーション部(14)は、前記運転データに基づいて前記実加工部(12)が運転する前に前記加工シミュレーションを行い、前記比較箇所データと前記仮想負荷情報とを計算しておく。
(Appendix 9)
In the above processing load judgment system (10),
The simulation unit (14) performs the machining simulation based on the operation data before the actual machining unit (12) operates, and calculates the comparison location data and the virtual load information.
(付記10)
 上記の加工負荷判定システム(10)において、
 前記仮想負荷取得部(18)は、前記運転データに、前記比較箇所特定データおよび前記仮想負荷情報の少なくともいずれかを記載する。
(Appendix 10)
In the above processing load judgment system (10),
The virtual load acquisition unit (18) writes at least one of the comparison point identification data and the virtual load information in the operation data.
(付記11)
 上記の加工負荷判定システム(10)において、
 前記負荷情報判定部(22)によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された比較箇所特定データを、差異に応じた異なる表示態様で表示する表示部(28)を備える。
(Appendix 11)
In the above processing load judgment system (10),
The display unit (28) displays, in a different display mode according to the difference, comparison point identification data for which the load information determination unit (22) has determined that there is a difference between the virtual load information and the actual load information.
(付記12)
 上記の加工負荷判定システム(10)において、
 前記負荷情報判定部(22)は、前記比較箇所特定データにおけるある特定の区間の前記仮想負荷情報と前記実負荷情報のみを抽出して比較する。
(Appendix 12)
In the above processing load judgment system (10),
The load information determination unit (22) extracts and compares only the virtual load information and the actual load information for a specific section in the comparison point identification data.
 10 加工負荷判定システム
 12 実加工部
 14 シミュレーション部
 16 実負荷取得部
 18 仮想負荷取得部
 20 記憶部
 22 負荷情報判定部
 24 動作制御部
 26 補正部
 28 表示部
 100 産業機械システム
 110 数値制御装置
 120 駆動部
 130 工作機械(産業機械)
 132 モータ
 134 取付部(可動部)
 134s 仮想取付部(仮想可動部)
 136 テーブル(可動部)
 136s 仮想テーブル(仮想可動部)
 T 工具
 Ts 仮想工具
 VS 仮想空間
 W ワーク(被加工物)
 Ws 仮想ワーク(仮想被加工部)
REFERENCE SIGNS LIST 10 Machining load judgment system 12 Actual machining section 14 Simulation section 16 Actual load acquisition section 18 Virtual load acquisition section 20 Storage section 22 Load information judgment section 24 Operation control section 26 Correction section 28 Display section 100 Industrial machinery system 110 Numerical control device 120 Driving section 130 Machine tool (industrial machinery)
132 Motor 134 Mounting part (movable part)
134s Virtual mounting part (virtual moving part)
136 Table (movable part)
136s Virtual table (virtual moving part)
T Tool Ts Virtual tool VS Virtual space W Workpiece (workpiece)
Ws Virtual work (virtual processed part)

Claims (12)

  1.  工具または被加工物が設けられた可動部を有し、運転データに基づいて前記工具と前記被加工物とを相対移動させることによって前記被加工物の加工を行う実加工部と、
     前記工具、前記被加工物および前記可動部にそれぞれ対応した仮想工具、仮想被加工物および仮想可動部を含む仮想空間において、前記運転データに基づいて前記仮想工具と前記仮想被加工物とを相対移動させることによって前記仮想被加工物の加工シミュレーションを行うシミュレーション部と、
     前記シミュレーション部による加工シミュレーションによって得られた、前記仮想可動部に生じる仮想負荷情報を取得する仮想負荷取得部と、
     前記実加工部による加工によって得られた、前記可動部に生じる実負荷情報を取得する実負荷取得部と、
     前記仮想負荷情報と前記実負荷情報とを比較し、これらの情報に差異があるか否かの判定を行う負荷情報判定部と、
    を備え、
     前記シミュレーション部は、前記仮想負荷情報と、前記仮想負荷情報と前記実負荷情報との比較箇所を特定する比較箇所特定データとを計算し、
     前記仮想負荷取得部は、前記仮想負荷情報を前記比較箇所特定データと関連付けて取得し、
     前記実負荷取得部は、前記実負荷情報を前記比較箇所特定データと関連付けて取得し、
     前記負荷情報判定部は、前記比較箇所特定データに基づいて、前記仮想負荷情報と前記実負荷情報とを比較する、
    加工負荷判定システム。
    an actual machining unit having a movable part on which a tool or a workpiece is provided, and machining the workpiece by relatively moving the tool and the workpiece based on operation data;
    a simulation unit that performs a machining simulation of the virtual workpiece by relatively moving the virtual tool and the virtual workpiece based on the operation data in a virtual space including a virtual tool, a virtual workpiece, and a virtual movable part corresponding to the tool, the workpiece, and the movable part, respectively;
    a virtual load acquisition unit that acquires virtual load information generated on the virtual moving part, the virtual load information being obtained by the machining simulation performed by the simulation unit;
    an actual load acquisition unit that acquires actual load information generated on the movable part, the actual load information being obtained by the processing by the actual processing unit;
    a load information determination unit that compares the virtual load information with the actual load information and determines whether there is a difference between these pieces of information;
    Equipped with
    the simulation unit calculates the virtual load information and comparison point identification data that identifies a comparison point between the virtual load information and the actual load information;
    The virtual load acquisition unit acquires the virtual load information in association with the comparison point identification data,
    The actual load acquisition unit acquires the actual load information in association with the comparison point identification data,
    the load information determination unit compares the virtual load information with the actual load information based on the comparison point identification data;
    Processing load judgment system.
  2.  前記実負荷情報のための前記比較箇所特定データは、前記可動部の位置情報または時間情報の少なくともいずれかを含み、
     前記仮想負荷情報のための前記比較箇所特定データは、前記仮想可動部の位置情報、時間情報、または前記運転データの少なくともいずれかを含む、
    請求項1に記載の加工負荷判定システム。
    the comparison point identification data for the actual load information includes at least one of position information or time information of the movable part,
    The comparison point identification data for the virtual load information includes at least one of position information, time information, or the operation data of the virtual moving part.
    The processing load determination system according to claim 1 .
  3.  前記実負荷情報は、前記被加工物を加工するときに前記可動部に生じるエネルギーを含み、
     前記仮想負荷情報は、前記仮想被加工物を加工するときに前記仮想可動部に生じるエネルギーを含む、
    請求項1または2に記載の加工負荷判定システム。
    the actual load information includes energy generated in the movable part when the workpiece is machined,
    The virtual load information includes energy generated in the virtual moving part when the virtual workpiece is machined.
    The processing load determination system according to claim 1 or 2.
  4.  前記実負荷情報は、前記工具と前記被加工物とが接触しているか否かを示す接触情報であり、
     前記仮想負荷情報は、前記仮想工具と前記仮想被加工物とが接触しているか否かを示す接触情報である、
    請求項1または2に記載の加工負荷判定システム。
    the actual load information is contact information indicating whether or not the tool and the workpiece are in contact with each other,
    the virtual load information is contact information indicating whether or not the virtual tool and the virtual workpiece are in contact with each other;
    The processing load determination system according to claim 1 or 2.
  5.  前記負荷情報判定部は、前記実加工部の動作中にリアルタイムに前記判定を行う、請求項1~4のいずれか1項に記載の加工負荷判定システム。 The machining load judgment system according to any one of claims 1 to 4, wherein the load information judgment unit performs the judgment in real time while the actual machining unit is operating.
  6.  前記負荷情報判定部によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記実加工部において、前記可動部を動作させるための出力の制限、予め設定された前記可動部の退避動作、または前記可動部の動作の即時の減速停止の少なくともいずれかを行う、請求項1~5のいずれか1項に記載の加工負荷判定システム。 The machining load determination system according to any one of claims 1 to 5, wherein, when the load information determination unit determines that there is a difference between the virtual load information and the actual load information, the actual machining unit performs at least one of the following: limiting the output for operating the movable part, performing a preset retraction operation of the movable part, or immediately decelerating and stopping the operation of the movable part.
  7.  前記シミュレーション部は、前記仮想工具、前記仮想被加工物および前記仮想可動部に関する前提条件を含む前記運転データに基づいて前記加工シミュレーションを行い、
     前記負荷情報判定部によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記運転データにおいて、前記比較箇所特定データに基づいてこれらの情報の差異がある工程を特定し、前記加工シミュレーションの前提条件を変更する、請求項1~4のいずれか1項に記載の加工負荷判定システム。
    the simulation unit performs the machining simulation based on the operation data including preconditions related to the virtual tool, the virtual workpiece, and the virtual moving part;
    The machining load determination system according to any one of claims 1 to 4, wherein, when the load information determination unit determines that there is a difference between the virtual load information and the actual load information, a process in the operation data where there is a difference between these pieces of information is identified based on the comparison point identification data, and a precondition for the machining simulation is changed.
  8.  前記実負荷情報は、前記工具と前記被加工物とが接触しているか否かを示す接触情報であり、
     前記仮想負荷情報は、前記仮想工具と前記仮想被加工物とが接触しているか否かを示す接触情報であり、
     前記実負荷情報のための前記比較箇所特定データは、前記可動部の位置情報を含み、
     前記仮想負荷情報のための前記比較箇所特定データは、前記仮想可動部の位置情報を含み、
     前記シミュレーション部は、前記仮想工具、前記仮想被加工物および前記仮想可動部に関する前提条件を含む前記運転データに基づいて前記加工シミュレーションを行い、
     前記負荷情報判定部によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された場合、前記実加工部における前記工具と前記被加工物とが接触した機械座標と、前記シミュレーション部における前記仮想工具と前記仮想被加工物とが接触した機械座標との差分を計算し、
     前記差分を前記仮想工具の補正量として前記仮想工具の前記前提条件を変更する、
    請求項1~4のいずれか1項に記載の加工負荷判定システム。
    the actual load information is contact information indicating whether or not the tool and the workpiece are in contact with each other,
    the virtual load information is contact information indicating whether or not the virtual tool and the virtual workpiece are in contact with each other,
    the comparison point specifying data for the actual load information includes position information of the movable part,
    the comparison point specifying data for the virtual load information includes position information of the virtual moving part,
    the simulation unit performs the machining simulation based on the operation data including preconditions related to the virtual tool, the virtual workpiece, and the virtual moving part;
    when the load information determination unit determines that there is a difference between the virtual load information and the actual load information, a difference is calculated between a machine coordinate at which the tool and the workpiece in the actual machining unit come into contact with each other and a machine coordinate at which the virtual tool and the virtual workpiece in the simulation unit come into contact with each other;
    changing the prerequisites of the virtual tool using the difference as a correction amount of the virtual tool;
    The processing load determination system according to any one of claims 1 to 4.
  9.  前記シミュレーション部は、前記運転データに基づいて前記実加工部が運転する前に前記加工シミュレーションを行い、前記比較箇所特定データと前記仮想負荷情報とを計算しておく、請求項1~5のいずれか1項に記載の加工負荷判定システム。 The machining load judgment system according to any one of claims 1 to 5, wherein the simulation unit performs the machining simulation based on the operation data before the actual machining unit operates, and calculates the comparison point identification data and the virtual load information.
  10.  前記仮想負荷取得部は、前記運転データに、前記比較箇所特定データおよび前記仮想負荷情報の少なくともいずれかを記載する、請求項2に記載の加工負荷判定システム。 The processing load determination system according to claim 2, wherein the virtual load acquisition unit writes at least one of the comparison location identification data and the virtual load information in the operation data.
  11.  前記負荷情報判定部によって前記仮想負荷情報と前記実負荷情報とに差異があると判定された比較箇所特定データを、差異に応じた異なる表示態様で表示する表示部を備える、請求項1~10のいずれか1項に記載の加工負荷判定システム。 The processing load determination system according to any one of claims 1 to 10, further comprising a display unit that displays, in a different display mode according to the difference, comparison point specific data determined by the load information determination unit to have a difference between the virtual load information and the actual load information.
  12.  前記負荷情報判定部は、前記比較箇所特定データにおけるある特定の区間の前記仮想負荷情報と前記実負荷情報のみを抽出して比較する、請求項1~10のいずれか1項に記載の加工負荷判定システム。 The processing load determination system according to any one of claims 1 to 10, wherein the load information determination unit extracts and compares only the virtual load information and the actual load information for a specific section in the comparison location identification data.
PCT/JP2022/042945 2022-11-21 2022-11-21 Machining load determination system WO2024111014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042945 WO2024111014A1 (en) 2022-11-21 2022-11-21 Machining load determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042945 WO2024111014A1 (en) 2022-11-21 2022-11-21 Machining load determination system

Publications (1)

Publication Number Publication Date
WO2024111014A1 true WO2024111014A1 (en) 2024-05-30

Family

ID=91195802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042945 WO2024111014A1 (en) 2022-11-21 2022-11-21 Machining load determination system

Country Status (1)

Country Link
WO (1) WO2024111014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250710A (en) * 1987-04-06 1988-10-18 Fanuc Ltd System controller
JP2012014601A (en) * 2010-07-05 2012-01-19 Jtekt Corp Machining simulation device and optimal process determination device
JP2016182650A (en) * 2015-03-26 2016-10-20 三菱電機株式会社 Breakage prevention system and grindstone
JP2019101680A (en) * 2017-11-30 2019-06-24 三菱重工工作機械株式会社 Condition-adapting method, apparatus and system for machining simulation and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250710A (en) * 1987-04-06 1988-10-18 Fanuc Ltd System controller
JP2012014601A (en) * 2010-07-05 2012-01-19 Jtekt Corp Machining simulation device and optimal process determination device
JP2016182650A (en) * 2015-03-26 2016-10-20 三菱電機株式会社 Breakage prevention system and grindstone
JP2019101680A (en) * 2017-11-30 2019-06-24 三菱重工工作機械株式会社 Condition-adapting method, apparatus and system for machining simulation and program

Similar Documents

Publication Publication Date Title
JP4056542B2 (en) Offline teaching device for robots
US7742836B2 (en) Control unit
US20150378347A1 (en) Numerical control device
US7738992B2 (en) Numerical control system including machine control system and collision detection system
JP6434246B2 (en) Numerical control device with machine abnormality history analysis support function
US20130325166A1 (en) Numerical control device including display part for displaying information for evaluation of machining process
US9599978B2 (en) Numerical control apparatus having function of reducing path to start point in canned cycle
US20150323924A1 (en) Servo control device
JP2006155351A (en) Controller
CN110209120A (en) The operating simulation device of lathe
US6856853B2 (en) Simulation device
KR20150074258A (en) Method and Apparatus for Monitoring Cutting Load of Machine Tool
CN109874403B (en) Numerical control device
JP2014219911A (en) Simulation device and simulation program
WO2024111014A1 (en) Machining load determination system
KR100548874B1 (en) Numerical control unit having function for detecting the nicked edge of tool
JP2020013433A (en) Numerical control device, numerical control method, and numerical control program
CN107229253B (en) Numerical controller for facilitating countermeasures after interference detection
US20200026255A1 (en) Abnormality detection device of machine tool
JP2008226112A (en) Numerically controlled apparatus
JP2008071015A (en) Numerical controller
CN109189002A (en) A kind of Surface Milling control system for processing and lathe
CN110536773A (en) Working control device, work mechanism and processing control method
US11194313B2 (en) Numerical controller
JP2022041159A (en) Numerical control system and interference check method