WO2024109595A1 - 合光组件、光源模组及投影设备 - Google Patents

合光组件、光源模组及投影设备 Download PDF

Info

Publication number
WO2024109595A1
WO2024109595A1 PCT/CN2023/131631 CN2023131631W WO2024109595A1 WO 2024109595 A1 WO2024109595 A1 WO 2024109595A1 CN 2023131631 W CN2023131631 W CN 2023131631W WO 2024109595 A1 WO2024109595 A1 WO 2024109595A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
region
light beam
sub
Prior art date
Application number
PCT/CN2023/131631
Other languages
English (en)
French (fr)
Inventor
张伟
李鹏波
Original Assignee
深圳洛克创新科技有限公司
北京石头世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳洛克创新科技有限公司, 北京石头世纪科技股份有限公司 filed Critical 深圳洛克创新科技有限公司
Publication of WO2024109595A1 publication Critical patent/WO2024109595A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention belongs to the field of optoelectronic technology and relates to a light combining component, a light source module and a projection device.
  • a light-combining component comprising: a component body, the component body having a first dimming surface and a second dimming surface, the first dimming surface comprising: a first area, the second dimming surface comprising: a second area and a third area surrounding the second area, wherein: the first area and the third area are reflection areas of the same target band light beam, and the second area is a transmission area of the target band light beam; the first area and the second area are overlapped and arranged to divide a light-combining channel, a first light input channel and a second light input channel opposite to the first light input channel; a first light beam incident from the first light input channel to the first area is transmitted to the light-combining channel after being reflected by the first area; a second light beam incident from the second light input channel to the third area is transmitted to the light-combining channel after being reflected by the third area.
  • a light source module comprising: a first light source assembly, a second light source assembly, and the light combining assembly described in the first aspect, wherein: the first light source assembly is used to output a first light beam, and the first light beam is incident from a first light input channel to a first area of the light combining assembly, and is reflected from the first area to the light combining channel for output; the second light source assembly is used to output a second light beam, and the second light beam is incident from a second light input channel to the light combining assembly The third area of the component is reflected by the third area to the light combining channel for output.
  • a projection device comprising: a light valve, a projection lens, and the light source module described in the second aspect, wherein the illumination light beam output by the light source module is output after passing through the light valve and the projection lens.
  • FIG1 shows a schematic diagram of the structure of a light combining assembly according to some embodiments of the present disclosure
  • FIG2 shows a schematic structural diagram of a light combining assembly according to other embodiments of the present disclosure
  • FIG3 shows a schematic structural diagram of a light combining assembly according to some other embodiments of the present disclosure
  • FIG4 shows a plan view of a first dimming surface and a second dimming surface according to some embodiments of the present disclosure
  • FIG5 is a schematic diagram showing the structure of a light combining assembly according to some further embodiments of the present disclosure.
  • FIG6 shows a schematic structural diagram of a light combining assembly according to some other embodiments of the present disclosure.
  • FIG7 shows a schematic structural diagram of a light source module according to some embodiments of the present disclosure
  • FIG8 shows a schematic structural diagram of a light source module according to other embodiments of the present disclosure.
  • FIG. 9 shows a schematic structural diagram of a projection device according to some embodiments of the present disclosure.
  • the term “plurality” in this article includes two or more than two.
  • the terms “first”, “second”, “third”, etc. are used only as labels and do not limit the number of their objects or the order of their objects.
  • the term “and/or” is only a way to describe the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, and the same There are three situations: A and B exist, and B exists alone.
  • Some embodiments of the present disclosure provide a light combining component that can combine light beams with the same or similar spectra.
  • the light combining component can be used in a projection lighting system.
  • a projection lighting system dual light sources of the same color are equipped, and the light beams provided by the dual light sources are combined and output using the light combining component provided by some embodiments of the present disclosure, which can effectively increase the luminous flux of the color light beams, thereby increasing the system lighting brightness.
  • the light combining component can also be used in other applicable optical systems, and this embodiment does not limit this.
  • Fig. 1 shows a schematic diagram of the structure of a light combining component according to some embodiments of the present disclosure.
  • the light combining component 10 may include: a component body, the component body having a first dimming surface 110 and a second dimming surface 120.
  • the first dimming surface 110 and the second dimming surface 120 are surfaces that can select light beams of specific wavelengths for reflection and transmission in different regions.
  • the first dimming surface 110 includes: a first area 111.
  • the second dimming surface 120 includes: a second area 121 and a third area 122 surrounding the second area 121.
  • the first area 111 and the third area 122 are reflection areas of the same target wavelength band light beam, and the second area 121 is a transmission area of the above target wavelength band light beam.
  • the first dimming surface 110 and the second dimming surface 120 can be coated with a zoned film, the first area 111 and the third area 122 are coated with a functional film layer for reflecting the target wavelength band light beam, and the second area 121 is coated with an anti-reflection film layer.
  • the target band is a band in which the light combining component 10 can achieve light combining through reflection from the reflection area.
  • the functional film layers of the first area 111 and the third area 122 serving as the reflection area need to be configured so that their corresponding target bands are adapted to the wavelength range of the light beams to be combined.
  • the wavelength ranges of the two light beams to be combined are: ⁇ 1 ⁇ 2, ⁇ 3 ⁇ 4, respectively, wherein ⁇ 3 is greater than ⁇ 1 and less than ⁇ 2, and ⁇ 4 is greater than ⁇ 2, then the target band needs to include at least: ⁇ 1 ⁇ 4.
  • the target band may be a red light band.
  • the target band may also be a blue light band, a green light band, or a yellow light band, etc., which is not limited in this embodiment.
  • the second area 121 is a transmission area for the target band light beam, and its transmission range may include only the target band, or may include the full band, and is set according to the needs of the actual application scenario, and this embodiment does not limit this.
  • the second area 121 may be an opening area, or may be a transparent material area.
  • the band light beam has a partitioned reflection characteristic, that is, it is reflected in the first area 111, transmitted in the second area 121, and reflected in the third area 122.
  • the two light beams to be combined are respectively referred to as the first light beam and the second light beam, and the wavelength ranges of the first light beam and the second light beam must both belong to the above-mentioned target band.
  • the wavelength ranges of the first light beam and the second light beam may be the same or partially overlap.
  • the wavelength ranges of the first light beam and the second light beam may also be separated from each other, but the degree of separation is relatively small, and both belong to the above-mentioned target band.
  • the first area 111 and the second area 121 are overlapped to divide the first light input channel L1 and the second light input channel L2, and the light combining channel C located on the same side of the first dimming surface 110 as the first light input channel L1.
  • the areas of the first area 111, the second area 121 and the third area 122 and the overlap between the first area 111 and the second area 121 at least a portion of the first light beam incident on the first area 111 can be reflected by the first area 111 and transmitted to the light combining channel C.
  • At least a portion of the second light beam incident on the third area 122 can be reflected by the third area 122 and transmitted to the light combining channel C, and combined with the first light beam transmitted to the light combining channel C.
  • the first light beam can be input from the first light input channel L1, and the second light beam can be input from the second light input channel L2.
  • the first light beam incident on the first area 111 from the first light input channel L1 is transmitted to the light combining channel C after being reflected by the first area 111;
  • the second light beam incident on the third area 122 from the second light input channel L2 is transmitted to the light combining channel C after being reflected by the third area 122, thereby realizing the light combining of the first light beam and the second light beam with the same or similar spectrum.
  • Some embodiments of the present disclosure realize light combination of light beams with the same or similar spectra by setting reflection areas in two dimming surface partitions and making the reflection area of the first dimming surface 110 overlap with the transmission area of the second dimming surface 120.
  • the beam diameter of the first light beam can be relatively small, so that the light spot irradiated to the first dimming surface 110 does not exceed the first area 111 as much as possible, thereby reducing unnecessary light loss; and the beam diameter of the second light beam can be relatively large, so that the light spot irradiated to the second dimming surface 120 at least partially overlaps with the third area 122, thereby increasing the combined luminous flux of the second light beam.
  • the energy density of the first light beam with a relatively small beam diameter can be increased as much as possible.
  • the first light beam may be a light beam emitted by a laser light source, or a fluorescent light beam generated by pump laser excitation;
  • the second light beam may be a light beam emitted by an LED (Light-Emitting Diode) light source.
  • the first light beam may be a light beam output by a red laser light source, and the second light beam may be a light beam output by a red LED light source.
  • the characteristic of the above-mentioned light combining component 10 transmitting light beams of other bands can also be utilized to realize the optical path coupling of the first light beam and the combined light beam with the second light beam and light beams of other bands.
  • the target band is the red light band, that is, the first light beam and the second light beam are both red light beams
  • the first dimming surface 110 and the second dimming surface 120 are also configured to: transmit at least one of the light beams in the blue light and green light bands.
  • Figure 2 shows a structural schematic diagram of a light combining component according to other embodiments of the present disclosure.
  • the spatial area opposite to the light combining channel C can be used as a third light input channel L3.
  • the blue light beam and/or green light beam input from the third light input channel L3 can be transmitted to the light combining channel C through the light combining component 10, and combined with the two red light beams transmitted to the light combining channel C.
  • the first dimming surface 110 can be perpendicular to the second dimming surface 120, so that the first area 111 is perpendicular to the second area 121 and the third area 122, so as to simplify the optical path design of the incident light and realize the coaxial output of the combined light beam.
  • the verticality here can be understood as a generalized verticality, that is, within the actual acceptable error range, the intersection angle can also have a certain deviation from the 90 degrees representing absolute verticality, for example, it can be 89 degrees, 89.5 degrees, 90 degrees, 90.5 degrees or 91 degrees, etc., and this embodiment does not limit this.
  • the first area 111 can be divided into two sub-areas located on both sides of the second dimming surface 120 by the second area 121
  • the second area 121 can be divided into two sub-areas located on both sides of the first dimming surface 110 by the first area 111.
  • the shapes of the first area 111 and the second area 121 can be axisymmetric figures, such as a circle, a square, etc.
  • each other can be divided into two mutually symmetrical sub-areas along the central axis, which can minimize light loss and improve the combined light brightness, and the optical axis of the component can be designed to the center position, thereby simplifying the optical path design.
  • FIG3 shows a schematic diagram of the structure of a light combining assembly according to some other embodiments of the present disclosure.
  • the first region 111 includes a first sub-region 111a and a second sub-region 111b located on both sides of the second dimming surface 120
  • the second region 121 includes a first sub-region 111a and a second sub-region 111b located on both sides of the first dimming surface 110.
  • the third sub-region 121a and the fourth sub-region 121b, the third region 122 includes a fifth sub-region 122a and a sixth sub-region 122b respectively located on both sides of the first dimming surface 110.
  • the incident position of the first light beam and the incident position of the second light beam can be adjusted so that a part of the first light beam incident from the first light input channel L1 is incident on the first sub-region 111a, after being reflected by the first sub-region 111a, it passes through the third sub-region 121a to enter the light combining channel C for output, and another part passes through the third sub-region 121a to enter the second sub-region 111b, and then reflects from the second sub-region 111b to the light combining channel C for output; a part of the second light beam incident from the second light input channel L2 is reflected from the fifth sub-region 122a to the light combining channel C for output, and a part of the second light beam is reflected from the sixth sub-region 122b to the light combining channel C for output.
  • the second light beam will be reflected by the second sub-region 111b and reflected by the first sub-region 111a through the fourth sub-region 121b and lost
  • the lost luminous flux is less than the luminous flux of the first light beam reflected to the combined light channel C through the first region 111.
  • the brightness of the combined light beam is greater.
  • the areas of the first region 111 and the second region 121 can be minimized while comprehensively considering the beam diameter of the first light beam and the alignment accuracy.
  • the first dimming surface 110 and the second dimming surface 120 are arranged vertically, by adjusting the incident angles of the first light beam and the second light beam to 45 degrees, and adjusting the light output positions of the corresponding light sources so that the optical axis of the first light beam coincides with the optical axis of the second light beam, the first light beam reflected by the first area 111 and the second light beam reflected by the third area 122 can be coaxially output in the combined light channel C.
  • the overlap between the reflective area and the transmissive area between the first dimming surface 110 and the second dimming surface affects, to a certain extent, the brightness of the combined light output by the light combining assembly 10.
  • the following describes the overlap between each reflective area and the corresponding transmissive area according to the orthographic projection relationship of each sub-area on the first reference plane 200 and the second reference plane 300 shown in FIG. 3 as reference planes.
  • the optical axis of the first light beam coincides with the optical axis of the second light beam. Then, the optical axis of the combined light beam obtained after reflection is perpendicular to both the optical axes of the first light beam and the second light beam.
  • the first reference plane 200 may be A plane perpendicular to the optical axis of the light combining channel C.
  • the second reference plane 300 is a plane perpendicular to the optical axis of the first light incident channel L1. It should be noted that the optical axis of the above optical channel is the optical axis of the light beam transmitted in the optical channel.
  • the orthographic projection of the first sub-region 111a on the first reference plane 200 is defined as the first projection area
  • the orthographic projection of the third sub-region 121a on the first reference plane 200 is defined as the second projection area.
  • the first projection area can be located within the second projection area, or substantially overlap with the second projection area. It should be noted that the substantially overlap described herein refers to a complete overlap, or there is a certain deviation, and the light loss caused by the deviation is within an acceptable range.
  • the portion of the first light beam incident on the first sub-area 111a can pass through the third sub-area 121a and be transmitted to the light combining channel C, thereby reducing the light loss of the first light beam and improving the light combining brightness.
  • the first projection area and the second projection area are substantially overlapped, which is conducive to reducing the area of the second area 121 and increasing the area of the third area 122, thereby increasing the light combining flux of the second light beam.
  • the orthographic projection of the fifth sub-region 122a on the first reference plane 200 and the orthographic projection of the second sub-region 111b on the first reference plane 200 do not overlap with each other, so that the portion of the second light beam reflected by the fifth sub-region 122a can be transmitted to the light combining channel C, thereby reducing the light loss of the second light beam and improving the light combining brightness.
  • the orthographic projection of the second sub-region 111b on the second reference plane 300 is defined as the third projection area
  • the orthographic projection of the third sub-region 121a on the second reference plane 300 is defined as the fourth projection area.
  • the third projection area can be located in the fourth projection area, or substantially overlap with the fourth projection area.
  • the first light beam incident on the second sub-region 111b can all pass through the second dimming surface 120 to be incident on the second sub-region 111b, and be reflected to the combined light channel C for output, which is also beneficial to reduce the light loss of the first light beam to improve the combined light brightness.
  • the third projection area substantially overlaps with the fourth projection area, which is also beneficial to reducing the area of the second area 121 and increasing the area of the third area 122, thereby increasing the combined light flux of the second light beam.
  • the orthographic projection of the sixth sub-region 122b on the second reference plane 300 does not overlap with the third projection region. It is ensured that the portion of the second light beam incident on the sixth sub-region 122b is not blocked by the second sub-region 111b and is incident on the sixth sub-region 122b.
  • the areas and/or shapes of the first sub-region 111a, the second sub-region 111b, the third sub-region 121a, and the fourth sub-region 121b may be the same, so as to maximize the combined light flux and thus improve the light output brightness.
  • the first dimming surface 110 may further include: a fourth area 112 surrounding the first area 111. Similar to the second area 121, the fourth area 112 is also a transmission area for the target band light beam. At this time, in the second light input channel L2, the light beam incident on the fifth sub-area 122a can be directly irradiated to the fifth sub-area 122a, while the light beam incident on the sixth sub-area 122b needs to first pass through the fourth area 112 and then irradiate to the sixth sub-area 122b.
  • Figure 4 shows a plan schematic diagram of the first dimming surface and the second dimming surface according to some embodiments of the present disclosure
  • Figure (a) in Figure 4 is a plan schematic diagram of the first dimming surface 110
  • Figure (b) in Figure 4 is a plan schematic diagram of the second dimming surface 120
  • the circular area in Figure (a) is the first area 111
  • the area outside the circular area is the fourth area 112
  • the circular area in Figure (b) is the second area 121
  • the area outside the circular area is the third area 122.
  • Fig. 5 shows a schematic diagram of the structure of a light combining assembly according to some other embodiments of the present disclosure. Considering that the first region 111 contributes to light combining in the first dimming surface 110, as shown in Fig. 5, the first dimming surface 110 may also only include the first region 111, which is not limited in this embodiment.
  • the component body in order to have the first dimming surface 110 and the second dimming surface 120, may include: at least two dimming elements, and at least two dimming elements are overlapped.
  • the overlapping arrangement here can be a cross arrangement or a spliced arrangement. The following mainly takes two structures as examples for description.
  • the dimming element may be a zone-coated dichroic mirror.
  • the component body may include: a first dichroic mirror 11 and a second dichroic mirror 12, wherein the first dichroic mirror 11 and the second dichroic mirror 12 are arranged crosswise.
  • the first dimming surface 110 is the surface of the first dichroic mirror 11
  • the second dimming surface 120 is the surface of the second dichroic mirror 12.
  • a first substrate and a second substrate may be provided.
  • the first substrate and the second substrate may be made of suitable materials such as glass or silicon, which is not limited in this embodiment.
  • the first region 111 of the first substrate, and the second region 121 and the third region 122 of the second substrate are pre-defined according to actual needs.
  • the process of the partition coating may include: coating the functional film layer on the upper surface and/or the lower surface of the first area 111 in the first substrate, and coating the functional film layer on the upper surface and/or the lower surface of the third area 122 in the second substrate.
  • the functional film layer may be a film layer that reflects the red light band and transmits the blue light and/or green light band.
  • an anti-reflection film that has an anti-reflection effect on red light, green light and blue light may also be coated in the second area 121.
  • the first dichroic mirror 11 and the second dichroic mirror 12 are cross-assembled together by some assembly methods, such as snap-fitting, and the cross position is located at the first area 111 and the second area 121 to obtain the light combining assembly 10 as shown in FIG. 1 .
  • the second region 121 of the second dichroic mirror 12 has an opening, and the first dichroic mirror 11 is disposed in the opening. In this way, the integrity of the first region 111 can be ensured, and compared with the second region 121 that does not contribute to the combined light, ensuring the integrity of the first region 111 is conducive to increasing the luminous flux of the reflected first light beam, so as to improve the brightness of the combined light.
  • the size, shape and area division of the first dichroic mirror 11 and the second dichroic mirror 12 can be the same, but the coating areas are opposite, one is a first area 111 located in the center coated with a functional film layer, and the other is a third area 122 located around the periphery coated with a functional film layer.
  • the first dimming surface 110 also includes a fourth area 112 surrounding the first area 111.
  • the area of the first dichroic mirror 11 may be smaller than the area of the second dichroic mirror 12, or even smaller than that of the first dimming surface 110, which only includes the first region 111, as shown in FIG5. This can save materials on the one hand, and on the other hand, when assembling in a "cross" cross-clamping manner, it can also minimize or even avoid damage to the functional film layer of the third region 122, which is conducive to ensuring the integrity of the functional film layer of the third region 122, thereby reducing unnecessary light loss caused to the second light beam, so as to improve the brightness of the combined light.
  • the dimming element may be an isosceles right-angle prism with a partitioned coating.
  • the main body of the component may include: four isosceles right-angle prisms, and the right-angle surfaces of the four isosceles right-angle prisms are spliced together.
  • the first dimming surface 110 and the second dimming surface 120 are formed by splicing the right-angle surfaces of the above-mentioned four isosceles right-angle prisms, and are overlapping splicing surfaces.
  • FIG6 shows a schematic diagram of the structure of a light combining assembly according to some other embodiments of the present disclosure.
  • the four isosceles right-angle prisms are respectively a first prism 601, a second prism 602, a third prism 603 and a fourth prism 604.
  • the right-angle surfaces of at least two of the prisms may be subjected to zone coating so that after the right-angle surfaces of the four prisms are spliced together in sequence by gluing, the above-mentioned first dimming surface 110 and the second dimming surface 120 are obtained.
  • the component body may also be other applicable structures in addition to the structures shown in FIG. 1 , FIG. 5 and FIG. 6 , and this embodiment does not limit this.
  • the component body may also include four square flat plates, and two adjacent right-angle surfaces of at least two of the square flat plates are subjected to zone coating, and then the four square flat plates are spliced together to obtain the first dimming surface 110 and the second dimming surface 120 mentioned above.
  • FIG7 shows a schematic diagram of the structure of a light source module according to some embodiments of the present disclosure.
  • the light source module 20 may include: a first light source assembly 21, a second light source assembly 22, and a light combining assembly 10 provided in any of the above embodiments.
  • the structure and effect of the light combining assembly 10 can refer to the relevant description above, and will not be repeated here.
  • the first light source assembly 21 is used to output a first light beam, and allows the first light beam to be incident from the first light incident channel L1 to the first area 111 of the light combining assembly 10 , and to be reflected by the first area 111 to be output to the light combining channel C.
  • the second light source assembly 22 is used to output a second light beam, and the second light beam is incident from the second light input channel L2 to the third area 122 of the light combining assembly 10, and is reflected by the third area 122 to be output to the light combining channel C to be combined with the first light beam.
  • the first light source assembly 21 may include a first light source 210 and a first collimating lens group 211.
  • the first light beam provided by the first light source 210 is collimated by the first collimating lens group 211 and then transmitted to the first light input channel L1 of the light combining assembly 10.
  • the second light source assembly 22 is arranged opposite to the light outlet of the first light source assembly 21 and may include a second light source 220 and a second collimating lens group 221.
  • the second light beam provided by the second light source 220 is collimated by the second collimating lens group 221 and then transmitted to the second light input channel L2 of the light combining assembly 10.
  • the first light source 210 and the second light source 220 may be laser light sources, fluorescent light sources, or LED light sources.
  • the wavelengths of the first light beam and the second light beam both belong to the target wavelength band that the light combining component 10 can reflect.
  • the wavelength ranges of the first light beam and the second light beam may be the same, or there may be a partial overlap.
  • the first light beam and the second light beam may have a wavelength of 100 nm and 100 nm, respectively.
  • the wavelength ranges can also be separated from each other, but the degree of separation is relatively small and all belong to the above-mentioned target band.
  • the beam diameter of the first light beam is smaller than the beam diameter of the second light beam to adapt to the corresponding reflection area of the light combining component 10, reduce light loss, and improve the brightness of the combined light.
  • the energy density of the first light beam can be greater than the energy density of the second light beam to compensate for the loss of the second light beam and improve the brightness of the combined light.
  • the first light source 210 can be a light source with relatively large energy and relatively small output beam diameter, for example, it can be a laser light source, such as a laser diode or a fiber laser, or it can be a fluorescent light source that generates fluorescence under the excitation of a pump laser.
  • the second light source 220 can be a light source with relatively low energy and relatively small output beam diameter, for example, it can be an LED light source.
  • the area of the first region 111 and the area of the second region 121 in the light combining component 10 are both larger than the spot area corresponding to the first light beam, and the difference between the area of the first region 111 and the area of the second region 121 and the spot area is less than or equal to a preset threshold.
  • the preset threshold can be determined based on the actual alignment accuracy and the required combined light brightness, for example, it can be 50% of the spot area.
  • the area of the first region 111 and the second region 121 is slightly larger than the spot area, which is conducive to fully reflecting and transmitting the first light beam, and reducing the light loss of the second light beam in the second region 121, thereby improving the combined light brightness.
  • the area of the first region 111 and the area of the second region 121 may also be equal to the spot area corresponding to the first light beam, which is not limited in this embodiment.
  • FIG8 shows a schematic diagram of the structure of the light source module according to other embodiments of the present disclosure.
  • the light source module 20 may further include: a focusing lens 24, which may be arranged on the light transmission path between the first light source assembly 21 and the light combining assembly 10, and is used to converge the first light beam output by the first light source assembly 21 to the first area 111 of the light combining assembly 10.
  • the energy density of the first light beam can be increased, and the spot size of the first light beam irradiated on the first area 111 can be reduced, so that the size of the first area 111 and the second area 121 can be reduced accordingly, which is conducive to reducing the light loss of the second light beam while ensuring the reflected light flux of the first light beam, thereby improving the brightness of the combined light.
  • the first light beam and the second light beam may be one of the three primary colors, respectively.
  • the first light beam and the second light beam are both red light beams
  • the first area 111 and the third area 122 in the light combining component 10 are configured to reflect the red light beam and transmit the blue light beam and/or the green light beam.
  • the light source module 20 may also include: The third light source assembly 23.
  • the third light source assembly 23 is used to output a blue light beam and/or a green light beam, and make the blue light beam and/or the green light beam be incident on the light combining assembly 10 from the third light input channel L3 opposite to the light combining channel C, and then be transmitted to the light combining channel C through the light combining assembly 10 to be combined with the first light beam and the second light beam.
  • the light beam output from the first light source assembly 21 represented by a single dashed line is the first light beam
  • the light beam output from the second light source assembly 22 represented by a double dashed line is the second light beam
  • the light beam output from the third light source assembly 23 represented by a double dashed line is the combined light beam of the blue light beam and the green light beam.
  • the third light source assembly 23 may include a third light source, a fourth light source, a fluorescent generator, and a spectroscopic element capable of transmitting blue light and reflecting green light.
  • the third light source is used to provide a first blue light beam as an illumination light beam
  • the fourth light source is used to provide a second blue light beam as a pumping light beam.
  • the first blue light beam is transmitted to the third light input channel L3 of the light combining assembly 10 through the spectroscopic element.
  • the fluorescent generator generates a green light beam under the excitation of the second blue light beam, and transmits the green light beam to the spectroscopic element after collimating it, and then is reflected by the spectroscopic element and transmitted to the third light input channel L3 of the light combining assembly 10.
  • the third light source assembly 23 may also be implemented by other applicable optical path structures, which is not limited in this embodiment.
  • the first light beam and the second light beam may also be green light beams, and accordingly, the first area 111 and the third area 122 in the light combining component 10 need to be configured to reflect the green light beam and transmit the blue light beam and the red light beam.
  • the first light beam and the second light beam may also be blue light beams, and accordingly, the first area 111 and the third area 122 in the light combining component 10 need to be configured to reflect the blue light beam and transmit the green light beam and the red light beam. This embodiment does not limit this.
  • FIG9 shows a schematic diagram of the structure of a projection device according to some embodiments of the present disclosure.
  • the projection device 1 may include: a light source module 20, a light valve 30 and a projection lens 40.
  • the structure of the light source module 20 can refer to the relevant description above, and will not be repeated here.
  • the red, green and blue primary color illumination beams output by the light source module 20 are processed by the light valve 30 and then irradiated onto the screen through the projection lens 40 to display a color image.
  • the light valve 30 may be an LCD (Liquid Crystal Display), a DMD (Digtial Micromirror Devices) or an LCOS (Liquid Crystal on Silicon) light valve, etc., which is not limited in this embodiment.
  • a light-combining component comprising: a component body, the component body having a first dimming surface and a second dimming surface, the first dimming surface comprising: a first area, the second dimming surface comprising: a second area and a third area surrounding the second area, wherein: the first area and the third area are reflection areas of the same target band light beam, and the second area is a transmission area of the target band light beam; the first area and the second area are overlapped to divide a light-combining channel, a first light input channel and a second light input channel opposite to the first light input channel; a first light beam incident from the first light input channel to the first area is reflected by the first area and then transmitted to the light-combining channel; a second light beam incident from the second light input channel to the third area is reflected by the third area and then transmitted to the light-combining channel.
  • the component body includes at least two dimming elements, and the at least two dimming elements are arranged in an overlapping manner, and the overlapping arrangement includes: a mutually crossed or spliced arrangement.
  • At least two dimming elements include: a first dichroic mirror and a second dichroic mirror, the first dichroic mirror and the second dichroic mirror are cross-arranged, the first dimming surface is the surface of the first dichroic mirror, and the second dimming surface is the surface of the second dichroic mirror.
  • the second region of the second dichroic mirror has an opening, the first dichroic mirror is disposed in the opening, and the first region overlaps the second region.
  • the at least two dimming elements include: four isosceles right-angle prisms, and the right-angle surfaces of the four isosceles right-angle prisms are spliced together so that the first dimming surface and the second dimming surface are two overlapping splicing surfaces.
  • the first region is perpendicular to the second region and the third region.
  • the first area includes two areas located respectively in the second dimming The first sub-region and the second sub-region on both sides of the surface, the second region includes the third sub-region and the fourth sub-region respectively located on both sides of the first dimming surface, and the third region includes the fifth sub-region and the sixth sub-region respectively located on both sides of the first dimming surface; a part of the first light beam incident from the first light input channel is incident on the first sub-region, and after being reflected by the first sub-region, it enters the light combining channel for output through the third sub-region, and the other part is incident on the second sub-region through the third sub-region, and then reflected by the second sub-region to the light combining channel for output; a part of the second light beam incident from the second light input channel is reflected by the fifth sub-region to the light combining channel for output, and a part is reflected by the sixth sub-region to the light combining channel for output.
  • the orthographic projection of the first sub-area on the first reference plane is the first projection area; the orthographic projection of the third sub-area on the first reference plane is the second projection area; the first reference plane is a plane perpendicular to the optical axis of the combined light channel; and the first projection area is located within the second projection area, or basically overlaps with the second projection area.
  • the orthographic projection of the fifth sub-region on the first reference plane does not overlap with the orthographic projection of the second sub-region on the first reference plane.
  • the orthographic projection of the second sub-area on the second reference plane is the third projection area; the orthographic projection of the third sub-area on the second reference plane is the fourth projection area; the second reference plane is a plane perpendicular to the optical axis of the first light input channel; the third projection area is located within the fourth projection area, or basically overlaps with the fourth projection area.
  • the first sub-region, the second sub-region, the third sub-region, and the fourth sub-region have the same area and/or shape.
  • the first dimming surface further includes: a fourth area surrounding the first area, the fourth area being a transmission area for the light beam in the target wavelength band.
  • the target wavelength band is a red light wavelength band
  • the first dimming surface and the second dimming surface are further configured to transmit light beams in a blue light and/or green light wavelength band.
  • a light source module comprising: a first light source assembly, a second light source assembly and a light combining assembly provided in the previous embodiment, wherein: the first light source assembly is used to output a first light beam, and causes the first light beam to be incident from a first light input channel to a first region of the light combining assembly, and is reflected from the first region to be output through the light combining channel; the second light source assembly is used to output a second light beam, and causes the second light beam to be incident from a second light input channel to a third region of the light combining assembly, and is reflected from the third region to be output through the light combining channel.
  • the first light beam and the second light beam are both red light.
  • the light beam, the first area and the third area are configured to reflect the red light beam and transmit the blue light beam and/or the green light beam.
  • the light source module also includes: a third light source component, which is used to output the blue light beam and/or the green light beam, and make the blue light beam and the green light beam enter the light combining component from the third light input channel opposite to the light combining channel, and then be transmitted to the light combining channel through the light combining component.
  • the beam diameter of the first light beam is smaller than the beam diameter of the second light beam, and the energy density of the first light beam is greater than the energy density of the second light beam.
  • the first light source assembly includes a laser light source
  • the second light source assembly includes: an LED light source
  • the wavelength range of the first light beam and the second light beam is the same, or there is a partial overlap.
  • the area of the first region and the area of the second region in the light combining component are both larger than the spot area corresponding to the first light beam, and the difference between the spot area and the area of the first region and the area of the second region in the light combining component are both less than or equal to a preset threshold; or, the area of the first region and the area of the second region in the light combining component are both equal to the spot area corresponding to the first light beam.
  • the light source module also includes: a focusing lens, which is arranged on the light transmission path between the first light source assembly and the light combining assembly, and is used to converge the first light beam output by the first light source assembly to the first area of the light combining assembly.
  • a focusing lens which is arranged on the light transmission path between the first light source assembly and the light combining assembly, and is used to converge the first light beam output by the first light source assembly to the first area of the light combining assembly.
  • a projection device comprising: a light valve, a projection lens, and the light source module provided in the second aspect of the present disclosure, wherein the illumination light beam output by the light source module is output after passing through the light valve and the projection lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种合光组件(10)、光源模组及投影设备。合光组件(10)包括:组件主体,组件主体具有第一调光面(110)以及第二调光面(120),第一调光面(110)包括:第一区域(111),第二调光面(120)包括:第二区域(121)以及围绕第二区域(121)的第三区域(122)。第一区域(111)和第三区域(122)为同一目标波段光束的反射区,第二区域(121)为目标波段光束的透射区。第一区域(111)与第二区域(121)交叠设置,分隔出合光通道(C)、第一入光通道(L1)以及与第一入光通道(L1)相对的第二入光通道(L2)。

Description

合光组件、光源模组及投影设备
相关申请的交叉引用
本申请要求于2022年11月23日提交、申请号为202211476015.6的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开属于光电技术领域,涉及一种合光组件、光源模组及投影设备。
背景技术
随着光电技术的发展,很多电子设备都离不开光学系统。在一些光学系统中,需要对不同光路进行合光。但是目前的合光方式如利用二向色镜合光,只能实现光谱分离程度相对较大的光束的合光,无法实现光谱相同或相近的光束合光。
发明内容
在本公开内容的第一方面,提供了一种合光组件,包括:组件主体,所述组件主体具有第一调光面以及第二调光面,所述第一调光面包括:第一区域,所述第二调光面包括:第二区域以及围绕所述第二区域的第三区域,其中:所述第一区域和所述第三区域为同一目标波段光束的反射区,所述第二区域为所述目标波段光束的透射区;所述第一区域与所述第二区域交叠设置,划分出合光通道、第一入光通道以及与所述第一入光通道相对的第二入光通道;从所述第一入光通道入射到所述第一区域的第一光束,经所述第一区域反射后,传输至所述合光通道;从所述第二入光通道入射到所述第三区域的第二光束,经所述第三区域反射后,传输至所述合光通道。
在本公开内容的第二方面,提供了一种光源模组,包括:第一光源组件、第二光源组件以及上述第一方面所述的合光组件,其中:所述第一光源组件用于输出第一光束,并使得所述第一光束从第一入光通道入射到所述合光组件的第一区域,经所述第一区域反射至合光通道输出;所述第二光源组件用于输出第二光束,并使得所述第二光束从第二入光通道入射到所述合光 组件的第三区域,经所述第三区域反射至所述合光通道输出。
在本公开内容的第三方面,提供了一种投影设备,包括:光阀、投影镜头以及上述第二方面所述的光源模组。其中,所述光源模组输出的照明光束,经过所述光阀以及所述投影镜头后输出。
上述说明仅是本公开提供的技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述以及其它特征和效果能够更明显易懂,以下特举本公开的实施方式。
附图说明
图1示出了依据本公开一些实施例的合光组件的结构示意图;
图2示出了依据本公开另一些实施例的合光组件的结构示意图;
图3示出了依据本公开又一些实施例的合光组件的结构示意图;
图4示出了依据本公开一些实施例的第一调光面和第二调光面的平面示意图;
图5示出了依据本公开再一些实施例的合光组件的结构示意图;
图6示出了依据本公开另外一些实施例的合光组件的结构示意图;
图7示出了依据本公开一些实施例的光源模组的结构示意图;
图8示出了依据本公开另一些实施例的光源模组的结构示意图;以及
图9示出了依据本公开一些实施例的投影设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。需要指出的是,在附图中,为了图示的清晰可能夸大了元件的尺寸。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要说明的是,本文中出现的用语“多个”包括两个或大于两个的情况。用语“第一”、“第二”、“第三”等仅作为标记使用,不是对其对象的数量以及先后关系的限制。用语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同 时存在A和B,单独存在B这三种情况。
本公开一些实施例提供了一种合光组件,能够实现光谱相同或相近的光束的合光。该合光组件可以应用于投影照明系统中。在投影照明系统中配备同一颜色的双光源,利用本公开一些实施例提供的合光组件对双光源提供的光束进行合光后输出,能够有效地提升该颜色光束的光通量,从而提高系统照明亮度。当然,除了应用于投影照明系统以外,该合光组件也可以应用于其他适用的光学系统中,本实施例对此不做限制。
图1示出了依据本公开一些实施例的合光组件的结构示意图。如图1所示,该合光组件10可以包括:组件主体,组件主体具有第一调光面110以及第二调光面120。第一调光面110以及第二调光面120为能够分区选择特定波长的光束进行反射和透射的表面。
在一些实施方式中,第一调光面110包括:第一区域111。第二调光面120包括:第二区域121以及围绕第二区域121的第三区域122。第一区域111和第三区域122为同一目标波段光束的反射区,而第二区域121为上述目标波段光束的透射区。例如,可以在第一调光面110和第二调光面120进行分区镀膜,第一区域111和第三区域122镀有用于反射目标波段光束的功能膜层,第二区域121镀有增透膜层。
目标波段为合光组件10可以通过反射区的反射而实现合光的波段。在实践中,需对作为反射区的第一区域111和第三区域122的功能膜层进行配置,使其对应的目标波段与待合光光束的波长范围适配。在一些实施方式中,待合光的两束光的波长范围分别为:λ1~λ2,λ3~λ4,其中,λ3大于λ1且小于λ2,λ4大于λ2,则目标波段至少需要包括:λ1~λ4。在一些实施方式中,若该合光组件10应用于对两束红光光束进行合光,则目标波段可以为红光波段。同理,在另一些实施方式中,目标波段也可以为蓝光波段,绿光波段,或者,黄光波段等,本实施例对此不做限制。
第二区域121作为目标波段光束的透射区,其透射范围可以仅包含目标波段,或者,也可以包括全波段,根据实际应用场景的需要设置,本实施例对此不做限制。在一些实施方式中,第二区域121可以是开口区域,或者,也可以是透明材料区域。
由此,就可以使得第一调光面110以及第二调光面120具备针对目标 波段光束的分区反射特性,即在第一区域111反射,第二区域121透射,第三区域122反射。
本文中,为了便于说明,将待合光的两个光束分别称为第一光束和第二光束,第一光束和第二光束的波长范围需均属于上述目标波段。在一些实施方式中,第一光束和第二光束的波长范围可以相同或者存在部分交叠。在另一些实施方式中,第一光束和第二光束的波长范围也可以是相互分离的,但是分离程度相对较小,均属于上述目标波段内。
在合光组件10中,上述第一区域111与第二区域121交叠设置,以划分出第一入光通道L1以及第二入光通道L2,以及与第一入光通道L1位于第一调光面110同一侧的合光通道C。实施时,通过配置第一区域111、第二区域121以及第三区域122的面积以及第一区域111与第二区域121的交叠情况,可以使得对着第一区域111入射的至少一部分第一光束能够被第一区域111反射且传输到合光通道C。对着第三区域122入射的至少一部分第二光束能够被第三区域122反射且传输到合光通道C,与传输到合光通道C的第一光束进行合光。
使用时,可以从第一入光通道L1输入第一光束,从第二入光通道L2输入第二光束。从第一入光通道L1入射到第一区域111的第一光束,经第一区域111反射后传输至合光通道C;从第二入光通道L2入射到第三区域122的第二光束,经第三区域122反射后传输至合光通道C,从而实现对光谱相同或相近的第一光束与第二光束的合光。
本公开一些实施例通过在两个调光面分区设置反射区,并使得第一调光面110的反射区与第二调光面120的透射区交叠,实现对光谱相同或相近的光束合光。
在一些实施方式中,考虑到反射第一光束的是与第二区域121交叠的第一区域111,而反射第二光束的是位于第二区域121外围的第三区域122,在实践中,第一光束的束径可以相对较小,以使得照射到第一调光面110的光斑尽量不要超出第一区域111,减少不必要的光损失;而第二光束的束径可以相对较大,以使得照射到第二调光面120的光斑与第三区域122至少存在部分交叠,以增加第二光束的合光通量。
在一些实施方式中,可以尽量增大束径相对较小的第一光束的能量密 度,以提高合光亮度。在一些实施方式中,第一光束可以为激光光源发出的光束,或者,也可以为由泵浦激光激发而产生的荧光光束;第二光束可以为LED(Light-Emitting Diode,发光二极管)光源发出的光束。以对红光光束进行合光为例,第一光束可以为红光激光光源输出的光束,第二光束可以为红光LED光源输出的光束。
需要说明的是,在实现第一光束和第二光束合光的基础上,还可以利用上述合光组件10对其他波段光束透射的特性,实现第一光束和与第二光束的合光光束与其他波段光束的光路耦合。在一些实施方式中,若目标波段为红光波段,即第一光束和第二光束均为红光光束,第一调光面110和第二调光面120还配置为:透射蓝光和绿光波段的光束中的至少一者。图2示出了依据本公开另一些实施例的合光组件的结构示意图,如图2所示,与合光通道C相对的空间区域可以作为第三入光通道L3,从第三入光通道L3输入的蓝光光束和/或绿光光束,可以透过合光组件10传输到合光通道C,与传输到合光通道C的两束红光光束进行合光。
在一些实施方式中,第一调光面110可以垂直于第二调光面120,使得第一区域111垂直于第二区域121和第三区域122,以便简化入射光的光路设计,实现合光光束的共轴输出。需要说明的是,此处的垂直可以理解成广义的垂直,即在实际可接受的误差范围内,交叉角度也可以与代表绝对垂直的90度存在一定的偏差,例如,可以是89度、89.5度、90度、90.5度或91度等,本实施例对此不做限制。
在一些实施方式中,通过配置第一区域111和第二区域121的交叠位置,可以使得第一区域111被第二区域121划分为分别位于第二调光面120两侧的两个子区域,第二区域121被第一区域111划分为分别位于第一调光面110两侧的两个子区域。在一些实施方式中,第一区域111和第二区域121的形状均可以为轴对称图形,如圆形、方形等,此时,可以相互沿中心轴线将对方划分成两个相互对称的子区域,这样既能够尽量减少光损失,提高合光亮度,又可以将组件光轴设计到中心位置处,从而简化光路设计。
图3示出了依据本公开又一些实施例的合光组件的结构示意图。如图1和图3所示,第一区域111包括分别位于第二调光面120两侧的第一子区域111a和第二子区域111b,第二区域121包括分别位于第一调光面110两侧的 第三子区域121a和第四子区域121b,第三区域122包括分别位于第一调光面110两侧的第五子区域122a和第六子区域122b。在对第一光束和第二光束进行合光时,可以通过调整第一光束的入射位置和第二光束的入射位置,使得从第一入光通道L1入射的第一光束,一部分入射到第一子区域111a,经第一子区域111a反射后,再透过第三子区域121a进入合光通道C输出,另一部分透过第三子区域121a入射到第二子区域111b,再经第二子区域111b反射至合光通道C输出;从第二入光通道L2入射的第二光束,一部分经第五子区域122a反射至合光通道C输出,一部分经第六子区域122b反射至合光通道C输出。
需要说明的是,虽然有一部分的第二光束会被第二子区域111b反射以及透过第四子区域121b被第一子区域111a反射而损失掉,但是在第一光束的能量密度大于第二光束的能量密度的情况下,损失掉的光通量小于经第一区域111反射到合光通道C的第一光束光通量。此时,相比于单一的第二光束,合光光束的亮度更大。当然,在能够适配第一光束束径的情况下,第一区域111和第二区域121的面积越小,损失掉的第二光束的能量也就越少。因此,在实践中,可以在综合考量第一光束的束径以及对准精度的情况下,尽量减小第一区域111和第二区域121的面积。
可以理解的是,当第一调光面110与第二调光面120垂直设置时,通过调整第一光束和第二光束的入射角,使其入射角为45度,并调整相应光源的出光位置,使得第一光束的光轴与第二光束的光轴重合,就可以使得经第一区域111反射的第一光束和经第三区域122反射的第二光束在合光通道C中共轴输出。
在一些实施方式中,第一调光面110和第二调光面之间反射区与透射区的交叠情况在一定程度上影响着合光组件10输出的合光亮度。下面以图3中示出的第一基准平面200和第二基准平面300作为参考平面,按照各子区域在第一基准平面200和第二基准平面300上的正投影关系,来对各反射区与相应透射区的交叠情况进行说明。
在第一区域111垂直于第二区域121和第三区域122的情况下,第一光束的光轴与第二光束的光轴重合,那么,反射后得到的合光光束的光轴与第一光束和第二光束的光轴均垂直。如图3所示,第一基准平面200可以为 垂直于合光通道C光轴的平面。第二基准平面300为垂直于第一入光通道L1光轴的平面。需要说明的是,上述光通道的光轴即是在光通道中传输的光束的光轴。
为了便于说明,将第一子区域111a在第一基准平面200上的正投影定义为第一投影区域,第三子区域121a在第一基准平面200上的正投影定义为第二投影区域。考虑到入射到第一子区域111a的那部分第一光束,在经过第一子区域111a反射后需要穿过第二调光面120才能进入合光通道C,在一些实施方式中,第一投影区域可以位于第二投影区域内,或者,与第二投影区域基本重合。需要说明的是,本文中所述的基本重合是指完全重合,或者,有一定的偏差,且该偏差造成的光损失在可接受的范围内。
这样能够使得入射到第一子区域111a的那部分第一光束均能够透过第三子区域121a,传输到合光通道C,从而减少第一光束的光损失,以提高合光亮度。此外,第一投影区域与第二投影区域基本重合,有利于减小第二区域121面积,增加第三区域122面积,从而增加第二光束的合光通量。
在一些实施方式中,为了避免第二子区域111b对第五子区域122a反射的那部分第二光束造成阻挡,导致不必要的光损失,第五子区域122a在第一基准平面200上的正投影与第二子区域111b在第一基准平面200上的正投影之间互不重叠,以使得第五子区域122a反射的那部分第二光束均能传输到合光通道C,从而减小第二光束的光损失,以提高合光亮度。
为了便于说明,将第二子区域111b在第二基准平面300上的正投影定义为第三投影区域,第三子区域121a在第二基准平面300上的正投影定义为第四投影区域。考虑到一部分第一光束需要穿过第二调光面120才能入射到第二子区域111b,在一些实施方式中,第三投影区域可以位于第四投影区域内,或者,与第四投影区域基本重合。这样可以使得对着第二子区域111b入射的第一光束,均能透过第二调光面120入射到第二子区域111b,被反射到合光通道C输出,同样有利于减小第一光束的光损失,以提高合光亮度。此外,第三投影区域与第四投影区域基本重合,也有利于减小第二区域121面积,增加第三区域122面积,从而增加第二光束的合光通量。
相应地,由于第六子区域122b位于第三子区域121a之外,第六子区域122b在第二基准平面300上的正投影与第三投影区域也就互不重叠,从 而保证对着第六子区域122b入射的那部分第二光束均能不受第二子区域111b的阻挡,入射到第六子区域122b。
在一些实施方式中,上述第一子区域111a、第二子区域111b、第三子区域121a和第四子区域121b的面积和/或形状可以相同,以尽量提高合光通量,从而提高出光亮度。
在一些实施方式中,第一调光面110还可以包括:围绕第一区域111的第四区域112。同第二区域121类似,第四区域112也为目标波段光束的透射区。此时,第二入光通道L2中,对着第五子区域122a入射的光束可以直射到第五子区域122a,而对着第六子区域122b入射的光束,需要先透过第四区域112,再照射到第六子区域122b。图4示出了依据本公开一些实施例的第一调光面和第二调光面的平面示意图,图4中的(a)图为第一调光面110的平面示意图,图4中的(b)图为第二调光面120的平面示意图,(a)图中的圆形区域为第一区域111,圆形区域以外的区域为第四区域112,(b)图中的圆形区域为第二区域121,圆形区域以外的区域为第三区域122。
图5示出了依据本公开再一些实施例的合光组件的结构示意图。考虑到第一调光面110中对合光做贡献的是第一区域111,因此,如图5所示,第一调光面110也可以仅包含第一区域111,本实施例对此不做限制。
在一些实施方式中,为了具备上述第一调光面110和第二调光面120,组件主体可以包括:至少两个调光元件,至少两个调光元件交叠设置。在一些实施方式中,此处的交叠设置可以为交叉设置或拼接设置。下面主要以两种结构为例进行说明。
在一种实施方式中,调光元件可以为分区镀膜的二向色镜。如图1所示,组件主体可以包括:第一二向色镜11和第二二向色镜12,第一二向色镜11和第二二向色镜12交叉设置。此时,上述第一调光面110为第一二向色镜11的表面,上述第二调光面120为第二二向色镜12的表面。
在一种实施方式中,可以先提供第一衬底基板和第二衬底基板。例如,第一衬底基板和第二衬底基板可以采用玻璃或硅等适用的材料,本实施例对此不做限制。根据实际需要预先界定好第一衬底基板的第一区域111,以及第二衬底基板的第二区域121和第三区域122。
然后,对第一衬底基板和第二衬底基板进行分区镀膜,得到第一二向 色镜11和第二二向色镜12。分区镀膜的过程可以包括:在第一衬底基板中第一区域111的上表面和/或下表面镀功能膜层,在第二衬底基板中第三区域122的上表面和/或下表面镀功能膜层。在一种实施方式中,目标波段为红光波段,则功能膜层可以为反射红光波段,透射蓝光和/或绿光波段的膜层。在一种实施方式中,还可以在第二区域121镀对红光、绿光和蓝光均具有增透作用的增透膜。
接着,再通过一些装配方式,如卡接的方式,将第一二向色镜11和第二二向色镜12交叉装配在一起,并使得交叉位置位于第一区域111和第二区域121,得到如图1所示的合光组件10。
在一些实施方式中,第二二向色镜12的第二区域121具有开口,第一二向色镜11穿设在该开口内。这样能够保证第一区域111的完整性,相比于对合光没有贡献的第二区域121,保证第一区域111的完整性,有利于提高反射的第一光束的光通量,以提高合光亮度。
在一些实施方式中,第一二向色镜11和第二二向色镜12的尺寸、形状以及区域划分均可以相同,只是镀膜区域相反,一个是位于中心的第一区域111镀有功能膜层,另一个是位于四周的第三区域122镀有功能膜层。此时,第一调光面110还包括围绕第一区域111以外的第四区域112。
在一些实施方式中,第一二向色镜11的面积也可以小于第二二向色镜12的面积,甚至小到第一调光面110仅包含第一区域111,如图5所示。这样一方面可以节约材料,另一方面在采用“十字”交叉卡接方式装配时,也能够尽量减小甚至避免损坏第三区域122的功能膜层,有利于保证第三区域122功能膜层的完整性,从而减少对第二光束造成的不必要光损失,以提高合光亮度。
在另一些实施方式中,调光元件可以为分区镀膜的等腰直角棱镜。组件主体可以包括:四个等腰直角棱镜,四个等腰直角棱镜的直角面相互拼接设置。此时,第一调光面110和第二调光面120由上述四个等腰直角棱镜的直角面拼接而成,为相互交叠的拼接面。当然,在实践中,对于该结构的合光组件10,需要注意棱镜材料的选择以及胶合界面的处理,以避免光束在未设置有功能膜层的胶合界面处发生全反射,影响合光亮度。
图6示出了依据本公开另外一些实施例的合光组件的结构示意图,如 图6所示,四个等腰直角棱镜分别为第一棱镜601、第二棱镜602、第三棱镜603和第四棱镜604,可以对其中至少两个棱镜的直角面进行分区镀膜,以便在将四个棱镜的直角面通过胶合的方式依次拼接在一起后,得到上述第一调光面110和第二调光面120。
需要说明的是,在其他实施方式中,组件主体也可以为除了图1、图5和图6示出的结构以外的其他适用的结构,本实施例对此不做限定。在另一些实施方式中,,组件主体也可以包括四个方形平板,对其中至少两个方形平板的相邻两个直角面进行分区镀膜,然后再将四个方形平板拼接在一起,得到上述第一调光面110和第二调光面120。
图7示出了依据本公开一些实施例的光源模组的结构示意图。本公开一些实施例提供了一种光源模组20,如图7所示,光源模组20可以包括:第一光源组件21、第二光源组件22以及上文中的任意一实施例提供的合光组件10。其中,合光组件10的结构和效果可以参照上文中的相关描述,此处不再赘述。
第一光源组件21用于输出第一光束,并使得第一光束从第一入光通道L1入射到合光组件10的第一区域111,经第一区域111反射至合光通道C输出。
第二光源组件22用于输出第二光束,并使得第二光束从第二入光通道L2入射到合光组件10的第三区域122,经第三区域122反射至合光通道C输出,与第一光束进行合光。
在一些实施方式中,第一光源组件21可以包括第一光源210以及第一准直透镜组211,第一光源210提供的第一光束,经第一准直透镜组211准直后传输到合光组件10的第一入光通道L1。第二光源组件22与第一光源组件21的出光口相对设置,可以包括第二光源220以及第二准直透镜组221,第二光源220提供的第二光束,经第二准直透镜组221准直后传输到合光组件10的第二入光通道L2。
在一些实施方式中,第一光源210和第二光源220可以是激光光源、荧光光源或LED光源等。第一光束和第二光束的波长均属于合光组件10能够反射的目标波段。在一些实施方式中,第一光束与第二光束的波长范围可以相同,或者,存在部分交叠。在另一些实施方式中,第一光束和第二光束 的波长范围也可以是相互分离的,但是分离程度相对较小,均属于上述目标波段内。
在一些实施方式中,第一光束的束径小于第二光束的束径,以适配合光组件10的相应反射区,减少光损失,提高合光亮度。在一些实施方式中,第一光束的能量密度可以大于第二光束的能量密度,以补偿损失的第二光束,提高合光亮度。
由此,第一光源210可以是能量相对较大且出光束径相对较小的光源,例如,可以是激光光源,如激光二极管或光纤激光器等,或者,也可以是在泵浦激光的激发下产生荧光的荧光光源。第二光源220可以是能量相对较低且出光束径相对较小的光源,例如,可以是LED光源。
在一些实施方式中,合光组件10中第一区域111的面积以及第二区域121的面积均大于第一光束对应的光斑面积,且第一区域111的面积以及第二区域121的面积与光斑面积之间的差值小于或等于预设阈值。预设阈值可以根据实际对准精度以及所需要的合光亮度确定,例如,可以为光斑面积的50%。第一区域111和第二区域121的面积略大于光斑面积,有利于全部反射和透射第一光束,并减小第二光束在第二区域121内的光损失,从而提高合光亮度。
在另一些实施方式中,第一区域111的面积以及第二区域121的面积也可以均等于第一光束对应的光斑面积,本实施例对此不做限制。
图8示出了依据本公开另一些实施例的光源模组的结构示意图,如图8所示,光源模组20还可以包括:聚焦透镜24,聚焦透镜24可以设置在第一光源组件21与合光组件10之间的光传输路径上,用于将第一光源组件21输出的第一光束汇聚到合光组件10的第一区域111。这样可以提高第一光束的能量密度,减小第一光束照射在第一区域111的光斑尺寸,从而就可以相应减小第一区域111和第二区域121的尺寸,有利于在保证第一光束的反射光通量的同时,减少第二光束的光损失,提高合光亮度。
在光源模组20作为投影设备的照明光源的情况下,第一光束和第二光束可以分别为三基色光之一。在一些实施方式中,第一光束和第二光束均属于红光光束,合光组件10中的第一区域111和第三区域122均配置为反射红光光束,透过蓝光光束和/或绿光光束。此时,该光源模组20还可以包括: 第三光源组件23。第三光源组件23用于输出蓝光光束和/或绿光光束,并使得蓝光光束和/或绿光光束从与合光通道C相对的第三入光通道L3入射到合光组件10,再透过合光组件10传输到合光通道C,与第一光束和第二光束进行合光。需要说明的是,图7和图8中示出的光路中,从第一光源组件21输出的用单线条虚线表示的光束为第一光束,从第二光源组件22输出的用双点划线表示的光束为第二光束,从第三光源组件23输出的用双线条虚线表示的光束为蓝光光束和绿光光束的合光光束。
在一些实施方式中,第三光源组件23可以包括第三光源、第四光源、荧光发生器以及能够透射蓝光且反射绿光分光元件。第三光源用于提供作为照明光束的第一蓝光光束,第四光源用于提供作为泵浦光束的第二蓝光光束。其中,第一蓝光光束透过分光元件传输到合光组件10的第三入光通道L3。荧光发生器在第二蓝光光束的激发下产生绿光光束,并对绿光光束进行准直后传输到分光元件,由分光元件反射后传输到合光组件10的第三入光通道L3。
需要说明的是,除了上述结构以外,第三光源组件23也可以采用其他适用的光路结构实现,本实施例对此不做限制。
当然,在另一些实施方式中,第一光束和第二光束也可以为绿光光束,相应地,合光组件10中的第一区域111和第三区域122需配置为反射绿光光束,透过蓝光光束和红光光束。或者,第一光束和第二光束也可以为蓝光光束,相应地,合光组件10中的第一区域111和第三区域122需配置为反射蓝光光束,透过绿光光束和红光光束。本实施例对此不做限制。
图9示出了依据本公开一些实施例的投影设备的结构示意图。本公开一些实施例提供了一种投影设备,如图9所示,投影设备1可以包括:光源模组20、光阀30以及投影镜头40。光源模组20的结构可以参照上文中的相关描述,此处不再赘述。
光源模组20输出的红绿蓝三基色照明光束,经过光阀30的处理后,经过投影镜头40照射到屏幕上,以显示彩色图像。例如,光阀30可以是LCD(Liquid Crystal Display,液晶显示)、DMD(Digtial Micromirror Devices,数字微镜器件)或LCOS(Liquid Crystal on Silicon,硅基液晶)光阀等,本实施例对此不做限制。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本公开一个或多个实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
尽管已描述了本公开的示例性实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括示例性实施例以及落入本公开范围的所有变更和修改。
在本公开的第一方面,提供了一种合光组件,包括:组件主体,组件主体具有第一调光面以及第二调光面,第一调光面包括:第一区域,第二调光面包括:第二区域以及围绕第二区域的第三区域,其中:第一区域和第三区域为同一目标波段光束的反射区,第二区域为目标波段光束的透射区;第一区域与第二区域交叠设置,以划分出合光通道、第一入光通道以及与第一入光通道相对的第二入光通道;从第一入光通道入射到第一区域的第一光束,经第一区域反射后,传输至合光通道;从第二入光通道入射到第三区域的第二光束,经第三区域反射后,传输至合光通道。
结合第一方面,在一些实施方式中,组件主体包括至少两个调光元件,至少两个调光元件交叠设置,所述交叠设置包括:相互交叉或拼接设置。
结合第一方面,在一些实施方式中,至少两个调光元件包括:第一二向色镜和第二二向色镜,第一二向色镜与第二二向色镜交叉设置,第一调光面为第一二向色镜的表面,第二调光面为第二二向色镜的表面。
结合第一方面,在一些实施方式中,第二二向色镜的第二区域具有开口,第一二向色镜穿设在开口内,并使得第一区域与第二区域相交叠。
结合第一方面,在一些实施方式中,至少两个调光元件包括:四个等腰直角棱镜,四个等腰直角棱镜的直角面相互拼接设置,以使得第一调光面和第二调光面为两个相互交叠的拼接面。
结合第一方面,在一些实施方式中,第一区域垂直于第二区域以及第三区域。
结合第一方面,在一些实施方式中,第一区域包括分别位于第二调光 面两侧的第一子区域和第二子区域,第二区域包括分别位于第一调光面两侧的第三子区域和第四子区域,第三区域包括分别位于第一调光面两侧的第五子区域和第六子区域;从第一入光通道入射的第一光束,一部分入射到第一子区域,经第一子区域反射后,再透过第三子区域进入合光通道输出,另一部分透过第三子区域入射到第二子区域,再经第二子区域反射至合光通道输出;从第二入光通道入射的第二光束,一部分经第五子区域反射至合光通道输出,一部分经第六子区域反射至合光通道输出。
结合第一方面,在一些实施方式中,第一子区域在第一基准平面上的正投影为第一投影区域;第三子区域在第一基准平面上的正投影为第二投影区域;第一基准平面为垂直于合光通道光轴的平面;以及第一投影区域位于第二投影区域内,或者,与第二投影区域基本重合。
结合第一方面,在一些实施方式中,第五子区域在第一基准平面上的正投影与第二子区域在第一基准平面上的正投影之间互不重叠。
结合第一方面,在一些实施方式中,第二子区域在第二基准平面上的正投影为第三投影区域;第三子区域在第二基准平面上的正投影为第四投影区域;第二基准平面为垂直于第一入光通道光轴的平面;第三投影区域位于第四投影区域内,或者,与第四投影区域基本重合。
结合第一方面,在一些实施方式中,第一子区域、第二子区域、第三子区域和第四子区域的面积和/或形状相同。
结合第一方面,在一些实施方式中,第一调光面还包括:围绕第一区域的第四区域,第四区域为目标波段光束的透射区。
结合第一方面,在一些实施方式中,目标波段为红光波段,第一调光面和第二调光面还配置为:透射蓝光和/或绿光波段的光束。
在本公开的第二方面,提供了一种光源模组,包括:第一光源组件、第二光源组件以及上一实施例提供的合光组件,其中:第一光源组件用于输出第一光束,并使得第一光束从第一入光通道入射到合光组件的第一区域,经第一区域反射至合光通道输出;第二光源组件用于输出第二光束,并使得第二光束从第二入光通道入射到合光组件的第三区域,经第三区域反射至合光通道输出。
结合第二方面,在一些实施方式中,第一光束和第二光束均属于红光 光束,第一区域和第三区域配置为反射红光光束,透过蓝光光束和/或绿光光束,光源模组还包括:第三光源组件,用于输出蓝光光束和/或绿光光束,并使得蓝光光束和绿光光束从与合光通道相对的第三入光通道入射到合光组件,再透过合光组件传输到合光通道。
结合第二方面,在一些实施方式中,第一光束的束径小于第二光束的束径,第一光束的能量密度大于第二光束的能量密度。
结合第二方面,在一些实施方式中,第一光源组件包括激光光源,第二光源组件包括:LED光源。
结合第二方面,在一些实施方式中,第一光束与第二光束的波长范围相同,或者,存在部分交叠。
结合第二方面,在一些实施方式中,合光组件中第一区域的面积以及第二区域的面积均大于第一光束对应的光斑面积,且与光斑面积之间的差值均小于或等于预设阈值;或者,合光组件中第一区域的面积以及第二区域的面积均等于第一光束对应的光斑面积。
结合第二方面,在一些实施方式中,光源模组还包括:聚焦透镜,聚焦透镜设置在第一光源组件与合光组件之间的光传输路径上,聚焦透镜用于将第一光源组件输出的第一光束汇聚到合光组件的第一区域。
在本公开的第三方面,提供了一种投影设备,包括:光阀、投影镜头以及本公开第二方面提供的光源模组。其中,光源模组输出的照明光束,经过光阀以及投影镜头后输出。

Claims (21)

  1. 一种合光组件,包括:组件主体,所述组件主体具有第一调光面(110)以及第二调光面(120),所述第一调光面(110)包括:第一区域(111),所述第二调光面(120)包括:第二区域(121)以及围绕所述第二区域(121)的第三区域(122),其中:
    所述第一区域(111)和所述第三区域(122)为同一目标波段光束的反射区,所述第二区域(121)为所述目标波段光束的透射区;
    所述第一区域(111)与所述第二区域(121)交叠设置,以划分出合光通道、第一入光通道以及与所述第一入光通道相对的第二入光通道;
    从所述第一入光通道入射到所述第一区域(111)的第一光束,经所述第一区域(111)反射后,传输至所述合光通道;从所述第二入光通道入射到所述第三区域(122)的第二光束,经所述第三区域(122)反射后,传输至所述合光通道。
  2. 根据权利要求1所述的合光组件,其中,所述组件主体包括至少两个调光元件,至少两个所述调光元件交叠设置,所述交叠设置包括:相互交叉或拼接设置。
  3. 根据权利要求2所述的合光组件,其中,所述至少两个调光元件包括:第一二向色镜(11)和第二二向色镜(12),所述第一二向色镜(11)与所述第二二向色镜(12)交叉设置,所述第一调光面(110)为所述第一二向色镜(11)的表面,所述第二调光面(120)为所述第二二向色镜(12)的表面。
  4. 根据权利要求3所述的合光组件,其中,所述第二二向色镜(12)的第二区域(121)具有开口,所述第一二向色镜(11)穿设在所述开口内,并使得所述第一区域(111)与所述第二区域(121)相交叠。
  5. 根据权利要求2所述的合光组件,其中,所述至少两个调光元件包括:四个等腰直角棱镜,四个所述等腰直角棱镜的直角面相互拼接设置,以使得所述第一调光面(110)和所述第二调光面(120)为相互交叠的拼接面。
  6. 根据权利要求1所述的合光组件,其中,所述第一区域(111)垂直于所述第二区域(121)以及所述第三区域(122)。
  7. 根据权利要求1所述的合光组件,其中,所述第一区域(111)包括分 别位于所述第二调光面(120)两侧的第一子区域(111a)和第二子区域(111b),所述第二区域(121)包括分别位于所述第一调光面(110)两侧的第三子区域(121a)和第四子区域(121b),所述第三区域(122)包括分别位于所述第一调光面(110)两侧的第五子区域(122a)和第六子区域(122b);
    从所述第一入光通道入射的第一光束,一部分入射到所述第一子区域(111a),经所述第一子区域(111a)反射后,再透过所述第三子区域(121a)进入所述合光通道输出,另一部分透过所述第三子区域(121a)入射到所述第二子区域(111b),再经所述第二子区域(111b)反射至所述合光通道输出;
    从所述第二入光通道入射的第二光束,一部分经所述第五子区域(122a)反射至所述合光通道输出,一部分经所述第六子区域(122b)反射至所述合光通道输出。
  8. 根据权利要求7所述的合光组件,其中,所述第一子区域(111a)在第一基准平面(200)上的正投影为第一投影区域;所述第三子区域(121a)在所述第一基准平面(200)上的正投影为第二投影区域;所述第一基准平面(200)为垂直于所述合光通道光轴的平面;以及所述第一投影区域位于所述第二投影区域内,或者,与所述第二投影区域基本重合。
  9. 根据权利要求8所述的合光组件,其中,所述第五子区域(122a)在所述第一基准平面(200)上的正投影与所述第二子区域(111b)在所述第一基准平面(200)上的正投影之间互不重叠。
  10. 根据权利要求7所述的合光组件,其中,所述第二子区域(111b)在第二基准平面(300)上的正投影为第三投影区域;所述第三子区域(121a)在所述第二基准平面(300)上的正投影为第四投影区域;所述第二基准平面(300)为垂直于所述第一入光通道光轴的平面;以及所述第三投影区域位于所述第四投影区域内,或者,与所述第四投影区域基本重合。
  11. 根据权利要求7所述的合光组件,其中,所述第一子区域(111a)、第二子区域(111b)、第三子区域(121a)和第四子区域(121b)的面积和/或形状相同。
  12. 根据权利要求1所述的合光组件,其中,所述第一调光面(110)还包括:围绕所述第一区域(111)的第四区域(112),所述第四区域(112)为 所述目标波段光束的透射区。
  13. 根据权利要求1所述的合光组件,其中,所述目标波段为红光波段,所述第一调光面(110)和第二调光面(120)还配置为:透射蓝光和/或绿光波段的光束。
  14. 一种光源模组,包括:第一光源组件(21)、第二光源组件(22)以及权利要求1-13中任一项所述的合光组件(10),其中:
    所述第一光源组件(21)用于输出第一光束,并使得所述第一光束从第一入光通道入射到所述合光组件(10)的第一区域(111),经所述第一区域(111)反射至合光通道输出;
    所述第二光源组件(22)用于输出第二光束,并使得所述第二光束从第二入光通道入射到所述合光组件(10)的第三区域(122),经所述第三区域(122)反射至所述合光通道输出。
  15. 根据权利要求14所述的光源模组,其中,所述第一光束和所述第二光束均属于红光光束,所述第一区域(111)和所述第三区域(122)配置为反射红光光束,透过蓝光光束和/或绿光光束,所述光源模组还包括:
    第三光源组件(23),用于输出蓝光光束和/或绿光光束,并使得所述蓝光光束和绿光光束从与所述合光通道相对的第三入光通道入射到所述合光组件(10),再透过所述合光组件(10)传输到所述合光通道。
  16. 根据权利要求14所述的光源模组,其中,所述第一光束的束径小于所述第二光束的束径,所述第一光束的能量密度大于所述第二光束的能量密度。
  17. 根据权利要求16所述的光源模组,其中,所述第一光源组件(21)包括激光光源,所述第二光源组件(22)包括:LED光源。
  18. 根据权利要求14所述的光源模组,其中,所述第一光束与所述第二光束的波长范围相同,或者,存在部分交叠。
  19. 根据权利要求14所述的光源模组,其中,所述合光组件(10)中第一区域(111)的面积以及第二区域(121)的面积均大于所述第一光束对应的光斑面积,且与所述光斑面积之间的差值均小于或等于预设阈值;或者,
    所述合光组件(10)中第一区域(111)的面积以及第二区域(121)的面积均等于所述第一光束对应的光斑面积。
  20. 根据权利要求14所述的光源模组,还包括:聚焦透镜(24),所述聚焦透镜(24)设置在所述第一光源组件(21)与所述合光组件(10)之间的光传输路径上,所述聚焦透镜(24)用于将所述第一光源组件(21)输出的第一光束汇聚到所述合光组件(10)的第一区域(111)。
  21. 一种投影设备,包括:
    权利要求14-20中任一项所述的光源模组;
    光阀;以及
    投影镜头;
    其中,所述光源模组输出的照明光束,经过所述光阀以及所述投影镜头后输出。
PCT/CN2023/131631 2022-11-23 2023-11-14 合光组件、光源模组及投影设备 WO2024109595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211476015.6 2022-11-23
CN202211476015.6A CN118068586A (zh) 2022-11-23 2022-11-23 合光组件、光源模组及投影设备

Publications (1)

Publication Number Publication Date
WO2024109595A1 true WO2024109595A1 (zh) 2024-05-30

Family

ID=91109782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131631 WO2024109595A1 (zh) 2022-11-23 2023-11-14 合光组件、光源模组及投影设备

Country Status (2)

Country Link
CN (1) CN118068586A (zh)
WO (1) WO2024109595A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084364A (ja) * 2001-09-13 2003-03-19 Seiko Epson Corp プロジェクタ
US20170299958A1 (en) * 2016-04-19 2017-10-19 Canon Kabushiki Kaisha Illumination apparatus and projection display apparatus using the same
US20190227417A1 (en) * 2018-01-19 2019-07-25 Coretronic Corporation Projector, image generation device, and image generation method thereof
US20200124955A1 (en) * 2017-03-14 2020-04-23 Appotronics Corporation Limited Light source device and projection system
WO2021132061A1 (ja) * 2019-12-27 2021-07-01 ソニーグループ株式会社 光源装置および投射型表示装置
US20210321066A1 (en) * 2018-12-25 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus
US20220206371A1 (en) * 2020-12-25 2022-06-30 Coretronic Corporation Illumination system and projection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084364A (ja) * 2001-09-13 2003-03-19 Seiko Epson Corp プロジェクタ
US20170299958A1 (en) * 2016-04-19 2017-10-19 Canon Kabushiki Kaisha Illumination apparatus and projection display apparatus using the same
US20200124955A1 (en) * 2017-03-14 2020-04-23 Appotronics Corporation Limited Light source device and projection system
US20190227417A1 (en) * 2018-01-19 2019-07-25 Coretronic Corporation Projector, image generation device, and image generation method thereof
US20210321066A1 (en) * 2018-12-25 2021-10-14 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus
WO2021132061A1 (ja) * 2019-12-27 2021-07-01 ソニーグループ株式会社 光源装置および投射型表示装置
US20220206371A1 (en) * 2020-12-25 2022-06-30 Coretronic Corporation Illumination system and projection apparatus

Also Published As

Publication number Publication date
CN118068586A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10754162B2 (en) Projection apparatus and head-mounted display device
US20060139575A1 (en) Optical collection and distribution system and method
JP2024023800A (ja) 光源装置、画像投射装置及び光源光学系
TW201329609A (zh) 偏斜雙色偏光之射束分離器
CN102193294A (zh) 照明系统
JP7434808B2 (ja) 光源装置及び画像投射装置
US20200225570A1 (en) Projection system
US11215916B2 (en) Compact size multi-channel light engine projection apparatus
JP7413740B2 (ja) 光源装置、画像投射装置及び光源光学系
CN108681198B (zh) 一种光源装置以及投影显示装置
WO2024109595A1 (zh) 合光组件、光源模组及投影设备
JP2012247705A (ja) 偏光変換素子、偏光変換ユニット及び投写型映像装置
WO2011103807A1 (zh) 图像投影系统及其光路合成器
TWI676074B (zh) 投影裝置及照明系統
TW202422162A (zh) 合光組件、光源模組及投影設備
US10775689B2 (en) Illumination system and projection apparatus
WO2020199670A1 (zh) 光源系统及投影设备
TWM656499U (zh) 照明裝置及投影設備
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
WO2021063144A1 (zh) 一种光学引擎系统及投影系统
JP7342624B2 (ja) 光源装置、画像投射装置及び光源光学系
CN219162530U (zh) 照明装置及投影设备
US20230140825A1 (en) Beam splitter/combiner and projection apparatus
US20200379328A1 (en) Illumination system
US11366377B2 (en) Wavelength conversion element, illumination device, and projector