WO2024109397A1 - Systems and methods for steering quic traffic - Google Patents

Systems and methods for steering quic traffic Download PDF

Info

Publication number
WO2024109397A1
WO2024109397A1 PCT/CN2023/124969 CN2023124969W WO2024109397A1 WO 2024109397 A1 WO2024109397 A1 WO 2024109397A1 CN 2023124969 W CN2023124969 W CN 2023124969W WO 2024109397 A1 WO2024109397 A1 WO 2024109397A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
information
quic
identifier
connection
Prior art date
Application number
PCT/CN2023/124969
Other languages
French (fr)
Inventor
Lijuan Chen
Zhijun Li
Jinguo Zhu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/124969 priority Critical patent/WO2024109397A1/en
Publication of WO2024109397A1 publication Critical patent/WO2024109397A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the disclosure relates generally to wireless communications, including but not limited to systems and methods for steering quick user datagram protocol (UDP) international connection (QUIC) traffic, on N6 interface for instance.
  • UDP quick user datagram protocol
  • QUIC international connection
  • the standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) .
  • the 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) .
  • 5G-AN 5G Access Network
  • 5GC 5G Core Network
  • UE User Equipment
  • the elements of the 5GC also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a user plane function may receive (e.g., by subscribing to) traffic filtering information from a session management function (SMF) .
  • the traffic filtering information may include an identifier of a quick user datagram protocol internet connection (QUIC) connection.
  • the UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
  • the UPF may receive the data traffic from a radio access network (e.g., a base station, gNB, wireless communication node of the RAN) .
  • the UPF may send the identified portion of the data traffic to a data network (DN) via an N6 interface.
  • DN data network
  • the data traffic can be carried by a plurality of QUIC connections.
  • the identified portion of the data traffic can be carried in one of the plurality of QUIC connections, that corresponds to the identifier of QUIC connection.
  • An application function may perform at least one of: may generate a request comprising at least one of: the traffic filtering information that may include the identifier of the QUIC connection, a list of at least one data network access identifier (DNAI) and at least one corresponding routing profile identifier (ID) , or traffic routing information of an N6 interface; or may send the request to a network exposure function (NEF) .
  • the NEF may store information of the request.
  • a unified data repository may receive the information of the request from the NEF.
  • the UDR may store the information of the request.
  • the information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • At least one PCF may receive a notification message from the UDR.
  • the notification message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
  • the at least one PCF may send policy information to the SMF.
  • the policy information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • the NEF may send to the SMF information of the request.
  • the information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • the UPF may receive an update message from the SMF.
  • the update message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
  • the traffic filtering information may include: (i) the identifier of the QUIC connection (e.g., same QUIC connection ID) , that can be same as an identifier of a QUIC connection included in prior traffic filtering information, and (ii) a destination IP address that can be different from a prior destination IP address included in the prior traffic filtering information.
  • the traffic filtering information may further include information of a traffic stream in the QUIC connection (e.g., a stream ID) .
  • the traffic stream can be one of a plurality of traffic streams in (e.g., multiplexed in, or contained/communicated in) the QUIC connection.
  • the information of a traffic stream may comprise at least one of: (i) an identifier of the traffic stream in the QUIC connection (e.g., a QUIC stream ID) , (ii) information to identify a type of the traffic stream in the QUIC connection, or (iii) information to identify a flow requirement of the traffic stream in the QUIC connection.
  • an identifier of the traffic stream in the QUIC connection e.g., a QUIC stream ID
  • information to identify a type of the traffic stream in the QUIC connection e.g., a QUIC stream ID
  • a session management function may send traffic filtering information to a user plane function (UPF) .
  • the traffic filtering information may include an identifier of a quick user datagram protocol internet connection (QUIC) connection.
  • the UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
  • QUIC quick user datagram protocol internet connection
  • FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 4 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 5 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 6 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 7 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 8 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure
  • FIG. 9 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure
  • FIG. 10 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure.
  • UDP quick user datagram protocol
  • QUIC international connection
  • FIG. 12 illustrates a flow diagram of an example method for steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface, in accordance with an embodiment of the present disclosure.
  • UDP quick user datagram protocol
  • QUIC international connection
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
  • FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution.
  • the system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
  • the System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) .
  • the BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220.
  • the UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240.
  • the BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
  • system 200 may further include any number of modules other than the modules shown in FIG. 2.
  • modules other than the modules shown in FIG. 2.
  • the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof.
  • various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
  • the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion.
  • the operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example.
  • eNB evolved node B
  • the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc.
  • PDA personal digital assistant
  • the processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems.
  • the model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it.
  • the OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols.
  • the OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model.
  • a first layer may be a physical layer.
  • a second layer may be a Medium Access Control (MAC) layer.
  • MAC Medium Access Control
  • a third layer may be a Radio Link Control (RLC) layer.
  • a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • a fifth layer may be a Radio Resource Control (RRC) layer.
  • a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
  • NAS Non Access Stratum
  • IP Internet Protocol
  • Edge computing may facilitate the hosting of operator and third-party services in close proximity to a user equipment's (UE’s) point of attachment.
  • This setup may optimize service delivery by minimizing end-to-end latency and reducing load on a transport network.
  • a user plane function (UPF) situated near the UE can be selected, and traffic can be forwarded to enable local access to a data network (DN) via an N6 interface, in accordance with the provided traffic steering rules.
  • DN data network
  • a quick user datagram protocol (UDP) international connection (QUIC) protocol is a rapidly developing approach to setup international connection between two end points.
  • the QUIC protocol is regarded as the next generation protocol used for HTTP, e.g., to be used to replace existing TCP+TLS+HTTP protocol.
  • QUIC can be a connection-oriented protocol that creates a stateful interaction between a client and a server.
  • a QUIC connection ID can be an identifier that is used to identify a QUIC connection at an endpoint.
  • QUIC connections may not be strictly bound to a single network path.
  • a connection migration may use connection identifiers to allow connections to transfer to a new network path.
  • a typical use case can be: different QUIC connections may be established between two endpoints using same IP 5-tuple, and each QUIC connection may carry one type of media component.
  • a user terminal may establish multiple QUIC connections with the user terminal’s server. All QUIC connections with different QUIC connection IDs may share the same IP 5-tuple while one QUIC connection is used to carry low data rate low latency content (e.g., messages, audio stream) and another QUIC connection is used to carry high data rate content with high latency tolerance (e.g., video stream) .
  • a QUIC stream can be a unidirectional or bidirectional channel of ordered bytes within a QUIC connection.
  • a QUIC connection can carry multiple streams simultaneously.
  • a QUIC stream can be identified within a QUIC connection by a stream ID of the QUIC stream.
  • multiple service flows e.g., a simple data flow can be sent/directed to a remote access stratum (AS) , a complex data flow may undergo pre-processing before being sent to the remote AS
  • between two QUIC connection endpoints may be placed in different streams of one QUIC connection.
  • the present disclosure provides systems and methods of using enhanced traffic steering rules or models. These rules/models can provide the correlation/mapping between QUIC traffic and N6 traffic routing information, enabling the network to distinguish between QUIC traffic from different QUIC connections. As a result, the proposed method can efficiently forward QUIC traffic to the target DN.
  • FIG. 3 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure.
  • the example architecture there can be the following functions.
  • RAN radio access network
  • AMF access and mobility management function. This function may include at least one of following functionalities: a registration management, a connection management, or a reachability management and mobility management. This function may also perform the access authentication and access authorization.
  • the AMF can be the NAS security termination, and can relay the SM NAS between a UE and a SMF. The AMF may also perform SMF selection function during a PDU session establishment procedure and/or UE mobility procedure.
  • SMF session management function. This function may include at least one of following functionalities: a session establishment, a modification and release, a UE IP address allocation &management (e.g., including optional authorization functions) , a selection and control of UP function, or a downlink data notification.
  • the SMF service area can be the collection of UPF service areas of all UPFs which can be controlled/managed/served by a SMF.
  • UPF user plane function. This function may include at least one of following functionalities: a serving as an anchor point for intra-/inter-radio access technology (RAT) mobility, a packet routing and forwarding, a traffic usage reporting, a QoS handling for the user plane, or a downlink packet buffering and downlink data notification triggering.
  • the UPF service area can be an area comprising one or more tracking area (s) within which PDU session associated with the UPF can be served by RAN nodes via a N3 interface between the RAN and the UPF without need to add a new UPF in between or to remove/re-allocate the UPF.
  • the A-UPF can be the anchor UPF which is kept unchanged during the UE mobility.
  • the I-UPF can be inserted/relocated when the UE moves outside of the A-UPF service area.
  • the I-UPF may use a N3 tunnel to connect with RAN and may use a N9 tunnel to connect with A-UPF.
  • the I-UPF may also provide traffic offloading function to route the identified uplink traffic to a local data network.
  • PCF policy control function.
  • the PCF may provide policy rules to control plane functions to enforce the rules. Specifically, the PCF may provide an access and mobility related policy to the AMF. The AMF may enforce the policy during a mobility procedure.
  • the PCF may provide a UE access selection and PDU session selection related policy (UE policy) to the AMF. The AMF may forward the policies to the UE.
  • the PCF may provide a session management related policy to the SMF and the SMF may enforce the policy.
  • the PCF can be deployed in a distributed manner and each PCF may support different functions in the same public land mobile network (PLMN) .
  • PLMN public land mobile network
  • UDR unified data repository.
  • the UDR can support the storage and retrieval of subscription data by the UDM, storage and retrieval of structured data for exposure, application data (e.g., including packet flow descriptions (PFDs) for application detection, AF request information for multiple UEs) , storage and retrieval of NF group ID corresponding to subscriber identifier (e.g., IP multimedia private identity (IMPI) , IP multimedia public identity (IMPU) ) .
  • PFDs packet flow descriptions
  • NF group ID corresponding to subscriber identifier
  • the unified data repository can be located in the same PLMN as the NF that service consumers storing in and retrieving data from the UDR using a standardized interface (e.g., Nudr) .
  • NEF network exposure function.
  • the NEF may store/retrieve information as structured data using a standardized interface (e.g., Nudr) to the unified data repository (UDR) .
  • the NEF may provide a means for the application functions to securely provide information to a network, e.g., the application influence on traffic routing information. In such case, the NEF may authenticate and authorize and assist in throttling the application functions.
  • a specific NEF instance may support one or more of the functionalities and consequently an individual NEF may support a subset of the APIs specified for capability exposure.
  • the NEF can access the UDR located in the same PLMN as the NEF.
  • AF application function.
  • the AF may interact with a core network in order to provide services, for example, to support application influence on traffic routing.
  • application functions considered to be trusted by the operator can be allowed to interact directly with relevant network functions.
  • Application functions not allowed by the operator to access directly the network functions can use the external exposure framework via the NEF to interact with relevant network functions.
  • Edge computing may enable operator and third party services to be hosted close to the UE's access point of attachment, so as to achieve an efficient service delivery through the reduced end-to-end latency and load on the transport network.
  • the 5G/communication core network may select a UPF close to the UE and may forward traffic to enable the local access to the DN via a N6 interface according to the provided traffic steering rules to the UPF.
  • the traffic steering rule may include a traffic filter which is used to selects the traffic to be routed and N6 traffic routing information.
  • the traffic filter definition may include at least one of the following.
  • Direction (e.g., in or out) .
  • the direction “in” may refer to uplink IP flows, and the direction “out” may refer to downlink IP flows.
  • Source and destination IP address (possibly masked) .
  • Such traffic filter definition may apply traffic detection and filtering on IP 5-tuple level, which is not sufficient to support the differentiation of QUIC traffic especially in the case that different QUIC connections share a same IP 5-tuple. Due to the growing amount of QUIC traffic, more requirements can arise to support steering of particular QUIC traffic to a special/certain routing path, especially in edge computing scenario.
  • an application service may be served by multiple edge application servers typically deployed in different sites. These multiple edge application servers that host services may use a single IP address (anycast address) or different IP addresses.
  • the concurrent traffic between the same UE and different edge application servers may have the same traffic filter (e.g., FIG. 4) .
  • the concurrent traffic of different PDU sessions between the same UE and the same edge application server may have the same traffic filter (e.g., FIG. 5) . Consequently, it may be hard to provide different traffic steering rules for the different traffic, and UPF may not be forwarding the different traffic correctly.
  • a quick UDP International Connection (QUIC) protocol can be used to setup international connection between two end points.
  • the QUIC protocol is regarded as the next generation protocol used for HTTP, e.g., to be used to replace existing TCP+TLS+HTTP protocol. With the popularity of the QUIC, more and more applications may choose QUIC as the transport protocol.
  • QUIC can be a connection-oriented protocol that creates a stateful interaction between a client and a server.
  • a connection ID can be an identifier that is used to identify a QUIC connection at an endpoint.
  • QUIC connections may not be strictly bounded to a single network path.
  • a connection migration may use connection identifiers to allow connections to transfer to a new network path.
  • a QoS model supported by 5G network can be based on QoS flows.
  • the QoS flow can be the finest granularity of QoS differentiation in the PDU session.
  • a QoS flow ID (QFI) can be used to identify a QoS flow in the 5G/communication system.
  • the user plane traffic with the same QFI within a PDU session may receive the same traffic forwarding treatment (e.g., scheduling, admission threshold) .
  • the QFI can be carried in an encapsulation header on N3 (and N9) , e.g., without any changes to the e2e packet header (the user plane protocol stack figure, showed in FIG. 7) .
  • differentiation treatment to multiple flows in a PDU session may occur in 5G core network but not cover N6 interface to outside of 5G core network (e.g., to data network (DN) ) .
  • DN data network
  • a QUIC connection ID and optionally stream information can be added to a traffic filter of a traffic steering rule when an application supports QUIC protocol.
  • the main principle of the present disclosure may include at least one of the following.
  • Direction (e.g., in or out) .
  • the direction “in” may refer to uplink IP flows, and the direction “out” may refer to downlink IP flows.
  • Source and destination IP address (possibly masked) .
  • Protocol e.g., QUIC
  • information of QUIC streams within the QUIC connection can be added to QUIC data packet head.
  • Stream information can be/include information to identify a type of QUIC streams (e.g., audio, video) , identify the requirement of the QUIC flow (e.g., flow needed local offload, flow needed specific computing power) , or the stream information can carry the QUIC stream ID of the main stream within the QUIC connection.
  • a type of QUIC streams e.g., audio, video
  • identify the requirement of the QUIC flow e.g., flow needed local offload, flow needed specific computing power
  • the stream information can carry the QUIC stream ID of the main stream within the QUIC connection.
  • the main principle of the present disclosure may include at least one of the following:
  • the AF may provide traffic filter information including QUIC connection ID information and optionally stream information to the NEF by creation or updating to influence traffic routing request.
  • the NEF may store or update traffic filter information including QUIC connection ID information and optionally stream information to the NEF by creation or updating to influence traffic routing request.
  • the PCF may receive notification about traffic filter information including QUIC connection ID information and optionally stream information from the UDR.
  • the SMF may receive notification about traffic filter information including QUIC connection ID information and optionally stream information from the PCF or V-NEF.
  • the UPF may receive traffic filters information including QUIC connection ID information and optionally stream information as part of traffic steering rules.
  • the UPF may select the traffic based on traffic filter information including QUIC connection ID information and optionally stream information, and may forward the selected traffic to the target DN.
  • traffic filter information including QUIC connection ID information and optionally stream information
  • the UE may send QUIC traffic with QUIC stream information encapsulated in the QUIC package header.
  • FIG. 9 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface for instance, in accordance with some embodiments of the present disclosure.
  • the call flows in FIG. 9 shows that an AF sends requests with traffic steering rule (s) .
  • the requests may include a QUIC connection ID to influence UPF steering of traffic of a PDU session.
  • the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps.
  • An application client on the UE
  • the application server may select a QUIC connection ID for the application client.
  • Step 1 To create a new request, the AF may invoke a Nnef_TrafficInfluence_Create service operation.
  • the request may include at least one of the following information: an AF identifier, an address (e.g., IP or Ethernet) of the UE if available, one or more generic public subscription identifiers (GPSIs) if available, a data network name (DNN) if available, single –network slice selection assistance information (S-NSSAI) if available, external group identifier (s) if available, an external application identifier or traffic filtering information including a QUIC connection ID, an AF-service-identifier, a list of data network access identifier (s) (DNAI (s) ) and corresponding routing profile ID (s) , or N6 traffic routing information.
  • GSSIs generic public subscription identifier
  • DNN data network name
  • S-NSSAI single –network slice selection assistance information
  • s external group identifier
  • Step 2 The AF may send a request of the AF to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU session by configuration or by invoking a Nbsf_management_Discovery service.
  • the NEF may ensure the necessary authorization control, including throttling of AF requests, and mapping from the information provided by the AF to information required by the 5GC.
  • Step 3 The NEF may store the AF request information.
  • the AF request information may include traffic filtering information extended with a QUIC connection ID for traffic routing in the UDR.
  • the NEF may send a response to the AF.
  • Step 4a The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended/configured/gemerated with QUIC connection ID for traffic routing from the UDR.
  • Step 4b The UDR may notify the subscribed NEF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID.
  • Step 5a The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation.
  • the corresponding policy information may include traffic filtering information extended with a QUIC connection ID.
  • Step 5b The NEF may notify the subscribed SMF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID.
  • Step 6 When the updated policy information about the PDU Session is received from the PCF, the SMF may take appropriate actions to reconfigure the user plane of the PDU session.
  • actions can be: updating the UPF in the target DNAI/Common DNAI with new traffic steering rules.
  • the traffic steering rules may include traffic filtering information extended with a QUIC connection ID.
  • Step 7 The SMF may decide/determine whether the SMF is required to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection and may inform the target DNAI information or the common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
  • the UPF may select traffic based on extended traffic filtering information that includes QUIC connection details. Subsequently, the UPF may forward the traffic based on a data network access identifier (DNAI) and the corresponding routing profile ID or N6 traffic routing information according to the specified traffic steering rules.
  • DNAI data network access identifier
  • FIG. 10 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface, in accordance with some embodiments of the present disclosure.
  • the call flows in FIG. 10 shows that an AF sends requests with updated traffic steering rule.
  • the requests may include/incorporate a QUIC connection ID to influence/affect/control/enable UPF steering of traffic of a PDU session.
  • the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps.
  • Step 0b-2 the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps.
  • Step 0b-1 The V-SMF may support HR-SBO subscription to notification of AF request (s) by invoking a Nnef_TrafficInfluenceData_
  • the V-NEF may subscribe to notification of AF request (s) from the V-UDR. PDU sessions between application client (s) supporting QUIC and an application server (s) may have been created. The application server (s) may have selected QUIC connection ID (s) for the application client (s) . The AF may decide to change traffic flow (s) to other application server (s) for the reason of, e.g., high workload on a certain application server. As showed in FIG. 5, steering one traffic flow to EAS2-2 due to high workload on EAS2-1. In some embodiments, the UE may move from the service area of EAS2-1 to a service area of EAS2-2.
  • Step 1 To update an existing request, the AF may invoke a Nnef_TrafficInfluence_Update service operation providing the corresponding AF transaction ID.
  • the request may include at least one of following information: traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information.
  • Step 2 The AF may send a request of the AF to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU Session by configuration or by invoking a Nbsf_management_Discovery service.
  • the NEF can ensure/perform the necessary authorization control, including throttling of AF requests and mapping from the information provided by the AF to information required by the 5GC.
  • the NEF may store the AF request information.
  • the AF request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, and/or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information for traffic routing in the UDR.
  • the NEF may send a response to the AF.
  • Step 4a The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, and/or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information for traffic routing from the UDR.
  • Step 4b The UDR may notify the subscribed NEF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
  • Step 5a The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation.
  • the corresponding policy information about the PDU session may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
  • Step 5b The NEF may notify the subscribed SMF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
  • Step 6 When the updated policy information about the PDU session is received from the PCF, the SMF may take appropriate actions to reconfigure the User plane of the PDU session.
  • actions can be: updating the UPF in the target DNAI/Common DNAI with new traffic steering rules.
  • the traffic steering rules may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
  • Step 7 The SMF may decide whether the SMF is to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection and then may inform the target DNAI information or the common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
  • the UPF may select traffic based on extended traffic filtering information that includes QUIC connection details. Subsequently, the UPF may forward the traffic based on a data network access identifier (DNAI) and the corresponding routing profile ID or N6 traffic routing information according to the specified traffic steering rules.
  • DNAI data network access identifier
  • FIG. 11 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure.
  • the requests may include QUIC connection ID and QUIC stream information to influence UPF steering of traffic of a PDU session.
  • the QUIC stream information can be/include information to identify the type of QUIC streams (e.g., audio, or video) , or to identify the requirement of the QUIC flow (e.g., flow needed local offload, or flow needed specific computing power or other resource (s) ) .
  • the stream information can carry the QUIC stream ID of the main stream within the QUIC connection.
  • the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps.
  • Step 0b-2 The V-NEF may subscribe to notifications of application function (AF) request (s) from the V-UDR.
  • An application client (on the UE) may support a QUIC protocol request to create PDU session associated with an application server.
  • the application server may select a QUIC connection ID for the application client and stream IDs set for each stream.
  • the AF may make the decision of changing the target of one of the streams, due to high workload or a bug for instance.
  • Step 1 To create a new request or update a request, the AF may invoke a Nnef_TrafficInfluence_Create/Update service operation.
  • This request may include at least one of following information: an AF identifier, an address (e.g., IP or Ethernet) of the UE if available, one or more GPSIs if available, DNN if available, S-NSSAI if available, external group identifier (s) if available, external application identifier or traffic filtering information.
  • the traffic filtering information may include QUIC connection ID and QUIC stream information, AF-service-identifier, a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information.
  • Step 2 The AF may send a request to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU session by a configuration or by an invoking Nbsf_management_Discovery service.
  • the NEF can ensure/provide/perform the authorization control, including throttling of AF requests, and mapping from the information provided by the AF information needed by the 5GC.
  • Step 3 The NEF may store the AF request information.
  • the AF request information may include traffic filtering information extended/enhanced with QUIC connection ID and QUIC stream information for traffic routing in the UDR.
  • the NEF may send a response to the AF.
  • Step 4a The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended with QUIC connection ID and QUIC stream information for traffic routing from the UDR.
  • Step 4b The UDR may notify the subscribed NEF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
  • Step 5a The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation.
  • the corresponding policy information may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
  • Step 5b The NEF may notify the subscribed SMF of the AF traffic influence request information.
  • the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID and QUIC stream information.
  • Step 6 When the updated policy information about the PDU session is received from the PCF, the SMF may take appropriate actions to reconfigure the user plane of the PDU session.
  • actions can be: updating the UPF in the target DNAI/common DNAI with new traffic steering rules.
  • the traffic steering rules may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
  • Step 7 The SMF may decide whether it is to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection.
  • the SMF may inform the target DNAI information or the common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
  • the UE may encapsulate data in QUIC package including stream information in the data packet head/header.
  • the UE may send the QUIC data packet to the UPF.
  • the UPF may select traffic based on traffic filtering information extended with QUIC connection and QUIC stream information.
  • the UPF may forward the traffic based on DNAI and corresponding routing profile ID or N6 traffic routing information according to the traffic steering rules.
  • FIG. 12 illustrates a flow diagram of a method 1200 for steering/directing/routing quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface.
  • the method 1200 may be implemented using any one or more of the components and devices detailed herein in conjunction with FIGs. 1–11.
  • the method 1200 may be performed by a user plane function (UPF) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1200 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a computer-readable medium.
  • UPF user plane function
  • a user plane function may receive traffic filtering information from a session management function (SMF) .
  • the traffic filtering information may include an identifier/identification of a user datagram protocol internet connection (QUIC) connection.
  • the UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
  • the UPF may receive the data traffic from a radio access network.
  • the UPF may send the identified portion of the data traffic to a data network (DN) via an N6 interface.
  • DN data network
  • the data traffic can be carried by (e.g., split between) a plurality of QUIC connections.
  • the identified portion of the data traffic can be carried in one of the plurality of QUIC connections, that corresponds to the identifier of QUIC connection.
  • An application function may perform at least one of: may generate a request comprising at least one of: the traffic filtering information that may include the identifier of the QUIC connection, a list of at least one data network access identifier (DNAI) and at least one corresponding routing profile identifier (ID) , or traffic routing information of an N6 interface; or may send the request to a network exposure function (NEF) .
  • the NEF may store information of the request.
  • a unified data repository may receive the information of the request from the NEF.
  • the UDR may store the information of the request.
  • the information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • At least one PCF may receive a notification message from the UDR.
  • the notification message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
  • the at least one PCF may send policy information to the SMF.
  • the policy information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • the NEF may send to the SMF information of the request.
  • the information may include the traffic filtering information that may include the identifier of the QUIC connection.
  • the UPF may receive an update message from the SMF.
  • the update message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
  • the traffic filtering information may include: (i) the identifier of the QUIC connection (e.g., same/unchanged QUIC connection ID) , that can be same as an identifier of a QUIC connection included in prior traffic filtering information, and (ii) a destination IP address that can be different/changed from a prior destination IP address included in the prior traffic filtering information.
  • the traffic filtering information may further include information of a traffic stream in the QUIC connection (e.g., a stream ID) .
  • the traffic stream can be one of a plurality of traffic streams in the QUIC connection.
  • the information of a traffic stream may comprise at least one of: (i) an identifier of the traffic stream (from a plurality of traffic streams) in the QUIC connection (e.g., a QUIC stream ID) , (ii) information to identify a type of the traffic stream in the QUIC connection, or (iii) information to identify a flow requirement of the traffic stream in the QUIC connection.
  • a session management function may send traffic filtering information to a user plane function (UPF) .
  • the traffic filtering information may include an identifier of a user datagram protocol internet connection (QUIC) connection.
  • the UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
  • QUIC user datagram protocol internet connection
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Presented are systems and methods for steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface. A user plane function (UPF) may receive traffic filtering information from a session management function (SMF). The traffic filtering information may include an identifier of a quick user datagram protocol internet connection (QUIC) connection. The UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.

Description

SYSTEMS AND METHODS FOR STEERING QUIC TRAFFIC TECHNICAL FIELD
The disclosure relates generally to wireless communications, including but not limited to systems and methods for steering quick user datagram protocol (UDP) international connection (QUIC) traffic, on N6 interface for instance.
BACKGROUND
The standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) . The 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) . In order to facilitate the enablement of different data services and requirements, the elements of the 5GC, also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
At least one aspect is directed to a system, method, apparatus, or a computer-readable medium of the following. A user plane function (UPF) may receive (e.g., by subscribing to) traffic filtering information from a session management function (SMF) . The traffic filtering information may include an identifier of a quick user datagram protocol internet connection (QUIC) connection. The UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection. In some embodiments, the UPF may receive the data traffic from a radio access network (e.g., a base station, gNB, wireless communication node of the RAN) . The UPF may send the identified portion of the data traffic to a data network (DN) via an N6 interface.
In some embodiments, the data traffic can be carried by a plurality of QUIC connections. The identified portion of the data traffic can be carried in one of the plurality of QUIC connections, that corresponds to the identifier of QUIC connection. An application function may perform at least one of: may generate a  request comprising at least one of: the traffic filtering information that may include the identifier of the QUIC connection, a list of at least one data network access identifier (DNAI) and at least one corresponding routing profile identifier (ID) , or traffic routing information of an N6 interface; or may send the request to a network exposure function (NEF) . In some embodiments, the NEF may store information of the request. A unified data repository (UDR) may receive the information of the request from the NEF. The UDR may store the information of the request. The information may include the traffic filtering information that may include the identifier of the QUIC connection. At least one PCF may receive a notification message from the UDR. The notification message may comprise the traffic filtering information that may include the identifier of the QUIC connection. The at least one PCF may send policy information to the SMF. The policy information may include the traffic filtering information that may include the identifier of the QUIC connection.
In some embodiments, the NEF may send to the SMF information of the request. The information may include the traffic filtering information that may include the identifier of the QUIC connection. The UPF may receive an update message from the SMF. The update message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
In some embodiments, the traffic filtering information may include: (i) the identifier of the QUIC connection (e.g., same QUIC connection ID) , that can be same as an identifier of a QUIC connection included in prior traffic filtering information, and (ii) a destination IP address that can be different from a prior destination IP address included in the prior traffic filtering information. The traffic filtering information may further include information of a traffic stream in the QUIC connection (e.g., a stream ID) . The traffic stream can be one of a plurality of traffic streams in (e.g., multiplexed in, or contained/communicated in) the QUIC connection. The information of a traffic stream may comprise at least one of: (i) an identifier of the traffic stream in the QUIC connection (e.g., a QUIC stream ID) , (ii) information to identify a type of the traffic stream in the QUIC connection, or (iii) information to identify a flow requirement of the traffic stream in the QUIC connection.
In some embodiments, a session management function (SMF) may send traffic filtering information to a user plane function (UPF) . The traffic filtering information may include an identifier of a quick user datagram protocol internet connection (QUIC) connection. The UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure;
FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 4 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 5 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 6 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 7 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 8 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure;
FIG. 9 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure;
FIG. 11 illustrates a sequence diagram illustrating steering of quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure; and
FIG. 12 illustrates a flow diagram of an example method for steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
1. Mobile Communication Technology and Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In FIG. 1, the BS 102 and UE 104 are contained within a respective geographic boundary  of cell 126. Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of FIG. 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in FIG. 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure.
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink  transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof. The memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively,  such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively. The memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230. In some embodiments, the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively. Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
The Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems. The model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it. The OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols. The OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model. In some embodiments, a first layer may be a physical layer. In some embodiments, a second layer may be a Medium Access Control (MAC) layer. In some embodiments, a third layer may be a Radio Link Control (RLC) layer. In some embodiments, a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer. In some embodiments, a fifth layer may be a Radio Resource Control (RRC) layer. In some embodiments, a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution.  Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
2. Systems and Methods for Steering Quick User Datagram Protocol (UDP) International Connection  (QUIC) Traffic
Edge computing may facilitate the hosting of operator and third-party services in close proximity to a user equipment's (UE’s) point of attachment. This setup may optimize service delivery by minimizing end-to-end latency and reducing load on a transport network. In a 5G core network for instance, a user plane function (UPF) situated near the UE can be selected, and traffic can be forwarded to enable local access to a data network (DN) via an N6 interface, in accordance with the provided traffic steering rules. There may be limitations in the traffic filter information of the traffic steering rules, leading to challenges in distinguishing traffic for forwarding in certain scenarios.
A quick user datagram protocol (UDP) international connection (QUIC) protocol is a rapidly developing approach to setup international connection between two end points. The QUIC protocol is regarded as the next generation protocol used for HTTP, e.g., to be used to replace existing TCP+TLS+HTTP protocol. QUIC can be a connection-oriented protocol that creates a stateful interaction between a client and a server. A QUIC connection ID can be an identifier that is used to identify a QUIC connection at an endpoint. QUIC connections may not be strictly bound to a single network path. A connection migration may use connection identifiers to allow connections to transfer to a new network path.
A typical use case can be: different QUIC connections may be established between two endpoints using same IP 5-tuple, and each QUIC connection may carry one type of media component. For example, a user terminal may establish multiple QUIC connections with the user terminal’s server. All QUIC connections with different QUIC connection IDs may share the same IP 5-tuple while one QUIC connection is used to carry low data rate low latency content (e.g., messages, audio stream) and another QUIC connection is used to carry high data rate content with high latency tolerance (e.g., video stream) .
Furthermore, a QUIC stream can be a unidirectional or bidirectional channel of ordered bytes within a QUIC connection. A QUIC connection can carry multiple streams simultaneously. A QUIC stream can be identified within a QUIC connection by a stream ID of the QUIC stream. As per the service requirement, multiple service flows (e.g., a simple data flow can be sent/directed to a remote access stratum (AS) , a complex data flow may undergo pre-processing before being sent to the remote AS) between two QUIC connection endpoints may be placed in different streams of one QUIC connection.
To enable the network to direct QUIC traffic to the DN through an N6 interface, the present disclosure provides systems and methods of using enhanced traffic steering rules or models. These rules/models can provide the correlation/mapping between QUIC traffic and N6 traffic routing information, enabling the network to distinguish between QUIC traffic from different QUIC connections. As a result, the proposed method can efficiently forward QUIC traffic to the target DN.
FIG. 3 illustrates an example architecture in a 5G/communication system, in accordance with some embodiments of the present disclosure. In the example architecture, there can be the following functions.
1) UE: user equipment.
2) RAN: radio access network.
3) AMF: access and mobility management function. This function may include at least one of following functionalities: a registration management, a connection management, or a reachability management and mobility management. This function may also perform the access authentication and access authorization. The AMF can be the NAS security termination, and can relay the SM NAS between a UE and a SMF. The AMF may also perform SMF selection function during a PDU session establishment procedure and/or UE mobility procedure.
4) SMF: session management function. This function may include at least one of following functionalities: a session establishment, a modification and release, a UE IP address allocation &management (e.g., including optional authorization functions) , a selection and control of UP function, or a downlink data notification. The SMF service area can be the collection of UPF service areas of all UPFs which can be controlled/managed/served by a SMF.
5) UPF: user plane function. This function may include at least one of following functionalities: a serving as an anchor point for intra-/inter-radio access technology (RAT) mobility, a packet routing and forwarding, a traffic usage reporting, a QoS handling for the user plane, or a downlink packet buffering and downlink data notification triggering. The UPF service area can be an area comprising one or more tracking area (s) within which PDU session associated with the UPF can be served by RAN nodes via a N3 interface between the RAN and the UPF without need to add a new UPF in between or to remove/re-allocate the UPF. The A-UPF can be the anchor UPF which is kept unchanged during the UE mobility. The I-UPF can be inserted/relocated when the UE moves outside of the A-UPF service area. The I-UPF may use a N3 tunnel to connect with RAN and may use a N9 tunnel to connect with A-UPF. The I-UPF may also provide traffic offloading function to route the identified uplink traffic to a local data network.
6) PCF: policy control function. The PCF may provide policy rules to control plane functions to enforce the rules. Specifically, the PCF may provide an access and mobility related policy to the AMF. The AMF may enforce the policy during a mobility procedure. The PCF may provide a UE access selection and PDU session selection related policy (UE policy) to the AMF. The AMF may forward the policies to the UE. The PCF may provide a session management related policy to the SMF and the SMF may enforce the policy. The PCF can be deployed in a distributed manner and each PCF may support different functions in the same public land mobile network (PLMN) .
7) UDR: unified data repository. The UDR can support the storage and retrieval of subscription data by the UDM, storage and retrieval of structured data for exposure, application data (e.g., including packet flow descriptions (PFDs) for application detection, AF request information for multiple UEs) , storage and retrieval of NF group ID corresponding to subscriber identifier (e.g., IP multimedia private identity (IMPI) , IP  multimedia public identity (IMPU) ) . The unified data repository can be located in the same PLMN as the NF that service consumers storing in and retrieving data from the UDR using a standardized interface (e.g., Nudr) .
8) NEF: network exposure function. The NEF may store/retrieve information as structured data using a standardized interface (e.g., Nudr) to the unified data repository (UDR) . The NEF may provide a means for the application functions to securely provide information to a network, e.g., the application influence on traffic routing information. In such case, the NEF may authenticate and authorize and assist in throttling the application functions. A specific NEF instance may support one or more of the functionalities and consequently an individual NEF may support a subset of the APIs specified for capability exposure. The NEF can access the UDR located in the same PLMN as the NEF.
9) AF: application function. The AF may interact with a core network in order to provide services, for example, to support application influence on traffic routing. Based on operator deployment, application functions considered to be trusted by the operator can be allowed to interact directly with relevant network functions. Application functions not allowed by the operator to access directly the network functions can use the external exposure framework via the NEF to interact with relevant network functions.
10) EAS: edge application server.
Edge computing may enable operator and third party services to be hosted close to the UE's access point of attachment, so as to achieve an efficient service delivery through the reduced end-to-end latency and load on the transport network. The 5G/communication core network may select a UPF close to the UE and may forward traffic to enable the local access to the DN via a N6 interface according to the provided traffic steering rules to the UPF. The traffic steering rule may include a traffic filter which is used to selects the traffic to be routed and N6 traffic routing information.
The traffic filter definition may include at least one of the following.
- Direction (e.g., in or out) . The direction "in" may refer to uplink IP flows, and the direction "out" may refer to downlink IP flows.
- Source and destination IP address (possibly masked) .
- Protocol.
- Source and destination port.
Such traffic filter definition may apply traffic detection and filtering on IP 5-tuple level, which is not sufficient to support the differentiation of QUIC traffic especially in the case that different QUIC connections share a same IP 5-tuple. Due to the growing amount of QUIC traffic, more requirements can arise to support steering of particular QUIC traffic to a special/certain routing path, especially in edge computing scenario.
In an edge computing deployment, an application service may be served by multiple edge application servers typically deployed in different sites. These multiple edge application servers that host services may use a single IP address (anycast address) or different IP addresses.
In case of single IP address, the concurrent traffic between the same UE and different edge application servers may have the same traffic filter (e.g., FIG. 4) . In another case of different IP addresses, the concurrent traffic of different PDU sessions between the same UE and the same edge application server may have the same traffic filter (e.g., FIG. 5) . Consequently, it may be hard to provide different traffic steering rules for the different traffic, and UPF may not be forwarding the different traffic correctly.
A quick UDP International Connection (QUIC) protocol can be used to setup international connection between two end points. The QUIC protocol is regarded as the next generation protocol used for HTTP, e.g., to be used to replace existing TCP+TLS+HTTP protocol. With the popularity of the QUIC, more and more applications may choose QUIC as the transport protocol.
QUIC can be a connection-oriented protocol that creates a stateful interaction between a client and a server. A connection ID can be an identifier that is used to identify a QUIC connection at an endpoint. QUIC connections may not be strictly bounded to a single network path. A connection migration may use connection identifiers to allow connections to transfer to a new network path.
Furthermore, as showed FIG. 7, a QoS model supported by 5G network can be based on QoS flows. The QoS flow can be the finest granularity of QoS differentiation in the PDU session. A QoS flow ID (QFI) can be used to identify a QoS flow in the 5G/communication system. The user plane traffic with the same QFI within a PDU session may receive the same traffic forwarding treatment (e.g., scheduling, admission threshold) . The QFI can be carried in an encapsulation header on N3 (and N9) , e.g., without any changes to the e2e packet header (the user plane protocol stack figure, showed in FIG. 7) . In short, differentiation treatment to multiple flows in a PDU session may occur in 5G core network but not cover N6 interface to outside of 5G core network (e.g., to data network (DN) ) .
Currently, there is no solution for QUIC stream specific treatment on N6. When different streams need/entail/involve different treatments on N6 interface, it is hard to provide different traffic steering rules for the streams, and the UPF may not be forwarding the different traffic streams correctly.
Implementation Example 0
In the present disclosure, a QUIC connection ID and optionally stream information (e.g., (i) QUIC connection ID; or (ii) QUIC connection ID and QUIC stream information) can be added to a traffic filter of a traffic steering rule when an application supports QUIC protocol. The main principle of the present disclosure may include at least one of the following.
- Direction (e.g., in or out) . The direction "in" may refer to uplink IP flows, and the direction "out" may refer to downlink IP flows.
- Source and destination IP address (possibly masked) .
- Protocol (e.g., QUIC) .
- Source and destination port.
- QUIC connection ID.
- QUIC stream information.
Furthermore, information of QUIC streams within the QUIC connection can be added to QUIC data packet head.
Stream information can be/include information to identify a type of QUIC streams (e.g., audio, video) , identify the requirement of the QUIC flow (e.g., flow needed local offload, flow needed specific computing power) , or the stream information can carry the QUIC stream ID of the main stream within the QUIC connection.
The main principle of the present disclosure may include at least one of the following:
1) The AF may provide traffic filter information including QUIC connection ID information and optionally stream information to the NEF by creation or updating to influence traffic routing request.
2) The NEF may store or update traffic filter information including QUIC connection ID information and optionally stream information to the NEF by creation or updating to influence traffic routing request.
3) The PCF may receive notification about traffic filter information including QUIC connection ID information and optionally stream information from the UDR.
4) The SMF may receive notification about traffic filter information including QUIC connection ID information and optionally stream information from the PCF or V-NEF.
5) The UPF may receive traffic filters information including QUIC connection ID information and optionally stream information as part of traffic steering rules.
6) The UPF may select the traffic based on traffic filter information including QUIC connection ID information and optionally stream information, and may forward the selected traffic to the target DN.
7) The UE may send QUIC traffic with QUIC stream information encapsulated in the QUIC package header.
Implementation Example 1
FIG. 9 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface for instance, in accordance with some embodiments of the present disclosure. The call flows in FIG. 9 shows that an AF sends requests with traffic steering rule (s) . For example, the requests may include a QUIC connection ID to influence UPF steering of traffic of a PDU session.
First, the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps. Step 0a: The PCF (s) may subscribe to modifications of AF requests (e.g., data subset = AF traffic influence request information) from the UDR. Step 0b-1: The V-SMF may support HR-SBO subscription to notification of AF request (s) by invoking Nnef_TrafficInfluenceData_Subscribe service (e.g., data subset = AF traffic influence request information) from the V-NEF. Step 0b-2: The V-NEF may subscribe to notifications of application function (AF) request (s) from the V-UDR. An application client (on the UE) may support a QUIC protocol request to create a PDU session associated with an application server. The application server may select a QUIC connection ID for the application client.
Step 1: To create a new request, the AF may invoke a Nnef_TrafficInfluence_Create service operation. The request may include at least one of the following information: an AF identifier, an address (e.g., IP or Ethernet) of the UE if available, one or more generic public subscription identifiers (GPSIs) if available, a data network name (DNN) if available, single –network slice selection assistance information (S-NSSAI) if available, external group identifier (s) if available, an external application identifier or traffic filtering information including a QUIC connection ID, an AF-service-identifier, a list of data network access identifier (s) (DNAI (s) ) and corresponding routing profile ID (s) , or N6 traffic routing information.
Step 2: The AF may send a request of the AF to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU session by configuration or by invoking a Nbsf_management_Discovery service. The NEF may ensure the necessary authorization control, including throttling of AF requests, and mapping from the information provided by the AF to information required by the 5GC.
Step 3: The NEF may store the AF request information. For example, the AF request information may include traffic filtering information extended with a QUIC connection ID for traffic routing in the UDR. In some embodiments, the NEF may send a response to the AF.
Step 4a: The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information. For  example, the AF traffic influence request information may include traffic filtering information extended/configured/gemerated with QUIC connection ID for traffic routing from the UDR.
Step 4b: The UDR may notify the subscribed NEF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID.
Step 5a: The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation. For example, the corresponding policy information may include traffic filtering information extended with a QUIC connection ID.
Step 5b: The NEF may notify the subscribed SMF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID.
Step 6: When the updated policy information about the PDU Session is received from the PCF, the SMF may take appropriate actions to reconfigure the user plane of the PDU session. One example of actions can be: updating the UPF in the target DNAI/Common DNAI with new traffic steering rules. For example, the traffic steering rules may include traffic filtering information extended with a QUIC connection ID.
Step 7: The SMF may decide/determine whether the SMF is required to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection and may inform the target DNAI information or the common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
When the UPF receives data traffic, the UPF may select traffic based on extended traffic filtering information that includes QUIC connection details. Subsequently, the UPF may forward the traffic based on a data network access identifier (DNAI) and the corresponding routing profile ID or N6 traffic routing information according to the specified traffic steering rules.
Implementation Example 2
FIG. 10 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface, in accordance with some embodiments of the present disclosure. The call flows in FIG. 10 shows that an AF sends requests with updated traffic steering rule. For example, the requests may include/incorporate a QUIC connection ID to influence/affect/control/enable UPF steering of traffic of a PDU session.
First, the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps. Step 0a: The PCF (s) may subscribe to modifications of AF requests (e.g., data subset = AF traffic influence request information) from the UDR. Step 0b-1: The V-SMF may support HR-SBO subscription to notification of AF request (s) by invoking a Nnef_TrafficInfluenceData_Subscribe service (e.g., data subset = AF traffic influence request information) from the V-NEF. Step 0b-2:
The V-NEF may subscribe to notification of AF request (s) from the V-UDR. PDU sessions between application client (s) supporting QUIC and an application server (s) may have been created. The application server (s) may have selected QUIC connection ID (s) for the application client (s) . The AF may decide to change traffic flow (s) to other application server (s) for the reason of, e.g., high workload on a certain application server. As showed in FIG. 5, steering one traffic flow to EAS2-2 due to high workload on EAS2-1. In some embodiments, the UE may move from the service area of EAS2-1 to a service area of EAS2-2.
Step 1: To update an existing request, the AF may invoke a Nnef_TrafficInfluence_Update service operation providing the corresponding AF transaction ID. The request may include at least one of following information: traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information.
Step 2: The AF may send a request of the AF to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU Session by configuration or by invoking a Nbsf_management_Discovery service. The NEF can ensure/perform the necessary authorization control, including throttling of AF requests and mapping from the information provided by the AF to information required by the 5GC.
Step 3: The NEF may store the AF request information. For example, the AF request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, and/or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information for traffic routing in the UDR. In some embodiments, the NEF may send a response to the AF.
Step 4a: The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, and/or a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information for traffic routing from the UDR.
Step 4b: The UDR may notify the subscribed NEF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
Step 5a: The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation. For example, the corresponding policy information about the PDU session may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
Step 5b: The NEF may notify the subscribed SMF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information including  unchanged QUIC connection ID and changed or unchanged destination IP (dstIP) address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
Step 6: When the updated policy information about the PDU session is received from the PCF, the SMF may take appropriate actions to reconfigure the User plane of the PDU session. One example of actions can be: updating the UPF in the target DNAI/Common DNAI with new traffic steering rules. For example, the traffic steering rules may include traffic filtering information including unchanged QUIC connection ID and changed or unchanged dstIP address, a list of DNAI (s) and corresponding routing profile ID (s) , and/or N6 traffic routing information.
Step 7: The SMF may decide whether the SMF is to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection and then may inform the target DNAI information or the common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
When the UPF receives data traffic, the UPF may select traffic based on extended traffic filtering information that includes QUIC connection details. Subsequently, the UPF may forward the traffic based on a data network access identifier (DNAI) and the corresponding routing profile ID or N6 traffic routing information according to the specified traffic steering rules.
Implementation Example 3
FIG. 11 illustrates a sequence diagram illustrating steering quick user datagram protocol (UDP) international connection (QUIC) traffic, in accordance with some embodiments of the present disclosure. FIG. 11 shows that an AF sends requests with traffic steering rule. For example, the requests may include QUIC connection ID and QUIC stream information to influence UPF steering of traffic of a PDU session. The QUIC stream information can be/include information to identify the type of QUIC streams (e.g., audio, or video) , or to identify the requirement of the QUIC flow (e.g., flow needed local offload, or flow needed specific computing power or other resource (s) ) . The stream information can carry the QUIC stream ID of the main stream within the QUIC connection.
First, the subscription of the application function (AF) that influences traffic routing request information can encompass the following steps. Step 0a: The PCF (s) may subscribe to modifications of AF requests (e.g., data subset = AF traffic influence request information) from the UDR. Step 0b-1: The V-SMF supporting HR-SBO may subscribe to notification (s) of AF request (s) by invoking a Nnef_TrafficInfluenceData_Subscribe service (e.g., data subset = AF traffic influence request information) from the V-NEF. Step 0b-2: The V-NEF may subscribe to notifications of application function (AF) request (s) from the V-UDR. An application client (on the UE) may support a QUIC protocol request to create PDU session associated with an application server. The application server may select a QUIC connection ID for the application client and stream IDs set for each stream. In some embodiments, during the (provisioning/delivery of the) service, the AF may make the decision of changing the target of one of the streams, due to high workload or a bug for instance.
Step 1: To create a new request or update a request, the AF may invoke a Nnef_TrafficInfluence_Create/Update service operation. This request may include at least one of following information: an AF identifier, an address (e.g., IP or Ethernet) of the UE if available, one or more GPSIs if available, DNN if available, S-NSSAI if available, external group identifier (s) if available, external application identifier or traffic filtering information. For example, the traffic filtering information may include QUIC connection ID and QUIC stream information, AF-service-identifier, a list of DNAI (s) and corresponding routing profile ID (s) or N6 traffic routing information.
Step 2: The AF may send a request to the NEF. If the request is sent directly from the AF to the PCF, the AF may reach the PCF selected for the existing PDU session by a configuration or by an invoking Nbsf_management_Discovery service. The NEF can ensure/provide/perform the authorization control, including throttling of AF requests, and mapping from the information provided by the AF information needed by the 5GC.
Step 3: The NEF may store the AF request information. For example, the AF request information may include traffic filtering information extended/enhanced with QUIC connection ID and QUIC stream information for traffic routing in the UDR. The NEF may send a response to the AF.
Step 4a: The PCF (s) that have subscribed to modifications of AF requests may receive a Nudr_DM_Notify notification of data change that relates to AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information extended with QUIC connection ID and QUIC stream information for traffic routing from the UDR.
Step 4b: The UDR may notify the subscribed NEF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
Step 5a: The PCF may determine if existing PDU Sessions are potentially impacted by the AF request. For each of these PDU sessions, the PCF may update the SMF with corresponding policy information about the PDU session by invoking a Npcf_SMPolicyControl_UpdateNotify service operation. For example, the corresponding policy information may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
Step 5b: The NEF may notify the subscribed SMF of the AF traffic influence request information. For example, the AF traffic influence request information may include traffic filtering information extended with a QUIC connection ID and QUIC stream information.
Step 6: When the updated policy information about the PDU session is received from the PCF, the SMF may take appropriate actions to reconfigure the user plane of the PDU session. One example of actions can be: updating the UPF in the target DNAI/common DNAI with new traffic steering rules. For example, the traffic steering rules may include traffic filtering information extended with QUIC connection ID and QUIC stream information.
Step 7: The SMF may decide whether it is to send the target DNAI or the common DNAI to the AMF for triggering SMF/I-SMF (re) selection. The SMF may inform the target DNAI information or the  common DNAI information for the current PDU session or for the next PDU session to AMF via a Nsmf_PDUSession_SMContextStatusNotify service operation.
The UE may encapsulate data in QUIC package including stream information in the data packet head/header. The UE may send the QUIC data packet to the UPF. When the UPF receives data traffic, the UPF may select traffic based on traffic filtering information extended with QUIC connection and QUIC stream information. The UPF may forward the traffic based on DNAI and corresponding routing profile ID or N6 traffic routing information according to the traffic steering rules.
It should be understood that one or more features from the above/following implementation examples are not exclusive to the specific implementation examples, but can be combined in any manner (e.g., in any priority and/or order, concurrently or otherwise) .
FIG. 12 illustrates a flow diagram of a method 1200 for steering/directing/routing quick user datagram protocol (UDP) international connection (QUIC) traffic on N6 interface. The method 1200 may be implemented using any one or more of the components and devices detailed herein in conjunction with FIGs. 1–11. In overview, the method 1200 may be performed by a user plane function (UPF) , in some embodiments. Additional, fewer, or different operations may be performed in the method 1200 depending on the embodiment. At least one aspect of the operations is directed to a system, method, apparatus, or a computer-readable medium.
A user plane function (UPF) may receive traffic filtering information from a session management function (SMF) . The traffic filtering information may include an identifier/identification of a user datagram protocol internet connection (QUIC) connection. The UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection. In some embodiments, the UPF may receive the data traffic from a radio access network. The UPF may send the identified portion of the data traffic to a data network (DN) via an N6 interface.
In some embodiments, the data traffic can be carried by (e.g., split between) a plurality of QUIC connections. The identified portion of the data traffic can be carried in one of the plurality of QUIC connections, that corresponds to the identifier of QUIC connection. An application function may perform at least one of: may generate a request comprising at least one of: the traffic filtering information that may include the identifier of the QUIC connection, a list of at least one data network access identifier (DNAI) and at least one corresponding routing profile identifier (ID) , or traffic routing information of an N6 interface; or may send the request to a network exposure function (NEF) . In some embodiments, the NEF may store information of the request. A unified data repository (UDR) may receive the information of the request from the NEF. The UDR may store the information of the request. The information may include the traffic filtering information that may include the identifier of the QUIC connection. At least one PCF may receive a notification message from the UDR. The notification message may comprise the traffic filtering information that may include the identifier of the QUIC connection. The at least one PCF may send policy information to the SMF. The policy information may include the traffic filtering information that may include the identifier of the QUIC connection.
In some embodiments, the NEF may send to the SMF information of the request. The information may include the traffic filtering information that may include the identifier of the QUIC connection. The UPF  may receive an update message from the SMF. The update message may comprise the traffic filtering information that may include the identifier of the QUIC connection.
In some embodiments, the traffic filtering information may include: (i) the identifier of the QUIC connection (e.g., same/unchanged QUIC connection ID) , that can be same as an identifier of a QUIC connection included in prior traffic filtering information, and (ii) a destination IP address that can be different/changed from a prior destination IP address included in the prior traffic filtering information. The traffic filtering information may further include information of a traffic stream in the QUIC connection (e.g., a stream ID) . The traffic stream can be one of a plurality of traffic streams in the QUIC connection. The information of a traffic stream may comprise at least one of: (i) an identifier of the traffic stream (from a plurality of traffic streams) in the QUIC connection (e.g., a QUIC stream ID) , (ii) information to identify a type of the traffic stream in the QUIC connection, or (iii) information to identify a flow requirement of the traffic stream in the QUIC connection.
In some embodiments, a session management function (SMF) may send traffic filtering information to a user plane function (UPF) . The traffic filtering information may include an identifier of a user datagram protocol internet connection (QUIC) connection. The UPF may identify a portion of data traffic according to the traffic filtering information that may include the identifier of the QUIC connection.
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the  aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units,  processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the embodiments described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (16)

  1. A method comprising:
    receiving, by a user plane function (UPF) from a session management function (SMF) , traffic filtering information that includes an identifier of a quick user datagram protocol internet connection (QUIC) connection; and
    identifying, by the UPF, a portion of data traffic according to the traffic filtering information that includes the identifier of the QUIC connection.
  2. The method of claim 1, comprising:
    receiving, by the UPF, the data traffic from a radio access network; and
    sending, by the UPF via an N6 interface, the identified portion of the data traffic to a data network (DN) .
  3. The method of claim 1, wherein:
    the data traffic is carried by a plurality of QUIC connections; and
    the identified portion of the data traffic is carried in one of the plurality of QUIC connections, that corresponds to the identifier of QUIC connection.
  4. The method of claim 1, wherein an application function performs at least one of:
    generates a request comprising at least one of:
    the traffic filtering information that includes the identifier of the QUIC connection,
    a list of at least one data network access identifier (DNAI) and at least one corresponding routing profile identifier (ID) , or
    traffic routing information of an N6 interface; or
    sends the request to a network exposure function (NEF) .
  5. The method of claim 4, wherein at least one of:
    the NEF stores information of the request; or
    a unified data repository (UDR) receives the information of the request from the NEF, and stores the information of the request,
    wherein the information includes the traffic filtering information that includes the identifier of the QUIC connection.
  6. The method of claim 5, wherein at least one PCF receives a notification message from the UDR, the notification message comprising the traffic filtering information that includes the identifier of the QUIC connection.
  7. The method of claim 6, wherein the at least one PCF sends policy information to the SMF, the policy information including the traffic filtering information that includes the identifier of the QUIC connection.
  8. The method of claim 4, wherein the NEF sends to the SMF information of the request, wherein the information includes the traffic filtering information that includes the identifier of the QUIC connection.
  9. The method of claim 7, comprising:
    receiving, by the UPF from the SMF, an update message comprising the traffic filtering information that includes the identifier of the QUIC connection.
  10. The method of any one of claims 1-9, wherein the traffic filtering information includes: (i) the identifier of the QUIC connection, that is same as an identifier of a QUIC connection included in prior traffic filtering information, and (ii) a destination IP address that is different from a prior destination IP address included in the prior traffic filtering information.
  11. The method of any one of claims 1-10, wherein the traffic filtering information further includes information of a traffic stream in the QUIC connection.
  12. The method of claim 11, wherein the traffic stream is one of a plurality of traffic streams in the QUIC connection.
  13. The method of claim 11, wherein the information of a traffic stream comprises at least one of: (i) an identifier of the traffic stream in the QUIC connection, (ii) information to identify a type of the traffic stream in the QUIC connection, or (iii) information to identify a flow requirement of the traffic stream in the QUIC connection.
  14. A method comprising:
    sending, by a session management function (SMF) to a user plane function (UPF) , traffic filtering information that includes an identifier of a quick user datagram protocol internet connection (QUIC) connection,
    wherein the UPF identifies a portion of data traffic according to the traffic filtering information that includes the identifier of the QUIC connection.
  15. A non-transitory computer readable medium storing instructions, which when executed by at least one processor, cause the at least one processor to perform the method of any one of claims 1-14.
  16. An apparatus comprising:
    at least one processor configured to implement the method of any one of claims 1-14.
PCT/CN2023/124969 2023-10-17 2023-10-17 Systems and methods for steering quic traffic WO2024109397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/124969 WO2024109397A1 (en) 2023-10-17 2023-10-17 Systems and methods for steering quic traffic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/124969 WO2024109397A1 (en) 2023-10-17 2023-10-17 Systems and methods for steering quic traffic

Publications (1)

Publication Number Publication Date
WO2024109397A1 true WO2024109397A1 (en) 2024-05-30

Family

ID=91195201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124969 WO2024109397A1 (en) 2023-10-17 2023-10-17 Systems and methods for steering quic traffic

Country Status (1)

Country Link
WO (1) WO2024109397A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997460A (en) * 2018-08-27 2021-06-18 瑞典爱立信有限公司 Method for detecting fast user datagram protocol internet connection QUIC traffic between a user equipment UE and a content provider CP in a telecommunication network
US20230189368A1 (en) * 2020-08-11 2023-06-15 Zte Corporation Associating transport identifiers with quality of service flows

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997460A (en) * 2018-08-27 2021-06-18 瑞典爱立信有限公司 Method for detecting fast user datagram protocol internet connection QUIC traffic between a user equipment UE and a content provider CP in a telecommunication network
US20230189368A1 (en) * 2020-08-11 2023-06-15 Zte Corporation Associating transport identifiers with quality of service flows

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "QUIC connection ID inclusion in IP packet filter set and reflective QoS.", 3GPP DRAFT; S2-2204704, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20220516 - 20220520, 6 May 2022 (2022-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052160193 *

Similar Documents

Publication Publication Date Title
US11683087B2 (en) Cloud based access solution for enterprise deployment
US11929977B2 (en) System, apparatus and method to support data server selection
US11470657B2 (en) Method, user equipment, and network node for performing PDU session establishment procedure for LADN
CN111684824B (en) Enhanced NEF function, MEC, and 5G integration
CN113691969B (en) Communication method and device
JP2022071196A (en) Connecting to virtualized mobile core networks
KR20220034699A (en) Multi-access management service packet classification and prioritization techniques
CN113473634A (en) Apparatus and method for configuring multi-cell scheduling for NR operation
US11477690B2 (en) Method for influencing data traffic routing in core networks by service applications
WO2010098146A1 (en) Method for a communication node with a plurality of communication interfaces to notify dynamic path setup and associated apparatus thereof
EP4192184A1 (en) Pdu session establishment method, terminal device, and chip system
JP2022511606A (en) Systems and methods for secure updates of configuration parameters supplied to user equipment
EP4132100A1 (en) Method and device for providing local data network information to terminal in wireless communication system
US20230328596A1 (en) Handover for Communication Networks
WO2024109397A1 (en) Systems and methods for steering quic traffic
CN114786167B (en) Wireless communication method and device
CN116868603A (en) New method for external parameter provisioning for AF sessions
WO2024113069A1 (en) Systems and methods for quality of service handling for extended reality traffic
EP4395267A1 (en) Method and apparatus for traffic processing using traffic classification in wireless communication system
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
WO2023185435A1 (en) Communication method and apparatus
WO2021128225A1 (en) Method for processing service flow, apparatus, and system
CN118339918A (en) Service processing method for QUIC application
CN117135610A (en) Policy control method and device
CN114793369A (en) Communication method and device