WO2024109327A1 - 一种基于多能互补的综合能源运行控制方法及系统 - Google Patents
一种基于多能互补的综合能源运行控制方法及系统 Download PDFInfo
- Publication number
- WO2024109327A1 WO2024109327A1 PCT/CN2023/121457 CN2023121457W WO2024109327A1 WO 2024109327 A1 WO2024109327 A1 WO 2024109327A1 CN 2023121457 W CN2023121457 W CN 2023121457W WO 2024109327 A1 WO2024109327 A1 WO 2024109327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- equipment
- mathematical model
- energy
- integrated energy
- load
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000013178 mathematical model Methods 0.000 claims abstract description 64
- 239000002245 particle Substances 0.000 claims abstract description 44
- 230000007613 environmental effect Effects 0.000 claims abstract description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 48
- 238000001816 cooling Methods 0.000 claims description 38
- 239000007789 gas Substances 0.000 claims description 36
- 238000010248 power generation Methods 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 26
- 238000010521 absorption reaction Methods 0.000 claims description 25
- 230000005611 electricity Effects 0.000 claims description 24
- 239000003345 natural gas Substances 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 20
- 238000005057 refrigeration Methods 0.000 claims description 15
- 239000002918 waste heat Substances 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 238000010977 unit operation Methods 0.000 claims description 4
- AQWSFUIGRSMCST-UHFFFAOYSA-N 3-pyridin-3-ylsulfonyl-5-(trifluoromethyl)chromen-2-one Chemical compound N1=CC(=CC=C1)S(=O)(=O)C=1C(OC2=CC=CC(=C2C=1)C(F)(F)F)=O AQWSFUIGRSMCST-UHFFFAOYSA-N 0.000 claims description 3
- 108010074506 Transfer Factor Proteins 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 6
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 12
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/373—Design optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/06—Wind turbines or wind farms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
Definitions
- the present application relates to the technical field of energy system optimization, and in particular to a comprehensive energy operation control method and system based on multi-energy complementarity.
- renewable energy and solar energy are widely used in the fields of power generation and heat generation.
- the use of renewable energy can achieve green energy supply, but renewable energy itself has disadvantages such as intermittent and low energy flow density, and is highly decentralized.
- most renewable energy utilization systems are small in scale. It is difficult to ensure the stability and reliability of energy supply by relying solely on renewable energy, and it is not suitable for large-scale centralized energy supply.
- the current power generation and heat generation fields usually adopt the form of multi-energy complementation, comprehensively utilize non-renewable energy and renewable energy, and give full play to the complementarity of the two types of energy.
- the traditional integrated energy system operates in a way that determines electricity based on heat or heat based on electricity. Determining electricity based on heat means that the system first meets the user's heat demand, and the generated electricity is provided to the user. If the electricity is insufficient or surplus, it is supplemented from the power grid or sold online. Determining heat based on electricity means that the system first ensures that the user's electricity demand is met, and the generated heat is provided to the user to meet the heat demand. If the heat is insufficient, the boiler is used for supplementary combustion. If there is excess heat, it is discarded or stored in a heat storage tank. However, since the system's demand for energy is continuously changing due to the influence of user needs, the traditional operation method is not reasonable for the design of equipment capacity.
- the present application provides a comprehensive energy operation control method and system based on multi-energy complementarity to solve the problems of single energy source and unreasonable equipment capacity design of the energy system.
- the present application provides a comprehensive energy operation control method based on multi-energy complementarity, comprising:
- the micro-source mathematical model includes a solar collector mathematical model, a photovoltaic power generation mathematical model, a gas boiler mathematical model, an electric refrigerator mathematical model and an absorption refrigerator mathematical model;
- the particle swarm algorithm is used to calculate the electric load, cooling load and heating load in the integrated energy system
- the operating parameters of the integrated energy system are adjusted according to the electrical load, cooling load and heating load.
- the comprehensive energy system model is specifically:
- P PV is the output power of the photovoltaic module
- PSTC is the power of the photovoltaic module under standard test conditions
- GSTC is the light intensity under standard test conditions
- T ⁇ is the reference temperature
- K T is the power temperature coefficient
- G AC is the solar radiation received by the photovoltaic module
- TC is the temperature of the photovoltaic module
- Fb is the natural gas consumed by the gas boiler
- ⁇ b is the efficiency of the gas boiler
- Qb is the heat generated by the gas boiler
- Qha is the heat entering the absorption chiller
- Qr is the heat generated by the waste heat boiler
- Qr is the heat generated by the waste heat boiler
- Fpgu is the natural gas consumed by the gas turbine
- ⁇ pgu is the power generation efficiency of the gas turbine
- ⁇ rec is the efficiency of the waste heat boiler
- Output cooling power for electric refrigerator is the input electrical power;
- COPEC is the cooling coefficient of the electric refrigerator.
- Q AC is the output cooling power value of the absorption chiller; is the input thermal power value of the absorption refrigerator; COP AC is the refrigeration coefficient of the absorption refrigerator.
- the constraints of the integrated energy system include a first constraint at the planning level and a second constraint at the operation level; the first constraint is used to constrain the number of installable devices and the rated capacity of the equipment; the second constraint is used to constrain the operating status, output power and energy balance.
- the first constraint condition is: 0 ⁇ N i ⁇ N max
- the second constraint condition is:
- Pi is the output power of the equipment; and They are the minimum boundary value and the maximum boundary value of the output power of the equipment respectively; is the input electrical power of the equipment; is the output electrical power of the equipment; The electricity load of the user; is the input thermal power of the equipment; is the output thermal power of the equipment; The heat load of the user; is the input cooling power of the equipment; is the output cooling power of the equipment; The cooling load of the user.
- the optimized objective function is:
- C J is the system economic cost
- C O&M is the unit operation and maintenance cost
- C e is the electricity purchase cost
- C g is the gas purchase cost
- c e,t is the time-of-use electricity price
- P import is the input electric power
- c g,t is the time-of-use gas price
- v gtotal is the total natural gas consumption
- C H is the environmental protection cost caused by carbon dioxide emissions
- C cartopn is the carbon dioxide emission cost
- ⁇ g is the natural gas carbon footprint
- ⁇ e is the electricity carbon footprint
- T is the total time.
- a method for solving the operation model of the integrated energy system using a particle swarm optimization algorithm includes:
- the improved hybrid particle swarm optimization algorithm is used to solve the operation optimization model of the integrated energy system.
- the steps include:
- the speed limit value of the improved particle swarm is redefined until the number of iterations of the particles reaches the maximum value, and the overall optimal solution of the integrated energy system is output.
- an inertia weight factor and a learning factor that change synchronously with the number of iterations are introduced, and the improved formulas of the inertia weight factor ⁇ and the learning factors c 1 and c 2 are:
- t cur is the current iteration number
- t max is the total iteration number
- c 1f , c 2f are the termination values of c 1 , c 2
- c 1i , c 2i are the initial values of c 1 , c 2
- ⁇ min is the minimum inertia weight
- ⁇ max is the maximum inertia weight.
- the present application provides an integrated energy system based on multi-energy complementarity, the system comprising solar thermal collection equipment, photovoltaic power generation equipment, natural gas power generation equipment, heating equipment, refrigeration equipment and control equipment, the solar thermal collection equipment, photovoltaic power generation equipment, natural gas power generation equipment, heating equipment and refrigeration equipment are respectively connected to the control equipment to provide heat load, cold load and electric load for the integrated energy system;
- the control device is used to:
- the micro-source mathematical model includes a solar collector mathematical model, a photovoltaic power generation mathematical model, a gas boiler mathematical model, an electric refrigerator mathematical model and an absorption refrigerator mathematical model;
- a particle swarm algorithm is used to calculate the electric load, cooling load and heating load in the integrated energy system
- the operating parameters of the integrated energy system are adjusted according to the electrical load, cooling load and heating load.
- the present application provides a comprehensive energy operation control method and system based on multi-energy complementarity.
- the method includes: establishing a micro-source mathematical model of the system; setting the variables and constraints of the system; optimizing the objective function with the goal of minimizing system cost and optimizing environmental protection; using a particle swarm algorithm to solve the target model in the system; and adjusting the operating parameters of the system according to the obtained results.
- the particle swarm algorithm By improving the particle swarm algorithm, the convergence accuracy, convergence speed and stability of the solution are improved, while the economy and environmental protection of the comprehensive energy system are constructed, the system operation is more optimized, and the problems of a single energy source and unreasonable equipment capacity design of the energy system are solved.
- the optimized system operation mode can effectively reduce the system's annual energy consumption, annual total cost, and annual CO2 emissions, while improving the system's comprehensive performance.
- FIG1 is a flow chart of a comprehensive energy operation control method based on multi-energy complementarity provided by the present application
- Figure 2 shows the basic framework of the regional integrated energy system
- FIG3 shows the variable operating characteristics of the electric refrigerator
- FIG4 is a flow chart of the solution of the improved particle swarm algorithm.
- the power generation and heat generation fields usually adopt the form of multi-energy complementation, and make comprehensive use of non-renewable energy and renewable energy.
- the operation mode of the integrated energy system adopts the method of determining electricity by heat or determining heat by electricity.
- this operation mode is not reasonable for the design of equipment capacity.
- the present application provides a comprehensive energy operation control method and system based on multi-energy complementarity.
- FIG1 is a flow chart of the comprehensive energy operation control method based on multi-energy complementarity. As shown in FIG1 , the method includes:
- S50 Adjusting the operating parameters of the integrated energy system according to the electrical load, cooling load, and heating load.
- FIG. 2 is the basic framework of a regional integrated energy system.
- the integrated energy system may have different types of energy sources, different energy production equipment, and different energy conversion equipment.
- the terminal loads are electrical loads, cooling loads, and thermal loads.
- the input end of the energy can be natural gas, solar energy, wind energy, geothermal energy, and the like.
- the micro-source mathematical model established in the above step S10 includes: a solar collector mathematical model, a photovoltaic power generation mathematical model, a gas boiler mathematical model, an electric refrigerator mathematical model, and an absorption refrigerator mathematical model.
- the formula of the micro-source mathematical model is as follows:
- the solar thermal system is a system that collects solar energy, converts it into heat energy and stores it in a centralized manner.
- the system includes solar thermal collectors, heat storage tanks, pumps and other main components.
- the solar thermal system uses a flat plate collector as a solar thermal collector.
- the fluid outlet temperature of the solar flat plate collector changes as follows:
- TRNSYS Transient System Simulation Program
- photovoltaic modules The working principle of photovoltaic modules is the photovoltaic effect of semiconductors. Semiconductors directly convert solar radiation into electrical energy. When sunlight shines on the semiconductor PN junction, photovoltage will appear at both ends of the PN junction. If the PN junction is short-circuited externally, photocurrent will appear. Through these characteristics, photovoltaic cells can convert light energy into electrical energy.
- the output power of photovoltaic modules is:
- P PV is the output power of the PV module
- PSTC is the power of the PV module under standard test conditions
- GSTC is the light intensity under standard test conditions
- T ⁇ is the reference temperature
- K T is the power temperature coefficient
- G AC is the solar radiation received by the PV module
- TC is the temperature of the PV module.
- Gas boiler is the backup heat source of the system, which can efficiently convert the chemical energy of natural gas into thermal energy. If the thermal energy of the system is lower than the heat load demand of the user, it can be obtained by burning natural gas in the gas boiler. Gas boiler burns natural gas, which can convert chemical energy into thermal energy. The natural gas consumed by the gas boiler is:
- a waste heat boiler is a boiler that uses the waste heat from waste gas, waste materials or waste liquids in various industrial processes and the heat generated by the combustion of combustible materials to heat water to a certain temperature.
- Qr is the heat generated by the waste heat boiler
- Fpgu is the natural gas consumed by the gas turbine
- ⁇ pgu is the power generation efficiency of the gas turbine
- ⁇ rec is the efficiency of the waste heat boiler.
- the electric refrigerator uses electrical energy as its input energy.
- the motor drives the piston of the compressor to compress the refrigerant, so that the refrigerant inside the compressor is pressurized and liquefied, releasing heat to the outside.
- the liquefied refrigerant can evaporate and absorb heat, thereby transferring heat.
- Its refrigeration cycle is compression ⁇ condensation ⁇ expansion ⁇ evaporation.
- the output refrigeration power of the electric refrigerator is:
- Output cooling power for electric refrigerator is the input electrical power;
- COPEC is the cooling coefficient of the electric refrigerator.
- the refrigeration coefficient of the electric refrigerator is closely related to the load.
- Figure 3 shows the variable operating characteristics of the electric refrigerator. As shown in Figure 3, the variable operating characteristics of the electric refrigerator can be expressed by the following formula:
- Absorption chillers drive equipment to produce cold energy by inputting heat.
- the conversion efficiency can be calculated by the ratio of output cooling capacity to input heat, also known as coefficient of performance (COP).
- COP coefficient of performance
- the output cooling power value of the lithium bromide absorption refrigerator is:
- step S20 the integrated energy system is constrained from the planning level and the operation level.
- the capacity of the equipment When setting constraints at the planning level, the capacity of the equipment must be selected based on the actual physical conditions. The amount of local resources, the size of the area, and the size of the equipment power level are all variables at the planning level. Therefore, the planning level is constrained by the number of devices that can be installed and the rated capacity of the equipment. The constraints are as follows: 0 ⁇ N i ⁇ N max
- the operating level is constrained from the operating status, output power and energy balance.
- the constraints are as follows:
- Pi is the output power of the device; and They are the minimum and maximum boundary values of the device output power respectively.
- the electricity load of the user is the input thermal power of the equipment; is the output thermal power of the equipment;
- the heat load of the user is the input cooling power of the equipment; is the output cooling power of the equipment; The cooling load of the user.
- step S30 the objective function is optimized with the goal of minimizing the cost of the integrated energy system and optimizing the environmental protection.
- C J is the system economic cost
- C O&M is the unit operation and maintenance cost
- C e is the electricity purchase cost
- C g is the gas purchase cost.
- c e,t is the time-of-use electricity price
- P import is the input electric power
- c g,t is the time-sharing gas price
- v gtotal is the total natural gas consumption
- the equipment s operation and maintenance parameters, efficiency, cost, load range and other data are shown in the following table.
- CH is the environmental cost of carbon dioxide emissions
- Ccartopn is the carbon dioxide emission cost
- ⁇ g is the carbon footprint of natural gas
- ⁇ e is the carbon footprint of electricity
- T is the total time.
- PSO particle swarm optimization
- the basic PSO algorithm is optimized and improved to make it more suitable for solving multiple objectives.
- t cur represents the current number of iterations
- t max represents the total number of iterations
- c 1f and c 2f represent the termination values of c 1 and c 2 , which are 0.5 and 5
- c 1i and c 2i represent the initial values of c 1 and c 2 , which are 2 and 0.5
- ⁇ max is 0.9 and ⁇ min is 0.2.
- FIG4 is a flow chart of the solution of the improved particle swarm algorithm. As shown in FIG4 , the process of the improved particle swarm algorithm is:
- the speed limit value of the improved particle swarm is redefined until the number of iterations of the particles reaches the maximum value, and the overall optimal solution of the integrated energy system is output.
- the electric load, cooling load, heating load and hot water load in the integrated energy system can be calculated. Finally, the operating parameters of the integrated energy system are adjusted according to the obtained electric load, cooling load, heating load and hot water load.
- the present application provides an integrated energy system based on multi-energy complementarity, which includes solar thermal collectors, photovoltaic power generation equipment, natural gas power generation equipment, heating equipment, refrigeration equipment and control equipment.
- the solar thermal collectors, photovoltaic power generation equipment, natural gas power generation equipment, heating equipment and refrigeration equipment are respectively connected to the control equipment to provide heat load, cold load and electric load for the integrated energy system.
- the control device is used to:
- the micro-source mathematical model includes a solar collector mathematical model, a photovoltaic power generation mathematical model, a gas boiler mathematical model, an electric refrigerator mathematical model and an absorption refrigerator mathematical model;
- the particle swarm algorithm is used to calculate the electric load, cooling load and heating load in the integrated energy system
- the operating parameters of the integrated energy system are adjusted according to the electrical load, cooling load and heating load.
- the embodiments of the present application provide a comprehensive energy operation control method and system based on multi-energy complementarity.
- the method includes: establishing a micro-source mathematical model of the system; setting the variables and constraints of the system; optimizing the objective function with the goal of minimizing system cost and optimizing environmental protection; using a particle swarm algorithm to solve the target model in the system; and adjusting the operating parameters of the system according to the results obtained.
- the particle swarm algorithm the convergence accuracy, convergence speed and stability of the solution are improved, and at the same time, the economy and environmental protection of the comprehensive energy system are constructed, so that the system operation is more optimized, and the problems of a single energy source and unreasonable equipment capacity design of the energy system are solved.
- the optimized system operation mode can effectively reduce the system's annual energy consumption, annual total cost, and annual CO2 emissions, and at the same time improve the system's comprehensive performance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Tourism & Hospitality (AREA)
- Evolutionary Computation (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Feedback Control In General (AREA)
Abstract
本申请提供一种基于多能互补的综合能源运行控制方法及系统。所述方法包括:建立系统的微源数学模型;设定系统的变量及约束条件;以系统成本最小和环保性最优为目标优化目标函数;采用粒子群算法,对系统中的目标模型进行求解;根据得到的结果调节系统的运行参数。通过改进粒子群算法,提高求解的收敛精度、收敛速度和稳定性,同时构筑综合能源系统的经济性和环保性,使系统运行更加优化,解决能源系统的能量来源单一、设备容量设计不合理的问题。
Description
本申请涉及能源系统优化技术领域,尤其涉及一种基于多能互补的综合能源运行控制方法及系统。
随着风力发电和太阳能利用技术的快速发展,作为可再生能源的风能和太阳能被广泛地利用于发电和产热领域。与化石燃料相比,利用可再生能源可以实现绿色供能,但可再生能源本身具有间歇性、能流密度低等缺点,分散性强,为了实现对可再生能源的就地消纳和有效利用,大多数可再生能源利用系统的规模较小,单独依靠可再生能源很难保证供能的稳定性和可靠性,不适合应用于大规模集中供能。为了实现供能的可靠性和可持续性,目前的发电和产热领域通常采用多能源互补的形式,综合利用非可再生能源和可再生能源,充分发挥两类能源的互补性。
传统的综合能源系统的运行方式采用以热定电或以电定热的方式。以热定电是指系统首先满足用户的热需求,发出的电提供给用户,如果电量不足或剩余,则从电网补充或上网售电。以电定热是指系统首先保证满足用户的电需求,所发出的热量提供给用户以满足热需求,如果热量不足,则采用锅炉补燃,如果热量过剩则废弃或采用一个蓄热罐储存。而由于系统对能源的需求受用户需要的影响是持续变化的,传统的运行方式对设备容量的设计并不合理。
发明内容
本申请提供了一种基于多能互补的综合能源运行控制方法及系统,以解决能源系统的能量来源单一、设备容量设计不合理的问题。
一方面,本申请提供一种基于多能互补的综合能源运行控制方法,包括:
建立综合能源系统的微源数学模型,所述微源数学模型包括,太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型;
设定综合能源系统的变量及约束条件;
以综合能源系统成本最小和环保性最优为目标,优化目标函数;
基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;
根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
可选的,所述综合能源系统模型具体为:
太阳能集热器数学模型:
式中,为太阳能集热器的流体出口温度变化;Iθ为某一时刻辐射量;FR为集热器传热因子;UL为集热器总热损失;Ta为任意时刻的室外温度;G为集热器单位面积介质的质量流量;cp为集热器介质水的定压比热容;
光伏发电数学模型:
式中,PPV为光伏组件的输出功率;PSTC为标准测试条件下光伏组件的功率;GSTC为标准测试条件下的光照强度;Tτ为参考温度;KT为功率温度系数;GAC是光伏组件接收的太阳辐射量;TC为光伏组件温度;
燃气锅炉数学模型:
式中,Fb为燃气锅炉消耗的天然气;ηb是燃气锅炉的效率;Qb为燃气锅炉产生的热量;Qha为进入吸收式制冷机中的热量;Qr为余热锅炉产生的热量;
余热锅炉数学模型:
Qr=Fpguηrec(1-ηpgu)
Qr=Fpguηrec(1-ηpgu)
式中,Qr为余热锅炉产生的热量;Fpgu为燃气轮机消耗的天然气;ηpgu为燃气轮机的发电效率;ηrec为余热锅炉的效率;
电制冷机数学模型:
式中,为电制冷机输出制冷功率;为输入电功率;COPEC为电制冷机的制冷系数。
吸收式制冷机数学模型:
式中,QAC为吸收式制冷机的输出冷功率值;为吸收式制冷机的输入热功率值;COPAC为吸收式制冷机的制冷系数。
可选的,所述综合能源系统的约束条件包括规划层面的第一约束条件和运行层面的第二约束条件;所述第一约束条件用于从可安装的设备台数和设备的额定容量进行约束;所述第二约束条件用于从运行状态、输出功率和能量平衡进行约束。
可选的,所述第一约束条件为:
0≤Ni≤Nmax
0≤Ni≤Nmax
式中,Ni为可安装的设备的台数;Nmax为可安装的设备的最大台数;Pi为设备额定容量值;和分别为设备额定容量可选择的最小值和最大值。
可选的,所述第二约束条件为:
式中,为设备在第t个小时的运行状态;Pi为设备的输出功率;和分别为设备输出功率的最小边界值和最大边界值;为设备的输入电功率;为设备的输出电功率;为用户的电负荷;为设备的输入热功率;为设备的输出热功率;为用户的热负荷;为设备的输入冷功率;为设备的输出冷功率;为用户的冷负荷。
可选的,以综合能源系统成本最小和环保性最优为目标,优化目标函数步骤中,优化的目标函数为:
系统经济成本:
CJ=Ce+Cg+CO&M
CJ=Ce+Cg+CO&M
环保成本:
式中,CJ为系统经济成本;CO&M为机组运维成本;Ce为购电成本;Cg为购气成本;ce,t为分时电价;Pimport为输入电功率;cg,t为分时气价;vgtotal为总消耗天然气量;CH为排放二氧化碳产生的环保成本;Ccartopn为二氧化碳排放费用;ξg为天然气碳足迹;ξe为电力碳足迹;T为总时间。
可选的,采用粒子群优化算法求解综合能源系统的运行模型的方法包括:
初始化设定所述改进粒子群算法的参数;
限定所述改进粒子群的速度极限值;
计算所述经济成本和环保成本的优化目标函数;
比较所述经济成本和环保成本的适应值;
更新每个粒子的位置和速度;
通过迭代得到所述经济成本和环保成本的最优解集;
判断粒子是否达到最大迭代次数;
若是,输出综合能源系统的整体最优方案。
可选的,采用改进的杂交粒子群优化算法求解综合能源系统的运行优化模型方法还
包括如下步骤:
若迭代次数未达到最大值,则重新限定所述改进粒子群的速度极限值,直到粒子的迭代次数达到最大值,输出综合能源系统的整体最优方案。
可选的,在改进粒子群算法中,引入随迭代次数同步变化的惯性权重因子和学习因子,所述惯性权重因子ω和学习因子c1、c2的改进式为:
式中,tcur为当前的迭代次数;tmax为总迭代次数;c1f、c2f为c1、c2的终止值;c1i、c2i为c1、c2的初始值;ωmin为最小惯性权重;ωmax为最大惯性权重。
另一方面,本申请提供一种基于多能互补的综合能源系统,所述系统包括太阳能集热设备、光伏发电设备、天然气发电设备、制热设备、制冷设备和控制设备,所述太阳能集热设备、光伏发电设备、天然气发电设备、制热设备和制冷设备分别与所述控制设备连接,用于为综合能源系统提供热负荷、冷负荷和电负荷;
所述控制设备用于:
建立综合能源系统的微源数学模型,所述微源数学模型包括,太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型;
设定综合能源系统的变量及约束条件;
以综合能源系统成本最小和环保性最优为目标,优化目标函数;
基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;
根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
由以上技术方案可知,本申请提供一种基于多能互补的综合能源运行控制方法及系统。所述方法包括:建立系统的微源数学模型;设定系统的变量及约束条件;以系统成本最小和环保性最优为目标优化目标函数;采用粒子群算法,对系统中的目标模型进行求解;根据得到的结果调节系统的运行参数。通过改进粒子群算法,提高求解的收敛精度、收敛速度和稳定性,同时构筑综合能源系统的经济性和环保性,使系统运行更加优化,解决能源系统的能量来源单一、设备容量设计不合理的问题。采用优化后的系统运行方式,可有效降低系统的年能源消耗量、年总费用、年CO2排放,同时可提高系统的综合性能。
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的基于多能互补的综合能源运行控制方法的流程图;
图2为区域综合能源系统的基本构架;
图3为电制冷机的变工况特性;
图4为改进的粒子群算法的求解流程图。
下面将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中描述的实施方式并不代表与本申请相一致的所有实施方式。仅是与权利要求书中所详述的、本申请的一些方面相一致的系统和方法的示例。
为了实现供能的可靠性和可持续性,发电和产热领域通常采用多能源互补的形式,综合利用非可再生能源和可再生能源。综合能源系统的运行方式采用以热定电或以电定热的方式。而由于系统对能源的需求受用户需要的影响是持续变化的,这种运行方式对设备容量的设计并不合理。
为解决上述问题,本申请提供一种基于多能互补的综合能源运行控制方法及系统。
一方面,本申请提供一种基于多能互补的综合能源运行控制方法,图1为基于多能互补的综合能源运行控制方法的流程图,如图1所示,该方法包括:
S10:建立综合能源系统的微源数学模型;
S20:设定综合能源系统的变量及约束条件;
S30:以综合能源系统成本最小和环保性最优为目标,优化目标函数;
S40:基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;
S50:根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
图2为区域综合能源系统的基本构架,如图2所示,所述综合能源系统,可以有不同类型的能量来源,不同能源生产设备,不同的能源转换设备。终端负荷为电负荷、冷负荷、热负荷。能源的输入端可以为天然气、太阳能、风能、地热能等。经过不同的能源转换设备,能源的能量最终被转化为终端用户使用的电、热、冷等形式。上述步骤S10中所建立的微源数学模型包括:太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型。所述微源数学模型的公式表述如下:
太阳能集热器数学模型:
太阳能集热系统是将太阳能集中收集转化为热能并集中存储的系统,系统包括太阳能集热器、蓄热水箱、泵等主要部件。本实施例中,太阳能集热系统选用平板集热器来作为太阳能集热器。所述太阳能平板集热器的流体出口温度变化为:
式中,为太阳能集热器的流体出口温度变化;Iθ为某一时刻辐射量;FR为集热器传热因子;UL为集热器总热损失;Ta为任意时刻的室外温度;G为集热器单位面积介质的质量流量;cp为集热器介质水的定压比热容。
由于太阳能集热器受外部天气影响较大,本发明将集热器用瞬时系统模拟程序(Transient System Simulation Program,TRNSYS)搭建模型,TRNSYS可将外部实时且准确的天气温度、辐照度等数据接入进来,做实际能耗模拟,得到准确的数据。
光伏发电数学模型:
光伏组件的工作原理为半导体的光伏效应,半导体直接将太阳辐射转换成电能。当阳光照射在半导体PN结上时,PN结的两端便会出现光电压,如果PN结在外部短路,则会出现光电流。通过这些特性,光伏电池便可以将光能转换为电能。光伏组件的输出功率为:
式中,PPV为光伏组件的输出功率;PSTC为标准测试条件下光伏组件的功率;GSTC为标准测试条件下的光照强度;Tτ为参考温度;KT为功率温度系数;GAC是光伏组件接收的太阳辐射量;TC为光伏组件温度。
燃气锅炉数学模型:
燃气锅炉是系统的备用热源,它能够将天然气的化学能高效率地转化成热能。若系统的热能低于用户的热负荷需求时,此时可通过燃气锅炉燃烧天然气获得。燃气锅炉燃烧天然气,可将化学能转化成热能,则燃气锅炉消耗的天然气为:
式中,Fb为燃气锅炉消耗的天然气;ηb是燃气锅炉的效率;Qb为燃气锅炉产生的热量;Qha为进入吸收式制冷机中的热量;Qr为余热锅炉产生的热量。
余热锅炉数学模型:
余热锅炉是指利用各种工业过程中的废气、废料或废液中的余热及其可燃物质燃烧后产生的热量把水加热到一定温度的锅炉。余热锅炉产生的热量为:
Qr=Fpguηrec(1-ηpgu)
Qr=Fpguηrec(1-ηpgu)
式中,Qr为余热锅炉产生的热量;Fpgu为燃气轮机消耗的天然气;ηpgu为燃气轮机的发电效率;ηrec为余热锅炉的效率。
电制冷机数学模型:
电制冷机是以电能作为其输入能源,通过电机运转带动压缩机的活塞把制冷剂压缩,使压缩机内部的制冷工质受压液化,释放出热量到外界,而液化后的制冷工质又可以蒸发吸收热量,从而实现将热量进行转移。其制冷循环为压缩→冷凝→膨胀→蒸发。电制冷机的输出制冷功率为:
式中,为电制冷机输出制冷功率;为输入电功率;COPEC为电制冷机的制冷系数。
电制冷机的制冷系数跟负荷联系密切,图3为电制冷机的变工况特性,如图3所示,电制冷机的变工况特性可用下面式子表示:
式中,为电制冷机的额定制冷系数;fEC为制冷机的负荷率;a5、b5、c5为电制冷机制冷系数影响因数。
吸收式制冷机数学模型:
吸收式制冷机通过输入热量来驱动设备生产冷能,其转换效率可以通过输出冷量和输入热量的比值计算得到,也称为制冷系数(COP)。吸收式制冷机主要有氨水吸收式制冷机和溴
化锂吸收式制冷机两种,本实施例中采用溴化锂吸收式制冷机。溴化锂吸收式制冷机的输出冷功率值为:
式中,QAC为溴化锂吸收式制冷机的输出冷功率值;为溴化锂吸收式制冷机的输入热功率值;COPAC为溴化锂吸收式制冷机的制冷系数。
步骤S20中,从规划层面和运行层面对综合能源系统进行约束。
在对规划层面的约束条件进行设定时,须根据实际的物理条件对设备的容量进行选择。当地资源的多少,面积的大小,以及设备功率等级的大小等,都是规划层面的变量,因此,从可安装的设备台数和设备的额定容量来对规划层面进行约束,约束条件如下:
0≤Ni≤Nmax
0≤Ni≤Nmax
式中,Ni为可安装的设备的台数;Nmax为可安装的设备的最大台数;Pi为设备额定容量值;和分别为设备额定容量可选择的最小值和最大值。
在对规划层面的约束条件进行设定时,运行状态、输出功率和能量平衡是运行层面的变量,因此,从运行状态、输出功率和能量平衡对运行层面进行约束,约束条件如下:
运行状态约束
式中,为设备在第t个小时的运行状态。
输出功率约束
式中,Pi为设备的输出功率;和分别为设备输出功率的最小边界值和最大边界值。
能量平衡约束
除了设备自身的物理约束外,还应该考虑冷、热、电功率平衡约束。
式中,为设备的输入电功率;为设备的输出电功率;为用户的电负荷;为设备的输入热功率;为设备的输出热功率;为用户的热负荷;为设备的输入冷功率;为设备的输出冷功率;为用户的冷负荷。
在步骤S30中,以综合能源系统成本最小和环保性最优为目标,来优化目标函数。
系统的经济成本为机组运维成本、购电成本与购气成本之和。所以优化的系统经济成本的目标函数为:
CJ=Ce+Cg+CO&M
CJ=Ce+Cg+CO&M
其中,CJ为系统经济成本;CO&M为机组运维成本;Ce为购电成本;Cg为购气成本。
上式中:
其中,ce,t为分时电价;Pimport为输入电功率。
其中,cg,t为分时气价;vgtotal为总消耗天然气量。
设备的运维参数、效率、成本及负载范围等数据如下表所示。
系统运行过程中,燃烧天然气会产生二氧化碳气体。因此系统运行时排放二氧化碳产生环保成本的目标函数为:
式中,CH为排放二氧化碳产生的环保成本;Ccartopn为二氧化碳排放费用;ξg为天然气碳足迹;ξe为电力碳足迹;T为总时间。
采用设备的变量、约束条件和目标函数对综合能源系统进行优化后,一般用粒子群算法(Particle Swarm Optimization,PSO)对系统优化模型进行求解。基本PSO算法中,粒子位置及速度公式为:
式中,t为迭代次数;ω为惯性权重因子;c1、c2为学习因子;为粒子个体最优值位置;为全局最优值位置;为粒子t次迭代时的位置。
由于所构建的综合能源系统含有多个目标函数及约束条件,针对单一目标的粒子群算法容易陷入局部最优,寻优能力较差。所以本实施例中,对基本PSO算法进行优化改进,使其更适合于面向多目标求解。
基本PSO算法中,ω、c1、c2保持不变,在优化过程中,这三个值随着迭代次数的改变而改变。惯性权重因子和学习因子的改进式子如下所示:
式中,tcur代表当前的迭代次数;tmax代表总迭代次数;c1f、c2f代表c1、c2的终止值,取0.5、5;c1i、c2i代表c1、c2的初始值,取2、0.5;ωmax取0.9,ωmin取0.2。
图4为改进的粒子群算法的求解流程图,如图4所示,改进后的粒子群算法的流程为:
初始化设定改进粒子群算法的参数;
限定改进粒子群的速度极限值;
计算经济成本和环保成本的优化目标函数;
比较经济成本和环保成本的适应值;
更新每个粒子的位置和速度;
通过迭代得到经济成本和环保成本的最优解集;
判断粒子是否达到最大迭代次数;
若迭代次数达到最大值,则输出综合能源系统的整体最优方案。
若迭代次数未达到最大值,则重新限定所述改进粒子群的速度极限值,直到粒子的迭代次数达到最大值,输出综合能源系统的整体最优方案。
通过改进的粒子群算法,可计算得到综合能源系统中的电负荷、冷负荷、供热负荷和热水负荷。最终根据得到的电负荷、冷负荷、供热负荷和热水负荷来调节综合能源系统的运行参数。
另一方面,本申请提供一种基于多能互补的综合能源系统,该系统包括太阳能集热设备、光伏发电设备、天然气发电设备、制热设备、制冷设备和控制设备。所述太阳能集热设备、光伏发电设备、天然气发电设备、制热设备和制冷设备分别与所述控制设备连接,用于为综合能源系统提供热负荷、冷负荷和电负荷。
所述控制设备用于:
建立综合能源系统的微源数学模型,所述微源数学模型包括,太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型;
设定综合能源系统的变量及约束条件;
以综合能源系统成本最小和环保性最优为目标,优化目标函数;
基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;
根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
由以上实施例可知,本申请实施例提供一种基于多能互补的综合能源运行控制方法及系统。所述方法包括:建立系统的微源数学模型;设定系统的变量及约束条件;以系统成本最小和环保性最优为目标优化目标函数;采用粒子群算法,对系统中的目标模型进行求解;根据得到的结果调节系统的运行参数。通过改进粒子群算法,提高求解的收敛精度、收敛速度和稳定性,同时构筑综合能源系统的经济性和环保性,使系统运行更加优化,解决能源系统的能量来源单一、设备容量设计不合理的问题。采用优化后的系统运行方式,可有效降低系统的年能源消耗量、年总费用、年CO2排放,同时可提高系统的综合性能。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。
Claims (10)
- 一种基于多能互补的综合能源运行控制方法,其特征在于,包括:建立综合能源系统的微源数学模型,所述微源数学模型包括,太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型;设定综合能源系统的变量及约束条件;以综合能源系统成本最小和环保性最优为目标,优化目标函数;基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
- 根据权利要求1所述的一种基于多能互补的综合能源运行控制方法,其特征在于,所述综合能源系统模型具体为:太阳能集热器数学模型:
式中,为太阳能集热器的流体出口温度变化;Iθ为某一时刻辐射量;FR为集热器传热因子;UL为集热器总热损失;Ta为任意时刻的室外温度;G为集热器单位面积介质的质量流量;cp为集热器介质水的定压比热容;光伏发电数学模型:
式中,PPV为光伏组件的输出功率;PSTC为标准测试条件下光伏组件的功率;GSTC为标准测试条件下的光照强度;Tτ为参考温度;KT为功率温度系数;GAC是光伏组件接收的太阳辐射量;TC为光伏组件温度;燃气锅炉数学模型:
式中,Fb为燃气锅炉消耗的天然气;ηb是燃气锅炉的效率;Qb为燃气锅炉产生的热量;Qha为进入吸收式制冷机中的热量;Qr为余热锅炉产生的热量;余热锅炉数学模型:
Qr=Fpguηrec(1-ηpgu)式中,Qr为余热锅炉产生的热量;Fpgu为燃气轮机消耗的天然气;ηpgu为燃气轮机的发电效率;ηrec为余热锅炉的效率;电制冷机数学模型:
式中,为电制冷机输出制冷功率;为输入电功率;COPEC为电制冷机的制冷系数;吸收式制冷机数学模型:
式中,QAC为吸收式制冷机的输出冷功率值;为吸收式制冷机的输入热功率值;COPAC为吸收式制冷机的制冷系数。 - 根据权利要求1所述的一种基于多能互补的综合能源运行控制方法,其特征在于,所述综合能源系统的约束条件包括规划层面的第一约束条件和运行层面的第二约束条件;所述第一约束条件用于从可安装的设备台数和设备的额定容量进行约束;所述第二约束条件用于从运行状态、输出功率和能量平衡进行约束。
- 根据权利要求3所述的一种基于多能互补的综合能源运行控制方法,其特征在于,所述第一约束条件为:
0≤Ni≤Nmax
式中,Ni为可安装的设备的台数;Nmax为可安装的设备的最大台数;Pi为设备额定容量值;和分别为设备额定容量可选择的最小值和最大值。 - 根据权利要求3所述的一种基于多能互补的综合能源运行控制方法,其特征在于,所述第二约束条件为:
式中,为设备在第t个小时的运行状态;Pi为设备的输出功率;和分别为设备输出功率的最小边界值和最大边界值;为设备的输入电功率;为设备的输出电功率;为用户的电负荷;为设备的输入热功率;为设备的输出热功率;为用户的热负荷;为设备的输入冷功率;为设备的输出冷功率;为用户的冷负荷。 - 根据权利要求1所述的一种基于多能互补的综合能源运行控制方法,其特征在于,以综合能源系统成本最小和环保性最优为目标,优化目标函数步骤中,优化的目标函数为:系统经济成本:
CJ=Ce+Cg+CO&M
环保成本:
式中,CJ为系统经济成本;CO&M为机组运维成本;Ce为购电成本;Cg为购气成本;ce,t为分时电价;Pimport为输入电功率;cg,t为分时气价;vgtotal为总消耗天然气量;CH为排放二氧化碳产生的环保成本;Ccartopn为二氧化碳排放费用;ξg为天然气碳足迹;ξe为电力碳足迹;T为总时间。 - 根据权利要求1所述的一种基于多能互补的综合能源运行控制方法,其特征在于,采用粒子群优化算法求解综合能源系统的运行模型的方法包括:初始化设定所述改进粒子群算法的参数;限定所述改进粒子群的速度极限值;计算所述经济成本和环保成本的优化目标函数;比较所述经济成本和环保成本的适应值;更新每个粒子的位置和速度;通过迭代得到所述经济成本和环保成本的最优解集;判断粒子是否达到最大迭代次数;若是,输出综合能源系统的整体最优方案。
- 根据权利要求7所述的一种基于多能互补的综合能源运行控制方法,其特征在于,采用改进的杂交粒子群优化算法求解综合能源系统的运行优化模型方法还包括如下步骤:若迭代次数未达到最大值,则重新限定所述改进粒子群的速度极限值,直到粒子的迭代次数达到最大值,输出综合能源系统的整体最优方案。
- 根据权利要求7所述的一种基于多能互补的综合能源运行控制方法,其特征在于,在改进粒子群算法中,引入随迭代次数同步变化的惯性权重因子和学习因子,所述惯性权重因子ω和学习因子c1、c2的改进式为:
式中,tcur为当前的迭代次数;tmax为总迭代次数;c1f、c2f为c1、c2的终止值;c1i、c2i为c1、c2的初始值;ωmin为最小惯性权重;ωmax为最大惯性权重。 - 一种基于多能互补的综合能源系统,所述系统包括太阳能集热设备、光伏发电设备、天然气发电设备、制热设备、制冷设备以及控制设备,所述太阳能集热设备、光伏发电设备、天然气发电设备、制热设备和制冷设备分别与所述控制设备连接,用于为综合能源系统提供热负荷、冷负荷和电负荷;所述控制设备用于:建立综合能源系统的微源数学模型,所述微源数学模型包括,太阳能集热器数学模型、光伏发电数学模型、燃气锅炉数学模型、电制冷机数学模型和吸收式制冷机数学模型;设定综合能源系统的变量及约束条件;以综合能源系统成本最小和环保性最优为目标,优化目标函数;基于所述变量、约束条件和目标函数,采用粒子群算法,计算得到综合能源系统中的电负荷、冷负荷、热负荷;根据所述电负荷、冷负荷、热负荷调节所述综合能源系统的运行参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211456760.4A CN115994615A (zh) | 2022-11-21 | 2022-11-21 | 一种基于多能互补的综合能源运行控制方法及系统 |
CN202211456760.4 | 2022-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024109327A1 true WO2024109327A1 (zh) | 2024-05-30 |
Family
ID=85989558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/121457 WO2024109327A1 (zh) | 2022-11-21 | 2023-09-26 | 一种基于多能互补的综合能源运行控制方法及系统 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115994615A (zh) |
LU (1) | LU506359B1 (zh) |
WO (1) | WO2024109327A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118521138A (zh) * | 2024-07-24 | 2024-08-20 | 东方电子股份有限公司 | 基于ga-apso算法的多类型资源的协同调度控制方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115994615A (zh) * | 2022-11-21 | 2023-04-21 | 云南电网有限责任公司德宏供电局 | 一种基于多能互补的综合能源运行控制方法及系统 |
CN116388280A (zh) * | 2023-06-02 | 2023-07-04 | 电力规划总院有限公司 | 基于深度强化学习算法的综合能源系统电压控制方法及系统 |
CN117111451B (zh) * | 2023-10-24 | 2024-02-02 | 湘江实验室 | 基于源网荷储拓扑的多能源系统智能调控方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110661254A (zh) * | 2019-09-26 | 2020-01-07 | 广东电网有限责任公司 | 一种区域综合能源系统冷热电互补效益量化方法 |
CN112383053A (zh) * | 2020-11-19 | 2021-02-19 | 东北大学 | 一种基于改进粒子群算法的综合能源系统优化调度方法 |
CN112749462A (zh) * | 2020-12-31 | 2021-05-04 | 西安交通大学 | 一种综合能源系统当前运行参数的优化方法、系统及设备 |
CN113378409A (zh) * | 2021-07-06 | 2021-09-10 | 国网江苏省电力有限公司营销服务中心 | 综合能源系统多能互补优化调度方法及系统 |
US20210376605A1 (en) * | 2020-05-28 | 2021-12-02 | Xiangtan University | Optimization method for capacity of heat pump and power of various sets of energy source equipment in energy hub |
CN115275978A (zh) * | 2022-07-01 | 2022-11-01 | 金华电力设计院有限公司 | 一种基于改进粒子群算法的微能源网优化运行方法 |
CN115994615A (zh) * | 2022-11-21 | 2023-04-21 | 云南电网有限责任公司德宏供电局 | 一种基于多能互补的综合能源运行控制方法及系统 |
-
2022
- 2022-11-21 CN CN202211456760.4A patent/CN115994615A/zh active Pending
-
2023
- 2023-09-26 LU LU506359A patent/LU506359B1/en active IP Right Grant
- 2023-09-26 WO PCT/CN2023/121457 patent/WO2024109327A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110661254A (zh) * | 2019-09-26 | 2020-01-07 | 广东电网有限责任公司 | 一种区域综合能源系统冷热电互补效益量化方法 |
US20210376605A1 (en) * | 2020-05-28 | 2021-12-02 | Xiangtan University | Optimization method for capacity of heat pump and power of various sets of energy source equipment in energy hub |
CN112383053A (zh) * | 2020-11-19 | 2021-02-19 | 东北大学 | 一种基于改进粒子群算法的综合能源系统优化调度方法 |
CN112749462A (zh) * | 2020-12-31 | 2021-05-04 | 西安交通大学 | 一种综合能源系统当前运行参数的优化方法、系统及设备 |
CN113378409A (zh) * | 2021-07-06 | 2021-09-10 | 国网江苏省电力有限公司营销服务中心 | 综合能源系统多能互补优化调度方法及系统 |
CN115275978A (zh) * | 2022-07-01 | 2022-11-01 | 金华电力设计院有限公司 | 一种基于改进粒子群算法的微能源网优化运行方法 |
CN115994615A (zh) * | 2022-11-21 | 2023-04-21 | 云南电网有限责任公司德宏供电局 | 一种基于多能互补的综合能源运行控制方法及系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118521138A (zh) * | 2024-07-24 | 2024-08-20 | 东方电子股份有限公司 | 基于ga-apso算法的多类型资源的协同调度控制方法 |
Also Published As
Publication number | Publication date |
---|---|
LU506359B1 (en) | 2024-06-04 |
CN115994615A (zh) | 2023-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024109327A1 (zh) | 一种基于多能互补的综合能源运行控制方法及系统 | |
CN111445090B (zh) | 一种离网型综合能源系统双层规划方法 | |
CN109245093A (zh) | 一种冷热电联供分布式能源站协同优化调度方法 | |
CN109474025B (zh) | 一种园区级综合能源系统优化调度模型 | |
CN110503241A (zh) | 冷-热-电综合能源系统的多目标优化方法 | |
CN113642802B (zh) | 一种基于碳计量模型的综合能源站能源优化调度方法和系统 | |
CN114330827B (zh) | 多能流虚拟电厂分布式鲁棒自调度优化方法及其应用 | |
CN113255198B (zh) | 一种含虚拟储能的冷热电联供微电网多目标优化方法 | |
CN112600253A (zh) | 基于用能效率最优的园区综合能源协同优化方法及设备 | |
Guan et al. | Optimal configuration and operation of multi-energy complementary distributed energy systems | |
CN113033900A (zh) | 一种园区级综合能源系统容量优化配置方法和系统 | |
CN114218808A (zh) | 一种综合能源系统能耗优化方法 | |
CN113156835B (zh) | 一种用于电-热综合能源系统运行控制的建模仿真方法 | |
CN104879953B (zh) | 一种光能、风能和地热能综合利用装置 | |
CN117196104A (zh) | 一种区域温室综合能源系统优化运行方法及系统 | |
Cao et al. | The Modeling and Simulation of the CCHP System | |
CN213574370U (zh) | 一种综合能源转化装置 | |
CN104848585B (zh) | 一种光能、风能和地热能互补热泵系统 | |
CN114825459A (zh) | 负荷密集型智慧园区用户参与碳排放控制的能源调度方法 | |
CN113065759A (zh) | 一种考虑能源品质的综合能源系统优化调度方法和系统 | |
CN105512961A (zh) | 一种分布式能源供应方法及供应系统 | |
US20240191702A1 (en) | Capacity configuration method for photovoltaic/photothermal/aa-caes of combined cooling, heating and power | |
CN114336602B (zh) | 一种用于光热-风电-光伏联合发电系统的配置优化方法 | |
CN114971000B (zh) | 一种计及供需不平衡率的综合能源系统配置优化方法 | |
Wang et al. | Coordinated optimization of centralized and decentralized cooling energy supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23893419 Country of ref document: EP Kind code of ref document: A1 |