WO2024109077A1 - 通信方法与通信装置 - Google Patents

通信方法与通信装置 Download PDF

Info

Publication number
WO2024109077A1
WO2024109077A1 PCT/CN2023/104879 CN2023104879W WO2024109077A1 WO 2024109077 A1 WO2024109077 A1 WO 2024109077A1 CN 2023104879 W CN2023104879 W CN 2023104879W WO 2024109077 A1 WO2024109077 A1 WO 2024109077A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
information element
measurement process
sequence
Prior art date
Application number
PCT/CN2023/104879
Other languages
English (en)
French (fr)
Inventor
吴宽
黄磊
钱彬
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024109077A1 publication Critical patent/WO2024109077A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and a communication device.
  • ultra-wide-band (UWB) communication system can achieve higher ranging and positioning accuracy, and its accuracy can reach the centimeter level. This is because the UWB communication system uses a pulse with a pulse width of only nanoseconds as its basic signal, so it has the characteristics of high transmission rate and large system capacity.
  • the present application provides a communication method and a communication device, which can support a UWB device to complete the preamble configuration of the initial synchronization and/or the preamble configuration of the measurement process.
  • a communication method comprising: a first communication device determines a first signal element, the first signal element comprises at least one of first information and second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of a second communication device, the second information is used to configure a second sequence, the second sequence is used for a first measurement process between the first communication device and the second communication device; the first communication device sends the first signal element to the second communication device.
  • the present application can support the second communication device to complete the preamble code configuration of initial synchronization and/or the preamble code configuration of the first measurement process according to the first information and/or the second information of the first information cell by configuring the first information and/or the second information in the first information cell.
  • the first information element further includes at least one of third information and fourth information, the third information is used to indicate the type of the first sequence, and the fourth information is used to indicate the type of the second sequence.
  • the second communication device determines the type of the corresponding first sequence and/or second sequence according to the third information and/or fourth information of the first information element, thereby better generating the corresponding preamble sequence.
  • the first information element further includes fifth information, which is used to indicate the type of the first measurement process.
  • the second communication device determines the type information of the first measurement process according to the fifth information of the first information element, thereby better completing the measurement process with the first communication device.
  • the type of the first measurement process includes at least one of the following: a measurement process based on non-multi-millisecond transmission, a measurement process based on multi-millisecond transmission, or a measurement process based on narrowband signal assisted multi-millisecond transmission.
  • the method further includes: the first communication device sends a second information element to the second communication device, where the second information element includes sixth information, which is used to indicate the number of measurement integrity segments.
  • integrity protection verification can be carried out through integrity segmentation, and then it can be determined whether the ranging process is attacked.
  • the second information element further includes seventh information, which is used to indicate whether the number of preamble code segments is updated.
  • the transceiver device can better adapt to the dynamic changes of the channel environment, improve the measurement accuracy between the transceiver devices, or reduce interference to other devices.
  • the second information element further includes eighth information, which is used to indicate that the type of the multi-millisecond transmission is interleaved multi-millisecond transmission; or, which is used to indicate that the type of the multi-millisecond transmission is non-interleaved multi-millisecond transmission.
  • the method further includes: the first communication device sends a third information element to the second communication device, which is used for the A second measurement process between the second communication device and the first communication device.
  • the second measurement process is based on the third information element; or, when the second communication device supports the third information element and the second information element, the second measurement process is based on the second information element and the third information element.
  • the method further includes: the first communication device receiving indication information from the second communication device, which is used to indicate whether the second communication device supports at least one of narrowband signal capability and multi-millisecond transmission capability.
  • the present application supports the first communication device to obtain the support status of the second communication device for the NB signal capability and the MMS capability, which helps the first communication device to make reasonable measurement configuration in the subsequent measurement process.
  • the method further includes: the first communication device sending feedback information to the second communication device, which is used to indicate that the second communication device is not allowed to access the network.
  • a communication method including: a second communication device receives a first signal element from a first communication device, the first signal element includes at least one of first information and second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, the second information is used to configure a second sequence, and the second sequence is used for a first measurement process between the first communication device and the second communication device; the second communication device determines at least one of the first sequence and the second sequence based on the first signal element.
  • the first information element further includes at least one of third information and fourth information, the third information is used to indicate the type of the first sequence, and the fourth information is used to indicate the type of the second sequence.
  • the first information element further includes fifth information, which is used to indicate the type of the first measurement process.
  • the type of the first measurement process includes at least one of the following: a measurement process based on non-multi-millisecond transmission, a measurement process based on multi-millisecond transmission, or a measurement process based on narrowband signal assisted multi-millisecond transmission.
  • the method further includes: the second communication device receives a second information element from the first communication device, where the second information element includes sixth information, which is used to indicate the number of measurement integrity segments.
  • the second information element further includes seventh information, which is used to indicate whether the number of preamble code segments is updated.
  • the second information element further includes eighth information, which is used to indicate that the type of the multi-millisecond transmission is interleaved multi-millisecond transmission; or, which is used to indicate that the type of the multi-millisecond transmission is non-interleaved multi-millisecond transmission.
  • the method further includes: the second communication device receives a third information element from the first communication device, where the third information element is used for a second measurement process between the second communication device and the first communication device.
  • the second measurement process is based on the third information element; or, when the second communication device supports the third information element and the second information element, the second measurement process is based on the second information element and the third information element.
  • the method before the second communication device receives the first information element from the first communication device, the method further includes: the second communication device sends indication information to the first communication device, which is used to indicate whether the second communication device supports at least one of narrowband signal capability and multi-millisecond transmission capability.
  • the method further includes: the second communication device receives feedback information from the first communication device, which is used to indicate that the second communication device is not allowed to access the network.
  • a communication device comprising: a processing unit, used to determine a first signal element, the first signal element comprising at least one of first information and second information, the first information being used to configure a first sequence, the first sequence being used for initial synchronization of a second communication device, the second information being used to configure a second sequence, the second sequence being used for a first measurement process between the first communication device and the second communication device; and a transceiver unit, used to send the first signal element to the second communication device.
  • the first information element further includes at least one of third information and fourth information, the third information is used to indicate the type of the first sequence, and the fourth information is used to indicate the type of the second sequence.
  • the first information element further includes fifth information, which is used to indicate the type of the first measurement process.
  • the type of the first measurement process includes at least one of the following: a measurement process based on non-multi-millisecond transmission, a measurement process based on multi-millisecond transmission, or a measurement process based on narrowband signal assisted multi-millisecond transmission.
  • the transceiver unit is further configured to send a second information element to the second communication device, where the second information element includes sixth information, which is used to indicate the number of measurement integrity segments.
  • the second information element further includes seventh information, which is used to indicate whether the number of preamble code segments is updated.
  • the second information element further includes eighth information, which is used to indicate that the type of the multi-millisecond transmission is interleaved multi-millisecond transmission; or, which is used to indicate that the type of the multi-millisecond transmission is non-interleaved multi-millisecond transmission.
  • the transceiver unit is further configured to send a third information element to the second communication device, which is used in a second measurement process between the second communication device and the first communication device.
  • the second measurement process is based on the third information element; or, when the second communication device supports the third information element and the second information element, the second measurement process is based on the second information element and the third information element.
  • the transceiver unit is further configured to receive indication information from the second communication device, which is configured to indicate whether the second communication device supports at least one of narrowband signal capability and multi-millisecond transmission capability.
  • the transceiver unit is further configured to send feedback information to the second communication device, which is used to indicate that the second communication device is not allowed to access the network.
  • a communication device comprising: a transceiver unit, used to receive a first signal element from a first communication device, the first signal element comprising at least one of first information and second information, the first information being used to configure a first sequence, the first sequence being used for initial synchronization of the communication device, the second information being used to configure a second sequence, the second sequence being used for a first measurement process between the first communication device and the communication device; and a processing unit, used to determine at least one of the first sequence and the second sequence based on the first signal element.
  • the first information element further includes at least one of third information and fourth information, the third information is used to indicate the type of the first sequence, and the fourth information is used to indicate the type of the second sequence.
  • the first information element further includes fifth information, which is used to indicate the type of the first measurement process.
  • the type of the first measurement process includes at least one of the following: a measurement process based on non-multi-millisecond transmission, a measurement process based on multi-millisecond transmission, or a measurement process based on narrowband signal assisted multi-millisecond transmission.
  • the transceiver unit is further configured to receive a second information element from the first communication device, where the second information element includes sixth information, which is used to indicate the number of measurement integrity segments.
  • the second information element further includes seventh information, which is used to indicate whether the number of preamble code segments is updated.
  • the second information element further includes eighth information, which is used to indicate that the type of the multi-millisecond transmission is interleaved multi-millisecond transmission; or, which is used to indicate that the type of the multi-millisecond transmission is non-interleaved multi-millisecond transmission.
  • the transceiver unit is further configured to receive a third information element from the first communication device, which is used in a second measurement process between the communication device and the first communication device.
  • the second measurement process when the communication device supports the third information element but does not support the second information element, the second measurement process is based on the third information element; or, when the communication device supports the third information element and the second information element, the second measurement process is based on the second information element and the third information element.
  • the transceiver unit is further configured to send indication information to the first communication device, which is used to indicate whether the communication device supports at least one of narrowband signal capability and multi-millisecond transmission capability.
  • the transceiver unit is further configured to receive feedback information from the first communication device, which is used to indicate that the communication device is not allowed to access the network.
  • a communication device comprising a processor, wherein the processor is coupled to a memory, and the processor is used to execute a computer program or instruction so that the communication device executes the method described in the first aspect and any possible implementation of the first aspect; or, the communication device executes the method described in the second aspect and any possible implementation of the second aspect.
  • a communication device comprising a logic circuit and an input/output interface, wherein the logic circuit is used to execute a computer program or instruction so that the communication device executes the method described in the first aspect and any possible implementation of the first aspect; or, the communication device executes the method described in the second aspect and any possible implementation of the second aspect.
  • a computer-readable storage medium comprising a computer program or instructions, which, when executed on a computer, causes the computer to execute the method described in the first aspect and any possible implementation of the first aspect; or causes the computer to execute the method described in the second aspect and any possible implementation of the second aspect.
  • a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute the method in the first aspect and any possible implementation of the first aspect; or cause the computer to Execute any one of the methods described in the second aspect and any one of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a cell #S used for preamble configuration.
  • FIG. 3 is a schematic diagram of various stages of a UWB ranging wheel.
  • FIG. 4 is a schematic diagram of an interaction flow of a communication method 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the types of MMS measurements in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of the first information element of an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of the second information element of an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of indication information according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device 900 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 according to an embodiment of the present application.
  • WPAN wireless personal area network
  • IEEE Institute of Electrical and Electronics Engineers 802.15 series.
  • WPAN can be used for communication between digital auxiliary devices within a small range, such as telephones, computers, and auxiliary devices.
  • Technologies supporting wireless personal area networks include Bluetooth, ZigBee, ultra-wideband (UWB), infrared data association (IrDA) connection technology, home radio frequency (HomeRF), etc.
  • WPAN is located at the bottom layer of the entire network architecture, and is used for wireless connection between devices within a small range, that is, point-to-point short-distance connection, which can be regarded as a short-distance wireless communication network.
  • WPAN is divided into high rate (HR)-WPAN and low rate (LR)-WPAN.
  • HR-WPAN can be used to support various high-rate multimedia applications, including high-quality audio and video distribution, multi-megabyte music and image file transmission, etc.
  • LR-WPAN can be used for general services in daily life.
  • devices can be divided into full-function devices (FFD) and reduced-function devices (RFD) according to their communication capabilities.
  • FFDs can communicate with each other and with each other.
  • RFDs cannot communicate directly with each other, but can only communicate with FFDs, or forward data outward through an FFD.
  • the FFD associated with an RFD is called the coordinator of the RFD.
  • RFD devices are mainly used for simple control applications, such as light switches, passive infrared sensors, etc. The amount of data transmitted is small, and the transmission and communication resources are not occupied much, so the cost of RFD is low.
  • the coordinator can also be called a personal area network (PAN) coordinator or a central control node.
  • the PAN coordinator is the main control node of the entire network, and there is generally only one PAN coordinator in each ad hoc network, which has member identity management, link information management, and packet forwarding functions.
  • the device in the embodiment of the present application may be a device supporting the 802.15 series, for example, a device supporting 802.15.4a and 802.15.4z, as well as multiple WPAN standards currently under discussion or subsequent versions.
  • the present application can be applied to a UWB-based WPAN system, which includes 802.15 series protocols, such as 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, etc. It can also support IEEE 802.11ax next-generation Wi-Fi protocols, such as 802.11be, Wi-Fi 7 or EHT, and 802.11b.
  • 802.15 series protocols such as 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, etc.
  • IEEE 802.11ax next-generation Wi-Fi protocols such as 802.11be, Wi-Fi 7 or EHT, and 802.11b.
  • the above-mentioned device may be a communication server, a router, a switch, a bridge, a computer or a mobile phone, a smart home device, a vehicle-mounted communication device, etc.
  • the above-mentioned device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, etc. system, iOS operating system or windows operating system, etc.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided in the embodiments of the present application.
  • the execution subject of the method provided in the embodiments of the present application may be FFD or RFD, or a functional module in FFD or RFD that can call and execute a program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks or tapes, etc.), optical disks (e.g., compact discs (CDs), digital versatile discs (DVDs), etc.), smart cards and flash memory devices (e.g., erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the technical solution of the present application can also be applied to wireless local area network systems such as the Internet of Things (IOT) network or the vehicle to x (V2X).
  • the present application can also be applied to other possible communication systems, for example, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5G) communication system, and sixth generation (6G) communication system.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 6G sixth generation
  • the terminal in the embodiment of the present application can be a device with wireless transceiver function, which can specifically refer to user equipment (UE), access terminal, subscriber unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • wireless communication device user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a customer-premises equipment (CPE), an intelligent point of sale (POS) machine, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot, a device-to-device communication (
  • D2D device-to-device
  • terminals in V2X virtual reality
  • VR virtual reality
  • AR augmented reality
  • the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the device may be installed in the terminal device or used in combination with the terminal device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the network device in the embodiment of the present application is a device with wireless transceiver function, which is used to communicate with the terminal device.
  • the access network device can be a node in the radio access network (RAN), which can also be called a base station, or a RAN node. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (PLMN) evolved after 5G, a broadband network service gateway (BNG), an aggregation switch or a third generation partnership project (3GPP) access device, etc.
  • RAN radio access network
  • the network devices in the embodiments of the present application may also include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, transmission points (transmitting and receiving points, TRP), transmitting points (transmitting points, TP), mobile switching centers, and devices that perform base station functions in device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications, etc., and may also include cloud access networks (cloud radio access).
  • cloud access networks cloud radio access
  • the embodiments of the present application do not specifically limit the centralized unit (CU) and distributed unit (DU) in a C-RAN system and the network equipment in an NTN communication system.
  • the device for realizing the function of the network device in the embodiment of the present application may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system.
  • the device may be installed in the network device or used in combination with the network device.
  • the chip system in the embodiment of the present application may be composed of a chip, or may include a chip and other discrete devices.
  • FIG1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes a communication device 110 and a communication device 120.
  • the present application does not limit the number of communication devices included in the communication system 100.
  • the communication device 110 and the communication device 120 may be any terminal device listed above, or may be any network device listed above, and the present application does not limit this. It should be understood that FIG1 is only for exemplary understanding and cannot limit the scope of protection required by the present application.
  • UWB communication can be performed between the communication device 110 and the communication device 120.
  • UWB communication includes transmission applications such as sensing, ranging, positioning, and communication.
  • the communication device 110 can act as an initiator (the initiator refers to a UWB device that can initiate a UWB ranging process, which can be a transmitter/receiver), and the communication device 120 can act as a responder (the responder refers to a UWB device that responds to the ranging process initiated by the initiator, which can be a receiver/transmitter).
  • the communication device 110 and the communication device 120 may both be UWB devices supporting the 802.15.4z protocol, or may both be UWB devices supporting the 802.15.4ab protocol, or may both be UWB devices supporting other protocols, and this application does not limit this.
  • this application takes the case where the communication device 110 and the communication device 120 are both UWB devices supporting the 802.15.4ab protocol as an example for description, but does not limit other scenarios.
  • the communication device supporting UWB communication needs to perform the preamble configuration of the initial synchronization and the preamble configuration of the ranging process.
  • the communication device 110 performs the initial synchronization according to the first preamble and performs the ranging process according to the second preamble.
  • the configuration information of the first preamble and the configuration information of the second preamble need to be configured and sent by the communication device 110 as the initiator.
  • the configuration method of the preamble can be referred to Figure 2.
  • FIG2 is a schematic diagram of the structure of an information element (IE) #S for configuring a preamble.
  • the information element #S includes a channel configuration interval presence (CCIP) field, a dynamic preamble selection (DPS) duration presence (DDP) field, a preamble sequence selection presence (PSP) field, a channel number (channel number) field, a CCI field, a DPS field, a transmitter preamble code (Tx preamble code) field, a receiver preamble code (Rx preamble code) field, and a preamble symbol repetitions (PSR) field.
  • CCIP channel configuration interval presence
  • DDP dynamic preamble selection
  • PPS preamble sequence selection presence
  • Tx preamble code transmitter preamble code
  • Rx preamble code receiver preamble code
  • PSR preamble symbol repetitions
  • the CCIP field indicates whether the CCI field exists
  • the DDP field indicates whether the DPS Duration field exists
  • the PSP field indicates whether the field related to the preamble sequence selection exists.
  • the fields related to the preamble sequence selection include: the transmitter preamble code field, the receiver preamble code field, and the PSR field.
  • the channel number field indicates the number of the UWB channel
  • the CCI field indicates the channel configuration period information
  • the DPS Duration field indicates the duration of the DPS
  • the PSR field indicates the number of repetitions of the preamble symbol.
  • the transmitter preamble code field indicates an index value, which corresponds to the preamble sequence used by the transmitter (transmitting device of cell #S) to send UWB signals in the upcoming ranging process.
  • the receiver preamble code field also indicates an index value, which corresponds to the preamble sequence used by the receiver (receiving device of cell #S) to receive UWB signals in the upcoming ranging process.
  • the types of preamble sequences indicated by the transmitter preamble field and the receiver preamble field are both preamble sequences based on Ipatov sequences, wherein the Ipatov sequence includes the Ipatov sequence defined in the existing 802.15.4z protocol.
  • the initial synchronization of UWB devices includes two types: initial synchronization based on UWB signals and initial synchronization based on narrowband signals (narrow-band, NB).
  • initial synchronization based on UWB signals and initial synchronization based on narrowband signals (narrow-band, NB).
  • narrowband signals narrowband signals
  • MMS multi-millisecond
  • a preamble sequence based on an Ipatov sequence can be selected, which is not limited here;
  • a preamble sequence based on a Golay sequence can be selected, a preamble sequence based on a complementary zero-sum cross-correlation code block (CZC) can be selected, or a preamble sequence based on an Ipatov sequence can be selected, which is not limited here.
  • CZC complementary zero-sum cross-correlation code block
  • the initial synchronization process of UWB devices and the MMS ranging process can be configured with a preamble sequence based on the Ipatov sequence.
  • a UWB device supporting the 802.15.4ab protocol receives cell #S, it may not be able to distinguish the purpose of the preamble sequence indicated by cell #S, that is, it cannot determine whether the preamble sequence based on the Ipatov sequence is used for initial synchronization or for the MMS ranging process.
  • the present application provides an ultra-wideband communication method and a communication device, which can support UWB devices to complete the preamble code configuration of the initial synchronization and/or the preamble code configuration of the measurement process.
  • Ranging round In the previous generation IEEE 802.15.4z standard, a single ranging process is defined as a ranging round. The minimum processing time unit of each ranging round is a ranging slot. In a ranging round, it is divided into three phases: ranging control phase, ranging phase, and measurement report phase, as shown in Figure 3, which is a schematic diagram of the various phases of a UWB ranging round. As can be seen from Figure 3, in the IEEE 802.15.4z standard, the ranging control phase contains 1 ranging slot, while in the IEEE 802.15.4ab standard currently under discussion, the ranging control phase can contain more than 1 ranging slot.
  • the measurement includes ranging, sensing, positioning, communication and other measurement processes performed based on UWB signals. Accordingly, for example, when the measurement is ranging, the corresponding measuring wheel is a ranging wheel; for another example, when the measurement is sensing, the corresponding measuring wheel is a sensing wheel.
  • segmented signal fragment or segment
  • block signal short signal
  • partial signal partial signal
  • Segment partial signal
  • block partial signal
  • Slice partial signal
  • the multiple segmented signals obtained by splitting the UWB signal may be the same, for example, the multiple segmented signals obtained by splitting the UWB signal are preambles of the same configuration, wherein the preambles of the same configuration include but are not limited to: the length of the preamble, the sequence used for the preamble, etc.
  • the preamble is a set of sequences that can be used to identify the device identity and/or channel status measurement when the device interacts with other devices or accesses a network.
  • frame structure described in this application may also be referred to as a "frame format", etc., and there is no limitation on the name of the frame structure. It can be used to characterize signal frame characteristics such as the structure/format of a UWB signal frame.
  • Figure 4 is a schematic diagram of the interaction flow of a communication method 400 of an embodiment of the present application.
  • method 400 can be performed by a first communication device and a second communication device, or can also be performed by modules and/or devices (for example, chips or integrated circuits, etc.) with corresponding functions installed in the first communication device and the second communication device, and this application does not limit this.
  • the first communication device can be a network device or a terminal device
  • the second communication device can be a network device or a terminal device, and this application does not limit this.
  • the following description takes the first communication device and the second communication device as an example.
  • method 400 includes:
  • the first communication device determines a first information element, where the first information element includes at least one of first information and second information, where the first information is used to configure a first sequence, which is used for initial synchronization of the second communication device, and the second information is used to configure a second sequence, which is used for a first measurement process between the first communication device and the second communication device.
  • the first information element includes at least one of the first information and the second information, which may be: the first information element includes the first information; or the first information element includes the second information; or the first information element includes the first information and the second information.
  • the first information can be used to configure a first sequence, and the first sequence can be used for initial synchronization of the second communication device.
  • the first information can be used for preamble configuration of the second communication device for initial synchronization.
  • the second information can be used to configure a second sequence, and the second sequence can be used for a first measurement process between the second communication device and the first communication device.
  • the second information can be used for preamble configuration of the second communication device for the first measurement process.
  • the first measurement process includes at least one of the following: a ranging process, a sensing process, or a positioning process.
  • a ranging process a ranging process
  • sensing process a sensing process
  • a positioning process a process that uses the first measurement process to determine the location of a ranging process.
  • the first sequence may also include a first preamble sequence, a first preamble field, or a first preamble symbol, etc., as an alternative or similar expression.
  • the second sequence may also include a second preamble sequence, a second preamble field, or a second preamble symbol, etc., as an alternative or similar expression.
  • the first communication device sends a first information element to the second communication device.
  • the second communication device receives the first information element from the first communication device.
  • the second communication device determines at least one of the first sequence and the second sequence according to the first information element.
  • the first information element includes the first information, and the second communication device determines the first sequence according to the first information, thereby completing the initial synchronization.
  • the first information element includes the second information, and the second communication device determines the second sequence according to the second information, thereby completing the preamble configuration of the first measurement process.
  • the first information element includes the first information and the second information, and the second communication device determines the first sequence according to the first information and determines the second sequence according to the second information, thereby completing the preamble configuration of the initial synchronization and the preamble configuration of the first measurement process.
  • the second communication device may not be able to distinguish the purpose of the preamble sequence indicated by the information element #S. For example, it is not possible to determine whether the preamble sequence indicated by the information element #S is used for initial synchronization or for the first measurement process. As a result, the second communication device cannot complete the preamble configuration of the initial synchronization and/or the preamble configuration of the first measurement process according to the information element #S.
  • the present application can support the second communication device to complete the initial synchronization preamble code configuration and/or the preamble code configuration of the first measurement process according to the first information and/or the second information of the first information cell by configuring the first information and/or the second information in the first information cell.
  • the first information element further includes at least one of the third information and the fourth information.
  • the first information element includes the first information, and the first information element may also include the third information, which is used to indicate the type of the first sequence.
  • the first information element includes the second information, and the first information element may also include the fourth information, which is used to indicate the type of the second sequence.
  • the first information element includes the first information and the second information, and the first information element may also include the third information and the fourth information, and the third information and the fourth information are used to indicate the type of the first sequence and the type of the second sequence, respectively.
  • the second communication device determines the type of the corresponding first sequence and/or second sequence according to the third information and/or the fourth information of the first information element, thereby better generating the corresponding preamble sequence.
  • the type of the first sequence may include an Ipatov sequence
  • the type of the second sequence may also include a Golay sequence, a CZC sequence, and an Ipatov sequence.
  • the above-mentioned Golay sequence may also include two types: a Golay sequence supported by the 802.15.4ab protocol, and a Golay sequence not supported by the 802.15.4ab protocol.
  • the above-mentioned Ipatov sequence may further include three types: an Ipatov sequence supported by the 802.15.4ab protocol, an Ipatov sequence supported by 802.15.4z, and an Ipatov sequence not supported by either the 802.15.4ab protocol or 802.15.4z.
  • the above CZC sequence may further include two types: a CZC sequence supported by the 802.15.4ab protocol, and a CZC sequence not supported by the 802.15.4ab protocol.
  • the first information element further includes fifth information, which is used to indicate the type of the first measurement process.
  • the type of the first measurement process includes: a non-MMS-based measurement process, an MMS-based measurement process, or a NB signal-assisted MMS measurement process.
  • the second communication device determines the type information of the first measurement process according to the fifth information of the first information element, thereby better completing the measurement process with the first communication device.
  • method 400 further includes:
  • the first communication device sends a second information element to the second communication device, where the second information element includes sixth information, which is used to indicate the number of measurement integrity segments.
  • the second communication device receives the second information element from the first communication device, and determines the number of measurement integrity segments according to the sixth information.
  • integrity protection verification can be carried out through integrity segmentation, and then it can be determined whether the ranging process is attacked.
  • the second information element further includes seventh information, which is used to indicate whether the number of preamble code segments is updated.
  • the second communication device can determine whether the number of preamble code segments is updated according to the seventh information.
  • the transceiver device can better adapt to the dynamic changes of the channel environment, improve the measurement accuracy between the transceiver devices, or reduce interference to other devices.
  • the second information element further includes eighth information, and the eighth information is used to indicate the type of the MMS.
  • the types of MMS include: interleaved MMS or non-interleaved MMS.
  • interleaved MMS or non-interleaved MMS.
  • non-interleaved MMS For a detailed description of the types of MMS, please refer to FIG. 5 .
  • FIG5 is a schematic diagram of the types of MMS ranging in an embodiment of the present application.
  • the initiator can send multiple continuous UWB signal blocks to the responder, and the responder can send multiple continuous UWB signal blocks to the initiator, and there is no interlacing between the two.
  • the present application can enhance the signal and alleviate the occurrence of UWB signal attenuation in long-distance or line-of-sight scenarios.
  • the initiator and the responder send UWB signal blocks to the other end alternately.
  • method 400 may further include:
  • the first communication device sends a third information element to the second communication device, where the third information element is used in a second measurement process between the second communication device and the first communication device.
  • the second communication device receives the third information element from the first communication device, and performs a second measurement process according to the third information element.
  • the description of the second measurement process can refer to the description of the first measurement process, and will not be repeated here.
  • the third information element may be an advanced ranging control information element (ARC IE), which can be used to configure measurement information for the second measurement process to the second communication device.
  • ARC IE advanced ranging control information element
  • the specific content of the ARC IE can be referred to the existing protocol and will not be repeated here.
  • the second measurement process is performed based on the third information element.
  • the second measurement process is performed based on the second information element and the third information element.
  • the second measurement process between the first communication device and the second communication device is based on the third information element, that is, based on the 802.15.4z protocol.
  • the second measurement process is a non-MMS measurement process.
  • the RCM sent by the first communication device to the second communication device includes the third information element and the second information element
  • the second communication device supports the second information element
  • the second measurement process between the first communication device and the second communication device is based on the third information element and the second information element (that is, the measurement process is carried out in accordance with the process specified in the 802.15.4ab protocol).
  • the second measurement process between the first communication device and the second communication device is based on the third information element (that is, the measurement process is carried out in accordance with the process specified in the 802.15.4z protocol).
  • method 400 may further include:
  • the second communication device sends indication information to the first communication device, which is used to indicate whether the second communication device supports at least one of narrowband signal capability and multi-millisecond transmission capability.
  • the first communication device receives the indication information from the second communication device, and determines whether the second communication device supports at least one of the NB signal capability and the MMS capability according to the indication information.
  • the first communication device sends feedback information to the second communication device, which is used to indicate that the second communication device is not allowed to access the network.
  • the second communication device receives feedback information from the first communication device, and determines, based on the feedback information, that the second communication device is not allowed to access the network.
  • the first communication device when the second communication device indicates to the first communication device through indication information that it does not support at least one of the NB signal capability and the MMS capability, the first communication device will send feedback information to the second communication device, which is used to indicate to the second communication device that it is not allowed to access the network.
  • the reason why the second network device is not allowed to access the network may be: the second communication device does not support the NB signal capability and/or the second communication device does not support the MMS capability.
  • the present application supports the first communication device to obtain the support status of the second communication device for the NB signal capability and the MMS capability, which helps the first communication device to make reasonable measurement configuration in the subsequent measurement process.
  • S440 to S470 this application does not limit the order of the steps between S440 and S470.
  • S440 may be in the first order and S470 may be in the second order; or S450 may be in the first order and S440 may be in the second order, etc.
  • Fig. 6 is a schematic diagram of the structure of the first information element of the embodiment of the present application.
  • the first information element includes: CCIP field, DDP field, PSP field, channel number field, ranging mode field, initial sync.sequence selection presence indication field, MMS ranging sequence selection presence indication field, CCI field, DPS duration field, sequence usage type field, Tx MMS code field, Rx MMS code field, PSR field, Tx Gap sizes for MMS ranging, Rx Gap sizes for MMS ranging, Tx initial sync.code field and Rx initial sync.code field.
  • the field of the initial synchronization sequence type includes two bits, and the field of the initial synchronization sequence type includes four values, and different values indicate different meanings.
  • the first value for example, 0
  • the initial synchronization field of the sender, the initial synchronization field of the receiver, and the PSR field all exist
  • the second value for example, 1 means: enable an additional Ipatov sequence (i.e., an Ipatov sequence not supported in the 802.15.4-2020 protocol and the 802.15.4z protocol).
  • the initial synchronization field of the sender, the initial synchronization field of the receiver, and the PSR field all exist; the third value (for example, 2) means: the field is not activated. Therefore, the value of the initial synchronization sequence selection indication field is 0; the fourth value can be reserved. It should be understood that the above description is only an example description and is not a final limitation.
  • the field of the MMS sequence type includes two bits, and the field of the MMS sequence type includes four values, and different values indicate different meanings.
  • the first value (for example, 0) means: enable the sequence based on the complementary set.
  • the sequence based on the complementary set includes: Golay sequence, CZC sequence.
  • the MMS code field of the sender, the MMS code field of the receiver, and the PSR field all exist, and the sender interval size of the MMS measurement and the receiver interval size field of the MMS measurement all exist;
  • the second value (for example, 1) means: enable the Ipatov sequence.
  • the MMS code field of the sender, the MMS code field of the receiver, and the PSR field all exist; the third value (for example, 2) means: the field is not activated. Therefore, the value of the MMS measurement sequence selection indication field is 0; the fourth value can be reserved. It should be understood that the above description is only an example description and not a final limitation.
  • Value 0 means: initial synchronization preamble sequence configuration
  • Value 1 means: the preamble sequence configuration for initial synchronization and the preamble sequence configuration for the MMS measurement process;
  • Value 2 means: preamble sequence configuration of MMS measurement process
  • a value 3 means: Reserved.
  • the initial synchronization sequence selection indication field is 0, indicating that the first cell does not exist/trigger the initial synchronization sequence type field
  • the initial synchronization sequence selection indication field is 1, indicating that the first information element has/triggers the initial synchronization sequence type field.
  • the MMS measurement sequence selection indication field is 0, indicating that the first cell does not exist/trigger the MMS sequence type field
  • the MMS measurement sequence selection indication field is 1, indicating that the first information element exists/triggers the MMS sequence type field.
  • the meanings of the sender MMS code field, the receiver MMS code field, the sender interval size measured by MMS, the receiver interval size measured by MMS, the sender initial synchronization code field, and the sender initial synchronization code field in the first information element are as follows:
  • Transmitter MMS code field used to indicate an index value corresponding to the preamble sequence used by the transmitter (first communication device) to send the UWB MMS segment signal in the upcoming first measurement process.
  • the preamble sequence indicated by this field can be from a Golay sequence, a CZC sequence, or an Ipatov sequence.
  • Receiver MMS Code field used to indicate an index value corresponding to the preamble sequence used by the receiver (second communication device) to receive the UWB MMS segmented signal in the corresponding upcoming first measurement process.
  • the preamble sequence indicated by this field can be from a Golay sequence, a CZC sequence, or an Ipatov sequence.
  • the sender gap size field of MMS measurement is used to match the sender MMS code field, which is an index value.
  • Each index value corresponds to a value representing the gap size (gap size), that is, different index values correspond to different gaps. Size value.
  • the receiving end gap size field of MMS measurement is used to match the receiving end MMS code field, which is an index value.
  • Each index value corresponds to a value representing the gap size, that is, different index values correspond to different Gap Size values.
  • Transmitter initial synchronization code field used to indicate an index value.
  • the preamble code sequence indicated by this field can come from the Ipatov sequence.
  • Receiver initial synchronization code field used to indicate an index value.
  • the preamble code sequence indicated by this field can come from the Ipatov sequence.
  • the present application does not impose any limitation on the form of the first information element. Any fields and field forms that can reflect the embodiments of the present application are within the protection scope of the present application, and the present application does not impose any limitation.
  • the newly introduced fields such as Ranging Mode, Initial Sequence Selection Presence, MMS Ranging Sequence Selection, Sequence Usage Type, TX MMS Code, RX MMS Coded, TX Gap Sizes for MMS Ranging, RX Gap Sizes for MMS Ranging, TX initial Sync.Code, and RX initial sync.Code of the first information element are only specific examples.
  • the present application does not impose any limitation on the message size values of these fields and their positions in the information element.
  • Figure 6 is only an example form of the first information element.
  • the present application does not make any limitation on the specific name of the first information element.
  • the first information element may be called enhanced ranging channel and preamble code selection information element (eRCPCS IE), etc.
  • the newly added eRCPCS IE may be a multiplexing of a reserved list row in a nested IE list defined in Table 7-18 of the 802.15.4z protocol, wherein the elements in the list row include: IE sub-ID value, IE name, IE type, object using the IE (Used by) (e.g., upper layer protocol (UL)), object generating the IE (Created by) (upper layer protocol), etc.
  • IE types include: data type (Data), enhanced beacon type, enhanced confirmation message type, multi-purpose type, etc.
  • the newly added eRCPCS IE can be identified and processed by the device that needs to perform the measurement function.
  • the protocol upper layer of the sending device configures the eRCPCS IE and passes it to the MAC layer of the sending device.
  • the MAC layer of the receiving device passes the received eRCPCS IE to the upper layer protocol of the receiving device, and the upper layer of the protocol identifies and processes the eRCPCS IE.
  • Table 3 is an extension and continuation of Table 7-18 of the existing 802.15.4z protocol.
  • the existing definition of Table 7-18 is not reflected in Table 3.
  • the newly added eRCPCS IE can be added to the nested IE list defined in Table 7-18 of the existing 802.15.4z protocol as a newly added IE in the 802.15.4ab protocol or subsequent versions.
  • a reserved sub-ID value (Sub-ID value) in the nested IE list defined in Table 7-18 of the existing 802.15.4z protocol can be used to indicate the newly added eRCPCS IE.
  • T in Table 3 can be any one or more values in 0x5d-0x7f.
  • Table 3 can be an extension and continuation of the nested IE list defined in the existing 802.15.4z protocol Table-7-18.
  • X in Table 3 indicates that the eRCPCS IE belongs to the Data type IE, that is, the eRCPCS IE is carried by a data frame.
  • Fig. 7 is a schematic diagram of the structure of the second information element of the embodiment of the present application.
  • the second information element includes: an update of number of preamble fragments enabled field, a number of ranging integrity fragments present indication field, an MMS mode field, a preamble fragment number indication field, a preamble fragment number field, and a number of ranging integrity fragments field.
  • the preamble code segment number update enable field is used to indicate whether the second information element exists/trigger the segment number update in the MMS measurement phase; a value of 0 indicates not triggered, and a value of 1 indicates triggered. If the preamble code segment number update is triggered, optionally, one or more other IEs and/or one or more frame structures that can complete the preamble code segment number update can be triggered accordingly to complete the preamble code segment number update.
  • the present application does not impose any limitation on the other one or more IEs and/or one or more frame structures that can complete the preamble code segment number update.
  • the measurement integrity segment number existence indication field is used to indicate whether the second information element exists/trigger the measurement integrity segment number field; a value of 0 indicates non-existence, and a value of 1 indicates existence.
  • the application embodiment does not impose any limitation on the form of the second information element.
  • Any fields and field forms that can reflect the embodiments of the present application are within the protection scope of the present application, and the present application does not impose any limitation.
  • the newly introduced fields such as Update of Number of Preamble Fragments Enabled, Number of Ranging Integrity Fragments Present, MMS Mode, Number of Ranging Integrity Fragments of the second information element in the embodiment of the present application are only specific examples.
  • the present application does not impose any limitation on the message size value and position of these fields in the information element.
  • Figure 7 is only an example form of the second information element.
  • the embodiment of the present application does not impose any limitation on the specific name of the second information element.
  • the second information element may be called an enhanced unified control information element (eUC IE).
  • eUC IE enhanced unified control information element
  • the newly added eUC IE may be a multiplexing of a reserved list row in a nested IE list defined in Table 7-18 of the 802.15.4z protocol.
  • the multiplexing method is similar to the aforementioned multiplexing method of the eRCPCS IE, which will not be described in detail here.
  • FIG8 is a schematic diagram of the structure of the indication information of the embodiment of the present application.
  • the indication information includes: a narrowband signal assisted (NB assisted, NBA) support type (NBA support type) field, a device type (device type) field, a power source (power source) field, a receiver on when idle (receiver on when idle) field, an association type (association type) field, an MMS support type (MMS support type) field, a security capability (security capability) field, and an allocated address (allocate address) field.
  • NB assisted, NBA narrowband signal assisted
  • NBA support type narrowband signal assisted (NB assisted, NBA) support type
  • NBA support type narrowband signal assisted (NB assisted, NBA) support type
  • device type device type
  • power source power source
  • association type association type
  • MMS support type MMS support type
  • security capability security capability
  • allocated address allocated address
  • the NBA support type field indicates whether the second communication device supports NBA.
  • the first value (eg, 0) of the NBA support type field indicates that the second communication device does not support NBA, and the second value (eg, 1) indicates that the second communication device supports NBA.
  • the second communication device may send the indication information via a preconfigured UWB signal, or may send the indication information via a non-UWB signal, such as a Bluetooth signal.
  • the MMS Support Type field is used to indicate whether the second communication device supports MMS.
  • the first value (eg, 0) of the MMS Support Type field indicates that the second communication device does not support MMS, and the second value (eg, 1) indicates that the second communication device supports MMS.
  • the feedback information sent by the first communication device to the second communication device may be in the form shown in Table 4.
  • the association status is 0x00, which indicates successful association; the association status is 0x01, which indicates PAN at capacity; the association status is 0x02, which indicates PAN access denied; when the association status is 0x03, it indicates Hopping sequence offset duplication; the association status is 0x04, which indicates access denied (because NB capability is not supported); the association status is 0x05, which indicates access denied (because MMS capability is not supported); 0x06-0x7f of the association status are reserved values; the association status is 0x80, which indicates fast association success; and 0x81-0xff of the association status are reserved values.
  • This application does not make any limitation on the association status values corresponding to the indication of access denied (because NB capability is not supported) and the indication of access denied (because MMS capability is not supported), which is just an example.
  • the controller initiator is a third-party device (neither an initiator nor a responder).
  • the controller broadcasts a control message containing a scheduling IE to the participating devices participating in the UWB application process.
  • the controller can also be an initiator device or a responder device.
  • the embodiments of the present application are described by assuming that a third-party device is the controller. The corresponding description is applicable to the case where the responder is the controller or the controller is the initiator device, and no further description is given.
  • the embodiment of the present application does not limit the signal carrier that carries the designed first information element and second information element. Specifically, it can be a UWB signal or a non-UWB signal. Among them, the non-UWB signal can be a NB signal or a Bluetooth signal.
  • This application does not limit the frame type that carries the designed first information element/second information element.
  • it can be a data frame, or for example, it can be a MAC command frame (MAC command frame).
  • the present application does not limit the signal carrier that carries the indication information shown in FIG8 .
  • it can be a UWB signal or a non-UWB signal.
  • the non-UWB signal can be a NB signal or a Bluetooth signal.
  • the embodiment of the present application does not limit the type of frame that carries the indication information shown in Figure 8.
  • it can be a data frame, or another example, it can be a MAC command frame.
  • the frame structure can be an IE or other types.
  • the newly introduced fields in the first cell/second cell/indication information shown in Figure 8 can be split into different IEs.
  • these newly introduced fields of the indication information shown in the first cell/second cell/ Figure 8 can be split into other IEs, or reflected by reusing the existing 802.15.4z IE.
  • other IEs and existing 802.15.4z IEs can be one or more IEs.
  • one or more of these newly introduced fields of the first information element/the second information element/the indication information shown in FIG8 can be combined with one or more fields not included in the first information element/the second information element/the indication information shown in FIG8 to form other IEs, or be embodied by reusing the existing IE of 802.15.4z.
  • This application does not make any restrictions on other IEs.
  • this application does not make any restrictions on one or more fields included in other IEs.
  • This application does not make any restrictions on the existing IE of 802.15.4z. In addition, this application does not make any restrictions on one or more fields included in the existing IE of 802.15.4z.
  • other IEs/existing IEs of 802.15.4z can also be split into different frames.
  • the frame types of different frames can also be different, and this application does not make any restrictions.
  • the frame type can be a data frame, or a MAC command frame, etc.
  • the aforementioned description of the combination method of the frame structure as IE is also applicable to the combination method of the frame structure as other types, and will not be repeated here. In other words, any frame structure that can reflect the purpose of one or more fields in the first information element/second information element/indication information shown in Figure 8, regardless of its combined use, is within the protection scope of the present application.
  • the ultra-wideband communication method provided in this application can be applied to one or more of UWB ranging, perception, positioning, and communication applications, and this application does not make specific limitations.
  • the ranging control phase shown in Figures 3 and 5 in this application can be understood as a type of measurement control phase
  • the ranging phase can be understood as a type of measurement phase
  • the ranging result reporting phase can be understood as a type of measurement result reporting phase.
  • the measurement control phase can be understood as the perception control phase
  • the measurement phase can be understood as the perception phase
  • the measurement result reporting phase can be understood as the perception result reporting phase.
  • the names of the different stages in the above-mentioned single measurement round are only examples and do not constitute any limitation on the protection scope of the present application.
  • the above-mentioned measurement control stage can be understood as a stage for configuring the parameters required in the measurement round; for another example, the above-mentioned measurement stage can be understood as a stage for performing measurements; for another example, the above-mentioned measurement result reporting stage can be understood as a stage for reporting measurement results, and can also be called the end of the measurement stage.
  • first information element/second information element/indication information shown in FIG8 provided in the present application can be used in any stage of the measurement round, and can also be used in the device discovery and connection establishment stage before the measurement starts. In other words, the present application does not impose any limitation on the use stage of the first information element/second information element/indication message.
  • the first information element/second information element/indication information shown in Figure 8 provided by the present application can be carried by a new message, or can be carried by an existing message, such as a message in 802.15.4z (for example, an RCM message), or an evolution of the message in 802.15.4z, or can be based on the improvement and/or multiplexing of an existing message, and the present application does not make any specific limitations.
  • the indication information shown in the first cell/second cell/ Figure 8 provided by the present application can be used for a one-to-one measurement situation, that is, a situation with one measurement initiator and one measurement responder. It can also be naturally extended to a one-to-many or many-to-many situation, that is, one measurement initiator and multiple measurement responders, or multiple measurement initiators and multiple measurement responders. It will not be repeated here.
  • the present application does not impose any limitation on the measurement situation to which the indication information shown in the first cell/second cell/ Figure 8 is applied.
  • the terminal and the network device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • the communication device 900 includes a processor 910 and a communication interface 920, and the processor 910 and the communication interface 920 are connected to each other via a bus 930.
  • the communication device 900 shown in Fig. 9 may be a first communication device or a second communication device.
  • the communication device 900 also includes a memory 940 .
  • the memory 940 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or compact disc read-only memory (CD-ROM), and is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Processor 910 may be one or more central processing units (CPUs). When processor 910 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • CPUs central processing units
  • the processor 910 in the communication device 900 is used to read the computer program or instructions stored in the memory 940, and exemplarily, perform the following operations: determine a first information element, the first information element includes at least one of first information and second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, the second information is used to configure a second sequence, the second sequence is used for a first measurement process between the first communication device and the second communication device; send the first information element to the second communication device.
  • the following operation may be performed: sending a second information element to the second communication device.
  • the following operation may be performed: sending a third information element to the second communication device.
  • the communication device 900 is the first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the processor 910 in the communication device 900 is used to read the computer program or instructions stored in the memory 940, and exemplarily, perform the following operations: receive a first information element from a first communication device, the first information element includes at least one of first information and second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, the second information is used to configure a second sequence, and the second sequence is used for a first measurement process between the first communication device and the second communication device; determine the first sequence and/or the second sequence according to the first information element.
  • the following operation may be performed: receiving a second information element from the first communication device.
  • the following operation may be performed: receiving a third information element sent from the first communication device.
  • the communication device 900 is a second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • FIG10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 may be a network device or a terminal device in the above-mentioned embodiment (the first communication device may be a network device or a terminal device), or may be a chip or module in a network device or a terminal device, for implementing the method involved in the above-mentioned embodiment.
  • the communication device 1000 includes a transceiver module 1010 and a processing module 1020.
  • the transceiver module 1010 and the processing module 1020 are exemplarily introduced below.
  • the transceiver module 1010 may include a sending module and a receiving module, which are respectively used to implement the sending or receiving functions in the above method embodiments; it may further include a processing module for implementing functions other than sending or receiving.
  • the processing module 1020 is used to determine a first information element, the first information element includes at least one of the first information and the second information, the first information is used to configure the first sequence, and the first sequence is used for the initialization of the second communication device.
  • the first communication device and the second communication device start synchronization, the second information is used to configure the second sequence, and the second sequence is used for the first measurement process between the first communication device and the second communication device; the transceiver module 1010 is used to send the first information element to the second communication device.
  • the communication device 1000 further includes a storage module 1030, and the storage module 1030 is used to store a program or code for executing the aforementioned method.
  • the communication device 1000 is a first communication device, it will be responsible for executing the methods or steps related to the first communication device in the above method embodiments.
  • the transceiver module 1010 is used to receive a first signal element, the first signal element includes at least one of first information and second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, the second information is used to configure a second sequence, and the second sequence is used for a first measurement process between the first communication device and the second communication device; the processing module 1020 is used to determine the first sequence and/or the second sequence based on the first signal element.
  • the communication device 1000 further includes a storage module 1030, and the storage module 1030 is used to store a program or code for executing the aforementioned method.
  • the communication device 1000 is a second communication device, it will be responsible for executing the methods or steps related to the second communication device in the above method embodiments.
  • each operation of FIG. 10 may also refer to the corresponding description of the method shown in the above embodiment, which will not be repeated here.
  • the above-mentioned transceiver module may include a sending module and a receiving module.
  • the sending module is used to perform the sending action of the communication device
  • the receiving module is used to perform the receiving action of the communication device.
  • the embodiment of the present application combines the sending module and the receiving module into one transceiver module. A unified description is given here, and no further description is given later.
  • FIG 11 is a schematic diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device 1100 may be used to implement the functions of a network device or a terminal device (when the first communication device is a network device or a terminal device) in the above method.
  • the communication device 1100 may be a chip in a network device or a terminal device.
  • the communication device 1100 includes: an input/output interface 1120 and a logic circuit 1111.
  • the input/output interface 1120 may be an input/output circuit.
  • the logic circuit 1111 may be a signal processor, a chip, or other integrated circuit that can implement the method of the present application.
  • the input/output interface 1120 is used for inputting or outputting signals or data.
  • the logic circuit 1111 is used to determine a first information element, the first information element includes at least one of the first information and the second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, and the second information is used to configure a second sequence, the second sequence is used for a first measurement process between the first communication device and the second communication device; the input and output interface 1120 is used to send the first information element to the second communication device.
  • the logic circuit 1111 is used to perform some or all of the steps of any one of the methods provided in the present application.
  • the input/output interface 1120 is used to receive a first information element from a first communication device, the first information element includes at least one of the first information and the second information, the first information is used to configure a first sequence, the first sequence is used for initial synchronization of the second communication device, and the second information is used to configure a second sequence, the second sequence is used for a first measurement process between the first communication device and the second communication device.
  • the logic circuit 1111 is used to execute some or all of the steps of any one of the methods provided in the present application. For example, the first sequence and/or the second sequence is determined according to the first information element.
  • the logic circuit 1111 implements the functions implemented by the network device or the terminal device by executing instructions stored in the memory.
  • the communication device 1100 further includes a memory.
  • the processor and the memory are integrated together.
  • the memory is outside the communication device 1100 .
  • the logic circuit 1111 inputs/outputs messages or signals through the input/output interface 1120.
  • the logic circuit may be a signal processor, a chip, or other integrated circuits that can implement the method of the embodiment of the present application.
  • FIG. 11 The above description of the device in FIG. 11 is only an exemplary description.
  • the device can be used to execute the method described in the above embodiment.
  • FIG12 is a schematic block diagram of a communication device 1200 of an embodiment of the present application.
  • the communication device 1200 may be a network device (when the first communication device is a network device) or a chip.
  • the communication device 1200 may be used to perform the operations performed by the network device in the method embodiments shown in FIGS. 3 to 7 above.
  • FIG. 12 shows a simplified schematic diagram of the structure of a base station.
  • the base station includes parts 1210, 1220 and 120.
  • Part 1210 is mainly used for baseband processing, controlling the base station, etc.;
  • Part 1210 is usually the control center of the base station, which can be generally referred to as a processor, and is used to control the base station to perform the processing operations on the network device side in the above method embodiment.
  • Part 1220 is mainly used to store computer program code and data.
  • Part 1230 is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals into baseband signals; Part 1230 can generally be referred to as a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver module of part 1230 which can also be referred to as a transceiver or a transceiver, etc., includes an antenna 1233 and a radio frequency circuit (not shown in the figure), wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1230 may be regarded as a receiver, and the device for implementing the transmitting function may be regarded as a transmitter, that is, part 1230 includes a receiver 1232 and a transmitter 1231.
  • the receiver may also be referred to as a receiving module, a receiver, or a receiving circuit, etc.
  • the transmitter may be referred to as a transmitting module, a transmitter, or a transmitting circuit, etc.
  • Part 1210 and part 1220 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and the control of the base station. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time.
  • the transceiver module of part 1230 is used to execute the transceiver-related process executed by the network device in the embodiment shown in Figure 4.
  • the processor of part 1210 is used to execute the processing-related process executed by the network device in the embodiment shown in Figure 4.
  • the processor of portion 1210 is used to execute a process related to the processing performed by the communication device in the embodiment shown in FIG. 4 .
  • the transceiver module of part 1230 is used to execute the transceiver-related processes performed by the communication device in the embodiment shown in FIG. 4 .
  • FIG. 12 is merely an example and not a limitation, and the network device including the processor, memory, and transceiver described above may not rely on the structures shown in FIG. 9 to FIG. 11 .
  • the chip When the communication device 1200 is a chip, the chip includes a transceiver, a memory, and a processor.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processor, a microprocessor, or an integrated circuit integrated on the chip.
  • the sending operation of the network device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment may be understood as the input of the chip.
  • FIG13 is a schematic block diagram of a communication device 1300 of an embodiment of the present application.
  • the communication device 1300 may be a terminal device (when the first communication device is a terminal device), a processor of the terminal device, or a chip.
  • the communication device 1300 may be used to perform the operations performed by the terminal device or the communication device in the above method embodiment.
  • FIG13 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal device includes a processor, a memory, and a transceiver.
  • the memory can store computer program codes
  • the transceiver includes a transmitter 1331, a receiver 1332, a radio frequency circuit (not shown in the figure), an antenna 1333, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, as well as to control terminal devices, execute software programs, process software program data, etc.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG13 only one memory, processor, and transceiver are shown in FIG13. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device, etc.
  • the memory may be set independently of the processor or integrated with the processor, and the embodiments of the present application do not limit this.
  • the antenna and the radio frequency circuit with transceiver functions can be regarded as the transceiver module of the terminal device, and the processor with processing function can be regarded as the processing module of the terminal device.
  • the terminal device includes a processor 1310, a memory 1320 and a transceiver 1330.
  • the processor 1310 may also be referred to as a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 1330 may also be referred to as a transceiver unit, a transceiver, a transceiver device, etc.
  • the device for implementing the receiving function in the transceiver 1330 may be regarded as a receiving module, and the device for implementing the transmitting function in the transceiver 1330 may be regarded as a transmitting module, that is, the transceiver 1330 includes a receiver and a transmitter.
  • a transceiver may sometimes be referred to as a transceiver, a transceiver module, or a transceiver circuit, etc.
  • a receiver may sometimes be referred to as a receiver, a receiving module, or a receiving circuit, etc.
  • a transmitter may sometimes be referred to as a transmitter, a transmitting module, or a transmitting circuit, etc.
  • the processor 1310 is used to perform processing actions on the terminal device side in the embodiment shown in FIG. 4
  • the transceiver 1330 is used to perform transceiver actions on the terminal device side in FIGS. 3 to 7 .
  • the processor 1310 is used to execute the processing actions on the terminal device side in the embodiment shown in FIG. 4
  • the transceiver 1330 is used to execute the transceiver actions on the terminal device side in FIG. 4 .
  • FIG. 13 is merely an example and not a limitation, and the above-mentioned terminal device including the transceiver module and the processing module may not rely on the structures shown in FIG. 9 to FIG. 11 .
  • the chip When the communication device 1300 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processing module or a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment may be understood as the input of the chip.
  • the present application also provides a chip, including a processor, for calling and executing instructions stored in a memory from the memory, so that a communication device equipped with the chip executes the methods in the above examples.
  • the present application also provides another chip, including: an input interface, an output interface, and a processor, wherein the input interface, the output interface, and the processor are connected via an internal connection path, and the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in each of the above examples.
  • the chip also includes a memory, and the memory is used to store computer programs or codes.
  • the present application also provides a processor, which is coupled to a memory and is used to execute the methods and functions involving a network device or a terminal device in any of the above embodiments.
  • a computer program product including instructions is provided.
  • the method of the above embodiment is implemented.
  • the present application also provides a computer program.
  • the computer program is executed in a computer, the method of the above embodiment is implemented.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the method described in the above embodiment is implemented.
  • a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the words “first”, “second” and the like are used to distinguish between the same items or similar items with substantially the same functions and effects. Those skilled in the art will understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not necessarily limit the difference. At the same time, in the embodiments of the present application, the words “exemplarily” or “for example” are used to indicate examples, illustrations or explanations.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods of each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法与通信装置,该方法应用于基于超宽带的无线个人局域网系统之中,其包括802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议等,该方法包括:第一通信装置确定第一信元,其包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;第一通信装置向第二通信装置发送第一信元。如此,第二通信装置能够根据第一信元完成初始同步的前导码配置和/或第一测量过程的前导码配置。

Description

通信方法与通信装置
本申请要求于2022年11月22日提交中国国家知识产权局、申请号为202211463387.5、申请名称为“通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种通信方法与通信装置。
背景技术
相较于传统的无线通信技术,超宽带(ultra wide-band,UWB)通信系统能够实现更高的测距与定位精度,且其精度可以达到厘米级别。这是由于UWB通信系统采用脉冲宽度仅为纳秒级别的脉冲作为其基础信号,因此其具有传输速率高、系统容量大等特点。
目前,对于支持802.15.4ab协议的UWB设备而言,其初始同步与测距过程均是需要基于对应的前导码才能进行的,但是现有的前导码的配置方式并不能使得支持802.15.4ab协议的UWB设备能够完成初始同步的前导码配置和/或测距过程的前导码配置。
发明内容
本申请提供一种通信方法与通信装置,能够支持UWB设备完成初始同步的前导码配置和/或测量过程的前导码配置。
第一方面,提供一种通信方法,该方法包括:第一通信装置确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;第一通信装置向第二通信装置发送第一信元。
本申请通过在第一信元中配置第一信息和/或第二信息的方式,能够支持第二通信装置根据第一信元的第一信息和/或第二信息对应完成初始同步的前导码配置和/或第一测量过程的前导码配置。
一种可能的实现方式中,第一信元还包括第三信息与第四信息中的至少一项,第三信息用于指示第一序列的类型,第四信息用于指示第二序列的类型。
由此,第二通信装置根据第一信元的第三信息和/或第四信息确定对应的第一序列和/或第二序列的类型,进而更好地生成对应的前导码序列。
一种可能的实现方式中,第一信元还包括第五信息,其用于指示第一测量过程的类型。
由此,第二通信装置根据第一信元的第五信息确定第一测量过程的类型信息,进而更好地完成与第一通信装置之间的测量过程。
一种可能的实现方式中,第一测量过程的类型包括以下至少一项:基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装置发送第二信元,第二信元包括第六信息,其用于指示测量完整性分段的数量。
如此,通过完整性分段,可以开展完整性保护校验,进而可以确定测距过程是否遭受到攻击。
一种可能的实现方式中,第二信元还包括第七信息,其用于指示是否存在前导码分段数量更新。
如此,通过动态更新前导码分段数量,可以使得收发设备更好地适应信道环境的动态变化,提升收发设备之间的测量精度,或降低对其他设备的干扰。
一种可能的实现方式中,第二信元还包括第八信息,其用于指示多毫秒传输的类型为交错式多毫秒传输;或者,其用于指示多毫秒传输的类型为非交错式多毫秒传输。
一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装置发送第三信元,其用于第 二通信装置与第一通信装置之间的第二测量过程。
一种可能的实现方式中,第二通信装置支持第三信元,且不支持第二信元时,第二测量过程是基于第三信元的;或者,第二通信装置支持第三信元与第二信元时,第二测量过程是基于第二信元与第三信元的。
一种可能的实现方式中,该方法还包括:第一通信装置接收来自第二通信装置的指示信息,其用于指示第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
通过上述技术方案,本申请支持第一通信装置可以获取第二通信装置对NB信号能力和MMS能力的支持情况,有助于第一通信装置在后续的测量过程做出合理的测量配置。
一种可能的实现方式中,该方法还包括:第一通信装置向第二通信装置发送反馈信息,其用于指示不允许第二通信装置接入网络。
第二方面,提供一种通信方法,包括:第二通信装置接收来自第一通信装置的第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;第二通信装置根据第一信元确定第一序列与第二序列中的至少一项。
一种可能的实现方式中,第一信元还包括第三信息与第四信息中的至少一项,第三信息用于指示第一序列的类型,第四信息用于指示第二序列的类型。
一种可能的实现方式中,第一信元还包括第五信息,其用于指示第一测量过程的类型。
一种可能的实现方式中,第一测量过程的类型包括以下至少一项:基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
一种可能的实现方式中,该方法还包括:第二通信装置接收来自第一通信装置的第二信元,第二信元包括第六信息,其用于指示测量完整性分段的数量。
一种可能的实现方式中,第二信元还包括第七信息,其用于指示是否存在前导码分段数量更新。
一种可能的实现方式中,第二信元还包括第八信息,其用于指示多毫秒传输的类型为交错式多毫秒传输;或者,其用于指示多毫秒传输的类型为非交错式多毫秒传输。
一种可能的实现方式中,该方法还包括:第二通信装置接收来自第一通信装置的第三信元,第三信元用于第二通信装置与第一通信装置之间的第二测量过程。
一种可能的实现方式中,第二通信装置支持第三信元,且不支持第二信元时,第二测量过程是基于第三信元的;或者,第二通信装置支持第三信元与第二信元时,第二测量过程是基于第二信元与第三信元的。
一种可能的实现方式中,第二通信装置接收来自第一通信装置的第一信元之前,该方法还包括:第二通信装置向第一通信装置发送指示信息,其用于指示第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
一种可能的实现方式中,指示信息指示第二通信装置不支持窄带信号能力与多毫秒传输能力中的至少一项时,该方法还包括:第二通信装置接收来自第一通信装置的反馈信息,其用于指示不允许第二通信装置接入网络。
第三方面,提供一种通信装置,包括:处理单元,用于确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;收发单元,用于向第二通信装置发送第一信元。
一种可能的实现方式中,第一信元还包括第三信息与第四信息中的至少一项,第三信息用于指示第一序列的类型,第四信息用于指示第二序列的类型。
一种可能的实现方式中,第一信元还包括第五信息,其用于指示第一测量过程的类型。
一种可能的实现方式中,第一测量过程的类型包括以下至少一项:基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
一种可能的实现方式中,收发单元,还用于向第二通信装置发送第二信元,第二信元包括第六信息,其用于指示测量完整性分段的数量。
一种可能的实现方式中,第二信元还包括第七信息,其用于指示是否存在前导码分段数量更新。
一种可能的实现方式中,第二信元还包括第八信息,其用于指示多毫秒传输的类型为交错式多毫秒传输;或者,其用于指示多毫秒传输的类型为非交错式多毫秒传输。
一种可能的实现方式中,收发单元,还用于向第二通信装置发送第三信元,其用于第二通信装置与第一通信装置之间的第二测量过程。
一种可能的实现方式中,第二通信装置支持第三信元,且不支持第二信元时,第二测量过程是基于第三信元的;或者,第二通信装置支持第三信元与第二信元时,第二测量过程是基于第二信元与第三信元的。
一种可能的实现方式中,收发单元,还用于接收来自第二通信装置的指示信息,其用于指示第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
一种可能的实现方式中,收发单元,还用于向第二通信装置发送反馈信息,其用于指示不允许第二通信装置接入网络。
第四方面,提供一种通信装置,包括:收发单元,用于接收来自第一通信装置的第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于该通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与该通信装置之间的第一测量过程;处理单元,用于根据第一信元确定第一序列与第二序列中的至少一项。
一种可能的实现方式中,第一信元还包括第三信息与第四信息中的至少一项,第三信息用于指示第一序列的类型,第四信息用于指示第二序列的类型。
一种可能的实现方式中,第一信元还包括第五信息,其用于指示第一测量过程的类型。
一种可能的实现方式中,第一测量过程的类型包括以下至少一项:基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
一种可能的实现方式中,收发单元,还用于接收来自第一通信装置的第二信元,第二信元包括第六信息,其用于指示测量完整性分段的数量。
一种可能的实现方式中,第二信元还包括第七信息,其用于指示是否存在前导码分段数量更新。
一种可能的实现方式中,第二信元还包括第八信息,其用于指示多毫秒传输的类型为交错式多毫秒传输;或者,其用于指示多毫秒传输的类型为非交错式多毫秒传输。
一种可能的实现方式中,收发单元,还用于接收来自第一通信装置的第三信元,其用于该通信装置与第一通信装置之间的第二测量过程。
一种可能的实现方式中,该通信装置支持第三信元,且不支持第二信元时,第二测量过程是基于第三信元的;或者,该通信装置支持第三信元与第二信元时,第二测量过程是基于第二信元与第三信元的。
一种可能的实现方式中,收发单元,还用于向第一通信装置发送指示信息,其用于指示该通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
一种可能的实现方式中,收发单元,还用于接收来自第一通信装置的反馈信息,其用于指示不允许该通信装置接入网络。
第五方面,提供了一种通信装置,包括处理器,所述处理器与存储器耦合,所述处理器用于执行计算机程序或指令,使得所述通信装置执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得所述通信装置执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,所述逻辑电路用于执行计算机程序或指令,使得所述通信装置执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得所述通信装置执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第七方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得所述计算机执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第八方面,提供了一种计算机程序产品,包含指令,当所述指令在计算机上运行时,使得所述计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得所述计算机 执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
附图说明
图1是本申请实施例的适用通信系统100的示意图。
图2是用于前导码配置的信元#S的结构示意图。
图3是一种UWB测距轮各阶段的示意图。
图4是本申请实施例的通信方法400的交互流程示意图。
图5是本申请实施例的MMS测量的类型示意图。
图6是本申请实施例的第一信元的结构示意图。
图7是本申请实施例的第二信元的结构示意图。
图8是本申请实施例的指示信息的结构示意图。
图9是本申请实施例的通信装置900的示意结构图。
图10是本申请实施例的通信装置1000的示意结构图。
图11是本申请实施例的通信装置1100的示意结构图。
图12是本申请实施例的通信装置1200的示意结构图。
图13是本申请实施例的通信装置1300的示意结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于无线个人局域网(wireless personal area network,WPAN),目前WPAN采用的标准为电气和电子工程协会(institute of electrical and electronics engineer,IEEE)802.15系列。WPAN可以用于电话、计算机、附属设备等小范围内的数字辅助设备之间的通信。支持无线个人局域网的技术包括蓝牙(bluetooth)、紫蜂(zigBee)、超宽带(ultra wideband,UWB)、红外数据协会(infrared data association,IrDA)连接技术、家庭射频(home radio frequency,HomeRF)等。从网络构成上来看,WPAN位于整个网络架构的底层,用于小范围内的设备之间的无线连接,即点到点的短距离连接,可以视为短距离无线通信网络。根据不同的应用场景,WPAN又分为高速率(high rate,HR)-WPAN和低速率(low rate,LR)-WPAN,其中,HR-WPAN可用于支持各种高速率的多媒体应用,包括高质量声像配送、多兆字节音乐和图像文档传送等。LR-WPAN可用于日常生活的一般业务。
在WPAN中,根据设备所具有的通信能力,可以分为全功能设备(full-function device,FFD)和精简功能设备(reduced-function device,RFD)。FFD之间以及FFD与RFD之间都可以通信。RFD之间不能直接通信,只能与FFD通信,或者通过一个FFD向外转发数据。这个与RFD相关联的FFD称为该RFD的协调器(coordinator)。RFD设备主要用于简单的控制应用,例如灯的开关、被动式红外线传感器等,传输的数据量较少,对传输资源和通信资源占用不多,RFD的成本较低。其中,协调器也可以称为个人局域网(personal area network,PAN)协调器或中心控制节点等。PAN协调器为整个网络的主控节点,并且每个自组网中一般只有一个PAN协调器,具有成员身份管理、链路信息管理、分组转发功能。
可选地,本申请实施例中的设备(例如,发送设备或接收设备)可以为支持802.15系列的设备,例如,支持802.15.4a和802.15.4z,以及现在正在讨论中的或后续版本等多种WPAN制式的设备。
可选地,本申请可以应用于基于UWB的WPAN系统之中,其包括802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议等。还可以支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi 7或EHT,再如802.11b。
本申请实施例中,上述设备可以是通信服务器、路由器、交换机、网桥、计算机或者手机,家居智能设备,车载通信设备等。
在本申请实施例中,上述设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系 统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是FFD或RFD,或者,是FFD或RFD中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请的技术方案还可以适用于物联网(internet of things,IOT)网络或车联网(vehicle to x,V2X)等无线局域网系统中。本申请还可以适用于其他可能的通信系统,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统,以及第六代(6th generation,6G)通信系统等。
上述适用于本申请的通信系统仅是举例说明,适用于本申请的通信系统不限于此,在此统一说明,以下不再赘述。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access  network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下文将结合附图对与本申请所揭示的技术方案相关的适用通信系统进行描述。
图1是本申请实施例的适用通信系统100的示意图。如图1所示,通信系统100包括通信装置110与通信装置120。其中,本申请对通信系统100所包括的通信装置的数量不作限定。其中,通信装置110与通信装置120可以是如上所列举的任意一个终端设备,也可以是如上所列举的任意一个网络设备,本申请对此不做限定。应理解,图1仅作为示例性理解,并不能限定本申请所要求的保护范围。
图1中,通信装置110与通信装置120之间能够进行UWB通信,譬如,UWB通信包括:感知、测距、定位、通信等传输应用。以UWB传输为测距为例进行描述,在测距场景中,通信装置110可以作为发起端(initiator)(发起端是指能够发起UWB测距过程的UWB设备,其可以为发送端/接收端),通信装置120可以作为响应端(responder)(响应端是指响应来自发起端发起的测距过程的UWB设备,其可以为接收端/发送端)。
图1中,通信装置110与通信装置120可以均为支持802.15.4z协议的UWB设备,也可以均为支持802.15.4ab协议的UWB设备,也可以均为支持其他协议的UWB设备,本申请对此不做限定。为便于描述,本申请以通信装置110与通信装置120均为支持802.15.4ab协议的UWB设备为例进行描述,但不限定其他的场景。
如前文所述,支持UWB通信的通信装置需要进行初始同步的前导码配置与测距过程的前导码配置。譬如,通信装置110根据第一前导码进行初始同步,根据第二前导码进行测距过程。其中,第一前导码的配置信息与第二前导码的配置信息需要由作为发起端的通信装置110配置并发送。其中,关于前导码的配置方式可以参见图2。
图2是用于配置前导码的信元(Information Element,IE)#S的结构示意图。如图2所示,信元#S包括信道配置时段指示(channel configuration interval presence,CCIP)字段、动态前导码选择(dynamic preamble selection,DPS)持续时间指示(DPS duration presence,DDP)字段、前导码序列选择指示(preamble sequence selection presence,PSP)字段、信道编号(channel number)字段、CCI字段、DPS字段、发送端前导码代码(Tx preamble code)字段、接收端前导码代码(Rx preamble code)字段以及前导码符号重复次数(preamble symbol repetitions,PSR)字段。
具体而言,CCIP字段指示CCI字段是否存在,DDP字段指示DPS Duration字段是否存在,PSP字段指示与前导码序列选择相关的字段是否存在。其中,与前导码序列选择相关的字段包括:发送端前导码代码字段、接收端前导码代码字段以及PSR字段。信道编号字段指示UWB信道的编号,CCI字段指示信道配置时段信息,DPS Duration字段指示DPS的持续时间长度,PSR字段指示前导码符号的重复次数。
其中,发送端前导码代码字段指示一个索引数值,该索引数值对应发送端(信元#S的发送设备)在即将到来的测距过程中的用于发送UWB信号的前导码序列。接收端前导码代码字段也指示一个索引数值,该索引数值对应接收端(信元#S的接收设备)在即将到来的测距过程中的用于接收UWB信号的前导码序列。其中,发送端前导码字段与接收端前导码字段所指示的前导码序列的类型均为基于Ipatov序列的前导码序列,其中,Ipatov序列包括现有802.15.4z协议定义的Ipatov序列。
可以理解的是,UWB设备的初始同步包括两种类型:基于UWB信号的初始同步与基于窄带信号(narrow-band,NB)的初始同步。对于前者,初始同步与测距过程(下文以测距过程为多毫秒传输(multi-millisecond,MMS)为例进行描述)对前导码序列的性能要求存在差异,初始同步与MMS测距过程可分别配置不同的前导码序列。比如,对于初始同步,可以选择基于Ipatov序列的前导码序列,在此不做限定;对于MMS测距过程,可以选择基于Golay序列的前导码序列,也可以选择基于互补零和互相关码块(complementary zero-sum cross-correlation code block,CZC)的前导码序列,也可以选择基于Ipatov序列的前导码序列,在此不做限定。
由前述可知,UWB设备的初始同步过程与MMS测距过程均可以配置基于Ipatov序列的前导码序 列,支持802.15.4ab协议的UWB设备接收到信元#S时,其可能无法区分信元#S所指示的前导码序列的用途,即无法确定基于Ipatov序列的前导码序列是用于初始同步,还是用于MMS测距过程。
鉴于上述技术问题,本申请提供了一种超宽带通信方法与通信装置,能够支持UWB设备完成初始同步的前导码配置和/或测量过程的前导码配置。
为了便于理解本申请实施例的技术方案,首先对本申请实施例可能涉及到的一些术语或概念进行简单描述。
测距轮(ranging round):在上一代IEEE 802.15.4z标准中,将单个测距过程,定义为一个测距轮。每个测距轮的最小处理时间单位为测距时隙(ranging slot)。在一个测距轮中,分为三个阶段:测距控制阶段(ranging control phase)、测距阶段(ranging phase)、测距结果上报阶段(measurement report phase),如图3所示,图3是一种UWB测距轮各阶段的示意图。从图3中可以看出,IEEE 802.15.4z标准中,测距控制阶段包含1个测距时隙,而在当前正在讨论的IEEE 802.15.4ab标准中,测距控制阶段可以包含多于1个的测距时隙。
其中,测量包括基于UWB信号执行的测距、感知、定位、通信等测量过程。相应地,比如,当测量为测距时,则相应的测量轮为测距轮;又比如,当测量为感知时,相应的测量轮为感知轮。
本申请中“分段信号(fragment或segment)”也可以称为“分块信号”、“短信号”、“部分信号”、“分段”、“分块”、“分片”或“分片信号”等,对于分段信号的名称不做限定,能够用于标识某个UWB信号被拆分为多个UWB信号,拆分后的多个UWB信号中每个UWB信号在时间长度上小于1毫秒,且在每个毫秒内发送一个拆分后的UWB信号即可。可选的,UWB信号拆分得到的多个分段信号可以相同,比如,UWB信号拆分得到的多个分段信号为相同配置的前导码(preamble),其中,相同配置的前导码包括但不限于:前导码的长度、前导码所用的序列等等。前导码是一组序列,可用于设备跟其它设备交互或接入网络时,用于识别设备身份和/或信道状态测量。
另外,本申请中所述的“帧结构(frame structure)”也可以称为“帧格式(frame format)”等,且对于帧结构的名称不做限定,能够用于表征某个UWB信号帧的结构/格式等信号帧特点即可。
下文将结合附图对本申请实施例的超宽带通信方法进行描述。
图4是本申请实施例的通信方法400的交互流程示意图。其中,方法400可以由第一通信装置与第二通信装置执行,或者,也可以由安装于第一通信装置与第二通信装置中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,本申请对此不做限定。第一通信装置可以是网络设备或终端设备,第二通信装置可以是网络设备或终端设备,本申请对此也不做限定。下文以第一通信装置与第二通信装置为例进行描述。如图4所示,方法400包括:
S410、第一通信装置确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程。
具体而言,第一信元包括第一信息与第二信息中的至少一项,可以为:第一信元包括第一信息;或者,第一信元包括第二信息;抑或,第一信元包括第一信息与第二信息。
应理解,第一信息能够用于配置第一序列,该第一序列能够用于第二通信装置的初始同步,换言之,第一信息能够用于第二通信装置进行初始同步的前导码配置。第二信息能够用于配置第二序列,该第二序列能够用于第二通信装置与第一通信装置之间的第一测量过程,换言之,第二信息能够用于第二通信装置进行第一测量过程的前导码配置。
一个可能的实现方式,第一测量过程包括以下至少一项:测距过程、感知过程,或者,定位过程。为便于描述,下文以第一测量过程为测距过程为例进行描述。
一个可能的实现方式,第一序列还可以包括第一前导码序列、第一前导码字段或者第一前导码符号等替代或者类似表述。同理,第二序列还可以包括第二前导码序列、第二前导码字段或者第二前导码符号等替代或者类似表述。
S420、第一通信装置向第二通信装置发送第一信元。
相应地,第二通信装置接收来自第一通信装置的第一信元。
S430、第二通信装置根据第一信元确定第一序列与第二序列中的至少一项。
具体而言,第一信元包括第一信息,第二通信装置根据第一信息确定第一序列,进而完成初始同 步的前导码配置。第一信元包括第二信息,第二通信装置根据第二信息确定第二序列,进而完成第一测量过程的前导码配置。第一信元包括第一信息与第二信息,第二通信装置根据第一信息确定第一序列,根据第二信息确定第二序列,进而完成初始同步的前导码配置与第一测量过程的前导码配置。
正如前文所述,在接收到信元#S之后,第二通信装置可能无法对信元#S所指示的前导码序列的用途进行区分。譬如,不能确定信元#S所指示的前导码序列是用于初始同步,还是用于第一测量过程。由此,第二通信装置不能根据信元#S完成初始同步的前导码配置和/或第一测量过程的前导码配置。
综上所言,本申请通过在第一信元中配置第一信息和/或第二信息的方式,能够支持第二通信装置根据第一信元的第一信息和/或第二信息对应完成初始同步的前导码配置和/或第一测量过程的前导码配置。
一个可能的实现方式,第一信元还包括第三信息与第四信息中的至少一项。
具体而言,第一信元包括第一信息,第一信元还可以包括第三信息,其用于指示第一序列的类型。第一信元包括第二信息,第一信元还可以包括第四信息,其用于指示第二序列的类型。第一信元包括第一信息与第二信息,第一信元还可以包括第三信息与第四信息,第三信息与第四信息分别用于指示第一序列的类型与第二序列的类型。由此,第二通信装置根据第一信元的第三信息和/或第四信息确定对应的第一序列和/或第二序列的类型,进而更好地生成对应的前导码序列。
一个示例中,第一序列的类型可以包括Ipatov序列;第二序列的类型也可以包括Golay序列、CZC序列与Ipatov序列。
可选地,上述的Golay序列还可以包括两种类型:802.15.4ab协议支持的Golay序列,以及,802.15.4ab协议不支持的Golay序列。
可选地,上述的Ipatov序列还可以包括三种类型:802.15.4ab协议支持的Ipatov序列,以及,802.15.4z支持的Ipatov序列,以及,802.15.4ab协议和802.15.4z均不支持的Ipatov序列。
可选地,上述的CZC序列还可以包括两种类型:802.15.4ab协议支持的CZC序列,以及,802.15.4ab协议不支持的CZC序列。
一个可能的实现方式,第一信元还包括第五信息,其用于指示第一测量过程的类型。
具体而言,第一测量过程的类型包括:基于非MMS的测量过程,基于MMS的测量过程,或者,基于NB信号辅助MMS的测量过程。由此,第二通信装置根据第一信元的第五信息确定第一测量过程的类型信息,进而更好地完成与第一通信装置之间的测量过程。
一个可能的实现方式,方法400还包括:
S440、第一通信装置向第二通信装置发送第二信元,第二信元包括第六信息,其用于指示测量完整性分段的数量。
相应地,第二通信装置接收来自第一通信装置的第二信元,并根据第六信息确定测量完整性分段的数量。
如此,通过完整性分段,可以开展完整性保护校验,进而可以确定测距过程是否遭受到攻击。
一个可能的实现方式,第二信元还包括第七信息,其用于指示是否存在前导码分段数量更新。
相应地,第二通信装置能够根据第七信息确定是否存在前导码分段数量更新。
如此,通过动态更新前导码分段数量,可以使得收发设备更好地适应信道环境的动态变化,提升收发设备之间的测量精度,或降低对其他设备的干扰。
一个可能的实现方式,第二信元还包括第八信息,第八信息用于指示MMS的类型。
具体而言,MMS的类型包括:交错式MMS或者非交错式MMS。关于MMS的类型具体描述可以参见图5。
图5是本申请实施例的MMS测距的类型示意图。如图5的(a)所示,对于非交错式MMS测距(non-interlaced MMS ranging),发起端可以向响应端发送连续的多个UWB信号块,响应端可以向发起端发送连续的多个UWB信号块,且二者之间不存在交错现象。其中,通过采用非交错式MMS的测距方式,本申请能够增强信号,并能够缓解在长距离或者视距受阻的场景中的UWB信号衰弱现象的出现。如图5的(b)所示,对于交错式MMS(interlaced MMS ranging),发起端与响应端之间交替向对端发送UWB信号块。
一个可能的实现方式,方法400还可以包括:
S450、第一通信装置向第二通信装置发送第三信元,第三信元用于第二通信装置与第一通信装置之间的第二测量过程。
相应地,第二通信装置接收来自第一通信装置的第三信元,并根据第三信元进行第二测量过程。其中,关于第二测量过程的描述可以参见第一测量过程的描述,在此不再赘述。
应理解,S450中,第三信元可以为高级测距控制信元(advanced ranging control information element,ARC IE),其能够用于向第二通信装置配置用于第二测量过程的测量信息。其中,关于ARC IE的具体内容可以参见现有协议,在此不再赘述。
一个示例中,第二通信装置支持第三信元、不支持第二信元时,第二测量过程是基于第三信元进行的。第二通信装置支持第三信元与第二信元时,第二测量过程是基于第二信元与第三信元进行的。
具体而言,如果第一通信装置向第二通信装置发送的测距控制信息(ranging control message,RCM)包括第三信元(譬如,ARC IE),且不包括第二信元,第一通信装置与第二通信装置之间的第二测量过程是基于第三信元的,即是基于802.15.4z协议的。这也意味着,第二测量过程为非MMS测量过程。如果第一通信装置向第二通信装置发送的RCM包括第三信元与第二信元,若第二通信装置支持第二信元,第一通信装置与第二通信装置之间的第二测量过程是基于第三信元与第二信元的(即遵循802.15.4ab协议规定的流程开展测量过程)。若第二通信装置不支持第二信元,第一通信装置与第二通信装置之间的第二测量过程是基于第三信元的(即遵循802.15.4z协议规定的流程开展测量过程)。
一个可能的实现方式,方法400还可以包括:
S460、第二通信装置向第一通信装置发送指示信息,其用于指示第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
相应地,第一通信装置接收来自第二通信装置的指示信息,并根据该指示信息确定第二通信装置是否支持NB信号能力与MMS能力中的至少一项。
S470、第一通信装置向第二通信装置发送反馈信息,其用于指示不允许第二通信装置接入网络。
相应地,第二通信装置接收来自第一通信装置的反馈信息,并根据该反馈信息确定第二通信装置不被获准接入网络。
具体来说,第二通信装置通过指示信息向第一通信装置指示其不支持NB信号能力与MMS能力中的至少一项时,第一通信装置会向第二通信装置发送反馈信息,其用于向第二通信装置指示其不被获准接入网络。其中,第二网络设备不被获准接入网络的原因可以为:第二通信装置不支持NB信号能力和/或第二通信装置不支持MMS能力。
通过上述技术方案,本申请支持第一通信装置可以获取第二通信装置对NB信号能力和MMS能力的支持情况,有助于第一通信装置在后续的测量过程做出合理的测量配置。
需要说明的是,对于上述的S440~S470等技术方案,本申请并不限定S440~S470之间的步骤先后顺序。譬如,可以是S440的顺序在前,S470的顺序在后;也可以是S450的顺序在前,S440的顺序在后等等。
下文将结合其他附图对图4所示的方法做进一步的描述。
图6是本申请实施例的第一信元的结构示意图。如图6所示,第一信元包括:CCIP字段、DDP字段、PSP字段、信道编号字段、测量模式(ranging mode)字段、初始同步序列选择存在指示(initial sync.sequence selection presence)字段、MMS测量序列选择存在指示(MMS ranging sequence selection presence)字段、CCI字段、DPS持续时间字段、序列用途类型(sequence usage type)字段、发送端MMS代码(Tx MMS code)字段、接收端MMS代码(Rx MMS code)字段、PSR字段、MMS测量的发送端间隔尺寸(Tx Gap sizes for MMS ranging)、MMS测量的接收端间隔尺寸(Rx Gap sizes for MMS ranging)、发送端初始同步代码(Tx initial sync.code)字段以及接收端初始同步代码(Rx initial sync.code)字段。
其中,关于序列用途类型字段的描述可以参见表1。
表1序列用途类型字段
表1中,初始同步序列类型的字段包括两位比特,初始同步序列类型的字段包括四个取值,不同取值分别指示不同含义。譬如,第一值(譬如,为0)表示:启用802.15.4-2020协议和802.15.4z协议支持的Ipatov序列。此时,发送端初始同步字段、接收端初始同步字段以及PSR字段都存在;第二值(譬如,为1)表示:启用额外的Ipatov序列(即802.15.4-2020协议和802.15.4z协议中不支持的Ipatov序列)。此时,发送端初始同步字段、接收端初始同步字段以及PSR字段都存在;第三值(譬如,为2)表示:该字段未激活。因此,初始同步序列选择指示字段的数值为0;第四值可以保留。应理解,上述描述仅作为示例描述,不作为最终限定。
表1中,MMS序列类型的字段包括两位比特,MMS序列类型的字段包括四个取值,不同取值分别指示不同含义。譬如,第一值(譬如,为0)表示:启用基于互补集合的序列。其中,基于互补集合的序列包括:Golay序列、CZC序列。此时,发送端MMS代码字段、接收端MMS代码字段以及PSR字段都存在、MMS测量的发送端间隔尺寸以及MMS测量的接收端间隔尺寸字段均存在;第二值(譬如,为1)表示:启用Ipatov序列。此时,发送端MMS代码字段、接收端MMS代码字段以及PSR字段都存在;第三值(譬如,为2)表示:该字段不被激活。因此,MMS测量序列选择指示字段的数值为0;第四值可以保留。应理解,上述描述仅作为示例描述,不作为最终限定。
其中,关于测量模式字段的描述可以参见表2。
表2测量模式字段
表2中,测量模式字段的不同数值下可支撑的序列配置要求如下:
数值=0表示:初始同步的前导码序列配置;
数值=1表示:初始同步的前导码序列配置与MMS测量过程的前导码序列配置;
数值=2表示:MMS测量过程的前导码序列配置;
数值=3表示:保留(Reserved)。
应理解,上述描述仅作为示例描述,不作为最终限定。
其中,第一信元的初始同步序列选择存在指示字段的含义如下所示:
1)初始同步序列选择指示字段为0,表示第一信元不存在/触发初始同步序列类型字段
2)初始同步序列选择指示字段为1,表示第一信元存在/触发初始同步序列类型字段。
应理解,上述描述仅作为示例描述,不作为最终限定。
其中,第一信元中的MMS测量序列选择存在指示字段的含义如下所示:
1)MMS测量序列选择指示字段为0,表示第一信元不存在/触发MMS序列类型字段
2)MMS测量序列选择指示字段为1,表示第一信元存在/触发MMS序列类型字段。
应理解,初始同步序列选择指示字段仅在测量模式=0或1时启用,MMS测量序列选择指示字段仅在测量模式=1或2时启用。
另外,第一信元中的发送端MMS代码字段、接收端MMS代码字段、MMS测量的发送端间隔尺寸、MMS测量的接收端间隔尺寸、发送端初始同步代码字段、发送端初始同步代码字段的含义如下所示:
发送端MMS代码字段:用于指示一个索引数值,该索引数值对应发送端(第一通信装置)在即将到来的第一测量过程中的用于发送UWB MMS分段信号的前导码序列。其中,该字段所指示的前导码序列可以来自Golay序列、CZC序列,或者Ipatov序列。
接收端MMS代码字段:用于指示一个索引数值,该索引数值对应接收端(第二通信装置)在相应的即将到来的第一测量过程中的用于接收UWB MMS分段信号的前导码序列。其中,该字段所指示的前导码序列可以来自Golay序列、CZC序列,或者Ipatov序列。
MMS测量的发送端间隔尺寸字段:用于配合发送端MMS代码字段,其为一个索引值。其中,每个索引值对应一个表征间隔大小的数值(gap size),即不同的索引数值对应不同的Gap  Size数值。
MMS测量的接收端间隔尺寸字段:用于配合接收端MMS代码字段,其为一个索引值。其中,每个索引值对应一个表征间隔大小的数值,即不同的索引数值对应不同的Gap Size数值。
发送端初始同步代码字段:用于指示一个索引数值,该字段所指示的前导码序列可以来自Ipatov序列。
接收端初始同步代码字段:用于指示一个索引数值,该字段所指示的前导码序列可以来自Ipatov序列。
需要说明的是,本申请不对第一信元的形式做任何的限定,任意能够体现本申请实施例中提出的字段和字段形式都在本申请的保护范围内,本申请不做任何的限定。换言之,本申请对第一信元的Ranging Mode、Initial Sequence Selection Presence、MMS Ranging Sequence Selection、Sequence Usage Type、TX MMS Code、RX MMS Coded、TX Gap Sizes for MMS Ranging、RX Gap Sizes for MMS Ranging、TX initial Sync.Code、RX initial sync.Code等新引入的字段只是具体的示例,本申请不对这些字段的消息大小值和在信元中的位置做任何的限定,图6只是第一信元的一种示例形式。
另外,本申请不对第一信元的具体名称做任何限定,比如,可以将第一信元称为增强型测距信道和前导码选择信元(enhanced ranging channel and preamble code selection information element,eRCPCS IE)等等。示例性地,新增的eRCPCS IE可以为对802.15.4z协议的表7-18(Table-7-18)定义的嵌套IE(nested IE)列表当中的预留列表行的复用,其中,列表行中的元素包括:IE的子ID数值(Sub-ID value)、IE名称(name)、IE类型、使用该IE的对象(Used by)(如,上层协议(upper layer,UL))、生成该IE的对象(Created by)(上层协议)等。其中,IE类型包括:数据类型(Data)、增强型信标类型、增强型确认消息类型、多用途类型等。
其中,新增的eRCPCS IE可以被需要执行测量功能的设备识别和处理。例如,发送端设备的协议上层配置eRCPCS IE,并传递给发送端设备的MAC层。还例如,接收端设备的MAC层将接收到的eRCPCS IE传递给接收端设备的上层协议,并由协议上层对eRCPCS IE进行识别处理等。
为便于理解,下面结合表3详细介绍新增的eRCPCS IE。
表3为现有802.15.4z协议的表7-18(Table 7-18)的拓展和延续,为了简洁协议,对于表7-18已有的定义未在表3体现。具体地,从表3可以看出,新增的eRCPCS IE可以添加到现有802.15.4z协议的表7-18(Table 7-18)定义的嵌套IE列表当中,作为802.15.4ab协议或后续版本协议当中的新增IE。具体地,可以使用现有802.15.4z协议的表7-18(Table 7-18)当中定义的嵌套IE列表当中的一个预留子ID数值(Sub-ID value)来指示新增的eRCPCS IE。
表3
其中,表3中的T可以为0x5d-0x7f当中的任意一个或多个数值。其中,表3可为现有802.15.4z协议表-7-18(Table-7-18)定义的嵌套IE列表的拓展和延续。另外,表3中的X表示该eRCPCS IE属于Data类型的IE,也即该eRCPCS IE由数据帧(data frame)进行承载。
图7是本申请实施例的第二信元的结构示意图。如图7所示,第二信元包括:前导码分段数量更新使能字段(update of number of preamble fragments enabled)、测量完整性分段数量存在指示(number of ranging integrity fragments present)字段、MMS模式(MMS mode)字段、前导码分段数量存在指示字段、前导码分段数量字段与测量完整性分段数量(number of ranging integrity fragments)字段等。
具体而言,前导码分段数量更新使能字段用于指示第二信元是否存在/触发MMS测量阶段的分段数量更新;数值0表示不触发,数值1表示触发。如果触发前导码分段数量更新,可选的,可以相应触发其它能够完成前导码分段数量更新的一个或多个IE和/或一个或多个帧结构来完成前导码分段数量更新,本申请不对其它能够完成前导码分段数量更新的一个或多个IE和/或一个或多个帧结构做任何限定。测量完整性分段数量存在指示字段用于指示表示第二信元是否存在/触发测量完整性分段数量字段;数值0表示不存在,数值1表示存在。第二信元中的MMS模式字段用于指示MMS的模式。其中,MMS mode=0指示交错式MMS测距,MMS mode=1指示非交错式MMS测距。其中,关于MMS 的类型可以参见图5,在此不再赘述。本申请不对MMS的模式的指示数值做任何限定,比如,也可以是MMS mode=1指示交错式MMS测距,MMS mode=0指示非交错式MMS测距。
需要说明的是,申请实施例不对第二信元的形式做任何的限定,任意能够体现本申请实施例中提出的字段和字段形式,都在本申请的保护范围内,本申请不做任何的限定。换言之,本申请实施例对第二信元的Update of Number of Preamble Fragments Enabled、Number of Ranging Integrity Fragments Present、MMS Mode、Number of Ranging Integrity Fragments等新引入的字段只是具体的示例,本申请不对这些字段的消息大小值和在信元中的位置做任何的限定,图7只是第二信元的一种示例形式。
另外,本申请实施例不对第二信元的具体名称做任何限定,比如,可以将第二信元称为增强型统一控制信元(enhanced unified control information element,eUC IE)。示例性地,新增的eUC IE可以为对802.15.4z协议的表7-18(Table-7-18)定义的嵌套IE列表当中的预留列表行的复用,其复用方式与前述对eRCPCS IE的复用方式类似,此处不再赘述。
图8是本申请实施例的指示信息的结构示意图。如图8所示,指示信息包括:窄带信号辅助(NB assisted,NBA)支持类型(NBA support type)字段、设备类型(device type)字段、功率来源(power source)字段、空闲态时的接收者(receiver on when idle)字段、协同类型(association type)字段、MMS支持类型(MMS support type)字段、安全能力(security capability)字段以及分配地址(allocate address)字段。其中,关于功率来源字段、空闲态时的接收者字段、协同类型字段、安全能力字段以及分配地址字段的描述可以参见现有协议,在此不再赘述。
具体而言,NBA支持类型字段指示第二通信装置是否支持NBA。其中,NBA支持类型字段的第一值(譬如,为0)指示第二通信装置不支持NBA,第二值(譬如,为1)指示第二通信装置支持NBA。
其中,NBA支持类型字段为0时,第二通信装置可通过预配置的UWB信号发送该指示信息,也可以用非UWB信号来发送该指示信息,比如,蓝牙信号。
其中,MMS支持类型字段用于指示第二通信装置是否支持MMS。MMS支持类型字段的第一值(譬如,为0)指示第二通信装置不支持MMS,第二值(譬如,为1)指示第二通信装置支持MMS。
相应地,第一通信装置向第二通信装置发送的反馈信息可以采用如表4所示的形式。
表4反馈信息的格式
其中,表4中的关联状态字段的各数值的含义解释如表5所示:
表5
如表5所示,示例性地,关联状态为0x00,其指示关联成功;关联状态为0x01,其指示PAN at capacity;关联状态为0x02,其指示PAN access denied;关联状态为0x03时,其指示Hopping sequence offset duplication;关联状态为0x04,其指示拒绝接入(因为不支持NB能力);关联状态为0x05,其指示拒绝接入(因为不支持MMS能力);关联状态的0x06-0x7f为保留数值;关联状态为0x80,其指示快速关联成功;关联状态的0x81-0xff为保留数值。本申请不对指示拒绝接入(因为不支持NB能力)和指示拒绝接入(因为不支持MMS能力)所对应的关联状态数值做任何的限定,此处只是举例。
需要说明的是,本申请不对图8所示的指示信息的形式做任何的限定,任意能够体现本申请实施 例中提出的字段和字段形式都在本申请的保护范围内。换言之,本申请对图8所示的NBA support type、MMS support type等新引入的字段只是具体的示例,本申请不对这些字段的消息大小值和在承载这些字段的消息中的位置做任何的限定,图8只是一种示例形式。
在本申请实施例中,假设控制者发起端为第三方设备(既不是initiator,也不是responder)。控制者在测距控制阶段,向参与UWB应用过程的参与设备广播包含调度IE的控制消息。其中,控制者也可以是发起端(initiator)设备,也可以是响应端设备(responder)。除非特别说明,本申请实施例均默认以第三方设备为控制者例进行说明。相应描述对响应端为控制者,或者控制者为发起端设备的情况,本申请所提出的方法均适用,不再赘述。
本申请实施例对承载所设计的第一信元与第二信元的信号载体不做限定。具体的,可以是UWB信号,也可以是非UWB信号。其中,非UWB信号可以是NB信号,也可以是蓝牙信号。
本申请对承载所设计的第一信元/第二信元的帧类型不做限定。比如,可以是数据帧,又比如,可以是MAC命令帧(MAC command frame)。
类似地,本申请对承载如图8所示的指示信息的信号载体不做限定。具体的,可以是UWB信号,也可以是非UWB信号。其中,非UWB信号可以是NB信号,也可以是蓝牙信号。
类似地,本申请实施例对承载如图8所示的指示信息的帧类型不做限定。比如,可以是数据帧,又比如,可以是MAC命令帧。
本申请不对第一信元/第二信元/图8所示的指示信息中各字段的组合使用方式做任何限定,前述eRCPCS IE、eUC IE、如图8所示的指示信息只是举例。换言之,第一信元/第二信元/图8所示的指示信息中新引入的字段,可以拆分到不同的帧结构当中,本申请不对帧结构做任何限定。比如,帧结构可以是IE,也可以是其它类型。例如,当帧结构为IE时,第一信元/第二信元/图8所示的指示信息中新引入的字段,可以拆分在不同的IE中。比如,可以将第一信元/第二信元/图8所示的指示信息的这些新引入字段拆分在其它IE中,或通过复用现有802.15.4z的IE来体现。其中,其它IE和现有802.15.4z的IE可以为一个或多个IE。换言之,第一信元/第二信元/图8所示的指示信息的这些新引入字段中的一个或多个字段,可以与第一信元/第二信元/图8所示的指示信息均不包含的一个或多个字段共同组成其它IE,或通过复用现有802.15.4z的IE来体现。本申请不对其它IE做任何限定,另外,本申请不对其它IE所包含的一个或多个字段做任何限定。本申请不对现有802.15.4z的IE做任何限定,另外,本申请不对现有802.15.4z的IE所包含的一个或多个字段做任何限定。另外,其它IE/现有802.15.4z的IE也可以拆分在不同帧中。其中,不同帧的帧类型也可以不同,本申请不做任何的限定,比如,帧类型可以是数据帧,还可以是MAC命令帧等。前述对帧结构为IE的组合方式的描述,对帧结构为其它类型的组合方式也同样适用,此处不再赘述。换言之,任何能够体现第一信元/第二信元/图8所示的指示信息中的一个或多个字段用途的帧结构,无论其组合使用方式,都在本申请的保护范围之内。
需要说明的是,本申请中提供的超宽带通信方法,可应用于UWB测距、感知、定位、通信应用中的一种或多种,本申请不作具体限定。比如,本申请中的图3和图5中所示的测距控制阶段可以理解为测量控制阶段的一种,测距阶段可以理解为测量阶段的一种,测距结果上报阶段可以理解为测量结果上报阶段的一种。又例如,当本申请提供的超宽带通信方法应用于UWB感知流程中,测量控制阶段可以理解为感知控制阶段,测量阶段可以理解为感知阶段,测量结果上报阶段可以理解为感知结果上报阶段。
另外,还需要说明的是,上述的单个测量轮中不同阶段的名称只是举例,对本申请的保护范围不构成任何的限定。例如,上述的测量控制阶段可以理解为用于配置测量轮中所需参数的阶段;还例如,上述的测量阶段可以理解为用于执行测量的阶段;又例如,上述的测量结果上报阶段可以理解为用于上报测量结果的阶段,还可以称为测量阶段的结束。
需要说明的是,本申请提供的第一信元/第二信元/图8所示的指示信息可用于测量轮中的任何阶段,也可以在测量开始之前的设备发现和连接建立阶段等。换言之,本申请不对第一信元/第二信元/指示消息的使用阶段做任何的限定。
可选的,本申请提供的第一信元/第二信元/图8所示的指示信息可以通过新增消息携带,也可以采用已有的消息携带,如802.15.4z中的消息携带(比如,RCM消息),或者802.15.4z中的消息的演进,也可以是基于已有消息的改进和/或复用,本申请不做具体限定。
需要说明的是,本申请提供的第一信元/第二信元/图8所示的指示信息,可以用于一对一的测量情况,也即一个测量发起端和一个测量响应端的情况。也可以自然拓展到一对多或多对多的情况,也即一个测量发起端和多个测量响应端,或多个测量发起端和多个测量响应端。此处不再赘述。本申请不对第一信元/第二信元/图8所示的指示信息所应用的测量情况做任何的限定。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图9是本申请实施例的通信装置900的示意性框图。通信装置900包括处理器910和通信接口920,处理器910和通信接口920通过总线930相互连接。图9所示的通信装置900可以是第一通信装置,也可以是第二通信装置。
可选地,该通信装置900还包括存储器940。
存储器940包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器940用于相关指令及数据。
处理器910可以是一个或多个中央处理器(central processing unit,CPU),在处理器910是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当通信装置900是第一通信装置,该通信装置900中的处理器910用于读取该存储器940中存储的计算机程序或指令,示例性地,执行以下操作:确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;向第二通信装置发送第一信元。
又示例性地,可以执行以下操作:向第二通信装置发送第二信元。
又示例性地,可以执行以下操作:向第二通信装置发送第三信元。
上述所述内容仅作为示例性描述。通信装置900是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。
当通信装置900是第二通信装置,该通信装置900中的处理器910用于读取该存储器940中存储的计算机程序或指令,示例性地,执行以下操作:接收来自第一通信装置的第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;根据第一信元确定第一序列和/或第二序列。
又示例性地,可以执行以下操作:接收来自第一通信装置的第二信元。
又示例性地,可以执行以下操作:接收来自第一通信装置的发送第三信元。
上述所述内容仅作为示例性描述。通信装置900是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。
上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图9中的各个操作的实现还可以对应参照图4所示的方法实施例的相应描述。
图10是本申请实施例的通信装置1000的示意性框图。通信装置1000可以为上述实施例中的网络设备或者终端设备(第一通信装置可以为网络设备或者终端设备),也可以为网络设备或者终端设备中的芯片或模块,用于实现上述实施例涉及的方法。通信装置1000包括收发模块1010与处理模块1020。下面对该收发模块1010与处理模块1020进行示例性地介绍。
收发模块1010可以包括发送模块和接收模块,分别用于实现上述方法实施例中发送或接收的功能;还可以进一步包括处理模块,用于实现除发送或接收之外的功能。
当通信装置1000是第一通信装置时,示例性地,处理模块1020用于确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初 始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;收发模块1010用于向第二通信装置发送第一信元。
可选地,通信装置1000还包括存储模块1030,该存储模块1030用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。该通信装置1000是第一通信装置时,其将负责执行前述方法实施例中与第一通信装置相关的方法或者步骤。
当通信装置1000是第一通信装置时,示例性地,收发模块1010用于接收第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;处理模块1020用于根据第一信元确定第一序列和/或第二序列。
可选地,通信装置1000还包括存储模块1030,该存储模块1030用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。该通信装置1000是第二通信装置时,其将负责执行前述方法实施例中与第二通信装置相关的方法或者步骤。
另外,图10的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图9和图10所示的装置实施例是用于实现前述方法实施例图4所述的内容。因此,图9和图10所示装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
应理解,上述的收发模块可以包括发送模块与接收模块。发送模块用于执行通信装置的发送动作,接收模块用于执行通信装置的接收动作。为便于描述,本申请实施例将发送模块与接收模块合为一个收发模块。在此做统一说明,后文不再赘述。
图11是本申请实施例的通信装置1100的示意图。通信装置1100可用于实现上述方法中网络设备或者终端设备(第一通信装置是网络设备或者终端设备时)的功能。通信装置1100可以是网络设备或者终端设备中的芯片。
通信装置1100包括:输入输出接口1120和逻辑电路1111。输入输出接口1120可以是输入输出电路。逻辑电路1111可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口1120用于信号或数据的输入或输出。
举例来说,当通信装置1100为第一通信装置时,逻辑电路1111用于确定第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程;输入输出接口1120用于向第二通信装置发送第一信元。其中,逻辑电路1111用于执行本申请提供的任意一种方法的部分或全部步骤。
举例来说,当通信装置1100为第二通信装置时,输入输出接口1120用于接收来自第一通信装置的第一信元,第一信元包括第一信息与第二信息中的至少一项,第一信息用于配置第一序列,第一序列用于第二通信装置的初始同步,第二信息用于配置第二序列,第二序列用于第一通信装置与第二通信装置之间的第一测量过程。其中,逻辑电路1111用于执行本申请提供的任意一种方法的部分或全部步骤。譬如,根据第一信元确定第一序列和/或第二序列。
一种可能的实现中,逻辑电路1111通过执行存储器中存储的指令,以实现网络设备或终端设备实现的功能。
可选的,通信装置1100还包括存储器。可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置1100之外。
一种可能的实现中,逻辑电路1111通过输入输出接口1120输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
上述对于图11的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
图12是本申请实施例的通信装置1200的示意框图。通信装置1200可以是网络设备(第一通信装置是网络设备时)也可以是芯片。该通信装置1200可以用于执行上述图3至图7所示的方法实施例中由网络设备所执行的操作。
当通信装置1200为网络设备时,例如为基站。图12示出了一种简化的基站的结构示意图。基站包括1210部分、1220部分以及120部分。1210部分主要用于基带处理,对基站进行控制等;1210部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。1220部分主要用于存储计算机程序代码和数据。1230部分主要用于射频信号的收发以及射频信号与基带信号的转换;1230部分通常可以称为收发模块、收发机、收发电路、或者收发器等。1230部分的收发模块,也可以称为收发机或收发器等,其包括天线1233和射频电路(图中未示出),其中射频电路主要用于进行射频处理。
可选地,可以将1230部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即1230部分包括接收机1232和发射机1231。接收机也可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
1210部分与1220部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1230部分的收发模块用于执行图4所示实施例中由网络设备执行的收发相关的过程。1210部分的处理器用于执行图4所示实施例中由网络设备执行的处理相关的过程。
另一种实现方式中,1210部分的处理器用于执行图4所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,1230部分的收发模块用于执行图4所示实施例中由通信设备执行的收发相关的过程。
应理解,图12仅为示例而非限定,上述所包括的处理器、存储器以及收发器的网络设备可以不依赖于图9至图11所示的结构。
当通信装置1200为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例中网络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
图13是本申请实施例的通信装置1300的示意框图。通信装置1300可以为终端设备(第一通信装置是终端设备时)、终端设备的处理器、或芯片。通信装置1300可以用于执行上述方法实施例中由终端设备或通信设备所执行的操作。
当通信装置1300为终端设备时,图13示出了一种简化的终端设备的结构示意图。如图13所示,终端设备包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机1331、接收机1332、射频电路(图中未示出)、天线1333以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图13中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发模块,将具有处理功能的处理器视为终端设备的处理模块。
如图13所示,终端设备包括处理器1310、存储器1320和收发器1330。处理器1310也可以称为处理单元,处理单板,处理模块、处理装置等,收发器1330也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器1330中用于实现接收功能的器件视为接收模块,将收发器1330中用于实现发送功能的器件视为发送模块,即收发器1330包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器1310用于执行图4所示的实施例中终端设备侧的处理动作,收发器1330用于执行图3至图7中终端设备侧的收发动作。
例如,在一种实现方式中,处理器1310用于执行图4所示的实施例中终端设备侧的处理动作,收发器1330用于执行图4中终端设备侧的收发动作。
应理解,图13仅为示例而非限定,上述的包括收发模块和处理模块的终端设备可以不依赖于图9至图11所示的结构。
当该通信装置1300为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机程序或者代码。
本申请还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及网络设备或者终端设备的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
本申请还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指二个或多于二个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构 或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以二个或二个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置确定第一信元,所述第一信元包括第一信息与第二信息中的至少一项,所述第一信息用于配置第一序列,所述第一序列用于第二通信装置的初始同步,所述第二信息用于配置第二序列,所述第二序列用于所述第一通信装置与所述第二通信装置之间的第一测量过程;
    所述第一通信装置向所述第二通信装置发送所述第一信元。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信元还包括第三信息与第四信息中的至少一项,所述第三信息用于指示所述第一序列的类型,所述第四信息用于指示所述第二序列的类型。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信元还包括第五信息,所述第五信息用于指示所述第一测量过程的类型。
  4. 根据权利要求3所述的方法,其特征在于,所述第一测量过程的类型包括以下至少一项:
    基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一测量过程包括所述基于多毫秒传输的测量过程或者所述基于窄带信号支持多毫秒传输的测量过程,
    所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第二信元,所述第二信元包括第六信息,所述第六信息用于指示测量完整性分段的数量。
  6. 根据权利要求5所述的方法,其特征在于,所述第二信元还包括第七信息,所述第七信息用于指示是否存在前导码分段数量更新。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第二信元还包括第八信息,
    所述第八信息用于指示所述多毫秒传输的类型为交错式多毫秒传输;或者,
    所述第八信息用于指示所述多毫秒传输的类型为非交错式多毫秒传输。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第三信元,所述第三信元用于所述第二通信装置与所述第一通信装置之间的第二测量过程。
  9. 根据权利要求8所述的方法,其特征在于,所述第二通信装置支持所述第三信元,且不支持所述第二信元时,所述第二测量过程是基于所述第三信元的;或者,
    所述第二通信装置支持所述第三信元与所述第二信元时,所述第二测量过程是基于所述第二信元与所述第三信元的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一通信装置向所述第二通信装置发送所述第一信元之前,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的指示信息,所述指示信息用于指示所述第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息指示所述第二通信装置不支持所述窄带信号能力与所述多毫秒传输能力中的至少一项时,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送反馈信息,所述反馈信息用于指示不允许所述第二通信装置接入网络。
  12. 一种通信方法,其特征在于,包括:
    第二通信装置接收来自第一通信装置的第一信元,所述第一信元包括第一信息与第二信息中的至少一项,所述第一信息用于配置第一序列,所述第一序列用于所述第二通信装置的初始同步,所述第二信息用于配置第二序列,所述第二序列用于所述第一通信装置与所述第二通信装置之间的第一测量过程;
    所述第二通信装置根据所述第一信元确定所述第一序列与所述第二序列中的至少一项。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信元还包括第三信息与第四信息中的至 少一项,所述第三信息用于指示所述第一序列的类型,所述第四信息用于指示所述第二序列的类型。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一信元还包括第五信息,所述第五信息用于指示所述第一测量过程的类型。
  15. 根据权利要求14所述的方法,其特征在于,所述第一测量过程包括以下至少一项:
    基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述第一测量过程包括所述基于多毫秒传输的测量过程或者所述基于窄带信号支持多毫秒传输的测量过程,
    所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第二信元,所述第二信元包括第六信息,所述第六信息用于指示测量完整性分段的数量。
  17. 根据权利要求16所述的方法,其特征在于,所述第二信元还包括第七信息,所述第七信息用于指示是否存在前导码分段数量更新。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第二信元还包括第八信息,
    所述第八信息用于指示所述多毫秒传输的类型为交错式多毫秒传输;或者,
    所述第八信息用于指示所述多毫秒传输的类型为非交错式多毫秒传输。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第三信元,所述第三信元用于所述第二通信装置与所述第一通信装置之间的第二测量过程。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第二通信装置支持所述第三信元,且不支持所述第二信元时,所述第二测量过程是基于所述第三信元的;或者,
    所述第二通信装置支持所述第三信元与所述第二信元时,所述第二测量过程是基于所述第二信元与所述第三信元的。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第二通信装置接收来自第一通信装置的第一信元之前,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送指示信息,所述指示信息用于指示所述第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
  22. 根据权利要求21所述的方法,其特征在于,所述指示信息指示所述第二通信装置不支持所述窄带信号能力与所述多毫秒传输能力中的至少一项时,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的反馈信息,所述反馈信息用于指示不允许所述第二通信装置接入网络。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信元,所述第一信元包括第一信息与第二信息中的至少一项,所述第一信息用于配置第一序列,所述第一序列用于第二通信装置的初始同步,所述第二信息用于配置第二序列,所述第二序列用于所述通信装置与所述第二通信装置之间的第一测量过程;
    收发单元,用于向所述第二通信装置发送所述第一信元。
  24. 根据权利要求23所述的装置,其特征在于,所述第一信元还包括第三信息与第四信息中的至少一项,所述第三信息用于指示所述第一序列的类型,所述第四信息用于指示所述第二序列的类型。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一信元还包括第五信息,所述第五信息用于指示所述第一测量过程的类型。
  26. 根据权利要求25所述的装置,其特征在于,所述第一测量过程的类型包括以下至少一项:
    基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
  27. 根据权利要求23至26中任一项所述的装置,其特征在于,所述第一测量过程包括所述基于多毫秒传输的测量过程或者所述基于窄带信号支持多毫秒传输的测量过程,
    所述收发单元,还用于向所述第二通信装置发送第二信元,所述第二信元包括第六信息,所述第 六信息用于指示测量完整性分段的数量。
  28. 根据权利要求27所述的装置,其特征在于,所述第二信元还包括第七信息,所述第七信息用于指示是否存在前导码分段数量更新。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第二信元还包括第八信息,
    所述第八信息用于指示所述多毫秒传输的类型为交错式多毫秒传输;或者,
    所述第八信息用于指示所述多毫秒传输的类型为非交错式多毫秒传输。
  30. 根据权利要求26至29中任一项所述的装置,其特征在于,所述收发单元,还用于向所述第二通信装置发送第三信元,所述第三信元用于所述第二通信装置与所述通信装置之间的第二测量过程。
  31. 根据权利要求30所述的装置,其特征在于,所述第二通信装置支持所述第三信元,且不支持所述第二信元时,所述第二测量过程是基于所述第三信元的;或者,
    所述第二通信装置支持所述第三信元与所述第二信元时,所述第二测量过程是基于所述第二信元与所述第三信元的。
  32. 根据权利要求23至31中任一项所述的装置,其特征在于,所述收发单元,还用于接收来自所述第二通信装置的指示信息,所述指示信息用于指示所述第二通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
  33. 根据权利要求32所述的装置,其特征在于,所述指示信息指示所述第二通信装置不支持所述窄带信号能力与所述多毫秒传输能力中的至少一项时,所述收发单元,还用于向所述第二通信装置发送反馈信息,所述反馈信息用于指示不允许所述第二通信装置接入网络。
  34. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自第一通信装置的第一信元,所述第一信元包括第一信息与第二信息中的至少一项,所述第一信息用于配置第一序列,所述第一序列用于所述通信装置的初始同步,所述第二信息用于配置第二序列,所述第二序列用于所述第一通信装置与所述通信装置之间的第一测量过程;
    处理单元,用于根据所述第一信元确定所述第一序列与所述第二序列中的至少一项。
  35. 根据权利要求34所述的装置,其特征在于,所述第一信元还包括第三信息与第四信息中的至少一项,所述第三信息用于指示所述第一序列的类型,所述第四信息用于指示所述第二序列的类型。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第一信元还包括第五信息,所述第五信息用于指示所述第一测量过程的类型。
  37. 根据权利要求36所述的装置,其特征在于,所述第一测量过程包括以下至少一项:
    基于非多毫秒传输的测量过程,基于多毫秒传输的测量过程,或者,基于窄带信号辅助多毫秒传输的测量过程。
  38. 根据权利要求34至37中任一项所述的装置,其特征在于,所述第一测量过程包括所述基于多毫秒传输的测量过程或者所述基于窄带信号支持多毫秒传输的测量过程,
    所述收发单元,还用于接收来自所述第一通信装置的第二信元,所述第二信元包括第六信息,所述第六信息用于指示测量完整性分段的数量。
  39. 根据权利要求38所述的装置,其特征在于,所述第二信元还包括第七信息,所述第七信息用于指示是否存在前导码分段数量更新。
  40. 根据权利要求38或39所述的装置,其特征在于,所述第二信元还包括第八信息,
    所述第八信息用于指示所述多毫秒传输的类型为交错式多毫秒传输;或者,
    所述第八信息用于指示所述多毫秒传输的类型为非交错式多毫秒传输。
  41. 根据权利要求38至40中任一项所述的装置,其特征在于,所述收发单元,还用于接收来自所述第一通信装置的第三信元,所述第三信元用于所述通信装置与所述第一通信装置之间的第二测量过程。
  42. 根据权利要求41所述的装置,其特征在于,所述通信装置支持所述第三信元,且不支持所述第二信元时,所述第二测量过程是基于所述第三信元的;或者,
    所述通信装置支持所述第三信元与所述第二信元时,所述第二测量过程是基于所述第二信元与所述第三信元的。
  43. 根据权利要求34至42中任一项所述的装置,其特征在于,所述收发单元,还用于向所述第 一通信装置发送指示信息,所述指示信息用于指示所述通信装置是否支持窄带信号能力与多毫秒传输能力中的至少一项。
  44. 根据权利要求43所述的装置,其特征在于,所述收发单元,还用于接收来自所述第一通信装置的反馈信息,所述反馈信息用于指示不允许所述通信装置接入网络。
  45. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述处理器用于执行计算机程序或指令,使得所述通信装置执行权利要求1至22中任一项所述的方法。
  46. 一种芯片,其特征在于,包括逻辑电路和输入输出接口,所述逻辑电路用于执行计算机程序或指令,使得所述芯片执行权利要求1至22中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行权利要求1至22中任意一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1至22中任意一项所述的方法。
PCT/CN2023/104879 2022-11-22 2023-06-30 通信方法与通信装置 WO2024109077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211463387.5A CN118075800A (zh) 2022-11-22 2022-11-22 通信方法与通信装置
CN202211463387.5 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024109077A1 true WO2024109077A1 (zh) 2024-05-30

Family

ID=91108259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104879 WO2024109077A1 (zh) 2022-11-22 2023-06-30 通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN118075800A (zh)
WO (1) WO2024109077A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122080A (zh) * 2013-02-14 2015-12-02 商升特公司 测距和定位系统
CN107395309A (zh) * 2017-07-25 2017-11-24 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于星间链路的高精度相对测距与时间同步方法
US20220137177A1 (en) * 2020-11-02 2022-05-05 Apple Inc. Announcing uwb / nba-uwb-mms ranging rounds via narrowband-based advertisements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122080A (zh) * 2013-02-14 2015-12-02 商升特公司 测距和定位系统
CN107395309A (zh) * 2017-07-25 2017-11-24 西南电子技术研究所(中国电子科技集团公司第十研究所) 基于星间链路的高精度相对测距与时间同步方法
US20220137177A1 (en) * 2020-11-02 2022-05-05 Apple Inc. Announcing uwb / nba-uwb-mms ranging rounds via narrowband-based advertisements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Resource allocation for synchronization signal to assist D2D discovery/communication in asynchronous network", 3GPP TSG RAN WG1 #78 R1-143097, 17 August 2014 (2014-08-17), XP050788575 *

Also Published As

Publication number Publication date
CN118075800A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2020199942A1 (zh) 通信方法、通信装置和系统
US10749568B2 (en) Multiband Bluetooth
WO2020087263A1 (zh) 传输多播业务的方法和装置
CN112566270A (zh) 用于无线通信中的两步随机接入信道过程的框架
CN104954968A (zh) 在无线局域网频段上进行设备到设备通信的方法和系统
CN108370610A (zh) 密集网格网络中的干扰减轻
WO2024109077A1 (zh) 通信方法与通信装置
EP4188031A1 (en) Connection retry after link loss in wireless systems
WO2022057892A1 (zh) 业务数据传输方法及装置、终端和基站
EP4093110A1 (en) Communication processing methods and apparatuses, and computer storage medium
KR20220043441A (ko) 그룹 이벤트 모니터링을 위한 그룹 관리 방법 및 이를 위한 장치
US20220287014A1 (en) Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums
WO2024131745A1 (zh) 信息处理方法及装置
WO2023185637A1 (zh) 安全测距的方法和通信装置
WO2024139938A1 (zh) 信道确定方法及相关装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2024109035A1 (zh) 多链路并发连接方法、装置及设备
WO2024051488A1 (zh) 一种信息传输方法和装置
WO2024051515A1 (zh) 一种通信方法及装置
WO2024093683A1 (zh) 信道接入方法及相关装置
CN114760719B (zh) 发现和连接到软接入设备的方法、装置、设备及存储介质
WO2024007795A1 (zh) 通信方法与通信装置
WO2024032683A1 (zh) 上行传输的方法和装置
WO2022082538A1 (zh) 无线通信的方法和装置以及通信设备
EP3900439B1 (en) Wireless access establishment