WO2024109038A1 - 一种电势采集脑电信号装置 - Google Patents

一种电势采集脑电信号装置 Download PDF

Info

Publication number
WO2024109038A1
WO2024109038A1 PCT/CN2023/103308 CN2023103308W WO2024109038A1 WO 2024109038 A1 WO2024109038 A1 WO 2024109038A1 CN 2023103308 W CN2023103308 W CN 2023103308W WO 2024109038 A1 WO2024109038 A1 WO 2024109038A1
Authority
WO
WIPO (PCT)
Prior art keywords
operational amplifier
resistor
coupled
module
capacitor
Prior art date
Application number
PCT/CN2023/103308
Other languages
English (en)
French (fr)
Inventor
杜武松
刘昌敏
赖海威
Original Assignee
深圳市杰纳瑞医疗仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杰纳瑞医疗仪器股份有限公司 filed Critical 深圳市杰纳瑞医疗仪器股份有限公司
Publication of WO2024109038A1 publication Critical patent/WO2024109038A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/304Switching circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/31Input circuits therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Definitions

  • the present application relates to the technical field of electroencephalogram signals, and in particular to a device for collecting electroencephalogram signals by electric potential.
  • EEG signals are spontaneous bioelectric activity signals of the brain that are transmitted to the EEG acquisition device through electrodes attached to the human scalp.
  • the EEG acquisition device draws an EEG signal graph based on the received bioelectric activity signals.
  • Brain disease diagnosis is performed by analyzing the EEG signal graph. It has a large number of applications in medicine and daily life and has important research value.
  • the spontaneous bioelectric activity signals generated by the brain are extremely weak.
  • the EEG signal graph drawn by the EEG acquisition device is easily inaccurate, which in turn affects the accuracy of the diagnosis results of brain diseases. Therefore, there is room for improvement.
  • the present application provides a device for collecting EEG signals by electric potential.
  • the present application provides a device for collecting electroencephalogram signals using potential, which adopts the following technical solution:
  • a device for collecting electroencephalogram (EEG) signals by electric potential includes an electric potential detection module, a first operational amplifier module, a frequency reduction module and a second operational amplifier module.
  • the electric potential detection module is electrically connected to an electrode attached to a human head through an interface.
  • the output end of the electric potential detection module is coupled to the first operational amplifier module.
  • the electric potential detection module is used to receive weak bioelectric activity signals and feed them back to the first operational amplifier module.
  • the output end of the first operational amplifier module is coupled to the frequency reduction module.
  • the first operational amplifier module is used to amplify and process weak bioelectric activity signals and output high-frequency voltage signals to the frequency reduction module.
  • the output end of the frequency reduction module is coupled to the second operational amplifier module.
  • the frequency reduction module is used to perform frequency reduction processing on high-frequency voltage signals to obtain a suitable voltage frequency and output the voltage of the suitable frequency to the second operational amplifier module.
  • the second operational amplifier module is used to perform operational amplifier processing on the voltage of the suitable frequency and output a digital signal.
  • the digital signal is used to draw an electroencephalogram (EEG).
  • the electrodes are attached to the human brain scalp, and the electrodes transmit the bioelectric activity signals generated by the brain to the potential detection module in the device through the wire.
  • the potential in the potential detection module enables the device to detect and obtain weak bioelectric activity signals more sensitively, thereby improving the sensitivity of EEG signal acquisition.
  • the detection module converts the bioelectric activity signal into a voltage and transmits it to the first operational amplifier module.
  • the first operational amplifier module amplifies the weak voltage to increase the frequency of the voltage, and transmits the amplified voltage signal to the frequency reduction module.
  • the frequency reduction module performs frequency reduction on the amplified voltage signal output by the first operational amplifier module to obtain a suitable frequency range of the voltage, and transmits the frequency-reduced voltage to the second operational amplifier module.
  • the second operational amplifier module performs filtering and conversion processing on the frequency-reduced voltage to reduce interference from other signals, and forms a digital signal for drawing an electroencephalogram, so that the electroencephalogram acquisition device uses the digital signal to draw the electroencephalogram.
  • it also includes an electrostatic filtering module, which is coupled to the input end of the potential detection module and is used to perform electrostatic protection on the weak bioelectric activity signal input into the potential detection module.
  • an electrostatic filtering module which is coupled to the input end of the potential detection module and is used to perform electrostatic protection on the weak bioelectric activity signal input into the potential detection module.
  • an anti-static interference function is provided for the weak bioelectric activity signal input into the potential detection module, which can effectively reduce the interference of static electricity on the weak bioelectric activity signal and further improve the accuracy of EEG signal acquisition.
  • it also includes an analog switch module, which is coupled between the frequency reduction module and the second operational amplifier module, the input end of the analog switch module is coupled to the frequency reduction module, the output end of the analog switch module is coupled to the second operational amplifier module, and the analog switch module is used to screen out voltages with unqualified voltage frequencies and output voltages with appropriate frequencies to the second operational amplifier module.
  • an analog switch module which is coupled between the frequency reduction module and the second operational amplifier module, the input end of the analog switch module is coupled to the frequency reduction module, the output end of the analog switch module is coupled to the second operational amplifier module, and the analog switch module is used to screen out voltages with unqualified voltage frequencies and output voltages with appropriate frequencies to the second operational amplifier module.
  • the frequency reduction module reduces the voltage after frequency amplification to a suitable frequency range for EEG detection, and transmits the voltage signal within the suitable frequency range to the analog switch module.
  • the analog switch module filters the voltage and can filter out the voltage frequency that is not within the qualified frequency range, so that the voltage input to the second operational amplifier module is within the suitable frequency range for EEG detection, thereby effectively improving the accuracy of EEG signal acquisition, thereby effectively improving the accuracy of EEG detection results.
  • the potential detection module includes a first op amp A1 and a second op amp A2, a first resistor R1, a second resistor R2 and a third resistor R3 are sequentially connected in series at a non-inverting input terminal of the first op amp A1, the other end of the third resistor R3 is respectively coupled to the electrostatic filtering module and the electrode, a first capacitor C1 is coupled to a connection node between the first resistor R1 and the non-inverting input terminal of the first op amp A1, the other end of the first capacitor C1 is grounded, a second capacitor C2 is coupled to a connection node between the first resistor R1 and the second resistor R2, The other end of the second capacitor C2 is grounded, the connection node between the second resistor R2 and the third resistor R3 is coupled to the third capacitor C3, the other end of the third capacitor C3 is grounded, the inverting input terminal of the first operational amplifier A1 is coupled to the output terminal of the first operational amplifier A1, the
  • the inverting input end of the second operational amplifier A2 is coupled to the output end of the second operational amplifier A2, and the output ends of the first operational amplifier A1 and the second operational amplifier A2 are both coupled to the first operational amplifier module.
  • multiple capacitors are coupled to the input ends of the first op amp A1 and the second op amp A2, and the electric potential of the capacitors is used to sensitively collect weak bioelectric activity signals, thereby improving the sensitivity of EEG signal collection.
  • the first op amp A1 and the second op amp A2 convert the collected bioelectric activity signals into voltage signals and output them to the first op amp module, thereby realizing the function of sensitively detecting and collecting EEG signals.
  • the first operational amplifier module includes an amplifier chip U1 and a third operational amplifier A3, the input end of the amplifier chip U1 is respectively coupled to the output ends of the first operational amplifier A1 and the second operational amplifier A2, the output end of the amplifier chip U1 is coupled to the inverting input end of the third operational amplifier A3, the non-inverting input end of the third operational amplifier A3 is coupled to a power supply, the output end of the third operational amplifier A3 is used to output an amplified voltage signal, and the output end of the third operational amplifier A3 is coupled to a frequency reduction module.
  • the amplifier chip U1 is connected to the voltage signal output by the potential detection module through the input end of the chip.
  • the amplifier chip U1 performs a first-stage amplification on the voltage signal, which can effectively prevent signal distortion.
  • the output end of the amplifier chip U1 outputs the voltage signal that has undergone a first-stage amplification to the third operational amplifier A3.
  • the third operational amplifier A3 performs a second-stage amplification on the voltage signal after the first-stage amplification, increases the frequency of the voltage signal, and realizes the function of amplifying weak voltage signals, which facilitates further processing of the voltage signal.
  • the frequency reduction module includes a first frequency reduction submodule and a second frequency reduction submodule, the input end of the first frequency reduction submodule and the input end of the second frequency reduction submodule are respectively coupled to the output end of the third op amp A3, the output end of the first frequency reduction submodule and the output end of the second frequency reduction submodule are respectively coupled to the analog switch module, and the first frequency reduction submodule is used to provide a lower limit frequency value of a suitable frequency range of the voltage signal.
  • the second frequency reduction submodule is used to provide an upper frequency value within a suitable frequency range of the voltage signal.
  • the first frequency reduction submodule and the second frequency reduction submodule both perform frequency reduction processing on the voltage signal after frequency amplification.
  • the first frequency reduction submodule provides a lower frequency limit value of the voltage signal
  • the second frequency reduction submodule provides an upper frequency limit value of the voltage signal, thereby reducing the frequency of the voltage signal to within the voltage frequency range required for EEG detection, thereby achieving the function of reducing the frequency of the voltage signal.
  • the first frequency reduction sub-module includes a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a seventh capacitor C7, an eighth capacitor C8 and a ninth capacitor C9
  • the seventh resistor R7 is connected in series with the eighth resistor R8
  • the seventh capacitor C7 is connected in series with the eighth capacitor C8
  • the other end of the seventh resistor R7 is coupled to the other end of the seventh capacitor C7
  • the other end of the eighth resistor R8 is coupled to the other end of the eighth capacitor C8
  • the connection node between the seventh resistor R7 and the seventh capacitor C7 is coupled to the output end of the third operational amplifier A3
  • the connection node between the eighth resistor R8 and the eighth capacitor C8 is used to output the lower frequency limit of the voltage signal
  • the connection node between the seventh capacitor C7 and the eighth capacitor C8 is coupled to the ninth resistor R9
  • the connection node between the seventh resistor R7 and the eighth resistor R8 is coupled to the ninth capacitor C9
  • the first frequency reduction sub-module divides and reduces the frequency of the amplified voltage signal output by the third operational amplifier A3 through the seventh resistor R7, the eighth resistor R8, the ninth resistor R9, the seventh capacitor C7, the eighth capacitor C8 and the ninth capacitor C9 to obtain the frequency lower limit of the voltage signal, thereby realizing the voltage signal frequency reduction function.
  • the second frequency reduction sub-module includes a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, a tenth capacitor C10, an eleventh capacitor C11 and a twelfth capacitor C12, the tenth resistor R10, the eleventh resistor R11, the tenth capacitor C10 and the eleventh capacitor C11 are connected in series in sequence to form a loop, the connection node of the tenth resistor R10 and the eleventh capacitor C11 is coupled to the output end of the third operational amplifier A3, the connection node of the eleventh resistor R11 and the tenth capacitor C10 is used to output the upper frequency limit value of the voltage signal, the connection node of the tenth capacitor C10 and the eleventh capacitor C11 is coupled to one end of the twelfth resistor R12, the connection node of the tenth resistor R10 and the eleventh resistor R11 is coupled to one end of the twelfth capacitor C12, the other
  • the second frequency reduction submodule converts the amplified output of the third operational amplifier A3 into The voltage signal is divided and frequency-reduced by the tenth resistor R10, the eleventh resistor R11, the twelfth resistor R12, the tenth capacitor C10, the eleventh capacitor C11 and the twelfth capacitor C12 to obtain the upper frequency limit of the voltage signal, thereby realizing the voltage signal frequency reduction function.
  • the second operational amplifier module includes a fourth operational amplifier A4, a fifth operational amplifier A5 and a sixth operational amplifier A6, the non-phase input terminal of the fourth operational amplifier A4 is coupled to the output terminal of the analog switch module, the inverting input terminal of the fourth operational amplifier A4 is coupled to the output terminal of the fourth operational amplifier A4, the output terminal of the fourth operational amplifier A4 is coupled to the inverting input terminal of the sixth operational amplifier A6 through a thirteenth resistor R13, the output terminal of the fifth operational amplifier A5 is coupled to the analog switch module, the inverting input terminal of the fifth operational amplifier A5 is coupled to the output terminal of the fifth operational amplifier A5, and the positive input terminal of the fifth operational amplifier A5 is coupled to the output terminal of the fifth operational amplifier A5.
  • the phase input terminal is coupled to one end of the adjustable resistor, the other end of the adjustable resistor is grounded, the sliding end of the adjustable resistor is coupled to the output terminal of the fourth operational amplifier A4 through the fourteenth resistor R14, the non-phase input terminal of the sixth operational amplifier A6 is coupled to the power supply, the output terminal of the sixth operational amplifier A6 is connected in series with the fifteenth resistor R15 and the thirteenth capacitor C13 in sequence and then grounded, the connection node of the fifteenth resistor R15 and the thirteenth capacitor C13 is used to output a digital signal, and the output terminal of the sixth operational amplifier A6 is also connected in series with the sixteenth resistor R16 and then coupled to the inverting input terminal of the sixth operational amplifier A6.
  • the second operational amplifier module inputs the down-converted voltage signal through the fourth operational amplifier A4 and the fifth operational amplifier A5, filters and converts the down-converted voltage signal through the fourth operational amplifier A4, the fifth operational amplifier A5 and the sixth operational amplifier A6, and outputs the digital signal for drawing the electroencephalogram through the output end of the sixth operational amplifier A6, thereby realizing the filtering and anti-interference function.
  • the present application includes at least one of the following beneficial technical effects:
  • the potential in the potential detection module enables the device to detect and obtain weak bioelectric activity signals more sensitively, thereby improving the sensitivity of EEG signal acquisition.
  • the EEG signals are amplified, down-converted, and filtered and converted by the first operational amplifier module, the frequency reduction module, and the second operational amplifier module, thereby effectively reducing the interference of other signals on the drawing of the EEG and effectively improving the accuracy of the collected EEG signals;
  • the weak bioelectric activity signal input into the potential detection module is provided with an anti-static interference function, which can effectively reduce the interference of static electricity on the weak bioelectric activity signal and further improve the accuracy of EEG signal acquisition;
  • the first frequency reduction submodule and the second frequency reduction submodule both reduce the frequency of the voltage signal after the frequency amplification Processing, the first frequency reduction submodule provides a lower frequency limit value of the voltage signal, and the second frequency reduction submodule provides an upper frequency limit value of the voltage signal, thereby reducing the frequency of the voltage signal to a voltage frequency range that satisfies EEG detection, thereby realizing the function of reducing the frequency of the voltage signal;
  • the analog switch module filters the voltage and can filter out the voltage frequency that is not within the qualified frequency range, so that the voltage input to the second op amp module is within the appropriate frequency range for EEG detection, thereby effectively improving the accuracy of EEG signal acquisition and thus effectively improving the accuracy of EEG detection results.
  • FIG1 is a schematic diagram of a circuit module structure of a device for collecting electroencephalographic signals according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a potential detection module of a device for collecting EEG signals according to an embodiment of the present application.
  • FIG3 is a circuit diagram of a first operational amplifier module of a device for collecting electroencephalographic signals according to an embodiment of the present application.
  • FIG4 is a circuit diagram of a frequency reduction module of a device for collecting electroencephalographic signals according to an embodiment of the present application.
  • FIG5 is a circuit diagram of a second operational amplifier module of a device for collecting electroencephalographic signals according to an embodiment of the present application.
  • a device for collecting brain electrical signals with potential includes an electrostatic filtering module 5, a potential detection module 1, a first operational amplifier module 2, a frequency reduction module 3, an analog switch module 6, and a second operational amplifier module 4.
  • the input end of the potential detection module 1 is electrically connected to a motor attached to the human brain scalp, and the electrode transmits the collected weak bioelectric activity signal to the potential detection module 1.
  • the electrostatic filtering module 5 is coupled between the potential detection module 1 and the electrode.
  • the electrostatic filtering module 5 performs electrostatic protection on the weak bioelectric activity signal input into the potential detection module 1 to prevent static electricity from interfering with the weak bioelectric activity signal.
  • the output end of the potential detection module 1 is coupled to the first operational amplifier module 2.
  • the potential detection module 1 converts the weak bioelectric activity signal into a voltage signal and outputs it to the first operational amplifier module 2.
  • the output end of the first operational amplifier module 2 is coupled to the frequency reduction module 3.
  • the first operational amplifier module 2 amplifies the voltage signal and increases the frequency of the voltage signal to prevent signal distortion.
  • the output end of the frequency reduction module 3 is coupled to the analog switch module 6, and the output end of the analog switch module 6 is coupled to the second operational amplifier module 4.
  • the output of block 4 outputs a digital signal for drawing an EEG.
  • the electrodes attached to the human brain scalp acquire the bioelectric activity signals generated by the brain in real time, and transmit the weak bioelectric activity signals to the potential detection module 1.
  • the electrostatic filtering module 5 performs electrostatic protection on the weak bioelectric activity signals input to the potential detection module 1 to prevent static electricity from interfering with the signals.
  • the potential detection module 1 utilizes the characteristic that the potential is sensitive to weak currents to sensitively detect and acquire weak bioelectric activity signals, thereby improving the sensitivity of the EEG signal acquisition device.
  • the potential detection module 1 converts the bioelectric activity signals into voltage and transmits The signal is input to the first operational amplifier module 2, which amplifies the weak voltage signal to increase the frequency of the voltage signal.
  • the frequency reduction module 3 performs frequency reduction on the amplified voltage signal output by the first operational amplifier module 2 to obtain a suitable frequency range for the voltage signal.
  • the analog switch module 6 screens the voltage signal output by the frequency reduction module 3, and can screen out the voltage signal that is not within the qualified frequency range, so that the voltage signal input to the second operational amplifier module 4 is within the suitable frequency range for EEG detection.
  • the second operational amplifier module 4 performs filtering and conversion on the frequency-reduced voltage signal to reduce interference from other signals, thereby forming a digital signal for drawing an EEG.
  • the electrostatic filtering module 5 includes an electrostatic protection chip U2, and the potential detection module 1 includes a first op amp A1 and a second op amp A2.
  • the model of the electrostatic protection chip U2 is SRV05-4, and the electrostatic protection chip U2 includes six pins, the sixth pin of the electrostatic protection chip U2 is coupled to the first pin of the interface J1, the second pin of the interface J1 is coupled to the power supply, the third pin of the interface J1 is grounded, the connection node between the sixth pin of the electrostatic protection chip U2 and the first pin of J1 is coupled to the non-inverting input terminal of the first op amp A1, the fourth pin of the electrostatic protection chip U2 is coupled to the first pin of the interface J2, the second pin of the interface J2 is coupled to the power supply, the third pin of the interface J2 is grounded, the connection node between the fourth pin of the electrostatic protection chip U2 and the first pin of the interface J2 is coupled to the second op amp A2, the second pin of the electro
  • the non-inverting input terminal of the first operational amplifier A1 is sequentially connected in series with the first resistor R1, the second resistor R2 and the third resistor R3, and then coupled to the connection node between the sixth pin of the electrostatic protection chip U2 and the first pin of J1.
  • the inverting input terminal of the first operational amplifier A1 is coupled to the output terminal of the first operational amplifier A1.
  • connection node between the first resistor R1 and the non-inverting input terminal of the first operational amplifier A1 is coupled with the first capacitor C1
  • the connection node between the first resistor R1 and the second resistor R2 is coupled with the second capacitor C2
  • the connection node between the second resistor R2 and the third resistor R3 is coupled with the third capacitor C3
  • the other ends of the first capacitor C1, the second capacitor C2 and the third capacitor C3 are all grounded.
  • the non-inverting input terminal of the second operational amplifier A2 is sequentially connected in series with the fourth resistor R4, the fifth resistor R5 and the sixth resistor R6, and then coupled to the connection node between the sixth pin of the electrostatic protection chip U2 and the first pin of J1.
  • the inverting input terminal of the second operational amplifier A2 is coupled to the output terminal of the second operational amplifier A2.
  • the connection node between the fourth resistor R4 and the non-inverting input terminal of the second operational amplifier A2 is coupled with the fourth capacitor C4.
  • the connection node between the fourth resistor R4 and the fifth resistor R5 is coupled with the fifth capacitor C5.
  • the connection node between the fifth resistor R5 and the sixth resistor R6 is coupled with the sixth capacitor C6.
  • the other ends of the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6 are all grounded.
  • the output terminals of the first operational amplifier A1 and the second operational amplifier A2 are both coupled to the first operational amplifier module 2.
  • the first operational amplifier module 2 includes an amplifier chip U1 and a third operational amplifier A3.
  • the model of the amplifier chip U1 is specifically AD8420ARMZ.
  • the amplifier chip U1 includes eight pins.
  • the second pin and the third pin of the amplifier chip U1 are input terminals, and the eighth pin of the amplifier chip U1 is an output terminal.
  • the third pin of the amplifier chip U1 is coupled to the output terminal of the first operational amplifier A1, the second pin of the amplifier chip U1 is coupled to the output terminal of the second operational amplifier A2, the fourth pin of the amplifier chip U1 is grounded, the fifth pin of the amplifier chip U1 is coupled to a 5V voltage, the sixth pin of the amplifier chip U1 is coupled to a 1.65V voltage, the seventh pin of the amplifier chip U1 is connected in series with an eighteenth resistor R18 and then coupled to a 1.65V voltage, and the eighth pin of the amplifier chip U1 is connected in series with a nineteenth resistor R19 and then coupled to the seventh pin of the amplifier chip U1.
  • connection node between the eighth pin of the amplifier chip U1 and the nineteenth resistor R19 is connected in series with the twentieth resistor R20 and the twenty-first resistor R21 in sequence, and then coupled to the inverting input terminal of the third amplifier A3.
  • the connection node between the twentieth resistor R20 and the twenty-first resistor R21 is coupled with the fourteenth capacitor C14, and the other end of the fourteenth capacitor C14 is coupled to the 1.65V voltage.
  • the non-inverting input terminal of the third amplifier A3 is coupled to the 1.65V voltage.
  • the output terminal of the third amplifier A3 is connected in series with the twenty-second resistor R22, and the other end of the twenty-second resistor R22 is coupled to the connection node of the twentieth resistor R20 and the twenty-first resistor R21.
  • the connection node between the twenty-second resistor R22 and the output terminal of the third amplifier A3 is coupled with the fifteenth capacitor C15, and the other end of the fifteenth capacitor C15 is coupled to the inverting input terminal of the third amplifier A3.
  • the output terminal of the third amplifier A3 is coupled to the frequency reduction module 3.
  • the third pin and the second pin of the amplifier chip U1 both input voltage signals, the amplifier chip U1 performs a first-stage amplification on the voltage signal, the eighth pin of the amplifier chip U1 outputs the first-stage amplified voltage signal to the third operational amplifier A3, the third operational amplifier A3 performs a second-stage amplification on the voltage signal to increase the frequency of the voltage signal, specifically increasing the frequency of the voltage signal to 100 Hz, the fifteenth capacitor C15, the twenty-second resistor R22 and the fourteenth capacitor C14 form a recovery hysteresis loop circuit, so that the third operational amplifier A3 constitutes a hysteresis operational amplifier, thereby improving its anti-interference ability.
  • the frequency reduction module 3 includes a first frequency reduction submodule 31 and a second frequency reduction submodule 32
  • the analog switch module 6 includes a switch chip U3
  • the specific model of the switch chip U3 is SGM3005XMS.
  • the first frequency reduction submodule 31 includes a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a seventh capacitor C7, an eighth capacitor C8 and a ninth capacitor C9.
  • the seventh resistor R7 is connected in series with the eighth resistor R8, the seventh capacitor C7 is connected in series with the eighth capacitor C8, the other end of the seventh resistor R7 is coupled to the other end of the seventh capacitor C7, the other end of the eighth resistor R8 is coupled to the other end of the eighth capacitor C8, the connection node between the seventh resistor R7 and the seventh capacitor C7 is coupled to the output end of the third operational amplifier A3, the connection node between the eighth resistor R8 and the eighth capacitor C8 is used to output the frequency lower limit of the voltage signal and is coupled to the seventh pin of the switch chip U3, the connection node between the seventh capacitor C7 and the eighth capacitor C8 is coupled to the ninth resistor R9, the connection node between the seventh resistor R7 and the eighth resistor R8 is coupled to the ninth capacitor C9, the other end of the ninth resistor R9 is coupled to the other end of the ninth capacitor C9, and the connection node between the ninth resistor R9 and the ninth capacitor C9 is used to output the frequency lower limit of the voltage
  • the resistance values of the seventh resistor R7, the eighth resistor R8, and the ninth resistor R9 are all 24K
  • the capacitance values of the seventh capacitor C7, the eighth capacitor C8, and the ninth capacitor C9 are all 0.068u
  • the seventh resistor R7, the eighth resistor R8, the ninth resistor R9, the seventh capacitor C7, the eighth capacitor C8, and the ninth capacitor C reduce the voltage signal with a frequency of 100Hz to a voltage signal with a frequency of 50Hz.
  • the second frequency reduction submodule 32 includes a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, a tenth capacitor C10, an eleventh capacitor C11 and a twelfth capacitor C12.
  • the circuit structure of the second frequency reduction submodule 32 is the same as the circuit structure of the first frequency reduction submodule 31.
  • the connection node between the eleventh resistor R11 and the tenth capacitor C10 is used to output the upper frequency limit of the voltage signal and is coupled to the tenth pin of the switch chip U3.
  • connection node between the twelfth resistor R12 and the twelfth capacitor C12 is used to output the upper frequency limit of the voltage signal and is coupled to the tenth pin of the switch chip U3.
  • the resistance values of the tenth resistor R10, the eleventh resistor R11, and the twelfth resistor R12 are all 24K
  • the capacitance values of the tenth capacitor C10 and the eleventh capacitor C11 are all 0.068u
  • the capacitance value of the twelfth capacitor C12 is all 0.034u.
  • the second frequency reduction sub-module 32 reduces the voltage signal with a frequency of 100Hz to a voltage signal with a frequency of 60Hz through the tenth resistor R10, the eleventh resistor R11, the twelfth resistor R12, the tenth capacitor C10, the eleventh capacitor C11, and the twelfth capacitor C12.
  • the third pin and the ninth pin of the switch chip U3 are output terminals.
  • the third pin and the ninth pin of the switch chip U3 are both coupled to the second operational amplifier module 4 .
  • the second operational amplifier module 4 includes a fourth operational amplifier A4, a fifth operational amplifier A5 and a sixth operational amplifier A6, a non-inverting input terminal of the fourth op amp A4 is coupled to the ninth pin of the switch chip U3, an inverting input terminal of the fourth op amp A4 is coupled to the output terminal of the fourth op amp A4, the output terminal of the fourth op amp A4 is connected in series with a thirteenth resistor R13 and then coupled to the inverting input terminal of the sixth op amp A6, an output terminal of the fifth op amp A5 is coupled to the third pin of the switch chip U3, an inverting input terminal of the fifth op amp A5 is coupled to the output terminal of the fifth op amp A5, a non-inverting input terminal of the fifth op amp A5 is coupled to an adjustable resistor, and the adjustable The other end of the resistor is grounded, the sliding end of the adjustable resistor is connected in series with the fourteenth resistor R14 and then coupled to the output end of
  • the fourth op amp A4 and the fifth op amp A5 input the down-converted voltage signal
  • the sixth op amp A6 performs filtering and conversion processing on the down-converted voltage signal to form a digital signal for drawing an electroencephalogram
  • the sixteenth resistor R16 and the fourteenth resistor R14 form a recovery hysteresis loop circuit, so that the sixth op amp A6 constitutes a hysteresis op amp to improve its anti-interference ability.
  • the electrodes attached to the human brain scalp acquire the bioelectric activity signals generated by the brain in real time, and transmit the weak bioelectric activity signals to the potential detection module 1.
  • the electrostatic filtering module 5 performs electrostatic protection on the weak bioelectric activity signals input to the potential detection module 1 to prevent static electricity from interfering with the signals.
  • the potential detection module 1 utilizes the characteristic that the potential is sensitive to weak currents to sensitively detect and acquire weak bioelectric activity signals, thereby improving the sensitivity of the EEG signal acquisition device.
  • the potential detection module 1 converts the bioelectric activity signals into voltage and transmits them to
  • the first operational amplifier module 2 amplifies the weak voltage signal to increase the frequency of the voltage signal.
  • the frequency reduction module 3 reduces the frequency of the amplified voltage signal output by the first operational amplifier module 2 to obtain a suitable frequency range of the voltage signal.
  • the analog switch module 6 filters the voltage signal output by the frequency reduction module 3 and can filter out the voltage signal that is not within the qualified frequency range, so that the voltage signal input to the second operational amplifier module 4 is within the suitable frequency range for EEG detection.
  • the second operational amplifier module 4 filters and converts the frequency-reduced voltage signal to reduce interference from other signals, thereby forming a digital signal for drawing an EEG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Power Engineering (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种电势采集脑电信号装置,其包括电势检测模块(1)、第一运放模块(2)、降频模块(3)和第二运放模块(4),电势检测模块(1)与电极电连接,电势检测模块(1)的输出端耦接于第一运放模块(2),电势检测模块(1)用于接收微弱生物电活动信号并反馈输出至第一运放模块(2),第一运放模块(2)的输出端耦接于降频模块(3),第一运放模块(2)用于对微弱生物电活动信号进行放大处理以输出高频电压信号至降频模块(3),降频模块(3)的输出端耦接于第二运放模块(4),降频模块(3)用于对高频电压信号进行降频处理以获取合适的电压的频率,并将合适频率的电压输出至第二运放模块(4),第二运放模块(4)用于对合适频率电压进行滤波处理并输出数字信号。该装置具有提高脑电信号采集的准确性以及采集灵敏度的效果。

Description

一种电势采集脑电信号装置 技术领域
本申请涉及脑电信号的技术领域,尤其是涉及一种电势采集脑电信号装置。
背景技术
脑电信号是将脑部自发性生物电活动信号通过贴附与人体头皮上的电极传导至脑电采集装置,脑电采集装置根据接收到的生物电活动信号绘制得到一个脑电信号图,通过分析脑电信号图进行脑部疾病诊断,在医学和日常生活中都有大量应用,具有重要的研究价值。
现有的脑电信号经过人体的头颅骨和头皮后,脑部产生的自发性生物电活动信号极为微弱,且外界环境或者其他生物电信号的干扰下,容易导致脑电采集装置绘制出来的脑电信号图并不准确,进而影响脑部疾病诊断结果的准确性,因此,存在一定的改进空间。
发明内容
为了有效提高采集到的脑电信号的准确性,提高脑电信号采集灵敏度,本申请提供一种电势采集脑电信号装置。
本申请提供一种电势采集脑电信号装置,采用如下的技术方案:
一种电势采集脑电信号装置,包括电势检测模块、第一运放模块、降频模块和第二运放模块,所述电势检测模块通过接口与贴附于人体头上的电极电连接,所述电势检测模块的输出端耦接于第一运放模块,所述电势检测模块用于接收微弱的生物电活动信号并反馈输出至第一运放模块,所述第一运放模块的输出端耦接于降频模块,所述第一运放模块用于对微弱的生物电活动信号进行放大处理,并输出高频电压信号至降频模块,所述降频模块的输出端耦接于第二运放模块,所述降频模块用于对高频电压信号进行降频处理以获取合适的电压的频率,并将合适频率的电压输出至第二运放模块,所述第二运放模块用于对合适频率电压进行运放处理并输出数字信号,所述数字信号用于绘制脑电图。
通过采用上述技术方案,在进行脑电检测时,将电极贴附与人体的脑部头皮处,电极将脑部产生的生物电活动信号通过导线传输至装置内的电势检测模块,利用电势对微弱电流敏感的特点,通过电势检测模块中的电势使装置能够更加灵敏地检测获取到微弱的生物电活动信号,进而提高脑电信号采集灵敏度,电势检 测模块将生物电活动信号转换成电压并传输至第一运放模块,第一运放模块对微弱的电压进行放大处理,使电压的频率增大,并将放大后的电压信号传输至降频模块,降频模块对第一运放模块输出的放大后的电压信号进行降频处理,得到合适的电压的频率范围,将降频后的电压传输至第二运放模块,第二运放模块对降频后的电压进行滤波转换处理,以减少其他信号的干扰,形成用于绘制脑电图的数字信号,进而使脑电采集装置运用该数字信号绘制出脑电图,通过采用电势检测微弱的脑电信号,并通过第一运放模块、降频模块和第二运放模块对脑电信号进行放大、降频以及滤波转换处理,有效减少其他信号对绘制脑电图的干扰,有效提高采集脑电信号的准确性。
优选的,还包括静电过滤模块,所述静电过滤模块耦接于电势检测模块的输入端,所述静电过滤模块用于对输入进电势检测模块的微弱生物电活动信号进行静电防护。
通过采用上述技术方案,通过在电势检测模块的输入端上耦接有静电过滤模块,对输入进电势检测模块的微弱生物电活动信号提供防静电干扰的功能,能够有效减少静电对微弱生物电活动信号的干扰,进一步提高脑电信号采集的准确性。
优选的,还包括模拟开关模块,所述模拟开关模块耦接于降频模块与第二运放模块之间,所述模拟开关模块的输入端耦接于降频模块,所述模拟开关模块的输出端耦接于第二运放模块,所述模拟开关模块用于筛选电压频率不合格的电压,输出合适频率的电压至第二运放模块。
通过采用上述技术方案,降频模块将频率放大后的电压降低至脑电检测的合适频率范围内,并将合适频率范围内的电压信号传输至模拟开关模块,模拟开关模块对电压进行筛选,能够将不在合格频率范围内的电压频率筛选出来,使输入至第二运放模块中的电压都是在进行脑电检测的合适频率范围内,进而有效地提高脑电信号采集的准确性,从而有效提高脑电检测结果的准确性。
优选的,所述电势检测模块包括第一运放器A1和第二运放器A2,所述第一运放器A1的正相输入端依次串联有第一电阻R1、第二电阻R2和第三电阻R3,所述第三电阻R3的另一端分别耦接于静电过滤模块和电极,所述第一电阻R1与第一运放器A1的正相输入端的连接节点耦接有第一电容C1,所述第一电容C1的另一端接地,所述第一电阻R1与第二电阻R2的连接节点耦接有第二电容C2, 所述第二电容C2的另一端接地,所述第二电阻R2与第三电阻R3的连接节点耦接有第三电容C3,所述第三电容C3的另一端接地,所述第一运放器A1的反相输入端耦接于第一运放器A1的输出端,所述第二运放器A2的正相输入端依次串联有第四电阻R4、第五电阻R5和第六电阻R6,所述第六电阻R6的另一端分别耦接于静电过滤模块和电极,所述第四电阻R4与第二运放器A2的正相输入端的连接节点耦接于第四电容C4的一端,所述第四电容C4的另一端接地,所述第四电阻R4与第五电阻R5的连接节点耦接于第五电容C5的一端,所述第五电容C5的另一端接地,所述第五电阻R5与第六电阻R6的连接节点耦接于第六电容C6的一端,所述第六电容C6的另一端接地,所述第二运放器A2的反相输入端耦接于第二运放器A2的输出端,所述第一运放器A1和第二运放器A2的输出端均耦接于第一运放模块。
通过采用上述技术方案,通过在第一运放器A1和第二运放器A2的输入端耦接有多个电容,利用电容的电势敏感地采集微弱的生物电活动信号,提高脑电信号采集的灵敏度,第一运放器A1和第二运放器A2将采集到的生物电活动信号转换形成电压信号,并输出至第一运放模块,实现灵敏检测采集脑电信号功能。
优选的,所述第一运放模块包括放大芯片U1和第三运放器A3,所述放大芯片U1的输入端分别耦接于第一运放器A1和第二运放器A2的输出端,所述放大芯片U1的输出端耦接于第三运放器A3的反相输入端,所述第三运放器A3的正相输入端耦接于电源,所述第三运放器A3的输出端用于输出放大后的电压信号,所述第三运放器A3的输出端耦接于降频模块。
通过采用上述技术方案,放大芯片U1通过芯片的输入端接入电势检测模块输出的电压信号,通过放大芯片U1对电压信号进行一级放大,能够有效防止信号失真,放大芯片U1的输出端将进行过一级放大的电压信号输出至第三运放器A3,第三运放器A3对一级放大后的电压信号进行二级放大,增大电压信号的频率,实现对微弱的电压信号进行放大功能,便于对电压信号做进一步地处理。
优选的,所述降频模块包括第一降频子模块和第二降频子模块,所述第一降频子模块的输入端和第二降频子模块的输入端分别耦接于第三运放器A3的输出端,所述第一降频子模块的输出端和第二降频子模块的输出端分别耦接于模拟开关模块,所述第一降频子模块用于提供电压信号的合适频率范围的下限频率值, 所述第二降频子模块用于提供电压信号的合适频率范围的上线频率值。
通过采用上述技术方案,第一降频子模块和第二降频子模块均对频率放大后的电压信号进行降频处理,第一降频子模块提供电压信号的频率下限值,第二降频子模块提供电压信号的频率上限值,进而使电压信号的频率降低至满足进行脑电检测的电压频率范围内,实现降低电压信号的频率的功能。
优选的,所述第一降频子模块包括第七电阻R7、第八电阻R8、第九电阻R9、第七电容C7、第八电容C8和第九电容C9,所述第七电阻R7与第八电阻R8串联,所述第七电容C7与第八电容C8串联,所述第七电阻R7的另一端耦接于第七电容C7的另一端,所述第八电阻R8的另一端耦接于第八电容C8的另一端,所述第七电阻R7与第七电容C7的连接节点耦接于第三运放器A3的输出端,所述第八电阻R8与第八电容C8的连接节点用于输出电压信号的频率下限值,所述第七电容C7与第八电容C8的连接节点耦接于第九电阻R9,所述第七电阻R7和第八电阻R8的连接节点耦接于第九电容C9,所述第九电阻R9的另一端耦接于第九电容C9的另一端,所述第九电阻R9与第九电容C9的连接节点用于输出电压信号的频率下限值。
通过采用上述技术方案,第一降频子模块将第三运放器A3输出的放大后的电压信号,经过第七电阻R7、第八电阻R8、第九电阻R9、第七电容C7、第八电容C8和第九电容C9进行分压降频处理,得到电压信号的频率下限值,实现电压信号降频功能。
优选的,所述第二降频子模块包括第十电阻R10、第十一电阻R11、第十二电阻R12、第十电容C10、第十一电容C11和第十二电容C12,所述第十电阻R10、第十一电阻R11、第十电容C10和第十一电容C11依次串联,形成一个回路,所述第十电阻R10与第十一电容C11的连接节点耦接于第三运放器A3的输出端,所述第十一电阻R11与第十电容C10的连接节点用于输出电压信号的频率上限值,所述第十电容C10与第十一电容C11的连接节点耦接于第十二电阻R12的一端,所述第十电阻R10和第十一电阻R11的连接节点耦接于第十二电容C12的一端,所述第十二电阻R12的另一端耦接于第十二电容C12的另一端,所述第十二电阻R12与第十二电容C12的连接节点用于输出电压信号的频率上限值。
通过采用上述技术方案,第二降频子模块将第三运放器A3输出的放大后的 电压信号,经过第十电阻R10、第十一电阻R11、第十二电阻R12、第十电容C10、第十一电容C11和第十二电容C12进行分压降频处理,得到电压信号的频率上限值,实现电压信号降频功能。
优选的,所述第二运放模块包括第四运放器A4、第五运放器A5和第六运放器A6,所述第四运放器A4的正相输入端耦接于模拟开关模块的输出端,所述第四运放器A4的反相输入端耦接于第四运放器A4的输出端,所述第四运放器A4的输出端通过第十三电阻R13后耦接于第六运放器A6的反相输入端,所述第五运放器A5的输出端耦接于模拟开关模块,所述第五运放器A5的反相输入端耦接于第五运放器A5的输出端,所述第五运放器A5的正相输入端耦接于可调电阻器的一端,所述可调电阻器的另一端接地,所述可调电阻器的滑移端通过第十四电阻R14后耦接于第四运放器A4的输出端,所述第六运放器A6的正相输入端耦接于电源,所述第六运放器A6的输出端依次串联有第十五电阻R15和第十三电容C13后接地,所述第十五电阻R15和第十三电容C13的连接节点用于输出数字信号,所述第六运放器A6的输出端还串联有第十六电阻R16后耦接于第六运放器A6的反相输入端。
通过采用上述技术方案,第二运放模块通过第四运放器A4、第五运放器A5输入降频后的电压信号,通过第四运放器A4、第五运放器A5和第六运放器A6对降频后的电压信号进行滤波转换处理,通过第六运放器A6的输出端输出用于绘制脑电图的数字信号,实现滤波防干扰功能。
综上所述,本申请包括以下至少一种有益技术效果:
1.通过设置电势检测模块,利用电势对微弱电流敏感的特点,电势检测模块中的电势使装置能够更加灵敏地检测获取到微弱的生物电活动信号,进而提高脑电信号采集灵敏度,通过第一运放模块、降频模块和第二运放模块对脑电信号进行放大、降频以及滤波转换处理,有效减少其他信号对绘制脑电图的干扰,有效提高采集脑电信号的准确性;
2.通过在电势检测模块的输入端上耦接有静电过滤模块,对输入进电势检测模块的微弱生物电活动信号提供防静电干扰的功能,能够有效减少静电对微弱生物电活动信号的干扰,进一步提高脑电信号采集的准确性;
3.第一降频子模块和第二降频子模块均对频率放大后的电压信号进行降频 处理,第一降频子模块提供电压信号的频率下限值,第二降频子模块提供电压信号的频率上限值,进而使电压信号的频率降低至满足进行脑电检测的电压频率范围内,实现降低电压信号的频率的功能;
4.模拟开关模块对电压进行筛选,能够将不在合格频率范围内的电压频率筛选出来,使输入至第二运放模块中的电压都是在进行脑电检测的合适频率范围内,进而有效地提高脑电信号采集的准确性,从而有效提高脑电检测结果的准确性。
附图说明
图1是本申请实施例一种电势采集脑电信号装置的电路模块结构示意图。
图2是本申请实施例一种电势采集脑电信号装置的电势检测模块的电路图。
图3是本申请实施例一种电势采集脑电信号装置的第一运放模块的电路图。
图4是本申请实施例一种电势采集脑电信号装置的降频模块的电路图。
图5是本申请实施例一种电势采集脑电信号装置的第二运放模块的电路图。
附图标记说明:1、电势检测模块;2、第一运放模块;3、降频模块;31、第一降频子模块;32、第二降频子模块;4、第二运放模块;5、静电过滤模块;6、模拟开关模块。
具体实施方式
以下结合附图1-5对本申请作进一步详细说明。
本申请实施例公开一种电势采集脑电信号装置。参照图1,一种电势采集脑电信号装置包括静电过滤模块5、电势检测模块1、第一运放模块2、降频模块3、模拟开关模块6和第二运放模块4。电势检测模块1的输入端与贴附与人体脑部头皮上的电机电连接,电极将采集到的微弱生物电活动信号传输至电势检测模块1内,静电过滤模块5耦接于电势检测模块1与电极之间,静电过滤模块5将输入至电势检测模块1内的微弱生物电活动信号进行静电保护,以防止静电对微弱生物电活动信号产生干扰。电势检测模块1的输出端耦接于第一运放模块2,电势检测模块1将微弱生物电活动信号转换成电压信号并输出至第一运放模块2,第一运放模块2的输出端耦接于降频模块3,第一运放模块2将电压信号进行放大处理,将电压信号的频率升高,以防止信号失真。降频模块3的输出端耦接于模拟开关模块6,模拟开关模块6的输出端耦接于第二运放模块4,第二运放模 块4的输出端输出用于绘制脑电图的数字信号。
具体的,贴附与人体脑部头皮上的电极实时获取脑部产生的生物电活动信号,并将这微弱的生物电活动信号传输至电势检测模块1,微弱生物电活动信号在输入至电势检测模块1前,经过静电过滤模块5,静电过滤模块5输入至电势检测模块1的微弱生物电活动信号进行静电防护,防止静电对信号产生干扰,电势检测模块1利用电势对微弱电流敏感的特点,灵敏地检测获取微弱生物电活动信号,使脑电信号采集装置提高了脑电信号采集的灵敏度,电势检测模块1将生物电活动信号转换成电压并传输至第一运放模块2,第一运放模块2对微弱的电压信号进行放大处理,使电压信号的频率增大,降频模块3对第一运放模块2输出的放大后的电压信号进行降频处理,得到电压信号的合适频率范围,模拟开关模块6对降频模块3输出的电压信号进行筛选,能够将不在合格频率范围内的电压信号筛选出来,使输入至第二运放模块4中的电压信号都是在进行脑电检测的合适频率范围内,第二运放模块4对降频后的电压信号进行滤波转换处理,以减少其他信号的干扰,形成用于绘制脑电图的数字信号。
参照图2,静电过滤模块5包括静电防护芯片U2,电势检测模块1包括第一运放器A1和第二运放器A2。静电防护芯片U2的型号为SRV05-4,静电防护芯片U2包括六个引脚,静电防护芯片U2的第六引脚耦接于接口J1的第一引脚,接口J1的第二引脚耦接于电源,接口J1的第三引脚接地,静电防护芯片U2的第六引脚与J1的第一引脚的连接节点耦接于第一运放器A1的正相输入端,静电防护芯片U2的第四引脚耦接于接口J2的第一引脚,接口J2的第二引脚耦接于电源,接口J2的第三引脚接地,静电防护芯片U2的第四引脚与接口J2的第一引脚的连接节点耦接于第二运放器A2,静电防护芯片U2的第二引脚接地,静电防护芯片U2的第五引脚串联有第十七电阻R17后耦接于电源。第一运放器A1的正相输入端依次串联有第一电阻R1、第二电阻R2和第三电阻R3后耦接于静电防护芯片U2的第六引脚与J1的第一引脚的连接节点,第一运放器A1的反相输入端耦接于第一运放器A1的输出端,第一电阻R1与第一运放器A1的正相输入端的连接节点耦接有第一电容C1,第一电阻R1与第二电阻R2的连接节点耦接有第二电容C2,第二电阻R2与第三电阻R3的连接节点耦接有第三电容C3,第一电容C1、第二电容C2和第三电容C3的另一端均接地。
第二运放器A2的正相输入端依次串联有第四电阻R4、第五电阻R5和第六电阻R6后耦接于静电防护芯片U2的第六引脚与J1的第一引脚的连接节点,第二运放器A2的反相输入端耦接于第二运放器A2的输出端,第四电阻R4与第二运放器A2的正相输入端的连接节点耦接有第四电容C4,第四电阻R4与第五电阻R5的连接节点耦接有第五电容C5,第五电阻R5与第六电阻R6的连接节点耦接有第六电容C6,第四电容C4、第五电容C5和第六电容C6的另一端均接地,第一运放器A1和第二运放器A2的输出端均耦接于第一运放模块2。
参照图3,第一运放模块2包括放大芯片U1和第三运放器A3,放大芯片U1的型号具体为AD8420ARMZ,放大芯片U1包括八个引脚,放大芯片U1的第二引脚和第三引脚为输入端,放大芯片U1的第八引脚为输出端,放大芯片U1的三引脚耦接于第一运放器A1的输出端,放大芯片U1的第二引脚耦接于第二运放器A2的输出端,放大芯片U1的第四引脚接地,放大芯片U1的第五引脚耦接于5V电压,放大芯片U1的第六引脚耦接于1.65V电压,放大芯片U1的第七引脚串联有第十八电阻R18后耦接于1.65V电压,放大芯片U1的第八引脚串联有第十九电阻R19后耦接于放大芯片U1的第七引脚,放大芯片U1的第八引脚与第十九电阻R19的连接节点依次串联有第二十电阻R20和第二十一电阻R21后耦接于第三运放器A3的反相输入端,第二十电阻R20和第二十一电阻R21的连接节点耦接有第十四电容C14,第十四电容C14的另一端耦接于1.65V电压,第三运放器A3的正相输入端耦接于1.65V电压,第三运放器A3的输出端串联有第二十二电阻R22,第二十二电阻R22的另一端耦接于第二十电阻R20和第二十一电阻R21的连接节点,第二十二电阻R22与第三运放器A3的输出端的连接节点耦接有第十五电容C15,第十五电容C15的另一端耦接于第三运放器A3的反相输入端。第三运放器A3的输出端耦接于降频模块3。
具体的,放大芯片U1的第三引脚和第二引脚均输入电压信号,放大芯片U1对电压信号进行一级放大,放大芯片U1的第八引脚输出进行一级放大后的电压信号至第三运放器A3,第三运放器A3对电压信号进行二级放大,增大电压信号的频率,具体将电压信号的频率增大至100Hz,第十五电容C15、第二十二电阻R22和第十四电容C14构成恢复迟滞环电路,使第三运放器A3构成一个迟滞运放器,提高其抗干扰能力。
参照图4,降频模块3包括第一降频子模块31和第二降频子模块32,模拟开关模块6包括开关芯片U3,开关芯片U3的具体型号为SGM3005XMS。第一降频子模块31包括第七电阻R7、第八电阻R8、第九电阻R9、第七电容C7、第八电容C8和第九电容C9,第七电阻R7与第八电阻R8串联,第七电容C7与第八电容C8串联,第七电阻R7的另一端耦接于第七电容C7的另一端,第八电阻R8的另一端耦接于第八电容C8的另一端,第七电阻R7与第七电容C7的连接节点耦接于第三运放器A3的输出端,第八电阻R8与第八电容C8的连接节点用于输出电压信号的频率下限值并耦接于开关芯片U3的第七引脚,第七电容C7与第八电容C8的连接节点耦接于第九电阻R9,第七电阻R7和第八电阻R8的连接节点耦接于第九电容C9,第九电阻R9的另一端耦接于第九电容C9的另一端,第九电阻R9与第九电容C9的连接节点用于输出电压信号的频率下限值并耦接于开关芯片U3的第五引脚。
具体的,第七电阻R7、第八电阻R8、第九电阻R9阻值均为24K,第七电容C7、第八电容C8和第九电容C9的电容值均为0.068u,第七电阻R7、第八电阻R8、第九电阻R9、第七电容C7、第八电容C8和第九电容C将频率为100Hz的电压信号降低至频率为50Hz的电压信号。
第二降频子模块32包括第十电阻R10、第十一电阻R11、第十二电阻R12、第十电容C10、第十一电容C11和第十二电容C12,第二降频子模块32的电路结构与第一降频子模块31的电路结构相同,第十一电阻R11与第十电容C10的连接节点用于输出电压信号的频率上限值并耦接于开关芯片U3的第十引脚,第十二电阻R12与第十二电容C12的连接节点用于输出电压信号的频率上限值并耦接于开关芯片U3的第二引脚,第十电阻R10、第十一电阻R11、第十二电阻R12的阻值均为24K,第十电容C10和第十一电容C11的电容值均为0.068u,第十二电容C12的电容值均为0.034u,第二降频子模块32通过第十电阻R10、第十一电阻R11、第十二电阻R12、第十电容C10、第十一电容C11和第十二电容C12将频率为100Hz的电压信号降低至频率为60Hz的电压信号。
开关芯片U3的第三引脚和第九引脚为输出端,开关芯片U3的第三引脚和第九引脚均耦接于第二运放模块4。
参照图5,第二运放模块4包括第四运放器A4、第五运放器A5和第六运放 器A6,第四运放器A4的正相输入端耦接于开关芯片U3的第九引脚,第四运放器A4的反相输入端耦接于第四运放器A4的输出端,第四运放器A4的输出端串联有第十三电阻R13后耦接于第六运放器A6的反相输入端,第五运放器A5的输出端耦接于开关芯片U3的第三引脚,第五运放器A5的反相输入端耦接于第五运放器A5的输出端,第五运放器A5的正相输入端耦接有可调电阻器,可调电阻器的另一端接地,可调电阻器的滑移端串联有第十四电阻R14后耦接于第四运放器A4的输出端,第六运放器A6的正相输入端耦接于1.65V电压,第六运放器A6的输出端依次串联有第十五电阻R15和第十三电容C13后接地,第十五电阻R15和第十三电容C13的连接节点用于输出数字信号,第六运放器A6的输出端还串联有第十六电阻R16后耦接于第六运放器A6的反相输入端。
具体的,第四运放器A4和第五运放器A5输入降频后的电压信号,第六运放器A6对降频后的电压信号进行滤波转换处理,形成用于绘制脑电图的数字信号,第十六电阻R16和第十四电阻R14构成恢复迟滞环电路,使第六运放器A6构成一个迟滞运放器,提高其抗干扰能力。
本申请实施例一种电势采集脑电信号装置的实施原理为:
贴附与人体脑部头皮上的电极实时获取脑部产生的生物电活动信号,并将这微弱的生物电活动信号传输至电势检测模块1,微弱生物电活动信号在输入至电势检测模块1前,经过静电过滤模块5,静电过滤模块5输入至电势检测模块1的微弱生物电活动信号进行静电防护,防止静电对信号产生干扰,电势检测模块1利用电势对微弱电流敏感的特点,灵敏地检测获取微弱生物电活动信号,使脑电信号采集装置提高了脑电信号采集的灵敏度,电势检测模块1将生物电活动信号转换成电压并传输至第一运放模块2,第一运放模块2对微弱的电压信号进行放大处理,使电压信号的频率增大,降频模块3对第一运放模块2输出的放大后的电压信号进行降频处理,得到电压信号的合适频率范围,模拟开关模块6对降频模块3输出的电压信号进行筛选,能够将不在合格频率范围内的电压信号筛选出来,使输入至第二运放模块4中的电压信号都是在进行脑电检测的合适频率范围内,第二运放模块4对降频后的电压信号进行滤波转换处理,以减少其他信号的干扰,形成用于绘制脑电图的数字信号。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依 本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (9)

  1. 一种电势采集脑电信号装置,其特征在于:包括电势检测模块(1)、第一运放模块(2)、降频模块(3)和第二运放模块(4),所述电势检测模块(1)通过接口与贴附于人体头上的电极电连接,所述电势检测模块(1)的输出端耦接于第一运放模块(2),所述电势检测模块(1)用于接收微弱的生物电活动信号并反馈输出至第一运放模块(2),所述第一运放模块(2)的输出端耦接于降频模块(3),所述第一运放模块(2)用于对微弱的生物电活动信号进行放大处理,并输出高频电压信号至降频模块(3),所述降频模块(3)的输出端耦接于第二运放模块(4),所述降频模块(3)用于对高频电压信号进行降频处理以获取合适的电压的频率,并将合适频率的电压输出至第二运放模块(4),所述第二运放模块(4)用于对合适频率电压进行运放处理并输出数字信号,所述数字信号用于绘制脑电图。
  2. 根据权利要求1所述的一种电势采集脑电信号装置,其特征在于:还包括静电过滤模块(5),所述静电过滤模块(5)耦接于电势检测模块(1)的输入端,所述静电过滤模块(5)用于对输入进电势检测模块(1)的微弱生物电活动信号进行静电防护还包括模拟开关模块(6),所述模拟开关模块(6)耦接于降频模块(3)与第二运放模块(4)之间,所述模拟开关模块(6)的输入端耦接于降频模块(3),所述模拟开关模块(6)的输出端耦接于第二运放模块(4),所述模拟开关模块(6)用于筛选电压频率不合格的电压,输出合适频率的电压至第二运放模块(4)。
  3. 根据权利要求1所述的一种电势采集脑电信号装置,其特征在于:还包括模拟开关模块(6),所述模拟开关模块(6)耦接于降频模块(3)与第二运放模块(4)之间,所述模拟开关模块(6)的输入端耦接于降频模块(3),所述模拟开关模块(6)的输出端耦接于第二运放模块(4),所述模拟开关模块(6)用于筛选电压频率不合格的电压,输出合适频率的电压至第二运放模块(4)。
  4. 根据权利要求2所述的一种电势采集脑电信号装置,其特征在于:所述电势检测模块(1)包括第一运放器A1、第二运放器A2,所述第一运放器A1的正相输入端依次串联有第一电阻R1、第二电阻R2和第三电阻R3,所述第三电阻R3的另一端分别耦接于静电过滤模块(5)和电极,所述第一电阻R1与第一运放器A1的正相输入端的连接节点耦接有第一电容C1,所述第一电容C1的另一端接地,所述第一电阻R1与第二电阻R2的连接节点耦接有第二电容C2,所述第二电容C2的另一端接地,所述第二电阻R2与第三电阻R3的连接节点耦接有第 三电容C3,所述第三电容C3的另一端接地,所述第一运放器A1的反相输入端耦接于第一运放器A1的输出端,所述第二运放器A2的正相输入端依次串联有第四电阻R4、第五电阻R5和第六电阻R6,所述第六电阻R6的另一端分别耦接于静电过滤模块(5)和电极,所述第四电阻R4与第二运放器A2的正相输入端的连接节点耦接于第四电容C4的一端,所述第四电容C4的另一端接地,所述第四电阻R4与第五电阻R5的连接节点耦接于第五电容C5的一端,所述第五电容C5的另一端接地,所述第五电阻R5与第六电阻R6的连接节点耦接于第六电容C6的一端,所述第六电容C6的另一端接地,所述第二运放器A2的反相输入端耦接于第二运放器A2的输出端,所述第一运放器A1和第二运放器A2的输出端均耦接于第一运放模块(2)。
  5. 根据权利要求4所述的一种电势采集脑电信号装置,其特征在于:所述第一运放模块(2)包括放大芯片U1和第三运放器A3,所述放大芯片U1的输入端分别耦接于第一运放器A1和第二运放器A2的输出端,所述放大芯片U1的输出端耦接于第三运放器A3的反相输入端,所述第三运放器A3的正相输入端耦接于电源,所述第三运放器A3的输出端用于输出放大后的电压信号,所述第三运放器A3的输出端耦接于降频模块(3)。
  6. 根据权利要求3所述的一种电势采集脑电信号装置,其特征在于:所述降频模块(3)包括第一降频子模块(31)和第二降频子模块(32),所述第一降频子模块(31)的输入端和第二降频子模块(32)的输入端分别耦接于第三运放器A3的输出端,所述第一降频子模块(31)的输出端和第二降频子模块(32)的输出端分别耦接于模拟开关模块(6),所述第一降频子模块(31)用于提供电压信号的合适频率范围的下限频率值,所述第二降频子模块(32)用于提供电压信号的合适频率范围的上线频率值。
  7. 根据权利要求6所述的一种电势采集脑电信号装置,其特征在于:所述第一降频子模块(31)包括第七电阻R7、第八电阻R8、第九电阻R9、第七电容C7、第八电容C8和第九电容C9,所述第七电阻R7与第八电阻R8串联,所述第七电容C7与第八电容C8串联,所述第七电阻R7的另一端耦接于第七电容C7的另一端,所述第八电阻R8的另一端耦接于第八电容C8的另一端,所述第七电阻R7与第七电容C7的连接节点耦接于第三运放器A3的输出端,所述第八电阻R8与 第八电容C8的连接节点用于输出电压信号的频率下限值,所述第七电容C7与第八电容C8的连接节点耦接于第九电阻R9,所述第七电阻R7和第八电阻R8的连接节点耦接于第九电容C9,所述第九电阻R9的另一端耦接于第九电容C9的另一端,所述第九电阻R9与第九电容C9的连接节点用于输出电压信号的频率下限值。
  8. 根据权利要求6所述的一种电势采集脑电信号装置,其特征在于:所述第二降频子模块(32)包括第十电阻R10、第十一电阻R11、第十二电阻R12、第十电容C10、第十一电容C11和第十二电容C12,所述第十电阻R10、第十一电阻R11、第十电容C10和第十一电容C11依次串联,形成一个回路,所述第十电阻R10与第十一电容C11的连接节点耦接于第三运放器A3的输出端,所述第十一电阻R11与第十电容C10的连接节点用于输出电压信号的频率上限值,所述第十电容C10与第十一电容C11的连接节点耦接于第十二电阻R12的一端,所述第十电阻R10和第十一电阻R11的连接节点耦接于第十二电容C12的一端,所述第十二电阻R12的另一端耦接于第十二电容C12的另一端,所述第十二电阻R12与第十二电容C12的连接节点用于输出电压信号的频率上限值。
  9. 根据权利要求3所述的一种电势采集脑电信号装置,其特征在于:所述第二运放模块(4)包括第四运放器A4、第五运放器A5和第六运放器A6,所述第四运放器A4的正相输入端耦接于模拟开关模块(6)的输出端,所述第四运放器A4的反相输入端耦接于第四运放器A4的输出端,所述第四运放器A4的输出端通过第十三电阻R13耦接于第六运放器A6的反相输入端,所述第五运放器A5的输出端耦接于模拟开关模块(6),所述第五运放器A5的反相输入端耦接于第五运放器A5的输出端,所述第五运放器A5的正相输入端耦接于可调电阻器的一端,所述可调电阻器的另一端接地,所述可调电阻器的滑移端通过第十四电阻R14耦接于第四运放器A4的输出端,所述第六运放器A6的正相输入端耦接于电源,所述第六运放器A6的输出端依次串联有第十五电阻R15和第十三电容C13后接地,所述第十五电阻R15和第十三电容C13的连接节点用于输出数字信号,所述第六运放器A6的输出端还串联有第十六电阻R16后耦接于第六运放器A6的反相输入端。
PCT/CN2023/103308 2022-11-23 2023-06-28 一种电势采集脑电信号装置 WO2024109038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211474520.7 2022-11-23
CN202211474520.7A CN115886837A (zh) 2022-11-23 2022-11-23 一种电势采集脑电信号装置

Publications (1)

Publication Number Publication Date
WO2024109038A1 true WO2024109038A1 (zh) 2024-05-30

Family

ID=86490858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103308 WO2024109038A1 (zh) 2022-11-23 2023-06-28 一种电势采集脑电信号装置

Country Status (2)

Country Link
CN (1) CN115886837A (zh)
WO (1) WO2024109038A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115886837A (zh) * 2022-11-23 2023-04-04 深圳市杰纳瑞医疗仪器股份有限公司 一种电势采集脑电信号装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215916A1 (en) * 2004-03-29 2005-09-29 Fadem Kalford C Active, multiplexed digital electrodes for EEG, ECG and EMG applications
CN101951832A (zh) * 2007-06-22 2011-01-19 Cmte开发有限公司 头皮电势测量方法和设备
CN110123315A (zh) * 2019-05-10 2019-08-16 深圳市德力凯医疗设备股份有限公司 一种抗电刀干扰的脑电信号检测系统及装置
CN114748074A (zh) * 2022-03-29 2022-07-15 西安电子科技大学 一种基于紫外光通信的脑电信号采集系统
CN217408828U (zh) * 2021-11-15 2022-09-13 中国地质大学(武汉) 基于NB-Iot的脑电数据采集系统
CN115886837A (zh) * 2022-11-23 2023-04-04 深圳市杰纳瑞医疗仪器股份有限公司 一种电势采集脑电信号装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215916A1 (en) * 2004-03-29 2005-09-29 Fadem Kalford C Active, multiplexed digital electrodes for EEG, ECG and EMG applications
CN101951832A (zh) * 2007-06-22 2011-01-19 Cmte开发有限公司 头皮电势测量方法和设备
CN110123315A (zh) * 2019-05-10 2019-08-16 深圳市德力凯医疗设备股份有限公司 一种抗电刀干扰的脑电信号检测系统及装置
CN217408828U (zh) * 2021-11-15 2022-09-13 中国地质大学(武汉) 基于NB-Iot的脑电数据采集系统
CN114748074A (zh) * 2022-03-29 2022-07-15 西安电子科技大学 一种基于紫外光通信的脑电信号采集系统
CN115886837A (zh) * 2022-11-23 2023-04-04 深圳市杰纳瑞医疗仪器股份有限公司 一种电势采集脑电信号装置

Also Published As

Publication number Publication date
CN115886837A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024109038A1 (zh) 一种电势采集脑电信号装置
CN106923818A (zh) 用于可穿戴设备的心电信号检测芯片
CN112617866A (zh) Emg肌电信号数字采集电路及系統
CN103705230B (zh) 一种生物电检测中的前置级电路
CN109512419A (zh) 信号处理电路
CN2912512Y (zh) 具有高抑制噪声能力的心电检测电路
CN106510691A (zh) 心电信号采集前端
CN209826722U (zh) 一种表面肌电信号采集装置
CN103654773B (zh) 脑电生理实验教学装置
CN216876378U (zh) 一种生理电信号采集系统
CN209281373U (zh) 用于人体小信号采集设备的直流偏置消除电路
CN213821443U (zh) 一种基于高频eeg信号的模拟放大电路
CN110882467A (zh) 睡眠仪
CN201267470Y (zh) 十二通道数字心电信号采集模块
CN211263712U (zh) 蓄电池阻抗测试装置
CN104706344A (zh) 一种心电信号测量采集系统
CN106798555A (zh) 心电检测系统
CN106951065B (zh) 一种40导联脑机接口信息采集系统
CN218165273U (zh) 信号采集装置及肌电采集仪
CN206792404U (zh) 心电信号采集前端
Ji et al. An active electrode design for weak biosignal measurements
CN215017600U (zh) 一种用于生物电信号的仪表放大器
CN217793077U (zh) 一种信号采集电路及干电极
CN105487675A (zh) 具有基于头部生物电信号的人机交互功能的增强现实设备
CN210037961U (zh) Apf直流侧电压采样电路