WO2024109027A1 - 风电机组、风电叶片及风电叶片截面翼型的失速监测方法 - Google Patents

风电机组、风电叶片及风电叶片截面翼型的失速监测方法 Download PDF

Info

Publication number
WO2024109027A1
WO2024109027A1 PCT/CN2023/102860 CN2023102860W WO2024109027A1 WO 2024109027 A1 WO2024109027 A1 WO 2024109027A1 CN 2023102860 W CN2023102860 W CN 2023102860W WO 2024109027 A1 WO2024109027 A1 WO 2024109027A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
monitoring point
airfoil
attack
wind turbine
Prior art date
Application number
PCT/CN2023/102860
Other languages
English (en)
French (fr)
Inventor
李星星
张登刚
毛晓娥
任旺
李成良
鲁晓锋
Original Assignee
中材科技风电叶片股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中材科技风电叶片股份有限公司 filed Critical 中材科技风电叶片股份有限公司
Publication of WO2024109027A1 publication Critical patent/WO2024109027A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power generation, and in particular to a stall monitoring method for a wind turbine generator set, a wind turbine blade, and a wind turbine blade cross-section airfoil.
  • Wind turbine blades are the core components of wind turbines for capturing wind energy, and their operating status is directly related to the utilization efficiency of wind energy.
  • the stall caused by severe flow separation of wind turbine blades is an important reason for the decrease of wind turbine power generation efficiency, load fluctuation, increase of fatigue load and even flutter instability. Therefore, how to monitor the flow state and stall condition on the surface of wind turbine blades and to control and protect the stall of wind turbine blades is the research focus of wind turbine blades.
  • the present application provides a wind turbine set, a wind turbine blade and a stall monitoring method for a wind turbine blade cross-section airfoil, which can effectively monitor the stall state of the wind turbine blade surface.
  • the present application provides a stall monitoring method for a cross-sectional airfoil of a wind turbine blade, comprising: determining a first monitoring point and a second monitoring point of the cross-sectional airfoil, wherein in the chord direction of the cross-sectional airfoil, the first monitoring point is closer to the trailing edge of the cross-sectional airfoil than the second monitoring point; obtaining an air pressure Pr1 at the first monitoring point and an air pressure Pr2 at the second monitoring point; and identifying whether the cross-sectional airfoil is stalled based on the values of Pr1 and Pr2.
  • the second monitoring point is configured such that flow separation occurs when the angle of attack of the cross-sectional airfoil reaches the stall angle of attack.
  • the present application provides a wind turbine blade, which includes a blade body, a first sensor, a second sensor, and a processor.
  • the first sensor is arranged on a cross-sectional airfoil of the blade body, the first sensor has a first monitoring point exposed to the outside, and the first sensor is used to detect the air pressure Pr1 at the first monitoring point.
  • the second sensor is arranged on the cross-sectional airfoil of the blade body, the second sensor has a second monitoring point exposed to the outside, and the second sensor is used to detect the air pressure Pr2 at the second monitoring point.
  • the first monitoring point is closer to the trailing edge of the cross-sectional airfoil than the second monitoring point, and the second monitoring point is configured to cause flow separation when the angle of attack of the cross-sectional airfoil reaches the stall angle of attack.
  • the processor is communicatively connected to the first sensor and the second sensor, and is used to identify whether the cross-sectional airfoil is stalled based on the values of Pr1 and Pr2.
  • the present application provides a wind turbine generator set, which includes the wind turbine blade provided in the second aspect.
  • the stall state of the cross-section airfoil surface is effectively monitored by real-time monitoring of the air pressure Pr1 at the first monitoring point and the air pressure Pr2 at the second monitoring point, and by comparing the values of Pr1 and Pr2.
  • the embodiment of the present application can effectively monitor the stall state of the cross-section airfoil surface, so as to feed back to the main control system to adjust the operating state of the wind turbine blade, change the pitch of the wind turbine blade, make the wind turbine blade operate under a better working condition for a long time, and then improve the aerodynamic performance of the wind turbine blade, improve the output power of the wind turbine and increase the wind energy utilization efficiency of the wind turbine blade.
  • FIG1 is a flow chart of a stall monitoring method for a wind turbine blade cross-section airfoil provided in some embodiments of the present application;
  • FIG2 is a schematic diagram of a wind turbine blade provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of a cross-sectional airfoil of the wind turbine blade shown in FIG2 ;
  • FIG4 is an enlarged schematic diagram of the frame in FIG3 ;
  • FIG5 is a lift characteristic curve diagram of the cross-sectional airfoil shown in FIG3 ;
  • FIG. 6 is a graph showing pressure distribution characteristics of the cross-sectional airfoil shown in FIG. 3 .
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • the embodiment of the present application provides a stall monitoring method for a wind turbine blade cross-section airfoil, which includes:
  • Step S100 determining a first monitoring point P1 and a second monitoring point P2 of the cross-sectional airfoil 11, wherein in the chord direction X of the cross-sectional airfoil 11, the first monitoring point P1 is closer to the trailing edge 1a of the cross-sectional airfoil 11 than the second monitoring point P2;
  • Step S200 obtaining the air pressure Pr1 of the first monitoring point P1 and the air pressure Pr2 of the second monitoring point P2;
  • Step S300 Identify whether the airfoil 11 is stalled based on the values of Pr1 and Pr2.
  • the second monitoring point P2 is configured to be a point where flow separation occurs when the angle of attack of the cross-sectional airfoil 11 reaches a stall angle of attack.
  • Flow separation is a flow phenomenon. Specifically, flow separation is the phenomenon that when the fluid develops along the surface of an object, the flow no longer adheres to the surface of the object. Flow separation is often accompanied by backflow, large-scale vortex motion and flow mixing. Large-scale flow separation of the airfoil will lead to a decrease in aerodynamic lift, a sharp increase in drag, and stall, resulting in a significant decrease in aerodynamic efficiency.
  • the stall angle of attack may also be referred to as a critical angle of attack.
  • the angle of attack of the cross-sectional airfoil 11 exceeds the stall angle of attack, the lift of the cross-sectional airfoil 11 will decrease, causing the cross-sectional airfoil 11 to stall.
  • the stall characteristics of a cross-section airfoil are determined by the evolution of its airflow boundary layer.
  • the boundary layer is a concept in fluid mechanics. For a flow with a relatively high Reynolds number, the flow velocity gradient near the surface of the object changes greatly and the viscous shear stress of the flow cannot be ignored.
  • the pressure gradient on the cross-sectional airfoil surface is close to zero, which is the so-called "pressure platform area".
  • the angle of attack of the cross-sectional airfoil 11 exceeds the stall angle of attack, the flow separation point on the leeward side (the starting position of the pressure platform) moves rapidly toward the leading edge of the cross-sectional airfoil 11, causing flow separation in a larger range on the leeward side. Flow separation in a larger range on the leeward side will cause stall.
  • the fluid on the leeward side of the cross-sectional airfoil 11 will form a boundary layer on the leeward side. At this time, flow separation is not likely to occur at the first monitoring point P1 and the second monitoring point P2. Due to the adverse pressure gradient in the boundary layer, there will be a certain pressure difference between the air pressure Pr1 at the first monitoring point P1 and the air pressure Pr2 at the second monitoring point P2. By comparing Pr1 and Pr2, it can be identified whether the cross-sectional airfoil 11 is stalled.
  • the stall state of the surface of the cross-sectional airfoil 11 can be effectively monitored.
  • the stall angle of attack may change to varying degrees due to changes in the operating conditions, but the position of the second monitoring point P2 corresponding to the failure angle of attack is relatively stable.
  • the embodiment of the present application can improve the accuracy of monitoring.
  • the monitoring method of the present application is more accurate because the measurement of wind farm operating characteristics and wind condition parameters are uncertain, and the change of unit power characteristics is not always caused by blade stall.
  • the method of determining stall by means of wind turbine power, speed and other parameters is a post hoc monitoring method, while the stall monitoring method of the present application can be used as the basis for judging active and preemptive stall control methods.
  • the embodiment of the present application can effectively monitor the stall state of the cross-sectional airfoil 11 surface, thereby feeding back to the main control system to adjust the operating state of the wind turbine blade 1, and changing the wind turbine blade 1.
  • the blades make the cross-section airfoil 11 operate under a relatively optimal working condition for a long time, thereby improving the aerodynamic performance of the cross-section airfoil 11, increasing the output power of the wind turbine set and increasing the wind energy utilization efficiency of the wind turbine blade 1.
  • the main control system adjusts the operating state of the wind turbine blade 1 according to the stall state of the cross-section airfoil 11, which can also reduce the damage of the wind turbine blade 1, protect the wind turbine blade 1, and extend the service life of the wind turbine blade 1.
  • the embodiment of the present application is not only capable of realizing monitoring under rated working conditions, but also takes into account monitoring before rated working conditions, and realizes monitoring of all wind conditions after cutting in wind speed.
  • step S100 includes:
  • Step S110 obtaining information of a cross-section airfoil 11 of the wind turbine blade 1;
  • Step S120 obtaining the area where flow separation occurs at multiple attack angles of the cross-sectional airfoil 11;
  • Step S130 when the angle of attack of the cross-sectional airfoil 11 reaches the stall angle of attack, the starting point where flow separation occurs on the leeward side of the cross-sectional airfoil 11 is used as the second monitoring point P2;
  • Step S140 When the angle of attack of the cross-sectional airfoil 11 reaches a first preset angle of attack, the starting point of flow separation on the leeward side of the cross-sectional airfoil 11 is used as the first monitoring point P1, and the first preset angle of attack is less than the stall angle of attack.
  • Steps S130 and S140 may be performed in any order and may be performed simultaneously.
  • the obtained cross-sectional airfoil 11 information may be information of any reference airfoil of the wind turbine blade 1.
  • the aerodynamic shape information of the wind turbine blade 1, reference airfoil information, and information such as the operating Reynolds number calculated according to the operating wind speed range may be obtained.
  • the region where flow separation occurs at multiple angles of attack of the cross-sectional airfoil 11 can be obtained in various ways.
  • the embodiment of the present application does not limit the number of angles of attack in step S120.
  • the "starting point where flow separation occurs on the leeward side of the cross-sectional airfoil 11" may be the starting position of the pressure platform at the current angle of attack.
  • the embodiment of the present application does not limit the difference between the first preset angle of attack and the stall angle of attack.
  • the cross-sectional airfoil 11 of the wind turbine blade 1 is analyzed to determine the positions of the first monitoring point P1 and the second monitoring point P2, thereby improving the accuracy of stall state monitoring.
  • step S120 includes step S121: obtaining the lift of the cross-sectional airfoil 11 Characteristic curve and pressure distribution characteristic curve are used to obtain the area where flow separation occurs at multiple attack angles of the cross-sectional airfoil 11.
  • FIG5 and FIG6 show the lift characteristic curve and pressure distribution characteristic curve of a certain cross-sectional airfoil.
  • the horizontal coordinate of FIG5 is the angle of attack of the cross-sectional airfoil
  • the vertical coordinate of FIG5 is the lift coefficient.
  • the left and right directions of FIG6 are the directions from the leading edge to the trailing edge of the cross-sectional airfoil, that is, in FIG6, the left end is the leading edge of the cross-sectional airfoil, and the right end is the trailing edge of the cross-sectional airfoil.
  • the vertical coordinate of FIG6 is the pressure coefficient.
  • the operating angle of attack of the cross-sectional airfoil 11 leaves the linear region and approaches the stall angle of attack ⁇ (such as the angle of attack corresponding to the B-near stall region working point in FIG. 5 )
  • a certain degree of flow separation has occurred near the trailing edge 1a of the leeward side of the cross-sectional airfoil 11, and the flow separation point (the starting point of the pressure platform, i.e., the approximate separation position of the B-near stall region working point in FIG. 6 ) has moved a certain distance toward the leading edge 1b.
  • the spacing between the approximate separation position of the B-near stall region working point and the trailing edge 1a is 0.05-0.08 times the chord length of the cross-sectional airfoil 11.
  • the flow separation point (the starting point of the pressure platform, i.e., the approximate separation position of the C-critical stall operating point in FIG. 6 ) continues to move toward the leading edge 1b for a certain distance.
  • the spacing between the approximate separation position of the C-critical stall operating point and the trailing edge 1a is 0.15-0.20 times the chord length of the cross-sectional airfoil 11.
  • the flow separation point (the starting point of the pressure platform, i.e., the approximate separation position of the D-stall region working point in FIG. 6 ) moves rapidly toward the leading edge 1b, and the lift coefficient drops sharply.
  • the distance between the approximate separation position of the D-stall region working point and the trailing edge 1a is large. 0.4 times the chord length of the cross-sectional airfoil 11.
  • the flow separation point at the attack angle corresponding to the C-critical stall working point can be used as the flow field monitoring point of the key aerodynamic characteristics, and the monitoring point on the leeward side close to the trailing edge 1a can be used as the pressure gradient reference point.
  • the approximate separation position of the A-linear region working point in Figure 6 can be used as the first monitoring point P1
  • the approximate separation position of the C-critical stall working point in Figure 6 can be used as the second monitoring point P2.
  • the embodiment of the present application can obtain the area where flow separation occurs in the cross-sectional airfoil 11 at multiple angles of attack, further improve the accuracy of the first monitoring point P1 and the second monitoring point P2, and improve the accuracy of stall state monitoring.
  • the position of the leeward flow separation point corresponding to the stall angle ⁇ under different operating Reynolds number conditions and different surface roughness conditions can be comprehensively considered as the key monitoring point of the critical stall characteristics (i.e., the second monitoring point P2).
  • the flow separation point position is: the ratio of the distance between the flow separation point and the leading edge along the chord direction to the chord length of the airfoil.
  • the embodiments of the present application can not only realize the cross-sectional airfoil status monitoring in the early operation cycle, but also can monitor the stall conditions under the conditions of different degrees of roughness of the blade surface.
  • step S300 includes: based on the difference between Pr1 and Pr2, identifying whether the cross-sectional airfoil 11 is stalled.
  • the stall monitoring method further comprises step S400: obtaining the air pressure Pr3 of the third monitoring point P3, the third monitoring point P3 being located between the first monitoring point P1 and the second monitoring point P2.
  • Step S300 comprises: identifying whether the cross-sectional airfoil 11 is stalled based on the value of Pr2-Pr3 and the value of Pr3-Pr1.
  • Step S400 and step S200 may be performed in any order and may be performed simultaneously.
  • the flow separation point at the angle of attack corresponding to the B-near stall zone working point can be used as the flow field monitoring point of the key aerodynamic characteristics.
  • the approximate separation position of the B-near stall zone working point in Figure 6 is used as the third monitoring point P3.
  • the third monitoring point P3 can be used as an early warning monitoring point.
  • the cross-sectional airfoil 11 when Pr3-Pr1>DPR1, the cross-sectional airfoil 11 is determined to be in a non-stall state; when Pr3-Pr1 ⁇ DPR1 and Pr2-Pr3>DPR2, the cross-sectional airfoil 11 is determined to be in a near-stall state; when Pr2-Pr3 ⁇ DPR2, the cross-sectional airfoil 11 is determined to be in a complete stall state.
  • DPR1, DPR2 or DPR3 are critical criterion parameters for the stall state, and the specific values need to be obtained by calculating and analyzing the pressure gradient in the separation zone of the airfoil 11 with different cross-sections (different airfoils 11 with different cross-sections have different values).
  • the embodiment of the present application can provide an early warning of the stall of the cross-sectional airfoil 11, thereby reserving reaction time for the main control system of the wind turbine generator set, reducing damage to the wind turbine blades 1, protecting the wind turbine blades 1, and extending the service life of the wind turbine blades 1.
  • the third monitoring point P3 is configured to cause flow separation when the angle of attack of the cross-sectional airfoil 11 reaches a second predetermined angle of attack.
  • the stall angle of attack is ⁇
  • the second predetermined angle of attack is ⁇
  • ⁇ - ⁇ is 1°-2°.
  • ⁇ - ⁇ is 1°.
  • ⁇ - ⁇ has a smaller difference, which can improve the early warning effect of the third monitoring point P3.
  • the air pressure Pr1 at the first monitoring point P1 and the air pressure Pr2 at the second monitoring point P2 are acquired by a piezoelectric sensor.
  • Piezoelectric sensor is a pressure sensor that measures pressure by converting the positive pressure on the surface of an object into a change in an electrical signal based on the piezoelectric effect.
  • Pressure testing technology based on the piezoelectric effect is a contact pressure measurement technology with a wide measurement range (as low as 100mPa) and a high sampling frequency (up to 30kHz).
  • Piezoelectric sensors are small in size, simple in structure, and highly adaptable to the environment and climate.
  • the positions of the first monitoring point P1 and the second monitoring point P2 are determined by acquiring the lift characteristic curve and the pressure distribution characteristic curve of the cross-sectional airfoil 11. Then, piezoelectric sensors are installed at positions corresponding to the first monitoring point P1 and the second monitoring point P2 to detect the air pressures Pr1 and Pr2.
  • the embodiment of the present application utilizes a piezoelectric sensor to detect air pressure, which can improve environmental adaptability and enhance detection accuracy.
  • piezoelectric sensors compared with the traditional solution of measuring pressure using a Pitot tube, piezoelectric sensors have high stability, are not easily affected by environmental factors (such as dust, rain, etc. that block the Pitot tube), and have high adaptability to the environment and climate.
  • the air pressure Pr3 at the third monitoring point P3 is acquired by a piezoelectric sensor.
  • step S200 includes:
  • Step S210 continuously obtain multiple air pressures at the first monitoring point P1 within a preset time interval t, and use the average value of the multiple air pressures at the first monitoring point P1 as the air pressure Pr1;
  • Step S220 continuously obtain multiple air pressures at the second monitoring point P2 within a preset time interval t, and use the average value of the multiple air pressures at the second monitoring point P2 as the air pressure Pr2.
  • t may be 10s, 30s, or 60s.
  • Step S210 and step S220 may be executed in any order and may be executed simultaneously.
  • the embodiments of the present application can improve the accuracy of the air pressure Pr1 and the air pressure Pr2 and reduce misjudgments caused by short-term fluctuations in air pressure.
  • step S400 includes: continuously acquiring multiple air pressures at the third monitoring point P3 within a preset time interval t, and taking the average value of the multiple air pressures at the third monitoring point P3 as the air pressure Pr3.
  • the distance between the first monitoring point P1 and the trailing edge 1a of the cross-sectional airfoil 11 is L1
  • the chord length of the cross-sectional airfoil 11 is W
  • L1/W is 0-0.03.
  • chord length of the cross-sectional airfoil 11 is W, which is the chord length of the airfoil at the first monitoring point P1. long.
  • the distance between the second monitoring point P2 and the trailing edge 1 a of the cross-sectional airfoil 11 is L2, and L2/W is 0.15-0.2.
  • the distance between the third monitoring point P3 and the trailing edge 1 a of the cross-sectional airfoil 11 is L3, and L3/W is 0.05-0.08.
  • the status monitoring and main control system in light wind and ultra-low wind speed have little effect, and the stall state of the cross-sectional airfoil 11 and the corresponding stall protection control can be further controlled in combination with the information of the main control system (wind speed, rotation speed), etc.
  • a stall monitoring method for a wind turbine blade cross-section airfoil includes:
  • step S130 and S140 the key pressure monitoring points on the leeward side of the cross-section airfoil 11 are obtained.
  • step S200 the pressure data of the first monitoring point P1 and the second monitoring point P2 are collected and processed in real time.
  • Step S300 is to determine the stall state of the cross-section airfoil 11.
  • the embodiment of the present application also provides a wind turbine blade 1, which includes a blade body 12, a first sensor 13, a second sensor 14 and a processor 15.
  • the first sensor 13 is arranged on a cross-sectional airfoil 11 of the blade body 12.
  • the first sensor 13 has a first monitoring point P1 exposed to the outside.
  • the first sensor 13 is used to detect the air pressure Pr1 of the first monitoring point P1.
  • the second sensor 14 is arranged on the cross-sectional airfoil 11 of the blade body 12.
  • the second sensor 14 has a second monitoring point P2 exposed to the outside.
  • the second sensor 14 is used to detect the air pressure Pr1 of the second monitoring point P2.
  • the processor 15 is communicatively connected with the first sensor 13 and the second sensor 14, and is used to identify whether the cross-sectional airfoil 11 is stalled based on the values of Pr1 and Pr2.
  • the outer surface of the first sensor 13 exposed to the outside can be used as a first monitoring point P1; the outer surface of the second sensor 14 exposed to the outside can be used as a second monitoring point P2.
  • the processor 15 may be located inside the blade body 12, or outside the blade body 12.
  • the processor 15 may be connected to the main control system signal of the wind turbine generator set, or may be a part of the main control system.
  • the embodiment of the present application sets a first sensor 13 and a second sensor 14 on the wind turbine blade 1 to monitor the air pressure Pr1 at the first monitoring point P1 and the air pressure Pr2 at the second monitoring point P2 in real time, and compares the values of Pr1 and Pr2 to effectively monitor the stall state of the surface of the cross-sectional airfoil 11.
  • the embodiment of the present application can effectively monitor the stall state of the surface of the cross-sectional airfoil 11, and thus feed back to the main control system to adjust the operating state of the wind turbine blade 1, perform pitch control on the wind turbine blade 1, and make the wind turbine blade 1 operate under a relatively optimal working condition for a long time, thereby improving the aerodynamic performance of the wind turbine blade 1, increasing the output power of the wind turbine set, and increasing the wind energy utilization efficiency of the wind turbine blade 1.
  • the wind turbine blade 1 further includes a third sensor 16 disposed on the blade body 12 .
  • the third sensor 16 is located between the first sensor 13 and the second sensor 14 .
  • the third sensor 16 has a third monitoring point P3 exposed to the outside.
  • the third sensor 16 is used to detect the air pressure Pr3 at the third monitoring point P3.
  • an early warning of the stall of the cross-sectional airfoil 11 can be given, thereby reserving reaction time for the main control system of the wind turbine generator set, reducing damage to the wind turbine blades 1 , protecting the wind turbine blades 1 , and extending the service life of the wind turbine blades 1 .
  • the first sensor 13 and the second sensor 14 are both piezoelectric sensors. Using piezoelectric sensors to detect air pressure can improve environmental adaptability and detection accuracy.
  • the third sensor 16 is a piezoelectric sensor.
  • the blade body 12 is provided with a first through hole 121 and a second through hole 122
  • the first sensor 13 is provided in the first through hole 121
  • the second sensor 14 is provided in the second through hole 122.
  • the outer surface of the first sensor 13 is flush with the outer surface of the blade body 12, and the outer surface of the second sensor 14 is flush with the outer surface of the blade body 12. The surface is flush with the outer surface of the blade body 12.
  • the first through hole 121 and the second through hole 122 are provided on the blade body 12, so that the first sensor 13 and the second sensor 14 can be exposed, so that the first sensor 13 and the second sensor 14 can detect the air pressure in real time.
  • the outer surface of the first sensor 13 and the outer surface of the second sensor 14 are both flush with the outer surface of the blade body 12, so that the flatness of the wind turbine blade 1 can be improved.
  • the first sensor 13 seals the first through hole 121
  • the second sensor 14 seals the second through hole 122 , which can reduce the risk of impurities entering the interior of the blade body 12 .
  • the blade body 12 further includes a third through hole 123 , and the third sensor 16 is disposed in the third through hole 123 .
  • An embodiment of the present application further provides a wind turbine generator set, which includes the wind turbine blade 1 of any of the aforementioned embodiments.
  • the wind turbine mainly includes a tower, a nacelle, a generator and an impeller.
  • the nacelle is arranged at the top of the tower, and the generator is arranged in the nacelle, which can be located inside the nacelle, or of course, outside the nacelle.
  • the impeller is an energy conversion device of the wind turbine, and its function is to convert wind energy into mechanical energy, and use the rotation of the impeller to drive the generator to generate electricity.
  • the impeller mainly includes a wind turbine blade 1 and a hub. Two or more wind turbine blades 1 are respectively connected to the hub, and the wind turbine blades 1 drive the hub to rotate under the action of wind load, thereby realizing the power generation of the generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本申请公开了一种风电机组、风电叶片及风电叶片截面翼型失速监测方法。风电叶片截面翼型的失速监测方法包括:确定截面翼型的第一监测点和第二监测点,在截面翼型的弦向上,第一监测点比第二监测点更靠近截面翼型的后缘;获取第一监测点的气压Pr1以及第二监测点的气压Pr2;基于Pr1和Pr2的值识别截面翼型是否出现失速。第二监测点被配置为在截面翼型的攻角达到失速攻角时出现流动分离。

Description

风电机组、风电叶片及风电叶片截面翼型的失速监测方法
相关申请的交叉引用
本申请要求享有于2022年11月22日提交的名称为“风电机组、风电叶片及风电叶片截面翼型的失速监测方法”的中国专利申请202211467524.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉风力发电领域,特别是涉及一种风电机组、风电叶片及风电叶片截面翼型的失速监测方法。
背景技术
近年来,风能作为一种大规模商业化清洁的可再生能源,已经受到各国的广泛关注;随着我国风电行业快速发展,风电叶片不断的大型化,风电叶片的是风力机捕获风能的核心部件,其运行状态直接关系到风能的利用效率。
风电叶片的严重流动分离导致的失速是造成风电机组发电效率下降、载荷波动、疲劳载荷增加甚至颤振失稳的重要原因。因此,如何监测风电叶片表面的流动状态和失速情况,对风电叶片进行失速控制和保护是风电叶片的研究重点。
发明内容
本申请提供一种风电机组、风电叶片及风电叶片截面翼型的失速监测方法,其能有效地监测出风电叶片表面的失速状态。
第一方面,本申请提供一种风电叶片截面翼型的失速监测方法,其包括:确定截面翼型的第一监测点和第二监测点,在截面翼型的弦向上,第一监测点比第二监测点更靠近截面翼型的后缘;获取第一监测点的气压Pr1以及第二监测点的气压Pr2;基于Pr1和Pr2的值识别截面翼型是否 出现失速。第二监测点被配置为在截面翼型的攻角达到失速攻角时出现流动分离。
第二方面,本申请提供一种风电叶片,其包括叶片主体、第一传感器、第二传感器和处理器。第一传感器设置于叶片主体的一截面翼型,第一传感器具有露出到外侧的第一监测点,第一传感器用于检测第一监测点的气压Pr1。第二传感器设置于叶片主体的截面翼型,第二传感器具有露出到外侧的第二监测点,第二传感器用于检测第二监测点的气压Pr2,在截面翼型的弦向上,第一监测点比第二监测点更靠近截面翼型的后缘,第二监测点被配置为在截面翼型的攻角达到失速攻角时出现流动分离。处理器与第一传感器和第二传感器通信连接,并用于基于Pr1和Pr2的值识别截面翼型是否出现失速。
第三方面,本申请提供一种风电机组,其包括第二方面提供的风电叶片。
在本申请的风电机组、风电叶片及风电叶片截面翼型的失速监测方法中,通过实时监测第一监测点的气压Pr1以及第二监测点的气压Pr2,并通过比较Pr1和Pr2的值,有效地监测出截面翼型表面的失速状态。本申请实施例能够有效地监测出截面翼型表面的失速状态,从而反馈给主控系统进行风电叶片运行状态的调节,对风电叶片进行变桨,使风电叶片长期处于一个较优工况下运行,进而改良风电叶片的气动性能,提高风电机组的输出功率和增大风电叶片的风能利用效率。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一些实施例提供的风电叶片截面翼型的失速监测方法的流程图;
图2为本申请一些实施例提供的风电叶片的示意图;
图3为图2所示的风电叶片的截面翼型的示意图;
图4为图3在方框处的放大示意图;
图5为图3所示的截面翼型的升力特征曲线图;
图6为图3所示的截面翼型的压力分布特征曲线图。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
如图1至图4所示,本申请实施例提供了一种风电叶片截面翼型的失速监测方法,其包括:
步骤S100、确定截面翼型11的第一监测点P1和第二监测点P2,在截面翼型11的弦向X上,第一监测点P1比第二监测点P2更靠近截面翼型11的后缘1a;
步骤S200、获取第一监测点P1的气压Pr1以及第二监测点P2的气压Pr2;
步骤S300、基于Pr1和Pr2的值识别截面翼型11是否出现失速。
在步骤S100中,第二监测点P2被配置为在截面翼型11的攻角达到失速攻角时出现流动分离。
流动分离是一种流动现象,具体而言,流动分离是流体沿着物体表面发展时,流动不再附着在物体表面的现象。流动分离常伴随着回流、较大尺度漩涡运动和流动掺混等现象。翼型的大范围流动分离会导致气动升力下降,阻力剧增,及失速的现象发生,从而导致气动效率大幅度下降。
失速攻角也可称为临界攻角。当截面翼型11的攻角超过失速攻角后,截面翼型11的升力会减小,引发截面翼型11出现失速。
截面翼型失速特性,是由其气流边界层的演化决定的。边界层是流体力学概念,是对于雷诺数相对较高的流动,靠近物体表面的流向速度梯度变化比较大的、流动的粘性剪切应力不可以忽略的薄层区域。
在出现流动分离的区域内,截面翼型表面的压力梯度接近于零,这就是所谓的“压力平台区”。当截面翼型11的攻角超过失速攻角时,背风面的流动分离点(压力平台的起始位置)快速向截面翼型11的前缘移动,造成背风面较大范围内的流动分离。背风面较大范围内的流动分离会引发失速。
当截面翼型11在附着流动条件下运行时,截面翼型11的背风面上的流体会在背风面上形成边界层,此时第一监测点P1和第二监测点P2处均不易出现流动分离的现象。由于边界层中逆压梯度的作用,第一监测点P1的气压Pr1与第二监测点P2的气压Pr2之间会存在一定的压力差。通过 比较Pr1和Pr2,可以识别截面翼型11是否出现失速。
当截面翼型11在分离流动条件下运行时,截面翼型11的后缘1a处会发生流动分离并形成分离涡。随着攻角的增大,分离涡会沿着弦向X从后缘1a向前缘延伸。当分离涡延伸至第一监测点P1时且未延伸到第二监测点P2时,虽然背风面的出现了一定程度的流动分离,但截面翼型11还未出现失速。当分离涡延伸至第一监测点P1时且未延伸到第二监测点P2时,第一监测点P1的气压Pr1与第二监测点P2的气压Pr2之间仍然会存在一定的差值;通过比较Pr1和Pr2,可以识别截面翼型11是否出现失速。
当分离涡延伸至第二监测点P2时,背风面的出现了较为严重的流动分离,截面翼型11出现失速或即将出现失速。此时,第一监测点P1和第二监测点P2同时出现流动分离,第一监测点P1的气压Pr1与第二监测点P2的气压Pr2之间的差值较小;通过比较Pr1和Pr2,可以识别截面翼型11是否出现失速。
在本申请实施例中,通过监测第一监测点P1的气压Pr1以及第二监测点P2的气压Pr2,并比较Pr1和Pr2的值,可以有效地监测出截面翼型11表面的失速状态。
风电叶片1在运行过程中,失速攻角可能会因为运行工况发生变化而出现不同程度的变化,但失效攻角对应的第二监测点P2的位置较为稳定。相较于通过监测攻角来判断截面翼型11是否失速的方案,本申请实施例可以提高监测的准确性。
相对于通过风电机组运行特性参数(如功率、载荷特性、加速度特性以及间接测量的局部攻角等)的方式判定失速的方案,本申请的监测方式更准确,原因是风场运行特性和风况参数的测量都具有不确定性,机组功率特性的变化并非都是由叶片失速引起。通过风电机组的功率、转速等参数判定失速的方式是一种后验的监控方式,而本申请的失速监测方法是可以作为主动的、预先的失速控制方式的判断基础。
本申请实施例能够有效地监测出截面翼型11表面的失速状态,从而反馈给主控系统进行风电叶片1运行状态的调节,对风电叶片1进行变 桨,使截面翼型11长期处于一个较优工况下运行,进而改良截面翼型11的气动性能,提高风电机组的输出功率和增大风电叶片1的风能利用效率。另外,主控系统根据截面翼型11的失速状态对风电叶片1运行状态的进行调节,还能够降低风电叶片1损伤,保护风电叶片1,延长风电叶片1的使用寿命。
本申请实施例不仅仅能够实现额度工况下的监测,还考虑到额定工况前的监测,实现了切入风速后全风况的监测。
在一些实施例中,步骤S100包括:
步骤S110、获取风电叶片1的一截面翼型11的信息;
步骤S120、获取截面翼型11在多个攻角下的出现流动分离的区域;
步骤S130、在截面翼型11的攻角达到失速攻角时,截面翼型11的背风面出现流动分离的起始点作为第二监测点P2;
步骤S140、在截面翼型11的攻角达到第一预设攻角时,截面翼型11的背风面出现流动分离的起始点作为第一监测点P1,第一预设攻角小于失速攻角。
步骤S130、S140的执行不分先后,也可以同时进行。
在步骤S110中,获取的截面翼型11信息可以为风电叶片1的任意基准翼型的信息。示例性地,在步骤S110中,可获取风电叶片1的气动外形信息,基准翼型信息、根据运行风速范围计算运行雷诺数等信息。
在本申请实施例可通过多种方式获取截面翼型11在多个攻角下的出现流动分离的区域。本申请实施例对步骤S120中的攻角的数量不作限制。
在步骤S130和S140中,“截面翼型11的背风面出现流动分离的起始点”可为在当前攻角下压力平台的起始位置。
本申请实施例不限制第一预设攻角与失速攻角的差值。
在本申请实施例中,通过对风电叶片1的截面翼型11进行分析,以确定第一监测点P1和第二监测点P2的位置,从而提高失速状态监测的准确性。
在一些实施例中,步骤S120包括步骤S121:获取截面翼型11的升力 特征曲线和压力分布特征曲线,以获取截面翼型11在多个攻角下的出现流动分离的区域。
示例性地,图5和图6示出了某一截面翼型的升力特征曲线和压力分布特征曲线。图5的横坐标为截面翼型的攻角,图5的纵坐标为升力系数。图6的左右方向为截面翼型从前缘到后缘的方向,即在图6中,左端为截面翼型的前缘,右端为截面翼型的后缘。图6的纵坐标为压力系数。
如图5和图6所示,在某特定流动工况下,当风电叶片1的截面翼型11运行在失速攻角α之前的线性区攻角(如图5的A点-线性区工作点对应的攻角)时,截面翼型11背风面处于附着流动的状态,无明显的压力平台区域,流动分离点(压力平台的起始点,即图6中的A-线性区工作点近似分离位置)位于后缘1a附近;且在整个线性区范围内,截面翼型11背风面的流动分离点几乎均为后缘1a位置。示例性地,在弦向X上,A-线性区工作点近似分离位置和后缘1a的间距为截面翼型11的弦长的0-0.03倍。
当截面翼型11运行攻角离开线性区,靠近失速攻角α时(如图5的B-近失速区工作点对应的攻角),此时截面翼型11背风面后缘1a附近已经出现一定程度的流动分离,流动分离点(压力平台的起始点,即图6中的B-近失速区工作点近似分离位置)已经朝向前缘1b移动了一定的距离。示例性地,在弦向X上,B-近失速区工作点近似分离位置和后缘1a的间距为截面翼型11的弦长的0.05-0.08倍。
当截面翼型11运行攻角到达失速攻角α时(如图5的C-临界失速工作点对应的攻角),流动分离点(压力平台的起始点,即图6中的C-临界失速工作点近似分离位置)继续朝向前缘1b移动了一定的距离。示例性地,在弦向X上,C-临界失速工作点近似分离位置和后缘1a的间距为截面翼型11的弦长的0.15-0.20倍。
当截面翼型11运行攻角进一步增加到达深失速区(如图5的D-失速区工作点对应的攻角),流动分离点(压力平台的起始点,即图6中的D-失速区工作点近似分离位置)快速朝向前缘1b移动,升力系数骤降。示例性地,在弦向X上,D-失速区工作点近似分离位置和后缘1a的间距大 于截面翼型11的弦长的0.4倍。
根据截面翼型11气动特性曲线和压力分布特征,可以C-临界失速工作点对应的攻角下的流动分离点作为关键气动特征的流场监测点,可以背风面靠近后缘1a的监测点作为压力梯度参考点。换言之,可以图6中的A-线性区工作点近似分离位置作为第一监测点P1,以图6中的C-临界失速工作点近似分离位置作为第二监测点P2。
本申请实施例根据获取的截面翼型11的升力特征曲线和压力分布特征曲线,可获取截面翼型11在多个攻角下的出现流动分离的区域,进一步提高第一监测点P1和第二监测点P2的精度,提高失速状态监测的准确性。
在一些实施例中,为了提高该监测方法对于不同环境的适应性,可以综合考虑不同运行雷诺数工况、不同表面粗糙工况的下,失速攻角α对应的背风面流动分离点的位置,作为临界失速特性的关键监测点(即第二监测点P2)。
如表1,给出了某截面翼型在不同雷诺数工况和表面粗糙状况下的失速攻角对应的背风面流动分离点的位置。在表1中,流动分离点位置为:流动分离点与前缘沿弦向的间距与翼型弦长的比值。
表1
可以看出,尽管当运行工况,诸如雷诺数、表面粗糙状况等发生变化时,截面翼型11的失速攻角α会有不同程度的变化,但是失速攻角α对应的背风面流动分离点的位置确较为稳定。表1进一步表明了通过监测攻角来判断截面翼型11是否失速的方案的不确定性,而本申请通过监测流动分离点的压力的方式判定是否失速,可以提高判定的准确性。
本申请实施例不仅仅可以实现早运行周期的截面翼型状态监测,同样可以监测叶片表面不同程度状态粗糙条件下的失速情况。
在一些实施例中,步骤S300包括:基于Pr1和Pr2的差值,识别截面翼型11是否出现失速。
示例性地,当Pr2-Pr1>DPR3时,判定截面翼型11处于未失速状态;当Pr2-Pr1≤DPR3时,判定截面翼型11处于完全失速状态。DPR3的值可根据截面翼型11的具体要求确定。
在一些实施例中,失速监测方法还包括步骤S400:获取第三监测点P3的气压Pr3,第三监测点P3位于第一监测点P1和第二监测点P2之间。步骤S300包括:基于Pr2-Pr3的值以及Pr3-Pr1的值,识别截面翼型11是否出现失速。
步骤S400与步骤S200的执行不分先后,也可以同时进行。
可选地,根据截面翼型11气动特性曲线和压力分布特征,可以B-近失速区工作点对应的攻角下的流动分离点作为关键气动特征的流场监测点。换言之,以图6中的B-近失速区工作点近似分离位置作为第三监测点P3。第三监测点P3可作为预警监测点。
示例性地,当Pr3-Pr1>DPR1,判定截面翼型11处于未失速状态;当Pr3-Pr1≤DPR1且Pr2-Pr3>DPR2时,判定截面翼型11处于近失速状态;当Pr2-Pr3≤DPR2时,判定截面翼型11处于完全失速状态。
DPR1、DPR2或DPR3为失速状态临界判据参数,具体数值需要根据不同的截面翼型11分离区压力梯度计算分析得到(不同截面翼型11有不同的值)。
本申请实施例通过设置第三监测点P3,可以对截面翼型11的失速提前预警,从而给风电机组的主控系统预留反应时间,降低风电叶片1损伤,保护风电叶片1,延长风电叶片1的使用寿命。
在一些实施例中,第三监测点P3被配置为在截面翼型11的攻角达到第二预定攻角时出现流动分离。失速攻角为α,第二预定攻角为β,α-β为1°-2°。可选地,α-β为1°。
α-β具有较小的差值,这样可以改善第三监测点P3的预警效果。
在一些实施例中,通过压电传感器获取第一监测点P1的气压Pr1以及第二监测点P2的气压Pr2。
压电传感器是一种压力传感器,其基于压电效应,将物体表面正压力转化为电信号的变化实现对压力的测量。基于压电效应的压力测试技术是一种接触式压力测量技术,测量范围宽(低至100mPa),采样频率高(高达30kHz)。压电传感器体积小,结构简单,环境和气候适应性高。
示例性地,通过获取截面翼型11的升力特征曲线和压力分布特征曲线,确定第一监测点P1和第二监测点P2的位置。然后,在与第一监测点P1和第二监测点P2对应的位置安装压电传感器,以检测气压Pr1和气压Pr2。
本申请实施例利用压电传感器检测气压,可以提高环境适应性,提升检测的精度。
示例性地,相较于传统的利用皮托管测压的方案,压电传感器的稳定性高,不易受环境(沙尘、降雨等堵塞皮托管)因素影响,环境和气候的适应性高。
在一些实施例中,通过压电传感器获取第三监测点P3的气压Pr3。
在一些实施例中,步骤S200包括:
步骤S210、在预设时间间隔t内,连续获取的第一监测点P1的多个气压,并以第一监测点P1的多个气压的平均值作为气压Pr1;
步骤S220、在预设时间间隔t内,连续获取的第二监测点P2的多个气压,并以第二监测点P2的多个气压的平均值作为气压Pr2。
示例性地,t可为10s、30s、60s。
步骤S210和步骤S220的执行不分先后,也可以同时执行。
本申请实施例可以提高气压Pr1和气压Pr2的精度,减少因气压短暂波动引发的误判。
在一些实施例中,步骤S400包括:在预设时间间隔t内,连续获取的第三监测点P3的多个气压,并以第三监测点P3的多个气压的平均值作为气压Pr3。
在一些实施例中,在弦向X上,第一监测点P1与截面翼型11的后缘1a的距离为L1,截面翼型11的弦长为W,L1/W为0-0.03。
示例性地,截面翼型11的弦长为W为第一监测点P1所处的翼型的弦 长。
在一些实施例中,在弦向X上,第二监测点P2与截面翼型11的后缘1a的距离为L2,L2/W为0.15-0.2。
在一些实施例中,在弦向X上,第三监测点P3与截面翼型11的后缘1a的距离为L3,L3/W为0.05-0.08。
在一些实施例中,处于微风、超低风速下(切入风速前)的状态监测与主控系统作用不大,可以结合主控系统的信息(风速、转速)等,对截面翼型11失速状态和相应的失速保护控制作进一步的动作。
在一些实施例中,风电叶片截面翼型的失速监测方法包括:
S110、获取风电叶片1的一截面翼型11的信息;
S121、获取截面翼型11的升力特征曲线和压力分布特征曲线,以获取截面翼型11在多个攻角下的出现流动分离的区域;
S130、在截面翼型11的攻角达到失速攻角时,截面翼型11的背风面出现流动分离的起始点作为第二监测点P2;
S140、在截面翼型11的攻角达到第一预设攻角时,截面翼型11的背风面出现流动分离的起始点作为第一监测点P1,第一预设攻角小于失速攻角;
S200、获取第一监测点P1的气压Pr1以及第二监测点P2的气压Pr2;
S300、基于Pr1和Pr2的值识别截面翼型11是否出现失速。
在步骤S130和S140中,获取截面翼型11背风面关键的压力监测点。在步骤S200中,对第一监测点P1和第二监测点P2的压力数据进行了实时采集与处理。步骤S300是对截面翼型11的失速状态的判定。
请一并参照图2至图4,本申请实施例还提供了一种风电叶片1,其包括叶片主体12、第一传感器13、第二传感器14和处理器15。第一传感器13设置于叶片主体12的一截面翼型11,第一传感器13具有露出到外侧的第一监测点P1,第一传感器13用于检测第一监测点P1的气压Pr1。第二传感器14设置于叶片主体12的截面翼型11。第二传感器14具有露出到外侧的第二监测点P2,第二传感器14用于检测第二监测点P2的气压 Pr2,在截面翼型11的弦向X上,第一监测点P1比第二监测点P2更靠近截面翼型11的后缘1a,第二监测点P2被配置为在截面翼型11的攻角达到失速攻角时出现流动分离。处理器15与第一传感器13和第二传感器14通信连接,并用于基于Pr1和Pr2的值识别截面翼型11是否出现失速。
第一传感器13露出到外侧的外表面可作为第一监测点P1;第二传感器14露出到外侧的外表面可作为第二监测点P2。
处理器15可以位于叶片主体12的内部,也可以位于叶片主体12的外部。处理器15可以与风电机组的主控系统信号连接,也可以是主控系统的一部分。
本申请实施例通过在风电叶片1上设置第一传感器13和第二传感器14,以实时监测第一监测点P1的气压Pr1以及第二监测点P2的气压Pr2,并通过比较Pr1和Pr2的值,有效地监测出截面翼型11表面的失速状态。本申请实施例能够有效地监测出截面翼型11表面的失速状态,从而反馈给主控系统进行风电叶片1运行状态的调节,对风电叶片1进行变桨,使风电叶片1长期处于一个较优工况下运行,进而改良风电叶片1的气动性能,提高风电机组的输出功率和增大风电叶片1的风能利用效率。
在一些实施例中,风电叶片1还包括设置于叶片主体12的第三传感器16。第三传感器16位于第一传感器13和第二传感器14之间。
示例性地,第三传感器16具有露出到外侧的第三监测点P3。第三传感器16用于检测第三监测点P3的气压Pr3。
通过设置第三传感器16,可以对截面翼型11的失速提前预警,从而给风电机组的主控系统预留反应时间,降低风电叶片1损伤,保护风电叶片1,延长风电叶片1的使用寿命。
在一些实施例中,第一传感器13和第二传感器14均为压电传感器。利用压电传感器检测气压,可以提高环境适应性,提升检测的精度。
在一些实施例中,第三传感器16为压电传感器。
在一些实施例中,叶片主体12设有第一通孔121和第二通孔122,第一传感器13设于第一通孔121,第二传感器14设于第二通孔122。第一传感器13的外表面与叶片主体12的外表面齐平,第二传感器14的外表 面与叶片主体12的外表面齐平。
本申请实施例通过在叶片主体12上开设第一通孔121和第二通孔122,可以使第一传感器13和第二传感器14露出,从而使第一传感器13和第二传感器14能够实时检测气压。第一传感器13的外表面、第二传感器14的外表面均与叶片主体12的外表面齐平,这样可以改善风电叶片1的平整性。
在一些实施例中,第一传感器13密封第一通孔121,第二传感器14密封第二通孔122,这样可以降低杂质进入叶片主体12内部的风险。
在一些实施例中,叶片主体12还包括第三通孔123,第三传感器16设于第三通孔123。
本申请实施例还提供了一种风电机组,其包括前述任一实施例的风电叶片1。
在一些实施例中,风电机组主要包括塔筒、机舱、发电机以及叶轮,机舱设置于塔筒的顶端,发电机设置于机舱,可以位于机舱的内部,当然,也可以位于机舱的外部。叶轮是风电机组的能量转换装置,它的作用是将风能转换为机械能,利用叶轮的转动,带动发电机发电。叶轮主要包括风电叶片1和轮毂。两个以上风电叶片1分别与轮毂连接,风电叶片1在风载的作用下带动轮毂转动,进而实现发电机的发电。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种风电叶片截面翼型的失速监测方法,包括:
    确定截面翼型的第一监测点和第二监测点,在所述截面翼型的弦向上,所述第一监测点比所述第二监测点更靠近所述截面翼型的后缘;
    获取所述第一监测点的气压Pr1以及所述第二监测点的气压Pr2;
    基于Pr1和Pr2的值识别所述截面翼型是否出现失速;
    其中,所述第二监测点被配置为在所述截面翼型的攻角达到失速攻角时出现流动分离。
  2. 根据权利要求1所述的失速监测方法,其中,所述确定截面翼型的第一监测点和第二监测点的步骤包括:
    获取风电叶片的一截面翼型的信息;
    获取所述截面翼型在多个攻角下的出现流动分离的区域;
    在所述截面翼型的攻角达到失速攻角时,所述截面翼型的背风面出现流动分离的起始点作为所述第二监测点;
    在所述截面翼型的攻角达到第一预设攻角时,所述截面翼型的背风面出现流动分离的起始点作为所述第一监测点,所述第一预设攻角小于所述失速攻角。
  3. 根据权利要求2所述的失速监测方法,其中,所述获取所述截面翼型在多个攻角下的出现流动分离的区域的步骤包括:
    获取所述截面翼型的升力特征曲线和压力分布特征曲线,以获取所述截面翼型在多个攻角下的出现流动分离的区域。
  4. 根据权利要求1所述的失速监测方法,其中,所述基于Pr1和Pr2的值识别所述截面翼型是否出现失速的步骤包括:
    基于Pr1和Pr2的差值,识别所述截面翼型是否出现失速。
  5. 根据权利要求1所述的失速监测方法,其中,还包括获取第三监测点的气压Pr3,所述第三监测点位于所述第一监测点和所述第二监测点之间;
    所述基于Pr1和Pr2的值识别所述截面翼型是否出现失速的步骤包 括:基于Pr2-Pr3的值以及Pr3-Pr1的值,识别所述截面翼型是否出现失速。
  6. 根据权利要求5所述的失速监测方法,其中,
    所述第三监测点被配置为在所述截面翼型的攻角达到第二预定攻角时出现流动分离;
    所述失速攻角为α,所述第二预定攻角为β,α-β为1°-2°。
  7. 根据权利要求1所述的失速监测方法,其中,通过压电传感器获取所述第一监测点的气压Pr1以及所述第二监测点的气压Pr2。
  8. 根据权利要求1所述的失速监测方法,其中,所述获取所述第一监测点的气压Pr1以及所述第二监测点的气压Pr2的步骤包括:
    在预设时间间隔内,连续获取的所述第一监测点的多个气压,并以所述第一监测点的多个气压的平均值作为气压Pr1;
    在所述预设时间间隔内,连续获取的所述第二监测点的多个气压,并以所述第二监测点的多个气压的平均值作为气压Pr2。
  9. 根据权利要求1所述的失速监测方法,其中,
    在所述弦向上,所述第一监测点与所述截面翼型的后缘的距离为L1,所述截面翼型的弦长为W,L1/W为0-0.03;
    在所述弦向上,所述第二监测点与所述截面翼型的后缘的距离为L2,L2/W为0.15-0.2。
  10. 一种风电叶片,包括:
    叶片主体;
    第一传感器,设置于所述叶片主体的一截面翼型,所述第一传感器具有露出到外侧的第一监测点,所述第一传感器用于检测所述第一监测点的气压Pr1;
    第二传感器,设置于所述截面翼型,所述第二传感器具有露出到外侧的第二监测点,所述第二传感器用于检测所述第二监测点的气压Pr2,在所述截面翼型的弦向上,所述第一监测点比所述第二监测点更靠近所述截面翼型的后缘,所述第二监测点被配置为在所述截面翼型的攻角达到失速攻角时出现流动分离;以及
    处理器,与所述第一传感器和所述第二传感器通信连接,并用于基于Pr1和Pr2的值识别所述截面翼型是否出现失速。
  11. 根据权利要求10所述的风电叶片,其中,还包括设置于所述截面翼型的第三传感器;
    所述第三传感器位于所述第一传感器和所述第二传感器之间。
  12. 根据权利要求10所述的风电叶片,其中,所述第一传感器和所述第二传感器均为压电传感器。
  13. 根据权利要求10所述的风电叶片,其中,所述叶片主体设有第一通孔和第二通孔,所述第一传感器设于所述第一通孔,所述第二传感器设于所述第二通孔;
    所述第一传感器的外表面与所述叶片主体的外表面齐平,所述第二传感器的外表面与所述叶片主体的外表面齐平。
  14. 一种风电机组,包括根据权利要求10-13任一项所述的风电叶片。
PCT/CN2023/102860 2022-11-22 2023-06-27 风电机组、风电叶片及风电叶片截面翼型的失速监测方法 WO2024109027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211467524.2 2022-11-22
CN202211467524.2A CN115929565A (zh) 2022-11-22 2022-11-22 风电机组、风电叶片及风电叶片截面翼型的失速监测方法

Publications (1)

Publication Number Publication Date
WO2024109027A1 true WO2024109027A1 (zh) 2024-05-30

Family

ID=86651694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102860 WO2024109027A1 (zh) 2022-11-22 2023-06-27 风电机组、风电叶片及风电叶片截面翼型的失速监测方法

Country Status (2)

Country Link
CN (1) CN115929565A (zh)
WO (1) WO2024109027A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115929565A (zh) * 2022-11-22 2023-04-07 中材科技风电叶片股份有限公司 风电机组、风电叶片及风电叶片截面翼型的失速监测方法
CN117780556A (zh) * 2023-10-31 2024-03-29 北京金风科创风电设备有限公司 风力发电机组的变桨控制方法及风力发电机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725466A (zh) * 2008-10-23 2010-06-09 西门子公司 使用压力传感器的失速检测
CN101876294A (zh) * 2009-04-30 2010-11-03 通用电气公司 具有失速传感器的风力涡轮叶片和检测叶片失速的方法
EP3715627A1 (de) * 2019-03-28 2020-09-30 Wobben Properties GmbH Verfahren zur bestimmung einer den dynamischen auftrieb beeinflussenden anströmsituation an wenigstens einem rotorblatt
CN113330211A (zh) * 2018-11-07 2021-08-31 德国普利泰克风能技术股份有限公司 通过检测失速来改善或优化风力发电设备的产出
CN215672538U (zh) * 2021-09-24 2022-01-28 上海电气风电集团股份有限公司 风力机叶片及其表面失速测量装置
CN115929565A (zh) * 2022-11-22 2023-04-07 中材科技风电叶片股份有限公司 风电机组、风电叶片及风电叶片截面翼型的失速监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725466A (zh) * 2008-10-23 2010-06-09 西门子公司 使用压力传感器的失速检测
CN101876294A (zh) * 2009-04-30 2010-11-03 通用电气公司 具有失速传感器的风力涡轮叶片和检测叶片失速的方法
CN113330211A (zh) * 2018-11-07 2021-08-31 德国普利泰克风能技术股份有限公司 通过检测失速来改善或优化风力发电设备的产出
EP3715627A1 (de) * 2019-03-28 2020-09-30 Wobben Properties GmbH Verfahren zur bestimmung einer den dynamischen auftrieb beeinflussenden anströmsituation an wenigstens einem rotorblatt
CN215672538U (zh) * 2021-09-24 2022-01-28 上海电气风电集团股份有限公司 风力机叶片及其表面失速测量装置
CN115929565A (zh) * 2022-11-22 2023-04-07 中材科技风电叶片股份有限公司 风电机组、风电叶片及风电叶片截面翼型的失速监测方法

Also Published As

Publication number Publication date
CN115929565A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024109027A1 (zh) 风电机组、风电叶片及风电叶片截面翼型的失速监测方法
US8408871B2 (en) Method and apparatus for measuring air flow condition at a wind turbine blade
Giguere et al. Low Reynolds number airfoils for small horizontal axis wind turbines
US10371124B2 (en) System and method for determining wind farm wake loss
JP5033033B2 (ja) 水平軸風車の乱流強度計測方法
CN101672247A (zh) 调整风力涡轮机叶片的桨距的方法和装置
CN110761958B (zh) 风力发电机组的叶片失速诊断方法及装置
CN101806277A (zh) 用于检测风力涡轮机叶片运转的空气动力学装置
US9926912B2 (en) System and method for estimating wind coherence and controlling wind turbine based on same
DK178185B1 (en) Methods for using site specific wind conditions to determine when to install a tip feature on a wind turbine rotor blade
EP2442089A1 (en) System and Method for Controlling Wind Turbine Blades
CN114966392A (zh) 一种风机工作异常的检测方法
Lee et al. Design optimization of wind turbine blades for reduction of airfoil self-noise
Al-Abadi et al. Turbulence impact on wind turbines: experimental investigations on a wind turbine model
WO2016066170A1 (en) Turbulence sensor for wind turbines
JP2022107523A (ja) 風の乱流のアクティブセンシングを用いた風力タービンのための推力制御
WO2023246062A1 (zh) 电力智能视频分析监控结构、系统、方法及其存储介质
Li et al. Effects of offset blade on aerodynamic characteristics of small-scale vertical axis wind turbine
CN215672538U (zh) 风力机叶片及其表面失速测量装置
CN115478993A (zh) 风力发电机组叶片失速监测方法及系统
CN114076065A (zh) 识别风力发电机组的叶片失速的方法及设备
Moriarty Development and validation of a semi-empirical wind turbine aeroacoustic code
EP3406897B1 (en) System and method for determining wind farm wake loss
EP3073241A1 (en) Analyzing the boundary layer of a rotor blade
Maddula et al. Trailing Edge Thickness Effect on Tonal Noise Emission Characteristics from Wind Turbine Blades