WO2024108912A1 - 一种带有自浮动内芯的光纤连接器 - Google Patents

一种带有自浮动内芯的光纤连接器 Download PDF

Info

Publication number
WO2024108912A1
WO2024108912A1 PCT/CN2023/092847 CN2023092847W WO2024108912A1 WO 2024108912 A1 WO2024108912 A1 WO 2024108912A1 CN 2023092847 W CN2023092847 W CN 2023092847W WO 2024108912 A1 WO2024108912 A1 WO 2024108912A1
Authority
WO
WIPO (PCT)
Prior art keywords
support sleeve
groove
sleeve
self
adhesive
Prior art date
Application number
PCT/CN2023/092847
Other languages
English (en)
French (fr)
Inventor
孙明杰
高剑
杨晓楠
董伟强
李卫可
武学顺
Original Assignee
中航光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中航光电科技股份有限公司 filed Critical 中航光电科技股份有限公司
Publication of WO2024108912A1 publication Critical patent/WO2024108912A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the invention relates to an optical fiber connector, in particular to an optical fiber connector with a self-floating inner core.
  • Outdoor fiber optic connectors are widely used in outdoor RRU equipment.
  • the fiber optic interface is mostly in the form shown in Figure 19, including a built-in optical module plug and an external socket.
  • the optical module plug is used to transmit optical signals after docking with the optical fiber connector, and the socket cooperates with the outer shell of the optical fiber connector to play the role of tensile resistance and sealing of the connector.
  • the adapted optical fiber connector is required to have high versatility, that is, the connector must have axial adjustable function to adapt to the equipment requirements of different manufacturers.
  • the structural features of existing outdoor optical fiber connectors usually include a plug assembly and a floating mechanism.
  • the floating mechanism includes an outer shell, a bracket and an adhesive sleeve.
  • the bracket can move relative to the adhesive sleeve along the axial direction, and the outer shell can rotate and move relative to the bracket.
  • the front end of the outer shell is provided with a locking structure that matches the socket.
  • the adhesive sleeve is provided with a locking tooth
  • the rear end of the bracket is provided with a locking claw.
  • a locking groove that matches the locking claw is formed between two adjacent locking teeth.
  • the inner wall of the outer shell is provided with an inner conical surface that matches the locking claw, which is used to lock the locking claw to achieve the locking and tensile resistance functions of the connector.
  • the operator When in use, the operator first inserts the plug assembly into the corresponding socket, adjusts the position of the bracket relative to the adhesive sleeve, and then moves the outer shell.
  • the connecting structure on the outer shell cooperates with the corresponding structure on the socket to achieve locking.
  • the inner conical surface of the outer shell squeezes the locking claw on the bracket to make it stuck in the locking groove, thereby achieving tensile resistance of the cable.
  • the existing structure can only realize the deflection in the axial direction, that is, the single direction of the connector insertion direction.
  • the existing structure uses a step-by-step method to adjust the axial distance, and the adjustment distance is an integer multiple of the center distance between two adjacent lock grooves of the bonding sleeve.
  • the adjustment distance is not an integer multiple of the center distance, during use, when the bracket moves the adjustment distance, the locking claw will not fall directly into the lock groove, but will fall into other lock grooves under the thrust of the corresponding conical surface of the outer shell, resulting in a certain deviation between the bracket and the standard adjustment distance, which leads to two problems:
  • the present invention provides an optical fiber connector with a self-floating inner core.
  • a fiber optic connector with a self-floating inner core includes a plug assembly, an adhesive sleeve, and a support sleeve made of elastic material, one end of the support sleeve is connected to the plug assembly, and the other end is connected to the adhesive sleeve; the end of the optical cable is nested in the support sleeve, and the support sleeve is provided with an internal cavity for the optical fiber to pass through.
  • a groove is provided on the support sleeve to provide an escape space for the support sleeve to bend in the radial direction, the groove is axially distributed on the outer wall of the support sleeve, and the extension direction of the groove is perpendicular to the axial direction of the support sleeve.
  • the cross-sectional shape of the support sleeve body in the radial direction is a rectangle, and the groove includes a support sleeve groove I and a support sleeve groove II.
  • the support sleeve groove I is arranged on the wide side of the support sleeve, and the support sleeve groove II is arranged on the narrow side of the support sleeve.
  • the support sleeve groove I and the support sleeve groove II are staggered with each other in the axial direction.
  • the cross-section of the support sleeve body is circular or elliptical.
  • a connecting protrusion extending axially is provided at the front end of the support sleeve, a through hole connected to the internal cavity is provided in the connecting protrusion, and a card block is provided at the front end of the connecting protrusion; the connecting protrusion and the card block are nested in the cavity of the plug assembly to realize the tensile resistance function between the support sleeve and the plug assembly.
  • a connecting groove is provided on the connecting protrusion at the front end of the support sleeve or the through groove at the rear end of the plug assembly
  • a connecting key is correspondingly provided on the through groove at the rear end of the plug assembly or the connecting protrusion at the front end of the support sleeve, and the connecting groove and the connecting key cooperate with each other.
  • the rear end portion of the support sleeve is located in the cavity of the front end portion of the adhesive sleeve, and the cavity of the front end portion of the adhesive sleeve is filled with glue to fix the support sleeve.
  • a limit key and an axially extending reinforcing protrusion are provided at the rear end of the support sleeve, a limit key groove cooperating with the limit key is provided on the inner wall of the front end of the adhesive sleeve, a through hole connected to the internal cavity for the branch optical fiber to pass through is provided on the reinforcing protrusion, and at least one glue injection hole is provided on the wall of the reinforcing protrusion).
  • a bracket is slidably sleeved on the outside of the plug assembly, the support sleeve, and the adhesive sleeve, and an outer shell is slidably sleeved on the outside of the bracket.
  • a plurality of locking teeth are axially distributed on the outer wall of the adhesive sleeve, and a locking groove is formed between two adjacent locking teeth;
  • a cantilever hole extending axially and penetrating the wall is provided on the wall of the bracket, an axially extending cantilever is provided in the cantilever hole, and a locking claw cooperating with the locking groove is provided on the end of the cantilever, so that the lock is in a natural state.
  • the claw is nested in the lock groove; a convex block is arranged on the outer wall of the cantilever, and an inner conical surface is arranged on the outer shell, and the inner conical surface squeezes the convex block to achieve a firm fit between the lock claw and the lock groove.
  • a guide key is arranged along the axial direction on the wall of the inner cavity of the bracket, and a sliding key groove which is slidably matched with the guide key is arranged on the outer wall of the adhesive sleeve.
  • the advantages of the present invention lie in that, based on the existing connector, the present invention uses a support sleeve as a branch component between the adhesive sleeve and the plug assembly to replace the original branch structure, and on the basis of retaining the step-by-step floating structure of the adhesive sleeve, a secondary floating function is added to realize a two-stage floating function, thereby compensating for the primary floating structure of the plug.
  • the inner core plug can swing along any radial direction to realize floating functions in multiple directions, thereby solving the problem that the original structure can only axially deflect in a single direction, and at the same time solving the problem that the existing connector assembly requirements are too high and the product failure rate is high.
  • FIG1 is a cross-sectional view of a first embodiment of the present invention.
  • FIG2 is an exploded schematic diagram of the embodiment shown in FIG1 ;
  • FIG3 is a schematic diagram of an inner core component in the embodiment shown in FIG1 ;
  • FIG4 is a cross-sectional view of the embodiment shown in FIG3 after the tail sheath is removed;
  • FIG5 is a schematic diagram of the bracket in the embodiment shown in FIG1 ;
  • FIG6 is a schematic diagram of an outer shell in the embodiment shown in FIG1 ;
  • FIG7 is an exploded schematic diagram of the plug assembly in the embodiment shown in FIG1 ;
  • FIG8 is a schematic diagram of the support sleeve in the embodiment shown in FIG1 ;
  • FIG9 is a schematic diagram of FIG8 from another viewing angle
  • FIG10 is a cross-sectional view of FIG8
  • FIG11 is a front view of FIG8
  • FIG12 is a top view of FIG11
  • FIG13 is a schematic diagram of a support sleeve in Embodiment 2 of the present invention.
  • FIG14 is a schematic diagram of a support sleeve in Embodiment 3 of the present invention.
  • FIG16 is a schematic diagram of the assembly of the support sleeve and the adhesive sleeve in Embodiment 1 of the present invention.
  • FIG17 is a schematic diagram of the assembly of the bonding sleeve and the tail sleeve in the first embodiment of the present invention.
  • FIG18 is a cross-sectional view of the bracket in Embodiment 1 of the present invention.
  • FIG19 is a schematic diagram of an existing RRU device
  • FIG. 20 is a schematic diagram of a multi-sheath structure in an existing connector.
  • 1-plug assembly 101-plug upper shell, 102-plug lower shell, 10201-connecting groove, 103-inner core plug, 2-support sleeve, 201-internal cavity, 202-connecting convex key, 203-support sleeve groove I, 204-support sleeve groove II, 205-glue filling hole, 206-limit key, 207-connecting protrusion, 208-block, 209-reinforcement protrusion, 3-adhesive sleeve, 301-locking tooth, 302-locking slot, 303-sliding key slot, 304-glue filling area, 305-limiting key slot, 4-tail sheath, 5-optical cable, 501-branching optical fiber, 6-bracket, 601-locking claw, 602-cantilever hole, 603-cantilever, 604-bump, 605-guide key, 7-outer shell, 701-inner cone, 8-RRU equipment, 9-s
  • Embodiment 1 of an optical fiber connector with a self-floating inner core of the present invention comprises an inner core component, a bracket 6, and an outer shell 7.
  • the inner core component comprises a plug assembly 1, a support sleeve 2, an adhesive sleeve 3, and a tail sheath 4.
  • the connector is connected to an optical cable 5 and is inserted into a socket of an RRU device, so that the plug assembly 1 is plugged into the optical module plug of the RRU device.
  • the plug assembly 1 includes an upper plug shell 101, a lower plug shell 102, and multiple inner core plugs 103.
  • the tail of the inner core plug 103 is stuck in the lower plug shell 102.
  • the upper plug shell 101 is fixed to the lower plug shell 102 through a snap-on structure cover and fixes the inner core plug 103.
  • the optical cable 5 passes through the tail sheath 4 and the bonding sleeve 3, and the optical cable 5 is divided into multiple branch optical fibers 501 in the bonding sleeve 3.
  • the branch optical fibers 501 pass through the bonding sleeve 3 and the support sleeve 2 in sequence and are connected to the corresponding inner core plugs 103.
  • the direction in which the optical cable 5 extends is the axial direction, the direction perpendicular to the axial direction is the radial direction, and the plug assembly 1 is the front end.
  • the cross-sectional shape of the main body of the support sleeve 2 in the radial direction is a rectangle.
  • the support sleeve 2 is provided with an internal cavity 201 for the branch optical fiber 501 to pass through along the axial direction.
  • the outer wall of the support sleeve 2 is provided with grooves, which include a support sleeve groove I 203 and a support sleeve groove II 204.
  • the support sleeve groove I 203 is provided on the wide side of the support sleeve 2, and the support sleeve groove II 204 is provided on the narrow side of the support sleeve 2, and the extension directions of the support sleeve groove I 203 and the support sleeve groove II 204 are perpendicular to the axial direction.
  • the support sleeve groove I 203 and the support sleeve groove II 204 are staggered with each other in the axial direction, so that when the support sleeve 2 is stretched, compressed or bent, a slight deflection of the inner core component is achieved.
  • the shape and size of the support sleeve 2 as an independent component can be adjusted according to the specific usage scenario and its internal structure.
  • the length and number of branch optical fibers accommodated in the support sleeve 2 are determined by the number and length of the branch optical fibers.
  • the cross-sectional shape of the support sleeve 2 body in the radial direction is rectangular.
  • the cross-sectional shape of the support sleeve 2 body in the radial direction is circular, as shown in FIG13.
  • the cross-sectional shape of the support sleeve 2 body in the radial direction can be elliptical or other shapes.
  • a plurality of groove groups are distributed circumferentially on the support sleeve 2, and the plurality of grooves in each groove group are aligned in the axial direction, and the grooves in the plurality of groove groups are staggered and distributed on the support sleeve 2.
  • the staggered grooves on the support sleeve 2 can be through grooves or non-through grooves.
  • the through grooves are connected to the internal cavity 201 of the support sleeve 2, and the non-through grooves are not connected to the internal cavity 201 of the support sleeve 2.
  • the grooves on the support sleeve 2 are non-through grooves.
  • the grooves on the support sleeve 2 are through grooves.
  • the extension direction of the grooves is determined according to the bending direction required by the connector. Since multiple groove groups are distributed circumferentially on the support sleeve 2, the support sleeve 2 can be bent in any direction, and the grooves provide avoidance space for the connector to bend.
  • the support sleeve 2 is made of flexible materials such as rubber, and can be stretched or compressed under the action of external force, thereby realizing the stretching and compression functions.
  • the interior of the support sleeve 2 is a hollow structure, and the diameter of its internal cavity is larger than the outer diameter of all branch optical fibers accommodated therein, so that multiple branch optical fibers of a multi-core optical cable can be freely stretched or bent therein.
  • the front end of the support sleeve 2 is provided with a connecting protrusion 207 that matches with the plug assembly 1 and extends axially.
  • a through hole that communicates with the internal cavity 201 is provided in the connecting protrusion 207 for the branch optical fiber 501 to pass through.
  • a clamping block 208 is provided at the front end of the connecting protrusion 207.
  • the outer wall of the connecting protrusion 207 is provided with a connecting convex key 202 in an annular direction.
  • the rear end of the plug lower shell 102 is provided with a through groove for the branch optical fiber 501 to pass through.
  • the through groove of the plug lower shell 102 matches the connecting protrusion 207, and the inner wall of the through groove is provided with a connecting groove 10201 that matches the connecting convex key 202.
  • the connecting protrusion 207 is nested in the through groove of the plug lower shell 102, and the clamping block 208 is clamped in the cavity of the plug lower shell 102.
  • the plug upper shell 101 is fixed on the plug lower shell 102 with a cover, so that the clamping block 208 is limited in the cavity of the plug lower shell 102, so as to realize the tensile resistance function between the support sleeve 2 and the plug assembly 1.
  • connection convex key 202 is nested in the connection groove 10201.
  • the tensile resistance of the support sleeve 2 and the plug assembly 1 is further enhanced, as shown in Figure 15.
  • the shape of the connection protrusion 207 is determined according to the corresponding structure of the matching plug assembly. If the lower plug housing 102 is provided with a connection convex key, the connection protrusion 207 can be provided with a connection groove matching the connection convex key to ensure reliable connection between the plug assembly 1 and the support sleeve 2.
  • the rear end of the support sleeve 2 is provided with a limit key 206 and a reinforcing protrusion 209 that match the bonding sleeve 3.
  • the outer wall of the rear end of the support sleeve 2 is provided with two limit keys 206, which extend in the radial direction and are symmetrically arranged.
  • the inner wall of the inner cavity of the front end of the bonding sleeve 3 is provided with a limit key groove 305 that matches the limit key 206 to achieve mechanical limit and anti-rotation functions.
  • the reinforcing protrusion 209 extends axially, and is provided with a through hole that extends axially and is connected to the internal cavity for the branch optical fiber to pass through.
  • At least one glue injection hole 205 is provided through the wall body.
  • the glue When the glue is injected into the glue injection area 304 of the inner cavity of the front end of the adhesive sleeve 3, the glue can flow through the glue injection hole 205 and play a tensile role after solidification.
  • the rear end of the support sleeve 2 is inserted into the cavity of the front end of the adhesive sleeve 3 so that the limit key 206 is nested in the limit key slot 305, and then glue is injected into the adhesive sleeve 3 to fix the support sleeve 2 and the adhesive sleeve 3, as shown in FIG16.
  • the front end of the tail sheath 4 is inserted into the cavity of the rear end of the adhesive sheath 3, and the two are fixed by a card slot structure, as shown in FIG17 .
  • the bracket 6 is sleeved on the outside of the inner core component
  • the outer shell 7 is sleeved on the outside of the bracket 6 and the inner core component.
  • the outer shell 7 can rotate relative to the bracket 6 and move forward and backward axially relative to the bracket 6 during the rotation process.
  • the outer wall of the front end of the bracket 6 is provided with a sealing ring for sealing with the socket and a structure that cooperates with the socket and the outer shell 7.
  • the front end of the outer shell 7 is provided with a locking structure that cooperates with the socket, and the outer shell 7 is mutually locked with the socket when the outer shell 7 moves forward.
  • the locking claw 601 extends toward the inner cavity of the bracket 6.
  • a locking tooth group is arranged on the outer wall of the adhesive sleeve 3.
  • the locking tooth group is higher than the outer wall of the adhesive sleeve 3.
  • a sliding key slot 303 is formed between two locking tooth groups.
  • the locking tooth group corresponds to the locking claw 601 one by one.
  • the locking tooth group includes a plurality of locking teeth 301 distributed along the axial direction.
  • a locking slot 302 that matches the locking claw 601 is formed between two adjacent locking teeth 301.
  • the guide keys 605 and cantilevers 603 are circumferentially spaced apart and distributed on the wall of the bracket 6 , and correspondingly, the locking tooth groups and the sliding key slots 303 are circumferentially spaced apart and distributed on the wall of the adhesive sleeve 3 .
  • An inner conical surface 701 is provided on the outer shell 7, and the inner conical surface 701 faces the front side, and is used to lock the locking claw 601.
  • a protrusion 604 is provided on the outer wall of the cantilever 603 opposite to the locking claw 601. When the outer shell 7 moves forward, the inner conical surface 701 squeezes the protrusion 604, so that the locking claw 601 and the locking groove 302 are firmly matched, thereby realizing the locking and tensile resistance function of the connector.
  • the operator When in use, the operator first inserts the plug assembly 1 into the corresponding socket 9, plugs it with the optical module plug 10, adjusts the position of the bracket 6 relative to the adhesive sleeve 3, inserts the front end of the bracket 6 into the socket 9, and makes the locking claw 601 stuck in the corresponding locking groove 302.
  • the support sleeve 2 is not stretched, compressed or bent; if the adjustment distance of the bracket 6 is not an integer multiple of the center distance of the locking groove, when the locking claw 601 is stuck in the front locking groove 302, the support sleeve 2 is compressed, and when the locking claw 601 is stuck in the rear locking groove 302, the support sleeve 2 is stretched; the support sleeve 2 stretches or compresses to adapt to the adjustment distance to ensure the accurate insertion of the plug assembly 1 and the optical module plug.
  • the locking claw 601 is stuck in the corresponding
  • the support sleeve 2 is bent to ensure the accurate insertion of the plug assembly 1 and the optical module plug.
  • the outer shell 7 is rotated to move the outer shell 7 forward, and the connecting structure on the outer shell 7 cooperates with the corresponding structure on the socket to achieve locking.
  • the inner conical surface 701 of the outer shell 7 squeezes the locking claw 601 on the support 6 to make it stuck in the corresponding groove of the adhesive sleeve 3, thereby achieving the tensile strength of the optical cable.
  • the relative rotational movement structure between the outer shell 7 and the bracket 6 and the locking structure with the socket are both prior art.
  • a wave protrusion as shown in FIG. 4 is provided on the outer wall of the bracket 6, and a convex block is provided on the inner wall of the outer shell 7.
  • the convex block slides on the wave protrusion, so that the outer shell 7 moves forward and backward.
  • the outer shell 7 can be fixed to the socket by threaded connection.
  • the rotational movement structure and the locking structure can also adopt other structures, which will not be described in detail here.
  • the fine-tuning function of the support sleeve 2 can modify the existing structure.
  • the stretching/compression/bending function of the support sleeve 2 cooperates with the step-by-step floating function of the adhesive sleeve 3 to form a two-stage floating structure combining fine-tuning and coarse-tuning.
  • the locking claw, locking teeth, and locking groove constitute a primary floating structure.
  • the compression/stretching/bending function of the adhesive sleeve 3 can be used to compensate for the primary floating structure.
  • the two-stage floating structure of the present invention can also be applied to other connectors that require axial displacement adjustment.
  • the fine-adjustment function of the support sleeve 2 can ensure that the connector plug can be reliably docked without affecting the transmission performance.
  • the support sleeve 2 is used as a single part, and the support sleeve 2 is used to replace the multi-sheath structure shown in Figure 20 in the prior art.
  • the interior of the support sleeve 2 is a hollow structure, and the retraction space of the branch optical fiber of the optical cable 5 is increased.
  • the branch optical fiber 501 can move freely inside the support sleeve 2.
  • the fixing method of the branch optical fiber 501 and the connector is simplified, the assembly parts are reduced, the operation process is simple, and the production efficiency is improved.
  • the excess length of the optical cable from the front end of the plug assembly 1 to the front end of the adhesive sleeve 3 is increased, further reducing the difficulty of assembly.
  • the present invention uses a support sleeve 2 as a branch component between the adhesive sleeve 3 and the plug assembly 1 to replace the original branch structure.
  • a secondary floating function is added to realize a two-stage floating function, and the primary floating structure of the plug is compensated.
  • the inner core plug can swing along any radial direction to realize floating functions in multiple directions, which solves the problem that the original structure can only axially deflect in a single direction.
  • it solves the problems of excessively high assembly requirements and high product failure rates of existing connectors, and improves the maintainability of the connector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种带有自浮动内芯的光纤连接器,包括插头组件、粘接套,还包括弹性材料制成的支撑套,支撑套的一端与插头组件连接、另一端与粘接套连接;光缆的端部嵌套在支撑套内,支撑套设置供光纤穿过的内部空腔。本发明使用支撑套作为粘接套与插头组件之间的分支部件,在保留粘接套的步进浮动结构的基础上,增加二级浮动功能,实现两级浮动功能,对插头的一级浮动结构进行补偿,同时内芯插头可沿任一径向摆动,实现多个方向的浮动功能,解决了原有结构只能沿单一方向轴向偏摆的问题,同时解决了现有连接器装配要求过高、产品使用故障率高的问题。

Description

一种带有自浮动内芯的光纤连接器 技术领域
本发明涉及一种光纤连接器,具体涉及一种带有自浮动内芯的光纤连接器。
背景技术
室外光纤连接器广泛应用于室外RRU设备中,在RRU设备中,其光纤接口多为图19所示形式,包含内置的光模块插头和外部的插座。光模块插头用于与光纤连接器对接后传输光信号,插座与光纤连接器的外壳体配合,起到连接器的抗拉和密封作用。
然而在实际应用过程中,不同厂家的光模块安装位置不同,光模块插头的轴向尺寸不一致,如图19所示,因此要求适配的光纤连接器具备较高的通用性,即连接器需具备轴向可调功能以适配不同厂家的设备要求。
现有室外光纤连接器的结构特点通常包含插头组件、浮动机构,浮动机构包括外壳体、支架和粘接套。支架可沿轴向相对粘接套移动,外壳体可以相对支架旋转并移动,外壳体前端设置与插座相配合的锁紧结构。粘接套上设置有锁齿,支架尾端设置有锁爪,相邻两个锁齿间形成与锁爪相配合的锁槽,外壳体内壁设置与锁爪相配合的内锥面,用于锁紧锁爪,实现连接器的锁紧及抗拉功能。
使用时,操作人员先将插头组件插入对应的插座中,调整支架相对于粘接套的位置,然后移动外壳体,外壳体上的连接结构与插座上的相应结构配合实现锁紧,外壳体向前移动的过程中,外壳体的内锥面挤压支架上的锁爪使其卡在锁槽中,实现线缆的抗拉。
现有技术的缺点:
1、现有结构只能实现沿轴向,即连接器对插方向单一方向的偏摆。
2、现有结构进行轴向距离调整的方式为步进式,调整距离为粘接套相邻两锁槽中心距离的整数倍。当调整距离不是中心距离的整数倍时,使用过程中,当支架移动调整距离后,锁爪不会直接落入锁槽中,而是在外壳体相应锥面的推力作用下,落入其他锁槽中,使得支架与标准的调整距离之间具有一定的偏差,由此引发两个问题:
(1)锁爪落入粘接套靠后的锁槽时,粘接套前端的分支光纤受拉,拉力过大时会导致光纤断裂,传输信号中断。
(2)锁爪落入粘接套靠前的锁槽时,粘接套前端的分支光纤受挤压, 插头组件中插针回退会带动分支光纤向后运动,在现有技术中,每根分支光纤外侧均套设空心束管或铠甲束管,因分支光纤外侧套设的空心束管或者铠甲管空间有限,分支光纤在其内部过分弯曲产生弯曲应力,也会导致光纤折断,传输信号中断。
3、由于上述第2条缺点导致该种结构对光缆分支端余长要求严格,装配过程难度较大,产品装配及使用时故障率较高。
发明内容
为解决上述技术问题,本发明提供一种带有自浮动内芯的光纤连接器。
本发明的目的是采用以下技术方案来实现。依据本发明提出的一种带有自浮动内芯的光纤连接器,包括插头组件、粘接套,还包括弹性材料制成的支撑套,支撑套的一端与插头组件连接、另一端与粘接套连接;光缆的端部嵌套在支撑套内,支撑套设置供光纤穿过的内部空腔。
进一步的,所述支撑套上开设凹槽,为支撑套在径向上弯曲提供避让空间,凹槽轴向分布在支撑套外壁,凹槽的延伸方向与支撑套的轴向垂直。
进一步的,所述支撑套主体在径向上的截面形状为矩形,所述凹槽包括支撑套凹槽Ⅰ、支撑套凹槽Ⅱ,支撑套凹槽Ⅰ设置在支撑套的宽边上,支撑套凹槽Ⅱ设置在支撑套的窄边上,支撑套凹槽Ⅰ、支撑套凹槽Ⅱ在轴向上相互交错排列。
进一步的,所述支撑套主体截面的形状为圆形或椭圆形。
进一步的,所述支撑套的前端设置沿轴向延伸的连接凸起,连接凸起内设置与内部空腔连通的通孔,连接凸起的前端部设置卡块;连接凸起及卡块嵌套在插头组件的空腔内,实现支撑套与插头组件之间的抗拉功能。
进一步的,所述支撑套前端部的连接凸起或插头组件后端部的通槽设置连接凹槽,插头组件后端部的通槽或支撑套前端部的连接凸起对应设置连接凸键,连接凹槽与连接凸键相互配合。
进一步的,所述支撑套的后端部位于粘接套前端部的空腔内,粘接套前端部的空腔灌胶以固定支撑套。
进一步的,所述支撑套的后端部设置限位键、轴向延伸的加强凸起,粘接套前端部的内壁设置与限位键配合的限位键槽,加强凸起设置与内部空腔连通以供分支光纤穿过的通孔,加强凸起的壁体上设置至少一个的灌胶孔)。
进一步的,所述插头组件、支撑套、粘接套外侧滑动套设支架,支架外侧滑动套设外壳体,粘接套外壁沿轴向分布多个锁齿,相邻两个锁齿之间形成锁槽;支架的壁体设置轴向延伸且贯通壁体的悬臂孔,悬臂孔内设置轴向延伸的悬臂,悬臂的端部设置与锁槽配合的锁爪,自然状态下,锁 爪嵌套在锁槽内;悬臂外壁设置凸块,外壳体上设置内锥面,内锥面挤压凸块,实现锁爪与锁槽的牢固配合。
进一步的,所述支架内腔的壁体上设置沿轴向的导向键,粘接套的外壁设置与导向键滑动配合的滑动键槽。
与现有技术相比,本发明的有益之处在于:本发明在现有连接器的基础上,使用支撑套作为粘接套与插头组件之间的分支部件,取代原有的分支结构,在保留粘接套的步进浮动结构的基础上,增加二级浮动功能,实现两级浮动功能,对插头的一级浮动结构进行补偿,同时内芯插头可沿任一径向摆动,实现多个方向的浮动功能,解决了原有结构只能沿单一方向轴向偏摆的问题,同时解决了现有连接器装配要求过高、产品使用故障率高的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明实施例一的剖视图;
图2为图1所示实施例的分解示意图;
图3为图1所示实施例中内芯部件的示意图;
图4为图3所示实施例去尾部护套后的剖视图;
图5为图1所示实施例中支架的示意图;
图6为图1所示实施例中外壳体的示意图;
图7为图1所示实施例中插头组件的分解示意图;
图8为图1所示实施例中支撑套的示意图;
图9为图8另一视角的示意图;
图10为图8的剖视图;
图11为图8的正视图;
图12为图11的俯视图;
图13为本发明实施例二中支撑套的示意图;
图14为本发明实施例三中支撑套的示意图;
图15为本发明实施例一中支撑套与插头组件的装配示意图;
图16为本发明实施例一中支撑套与粘接套的装配示意图;
图17为本发明实施例一中粘接套与尾部护套的装配示意图;
图18为本发明实施例一中支架的剖视图;
图19为现有RRU设备的示意图;
图20为现有连接器中多护套结构的示意图。
【附图标记】
1-插头组件,101-插头上壳体,102-插头下壳体,10201-连接凹槽,103-内芯插头,2-支撑套,201-内部空腔,202-连接凸键,203-支撑套凹槽Ⅰ,204-支撑套凹槽Ⅱ,205-灌胶孔,206-限位键,207-连接凸起,208-卡块,209-加强凸起,3-粘接套,301-锁齿,302-锁槽,303-滑动键槽,304-灌胶区域,305-限位键槽,4-尾部护套,5-光缆,501-分支光纤,6-支架,601-锁爪,602-悬臂孔,603-悬臂,604-凸块,605-导向键,7-外壳体,701-内锥面,8-RRU设备,9-插座,10-光模块插头,11-压接元件,12-束管。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一种带有自浮动内芯的光纤连接器的实施例一,如图1至图12所示,该连接器包括内芯部件、支架6、外壳体7,内芯部件包括插头组件1、支撑套2、粘接套3、尾部护套4。该连接器与光缆5连接,并插装在RRU设备的插座上,使插头组件1与RRU设备的光模块插头插接。
插头组件1包括插头上壳体101、插头下壳体102、多个内芯插头103,内芯插头103的尾部卡在插头下壳体102内,插头上壳体101通过卡扣结构罩盖固定在插头下壳体102上,并固定内芯插头103。
光缆5穿过尾部护套4并穿入粘接套3,光缆5在粘接套3内分出多根分支光纤501,分支光纤501依次经过粘接套3、支撑套2后与对应的内芯插头103连接。以光缆5延伸的方向为轴向,与轴向垂直的方向为径向,以插头组件1为前端部。
支撑套2主体在径向上的截面形状为矩形,支撑套2沿轴向设置供分支光纤501穿过的内部空腔201,支撑套2外壁设置凹槽,凹槽包括支撑套凹槽Ⅰ203、支撑套凹槽Ⅱ204。支撑套凹槽Ⅰ203开设在支撑套2的宽边上,支撑套凹槽Ⅱ204开设在支撑套2的窄边上,并且支撑套凹槽Ⅰ203、支撑套凹槽Ⅱ204的延伸方向均与轴向相互垂直。支撑套凹槽Ⅰ203、支撑套凹槽Ⅱ204在轴向上相互交错排列,使支撑套2被拉伸、压缩或者弯曲时,实现内芯部件的微量偏摆。
支撑套2作为独立元件,其形状及尺寸可根据具体的使用场景及其内 部所容纳的分支光纤数量和长度决定,例如,在本实施例一中,支撑套2主体在径向上的截面形状为矩形,在实施例二中,支撑套2主体在径向上的截面形状为圆形,如图13所示,在其他实施例中,支撑套2主体在径向上的截面形状可以是椭圆形或其他形状。支撑套2上环向分布多个凹槽组,每个凹槽组中的多个凹槽在轴向上对齐,且多组凹槽中的凹槽相互交错分布在支撑套2上。
支撑套2上交错排列的凹槽可以为通槽或者非通槽,通槽与支撑套2的内部空腔201连通,非通槽与支撑套2的内部空腔201不连通,在本实施例一中,支撑套2上的凹槽为非通槽,在实施例三中,支撑套2上的凹槽为通槽,如图14所示,凹槽的延伸方向设置根据连接器所需的弯曲方向决定,由于支撑套2上环向分布多个凹槽组,支撑套2可以在任意方向上实现弯曲,凹槽为连接器弯曲提供避让空间。
支撑套2使用橡胶等柔性材料制成,在外力作用下可被拉伸或压缩,因此可实现拉伸及压缩功能,同时支撑套2的内部为空心结构,其内部空腔的直径大于容纳的所有分支光纤的外径,可容纳多芯光缆的多根分支光纤在其内自由伸展或弯曲。
支撑套2前端设置与插头组件1相配合且沿轴向延伸的连接凸起207,连接凸起207内设置与内部空腔201连通的通孔,以供分支光纤501穿过,连接凸起207的前端部设置卡块208。连接凸起207的外壁环向设置连接凸键202,插头下壳体102尾部设置供分支光纤501经过的通槽,插头下壳体102的通槽与连接凸起207相匹配,且该通槽的内壁设置与连接凸键202匹配的连接凹槽10201。将连接凸起207嵌套在插头下壳体102的通槽内,卡块208卡在插头下壳体102的空腔内,然后在插头下壳体102上罩盖固定插头上壳体101,使得卡块208被限位在插头下壳体102的空腔内,实现支撑套2与插头组件1之间的抗拉功能。在卡块208卡入插头下壳体102的空腔内的同时,连接凸键202嵌套在连接凹槽10201内,罩盖固定插头上壳体101后,进一步增强支撑套2与插头组件1抗拉功能,如图15所示。在本发明的其他实施例中,根据相适配的插头组件的对应结构决定连接凸起207的形状,如果插头下壳体102上设置连接凸键,连接凸起207上可以设置与连接凸键匹配的连接凹槽,保证插头组件1与支撑套2的可靠连接。
支撑套2的后端部设置与粘接套3相配合的限位键206、加强凸起209,支撑套2后端部的外壁设置两个限位键206,这两个限位键206在径向上延伸并对称设置,粘接套3前端部内腔的内壁上设置与限位键206相匹配的限位键槽305,实现机械限位及防转功能。加强凸起209轴向延伸,其上设置轴向延伸且与内部空腔连通以供分支光纤穿过的通孔,加强凸起209的
壁体上贯穿设置至少一个的灌胶孔205,粘接套3前端部内腔的灌胶区域304内灌胶时,胶液可流过灌胶孔205,固化后起到抗拉作用。将支撑套2的后端部插入粘接套3前端部的空腔,使得限位键206嵌套在限位键槽305中,然后向粘接套3内灌胶,使得支撑套2与粘接套3固定,如图16所示。
尾部护套4的前端部插入粘接套3后端部的空腔内,两者通过卡台卡槽结构进行固定,如图17所示。
如图18所示,支架6套设在内芯部件外侧,外壳体7套设在支架6及内芯部件外侧,外壳体7可以相对于支架6转动,并在转动过程中沿轴向相对于支架6前后移动。支架6的前端部外壁设置用于与插座插接密封的密封圈以及与插座、外壳体7配合的结构。外壳体7的前端部设置与插座相配合的锁紧结构,外壳体7向前移动时与插座相互锁紧。
支架6为回转体,其内部设置轴向贯通的空腔,支架6内腔的壁体上设置沿轴向的导向键605,粘接套3的外壁具有与导向键相配合的滑动键槽303,导向键与滑动键槽303一一对应,支架6可沿轴向移动,此时,导向键在滑动键槽303中滑动。支架6的壁体上设置轴向延伸且贯通壁体的悬臂孔602,悬臂孔602内设置轴向延伸的悬臂603,悬臂603的端部设置锁爪601,锁爪601朝向支架6的内腔延伸。粘接套3的外壁设置锁齿组,锁齿组高出粘接套3的外壁,两个锁齿组之间形成一个滑动键槽303,锁齿组与锁爪601一一对应,锁齿组包括多个沿轴向分布的锁齿301,相邻两个锁齿301间形成与锁爪601相配合的锁槽302。当导向键605、悬臂603设置多个时,导向键605与悬臂603环向间隔分布在支架6的壁体上,对应的,锁齿组、滑动键槽303环向间隔分布在粘接套3的壁体上。
外壳体7上设置内锥面701,内锥面701朝向前侧,用于锁紧锁爪601。悬臂603与锁爪601相对的外壁设置凸块604,外壳体7向前移动时,内锥面701挤压凸块604,实现锁爪601与锁槽302的牢固配合,从而实现连接器的锁紧及抗拉功能。
使用时,操作人员先将插头组件1插入对应的插座9中,与光模块插头10插接,调整支架6相对于粘接套3的位置,使支架6的前端部插入插座9中,并使锁爪601卡在对应的锁槽302中。如果支架6的调整距离是锁槽中心距离的整数倍,并且光模块插头10与插座9的相对位置与插头组件1与支架6的相对位置匹配,锁爪601卡在锁槽302内后,支撑套2没有拉伸、压缩或弯曲;如果支架6的调整距离不是锁槽中心距离的整数倍,当锁爪601卡在靠前的锁槽302时,支撑套2被压缩,当锁爪601卡在靠后的锁槽302时,支撑套2被拉伸;支撑套2拉伸或压缩,以适应调整距离,保证插头组件1与光模块插头的准确插合。当光模块插头10与插座9的相对位置与插头组件1与支架6的相对位置不匹配,锁爪601卡在对应 的锁槽302后,支撑套2发生弯曲,保证插头组件1与光模块插头的准确插合。锁爪601卡在对应的锁槽302内后,旋转外壳体7,使外壳体7前移,外壳体7上的连接结构与插座上的相应结构配合实现锁紧,外壳体7向前移动的过程中,外壳体7的内锥面701挤压支架6上的锁爪601使其卡在粘接套3对应的槽中,实现光缆的抗拉。
外壳体7与支架6的相对旋转移动结构以及与插座的锁紧结构均为现有技术,例如,在旋转移动结构中,支架6的外壁上设置如图4所示的波浪凸起,外壳体7的内壁设置凸块,外壳体7旋转,凸块在波浪凸起上滑动,使得外壳体7前后移动;在锁紧结构中,外壳体7可采用螺纹连接与插座固定。旋转移动结构以及锁紧结构也可采用其他结构,在此不再赘述。
支撑套2的微调功能可对现有结构进行修正,支撑套2的拉伸/压缩/弯曲功能与粘接套3的步进式浮动功能相配合,形成微调与粗调组合的两级浮动结构。锁爪与锁齿、锁槽构成一级浮动结构,当一级浮动结构无法满足浮动距离或角度要求时,可通过粘接套3的压缩/拉伸/弯曲功能来对一级浮动结构进行补偿。本发明的两级浮动结构也可应用于其他需要轴向位移调整的连接器中,支撑套2的微量调节功能能够保证连接器插头可靠对接而不会影响传输性能。
该连接器在装配过程中,支撑套2作为单一零件,使用支撑套2替代现有技术中如图20所示的多护套结构,支撑套2的内部为空心结构,光缆5的分支光纤在其中的回退空间增大,当支撑套发生压缩/拉伸/弯曲时,分支光纤501在支撑套2的内部可自由活动,一方面简化分支光纤501与连接器的固定方式,装配零件减少,操作过程简单,生产效率提高,另一方面插头组件1的前端至粘接套3的前端的光缆余长增大,进一步降低装配难度。
该连接器在使用过程中,出现连接故障时,维修检查时仅需去掉连接器的外壳体7,将外壳体7向后端移动,并将支架6向后端移动,便可检查支撑套2以及内芯部件的情况,使连接器相比现有结构具备可维修性。
综上所述,本发明在现有连接器的基础上,使用支撑套2作为粘接套3与插头组件1之间的分支部件,取代原有的分支结构,在保留粘接套3的步进浮动结构的基础上,增加二级浮动功能,实现两级浮动功能,对插头的一级浮动结构进行补偿,同时内芯插头可沿任一径向摆动,实现多个方向的浮动功能,解决了原有结构只能沿单一方向轴向偏摆的问题,同时解决了现有连接器装配要求过高、产品使用故障率高的问题,并提高了连接器的可维修性。
尽管已经展示和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种带有自浮动内芯的光纤连接器,包括插头组件(1)、粘接套(3),其特征在于:还包括弹性材料制成的支撑套(2),支撑套(2)的一端与插头组件(1)连接、另一端与粘接套(3)连接;光缆(5)的端部嵌套在支撑套(2)内,支撑套(2)设置供光纤穿过的内部空腔(201)。
  2. 根据权利要求1所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)上开设凹槽,为支撑套(2)在径向上弯曲提供避让空间,凹槽轴向分布在支撑套(2)外壁,凹槽的延伸方向与支撑套(2)的轴向垂直。
  3. 根据权利要求2所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)主体在径向上的截面形状为矩形,所述凹槽包括支撑套凹槽Ⅰ(203)、支撑套凹槽Ⅱ(204),支撑套凹槽Ⅰ(203)设置在支撑套(2)的宽边上,支撑套凹槽Ⅱ(204)设置在支撑套(2)的窄边上,支撑套凹槽Ⅰ(203)、支撑套凹槽Ⅱ(204)在轴向上相互交错排列。
  4. 根据权利要求2所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)主体截面的形状为圆形或椭圆形。
  5. 根据权利要求1所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)的前端设置沿轴向延伸的连接凸起(207),连接凸起(207)内设置与内部空腔(201)连通的通孔,连接凸起(207)的前端部设置卡块(208);连接凸起(207)及卡块(208)嵌套在插头组件的空腔内,实现支撑套(2)与插头组件之间的抗拉功能。
  6. 根据权利要求5所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)前端部的连接凸起或插头组件(1)后端部的通槽设置连接凹槽,插头组件(1)后端部的通槽或支撑套(2)前端部的连接凸起对应设置连接凸键,连接凹槽与连接凸键相互配合。
  7. 根据权利要求1所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)的后端部位于粘接套(3)前端部的空腔内,粘接套(3)前端部的空腔灌胶以固定支撑套(2)。
  8. 根据权利要求7所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支撑套(2)的后端部设置限位键(206)、轴向延伸的加强凸起(209),粘接套(3)前端部的内壁设置与限位键(206)配合的限位键槽(305),加强凸起(209)设置与内部空腔(201)连通以供分支光纤穿过的通孔,加强凸起(209)的壁体上设置至少一个的灌胶孔(205)。
  9. 根据权利要求1所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述插头组件(1)、支撑套(2)、粘接套(3)外侧滑动套设支架(6), 支架(6)外侧滑动套设外壳体(7),粘接套(3)外壁沿轴向分布多个锁齿(301),相邻两个锁齿之间形成锁槽(302);支架(6)的壁体设置轴向延伸且贯通壁体的悬臂孔(602),悬臂孔(602)内设置轴向延伸的悬臂(603),悬臂(603)的端部设置与锁槽配合的锁爪(601),自然状态下,锁爪(601)嵌套在锁槽(302)内;悬臂(603)外壁设置凸块(604),外壳体(7)上设置内锥面(701),内锥面(701)挤压凸块(604),实现锁爪(601)与锁槽(302)的牢固配合。
  10. 根据权利要求9所述的一种带有自浮动内芯的光纤连接器,其特征在于:所述支架(6)内腔的壁体上设置沿轴向的导向键,粘接套(3)的外壁设置与导向键滑动配合的滑动键槽(303)。
PCT/CN2023/092847 2022-11-21 2023-05-08 一种带有自浮动内芯的光纤连接器 WO2024108912A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211462641.X 2022-11-21
CN202211462641.XA CN116184574A (zh) 2022-11-21 2022-11-21 一种带有自浮动内芯的光纤连接器

Publications (1)

Publication Number Publication Date
WO2024108912A1 true WO2024108912A1 (zh) 2024-05-30

Family

ID=86447745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092847 WO2024108912A1 (zh) 2022-11-21 2023-05-08 一种带有自浮动内芯的光纤连接器

Country Status (2)

Country Link
CN (1) CN116184574A (zh)
WO (1) WO2024108912A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369057B (zh) * 2023-09-28 2024-05-10 江苏纳光通信科技有限公司 光纤馈通组件及防护方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991312A (zh) * 2015-06-24 2015-10-21 中航光电科技股份有限公司 光缆连接器
CN104991322A (zh) * 2015-06-24 2015-10-21 中航光电科技股份有限公司 一种光缆连接器
CN105006692A (zh) * 2015-05-21 2015-10-28 中航光电科技股份有限公司 浮动可调式密封机构及使用该机构的连接器
US20150346435A1 (en) * 2014-05-29 2015-12-03 Fujikura Ltd. Connector attached optical fiber unit and optical connector boot
CN105375171A (zh) * 2014-07-18 2016-03-02 泰科电子连接荷兰公司 封闭组件
CN106340757A (zh) * 2016-08-31 2017-01-18 中航光电科技股份有限公司 粘接套及使用该粘接套的浮动机构和连接器
US20170090126A1 (en) * 2015-09-25 2017-03-30 Commscope Technologies Llc Multi-fiber connector for use with ribbon fiber optic cable
CN106932864A (zh) * 2017-03-03 2017-07-07 中航光电科技股份有限公司 连接器
WO2018077196A1 (zh) * 2016-10-28 2018-05-03 中航光电科技股份有限公司 连接器
CN114563846A (zh) * 2022-02-23 2022-05-31 中航光电科技股份有限公司 一种弹性浮动结构及光纤连接器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150346435A1 (en) * 2014-05-29 2015-12-03 Fujikura Ltd. Connector attached optical fiber unit and optical connector boot
CN105375171A (zh) * 2014-07-18 2016-03-02 泰科电子连接荷兰公司 封闭组件
CN105006692A (zh) * 2015-05-21 2015-10-28 中航光电科技股份有限公司 浮动可调式密封机构及使用该机构的连接器
CN104991312A (zh) * 2015-06-24 2015-10-21 中航光电科技股份有限公司 光缆连接器
CN104991322A (zh) * 2015-06-24 2015-10-21 中航光电科技股份有限公司 一种光缆连接器
US20170090126A1 (en) * 2015-09-25 2017-03-30 Commscope Technologies Llc Multi-fiber connector for use with ribbon fiber optic cable
CN106340757A (zh) * 2016-08-31 2017-01-18 中航光电科技股份有限公司 粘接套及使用该粘接套的浮动机构和连接器
WO2018077196A1 (zh) * 2016-10-28 2018-05-03 中航光电科技股份有限公司 连接器
CN106932864A (zh) * 2017-03-03 2017-07-07 中航光电科技股份有限公司 连接器
CN114563846A (zh) * 2022-02-23 2022-05-31 中航光电科技股份有限公司 一种弹性浮动结构及光纤连接器

Also Published As

Publication number Publication date
CN116184574A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US10302878B2 (en) Methods for forming connectorized fiber optic cabling
WO2024108912A1 (zh) 一种带有自浮动内芯的光纤连接器
US6585423B1 (en) Connector system having interlocking inner housing
TWI491941B (zh) 具有可移動插頭之連接器組合體
US7537393B2 (en) Connectorized fiber optic cabling and methods for forming the same
EP1486808B1 (en) Receptacle for optical fibre connection and method for its manufacture
US11886018B2 (en) Fiber optic connectors and connectorized cable assembly with collapsing cantilevered gasket
CN1154483A (zh) 光连接器用的接线插座
CN103502860A (zh) 光纤连接器
CA3171567A1 (en) Connector and optical fiber connection assembly
MX2007001583A (es) Conjuntos de receptaculo y enchufe de fibra optica con particularidades de alineamiento y acunamiento.
US20210191060A1 (en) Flexible boot with replaceable repositioning device therein
CN111913255B (zh) 一种光纤插芯模块、光纤插头、光纤适配器和光纤连接器
US11474309B2 (en) Connectorized fiber optic cabling assembly
JP7139030B2 (ja) 光電コネクタ
US7824108B2 (en) Connection device with conductor length compensation
US11579371B2 (en) Fiber optic connector having a compressible body and complimentary receptacle along with methods of making
JP2007140422A (ja) 光ファイバコネクタ
US5436993A (en) Multiple connector for multi-fibre optic ribbons
TWM602745U (zh) 同軸電纜連接器系統
CN215599407U (zh) 一种高密封性的fc尾纤
CN214795294U (zh) 一种新型光纤活动连接器
TWM605933U (zh) 雙工光纖適配器
CN113296196B (zh) 方便安装的通讯光纤转接头
CN218037450U (zh) 一种光纤连接器组件