WO2024108823A1 - 显示模块、背光模组及显示装置 - Google Patents

显示模块、背光模组及显示装置 Download PDF

Info

Publication number
WO2024108823A1
WO2024108823A1 PCT/CN2023/081597 CN2023081597W WO2024108823A1 WO 2024108823 A1 WO2024108823 A1 WO 2024108823A1 CN 2023081597 W CN2023081597 W CN 2023081597W WO 2024108823 A1 WO2024108823 A1 WO 2024108823A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
substrate
display
display module
Prior art date
Application number
PCT/CN2023/081597
Other languages
English (en)
French (fr)
Inventor
赵改娜
朱君奇
杨明
乔文
罗明辉
李瑞彬
周徐乐
蒋林
陆延青
徐挺
张伟华
胡伟
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学, 南京大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2024108823A1 publication Critical patent/WO2024108823A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention belongs to the field of optoelectronic imaging, and in particular relates to a display module, a backlight module and a display device.
  • Backlit displays such as backlit liquid crystal displays
  • the backlight unit generates light that passes outward through an array of pixels in the display.
  • the pixels modulate the intensity of the light from the backlight unit to create an image on the display.
  • the backlight unit helps ensure that the display can display images under a variety of ambient lighting conditions.
  • 3D display is known as the "next generation display technology" and has become an important research field and one of the technologies that many display companies are competing to research.
  • the mechanisms and methods for realizing naked-eye 3D display based on parallax barriers, cylindrical lens arrays, spatiotemporal multiplexing, or integrated light fields all use optical elements with periodic microstructures or nanostructures to phase-regulate the display light field, and project image information from different perspectives to different perspectives in the form of approximately parallel beams.
  • naked-eye 3D display technology has not yet successfully entered the field of flat-panel displays.
  • US20180292713A1 discloses a backlit display with a light source.
  • the display may include an edge-lit light pipe, wherein light emitted from the light source is laterally distributed within the light pipe and scattered from the light pipe by an outcoupling structure such as a grating, a protrusion or a groove.
  • the display includes a plurality of adjacent light-emitting diodes having a curved reflector for collimating light.
  • the light source is provided with a filter layer having angle-dependent light transmission characteristics for reflecting off-axis light.
  • US 2016/0300535A1 provides a laser diode array that emits light directly in the direction of a pixel.
  • the light emitted by the laser diode is first scattered by a lens and then collimated by a Fresnel lens.
  • this approach requires a large number of laser diodes to illuminate the display area and does not allow the use of a thin backlight unit.
  • the optical device disclosed in EP 3599541A1 includes a substrate and an optical waveguide extending in the substrate and bending toward the surface of the substrate.
  • the waveguide can guide light into a wedge formed into a plane mirror in the substrate to scatter the light out of the substrate.
  • the divergence of the emitted light beam increases, and the divergence angle generated is very large.
  • the present invention provides a pixel display module that can provide the high-collimation backlight required for 3D display, and also provides a backlight module with an adjustable light beam deflection angle in the xy plane, as well as a large field of view display device with a 2D-3D observation mode switching function.
  • a display module comprising:
  • a main waveguide used for receiving an external light source
  • a beam coupling unit is connected to the main waveguide and is used to fan out multiple secondary waveguides, each of which includes multiple pixel waveguides;
  • the main waveguide, the beam coupling unit, the secondary waveguide and the pixel waveguide are embedded in the substrate; wherein the main waveguide and the multiple secondary waveguides are located in the same cross section of the substrate; in each secondary waveguide, the multiple pixel waveguides extend toward the substrate surface in the form of branches of the secondary waveguide, the multiple pixel waveguides are located in the same longitudinal section of the substrate, and the ends of the multiple pixel waveguides are perpendicular to the substrate surface;
  • a collimating lens is placed at the light output end of the substrate.
  • the collimating lens is composed of a plurality of periodically distributed optical element microstructures I.
  • the optical element microstructures I and the pixel waveguide are arranged correspondingly, and are used to collimate the light beam emitted from the surface of the substrate;
  • the light beam conversion structure is placed at the light output end of the collimating lens.
  • the light beam conversion structure is composed of a plurality of randomly distributed optical element microstructures II and is used to decoherently process parallel light emitted from the collimating lens.
  • a black matrix is provided on the upper surface of the substrate to ensure that the output end of the pixel waveguide is located at the object focus of the collimating lens.
  • the light output end of the pixel waveguide is 10-50 um away from the upper surface of the substrate.
  • the primary waveguide and the secondary waveguide are directly laser written into the substrate, preferably by femtosecond direct laser writing.
  • the beam coupling unit is an optical coupler.
  • the collimating lens is composed of a periodically distributed microlens array, a Fresnel lens array, a film lens array or a binary structured light array.
  • the light beam conversion structure is composed of a randomly distributed microlens array, a Fresnel lens array, a film lens array or a binary structured light array.
  • the light source is a stacked RGB three-color light source, and one end of each color light source is correspondingly provided with a main waveguide, a beam coupling unit, a secondary waveguide, a pixel waveguide, a substrate, a collimating lens and a beam conversion structure.
  • a backlight module with adjustable light beam angle comprises the pixel display module, and an electrowetting prism array in an inclined xz plane and an electrowetting prism array in an inclined yz plane; the electrowetting prism array in the inclined xz plane and the electrowetting prism array in the inclined yz plane are sequentially superimposed on the light emitting end of the display module, and are respectively used to adjust the deflection angles of the light beam around the x-axis and the y-axis.
  • a display device comprises the backlight module, and a lower polarizer, a first TFT glass substrate, a liquid crystal layer, a second TFT glass substrate, an upper polarizer, a color filter layer, and a display phase plate which are sequentially arranged at the light emitting end of the backlight module; the emitted light of the backlight module enters the liquid crystal layer through the lower polarizer and the first TFT glass substrate, and then enters the second TFT glass substrate and the upper polarizer, and is imaged after being formed into RGB sub-pixels by the color filter layer and then being imaged by the display phase plate.
  • the present invention has the following significant improvements:
  • the display module of the present invention has a compact and simple structure.
  • the light output from the pixel waveguide is collimated and decohered by a collimating lens and a beam conversion structure, respectively, to provide high-quality backlight for subsequent display modules.
  • the pixel display module can be used for backlight modules and display devices of various shapes and structures, and can solve the problems of image crosstalk and resolution degradation caused by the coherence of the light source after passing through the various layers of microstructures of the display screen.
  • the present invention provides a backlight module with a two-layer electrowetting prism array structure to adjust the deflection angle of the light beam around the x-axis and the y-axis, and change the incident angle of the backlight entering the subsequent module.
  • the display device of the present invention can provide a real 3D display effect, and combined with the existing voltage control strategy, it can realize the switching of the display 2D observation mode and 3D observation mode; in the 3D observation mode, it can increase the 3D longitudinal parallax and observation range, and improve the 3D lateral observation range and resolution.
  • FIG1 is a top view of a waveguide layer of a display module of the present invention.
  • FIG2 is a front view of the secondary waveguide 115 and its pixel waveguide in FIG1 ;
  • FIG3 is a front view of a display module of the present invention.
  • FIG4 is a top view of the light beam conversion structure in FIG3 ;
  • FIG5 is a front view of an RGB three-color display module
  • FIG6 is a schematic diagram of a backlight module with an adjustable angle in the xy plane
  • FIG7 is a schematic diagram of a display device
  • FIG8 is a schematic diagram of 3D observation.
  • Fig. 1 is a top view of a waveguide layer structure for a pixel display module.
  • the waveguide layer structure includes an external light source 101, a main waveguide 102 for receiving the external light source, a beam coupling unit 103, and multiple secondary waveguides 111, 112, 113, 114, 115, 116, 117, 118, 119.
  • One end of the main waveguide 102 is connected to the external light source 101, and the other end is connected to the beam coupling unit 103.
  • the external light source 101 enters the waveguide layer from the main waveguide 102, and fans out multiple secondary waveguides 111, 112, 113, 114, 115, 116, 117, 118, 119 through the beam coupling unit 103.
  • Each secondary waveguide corresponds to a row of pixels, thereby coupling the light from the external light source 101 into the entire waveguide surface.
  • the secondary waveguide 115 fanned out from the main waveguide 102 includes a row of pixel waveguides 121, 122, 123, 124, 125, 126, 127, 128, 129, 130.
  • each pixel waveguide corresponds to a display R sub-pixel.
  • the main waveguide 102, the beam coupling unit 103, the secondary waveguide and the pixel waveguide are embedded in the substrate 104.
  • the main waveguide, the secondary waveguide and the pixel waveguide are formed in the substrate 104 by direct laser writing, preferably by femtosecond direct laser writing, to reduce waveguide propagation loss.
  • the main waveguide 102 and the multiple secondary waveguides are located in the same substrate cross section, that is, the main waveguide 102 is fanned out by the beam coupling unit 103 along a cross section of the substrate 104 to form multiple secondary waveguides 111, 112, 113, 114, 115, 116, 117, 118, 119.
  • the pixel waveguide and the secondary waveguide extend toward the surface of the substrate 104 at an angle.
  • a row of pixel waveguides of each secondary waveguide is located in the same substrate longitudinal section, and the ends of the multiple pixel waveguides are perpendicular to the surface of the substrate 104.
  • the light-emitting end of the pixel waveguide is 10-50 um away from the upper surface of the substrate 104, and the light-emitting light is emitted from the upper surface of the substrate 104.
  • the external light source 101 may be a laser, such as an edge emitting laser diode and/or a vertical cavity emitting laser diode.
  • the light beam coupling from the light source to the secondary waveguide can be realized by using an existing optical coupler, or by another waveguide or a waveguide cascade structure.
  • the substrate 104 may be a sheet-like or plate-like transparent substrate, such as a glass substrate, with a thickness less than 5 cm, preferably less than 2 mm.
  • the present invention provides a pixel display module capable of providing a highly collimated backlight, wherein an optical film is placed at the light-emitting end of the substrate 104, and a collimating lens 150 and a beam conversion structure 160 are processed on the lower surface and the upper surface of the optical film, respectively.
  • the collimating lens 150 receives the light beam emitted from the surface of the substrate 104 and collimates it.
  • the collimating lens 150 is composed of a plurality of optical element microstructures I 1501 distributed periodically, and the periodic distribution it follows means that the plurality of optical element microstructures I 1501 and the pixel waveguides in the substrate 104 are arranged one by one.
  • the collimating lens 150 adopts a configuration such as a microlens array, a Fresnel lens array, a film lens array, a binary structured light array, etc., that is, the optical element microstructure I 1501 includes but is not limited to a Fresnel lens, a microprism, a free-form surface lens, etc.
  • the size of the collimating lens 150 is between 100nm-1mm.
  • the surface of the collimating lens 150 is a convex microlens, and its multiple convex surfaces and pixel waveguides are arranged one by one.
  • the collimating lens 150 can also be an optical element in other forms, such as a Fresnel lens with a periodic distribution on an optical film.
  • the Fresnel lens can be made using a diamond lathe, a grayscale photolithography process, and a laser etching process, and can be mass-produced using nanoimprinting, glass molding, and injection molding processes.
  • the material of the collimating lens 150 can be selected from plastic or glass, with a refractive index between 1-2.5, and plastic is preferably used to make the product lighter and reduce costs.
  • the collimating lens 150 can be manufactured using a grayscale photolithography process, a laser etching process, etc., and can be mass-produced using a nanoimprint process.
  • the beam conversion structure 160 is composed of a plurality of randomly distributed optical element microstructures II 1601, which are used to decoherently treat the parallel light emitted from the collimating lens 150, thereby eliminating the coherence of the laser light source and preventing viewpoint interference and resolution degradation.
  • FIG4 is a schematic diagram of the random distribution of the optical element microstructure II 1601 of the beam conversion structure.
  • the optical element microstructure II 1601 is formed on the upper surface of the optical film, i.e., the convex structure on the upper surface of the optical film in FIG3.
  • the optical element microstructure I 1501 and the pixel waveguide are arranged one-to-one, but the distribution of the optical element microstructure II 1601 is irrelevant to the optical element microstructure I 1501, and the corresponding relationship shown in FIG3 is only an example.
  • the beam conversion structure 160 can adopt a configuration such as a microlens array, a Fresnel lens array, a film lens array, a binary structure light array, etc., i.e., the optical element microstructure II 1601 includes but is not limited to a Fresnel lens, a microprism, and a free-form surface lens.
  • the light beam conversion structure 160 can be manufactured by using a diamond lathe, grayscale photolithography, laser etching, etc., and can be mass-produced by using nano-imprinting, glass molding, and injection molding.
  • the light beam emitted from the upper surface of the substrate 104 is collimated by the collimating lens 150 and then emitted as collimated parallel light (collimation reaches 0.5° to 3°).
  • the collimated parallel light is decohered by the beam conversion structure 160 to prevent the image from being distorted due to coherence.
  • the divergence angle of the beam is appropriately increased relative to the angle after collimation, and the divergence angle is 3° to 5°.
  • one or more black matrices 140 are arranged on the upper surface of the substrate 104.
  • the exit end of the pixel waveguide is adjusted to be located at the object focus of the collimating lens 150 by adjusting the distance between adjacent black matrices 140.
  • the black matrix 140 is made of a black light-absorbing material, which may be a colorant of a black pigment or dye.
  • the black matrix 140 material may be titanium black, lignin black, a composite oxide pigment such as iron or manganese, and a combination of the above materials.
  • the process of forming the black matrix 140 includes lamination, photolithography, laser processing, inkjet printing, 3D printing, screen printing, micro-contact printing, and the like.
  • the black matrix 140 is a patterned structure, which may be a single-layer or multi-layer independent structure.
  • FIG5 shows an RGB three-color display module.
  • the external light source has RGB three-color wavelengths, each wavelength corresponds to a waveguide layer, a collimating lens and a beam conversion structure, and the collimating lens is arranged corresponding to the display sub-pixel.
  • the red, green and blue three-color light sources 101, 201, and 301 are located on one side, and each color light source corresponds to its own pixel display module, and the three layers of pixel display modules are stacked.
  • the external light source corresponding to 101 is red light
  • the external light source corresponding to 201 is green light
  • the external light source corresponding to 301 is blue light.
  • the red light pixel display module is located in the first layer, and the green light substrate 204 and the corresponding green light collimating conversion structure are superimposed on its beam conversion structure, and the blue light substrate 304 and the corresponding blue light collimating conversion structure are superimposed on the beam conversion structure of the green light pixel display module.
  • the RGB three-color display module is formed from bottom to top in sequence, and the light passes through the respective waveguide layers, collimating lenses and beam conversion structures, and can be emitted at a light divergence angle of less than 5°, forming a high-collimation backlight for subsequent display modules.
  • the red, green and blue light sources 101, 201 and 301 may be edge emitting laser diodes and/or vertical cavity emitting laser diodes.
  • the present invention also provides a backlight structure with adjustable angle in the xy plane, which includes the RGB three-color display module and the electrowetting prism array 4 of the inclined plane xz plane and the electrowetting prism array 5 of the inclined plane yz plane.
  • the electrowetting prism array 4 of the inclined plane xz plane and the electrowetting prism array 5 of the inclined plane yz plane are sequentially superimposed on the light emitting end of the display module, and are used to adjust the deflection angle of the light beam around the x-axis and the y-axis respectively.
  • the light beam can be deflected around the x-axis and y-axis, theoretically 30°.
  • the deflection of the beam depends on the choice of the liquid refractive index combination and the geometry of the microprism unit.
  • the two-layer electrowetting prism array can change the angle of beam deflection, thereby changing the incident angle of the backlight entering the subsequent module, and at the same time, the display can switch between 2D viewing mode and 3D viewing mode.
  • a display device includes a backlight module with an adjustable angle in an xy plane, a lower polarizer 6, a first TFT glass substrate 7, a liquid crystal layer 8, a second TFT glass substrate 9, an upper polarizer 10, a color filter layer 11, and a display phase plate 12.
  • Light emitted from the backlight enters the liquid crystal layer 8 through the lower polarizer 6 and the first TFT glass substrate 7, and then enters the second TFT glass substrate 9 and the upper polarizer 10.
  • RGB sub-pixels are formed by the color filter layer 11.
  • the purpose of the color filter layer is to prevent color crosstalk between different sub-pixels.
  • left and right eye viewing is formed through the 3D display phase plate to produce a real 3D effect.
  • FIG8 is a schematic diagram of 3D observation.
  • the electrowetting prism array 4 of the inclined xz plane and the electrowetting prism array 5 of the inclined yz plane can respectively allow the light entering the liquid crystal to rotate along the x-axis and the y-axis, thereby changing the direction of the light.
  • the liquid crystal layer 8 is an image layer. In each light-emitting direction, the liquid crystal layer 8 refreshes the corresponding image, so that multiple light-emitting directions correspond to multiple corresponding images, and these images can better restore the resolution of the 3D image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示模块、背光模组及显示装置,显示模块包括主波导(102),外部光源(101)由主波导(102)进入波导层,通过光束耦合单元(103)扇出多路次级波导(111-119),每路次级波导(111-119)对应一行像素,从像素波导(121-130)输出的光线经准直透镜(150)和光束转化结构(160)后输出高准直度光束;背光模组包括像素显示模块和两层电润湿棱镜阵列(4、5),准直消相干的光线经两层电润湿棱镜阵列(4、5),实现xy方向上的角度偏转;显示装置包括背光模组以及设置在背光模组光线出射端的上下偏振片(6、10)、上下TFT玻璃基板(7、9)、液晶层(8)、滤色片层(11)和显示相位板(12),光线经显示相位板(12)形成左右眼视察,产生真实的3D效果,通过电压控制,不仅可以提高3D显示的分辨率和观察视场,同时能够实现2D观察模式和3D观察模式的自由切换。

Description

显示模块、背光模组及显示装置 技术领域
本发明属于光电成像领域,尤其涉及一种显示模块、背光模组及显示装置。
背景技术
电子设备通常包括显示器。背光显示器(如背光液晶显示器)包括背光单元。背光单元产生向外穿过显示器中像素阵列的光。像素调制来自背光单元的光的强度以在显示器上创建图像。背光单元有助于确保显示器可以在各种环境照明条件下显示图像。
3D显示被誉为“下一代显示技术”,成为重要研究领域和诸多显示公司争相研究的技术之一。基于视差屏障、柱透镜阵列、时空复用、或集成光场等实现裸眼3D显示的机理和方法,均是利用具有周期性微结构或纳结构的光学元件对显示光场进行相位调控,将不同视角图像信息以近似平行光束的方式投射至不同视角。尽管自由立体显示技术已取得巨大进展,裸眼3D显示技术尚未成功进入平板显示领域。眩晕感(辐辏调解矛盾)、图像串扰/鬼影、分辨率下降等显示问题,以及背光准直、超薄化、光利用率等器件结构问题亟待解决。不论哪种3D显示机理和方法,对背光板的准直都要求,准直度影响3D显示观察效果的串扰和分辨率,准直度差会照成不同视点的串扰、图像分辨率的下降。
US20180292713A1公开了一种带有光源的背光显示器。显示器可包括边缘照明光导管,其中从光源发射的光在光导管内横向分布,并通过光栅、突出物或凹槽等外耦合结构从光导管散射出去。或者,所述显示器包括多个相邻的发光二极管,所述发光二极管具有用于准直光的弯曲反射器。为了帮助进一步准直光,光源配备有滤光层,滤光层具有角度相关的光传输特性,用于反射离轴光。然而,这会导致较高的能量损失,并且不会实现较低的光束发散,从而导致不同子像素之间的串扰。
US 2016/0300535A1提供了一种激光二极管阵列,其直接向像素方向发射光。激光二极管发出的光首先被透镜散射,然后被菲涅耳透镜准直。然而,这种方法需要大量的激光二极管来照亮显示区域,并且不允许使用薄背光单元。
EP 3599541A1所公开的光学装置,包括基板和在基板内延伸并向基板表面弯曲的光波导。在另一个实施例中,波导可以将光引导到基板中形成平面镜面的楔块,以将光散射出基板。然而,在此过程中,发射光束的发散度增加,产生的发散角非常大。
发明内容
发明目的:针对现有技术存在的问题,本发明提供一种像素显示模块,能够提供3D显示需要的高准直度背光,同时提供了一种xy平面内可调节光束偏转角度的背光模组,以及具备2D-3D观察模式切换功能的大视场显示装置。
技术方案:一种显示模块,包括:
主波导,用于接收外部光源;
光束耦合单元,和主波导连接,用于扇出多路次级波导,每路次级波导包括多个像素波导;
所述主波导、光束耦合单元、次级波导及像素波导嵌入基板内;其中,所述主波导和多路所述次级波导位于同一基板横截面;每路所述次级波导中,所述多个像素波导以所述次级波导的分支形态向基板表面延伸,所述多个像素波导位于同一基板纵截面,所述多个像素波导的末端垂直于基板表面;
准直透镜,置于基板的出光端,所述准直透镜由多个光学元件微结构I周期性分布构成,所述光学元件微结构I和像素波导对应布置,用于对基板表面出射的光束进行准直;
光束转化结构,置于准直透镜的出光端,所述光束转化结构由多个光学元件微结构II随机性分布构成,用于对准直透镜出射的平行光线进行消相干。
优选的,所述基板的上表面设有黑矩阵,用于保证像素波导的出射端位于准直透镜的物方焦点上。
优选的,所述像素波导的出光端距基板的上表面10-50um。
可选的,所述主波导和次级波导通过直接激光写入基板,优选为飞秒直接激光写入。
可选的,所述光束耦合单元为光耦合器。
可选的,所述准直透镜由微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列或二元结构光阵列周期性分布构成。
可选的,所述光束转换结构由微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列或二元结构光阵列随机性分布构成。
进一步的,所述光源为叠加布置的RGB三色光源,各色光源一端对应设置有主波导、光束耦合单元、次级波导、像素波导、基板、准直透镜和光束转化结构。
一种可调节光束角度的背光模组,包括所述像素显示模块,以及斜面xz平面的电润湿棱镜阵列和斜面yz平面的电润湿棱镜阵列;所述斜面xz平面的电润湿棱镜阵列、斜面yz平面的电润湿棱镜阵列依次叠加在显示模块的光线出射端,分别用于调整光束绕x轴和y轴的偏转角度。
一种显示装置,包括所述背光模组,以及依次设置在背光模组光线出射端的下偏振片、第一TFT玻璃基板、液晶层、第二TFT玻璃基板、上偏振片、滤色片层、显示相位板;所述背光模组的出射光线经下偏振片和第一TFT玻璃基板进入液晶层,再进入第二TFT玻璃基板和上偏振片,由滤色片层形成RGB子像素后经显示相位板成像。
有益效果
与现有技术相比,本发明具备如下显著进步:
1、本发明的显示模块结构紧凑、简洁,从像素波导输出的光线分别经准直透镜和光束转化结构完成准直和消相干,为后续显示模块提供了高质量的背光;该像素显示模块可用于多种形状、构造的背光模组、显示装置,能够解决光源经过显示屏的各层微结构后的相干引起的图像串扰和分辨率下降问题。
2、在显示模块提供高准直消相干光线的基础上,本发明提供具备两层电润湿棱镜阵列结构的背光模组,以调整光束绕x轴和y轴的偏转角度,改变背光进入后续模块的入射角度。
3、本发明的显示设备能够提供真实的3D显示效果,同时结合现有的电压控制策略,可以实现显示器2D观察模式和3D观察模式的切换;在3D观察模式下,能够增大3D纵向视差和观察范围,提高3D横向的观察范围和分辨率。
附图说明
图1为本发明显示模块波导层的俯视图;
图2为图1中次级波导115及其像素波导的正视图;
图3为本发明显示模块的正视图;
图4为图3中光束转换结构的俯视图;
图5为RGB三色显示模块的正视图;
图6为xy平面内可调节角度的背光模组示意图;
图7为显示装置示意图;
图8为3D观察的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
图1所示为一种像素显示模块用波导层结构的俯视图。该波导层结构包括外部光源101,用于接收外部光源的主波导102,光束耦合单元103以及多路次级波导111,112,113,114,115,116,117,118,119。其中,主波导102一端连接外部光源101,另一端连接光束耦合单元103,外部光源101由主波导102进入波导层,通过光束耦合单元103扇出多路次级波导111,112,113,114,115,116,117,118,119,每根次级波导对应一行像素,由此将外部光源101光线耦合进入整个波导面。
以图2为例,由主波导102扇出的次级波导115包括一行像素波导121,122,123,124,125,126,127,128,129,130,当外部光源101为红光光源时,每根像素波导对应一个显示R子像素。
主波导102、光束耦合单元103、次级波导及像素波导嵌入基板104内。可选的,采用直接激光写入的方式在基板104内形成主波导、次级波导及像素波导,优选采用飞秒直接激光写入,以降低波导传播损耗。
应当说明的是,主波导102和多路次级波导位于同一基板横截面,即主波导102由光束耦合单元103沿基板104的一个横截面平铺扇出多路次级波导111,112,113,114,115,116,117,118,119。每路次级波导中,像素波导和该路次级波导呈夹角向基板104表面延伸,同时,各路次级波导的一行像素波导位于同一基板纵截面,多个像素波导的末端垂直于基板104表面。优选的,像素波导的出光端距基板104上表面10-50um,出光光线从基板104上表面出射。
外部光源101可以为激光器,例如边缘发射激光二极管和/或垂直腔发射激光二极管。
从光源发射到次级波导管的光束耦合可采用现有的光耦合器实现,也可以通过另一个波导或波导级联的结构实现。
基板104可选为片状或板状透明基板,例如玻璃基板,其厚度小于5cm,优选小于2mm。
如图3所示,在上述波导层结构的基础上,本发明提供一种能够提供高准直背光的像素显示模块,光学膜置于基板104的出光端,光学膜的下表面和上表面分别加工有准直透镜150和光束转换结构160。准直透镜150接收基板104表面出射的光束,对其进行准直。准直透镜150由多个光学元件微结构I 1501周期性分布构成,其遵循的周期性分布是指多个光学元件微结构I 1501和基板104内的像素波导一一对应设置。
可选的,准直透镜150采用微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列、二元结构光阵列等构型,即光学元件微结构I 1501包括但不限于菲涅尔透镜、微棱镜、自由曲面透镜等。优选的,准直镜150的尺寸在100nm-1mm之间。图3所示的结构中,准直镜150表面为凸微透镜,其多个凸面和像素波导一一对应布置。准直透镜150也可以是其它形式的光学元件,如采用在光学膜上具有周期性分布的菲涅尔透镜,菲涅尔透镜可以利用金刚石车床、灰度光刻工艺和激光刻蚀工艺等制作,并利用纳米压印、玻璃模压和注塑工艺实现批量复制。作为指向性背光中准直器件,准直透镜150的材料可选取塑料或者玻璃,折射率在1-2.5之间,优选采用塑料以使产品更加轻便和降低成本。准直透镜150可以利用灰度光刻工艺、激光刻蚀工艺等制作,并利用纳米压印工艺实现批量复制。
光束转化结构160由多个光学元件微结构II 1601随机性分布构成,用于对准直透镜150出射的平行光线进行消相干,从而消除激光光源的相干性,防止视点窜扰和分辨率的下降。图4为光束转换结构的光学元件微结构II 1601的随机性分布示意图,该光学元件微结构II 1601形成于光学膜上表面,即图3中光学膜上表面的凸面结构,需要说明的是,光学元件微结构I 1501和像素波导一一对应设置,但光学元件微结构II 1601的分布与光学元件微结构I 1501无关,图3所示的对应关系仅为一种示例。同理于准直透镜150,光束转换结构160可以采用微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列、二元结构光阵列等构型,即光学元件微结构II 1601包括但不限于菲涅尔透镜、微棱镜、自由曲面透镜。光束转化结构160可以利用金刚石车床、灰度光刻工艺和激光刻蚀工艺等制作,并利用纳米压印、玻璃模压和注塑工艺实现批量复制。
从基板104上表面出射的光束,经准直透镜150准直后出射准直平行光(准直度达到0.5°~3°),准直平行光经光束转化结构160进行消相干,防止由于相干造成的像 素串扰和分辨率下降。经光束转化结构160后,光束的发散角相对于准直后的角度适当增大,发散角在3°~5°。
优选的,在基板104上表面设置一个或多个黑矩阵140,当设置多个黑矩阵140时,通过调整相邻黑矩阵140之间的距离,调整像素波导的出射端位于准直透镜150的物方焦点上。黑矩阵140由黑色吸光材料制成,可以是黑色颜料或染料的着色剂。黑矩阵140材料可以是钛黑、木质素黑、诸如铁或锰的复合氧化物颜料以及上述材料组合构成。形成黑矩阵140的工艺包括贴膜、光刻、激光加工、喷墨打印、3D打印、丝网印刷、微接触印刷等。可选的,黑矩阵140为图案化结构,可以是单层或多层独立结构。
实施例2
图5所示为一种RGB三色显示模块,此时外部光源有RGB三色波长,每个波长对应一层波导层、准直透镜和光束转化结构,准直透镜排布和显示子像素对应。本实施例中,红绿蓝三色光源101,201,301位于一侧,各色光源对应有各自的像素显示模块,三层像素显示模块叠加设置。以图5所示结构为例,假设此时101对应的外部光源为红光,201对应的外部光源为绿光,301对应的外部光源为蓝光。红光像素显示模块位于第一层,在其光束转化结构上叠加绿光基板204及相应的绿光准直转化结构,在绿光像素显示模块的光束转化结构上叠加蓝光基板304及相应的蓝光准直转化结构,从下而上依次形成RGB三色显示模块,光线分别通过各自的波导层、准直透镜和光束转化结构,能够以小于5°的出光发散角出射,形成高准直度的背光进行后续显示模块。
其中红绿蓝三色光源101、201和301可选为边缘发射激光二极管和/或垂直腔发射激光二极管。
实施例3
如图6所示,在RGB三色显示模块的基础上,本发明还提供一种xy平面内可调节角度的背光结构,该背光结构包括RGB三色显示模块以及斜面xz平面的电润湿棱镜阵列4和斜面yz平面的电润湿棱镜阵列5。其中,斜面xz平面的电润湿棱镜阵列4、斜面yz平面的电润湿棱镜阵列5依次叠加在显示模块的光线出射端,分别用于调整光束绕x轴和y轴的偏转角度。
经两层电润湿棱镜阵列,可以实现光束绕x轴和y轴偏转,理论上可以30°,光 束的偏转取决于液体折射率组合的选择和微棱镜单元的几何形状。通过施加不同的电压,两层电润湿棱镜阵列可以改变光束偏转的角度,从而改变背光进入后续模块的入射角度,同时可以实现显示器2D观察模式和3D观察模式的切换。
实施例4
如图7所示为一种显示装置,其包括xy平面内可调节角度的背光模组,下偏振片6、第一TFT玻璃基板7、液晶层8、第二TFT玻璃基板9、上偏振片10、滤色片层11、显示相位板12,从背光出射光线经下偏振片6和第一TFT玻璃基板7进入液晶层8,再进入第二TFT玻璃基板9和上偏振片10,由滤色片层11形成RGB子像素,滤色层的目的是防止不同子像素之间的颜色串扰,最后经3D显示相位板形成左右眼视察,产生真实的3D效果。
图8是3D观察的示意图,通过电润湿透镜与液晶层的控制同步,即控制电润湿透镜的电压和3D图像的刷新频率同步,可以增大x方向和y方向的视点数量和观察范围,从而提高3D显示的分辨率和观察视场。具体的,斜面xz平面的电润湿棱镜阵列4和斜面yz平面的电润湿棱镜阵列5分别可以让进入液晶的光线沿着x轴和y轴旋转,从而改变光线方向。液晶层8为图像层,在每个出光方向,液晶层8刷新对应的图像,使得多个出光方向对应多个对应图像,这些图像可以更好地还原3D图像的分辨率。
以上所述实施例仅表达了本发明的几种实施方式,但并不理解为对本发明保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种显示模块,其特征在于,包括:
    主波导,用于接收外部光源;
    光束耦合单元,和主波导连接,用于扇出多路次级波导,每路次级波导包括多个像素波导;
    所述主波导、光束耦合单元、次级波导及像素波导嵌入基板内;其中,所述主波导和多路所述次级波导位于同一基板横截面;每路所述次级波导中,所述多个像素波导以所述次级波导的分支形态向基板表面延伸,所述多个像素波导位于同一基板纵截面,所述多个像素波导的末端垂直于基板表面;
    准直透镜,置于基板的出光端,所述准直透镜由多个光学元件微结构I周期性分布构成,所述光学元件微结构I和像素波导对应布置,用于对基板表面出射的光束进行准直;
    光束转化结构,置于准直透镜的出光端,所述光束转化结构由多个光学元件微结构II随机性分布构成,用于对准直透镜出射的平行光线进行消相干。
  2. 根据权利要求1所述的显示模块,其特征在于,所述基板的上表面设有黑矩阵。
  3. 根据权利要求1所述的显示模块,其特征在于,所述像素波导的出光端距基板的上表面10-50um。
  4. 根据权利要求1所述的显示模块,其特征在于,所述主波导和次级波导通过直接激光写入基板。
  5. 根据权利要求1所述的显示模块,其特征在于,所述光束耦合单元为光耦合器。
  6. 根据权利要求1所述的显示模块,其特征在于,所述准直透镜由微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列或二元结构光阵列周期性分布构成。
  7. 根据权利要求1所述的显示模块,其特征在于,所述光束转换结构由微透镜阵列、菲涅耳透镜阵列、薄膜透镜阵列或二元结构光阵列随机性分布构成。
  8. 根据权利要求1所述的显示模块,其特征在于,所述光源为叠加布置的RGB三色光源,各色光源一端对应设置有主波导、光束耦合单元、次级波导、像素波导、基板、准直透镜和光束转化结构。
  9. 一种可调节光束角度的背光模组,其特征在于,包括如权利要求8所述的显示 模块,以及斜面xz平面的电润湿棱镜阵列和斜面yz平面的电润湿棱镜阵列;所述斜面xz平面的电润湿棱镜阵列、斜面yz平面的电润湿棱镜阵列依次叠加在显示模块的光线出射端,分别用于调整光束绕x轴和y轴的偏转角度。
  10. 一种显示装置,其特征在于,包括如权利要求9所述的背光模组,以及依次设置在背光模组光线出射端的下偏振片、第一TFT玻璃基板、液晶层、第二TFT玻璃基板、上偏振片、滤色片层、显示相位板;所述背光模组的出射光线经下偏振片和第一TFT玻璃基板进入液晶层,再进入第二TFT玻璃基板和上偏振片,由滤色片层形成RGB子像素后经显示相位板成像。
PCT/CN2023/081597 2022-11-25 2023-03-15 显示模块、背光模组及显示装置 WO2024108823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211488045.9 2022-11-25
CN202211488045.9A CN118091973A (zh) 2022-11-25 2022-11-25 显示模块、背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2024108823A1 true WO2024108823A1 (zh) 2024-05-30

Family

ID=91140893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081597 WO2024108823A1 (zh) 2022-11-25 2023-03-15 显示模块、背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN118091973A (zh)
WO (1) WO2024108823A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046100A2 (en) * 2005-10-18 2007-04-26 Oms Displays Ltd. Device and method for optical resizing and backlighting
US20100157026A1 (en) * 2007-05-24 2010-06-24 Seereal Technolgies S.A. Directional Illumination Unit for Autostereoscopic Displays
US20130201424A1 (en) * 2010-04-27 2013-08-08 Tatsuo Uchida Backlight system and lcd device using the same
CN209560211U (zh) * 2019-03-22 2019-10-29 大族激光科技产业集团股份有限公司 光束整形装置
CN112602045A (zh) * 2018-07-26 2021-04-02 维也纳大学 光波导光发射器及触摸屏
EP3926233A1 (en) * 2020-06-19 2021-12-22 VitreaLab GmbH Optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046100A2 (en) * 2005-10-18 2007-04-26 Oms Displays Ltd. Device and method for optical resizing and backlighting
US20100157026A1 (en) * 2007-05-24 2010-06-24 Seereal Technolgies S.A. Directional Illumination Unit for Autostereoscopic Displays
US20130201424A1 (en) * 2010-04-27 2013-08-08 Tatsuo Uchida Backlight system and lcd device using the same
CN112602045A (zh) * 2018-07-26 2021-04-02 维也纳大学 光波导光发射器及触摸屏
CN209560211U (zh) * 2019-03-22 2019-10-29 大族激光科技产业集团股份有限公司 光束整形装置
EP3926233A1 (en) * 2020-06-19 2021-12-22 VitreaLab GmbH Optical device

Also Published As

Publication number Publication date
CN118091973A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US11175512B2 (en) Diffractive projection apparatus
US11204540B2 (en) Diffractive waveguide providing a retinal image
US10409144B2 (en) Diffractive waveguide providing structured illumination for object detection
US8639072B2 (en) Compact wearable display
KR102385879B1 (ko) 2 차원 및/또는 3 차원 이미지를 위한 디스플레이
CN110908134B (zh) 一种显示装置及显示系统
US8885112B2 (en) Compact holographic edge illuminated eyeglass display
JP4996029B2 (ja) 導波路ディスプレー
WO2017107313A1 (zh) 一种裸眼3d激光显示装置
US11726332B2 (en) Diffractive projection apparatus
US8994715B2 (en) 3D image display apparatus
CN105324605A (zh) 定向背光源
JP2010503009A (ja) 自動立体ディスプレイデバイス
JP2010101912A (ja) 液晶表示装置
US10191198B2 (en) Display apparatus including directional backlight unit and method of assembling the display apparatus
EP4160086B1 (en) Display device
CN106125304B (zh) 可配戴式显示装置
CN108051936B (zh) 显示面板及其驱动方法、显示装置及其驱动方法
KR102646791B1 (ko) 초점 변조 광학계 및 이를 포함한 홀로그래픽 디스플레이 장치
KR20120108729A (ko) 표시 장치
WO2024108823A1 (zh) 显示模块、背光模组及显示装置
TW201839434A (zh) 背光模組及其應用之立體顯示裝置
CN114967214A (zh) 显示装置和显示装置的控制方法
US10341645B2 (en) Backlight and image display device using the same
CN202275240U (zh) 一种立体显示器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892933

Country of ref document: EP

Kind code of ref document: A1