WO2024108415A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2024108415A1
WO2024108415A1 PCT/CN2022/133683 CN2022133683W WO2024108415A1 WO 2024108415 A1 WO2024108415 A1 WO 2024108415A1 CN 2022133683 W CN2022133683 W CN 2022133683W WO 2024108415 A1 WO2024108415 A1 WO 2024108415A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sub
display device
electrodes
substrate
Prior art date
Application number
PCT/CN2022/133683
Other languages
English (en)
French (fr)
Inventor
王一军
王盛
王辉
臧远生
张军
周如
许徐飞
马俊才
张前前
吴兵兵
刘玉琪
刘兆范
杨越
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/133683 priority Critical patent/WO2024108415A1/zh
Publication of WO2024108415A1 publication Critical patent/WO2024108415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • An embodiment of the present disclosure relates to a display device.
  • the present disclosure provides a display device.
  • the display device includes: a display panel and a dimming unit.
  • the dimming unit is stacked with the display panel, and the dimming unit includes a first substrate, a variable refractive index material layer, an electrode structure and a second substrate that are stacked, and the variable refractive index material layer and the electrode structure are both located between the first substrate and the second substrate.
  • the dimming unit also includes a plurality of signal lines, and the electrode structure and the plurality of signal lines are both located on the first substrate; the electrode structure includes a first electrode structure and a second electrode structure, and the first electrode structure includes a plurality of first electrodes insulated from each other, and the first substrate includes a plurality of regions, and the first electrodes in different regions are configured to be electrically connected to different signal lines to achieve partition control of the dimming unit.
  • the display panel includes a plurality of sub-pixels, and a ratio of the number of the plurality of sub-pixels to the number of the plurality of regions is N, where N is not greater than 10.
  • the dimming unit also includes a plurality of switch structures located on the first substrate, each area is provided with at least one switch structure, the plurality of signal lines include a plurality of first signal lines arranged along a first direction, the first pole of each switch structure is electrically connected to the corresponding first signal line, and the second pole of each switch structure is electrically connected to the corresponding first electrode.
  • the multiple signal lines also include a plurality of second signal lines arranged along a second direction
  • the switching structure includes a switching transistor, a gate of the switching transistor is electrically connected to the corresponding second signal line, the first direction intersects with the second direction, and the multiple first signal lines and the multiple second signal lines are cross-arranged to form the multiple regions.
  • At least one second signal line includes a meandering signal line.
  • At least one first electrode includes a plurality of electrically connected sub-electrodes, the angle between the extension direction of at least one sub-electrode and the extension direction of at least one first signal line is no more than 10 degrees, and the plurality of sub-electrodes are arranged along the first direction.
  • the second electrode structure includes cross-arranged connecting electrodes and a plurality of second electrodes connected to the connecting electrodes, the angle between the extension direction of at least one second electrode and the extension direction of at least one first signal line is not greater than 15 degrees, and in at least one area, the first electrode includes a plurality of sub-electrodes, the extension direction of each sub-electrode is the same as the extension direction of each second electrode, and the plurality of sub-electrodes and the plurality of second electrodes are alternately arranged along the first direction.
  • the connecting electrodes include a plurality of first connecting electrodes extending along the extension direction of the plurality of first signal lines and a plurality of second connecting electrodes extending along the extension direction of the plurality of second signal lines, the plurality of first connecting electrodes are alternately arranged with the plurality of first signal lines, and the plurality of second connecting electrodes are alternately arranged with the plurality of second signal lines.
  • the display panel includes a plurality of data lines arranged along the first direction and a plurality of gate lines arranged along the second direction, the extension direction of the data lines is different from the extension direction of at least part of the first signal lines, and the extension direction of the gate lines is different from the extension direction of at least part of the second signal lines.
  • the display panel includes multiple data lines arranged along the first direction and multiple gate lines arranged along the second direction, and the orthographic projection of at least one data line on the first substrate overlaps with the orthographic projection of the first signal line on the first substrate.
  • the display panel includes a plurality of data lines arranged along the first direction and a plurality of gate lines arranged along the second direction, and the extension direction of the data lines is the same as the extension direction of the sub-electrodes.
  • each sub-pixel includes a thin film transistor, and a channel width-to-length ratio of the thin film transistor is not greater than a channel width-to-length ratio of the switch transistor.
  • the dimming unit further includes a black matrix, and the orthographic projection of the black matrix on the first substrate covers at least part of the orthographic projections of the plurality of first signal lines and the plurality of second signal lines on the first substrate.
  • the first electrode structure and the second electrode structure are arranged in the same layer; or, the first electrode structure is located between the second electrode structure and the first substrate.
  • parts of the plurality of signal lines are electrically connected to the plurality of first electrodes in a one-to-one correspondence.
  • the first electrode structure and the second electrode structure are located in different layers, and at least one of the plurality of signal lines is electrically connected to the second electrode structure.
  • the first electrode includes a plurality of sub-electrodes arranged along a first direction
  • the second electrode structure includes a plurality of second electrodes arranged along the first direction
  • the plurality of sub-electrodes and the plurality of second electrodes are alternately arranged along the first direction.
  • the first electrode further includes a first sub-connection portion electrically connected to the plurality of sub-electrodes
  • the second electrode structure further includes a second sub-connection portion electrically connected to the plurality of second electrodes.
  • At least one signal line has a straight line or a bent shape at a portion where it overlaps with the first electrode in a direction perpendicular to the first substrate.
  • the display device further includes: a first polarizing structure located on a side of the display panel away from the dimming unit; a second polarizing structure located between the display panel and the dimming unit; and a third polarizing structure located on a side of the dimming unit away from the display panel.
  • the polarizing direction of the first polarizing structure intersects with the polarizing direction of the second polarizing structure, and the polarizing direction of the third polarizing structure is the same as the polarizing direction of the second polarizing structure.
  • the display device further includes an anti-peep film located on the light incident side of the dimming unit.
  • the display device further includes: a backlight structure, which is stacked with the dimming unit and the display panel.
  • the dimming unit is located between the backlight structure and the display panel, or the display panel is located between the dimming unit and the backlight structure.
  • the line width of the sub-electrode is 1 to 15 microns
  • the line width of the second electrode is 1 to 15 microns
  • the distance between the adjacent sub-electrode and the second electrode is 2 to 15 microns.
  • variable refractive index material layer includes a liquid crystal layer, and the thickness of the liquid crystal layer is 2 to 50 micrometers.
  • the operating voltage of the dimming unit is 3V to 25V.
  • 1 to 2 are schematic diagrams of a partial cross-sectional structure of a display device.
  • 3 and 4 are schematic diagrams of a partial cross-sectional structure of another display device.
  • FIG. 5 is a schematic diagram of a partial structure of a display device provided according to an embodiment of the present disclosure.
  • FIG. 6 is a partial plan view of the dimming unit shown in FIG. 5 .
  • 7 to 9 are display images of a display device in different states or viewing angles according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a partial planar structure of a display panel provided according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing the stacking relationship between a display panel and a dimming unit.
  • FIG. 12 and FIG. 13 are schematic diagrams of partial cross-sectional structures taken along line AA’ shown in FIG. 6 in different examples.
  • FIG. 14 is a schematic diagram of the structure of a display device provided according to another example of an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a partial planar structure of a dimming unit in the display device shown in FIG. 14 in an example.
  • FIG. 16 is a schematic diagram of a partial planar structure of a dimming unit in the display device shown in FIG. 14 in another example.
  • FIG. 17 is a partial structural diagram of a display device provided according to an embodiment of the present disclosure.
  • FIG. 18 is a partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • FIG. 19 is a partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • FIG. 20 is a partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • the display device with anti-peeping function may include a non-switchable anti-peeping display device, which realizes the anti-peeping function by sticking an anti-peeping film on the display screen.
  • This display device is applied to a single scene, such as only suitable for displaying in an anti-peeping state.
  • the thickness of this display device is relatively thick, and the anti-peeping film may reduce the brightness of the displayed image and affect the visual effect.
  • This display device has low cost and is mainly used for anti-peeping film on mobile phones.
  • the display device with anti-peeping function can also include a switchable anti-peeping display device, which can adopt a combination of collimated backlight, anti-peeping panel and display panel, and realize the regulation of the side viewing angle brightness of the display surface of the display panel by applying different voltages to the anti-peeping panel.
  • a switchable anti-peeping display device which can adopt a combination of collimated backlight, anti-peeping panel and display panel, and realize the regulation of the side viewing angle brightness of the display surface of the display panel by applying different voltages to the anti-peeping panel.
  • Figures 1 and 2 are partial cross-sectional structural schematic diagrams of a display device.
  • Figure 1 shows the working principle of the display device when it is in an anti-peeping state
  • Figure 2 shows the working principle of the display device when it is in a sharing state.
  • anti-peeping state means that the light intensity of the image light emitted from the display device is concentrated in the viewing angle within 45 degrees from the normal line of the display surface of the display device. When the angle between the viewer's eyes and the normal line is greater than 45 degrees, the image displayed on the display surface cannot be seen clearly. Therefore, “anti-peeping state” can refer to a state that prevents others from peeping at information, which can better protect the privacy of users and prevent information leakage.
  • the “sharing state” has a divergent light effect relative to the "anti-peeping state", for example, the light intensity of the image light emitted by the display device is not concentrated in the viewing angle within 45 degrees from the normal line of the display surface, and the viewer can still see the image displayed on the display surface clearly when the angle between the viewer's eyes and the normal line is greater than 45 degrees. Therefore, the “sharing state” can refer to the state of sharing information with others, which can enable multiple people to watch the image displayed by the display device at the same time.
  • the display device includes a stacked display panel, an anti-peep panel and a backlight source 030.
  • the anti-peep panel is located between the display panel and the backlight source 030.
  • the anti-peep panel can also be arranged on the side of the display panel away from the backlight source, that is, the display panel is arranged between the anti-peep panel and the backlight source, which is not limited here.
  • the display panel and the anti-peep panel are stacked in the Y direction.
  • the anti-peep panel can be a dimming liquid crystal box, including a first light-transmitting substrate 011 and a second light-transmitting substrate 012 stacked, and a liquid crystal layer 013 is arranged between the first light-transmitting substrate 011 and the second light-transmitting substrate 012.
  • a first whole-surface electrode layer 014 is arranged between the first light-transmitting substrate 011 and the liquid crystal layer 013, and a second whole-surface electrode layer 015 is arranged between the second light-transmitting substrate 012 and the liquid crystal layer 013.
  • the first whole-surface electrode layer 014 and the second whole-surface electrode layer 015 drive the liquid crystal in the liquid crystal layer 013 to rotate when a voltage is input.
  • a polarizing layer 016 is disposed on the side of the first light-transmitting substrate 011 away from the liquid crystal layer 013, and a polarizing layer 017 is disposed on the side of the second light-transmitting substrate 012 away from the liquid crystal layer 013.
  • the polarization direction of the polarizing layer 016 is the same as the polarization direction of the polarizing layer 017.
  • Alignment films are disposed between the first entire electrode layer 014 and the liquid crystal layer 013 and between the second entire electrode layer 015 and the liquid crystal layer 013, which are not shown in the figure.
  • the display panel includes a first substrate 021 and a second substrate 022 that are stacked, and a liquid crystal layer 023 is disposed between the first substrate 021 and the second substrate 022.
  • the electrode layer disposed between the first substrate 021 and the liquid crystal layer 023 and the electrode layer disposed between the second substrate 022 and the liquid crystal layer 023 drive the liquid crystal in the liquid crystal layer 023 to rotate when a voltage is input.
  • the display panel also includes a polarization layer 024 disposed on the side of the second substrate 022 away from the first substrate 021, the polarization direction of the polarization layer 017 intersects with the polarization direction of the polarization layer 024, and the polarization direction of the polarized light emitted through the polarization layer 017 intersects with the polarization direction of the polarized light emitted through the polarization layer 024.
  • the display panel may also be disposed between the anti-peep panel and the backlight source, which is not limited here.
  • the two electrode layers of the display panel may be disposed on the same substrate of the display panel, for example, both disposed on the side of the second substrate or the first substrate facing the liquid crystal layer 023.
  • the display device controls the deflection state of the liquid crystal in the liquid crystal layer 013 by applying different voltages to the anti-peeping panel, such as the electrode layers 014 and 015 of the dimming liquid crystal box, thereby achieving control of the viewing angle.
  • the light emitted by the backlight source is a micro-collimated light.
  • FIG. 1 when a suitable voltage is applied to the dimming liquid crystal box, the liquid crystal in the liquid crystal layer 013 rotates, and at this time, the light in the backlight that passes through the polarization layer 016 enters the liquid crystal box.
  • the polarization state of the light at the positive viewing angle remains unchanged and is emitted from the polarization layer 017, and the light at the side viewing angle becomes non-linearly polarized light and is then filtered out by the polarization layer 017.
  • the dimming liquid crystal box can absorb the light at the side viewing angle emitted by the backlight source to achieve the purpose of narrowing the viewing angle, thereby achieving a good anti-peeping effect.
  • the liquid crystal in the liquid crystal layer 013 does not rotate, and the light emitted from the backlight source and passing through the dimming liquid crystal box is basically not deflected.
  • the light passes through the polarization layer 016 and the polarization layer 017 with the same polarization direction.
  • the dimming liquid crystal box has no absorption effect on the side viewing angle light emitted by the backlight source, thereby realizing the shared state of the display device.
  • Figures 3 and 4 are partial cross-sectional structural schematic diagrams of another display device.
  • Figure 3 shows the working principle of the display device when it is in an anti-peeping state
  • Figure 4 shows the working principle of the display device when it is in a sharing state.
  • the display device includes a stacked display panel, a peep panel and a backlight source 030, wherein the peep panel is located between the display panel and the backlight source 030.
  • the peep panel may also be arranged on the side of the display panel away from the backlight source, that is, the display panel is arranged between the peep panel and the backlight source, which is not limited here.
  • the display panel and the peep panel are stacked in the Y direction.
  • the peep panel may be a dimming liquid crystal box, including a stacked first transparent substrate 011 and a second transparent substrate 012, wherein a liquid crystal layer 013 is arranged between the first transparent substrate 011 and the second transparent substrate 012.
  • a first electrode 014 and a second electrode 015 alternately arranged along the X direction are arranged between the first transparent substrate 011 and the liquid crystal layer 013, and the first electrode 014 and the second electrode 015 drive the liquid crystal in the liquid crystal layer 013 to rotate when a voltage is input.
  • An alignment film is arranged between the first transparent substrate 011 and the liquid crystal layer 013 and between the second transparent substrate 012 and the liquid crystal layer 013, which is not shown in the figure.
  • a privacy film 040 is disposed between the backlight source 030 and the dimming liquid crystal box.
  • the privacy film 040 absorbs the side-angle light in the micro-collimated light emitted by the backlight source 030, so that the light emitted from the privacy film to the dimming liquid crystal box has substantially no side-angle light.
  • the privacy film 040 may be a structure made of black material arranged in a shutter structure.
  • the display panel includes a first substrate 021 and a second substrate 022 which are stacked, and a liquid crystal layer 023 is disposed between the first substrate 021 and the second substrate 022.
  • the electrode layer disposed between the first substrate 021 and the liquid crystal layer 023 and the electrode layer disposed between the second substrate 022 and the liquid crystal layer 023 drive the liquid crystal in the liquid crystal layer 023 to rotate when a voltage is input.
  • the display panel also includes a polarization layer 024 disposed on a side of the second substrate 022 away from the first substrate 021, and a polarization layer 025 disposed on a side of the first substrate 021 away from the second substrate 022, the polarization direction of the polarization layer 025 intersects with the polarization direction of the polarization layer 024, and the polarization direction of the polarized light emitted through the polarization layer 025 intersects with the polarization direction of the polarized light emitted through the polarization layer 024.
  • the electrode layer of the dimming liquid crystal box does not drive the liquid crystal to deflect
  • the propagation direction of the light with basically no side viewing angle emitted from the anti-peep film to the dimming liquid crystal box does not change, and the light emitted from the dimming liquid crystal box and emitted to the display panel has basically no side viewing angle, thereby achieving an anti-peeping effect.
  • the display device controls the deflection state of the liquid crystal in the liquid crystal layer by applying a voltage to the first electrode and the second electrode, such as the positive electrode and the negative electrode, in the dimming liquid crystal box, thereby achieving control of the viewing angle; when the voltage is applied to the electrodes of the dimming liquid crystal box, the dimming liquid crystal box can diverge the light with basically no side viewing angle emitted from the anti-peep film to it, such as diverging the light with a positive viewing angle or close to the positive viewing angle to a large viewing angle direction, and the greater the applied voltage, the better the divergence effect of the light, so that the light emitted from the dimming liquid crystal box and emitted to the display panel is the diverged light, thereby achieving a good shared state effect, with reference to FIG4, in this case, the first electrode and the second electrode are arranged in the same layer, and optionally, the first electrode and the second electrode are arranged in different layers, and an insulating layer is arranged between the two
  • the present disclosure provides a display device, which includes a display panel and a dimming unit.
  • the dimming unit is stacked with the display panel, and the dimming unit includes a first substrate, a variable refractive index material layer, an electrode structure and a second substrate that are stacked, and the variable refractive index material layer and the electrode structure are both located between the first substrate and the second substrate.
  • the dimming unit also includes a plurality of signal lines, and the electrode structure and the plurality of signal lines are both located on the first substrate; the electrode structure includes a first electrode structure and a second electrode structure, and the first electrode structure includes a plurality of first electrodes insulated from each other, and the first substrate includes a plurality of regions, and the first electrodes in different regions are configured to be electrically connected to different signal lines to achieve partition control of the dimming unit.
  • the display device provided by the present disclosure is applied to the anti-peeping-sharing switching technology, and by setting a plurality of signal lines in the dimming unit, and electrically connecting different first electrodes of the first electrode structure located in different regions to different signal lines to achieve independent anti-peeping state-sharing state switching in specific regions of the display device, it is beneficial to improve the user experience.
  • FIG5 is a schematic diagram of a partial structure of a display device provided according to an embodiment of the present disclosure
  • FIG6 is a schematic diagram of a partial plan view of a dimming unit shown in FIG5
  • the display device includes a stacked display panel 100 and a dimming unit 200.
  • the positional relationship between the display panel and the dimming unit in this case can be interchanged without specific limitation.
  • the display panel 100 and the dimming unit 200 are stacked along the Y direction, and the Y direction is a direction perpendicular to the display surface of the display panel 100.
  • the dimming unit 200 includes a first substrate 210, a variable refractive index material layer 230, an electrode structure 240 and a second substrate 220, which are stacked.
  • the variable refractive index material layer 230 and the electrode structure 240 are both located between the first substrate 210 and the second substrate 220.
  • the first substrate and the second substrate can be interchangeable.
  • the dimming unit 200 further includes a plurality of signal lines 250, and the electrode structure 240 and the plurality of signal lines 250 are both located on the first substrate 210.
  • the disclosed embodiment is not limited thereto, and the plurality of signal lines and the electrode structure may also be both located on the second substrate, that is, the plurality of signal lines and the electrode structure are both located on the same substrate.
  • the electrode structure 240 includes a first electrode structure 260 and a second electrode structure 270.
  • the first electrode structure 260 includes a plurality of first electrodes 261 insulated from each other.
  • the first substrate 210 includes a plurality of regions 201.
  • the first electrodes 261 in different regions 201 are configured to be electrically connected to different signal lines 250 to achieve partition control of the dimming unit 200.
  • the plurality of first electrodes 261 are arranged in the same layer.
  • the first electrodes 261 in different regions 201 are insulated.
  • the display device provided by the present disclosure is applied to the anti-peeping-sharing switching technology.
  • different areas in the dimming part can independently control the light incident into the dimming part, thereby realizing independent switching between the anti-peeping state and the sharing state in any designated area in the display device, thereby improving the user experience.
  • different display states can be set for different display areas corresponding to the main driving position and the co-pilot position in the vehicle display, and the different display states include anti-peeping state and sharing state.
  • the display device provided by the present disclosure can be applied in scenarios such as aviation entertainment display, business office, such as business secrets, and ATM display, such as financial privacy or payment password areas.
  • the first substrate 210 and the second substrate 220 are both light-transmitting substrates formed of light-transmitting materials.
  • the materials of the first substrate 210 and the second substrate 220 can be glass, organic polymer or other transparent materials.
  • the variable refractive index material layer 230 includes a liquid crystal layer, and the thickness of the liquid crystal layer is 2 to 50 microns.
  • the thickness of the liquid crystal layer can be 5 to 40 microns.
  • the thickness of the liquid crystal layer can be 10 to 45 microns.
  • the thickness of the liquid crystal layer can be 15 to 30 microns.
  • the thickness of the liquid crystal layer can be 20 to 35 microns.
  • the thickness of the liquid crystal layer can be 25 to 37 microns.
  • a support post (PS) 281 and a circle of sealant 282 surrounding the variable refractive index material layer 230 are further provided between the first substrate 210 and the second substrate 220.
  • an alignment film may be provided on the side of the first substrate 210 facing the liquid crystal layer and the side of the second substrate 220 facing the liquid crystal layer to align the liquid crystal in the liquid crystal layer.
  • the initial alignment direction of the liquid crystal may be a direction perpendicular to the first substrate 210.
  • the alignment angle may be 85 to 90 degrees to anchor the positive liquid crystal in the liquid crystal layer in an initial state perpendicular to the direction of the first substrate.
  • the liquid crystal in the liquid crystal layer may be a positive liquid crystal.
  • the liquid crystal in the liquid crystal layer included in the variable refractive index material layer 230 has a birefringence property, such as the refractive index of the liquid crystal in different directions is respectively a refractive index ne and a refractive index no, and the difference ⁇ n between the refractive index ne and the refractive index no may be 0.08 to 0.3, such as 0.1 to 0.2, such as 0.22 to 0.25, such as 0.15 to 0.28.
  • the liquid crystal layer in the initial state, no driving signal is applied to the liquid crystal layer (i.e., there is no pressure difference between the first electrode structure 260 and the second electrode structure 270), and the liquid crystal layer does not change the propagation direction of the light incident into the dimming section 200.
  • the light incident into the dimming section 200 is light with basically no side viewing angle
  • the light emitted from the dimming section 200 is still light with basically no side viewing angle.
  • the display device is in an anti-peeping state.
  • the liquid crystal when there is a voltage difference between the first electrode structure 260 and the second electrode structure 270 to apply a driving signal to the liquid crystal layer, the liquid crystal is deflected, and the liquid crystal layer will change the propagation direction of part of the light incident therein.
  • the deflected liquid crystal causes part of the light to be dispersed, such as dispersing light at a front viewing angle or close to a front viewing angle to a large viewing angle direction. At this time, the display device is in a shared state.
  • the electrode structure 240 may be a light-transmitting electrode structure.
  • the material of the electrode structure 240 may be a transparent conductive material such as indium tin oxide (ITO).
  • different voltages are applied to the first electrode structure 260 and the second electrode structure 270 to form a voltage difference during the operation of the dimming unit 200.
  • a positive voltage and a negative voltage can be applied to the first electrode structure 260 and the second electrode structure 270, respectively.
  • the dimming unit 200 further includes a plurality of switch structures 300 located on the first substrate 210, each region 201 is provided with at least one switch structure 300, the plurality of signal lines 250 include a plurality of first signal lines 251 arranged along a first direction, the first pole 310 of the switch structure 300 is electrically connected to the first signal line 251, and the second pole 320 of the switch structure 300 is electrically connected to the first electrode 261.
  • the first pole and the second pole of the above switch structure can be interchangeable.
  • the switch structure 300 includes a switch transistor.
  • the switch transistor may be a thin film transistor.
  • the thin film transistor includes a first electrode 310 electrically connected to the first signal line 251, a second electrode 320 electrically connected to the first electrode 261 of the first electrode structure 260, a gate 330, and an active layer 340.
  • one of the first electrode 310 and the second electrode 320 may be a source of the thin film transistor, and the other may be a drain of the thin film transistor, and the active layer 340 may include a source region in contact with the source and a drain region in contact with the drain.
  • the active layer 340 may include at least one of a low temperature polysilicon layer, amorphous silicon, or an oxide semiconductor material, which is not limited here, and the source region and the drain region may be conductorized by doping, etc. to achieve electrical connection with the source and the drain, respectively.
  • the source region and the drain region of the thin film transistor used in the embodiment of the present disclosure may be the same in structure, so the source region and the drain region thereof may be indistinguishable in structure, so the two may be interchangeable as needed.
  • the active layer 340 can be made of amorphous silicon (a-Si), polycrystalline silicon, oxide semiconductor materials, etc.
  • the material of the active layer 340 can be low temperature polycrystalline silicon (LTPS), indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), amorphous silicon, etc.
  • the transistor can be a top gate structure (i.e., the gate is arranged on the side of the semiconductor layer away from the substrate), or a bottom gate structure (i.e., the gate is arranged on the side of the semiconductor layer close to the substrate), which is not limited here.
  • the above-mentioned source region and drain region may be regions doped with n-type impurities or p-type impurities.
  • the plurality of signal lines 250 further include a plurality of second signal lines 252 arranged along the second direction
  • the gate 330 of the switch transistor 300 is electrically connected to the second signal line 252
  • the first direction intersects with the second direction
  • the plurality of first signal lines 251 and the plurality of second signal lines 252 are arranged to cross to form a plurality of regions 201.
  • the plurality of regions 201 on the first substrate 210 may be regions 201 defined by the intersection of the first signal lines 251 and the second signal lines 252, and the first electrode structure 260 is located in the region 201.
  • the switch structure 300 is located in the region 201.
  • each region 201 is an independent dimming region.
  • FIG6 schematically shows that the first direction is the X direction and the second direction is the Y direction.
  • the present invention is not limited thereto, and the first direction and the second direction may be interchangeable.
  • the angle between the first direction and the second direction may be 80 to 100 degrees.
  • the first direction is perpendicular to the second direction.
  • the second signal line 252 is electrically connected to the gate electrode 330 of the thin film transistor 300 to control the opening or closing of the thin film transistor
  • the first signal line 251 is electrically connected to the first electrode 310 of the thin film transistor 300 so that the signal transmitted in the first signal line 251 is input into the first electrode structure 260 through the thin film transistor 300.
  • the gate electrode 330 of the thin film transistor 300 may be an integrated structure with the second signal line 252.
  • the second electrode structure 270 may be an electrode structure shared by a plurality of regions 201 , and the different first electrodes 261 included in the first electrode structure 260 may be electrode structures independently provided for different regions 201 .
  • the second electrode structure 270 is input with a first voltage
  • the first signal line 251 and the second signal line 252 corresponding to the first partial area of the multiple areas 201 are both input with signals, so that the thin film transistor 300 in the first partial area is turned on, and the voltage input from the first signal line 251 to the first electrode structure 260 through the thin film transistor 300 is a second voltage, which is different from the first voltage.
  • the second electrode structure can input a 0V voltage
  • the thin-film transistor in the first part of the area is controlled to turn on to transmit the signal on the first signal line to the first electrode structure, so that there is a voltage difference between the first electrode structure and the second electrode structure in the first part of the area
  • the thin-film transistor in the second part of the area is turned on and transmits the 0V voltage signal to the first electrode structure, so that there is no voltage difference between the first electrode structure and the second electrode structure, thereby realizing the shared state or anti-peeping state selection setting for a specific position.
  • the operating voltage of the dimming unit 200 is 3 to 25V.
  • the above operating voltage refers to the voltage difference between the first electrode structure and the second electrode structure.
  • the operating voltage of the dimming unit 200 is 4 to 24V.
  • the operating voltage of the dimming unit 200 is 10 to 22V.
  • the operating voltage of the dimming unit 200 is 5 to 20V.
  • the operating voltage of the dimming unit 200 is 8 to 15V.
  • the operating voltage of the dimming unit 200 is 6 to 18V.
  • the voltage signal applied to the first electrode structure 260 can be a sinusoidal AC wave, an AC square wave, or other voltage waveforms that can change the state of the liquid crystal.
  • the first electrode structure 260 and the second electrode structure 270 are arranged in the same layer, or the first electrode structure 260 and the second electrode structure 270 are arranged in different layers, an insulating layer is arranged between the two, or the first electrode structure 260 includes a plurality of first electrodes 261 arranged in different layers, and the first electrodes between different layers are electrically connected through insulating layer vias, or the second electrode structure 270 includes a plurality of second electrodes 271 arranged in different layers, and the second electrodes between different layers are electrically connected through insulating layer vias.
  • the specific electrode film layer structure is not limited here.
  • the gate line is arranged to be bent or non-linearly designed.
  • the optional gate line and data line are both arranged to be non-linearly extended, which improves the problem of moiré in the anti-peeping display device.
  • the non-linear settings of two adjacent data lines are different, that is, when a data line bends toward one side, the bending direction corresponding to the data line adjacent to this data line is toward the other side, and the two data lines separated by one data line have the same bending direction, which improves the problem of moiré in the display device.
  • switching transistors are arranged in different areas, and the partition control of the dimming part is realized by adjusting the switching state of the switching transistor and the voltage input to the first electrode structure, so that the dimming part has a local active anti-peeping function in which a specific area is in a shared state or an anti-peeping state.
  • the dimming part with the local active anti-peeping function can be applied to special scenes such as aviation entertainment display, business office (such as anti-peeping display of business secrets), and ATM display (such as anti-peeping display of financial privacy and payment passwords), greatly improving the user experience.
  • FIG7 to FIG9 are display screens of a display device in different states or viewing angles according to an embodiment of the present disclosure.
  • the display screen of the display device is in a front viewing angle, and the user can see the welcome boarding interface in the aviation display, which includes a personal display area.
  • the display device is in a partial sharing state, and only part of the area can be seen when the display screen is viewed from a side viewing angle, and the other areas are in an anti-peeping state.
  • the display device is in a full-surface anti-peeping state, and when the display screen is viewed from a side viewing angle, basically nothing can be seen.
  • a plurality of regions 201 are arranged in an array along the first direction and the second direction.
  • a switch structure is disposed in each region 201, and a first electrode 261 is disposed in each region 201.
  • At least one first electrode 261 includes a plurality of electrically connected sub-electrodes 2611, the angle between the extension direction of the sub-electrode 2611 and the extension direction of the first signal line 251 is not greater than 15 degrees, and the plurality of sub-electrodes 2611 are arranged along the first direction.
  • the angle between the extension direction of the sub-electrode 2611 and the extension direction of the first signal line 251 is not greater than 10 degrees.
  • the angle between the extension direction of the sub-electrode 2611 and the extension direction of the first signal line 251 is not greater than 5 degrees.
  • the angle between the extension direction of the sub-electrode 2611 and the extension direction of the first signal line 251 is not greater than 3 degrees.
  • the angle between the extension direction of the sub-electrode 2611 and the extension direction of the first signal line 251 is not greater than 1 degree.
  • the extension direction of the sub-electrode 2611 is parallel to the extension direction of the first signal line 251.
  • the extension direction of the sub-electrode may be parallel to the extension direction of one side of the display panel to achieve deflection of the liquid crystal in a specified direction.
  • the extension direction of the first signal line may intersect with the extension direction of the side of the display panel.
  • each first electrode 261 includes a plurality of sub-electrodes 2611 that are electrically connected.
  • the first electrode 261 also includes a connecting portion 2612 that electrically connects the plurality of sub-electrodes 2611.
  • the sub-electrodes 2611 and the connecting portion 2612 are made of the same material.
  • the sub-electrodes 2611 and the connecting portion 2612 are an integrated structure.
  • the sub-electrodes 2611 and the connecting portion 2612 can be formed in the same patterning process.
  • the angle between the extension direction of the connecting portion 2612 and the extension direction of the second signal line 252 is not greater than 10 degrees.
  • the angle between the extension direction of the connecting portion 2612 and the extension direction of the second signal line 252 is not greater than 5 degrees.
  • the extension direction of the connecting portion 2612 is parallel to the extension direction of the second signal line 252.
  • the orthographic projection of the sub-electrode 2611 on the first substrate 210 does not overlap with the orthographic projection of the signal line 250 on the first substrate 210.
  • the orthographic projection of the connection portion 2612 on the first substrate 210 does not overlap with the orthographic projection of the signal line 250 on the first substrate 210.
  • the line width of the sub-electrode 2611 is 1 to 15 microns.
  • the line width of the sub-electrode 2611 is 2 to 10 microns.
  • the line width of the sub-electrode 2611 is 5 to 12 microns.
  • the line width of the sub-electrode 2611 is 3 to 7 microns.
  • the ratio of the line width of the connecting portion 2612 to the line width of the sub-electrode 2611 may be 0.5 to 1.5.
  • the ratio of the line width of the connecting portion 2612 to the line width of the sub-electrode 2611 may be 0.7 to 1.2.
  • the ratio of the line width of the connecting portion 2612 to the line width of the sub-electrode 2611 may be 0.9 to 1.1.
  • the line width of the connecting portion 2612 may be the same as the line width of the sub-electrode 2611.
  • the first electrodes 261 in different regions 201 include the same number of sub-electrodes 2611 , so as to improve the uniformity of light control in different regions.
  • the second electrode structure 270 includes cross-arranged connecting electrodes 272 and a plurality of second electrodes 271 connected to the connecting electrodes 272.
  • the second electrode structure is a common electrode shared by a plurality of regions, and by arranging the connecting electrodes arranged in the second electrode structure in a grid shape, it is helpful to reduce the difference between the signal at a position closer to the signal input terminal in the second electrode structure and the signal at a position farther from the signal input terminal in the second electrode structure.
  • a support column (PS) 281 is further provided in the dimming part between the first substrate 210 and the second substrate 220.
  • the optional support column can be provided on one side of the first substrate or on one side of the second substrate.
  • the support column can be provided on the gate line (at least partially overlapping with the gate line) in the vertical projection of the first substrate, or on the data line (at least partially overlapping with the data line) in the vertical projection of the first substrate.
  • connection electrode 272 is the same as that of the second electrode 271 .
  • connection electrode 272 and the second electrode 271 may be an integrated structure.
  • the second electrodes 271 in different regions 201 are electrically connected via the connection electrode 272 .
  • the orthographic projection of the second electrode 271 on the first substrate 210 does not overlap with the orthographic projection of the signal line 250 on the first substrate 210 .
  • the orthographic projection of the connection electrode 272 on the first substrate 210 overlaps with the orthographic projection of the signal line 250 on the first substrate 210 .
  • the angle between the extension direction of the second electrode 271 and the extension direction of the first signal line 251 is not greater than 10 degrees, and in at least one region 201, a plurality of sub-electrodes 2611 and a plurality of second electrodes 271 are alternately arranged along the first direction.
  • each region 201 is provided with at least two second electrodes 271.
  • the ratio of the number of sub-electrodes 2611 to the number of second electrodes 271 may be 0.9 to 1.1.
  • the number of sub-electrodes 2611 and the number of second electrodes 271 are equal, or the number of the two differs by 1.
  • the extension direction of the second electrode 271 is parallel to the extension direction of the sub-electrode 2611 .
  • the line width of the second electrode 271 may be 1 to 15 microns.
  • the line width of the second electrode 271 may be 7 to 12 microns.
  • the line width of the second electrode 271 may be 5 to 10 microns.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.06 to 15.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.1 to 12.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.3 to 10.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.5 to 5.
  • the line width of the second electrode 271 may be equal to the line width of the sub-electrode 2611, or may be different from the line width of the sub-electrode 2611.
  • the spacing between adjacent sub-electrodes 2611 and second electrodes 271 may be 2 to 15 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and second electrodes 271 may be 3 to 12 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and second electrodes 271 may be 5 to 10 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and second electrodes 271 may be 7 to 9 micrometers.
  • the sub-electrode 2611 and the second electrode 271 may be a single-domain structure or a multi-domain structure, which is not limited in the embodiments of the present disclosure.
  • the connection electrode 272 includes a plurality of first connection electrodes 2721 and a plurality of second connection electrodes 2722, the plurality of first connection electrodes 2721 and the plurality of first signal lines 251 are alternately arranged along the first direction, and the plurality of second connection electrodes 2722 and the plurality of second signal lines 252 are alternately arranged along the second direction.
  • the first connection electrodes 2721 extend along the extension direction of the first signal lines 251
  • the second connection electrodes 2722 extend along the extension direction of the second signal lines 252.
  • the orthographic projection of the first connection electrode 2721 on the first substrate 210 overlaps with the orthographic projection of the second signal line 252 on the first substrate 210.
  • the orthographic projection of the second connection electrode 2722 on the first substrate 210 overlaps with the orthographic projection of the first signal line 251 on the first substrate 210.
  • connection portion 2612 is disposed in parallel with the second connection electrode 2722 .
  • the sub-electrode, the second electrode and the first connecting electrode located in the area defined by the intersection of the first signal line and the second signal line are arranged to be parallel to the first signal line
  • the connecting part and the second connecting electrode located in the area defined by the intersection of the first signal line and the second signal line are arranged to be parallel to the second signal line.
  • the second signal line 252 , the second connection electrode 2722 , and the connection portion 2612 are sequentially and cyclically arranged along the second direction.
  • FIG10 is a schematic diagram of a partial planar structure of a display panel provided according to an embodiment of the present disclosure
  • FIG11 is a schematic diagram of the stacking relationship between the display panel and the dimming unit.
  • the display panel includes a substrate 110 and a substrate 120 which are stacked, and a liquid crystal layer 130 is disposed between the substrate 110 and the substrate 120.
  • a plurality of data lines 111 arranged along a first direction and a plurality of gate lines 112 arranged along a second direction are disposed on the side of the substrate 110 facing the liquid crystal layer 130, and a sub-pixel 113 is disposed in the area where the data line 111 and the gate line 112 intersect.
  • the sub-pixel 113 may include a pixel electrode and a common electrode, and a voltage difference is generated between the pixel electrode and the common electrode to drive the liquid crystal in the liquid crystal layer 130 to deflect.
  • a support column 172 is disposed between the substrate 110 and the substrate 120, and a circle of sealant 171 is disposed on the outer side of the liquid crystal layer 130.
  • a black matrix 141 and a color filter layer 142 are disposed on the side of the substrate 120 facing the liquid crystal layer 130, wherein the color filter layer includes a red color filter, a green color filter, and a blue color filter.
  • the embodiments of the present disclosure are not limited thereto, and the data lines, gate lines, and sub-pixels may also be disposed on a side of the substrate 120 facing the liquid crystal layer 130 .
  • the embodiment of the present disclosure schematically shows that the display panel may be a liquid crystal display panel, such as a twisted nematic (TN) display panel, an advanced dimensional field switching (ADS) display panel, a vertical alignment (VA) display panel, a reflective display panel, or a semi-transmissive and semi-reflective display panel, etc.
  • TN twisted nematic
  • ADS advanced dimensional field switching
  • VA vertical alignment
  • reflective display panel a reflective display panel
  • semi-transmissive and semi-reflective display panel etc.
  • the display device further includes a first polarizing structure 150 and a second polarizing structure 160, the first polarizing structure 150 is located on a side of the display panel 100 away from the dimming unit 200, and the second polarizing structure 160 is located between the display panel 100 and the dimming unit 200.
  • the polarization direction of the first polarizing structure 150 intersects with the polarization direction of the second polarizing structure 160.
  • the polarization direction of the polarized light emitted through the first polarizing structure 150 intersects with the polarization direction of the polarized light emitted through the second polarizing structure 160.
  • the display panel 100 includes a plurality of sub-pixels 113, and the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is N, where N is not greater than 10.
  • N is not greater than 10.
  • the ratio of the size of one region 201 along the first direction to the size of one sub-pixel 113 along the first direction is not greater than 10
  • the ratio of the size of one region 201 along the second direction to the size of one sub-pixel 113 along the second direction is not greater than 10.
  • the ratio of the area of one region 201 to the area of one sub-pixel 113 is not greater than 10.
  • light passing through one region 201 can be directed to N sub-pixels 113, where N is not greater than 10.
  • the display device provided by the present disclosure sets the ratio of the size of the area where the first electrode in the dimming unit is located to the size of the sub-pixel in the display panel to be no more than 10, so that each area corresponds to a smaller number of sub-pixels, which is beneficial to improving the local control accuracy and display effect of the display device.
  • the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is 8.
  • the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 1, and the number of sub-pixels 113 corresponding to one region 201 in the other direction of the first direction and the second direction is 8; or, the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 2, and the number of sub-pixels 113 corresponding to one region 201 in the other direction of the first direction and the second direction is 4.
  • the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is 6.
  • the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 1, and the number of sub-pixels 113 corresponding to one region 201 in the other direction of the first direction and the second direction is 6; or, the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 2, and the number of sub-pixels 113 corresponding to one region 201 in the other direction of the first direction and the second direction is 3.
  • the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is 4.
  • the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 1, and the number of sub-pixels 113 corresponding to one region 201 in the other of the first direction and the second direction is 4; or, the number of sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 2, and the number of sub-pixels 113 corresponding to one region 201 in the other of the first direction and the second direction is 2.
  • the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is 2.
  • the number of the sub-pixels 113 corresponding to one region 201 in one of the first direction and the second direction is 1, and the number of the sub-pixels 113 corresponding to one region 201 in the other direction of the first direction and the second direction is 2.
  • the ratio of the number of the plurality of sub-pixels 113 to the number of the plurality of regions 201 is 1.
  • one region 201 corresponds to one sub-pixel 113 .
  • the extension direction of the data line 111 is different from the extension direction of at least part of the first signal line 251
  • the extension direction of the gate line 112 is different from the extension direction of at least part of the second signal line 252.
  • the display device provided by the present disclosure, by setting the extension direction of at least part of the first signal line in the dimming unit to be different from the extension direction of the data line, and setting the extension direction of at least part of the second signal line to be different from the extension direction of the gate line, it is beneficial to improve the moiré phenomenon that occurs when the display device displays when the display panel and the dimming unit are stacked.
  • the angle between the extension direction of the data line 111 and the extension direction of the first signal line 251 at the above-mentioned at least part of the position is a first angle
  • the angle between the extension direction of the gate line 112 and the extension direction of the second signal line 252 at the above-mentioned at least part of the position is a second angle
  • the first angle is not greater than the second angle
  • the extension direction of the sub-electrode can have a larger angle with the extension direction of the second signal line, and the first electrode does not overlap with the first signal line and the second signal line in the direction perpendicular to the first substrate.
  • the present disclosure can better prevent the occurrence of the moiré phenomenon by setting the extension direction of the first signal line to have a certain angle with the extension direction of the data line as much as possible while preventing the first electrode from overlapping with the first signal line.
  • the display panel includes a plurality of data lines arranged along the first direction and a plurality of gate lines arranged along the second direction, and the extension direction of the data lines is the same as the extension direction of the sub-electrodes.
  • the display device provided by the present disclosure can prevent the first signal line from overlapping with the sub-electrode to affect the dimming area and prevent the first signal line from being parallel to the data line to generate a moiré phenomenon while realizing the deflection of the liquid crystal in the dimming part to a specific direction to realize the refraction of light in a specific direction to achieve the required sharing state by setting the relationship between the extension direction of the data lines in the display panel, the extension direction of the first signal line in the dimming part, and the extension direction of the sub-electrodes.
  • At least one second signal line 252 includes a meander-type signal line.
  • each second signal line 252 is a periodic meander-type signal line, such as the shape of the second signal line 252 corresponding to each region 201 can be "V"-shaped, "U”-shaped, etc., such as the overall shape of each second signal line 252 is a plurality of "W"-shaped lines connected to each other, or a plurality of arcs connected to each other.
  • the shape of the second signal line in the dimming part by setting the shape of the second signal line in the dimming part to a meander-type, it can be different from the extension direction of the gate line in the display panel, which is conducive to preventing moiré caused by the corresponding deviation between the second signal line in the dimming part and the gate line in the display panel.
  • the orthographic projection of at least one data line 111 on the first substrate 210 overlaps with the orthographic projection of the first signal line 251 on the first substrate 210.
  • the ratio of the number of regions 201 to the number of sub-pixels 113 is 1, and more than 90% of the orthographic projections of the data lines 111 on the first substrate 210 overlap with the orthographic projections of the first signal lines 251 on the first substrate 210.
  • the ratio of the number of regions 201 to the number of sub-pixels 113 is 4, and more than 40% of the orthographic projections of the data lines on the first substrate 210 overlap with the orthographic projections of the first signal lines 251 on the first substrate 210.
  • the number of data lines overlapping with the first signal line is related to the ratio of the number of regions to the number of sub-pixels. According to the relationship between the ratio of the number of regions and the number of sub-pixels, the number of data lines overlapping with the first signal line can be adjusted to maximize the aperture ratio of the sub-pixels in the display panel.
  • the ratio of the line width of the data line 111 to the line width of the first signal line 251 may be 0.8 to 1.2.
  • the line width of the data line 111 may be equal to the line width of the first signal line 251.
  • the ratio of the line width of the gate line 112 to the line width of the second signal line 252 may be 0.8 to 1.2.
  • the line width of the gate line 112 may be equal to the line width of the second signal line 252.
  • each sub-pixel 113 includes a thin film transistor 114, and a channel width-to-length ratio of the thin film transistor 114 is not greater than a channel width-to-length ratio of the switch transistor 300.
  • a channel width-to-length ratio of the thin film transistor 114 in the display panel 100 is less than a channel width-to-length ratio of the switch transistor 300 in the dimming unit 200.
  • the relationship between the channel width-to-length ratio of the switching transistor in the dimming unit and the channel width-to-length ratio of the thin film transistor in the display panel is adjusted according to the ratio of the number of areas in the dimming unit and the number of sub-pixels in the display panel, so that the dimming unit can better adjust the light output state of the display device.
  • the shapes or materials of the switch transistor 300 in the dimming unit 200 and the thin film transistor 114 in the display panel 100 may be the same or different, and the embodiments of the present disclosure are not limited thereto.
  • FIG. 12 and FIG. 13 are schematic diagrams of partial cross-sectional structures taken along line AA’ shown in FIG. 6 in different examples.
  • the first electrode structure 260 is located between the second electrode structure 270 and the first substrate 210.
  • the first electrode 261 in the first electrode structure 260 may cover a portion of the surface of the second electrode 320 of the switch structure 300 to be electrically connected to the second electrode 320 of the switch structure 300.
  • the first electrode structure 260 can be a structure arranged in the same layer as the first signal line 251.
  • the material of the first electrode structure 260 is different from the material of the first signal line 251.
  • the material of the first signal line 251 includes a metal material, such as molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti) and other metals and their multi-layer combinations or alloys.
  • the second signal line 252 can be located between the first signal line 251 and the first substrate 210.
  • the material of the second signal line 252 includes a metal material, such as molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti) and other metals and their multi-layer combinations or alloys.
  • the second signal line 252 is arranged in the same layer as the gate 330 of the switch structure 300.
  • the gate 330 of the switch structure 300 and the second signal line 252 can be an integrated structure, such as the gate 330 can be a portion of the second signal line 252 that overlaps with the active layer 340.
  • the first electrode 310 of the switch structure 300 may also be integrated with the first signal line 251 .
  • the above-mentioned “same layer” may refer to a layer structure formed by using the same film-forming process to form a film layer for making a specific pattern, and then using the same mask plate through a single patterning process. That is, one patterning process corresponds to one mask plate.
  • one patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may be at the same height or have the same thickness, or at different heights or have different thicknesses.
  • an insulating layer 211 covering the gate 330 is disposed between the first electrode structure 260 and the first substrate 210 .
  • the insulating layer 211 may be made of silicon nitride, silicon oxide, or silicon oxynitride.
  • an insulating layer 212 covering the first electrode structure 260 is disposed on a side of the first electrode structure 260 away from the first substrate 210.
  • the material of the insulating layer 212 may be silicon nitride, silicon oxide, or silicon oxynitride, etc.
  • the insulating layer 212 is located between the first electrode structure 260 and the second electrode structure 270.
  • the difference between the dimming unit shown in FIG13 and the dimming unit shown in FIG12 is that, in the dimming unit shown in FIG13, the first electrode structure 260 and the second electrode structure 270 are arranged in the same layer.
  • the first signal line, the second signal line, the switch structure 300, the first substrate 210 and the insulating layer 211 in the dimming unit shown in FIG13 may have the same features as the first signal line, the second signal line, the switch structure 300, the first substrate 210 and the insulating layer 211 in the dimming unit shown in FIG12, and no further description is given here.
  • the first electrode structure 260 is electrically connected to the second electrode 320 in the switch structure 300 through a via hole in the insulating layer 212 .
  • the dimming unit 200 further includes a black matrix 283, whose orthographic projection on the first substrate 210 covers at least a portion of the orthographic projections of the plurality of first signal lines 251 and the plurality of second signal lines 252 on the first substrate 210 to prevent light from being reflected on the first signal lines and the second signal lines.
  • the orthographic projections of the plurality of first signal lines 251 on the first substrate 210 are completely located within the orthographic projection of the black matrix 283 on the first substrate 210.
  • the orthographic projections of the plurality of second signal lines 252 on the first substrate 210 are completely located within the orthographic projection of the black matrix 283 on the first substrate 210.
  • the shape of the black matrix 283 is a grid.
  • the orthographic projection of the black matrix 283 on the first substrate 210 overlaps with a portion of the edge of the region 201, but does not overlap with the center of the region 201.
  • the portion where the orthographic projection of the black matrix 283 on the first substrate 210 overlaps with the region 201 accounts for less than 20% of the area of the region 201.
  • the black matrix 283 may be located between the liquid crystal layer 230 and the second substrate 220.
  • the black matrix 283 may be located on the second substrate 220.
  • the dimming unit may be an active dimming unit, and a peripheral wiring pattern may be arranged at a position outside the display area in the dimming unit.
  • the peripheral wiring pattern may be integrated on an array substrate (GOA, Gate Driven on Array) using a gate driver.
  • FIG14 is a schematic diagram of the structure of a display device provided according to another example of an embodiment of the present disclosure
  • FIG15 is a schematic diagram of the partial planar structure of a dimming unit in the display device shown in FIG14 in an example.
  • the display panel 100, the first polarizing structure 150, and the second polarizing structure 160 in the display device shown in FIG14 may have the same features as the display panel 100, the first polarizing structure 150, and the second polarizing structure 160 in the display device shown in FIG5, and will not be described in detail here.
  • the first substrate 210, the second substrate 220, and the variable refractive index material layer 230 in the dimming unit 200 shown in FIG14 have the same features as the first substrate 210, the second substrate 220, and the variable refractive index material layer 230 in the dimming unit 200 shown in FIG5, and will not be described in detail here.
  • the dimming unit 200 includes a plurality of signal lines 250, and the electrode structure 240 and the plurality of signal lines 250 are both located on the first substrate 210.
  • the disclosed embodiment is not limited thereto, and the plurality of signal lines and the electrode structure may also be both located on the second substrate, such as the plurality of signal lines and the electrode structure are both located on the same substrate.
  • the electrode structure 240 includes a first electrode structure 260 and a second electrode structure 270
  • the first electrode structure 260 includes a plurality of first electrodes 261 insulated from each other
  • the first substrate 210 includes a plurality of regions 201
  • the first electrodes 261 in at least two regions 201 are configured to be electrically connected to different signal lines 250 to achieve partition control of the dimming unit 200.
  • a plurality of first electrodes 261 are arranged in the same layer.
  • the first electrodes 261 in different regions 201 are insulated.
  • a first electrode 261 is arranged in each region 201.
  • the regions 201 in this example can be divided by the location of the first electrodes 261, each first electrode 261 is located in one region 201, and different first electrodes 261 are located in different regions 201.
  • the display device provided by the present disclosure is applied to the anti-peeping-sharing switching technology.
  • different areas in the dimming part can independently control the light incident into the dimming part, thereby realizing independent switching between the anti-peeping state and the sharing state in any designated area in the display device, thereby improving the user experience.
  • portions of the plurality of signal lines 250 are electrically connected to the plurality of first electrodes 261 in a one-to-one correspondence.
  • the number of signal lines 250 is not less than the number of first electrodes 261.
  • the signal line 250 includes a plurality of first sub-signal lines 253 electrically connected to the plurality of first electrodes 2601.
  • the first electrode structure 260 and the second electrode structure 270 are located at different layers.
  • the orthographic projection of the first electrode structure 260 on the first substrate 210 overlaps with the orthographic projection of the second electrode structure 270 on the first substrate 210.
  • the first electrode structure 260 and the second electrode structure 270 are both located at different layers from the signal line 250.
  • the orthographic projection of the first electrode structure 260 on the first substrate 210 overlaps with the orthographic projection of the signal line 250 on the first substrate 210.
  • the orthographic projection of the second electrode structure 270 on the first substrate 210 overlaps with the orthographic projection of the signal line 250 on the first substrate 210.
  • the signal line 250 includes a second sub-signal line 254 electrically connected to the second electrode structure 270.
  • the second electrode structure 270 may be a common strip electrode shared by the plurality of regions 201.
  • the first electrode structure 260 is electrically connected to the first sub-signal line 253 through a via 291 in the insulating layer between the first electrode structure 260 and the signal line 250
  • the second electrode structure 270 is electrically connected to the second sub-signal line 254 through a via 292 in the insulating layer between the second electrode structure 270 and the signal line 250.
  • the number of vias 291 and vias 292 can be set according to electrical requirements and process requirements.
  • the signal line 250 can be located between the electrode structure 240 and the first substrate 210.
  • the difference between the dimming unit shown in FIG. 15 and the dimming unit shown in FIG. 6 is that there is no switch structure in the dimming unit shown in FIG. 15, and the signal is directly transmitted to the first electrode through the signal line electrically connected to the first electrode, and the signal line electrically connected to the second electrode structure directly transmits the signal to the second electrode structure, so as to form a voltage difference between the first electrode structure and the second electrode structure.
  • the difference between the dimming unit shown in FIG. 15 and the dimming unit shown in FIG. 6 is also that the number of signal lines in the dimming unit shown in FIG. 15 is less than the number of first signal lines shown in FIG. 6, and the dimming unit shown in FIG. 15 is not provided with a black matrix.
  • the difference between the dimming unit shown in FIG. 15 and the dimming unit shown in FIG. 6 is also that the ratio of the number of regions 201 in the dimming unit shown in FIG. 15 to the number of sub-pixels in the display panel is greater than the ratio of the number of regions 201 in the dimming unit shown in FIG. 6 to the number of sub-pixels in the display panel.
  • the dimming unit shown in FIG. 6 is suitable for local dimming in a small area
  • the dimming unit shown in FIG. 15 is suitable for local dimming in a large area.
  • variable refractive index material layer such as the liquid crystal layer
  • the variable refractive index material layer does not apply any driving signal (i.e., there is no pressure difference between the first electrode structure 260 and the second electrode structure 270), and the liquid crystal layer does not change the propagation direction of the light incident into the dimming section 200.
  • the light incident into the dimming section 200 is light with basically no side viewing angle
  • the light emitted from the dimming section 200 is still light with basically no side viewing angle.
  • the display device is in an anti-peeping state.
  • the liquid crystal when there is a voltage difference between the first electrode structure 260 and the second electrode structure 270 to apply a driving signal to the liquid crystal layer, the liquid crystal is deflected, and the liquid crystal layer will change the propagation direction of part of the light incident therein.
  • the deflected liquid crystal causes part of the light to be dispersed, such as dispersing light at a positive viewing angle or close to a positive viewing angle to a large viewing angle direction. At this time, the display device is in a shared state.
  • each first electrode 261 is provided with a signal separately by a corresponding first sub-signal line 253.
  • each first electrode that is, the liquid crystal corresponding to each first area
  • the switching between the anti-peeping state and the sharing state in the specified area of the display device can be realized to achieve a local anti-peeping effect.
  • the electrode structure 240 may be a light-transmitting electrode structure.
  • the material of the electrode structure 240 may be a transparent conductive material such as indium tin oxide (ITO).
  • different voltages are applied to the first electrode structure 260 and the second electrode structure 270 to form a voltage difference during the operation of the dimming unit 200.
  • a positive voltage and a negative voltage can be applied to the first electrode structure 260 and the second electrode structure 270, respectively.
  • the second electrode structure 270 is input with a first voltage by the second sub-signal line 254, the first electrode 261 in the first partial area of the multiple areas 201 is input with a second voltage by the corresponding first sub-signal line 253, the second voltage is different from the first voltage, and the first electrode 261 in the second partial area of the multiple areas 201 is input with the first voltage by the corresponding first sub-signal line 253; there is a pressure difference between the first electrode structure 260 and the second electrode structure 270 in the first partial area, the liquid crystal corresponding to the first partial area is deflected, and the light passing through the first partial area is refracted by the liquid crystal, so that the first partial area is in a shared state; while there is no pressure difference between the first electrode structure 260 and the second electrode structure 270 in the second partial area, the liquid crystal corresponding to the second partial area is not deflected, and the propagation direction of the light passing through the second partial area does not change, so that the second partial area is in an
  • the first electrode 261 includes a plurality of sub-electrodes 2611 arranged along a first direction
  • the second electrode structure 270 includes a plurality of second electrodes 271 arranged along the first direction
  • the plurality of sub-electrodes 2611 and the plurality of second electrodes 271 are alternately arranged along the first direction
  • the first direction intersects with the second direction.
  • FIG. 15 schematically shows that the X direction is the first direction and the Y direction is the second direction, but is not limited thereto, and the first direction and the second direction can be interchanged.
  • the sub-electrode 2611 extends along the second direction
  • the second electrode 271 extends along the second direction.
  • the plurality of first electrodes 261 may be arranged in an array along the X direction and the Y direction.
  • the invention is not limited thereto, and the plurality of first electrodes may be arranged in a row only along the X direction, or in a column only along the Y direction.
  • the length of the sub-electrode 2611 is smaller than the length of the second electrode 271 .
  • the first electrode 261 further includes a first sub-connection portion 2612 electrically connected to the plurality of sub-electrodes 2611
  • the second electrode structure 270 further includes a second sub-connection portion 272 electrically connected to the plurality of second electrodes 271.
  • the material of the first sub-connection portion 2612 may be the same as the material of the sub-electrode 2611.
  • the first sub-connection portion 2612 may be an integrated structure with the sub-electrode 2611.
  • the first sub-connection portion 2612 may be formed in the same patterning process as the sub-electrode 2611.
  • the material of the second electrode 271 may be the same as the material of the second sub-connection portion 272.
  • the second electrode 271 may be an integrated structure with the second sub-connection portion 272.
  • the second electrode 271 may be formed in the same patterning process as the second sub-connection portion 272.
  • each first electrode 261 includes at least one first sub-connection portion 2612.
  • Figure 15 schematically shows that each first electrode 261 includes two first sub-connection portions 2612 to form a grid structure with a plurality of sub-electrodes 2611.
  • the present disclosure is not limited thereto, and the first electrode may also include three or more first sub-connection portions.
  • the first sub-connection portion 2612 may be a straight line segment extending along the first direction, but is not limited thereto.
  • the first sub-connection portion may also be in the shape of a broken line, an arc line, or the like.
  • the second sub-connection portion 272 may be a straight line segment extending along the first direction, but is not limited thereto.
  • the first sub-connection portion may also be in the shape of a broken line, an arc line, or the like.
  • the number of the second sub-connection parts 272 is greater than or equal to 1.
  • FIG. 15 schematically shows that the number of the second sub-connection parts is two, but is not limited thereto, and the number of the second sub-connection parts may also be three or more.
  • the plurality of first electrodes 261 are all disposed between two second sub-connection parts 272.
  • the plurality of first connection electrodes 2721 are all disposed between the two outermost second electrodes 271.
  • at least one of the two outermost second electrodes 271 is electrically connected to the second sub-signal line 254.
  • the first sub-connection portion 2612 overlaps with the first sub-signal line 253
  • both the first sub-signal line 253 and the second sub-signal line 254 overlap with the second sub-connection portion 272 .
  • one first electrode 261 overlaps with at least one first sub-signal line 253 , and the first electrode 261 is electrically connected to the one first sub-signal line 253 overlapping therewith.
  • the signal line 250 includes a portion overlapping with the electrode structure 240 and a fan-shaped portion not overlapping with the electrode structure 240 .
  • At least one signal line 520 is linear in shape at a portion of the position where it overlaps with the first electrode 261 in a direction perpendicular to the first substrate 210.
  • each signal line 520 is linear in shape at a portion of the position where it overlaps with the first electrode 261 in a direction perpendicular to the first substrate 210.
  • the linear portion of the signal line extends along the second direction.
  • the line width of the sub-electrode 2611 is 1 to 15 micrometers.
  • the line width of the sub-electrode 2611 is 2 to 10 micrometers.
  • the line width of the sub-electrode 2611 is 5 to 12 micrometers.
  • the line width of the sub-electrode 2611 is 3 to 7 micrometers.
  • the ratio of the line width of the first sub-connection portion 2612 to the line width of the sub-electrode 2611 may be 0.5 to 1.5.
  • the ratio of the line width of the first sub-connection portion 2612 to the line width of the sub-electrode 2611 may be 0.7 to 1.2.
  • the ratio of the line width of the first sub-connection portion 2612 to the line width of the sub-electrode 2611 may be 0.9 to 1.1.
  • the line width of the first sub-connection portion 2612 may be the same as the line width of the sub-electrode 2611.
  • the line width of the second electrode 271 may be 1 to 15 micrometers.
  • the line width of the second electrode 271 may be 7 to 12 micrometers.
  • the line width of the second electrode 271 may be 5 to 10 micrometers.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.06 to 15.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.1 to 12.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.3 to 10.
  • the ratio of the line width of the second electrode 271 to the line width of the sub-electrode 2611 is 0.5 to 5.
  • the line width of the second electrode 271 may be equal to the line width of the sub-electrode 2611, or may be different from the line width of the sub-electrode 2611.
  • the spacing between adjacent sub-electrodes 2611 and the second electrode 271 may be 2 to 15 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and the second electrode 271 may be 3 to 12 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and the second electrode 271 may be 5 to 10 micrometers.
  • the spacing between adjacent sub-electrodes 2611 and the second electrode 271 may be 7 to 9 micrometers.
  • the signal line 250 may be made of metal materials, such as molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), and other metals, and multilayer combinations or alloys thereof.
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • other metals and multilayer combinations or alloys thereof.
  • each of the first sub-signal lines 253 is electrically connected to a different terminal 293.
  • the first sub-signal line 253 and the second sub-signal line 254 are electrically connected to different terminals 293.
  • the dimming unit shown in FIG15 may be a passive dimming unit, which does not require a separate integrated circuit chip (IC) for driving to reduce costs.
  • the dimming unit does not require wiring such as GOA to reduce the frame.
  • the regions 201 may be arranged in a 2*20 array.
  • the dimming unit 200 includes two rows of regions 201, and the number of regions 201 in each row is 20.
  • the dimming unit may be applied to a vehicle-mounted display environment.
  • FIG16 is a schematic diagram of a partial planar structure of the dimming unit in the display device shown in FIG14 in another example.
  • the difference between the dimming unit shown in FIG16 and the dimming unit shown in FIG15 is that at least one signal line 250 is bent at a portion of the position where it overlaps with the first electrode 261 in a direction perpendicular to the first substrate 210.
  • the other features of the dimming unit shown in FIG16 except the shape of the signal line may be the same as the other features of the dimming unit shown in FIG15 except the shape of the signal line, and will not be repeated here.
  • each signal line 250 may have a “Z” shape or an “S” shape at a portion where the signal line 250 overlaps with the first electrode 261 in a direction perpendicular to the first substrate 210 .
  • FIG17 is a partial structural diagram of a display device provided according to an embodiment of the present disclosure.
  • the display device further includes a third polarizing structure 400, and the third polarizing structure 400 is located on a side of the dimming unit 200 away from the display panel 100.
  • the polarization direction of the third polarizing structure 400 is the same as the polarization direction of the second polarizing structure 160.
  • the polarization direction of the linear polarized light passing through the third polarizing structure 400 is the same as the polarization direction of the linear polarized light passing through the second polarizing structure 160, and the switching between the sharing state and the anti-peeping state is achieved by adjusting the voltage difference of the electrodes in the dimming unit and the filtering effect of the polarizer.
  • the specific principle please refer to FIG1 .
  • a display device capable of switching between an anti-peeping state and a sharing state is realized by setting a first polarization structure, a second polarization structure and a third polarization structure.
  • Fig. 18 is a partial structural diagram of a display device according to an example of an embodiment of the present disclosure. As shown in Fig. 18, the display device further includes a backlight structure 600, which is stacked with the dimming unit 200 and the display panel 100.
  • the dimming unit 200 is located between the backlight structure 600 and the display panel 100 .
  • no polarizer is provided on the side close to the backlight structure, and the switching between the sharing state and the anti-peeping state is achieved by adjusting the voltage difference of the electrodes in the dimming unit.
  • FIG4 For the specific principle, please refer to FIG4 .
  • the display device further includes a privacy film 500 , and the privacy film 500 is located on the light incident side of the dimming unit 200 .
  • the privacy film 500 is located between the backlight structure 600 and the dimming unit 200 .
  • the privacy film 500 may be a structure using black material arranged in a shutter structure.
  • the backlight structure 600 may include a non-collimated ordinary backlight source and two layers of dichroic prisms, or a collimated backlight source and a layer of inverse prism, so that the light incident on the dimming unit is collimated light with a high degree of collimation.
  • the collimated backlight structure 600 combined with the privacy film 500 can form a light source with very high collimation.
  • the disclosed embodiment is not limited thereto, and the backlight structure can also use other light sources, such as direct backlight source, edge backlight source, etc.
  • Fig. 19 is a partial structural diagram of a display device according to an example of an embodiment of the present disclosure. The difference between the display device shown in Fig. 19 and the display device shown in Fig. 18 lies in the positions of the dimming unit 200 and the display panel 100.
  • the display panel 100 is located between the dimming unit 200 and the backlight structure 600 .
  • the privacy film 500 is located between the display panel 100 and the backlight structure 600 .
  • FIG20 is a partial structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • the difference between the display device shown in FIG20 and the display device shown in FIG19 is the position of the privacy film 500 and the display panel 100.
  • the privacy film 500 is located between the display panel 100 and the dimming unit 200.
  • FIG. 17 to FIG. 20 schematically illustrate that the dimming unit is the dimming unit shown in FIG. 5 , but the present invention is not limited thereto.
  • the dimming unit may also be the dimming unit shown in FIG. 14 .
  • the embodiment of the present disclosure schematically shows that the display panel is a liquid crystal display panel, but is not limited thereto.
  • the display panel may also be an organic light emitting diode display panel, or a mini light emitting diode display panel.
  • No backlight structure is provided in the display device, and the dimming unit is located on the light emitting side of the display panel.
  • the display device provided in the embodiment of the present disclosure may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a laptop computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, etc.
  • the display device includes, but is not limited to, components such as a radio frequency unit, a network module, an audio output & input unit, a sensor, a user input unit, an interface unit, a memory, a processor, and a power supply.
  • the above structure does not constitute a limitation on the display device provided in the embodiment of the present disclosure.
  • the display device provided in the embodiment of the present disclosure may include more or fewer of the above components, or combine certain components, or arrange the components differently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置,包括显示面板(100)和调光部(200)。调光部(200)与显示面板(100)层叠设置,调光部(200)包括层叠设置的第一基板(210)、折射率可变材料层(230)、电极结构(240)以及第二基板(220),折射率可变材料层(230)以及电极结构(240)均位于第一基板(210)与第二基板(220)之间。调光部(200)还包括多条信号线(250),电极结构(240)和多条信号线(250)均位于第一基板(210)上;电极结构(240)包括第一电极结构(260)和第二电极结构(270),第一电极结构(260)包括彼此绝缘的多个第一电极(261),第一基板(210)包括多个区域(201),不同区域(201)中的第一电极(261)被配置为与不同信号线(250)电连接以实现调光部(200)的分区控制。显示装置应用于防窥-共享切换技术,将第一电极结构(260)的位于不同区域(201)的不同第一电极(261)与不同信号线(250)电连接以实现显示装置中特定区域(201)独立地进行防窥态-共享态切换。

Description

显示装置 技术领域
本公开实施例涉及一种显示装置。
背景技术
目前,具有显示屏的显示装置种类越来越多,比如台式电脑、笔记本电脑、手机、电子阅读器等,这种显示装置在人们的工作和生活中被广泛地应用,在公共场所中应用上述显示装置时被“视觉入侵”导致的“信息泄露”(如商业技术秘密,银行自动取款机、移动终端支付账户输入密码等泄露)的问题逐渐被人们重视,因此,屏幕防窥的需求随之增加。
发明内容
本公开提供一种显示装置。该显示装置包括:显示面板以及调光部。调光部,与所述显示面板层叠设置,所述调光部包括层叠设置的第一基板、折射率可变材料层、电极结构以及第二基板,所述折射率可变材料层以及所述电极结构均位于所述第一基板与所述第二基板之间。所述调光部还包括多条信号线,所述电极结构和所述多条信号线均位于所述第一基板上;所述电极结构包括第一电极结构和第二电极结构,所述第一电极结构包括彼此绝缘的多个第一电极,所述第一基板包括多个区域,不同区域中的所述第一电极被配置为与不同信号线电连接以实现所述调光部的分区控制。
例如,根据本公开实施例,所述显示面板包括多个子像素,所述多个子像素与所述多个区域的数量之比为N,N不大于10。
例如,根据本公开实施例,所述调光部还包括位于所述第一基板上的多个开关结构,每个区域设置有至少一个开关结构,所述多条信号线包括沿第一方向排列的多条第一信号线,各开关结构的第一极与相应的所述第一信号线电连接,各开关结构的第二极与相应的第一电极电连接。
例如,根据本公开实施例,所述多条信号线还包括沿第二方向排列的多条第二信号线,所述开关结构包括开关晶体管,所述开关晶体管的栅极与相应的第二信号线电连接,所述第一方向与所述第二方向相交,所述多条第一信号线 和所述多条第二信号线交叉设置以形成所述多个区域。
例如,根据本公开实施例,至少一条第二信号线包括弯折型信号线。
例如,根据本公开实施例,至少一个第一电极包括电连接的多个子电极,至少一个子电极的延伸方向与至少一条第一信号线的延伸方向之间的夹角不大于10度,且所述多个子电极沿所述第一方向排列。
例如,根据本公开实施例,所述第二电极结构包括交叉设置的连接电极以及与所述连接电极连接的多个第二电极,至少一个第二电极的延伸方向与至少一条第一信号线的延伸方向之间的夹角不大于15度,至少一个区域中,所述第一电极包括多个子电极,各子电极的延伸方向与各第二电极延伸方向相同的,且所述多个子电极与所述多个第二电极沿所述第一方向交替设置。
例如,根据本公开实施例,所述连接电极包括沿所述多条第一信号线的延伸方向延伸的多个第一连接电极以及沿所述多条第二信号线的延伸方向延伸的多个第二连接电极,所述多个第一连接电极与所述多条第一信号线交替设置,且所述多个第二连接电极与所述多条第二信号线交替设置。
例如,根据本公开实施例,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,所述数据线的延伸方向与所述第一信号线的至少部分位置处的延伸方向不同,所述栅线的延伸方向与所述第二信号线的至少部分位置处的延伸方向不同。
例如,根据本公开实施例,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,至少一条数据线在所述第一基板上的正投影与所述第一信号线在所述第一基板上的正投影交叠。
例如,根据本公开实施例,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,所述数据线的延伸方向与所述子电极的延伸方向相同。
例如,根据本公开实施例,各子像素包括薄膜晶体管,所述薄膜晶体管的沟道宽长比不大于所述开关晶体管的沟道宽长比。
例如,根据本公开实施例,所述调光部还包括黑矩阵,所述黑矩阵在所述第一基板上的正投影覆盖所述多条第一信号线和所述多条第二信号线在所述第一基板上的正投影的至少部分。
例如,根据本公开实施例,所述第一电极结构与所述第二电极结构同层设置;或者,所述第一电极结构位于所述第二电极结构与所述第一基板之间。
例如,根据本公开实施例,所述多条信号线的部分与所述多个第一电极一一对应电连接。
例如,根据本公开实施例,所述第一电极结构与所述第二电极结构位于不同层,所述多条信号线的至少一条与所述第二电极结构电连接。
例如,根据本公开实施例,所述第一电极包括沿第一方向排列的多个子电极,所述第二电极结构包括沿所述第一方向排列的多个第二电极,所述多个子电极与所述多个第二电极沿所述第一方向交替设置。
例如,根据本公开实施例,所述第一电极还包括与所述多个子电极电连接的第一子连接部,所述第二电极结构还包括与所述多个第二电极电连接的第二子连接部。
例如,根据本公开实施例,至少一条信号线在垂直于所述第一基板的方向与所述第一电极交叠的部分位置处形状为直线型或者弯折型。
例如,根据本公开实施例,显示装置还包括:第一偏光结构,位于所述显示面板远离所述调光部的一侧;第二偏光结构,位于所述显示面板与所述调光部之间;以及第三偏光结构,位于所述调光部远离所述显示面板的一侧。所述第一偏光结构的偏光方向与所述第二偏光结构的偏光方向相交,所述第三偏光结构的偏光方向与所述第二偏光结构的偏光方向相同。
例如,根据本公开实施例,显示装置还包括防窥膜,位于所述调光部的入光侧。
例如,根据本公开实施例,显示装置还包括:背光结构,与所述调光部和所述显示面板层叠设置。所述调光部位于所述背光结构与所述显示面板之间,或者,所述显示面板位于所述调光部与所述背光结构之间。
例如,根据本公开实施例,所述子电极的线宽为1~15微米,所述第二电极的线宽为1~15微米,且相邻设置的所述子电极与所述第二电极之间的距离为2~15微米。
例如,根据本公开实施例,所述折射率可变材料层包括液晶层,所述液晶层的厚度为2~50微米。
例如,根据本公开实施例,所述调光部的工作电压为3~25V。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简 单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1至图2为一种显示装置的局部截面结构示意图。
图3至图4为另一种显示装置的局部截面结构示意图。
图5为根据本公开实施例提供的显示装置的局部结构示意图。
图6为图5所示调光部的局部平面示意图。
图7至图9为根据本公开实施例提供的不同状态或视角下的显示装置的显示画面。
图10为根据本公开实施例提供的显示面板的局部平面结构示意图。
图11为显示面板与调光部的层叠关系示意图。
图12和图13为不同示例中沿图6所示AA’线所截的局部截面结构示意图。
图14为根据本公开实施例的另一示例提供的显示装置的结构示意图。
图15为图14所示显示装置中调光部在一示例中的局部平面结构示意图。
图16为图14所示显示装置中调光部在另一示例中的局部平面结构示意图。
图17为根据本公开实施例提供的显示装置的局部结构图。
图18为根据本公开实施例的一示例提供的显示装置的局部结构图。
图19为根据本公开实施例的一示例提供的显示装置的局部结构图。
图20为根据本公开实施例的一示例提供的显示装置的局部结构图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物 件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
具有防窥功能的显示装置可以包括不可切换防窥显示装置,该显示装置通过在显示屏幕上贴防窥膜实现防窥作用,这种显示装置应用于单一场景,如仅适用于防窥态需求显示,且这种显示装置的厚度较厚,防窥膜可能降低显示图像的亮度,影响视觉效果。这种显示装置成本低,主要应用于手机贴膜防窥。
具有防窥功能的显示装置还可以包括可切换防窥显示装置,该显示装置可以采用准直背光、防窥面板以及显示面板的组合,通过对防窥面板施加不同的电压实现对显示面板的显示面的侧视角亮度的调控。
图1至图2为一种显示装置的局部截面结构示意图。图1示出了显示装置处于防窥态时的工作原理,图2示出的显示装置处于共享态时的工作原理。
本公开中(包括后续描述的各实施例),“防窥态”指从显示装置出射的图像光线的光强集中分布在与显示装置的显示面的法线夹角45度以内的视角中,在观看者的眼睛与法线之间的夹角大于45度时,看不清楚显示面显示的图像。由此,“防窥态”可以指防止其他人窥视信息的状态,可以更好的保护用户的隐私,防止信息的泄露。
本公开中(包括后续描述的各实施例),“共享态”相对于“防窥态”具有发散光效果的状态,例如显示装置出射的图像光线的光强不集中分布在与显示面的法线夹角45度以内的视角中,观看者的眼睛与法线之间的夹角大于45度时,仍可以看清楚显示面显示的图像。由此,“共享态”可以指与他人分享信息的状态,可以实现多人同时观看显示装置显示的图像。
如图1和图2所示,该显示装置包括层叠设置的显示面板、防窥面板以及背光源030,防窥面板位于显示面板与背光源030之间,可选的,防窥面板也可设置在显示面板远离背光源一侧,即显示面板设置在防窥面板和背光源之间,在此不做限定。例如显示面板和防窥面板在Y方向上层叠设置。防窥面板可以为调光液晶盒,包括层叠设置的第一透光基板011和第二透光基板012,第一透光基板011和第二透光基板012之间设置有液晶层013。第一透光基板011与液晶层013之间设置有第一整面电极层014,第二透光基板012与液晶层013之间设置有第二整面电极层015,第一整面电极层014和第二整面电极层015在输入电压时驱动液晶层013中的液晶旋转。第一透光基板011远离液晶层013的一侧设置有偏振层016,第二透光基板012远离液晶层013的一侧设置 有偏振层017,偏振层016的偏光方向与偏振层017的偏光方向相同。第一整面电极层014与液晶层013之间以及第二整面电极层015与液晶层013之间均设置有配向膜,图中没有示出。
如图1和图2所示,显示面板包括层叠设置的第一基板021和第二基板022,第一基板021和第二基板022之间设置有液晶层023。第一基板021与液晶层023之间设置的电极层以及第二基板022与液晶层023之间设置的电极层在输入电压时驱动液晶层023中的液晶旋转。显示面板还包括设置在第二基板022远离第一基板021一侧的偏振层024,偏振层017的偏光方向与偏振层024的偏光方向相交,经过偏振层017出射的偏振光的偏振方向与经过偏振层024出射的偏振光的偏振方向相交。例如,显示面板也可以设置在防窥面板和背光源之间,在此不限定,例如,显示面板的两个电极层可以设置在显示面板的同一基板上,例如均设置在第二基板或者第一基板面向液晶层023的一侧。
如图1和图2所示,该显示装置通过对防窥面板,如调光液晶盒的电极层014和015施加不同的电压来控制液晶层013中液晶的偏转状态,从而实现对视角的控制。如背光源发出的光线为微准直光线。如图1所示,当给调光液晶盒施加一个合适的电压时,液晶层013中的液晶发生旋转,此时背光中透过偏振层016的光线进入液晶盒内,由于液晶发生偏转,使得正视角的光线偏振态不变而从偏振层017射出,侧视角的光线变为非线偏振光然后被偏振层017滤除,调光液晶盒可以将背光源发出的侧视角的光线吸收,达到收窄视角的目的,从而实现很好的防窥效果。
如图2所示,当调光液晶盒没有施加电压时,液晶层013中的液晶不发生旋转,从背光源出射且经过调光液晶盒的光线基本不发生偏转,该光线经过偏振方向相同的偏振层016和偏振层017,调光液晶盒对背光源发出的侧视角的光线没有吸收作用,从而实现显示装置的共享态。
图3至图4为另一种显示装置的局部截面结构示意图。图3示出了显示装置处于防窥态时的工作原理,图4示出的显示装置处于共享态时的工作原理。
如图3和图4所示,该显示装置包括层叠设置的显示面板、防窥面板以及背光源030,防窥面板位于显示面板与背光源030之间,可选的,防窥面板也可设置在显示面板远离背光源一侧,即显示面板设置在防窥面板和背光源之间,在此不做限定。例如显示面板和防窥面板在Y方向上层叠设置。防窥面板可以为调光液晶盒,包括层叠设置的第一透光基板011和第二透光基板012,第一 透光基板011和第二透光基板012之间设置有液晶层013。第一透光基板011与液晶层013之间设置有沿X方向交替设置的第一电极014和第二电极015,第一电极014和第二电极015在输入电压时驱动液晶层013中的液晶旋转。第一透光基板011与液晶层013之间以及第二透光基板012与液晶层013之间均设置有配向膜,图中没有示出。
如图3和图4所示,背光源030与调光液晶盒之间设置有防窥膜040,防窥膜040吸收背光源030发出的微准直光线中的侧视角的光线,使得从防窥膜射向调光液晶盒的光线基本没有侧视角光线。例如,防窥膜040可以为采用黑色材料按百叶窗结构排列的结构。
如图3和图4所示,显示面板包括层叠设置的第一基板021和第二基板022,第一基板021和第二基板022之间设置有液晶层023。第一基板021与液晶层023之间设置的电极层以及第二基板022与液晶层023之间设置的电极层在输入电压时驱动液晶层023中的液晶旋转。显示面板还包括设置在第二基板022远离第一基板021一侧的偏振层024,以及设置在第一基板021远离第二基板022一侧的偏振层025,偏振层025的偏光方向与偏振层024的偏光方向相交,经过偏振层025出射的偏振光的偏振方向与经过偏振层024出射的偏振光的偏振方向相交。
如图3所示,在调光液晶盒的电极层不驱动液晶偏转时,从防窥膜射向调光液晶盒的基本没有侧视角的光线的传播方向不发生改变,则从调光液晶盒出射且射向显示面板的光线基本没有侧视角的光线,从而实现防窥效果。如图4所示,该显示装置通过给调光液晶盒中的第一电极和第二电极,如正电极和负电极,施加电压来控制液晶层中液晶的偏转状态,从而实现对视角的控制;当对调光液晶盒的电极施加电压后,调光液晶盒可以对从防窥膜射向其的基本没有侧视角的光线进行发散,如可以将正视角或靠近正视角的光线发散到大视角方向,施加电压越大,光线的发散效果越好,以使得从调光液晶盒出射且射向显示面板的光线为发散后的光线,从而实现很好的共享态效果,参考图4,本案中第一电极和第二电极同层设置,可选的,第一电极和第二电极不同层设置,二者之间设置有绝缘层,在此不做限定。
在研究中本申请的发明人发现:在图1所示显示装置和图3所示显示装置达到相同的防窥效果时,图3所示显示装置的共享态效果更优,且图1和图3所示显示装置均为整面防窥态-共享态切换技术,无法实现显示装置内特定区 域的独立地进行防窥态-共享态的切换。
本公开提供一种显示装置,该显示装置包括显示面板和调光部。调光部与显示面板层叠设置,调光部包括层叠设置的第一基板、折射率可变材料层、电极结构以及第二基板,折射率可变材料层以及电极结构均位于第一基板与第二基板之间。调光部还包括多条信号线,电极结构和多条信号线均位于第一基板上;电极结构包括第一电极结构和第二电极结构,第一电极结构包括彼此绝缘的多个第一电极,第一基板包括多个区域,不同区域中的第一电极被配置为与不同信号线电连接以实现调光部的分区控制。本公开提供的显示装置应用于防窥-共享切换技术,通过在调光部中设置多条信号线,并将第一电极结构的位于不同区域的不同第一电极与不同信号线电连接以实现显示装置中特定区域独立地进行防窥态-共享态切换,有利于提升用户的使用体验。
下面结合附图对本公开提供的显示装置进行描述。
图5为根据本公开实施例提供的显示装置的局部结构示意图,图6为图5所示调光部的局部平面示意图。如图5和图6所示,显示装置包括层叠设置的显示面板100和调光部200。需要说明的是,本案中显示面板和调光部的位置关系可以互换,不做具体限定。例如,显示面板100和调光部200沿Y方向层叠设置,Y方向为垂直于显示面板100的显示面的方向。
如图5和图6所示,调光部200包括层叠设置的第一基板210、折射率可变材料层230、电极结构240以及第二基板220,折射率可变材料层230以及电极结构240均位于第一基板210与第二基板220之间。本公开实施例中,第一基板与第二基板可以互换。
如图5和图6所示,调光部200还包括多条信号线250,电极结构240和多条信号线250均位于第一基板210上。本公开实施例不限于此,多条信号线和电极结构也可以均位于第二基板上,即多条信号线和电极结构均位于同一基板上。
如图5和图6所示,电极结构240包括第一电极结构260和第二电极结构270,第一电极结构260包括彼此绝缘的多个第一电极261,第一基板210包括多个区域201,不同区域201中的第一电极261被配置为与不同信号线250电连接以实现调光部200的分区控制。例如,多个第一电极261同层设置。例如,不同区域201中的第一电极261绝缘设置。
本公开提供的显示装置应用于防窥-共享切换技术,通过在调光部中设置 多条信号线,并将第一电极结构的位于不同区域的不同第一电极与不同信号线电连接,以实现调光部中不同区域对入射进调光部的光线进行独立控制,进而实现显示装置中任意指定区域独立地进行防窥态-共享态切换,提升用户的使用体验。
例如,可以在车载显示中对主驾驶位置和副驾驶位置对应的不同显示区域进行不同显示态设置,该不同显示态包括防窥态和共享态。例如,可以在航空娱乐显示中、在商务办公,如商业秘密中、在自动取款机显示,如金融隐私或支付密码等区域等场景中应用本公开提供的显示装置。
例如,第一基板210和第二基板220均为采用透光材质形成的透光基板。例如,第一基板210和第二基板220的材料可以为玻璃、有机聚合物或者其他透明材料。
在一些示例中,如图5所示,折射率可变材料层230包括液晶层,液晶层的厚度为2~50微米。例如,液晶层的厚度可以为5~40微米。例如,液晶层的厚度可以为10~45微米。例如,液晶层的厚度可以为15~30微米。例如,液晶层的厚度可以为20~35微米。例如,液晶层的厚度可以为25~37微米。
例如,如图5所示,第一基板210与第二基板220之间还设置有支撑柱(PS)281以及围绕折射率可变材料层230的一圈封框胶282。例如,第一基板210面向液晶层的一侧以及第二基板220面向液晶层一侧还可以设置配向膜,以对液晶层中的液晶进行配向。例如,液晶的初始配向方向可以为垂直于第一基板210的方向。例如,配向角度可以为85~90度,以将液晶层中的正性液晶按照垂直于第一基板的方向的初始状态进行锚定。
例如,液晶层中的液晶可以为正性液晶。折射率可变材料层230包括的液晶层中的液晶具有双折射特性,如液晶在不同方向的折射率分别为折射率ne与折射率no,折射率ne与折射率no的差值Δn可以为0.08~0.3,如0.1~0.2,如0.22~0.25,如0.15~0.28。
例如,初始状态下,液晶层未施加任何驱动信号(即在第一电极结构260和第二电极结构270之间无压差),液晶层不改变入射进调光部200的光线的传播方向,入射进调光部200的光线为基本没有侧视角的光线时,从调光部200出射的光线依然为基本没有侧视角的光线,此时的显示装置处于防窥态。
例如,在第一电极结构260和第二电极结构270之间有压差以对液晶层施加驱动信号时,液晶发生偏转,液晶层会改变射入其中的部分光线的传播方向, 如在射入调光部200的光线为基本没有侧视角的光线时,偏转的液晶使得部分光线被发散,如将正视角或靠近正视角的光线发散到大视角方向,此时的显示装置处于共享态。
例如,电极结构240可以为透光电极结构,例如,电极结构240的材料可以为氧化铟锡(ITO)等透明导电材料。
例如,第一电极结构260和第二电极结构270在调光部200工作过程中被施加不同电压以形成压差。例如,第一电极结构260和第二电极结构270可以被分别施加正电压和负电压。
在一些示例中,如图5和图6所示,调光部200还包括位于第一基板210上的多个开关结构300,每个区域201设置有至少一个开关结构300,多条信号线250包括沿第一方向排列的多条第一信号线251,开关结构300的第一极310与第一信号线251电连接,开关结构300的第二极320与第一电极261电连接。上述开关结构的第一极和第二极可以互换。
在一些示例中,如图5和图6所示,开关结构300包括开关晶体管。例如,开关晶体管可以为薄膜晶体管。例如,薄膜晶体管包括与第一信号线251电连接的第一极310、与第一电极结构260的第一电极261电连接的第二极320、栅极330以及有源层340。例如,第一极310和第二极320之一可以为薄膜晶体管的源极,另一个可以为薄膜晶体管的漏极,有源层340可以包括与源极接触的源极区域以及与漏极接触的漏极区域。例如,有源层340可以包括低温多晶硅层、非晶硅或者氧化物半导体材料的至少一种,在此不限定,上述源极区域和漏极区域可以通过掺杂等进行导体化以实现分别与源极和漏极的电连接。本公开实施例中采用的薄膜晶体管的源极区域和漏极区域在结构上可以是相同的,所以其源极区域和漏极区域在结构上可以是没有区别的,因此根据需要二者是可以互换的。
例如,有源层340可采用非晶硅(a-Si)、多晶硅、氧化物半导体材料等制作。例如,有源层340的材料可以为低温多晶硅(LTPS)、铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)、非晶硅等材料;另外晶体管可以是顶栅结构(即栅极设置在半导体层远离衬底基板的一侧),或者是底栅结构(即栅极设置在半导体层靠近衬底基板的一侧),在此不限定。
需要说明的是,上述的源极区域和漏极区域可为掺杂有n型杂质或p型杂质的区域。
在一些示例中,如图5和图6所示,多条信号线250还包括沿第二方向排列的多条第二信号线252,开关晶体管300的栅极330与第二信号线252电连接,第一方向与第二方向相交,多条第一信号线251和多条第二信号线252交叉设置以形成多个区域201。例如,第一基板210上的多个区域201可以为第一信号线251和第二信号线252交叉限定的区域201,第一电极结构260位于该区域201内。例如,开关结构300位于该区域201内。例如,每个区域201为独立调光的区域。
例如,图6示意性的示出第一方向为X方向,第二方向为Y方向。但不限于此,第一方向与第二方向可以互换。例如,第一方向与第二方向之间的夹角可以为80~100度。例如,第一方向与第二方向垂直。
例如,如图5和图6所示,第二信号线252与薄膜晶体管300的栅极330电连接以控制薄膜晶体管的打开或者关闭,第一信号线251与薄膜晶体管300的第一极310电连接以使得第一信号线251中传输的信号通过薄膜晶体管300输入到第一电极结构260中。例如,薄膜晶体管300的栅极330可以与第二信号线252为一体化的结构。
例如,如图5和图6所示,第二电极结构270可以为多个区域201共用的电极结构,第一电极结构260包括的不同第一电极261可以为不同区域201独立设置的电极结构。
例如,如图5和图6所示,第二电极结构270被输入第一电压,多个区域201中的第一部分区域对应的第一信号线251和第二信号线252均输入信号,使得该第一部分区域中的薄膜晶体管300打开,第一信号线251通过薄膜晶体管300输入到第一电极结构260的电压为第二电压,第二电压与第一电压不同,第一部分区域中的第一电极结构260与第二电极结构270有压差,第一部分区域对应的液晶发生偏转,经过第一部分区域的光线被液晶折射,使得该第一部分区域处于共享态;而第二部分区域中对应的第一信号线251和第二信号线252均输入信号,使得该第二部分区域中的薄膜晶体管300打开,第一电极结构260被输入与第一电压相同的电压,第一电极结构260与第二电极结构270之间没有压差,第二部分区域对应的液晶不偏转,经过第二部分区域的光线的传播方向不发生改变,使得第二部分区域处于防窥态。
当然,本公开实施例不限于此,例如,第二电极结构可以输入0V电压,通过控制第一部分区域的薄膜晶体管打开以将第一信号线上的信号传输给第 一电极结构,使得第一部分区域中的第一电极结构与第二电极结构有压差,第二部分区域中薄膜晶体管打开并将0V电压信号传输给第一电极结构,使得第一电极结构与第二电极结构无压差,而实现对特定位置进行共享态或者防窥态选择设置。
在一些示例中,如图5和图6所示,调光部200的工作电压为3~25V。上述工作电压指第一电极结构与第二电极结构之间的压差。例如,调光部200的工作电压为4~24V。例如,调光部200的工作电压为10~22V。例如,调光部200的工作电压为5~20V。例如,调光部200的工作电压为8~15V。例如,调光部200的工作电压为6~18V。例如,施加到第一电极结构260的电压信号可以为正弦交流波、交流方波或者其他能改变液晶状态的电压波形。参考图6,可选的,第一电极结构260和第二电极结构270同层设置,也可以是第一电极结构260和第二电极结构270不同层设置,二者之间设置有绝缘层,或者第一电极结构260包括的多个第一电极261设置在不同层,不同层间的第一电极通过绝缘层过孔实现电连接,或者第二电极结构270包括的多个第二电极271设置在不同层,不同层间的第二电极通过绝缘层过孔实现电连接,具体电极膜层结构在此不做限定。另外本案中栅线设置成弯折或者非直线的设计,本案中可选的栅线和数据线均设置成非直线延伸的设计,改善防窥显示装置摩尔纹的问题,可选的,相邻两条数据线的非直线设置不同,即当一根数据线朝向一侧弯折时,与此条数据线相邻的数据线对应的弯折方向朝向另外一侧,间隔一条数据线的两条数据线弯折方向相同,改善显示装置摩尔纹的问题。
本公开提供的显示装置中,不同区域内均设置有开关晶体管,通过调节开关晶体管的开关状态以及输入到第一电极结构的电压大小,实现对调光部的分区控制,以使得调光部具有特定区域呈现共享态或者防窥态的局部主动防窥功能。具有局部主动防窥功能的调光部可以应用于航空娱乐显示、商务办公(如商务秘密部分的防窥显示)、自动取款机显示(如金融隐私及支付密码等的防窥显示)等特殊场景,极大提升用户的体验。
图7至图9为根据本公开实施例提供的不同状态或视角下的显示装置的显示画面。如图7所示,显示装置的显示画面处于正视角,用户可以看到航空显示中的欢迎登机界面,其中包括了个人显示区域。如图8所示,该显示装置处于局部共享态,从侧视角观看显示画面时仅能看到部分区域,其他区域处于防窥态。如图9所示,该显示装置处于整面防窥态,从侧视角观看显示画面时, 基本上什么都看不见。
例如,如图6所示,多个区域201沿第一方向和第二方向阵列排布。例如,每个区域201中设置一个开关结构,每个区域201中设置一个第一电极261。
在一些示例中,如图6所示,至少一个第一电极261包括电连接的多个子电极2611,子电极2611的延伸方向与第一信号线251的延伸方向之间的夹角不大于15度,且多个子电极2611沿第一方向排列。例如,子电极2611的延伸方向与第一信号线251的延伸方向之间的夹角不大于10度。例如,子电极2611的延伸方向与第一信号线251的延伸方向之间的夹角不大于5度。例如,子电极2611的延伸方向与第一信号线251的延伸方向之间的夹角不大于3度。例如,子电极2611的延伸方向与第一信号线251的延伸方向之间的夹角不大于1度。例如,子电极2611的延伸方向与第一信号线251的延伸方向平行。子电极的延伸方向可以与显示面板的一条边的延伸方向平行,以实现液晶在指定方向上的偏转。例如,第一信号线的延伸方向可以与显示面板的上述边的延伸方向相交。
例如,如图6所示,各第一电极261包括电连接的多个子电极2611。例如,第一电极261还包括将多个子电极2611电连接的连接部2612。例如,子电极2611与连接部2612的材料相同。例如,子电极2611与连接部2612为一体化设置的结构。例如,子电极2611与连接部2612可以在同一步图案化工艺中形成。例如,连接部2612的延伸方向与第二信号线252的延伸方向之间的夹角不大于10度。例如,连接部2612的延伸方向与第二信号线252的延伸方向之间的夹角不大于5度。例如,连接部2612的延伸方向与第二信号线252的延伸方向平行。
例如,如图6所示,子电极2611在第一基板210上的正投影与信号线250在第一基板210上的正投影没有交叠。例如,连接部2612在第一基板210上的正投影与信号线250在第一基板210上的正投影没有交叠。
在一些示例中,如图6所示,子电极2611的线宽为1~15微米。例如,子电极2611的线宽为2~10微米。例如,子电极2611的线宽为5~12微米。例如,子电极2611的线宽为3~7微米。例如,连接部2612的线宽与子电极2611的线宽之比可以为0.5~1.5。例如,连接部2612的线宽与子电极2611的线宽之比可以为0.7~1.2。例如,连接部2612的线宽与子电极2611的线宽之比可以为0.9~1.1。例如,连接部2612的线宽与子电极2611的线宽可以相同。
例如,如图6所示,不同区域201中的第一电极261包括的子电极2611的数量相同,以提高不同区域对光线控制的均一性。
在一些示例中,如图6所示,第二电极结构270包括交叉设置的连接电极272以及与连接电极272连接的多个第二电极271。第二电极结构为多个区域共用的公共电极,通过将第二电极结构设置的连接电极设置为网格状,有利于降低第二电极结构中距离信号输入端较近的位置处的信号与第二电极结构中距离信号输入端较远位置处的信号之间的差异。
本案中调光部在第一基板210与第二基板220之间还设置有支撑柱(PS)281,可选的支撑柱可以设置在第一基板一侧,也可以设置在第二基板一侧,支撑柱设置的位置在第一基板的垂直投影可以是在栅线上(与栅线至少部分交叠),也可以是支撑柱设置的位置在第一基板的垂直投影在数据线上(与数据线至少部分交叠),当支撑柱设置的位置在与栅线或者数据线投影部分交叠时,此时交叠部分对应的栅线或者数据线对应的部分做加宽设计(即宽度大于非支撑柱交叠的部分),此时可以更好起到对支撑柱的支持作用。
例如,如图6所示,连接电极272的材料与第二电极271的材料相同。例如,连接电极272与第二电极271可以为一体化设置的结构。例如,不同区域201中的第二电极271通过连接电极272电连接。
例如,如图6所示,第二电极271在第一基板210上的正投影与信号线250在第一基板210上的正投影没有交叠。例如,连接电极272在第一基板210上的正投影与信号线250在第一基板210上的正投影有交叠。
在一些示例中,如图6所示,第二电极271的延伸方向与第一信号线251的延伸方向之间的夹角不大于10度,至少一个区域201中,多个子电极2611与多个第二电极271沿第一方向交替设置。例如,每个区域201设置有至少两个第二电极271。例如,每个区域201中,子电极2611与第二电极271的数量比可以为0.9~1.1。例如,每个区域201中,子电极2611与第二电极271的数量相等,或者两者的数量相差1。
例如,如图6所示,第二电极271的延伸方向与子电极2611的延伸方向平行。
在一些示例中,如图6所示,第二电极271的线宽可以为1~15微米。例如,第二电极271的线宽可以为7~12微米。例如,第二电极271的线宽可以为5~10微米。例如,第二电极271的线宽与子电极2611的线宽之比为0.06~15。 例如,第二电极271的线宽与子电极2611的线宽之比为0.1~12。例如,第二电极271的线宽与子电极2611的线宽之比为0.3~10。例如,第二电极271的线宽与子电极2611的线宽之比为0.5~5。例如,第二电极271的线宽可以与子电极2611的线宽相等,可以与子电极2611的线宽不等。
在一些示例中,如图6所示,相邻设置的子电极2611与第二电极271之间的间距可以为2~15微米。例如,相邻设置的子电极2611与第二电极271之间的间距可以为3~12微米。例如,相邻设置的子电极2611与第二电极271之间的间距可以为5~10微米。相邻设置的子电极2611与第二电极271之间的间距可以为7~9微米。
例如,如图6所示,子电极2611和第二电极271可以为单筹结构,也可以为多畴结构,本公开实施例对此不作限制。
在一些示例中,如图6所示,连接电极272包括多个第一连接电极2721以及多个第二连接电极2722,多个第一连接电极2721与多条第一信号线251沿第一方向交替设置,且多条第二连接电极2722与多条第二信号线252沿第二方向交替设置。例如,第一连接电极2721沿第一信号线251的延伸方向延伸,第二连接电极2722沿第二信号线252的延伸方向延伸。
例如,如图6所示,第一连接电极2721在第一基板210上的正投影与第二信号线252在第一基板210上的正投影交叠。例如,第二连接电极2722在第一基板210上的正投影与第一信号线251在第一基板210上的正投影交叠。
例如,连接部2612与第二连接电极2722平行设置。
本公开提供的显示装置中,将位于第一信号线与第二信号线交叉限定的区域中的子电极、第二电极以及第一连接电极设置为与第一信号线平行,将位于第一信号线与第二信号线交叉限定的区域中的连接部和第二连接电极设置为与第二信号线平行。
例如,如图6所示,第二信号线252、第二连接电极2722以及连接部2612沿第二方向依次循环设置。
图10为根据本公开实施例提供的显示面板的局部平面结构示意图,图11为显示面板与调光部的层叠关系示意图。
例如,如图5至图6以及图10至图11所示,显示面板包括层叠设置的基板110和基板120,基板110与基板120之间设置有液晶层130。例如,基板110面向液晶层130的一侧设置有沿第一方向排列的多条数据线111以及沿第 二方向排列的多条栅线112,数据线111与栅线112交叉的区域设置有子像素113。例如,子像素113可以包括像素电极和公共电极,像素电极与公共电极产生电压差以驱动液晶层130中的液晶偏转。例如,基板110与基板120之间设置有支撑柱172,液晶层130外侧设置有一圈封框胶171。例如,基板120面向液晶层130的一侧设置有黑矩阵141以及彩膜层142,其中彩膜层包括红色彩膜、绿色彩膜以及蓝色彩膜。本公开实施例不限于此,数据线、栅线以及子像素也可以设置在基板120面向液晶层130的一侧。
例如,本公开实施例示意性的示出显示面板可以为液晶显示面板,如可以为扭曲向列型(TN)显示面板、高级超维场转换型(ADS)显示面板、垂直排列型(VA)显示面板、反射式显示面板或者半透半反型显示面板等。
在一些示例中,如图5所示,显示装置还包括第一偏光结构150和第二偏光结构160,第一偏光结构150位于显示面板100远离调光部200的一侧,第二偏光结构160位于显示面板100与调光部200之间。第一偏光结构150的偏光方向与第二偏光结构160的偏光方向相交。例如,经过第一偏光结构150出射的偏振光的偏振方向与经过第二偏光结构160出射的偏振光的偏振方向相交。
在一些示例中,如图5至图6以及图10至图11所示,显示面板100包括多个子像素113,多个子像素113与多个区域201的数量之比为N,N不大于10。例如,一个区域201沿第一方向的尺寸与一个子像素113沿第一方向的尺寸之比不大于10,一个区域201沿第二方向的尺寸与一个子像素113沿第二方向的尺寸之比不大于10。例如,一个区域201的面积与一个子像素113的面积比不大于10。例如,经过一个区域201的光线可以射向N个子像素113,N不大于10。
本公开提供的显示装置,通过对调光部中第一电极所在区域的尺寸与显示面板中子像素的尺寸之比设置为不大于10,使得各区域对应较少数量的子像素,有利于提高显示装置局部调控精度以及显示效果。
例如,如图11所示,多个子像素113与多个区域201的数量之比为8。例如,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为1,一个区域201在第一方向和第二方向的另一个方向上对应的子像素113的数量为8;或者,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为2,一个区域201在第一方向和第二方向的另一个方向上 对应的子像素113的数量为4。
例如,如图11所示,多个子像素113与多个区域201的数量之比为6。例如,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为1,一个区域201在第一方向和第二方向的另一个方向上对应的子像素113的数量为6;或者,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为2,一个区域201在第一方向和第二方向的另一个方向上对应的子像素113的数量为3。
例如,如图11所示,多个子像素113与多个区域201的数量之比为4。例如,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为1,一个区域201在第一方向和第二方向的另一个方向上对应的子像素113的数量为4;或者,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为2,一个区域201在第一方向和第二方向的另一个方向上对应的子像素113的数量为2。
例如,如图11所示,多个子像素113与多个区域201的数量之比为2。例如,一个区域201在第一方向和第二方向之一的方向上对应的子像素113的数量为1,一个区域201沿第一方向和第二方向的另一个对应的子像素113的数量为2。
例如,如图11所示,多个子像素113与多个区域201的数量之比为1。例如,一个区域201对应一个子像素113。
在一些示例中,如图11所示,数据线111的延伸方向与第一信号线251的至少部分位置处的延伸方向不同,栅线112的延伸方向与第二信号线252的至少部分位置处的延伸方向不同。本公开提供的显示装置中,通过将调光部中第一信号线的至少部分位置处的延伸方向设置为与数据线的延伸方向不同,且第二信号线的至少部分位置处的延伸方向设置为与栅线的延伸方向不同,有利于改善显示面板与调光部层叠设置情况下,显示装置显示时出现的摩尔纹现象。
例如,如图11所示,数据线111的延伸方向与第一信号线251的上述至少部分位置处的延伸方向之间的夹角为第一夹角,栅线112的延伸方向与第二信号线252的上述至少部分位置处的延伸方向之间的夹角为第二夹角,第一夹角不大于第二夹角。由于子电极以及第二电极的延伸方向与第一信号线的延伸方向之间的夹角较小,子电极的延伸方向可以与第二信号线的延伸方向具有较大的夹角,且在垂直于第一基板的方向上第一电极与第一信号线以及第二信号 线均没有交叠,本公开通过在防止第一电极与第一信号线交叠的情况下,尽量将第一信号线的延伸方向设置为与数据线的延伸方向具有一定夹角,可以较好地防止摩尔纹现象的发生。
在一些示例中,如图6和图11所示,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,所述数据线的延伸方向与所述子电极的延伸方向相同。本公开提供的显示装置,通过对显示面板中的数据线的延伸方向、调光部中的第一信号线的延伸方向以及子电极的延伸方向之间关系的设置,可以在实现调光部中液晶向特定方向偏转以实现光线在特定方向折射而达到需求共享态的同时,防止第一信号线与子电极交叠而影响调光区域面积以及防止第一信号线与数据线平行而产生摩尔纹现象。
在一些示例中,如图6和图11所示,至少一条第二信号线252包括弯折型信号线。例如,各第二信号线252均为周期性弯折型信号线,如每个区域201对应第二信号线252的形状可以为“V”型,“U”型等,如各第二信号线252整体形状为多个彼此连接的“W”型,或者多段彼此连接的弧形等。本公开提供的显示装置中,通过将调光部中的第二信号线的形状设置为弯折型,可以与显示面板中的栅线延伸方向不同,有利于防止调光部中第二信号线与显示面板中栅线对应偏差导致的摩尔纹。
在一些示例中,如图11所示,至少一条数据线111在第一基板210上的正投影与第一信号线251在第一基板210上的正投影交叠。通过调整显示面板中数据线与调光部中第一信号线的位置关系,有利于使得显示面板中的子像素具有较大的开口率。
例如,如图11所示,区域201的数量与子像素113的数量之比为1,90%以上的数据线111在第一基板210上的正投影与第一信号线251在第一基板210上的正投影交叠。例如,区域201的数量与子像素113的数量之比为4,40%以上的数据线在第一基板210上的正投影与第一信号线251在第一基板210上的正投影交叠。数据线中与第一信号线交叠的数量与区域数量和子像素数量之比有关,根据区域数量与子像素数量之比的关系,可以调节数据线中与第一信号线交叠的数量,以尽量提高显示面板中的子像素的开口率。
例如,如图11所示,数据线111的线宽与第一信号线251的线宽之比可以为0.8~1.2。例如,数据线111的线宽与第一信号线251的线宽可以相等。例如,栅线112的线宽与第二信号线252的线宽之比可以为0.8~1.2。例如,栅线 112的线宽与第二信号线252的线宽可以相等。
在一些示例中,如图6和图10所示,各子像素113包括薄膜晶体管114,薄膜晶体管114的沟道宽长比不大于开关晶体管300的沟道宽长比。例如,显示面板100中的薄膜晶体管114的沟道宽长比小于调光部200中开关晶体管300的沟道宽长比。
本公开提供的显示装置中,根据调光部中区域与显示面板中子像素的数量比调节调光部中开关晶体管的沟道宽长比与显示面板中薄膜晶体管的沟道宽长比之间的关系,以使得调光部更好地调节显示装置的出光状态。
例如,如图6和图10所示,调光部200中开关晶体管300与显示面板100中薄膜晶体管114的形状或者材料可以均相同,也可以均不同,本公开实施例对此不作限制。
图12和图13为不同示例中沿图6所示AA’线所截的局部截面结构示意图。
在一些示例中,如图5至图6以及图12所示,第一电极结构260位于第二电极结构270与第一基板210之间。例如,第一电极结构260中的第一电极261可以覆盖开关结构300的第二极320的部分表面以与开关结构300的第二极320电连接。
例如,如图6和图12所示,第一电极结构260可以与第一信号线251为同层设置的结构。例如,第一电极结构260的材料与第一信号线251的材料不同。例如,第一信号线251的材料包括金属材料,如可以采用钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等金属及其多层组合或合金制作。例如,第二信号线252可以位于第一信号线251与第一基板210之间。例如,第二信号线252的材料包括金属材料,如可以采用钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等金属及其多层组合或合金制作。例如,第二信号线252与开关结构300的栅极330同层设置。例如,开关结构300的栅极330与第二信号线252可以为一体化设置的结构,如栅极330可以为第二信号线252的与有源层340交叠的部分。例如,开关结构300的第一极310也可以与第一信号线251为一体化设置的结构。
上述“同层”可以指采用同一成膜工艺形成用于制作特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。即一次构图工艺对应一道掩模板。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而所形成层结构中的特定图形可以是连续的也可以是不连续的,这些特定 图形可能处于相同的高度或者具有相同的厚度、也可能处于不同的高度或者具有不同的厚度。
例如,如图12所示,第一电极结构260与第一基板210之间设置有覆盖栅极330的绝缘层211,例如,该绝缘层211的材料可以为硅的氮化物、硅的氧化物或者硅的氮氧化物等材料。
例如,如图12所示,第一电极结构260远离第一基板210的一侧设置有覆盖第一电极结构260的绝缘层212,例如,该绝缘层212的材料可以为硅的氮化物、硅的氧化物或者硅的氮氧化物等材料。例如,绝缘层212位于第一电极结构260与第二电极结构270之间。
例如,图13所示调光部与图12所示调光部的不同之处在于,图13所示调光部中,第一电极结构260与第二电极结构270同层设置。图13所示调光部中第一信号线、第二信号线、开关结构300、第一基板210以及绝缘层211与图12所示调光部中第一信号线、第二信号线、开关结构300、第一基板210以及绝缘层211可以具有相同的特征,在此不再赘述。
例如,如图13所示,第一电极结构260通过绝缘层212中的过孔与开关结构300中的第二极320电连接。
在一些示例中,如图5所示,调光部200还包括黑矩阵283,黑矩阵283在第一基板210上的正投影覆盖多条第一信号线251和多条第二信号线252在第一基板210上的正投影的至少部分,以防止光线在第一信号线和第二信号线上发生反射。
例如,多条第一信号线251在第一基板210上的正投影完全位于黑矩阵283在第一基板210上的正投影内。例如,多条第二信号线252在第一基板210上的正投影完全位于黑矩阵283在第一基板210上的正投影内。例如,黑矩阵283的形状为网格状。
例如,黑矩阵283在第一基板210上的正投影与区域201的部分边缘交叠,但与区域201的中心无交叠。例如,黑矩阵283在第一基板210上的正投影与区域201交叠的部分占区域201的面积比小于20%。
例如,黑矩阵283可以位于液晶层230与第二基板220之间。例如,黑矩阵283可以位于第二基板220上。
例如,调光部可以为有源调光部,调光部中位于显示区以外位置可以设置外围走线图案,如外围走线图案可以采用栅驱动集成在阵列基板(GOA,Gate  Driven on Array)。
图14为根据本公开实施例的另一示例提供的显示装置的结构示意图,图15为图14所示显示装置中调光部在一示例中的局部平面结构示意图。图14所示显示装置中的显示面板100、第一偏光结构150以及第二偏光结构160可以与图5所示显示装置中的显示面板100、第一偏光结构150以及第二偏光结构160具有相同的特征,在此不再赘述。图14所示调光部200中的第一基板210、第二基板220以及折射率可变材料层230与图5所示调光部200中的第一基板210、第二基板220以及折射率可变材料层230具有相同的特征,在此不再赘述。
如图14和图15所示,调光部200包括多条信号线250,电极结构240和多条信号线250均位于第一基板210上。本公开实施例不限于此,多条信号线和电极结构也可以均位于第二基板上,如多条信号线和电极结构均位于同一基板上。
如图14和图15所示,电极结构240包括第一电极结构260和第二电极结构270,第一电极结构260包括彼此绝缘的多个第一电极261,第一基板210包括多个区域201,至少两个区域201中的第一电极261被配置为与不同信号线250电连接以实现调光部200的分区控制。例如,多个第一电极261同层设置。例如,不同区域201中的第一电极261绝缘设置。例如,每个区域201设置一个第一电极261。本示例中的区域201可以由第一电极261所在位置划分,每个第一电极261位于一个区域201,不同第一电极261位于不同区域201。
本公开提供的显示装置应用于防窥-共享切换技术,通过在调光部中设置多条信号线,并将第一电极结构的位于不同区域的不同第一电极与不同信号线电连接,以实现调光部中不同区域对入射进调光部中的光线进行独立控制,进而实现显示装置中任意指定区域独立地进行防窥态-共享态切换,提升用户的使用体验。
在一些示例中,如图15所示,多条信号线250的部分与多个第一电极261一一对应电连接。例如,信号线250的数量不小于第一电极261的数量。例如,信号线250包括与多个第一电极2601电连接的多条第一子信号线253。
在一些示例中,如图15所示,第一电极结构260与第二电极结构270位于不同层。例如,第一电极结构260在第一基板210上的正投影与第二电极结构270在第一基板210上的正投影交叠。例如,第一电极结构260和第二电极 结构270均与信号线250位于不同层。例如,第一电极结构260在第一基板210上的正投影与信号线250在第一基板210上的正投影交叠。例如,第二电极结构270在第一基板210上的正投影与信号线250在第一基板210上的正投影交叠。
在一些示例中,如图15所示,多条信号线250的至少一条与第二电极结构270电连接。例如,信号线250包括与第二电极结构270电连接的第二子信号线254。例如,第二电极结构270可以为多个区域201共用的公共条状电极。
例如,如图15所示,第一电极结构260通过位于第一电极结构260与信号线250之间的绝缘层中的过孔291与第一子信号线253电连接,第二电极结构270通过位于第二电极结构270与信号线250之间的绝缘层中的过孔292与第二子信号线254电连接。过孔291和过孔292的数量可以根据电学需求、工艺要求进行设置。例如,信号线250可以位于电极结构240与第一基板210之间。
图15所示调光部与图6所示调光部的不同之处在于图15所示调光部中没有设置开关结构,通过与第一电极电连接的信号线将信号直接传输给第一电极,与第二电极结构电连接的信号线将信号直接传输给第二电极结构,而实现第一电极结构与第二电极结构之间形成电压差。图15所示调光部与图6所示调光部的不同之处还在于图15所示调光部中信号线的数量小于图6所示第一信号线的数量,图15所示调光部不设置黑矩阵。图15所示调光部与图6所示调光部的不同之处还在于图15所示调光部中区域201的数量与显示面板中子像素的数量比大于图6所示调光部中区域201的数量与显示面板中子像素的数量比。图6所示调光部适用于小面积区域局部调光,图15所示调光部适用于大面积区域局部调光。
例如,初始状态下,折射率可变材料层,如液晶层未施加任何驱动信号(即在第一电极结构260和第二电极结构270之间无压差),液晶层不改变入射进调光部200的光线的传播方向,入射进调光部200的光线为基本没有侧视角的光线时,从调光部200出射的光线依然为基本没有侧视角的光线,此时的显示装置处于防窥态。
例如,在第一电极结构260和第二电极结构270之间有压差以对液晶层施加驱动信号时,液晶发生偏转,液晶层会改变射入其中的部分光线的传播方向,如在射入调光部200的光线为基本没有侧视角的光线时,偏转的液晶使得部分 光线被发散,如将正视角或靠近正视角的光线发散到大视角方向,此时的显示装置处于共享态。
例如,如图15所示,每个第一电极261由相应的一条第一子信号线253单独提供信号,由此,通过对每个第一电极,即每个第一区域对应的液晶的单独调控可实现对显示装置指定区域内防窥态与共享态的切换,以实现局部防窥效果。
例如,电极结构240可以为透光电极结构,例如,电极结构240的材料可以为氧化铟锡(ITO)等透明导电材料。
例如,第一电极结构260和第二电极结构270在调光部200工作过程中被施加不同电压以形成压差。例如,第一电极结构260和第二电极结构270可以被分别施加正电压和负电压。
例如,如图15所示,第二电极结构270被第二子信号线254输入第一电压,多个区域201中的第一部分区域中的第一电极261被相应的第一子信号线253输入第二电压,第二电压与第一电压不同,多个区域201中的第二部分区域中的第一电极261被相应的第一子信号线253输入第一电压;第一部分区域中的第一电极结构260与第二电极结构270有压差,第一部分区域对应的液晶发生偏转,经过第一部分区域的光线被液晶折射,使得该第一部分区域处于共享态;而第二部分区域中的第一电极结构260与第二电极结构270没有压差,第二部分区域对应的液晶不偏转,经过第二部分区域的光线的传播方向不发生改变,使得第二部分区域处于防窥态。
在一些示例中,如图15所示,第一电极261包括沿第一方向排列的多个子电极2611,第二电极结构270包括沿第一方向排列的多个第二电极271,多个子电极2611与多个第二电极271沿第一方向交替设置,第一方向与第二方向相交。图15示意性的示出X方向为第一方向,Y方向为第二方向,但不限于此,第一方向与第二方向可以互换。例如,子电极2611沿第二方向延伸,第二电极271沿第二方向延伸。
例如,如图15所示,多个第一电极261可以沿X方向和Y方向阵列排布。但不限于此,多个第一电极可以仅沿X方向排列为一行,或者仅沿Y方向排列为一列。
例如,如图15所示,子电极2611的长度小于第二电极271的长度。
在一些示例中,如图15所示,第一电极261还包括与多个子电极2611电 连接的第一子连接部2612,第二电极结构270还包括与多个第二电极271电连接的第二子连接部272。例如,第一子连接部2612的材料可以与子电极2611的材料相同。例如,第一子连接部2612可以与子电极2611为一体化设置的结构。例如,第一子连接部2612可以与子电极2611在同一步图案化工艺中形成。例如,第二电极271的材料可以与第二子连接部272的材料相同。例如,第二电极271可以与第二子连接部272为一体化设置的结构。例如,第二电极271可以与第二子连接部272在同一步图案化工艺中形成。
例如,如图15所示,每个第一电极261包括至少一个第一子连接部2612。例如,图15示意性的示出每个第一电极261包括两个第一子连接部2612以与多个子电极2611形成网格结构。本公开实施例不限于此,第一电极还可以包括三个或者更多个第一子连接部。
例如,如图15所示,第一子连接部2612可以为沿第一方向延伸的直线段,但不限于此,第一子连接部也可以采用折线、弧线等形状。
例如,如图15所示,第二子连接部272可以为沿第一方向延伸的直线段,但不限于此,第一子连接部也可以采用折线、弧线等形状。
例如,如图15所示,第二子连接部272的数量大于等于1。图15示意性的示出第二子连接部的数量为两个,但不限于此,第二子连接部的数量还可以为三个或者更多个。例如,多个第一电极261均设置在两个第二子连接部272之间。例如,多个第一连接电极2721均设置在最外侧的两个第二电极271之间。例如,位于最外侧的两个第二电极271的至少之一与第二子信号线254电连接。
例如,如图15所示,第一子连接部2612与第一子信号线253交叠,第一子信号线253和第二子信号线254均与第二子连接部272交叠。
例如,如图15所示,一个第一电极261与至少一条第一子信号线253交叠,且该第一电极261和与其交叠的一条第一子信号线253电连接。
例如,如图15所示,信号线250包括与电极结构240交叠的部分以及与电极结构240不交叠的扇形部分。
在一些示例中,如图15所示,至少一条信号线520在垂直于第一基板210的方向与第一电极261交叠的部分位置处形状为直线型。例如,各信号线520在垂直于第一基板210的方向与第一电极261交叠的部分位置处形状为直线型。例如,信号线的该直线型的部分沿第二方向延伸。
例如,如图15所示,子电极2611的线宽为1~15微米。例如,子电极2611的线宽为2~10微米。例如,子电极2611的线宽为5~12微米。例如,子电极2611的线宽为3~7微米。例如,第一子连接部2612的线宽与子电极2611的线宽之比可以为0.5~1.5。例如,第一子连接部2612的线宽与子电极2611的线宽之比可以为0.7~1.2。例如,第一子连接部2612的线宽与子电极2611的线宽之比可以为0.9~1.1。例如,第一子连接部2612的线宽与子电极2611的线宽可以相同。
例如,如图15所示,第二电极271的线宽可以为1~15微米。例如,第二电极271的线宽可以为7~12微米。例如,第二电极271的线宽可以为5~10微米。例如,第二电极271的线宽与子电极2611的线宽之比为0.06~15。例如,第二电极271的线宽与子电极2611的线宽之比为0.1~12。例如,第二电极271的线宽与子电极2611的线宽之比为0.3~10。例如,第二电极271的线宽与子电极2611的线宽之比为0.5~5。例如,第二电极271的线宽可以与子电极2611的线宽相等,可以与子电极2611的线宽不等。
例如,如图15所示,相邻设置的子电极2611与第二电极271之间的间距可以为2~15微米。例如,相邻设置的子电极2611与第二电极271之间的间距可以为3~12微米。例如,相邻设置的子电极2611与第二电极271之间的间距可以为5~10微米。相邻设置的子电极2611与第二电极271之间的间距可以为7~9微米。
例如,信号线250的材料包括金属材料,如可以采用钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等金属及其多层组合或合金制作。
例如,如图15所示,各第一子信号线253与不同端子293电连接。例如,第一子信号线253和第二子信号线254与不同端子293电连接。
例如,图15所示的调光部可以为无源调光部,该调光部中不需要单独集成电路芯片(IC)来进行驱动以降低成本。例如,该调光部中不需要GOA等布线以减少边框。
例如,如图15所示,区域201可以排列为2*20阵列。例如,调光部200包括两行区域201,每行区域201的数量为20个。例如,该调光部可以应用于车载显示环境。
图16为图14所示显示装置中调光部在另一示例中的局部平面结构示意图。图16所示调光部与图15所示调光部的区别在于至少一条信号线250在垂 直于第一基板210的方向与第一电极261交叠的部分位置处形状为弯折型。图16所示调光部中除信号线的形状外的其他特征可以与图15所示调光部中除信号线的形状外的其他特征相同,在此不再赘述。
例如,如图16所示,各信号线250在垂直于第一基板210的方向与第一电极261交叠的部分位置处形状可以为“Z”型或者“S”型。
图17为根据本公开实施例提供的显示装置的局部结构图。如图17所示,显示装置还包括第三偏光结构400,第三偏光结构400位于调光部200远离显示面板100的一侧。第三偏光结构400的偏光方向与第二偏光结构160的偏光方向相同。例如,经过第三偏光结构400的线偏振光的偏振方向与经过第二偏光结构160的线偏振光的偏振方向相同,靠调节调光部中电极的压差与偏光片的滤光作用实现分享态和防窥态的切换,具体原理可参考图1。
通过对第一偏振结构、第二偏振结构以及第三偏振结构的设置实现了防窥态与分享态转换的显示装置。
图18为根据本公开实施例的一示例提供的显示装置的局部结构图。如图18所示,显示装置还包括背光结构600,背光结构600与调光部200和显示面板100层叠设置。
在一些示例中,如图18所示,调光部200位于背光结构600与显示面板100之间,图18中在靠近背光结构一侧不设置偏光片,靠调节调光部中电极的压差实现分享态和防窥态的切换,具体原理可参考图4。
在一些示例中,如图18所示,显示装置还包括防窥膜500,防窥膜500位于调光部200的入光侧。例如,防窥膜500位于背光结构600与调光部200之间。
例如,如图18所示,防窥膜500可以为采用黑色材料按百叶窗结构排列的结构。
例如,如图18所示,背光结构600可以包括非准直普通背光源和两层分光棱镜,或者准直背光源和一层逆棱镜,以使入射到调光部的光线为准直程度较高的准直光。
例如,如图18所示,准直背光结构600与防窥膜500结合可以形成准直度非常高的光源。当然,本公开实施例不限于此,背光结构还可以采用其他光源,如直下式背光源、侧入式背光源等。
图19为根据本公开实施例的一示例提供的显示装置的局部结构图。图19 所示显示装置与图18所示显示装置的不同之处在于调光部200与显示面板100的位置。
例如,如图19所示,显示面板100位于调光部200与背光结构600之间。例如,防窥膜500位于显示面板100与背光结构600之间。
图20为根据本公开实施例的一示例提供的显示装置的局部结构图。图20所示显示装置与图19所示显示装置的不同之处在于防窥膜500与显示面板100的位置。例如,如图20所示,防窥膜500位于显示面板100与调光部200之间。
图17至图20示意性的示出调光部为图5所示调光部,但不限于此,调光部还可以为图14所示调光部。
本公开实施例示意性的示出显示面板为液晶显示面板,但不限于此,显示面板还可以为有机发光二极管显示面板,或者迷你发光二极管显示面板,该显示装置中不设置背光结构,且调光部位于显示面板的出光侧。
例如,本公开实施例提供的上述显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。该显示装置包括但不限于:射频单元、网络模块、音频输出&输入单元、传感器、用户输入单元、接口单元、存储器、处理器、以及电源等部件。另外,本领域技术人员可以理解的是,上述结构并不构成对本公开实施例提供的上述显示装置的限定,换言之,在本公开实施例提供的上述显示装置中可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (25)

  1. 一种显示装置,包括:
    显示面板;
    调光部,与所述显示面板层叠设置,所述调光部包括层叠设置的第一基板、折射率可变材料层、电极结构以及第二基板,所述折射率可变材料层以及所述电极结构均位于所述第一基板与所述第二基板之间,
    其中,所述调光部还包括多条信号线,所述电极结构和所述多条信号线均位于所述第一基板上;
    所述电极结构包括第一电极结构和第二电极结构,所述第一电极结构包括彼此绝缘的多个第一电极,所述第一基板包括多个区域,不同区域中的所述第一电极被配置为与不同信号线电连接以实现所述调光部的分区控制。
  2. 根据权利要求1所述的显示装置,其中,所述显示面板包括多个子像素,所述多个子像素与所述多个区域的数量之比为N,N不大于10。
  3. 根据权利要求2所述的显示装置,其中,所述调光部还包括位于所述第一基板上的多个开关结构,每个区域设置有至少一个开关结构,所述多条信号线包括沿第一方向排列的多条第一信号线,各开关结构的第一极与相应的所述第一信号线电连接,各开关结构的第二极与相应的第一电极电连接。
  4. 根据权利要求3所述的显示装置,其中,所述多条信号线还包括沿第二方向排列的多条第二信号线,所述开关结构包括开关晶体管,所述开关晶体管的栅极与相应的第二信号线电连接,所述第一方向与所述第二方向相交,所述多条第一信号线和所述多条第二信号线交叉设置以形成所述多个区域。
  5. 根据权利要求4所述的显示装置,其中,至少一条第二信号线包括弯折型信号线。
  6. 根据权利要求4-5任一项所述的显示装置,其中,至少一个第一电极包括电连接的多个子电极,至少一个子电极的延伸方向与至少一条第一信号线的延伸方向之间的夹角不大于15度,且所述多个子电极沿所述第一方向排列。
  7. 根据权利要求4-5任一项所述的显示装置,其中,所述第二电极结构包括交叉设置的连接电极以及与所述连接电极连接的多个第二电极,至少一个第二电极的延伸方向与至少一条第一信号线的延伸方向之间的夹角不大于10度,至少一个区域中,所述第一电极包括多个子电极,各子电极的延伸方向与各第 二电极延伸方向相同的,且所述多个子电极与所述多个第二电极沿所述第一方向交替设置。
  8. 根据权利要求7所述的显示装置,其中,所述连接电极包括沿所述多条第一信号线的延伸方向延伸的多个第一连接电极以及沿所述多条第二信号线的延伸方向延伸的多个第二连接电极,所述多个第一连接电极与所述多条第一信号线交替设置,且所述多个第二连接电极与所述多条第二信号线交替设置。
  9. 根据权利要求4-8任一项所述的显示装置,其中,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,所述数据线的延伸方向与所述第一信号线的至少部分位置处的延伸方向不同,所述栅线的延伸方向与所述第二信号线的至少部分位置处的延伸方向不同。
  10. 根据权利要求4-8任一项所述的显示装置,其中,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,至少一条数据线在所述第一基板上的正投影与所述第一信号线在所述第一基板上的正投影交叠。
  11. 根据权利要求6所述的显示装置,其中,所述显示面板包括沿所述第一方向排列的多条数据线以及沿所述第二方向排列的多条栅线,所述数据线的延伸方向与所述子电极的延伸方向相同。
  12. 根据权利要求4-11任一项所述的显示装置,其中,各子像素包括薄膜晶体管,所述薄膜晶体管的沟道宽长比不大于所述开关晶体管的沟道宽长比。
  13. 根据权利要求4-12任一项所述的显示装置,其中,所述调光部还包括黑矩阵,所述黑矩阵在所述第一基板上的正投影覆盖所述多条第一信号线和所述多条第二信号线在所述第一基板上的正投影的至少部分。
  14. 根据权利要求1-13任一项所述的显示装置,其中,所述第一电极结构与所述第二电极结构同层设置;或者,所述第一电极结构位于所述第二电极结构与所述第一基板之间。
  15. 根据权利要求1所述的显示装置,其中,所述多条信号线的部分与所述多个第一电极一一对应电连接。
  16. 根据权利要求15所述的显示装置,其中,所述第一电极结构与所述第二电极结构位于不同层,所述多条信号线的至少一条与所述第二电极结构电连接。
  17. 根据权利要求16所述的显示装置,其中,所述第一电极包括沿第一 方向排列的多个子电极,所述第二电极结构包括沿所述第一方向排列的多个第二电极,所述多个子电极与所述多个第二电极沿所述第一方向交替设置。
  18. 根据权利要求17所述的显示装置,其中,所述第一电极还包括与所述多个子电极电连接的第一子连接部,所述第二电极结构还包括与所述多个第二电极电连接的第二子连接部。
  19. 根据权利要求15-18任一项所述的显示装置,其中,至少一条信号线在垂直于所述第一基板的方向与所述第一电极交叠的部分位置处形状为直线型或者弯折型。
  20. 根据权利要求1-19任一项所述的显示装置,还包括:
    第一偏光结构,位于所述显示面板远离所述调光部的一侧;
    第二偏光结构,位于所述显示面板与所述调光部之间;以及
    第三偏光结构,位于所述调光部远离所述显示面板的一侧,
    其中,所述第一偏光结构的偏光方向与所述第二偏光结构的偏光方向相交,所述第三偏光结构的偏光方向与所述第二偏光结构的偏光方向相同。
  21. 根据权利要求1-19任一项所述的显示装置,还包括:
    防窥膜,位于所述调光部的入光侧。
  22. 根据权利要求1-21任一项所述的显示装置,还包括:
    背光结构,与所述调光部和所述显示面板层叠设置,
    其中,所述调光部位于所述背光结构与所述显示面板之间,或者,所述显示面板位于所述调光部与所述背光结构之间。
  23. 根据权利要求7或17所述的显示装置,其中,所述子电极的线宽为1~15微米,所述第二电极的线宽为1~15微米,且相邻设置的所述子电极与所述第二电极之间的距离为2~15微米。
  24. 根据权利要求1-23任一项所述的显示装置,其中,所述折射率可变材料层包括液晶层,所述液晶层的厚度为2~50微米。
  25. 根据权利要求1-24任一项所述的显示装置,其中,所述调光部的工作电压为3~25V。
PCT/CN2022/133683 2022-11-23 2022-11-23 显示装置 WO2024108415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133683 WO2024108415A1 (zh) 2022-11-23 2022-11-23 显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133683 WO2024108415A1 (zh) 2022-11-23 2022-11-23 显示装置

Publications (1)

Publication Number Publication Date
WO2024108415A1 true WO2024108415A1 (zh) 2024-05-30

Family

ID=91194927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133683 WO2024108415A1 (zh) 2022-11-23 2022-11-23 显示装置

Country Status (1)

Country Link
WO (1) WO2024108415A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057392A (ko) * 2006-12-20 2008-06-25 삼성전자주식회사 이동통신단말기
CN107065242A (zh) * 2017-04-19 2017-08-18 京东方科技集团股份有限公司 防窥结构、显示装置及其显示方法
CN213987120U (zh) * 2020-10-19 2021-08-17 京东方科技集团股份有限公司 显示模组及显示装置
US20210271132A1 (en) * 2020-03-02 2021-09-02 Au Optronics Corporation Display apparatus
CN113885244A (zh) * 2021-09-22 2022-01-04 北海惠科光电技术有限公司 显示组件和显示装置
CN215813616U (zh) * 2021-08-02 2022-02-11 昆山龙腾光电股份有限公司 视角可切换的显示装置
CN114384729A (zh) * 2020-10-19 2022-04-22 京东方科技集团股份有限公司 显示模组及其制备方法、显示装置
CN114660841A (zh) * 2022-03-02 2022-06-24 昆山龙腾光电股份有限公司 宽窄视角可切换的显示面板及驱动方法、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057392A (ko) * 2006-12-20 2008-06-25 삼성전자주식회사 이동통신단말기
CN107065242A (zh) * 2017-04-19 2017-08-18 京东方科技集团股份有限公司 防窥结构、显示装置及其显示方法
US20210271132A1 (en) * 2020-03-02 2021-09-02 Au Optronics Corporation Display apparatus
CN213987120U (zh) * 2020-10-19 2021-08-17 京东方科技集团股份有限公司 显示模组及显示装置
CN114384729A (zh) * 2020-10-19 2022-04-22 京东方科技集团股份有限公司 显示模组及其制备方法、显示装置
CN215813616U (zh) * 2021-08-02 2022-02-11 昆山龙腾光电股份有限公司 视角可切换的显示装置
CN113885244A (zh) * 2021-09-22 2022-01-04 北海惠科光电技术有限公司 显示组件和显示装置
CN114660841A (zh) * 2022-03-02 2022-06-24 昆山龙腾光电股份有限公司 宽窄视角可切换的显示面板及驱动方法、显示装置

Similar Documents

Publication Publication Date Title
US11126053B2 (en) Liquid crystal display device
US20220050339A1 (en) Liquid-crystal display device and electronic apparatus
EP1958019B1 (en) Liquid crystal display device
US7554632B2 (en) Liquid crystal device and electronic apparatus provided with the same
JP2002365657A (ja) 液晶装置、投射型表示装置および電子機器
JP2007183585A (ja) 液晶表示装置
JP2008203708A (ja) 液晶装置及び電子機器
WO2024108415A1 (zh) 显示装置
CN113917721A (zh) 宽窄视角可切换的显示面板及驱动方法和显示装置
KR101274027B1 (ko) 표시패널 및 이를 갖는 표시장치
CN114624906B (zh) 宽窄视角区域可调的液晶显示装置及驱动方法
WO2023184341A1 (zh) 显示装置
US8319919B2 (en) Transflective type liquid crystal display device
CN115561941A (zh) 显示面板
JP2012118297A (ja) 表示パネルおよびその製造方法、表示装置、ならびに電子機器
JP2010186037A (ja) 液晶装置及び電子機器