WO2024106996A1 - Rare cell isolation device using centrifugal force - Google Patents

Rare cell isolation device using centrifugal force Download PDF

Info

Publication number
WO2024106996A1
WO2024106996A1 PCT/KR2023/018531 KR2023018531W WO2024106996A1 WO 2024106996 A1 WO2024106996 A1 WO 2024106996A1 KR 2023018531 W KR2023018531 W KR 2023018531W WO 2024106996 A1 WO2024106996 A1 WO 2024106996A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
chamber
blood
centrifugal force
microbeads
Prior art date
Application number
PCT/KR2023/018531
Other languages
French (fr)
Korean (ko)
Inventor
이정민
김승훈
김종만
Original Assignee
주식회사 씨티셀즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨티셀즈 filed Critical 주식회사 씨티셀즈
Publication of WO2024106996A1 publication Critical patent/WO2024106996A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/10Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by centrifugation ; Cyclones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells

Definitions

  • the present invention relates to a device for separating rare cells using centrifugal force. More specifically, it can effectively improve the detection rate of rare cells by increasing the binding force between rare cells with nuclei in the blood and microbeads and the density difference caused by centrifugal force. This is about a rare cell separation device using centrifugal force.
  • Cancer is one of the leading causes of death worldwide, along with cardiovascular disease.
  • the death rate due to cancer has hardly decreased over the past 50 years, so the probability of cancer occurring if one survives to the average life expectancy is approximately 34%, or 1 in 3 people. Accordingly, various studies are being conducted to reduce the mortality rate from cancer by diagnosing cancer early and increasing the cancer treatment rate.
  • microbeads bind to cancer cells in the blood and use their high-density properties to separate cancer cells from the blood.
  • various studies have been continuously conducted in recent years to increase the cell detection rate. There is a trend.
  • the purpose of the present invention is to provide a rare cell separation device using centrifugal force that can improve the detection rate of rare cells by increasing the binding force between rare cells with nuclei in the blood and microbeads.
  • a rare cell separation device using centrifugal force according to the present invention to achieve the above object includes a rotating disc unit, provided on one side of the disc unit and rotated together with the disc unit, and contains whole blood, a lytic substance that dissolves red blood cells, and a substance in the whole blood.
  • a separation unit that separates only the rare cells bound to beads by passing a density gradient material through a density difference caused by centrifugal force, and the disk unit is provided adjacent to the separation unit and connected to the rare cells that have passed through the density gradient material. It includes a collection unit that collects.
  • the rare cells may include nucleated red blood cells or cancer cells.
  • the disk portion includes a disk-shaped disk body and rotates about a rotation center, and the injection portion, separation portion, and collection portion are arranged to be sequentially adjacent to each other in a circular arc in the radial direction from the rotation center of the disk body. You can.
  • the injection unit may include a blood chamber into which the whole blood, dissolved material, and microbeads are injected, adjacent to the rotation center of the disc unit.
  • the injection unit may include a blood chamber into which the whole blood and the lysate are injected to lyse the red blood cells from the whole blood, a collection chamber for collecting the residue dissolved by the lysate from the blood chamber, and Once the residue is collected, it may include a bead chamber for injecting the microbeads into the blood chamber.
  • a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixed liquid.
  • the separation unit includes a separation chamber provided adjacent to the injection unit to allow the mixed liquid to flow in between the injection unit and the valve, and the separation chamber is located further than the injection unit in a radial direction from the rotation center of the disk unit. It can be arranged in a remote location.
  • the lysate contains RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells
  • RBC lysis buffer Red Blood cell Lysis buffer
  • the microbeads may have a density higher than that of the whole blood and lower than that of the nucleated red blood cells.
  • microbeads may have a density of 1.13 to 1.17 g/mL.
  • the collection unit includes a collection chamber provided adjacent to the separation chamber at a position radially away from the rotation center of the disk unit so as to be connected to the separation chamber and a separation passage therebetween, and the rotation center of the disk unit.
  • the density gradient material may be filled in the collection chamber connected to the separation passage from the rear end of the separation chamber in the radial direction.
  • a rare cell separation device using centrifugal force is provided with a rotating disc unit, the disc unit adjacent to the rotation center of the disc unit, and rotated together with the disc unit, and dissolves whole blood and red blood cells.
  • a separation unit that separates only the rare cells bound to the microbeads from the whole blood, lysate, and microbeads provided from the unit by density difference by centrifugal force, and a separation unit located at a position radially away from the rotation center of the disc unit. It is provided in the disk unit to be connected adjacently, and is provided in the disk unit to be adjacent to and connected to the separation unit, and includes a collection unit that collects the rare cells separated from the separation unit.
  • the rare cells may include nucleated red blood cells or cancer cells.
  • the disk unit includes a disc-shaped disk body and rotates around a rotation center, and can reciprocate within a predetermined rotation angle range.
  • the injection unit may include a blood chamber into which the whole blood, dissolved material, and microbeads are injected.
  • the injection unit may include a blood chamber into which the whole blood and the lysate are injected to lyse the red blood cells from the whole blood, a collection chamber for collecting the residue dissolved by the lysate from the blood chamber, and Once the residue is collected, it may include a bead chamber for injecting the microbeads into the blood chamber.
  • a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixture of whole blood, dissolved material, and microbeads.
  • the separation unit may include a separation chamber provided adjacent to the injection unit to allow the mixture of whole blood, dissolved material, and microbeads to flow in between the injection unit and the valve.
  • the lysate contains RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells
  • RBC lysis buffer Red Blood cell Lysis buffer
  • the microbeads may have a density higher than that of the whole blood and lower than that of the nucleated red blood cells.
  • microbeads may have a density of 1.13 to 1.17 g/mL.
  • the collection unit includes a collection chamber connected to the separation chamber and the separation passage, and is connected to the collection chamber connected to the separation passage from the rear end of the separation chamber in the radial direction from the rotation center of the disk unit.
  • the density gradient material may be filled.
  • nucleated red blood cells which are rare cells to be detected
  • the binding force between nucleated red blood cells and microbeads can be increased.
  • the nucleated red blood cells can be separated and detected by density difference after dissolving red blood cells with similar density components to nucleated red blood cells in whole blood with a lytic substance, thereby improving the detection rate of high-purity rare cells.
  • nucleated red blood cells and microbeads can be separated from blood by passing through a density gradient material due to the density difference in a combined state, thereby improving the separation and detection rate of rare cells.
  • the detection rate of rare cells such as nucleated red blood cells and cancer cells in the blood can be increased, thereby improving medical technology and improving public health.
  • Figure 1 is a diagram schematically showing a rare cell separation device using centrifugal force in a preferred embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II shown in FIG. 1.
  • FIG. 3 is a schematic configuration diagram to explain the separation operation of the rare cell separation device using centrifugal force according to an embodiment shown in FIG. 1.
  • Figure 4 is a diagram schematically showing a rare cell separation device using centrifugal force in another preferred embodiment of the present invention.
  • Figure 5 is a schematic configuration diagram to explain the separation operation of a rare cell separation device using centrifugal force according to another embodiment shown in Figure 4.
  • a rare cell separation device (1) using centrifugal force includes a disk unit (10), an injection unit (20), a separation unit (30), and a collection unit ( 40).
  • the rare cell separation device 1 using centrifugal force described in the present invention is for separating and detecting rare cells in the blood
  • the rare cells described in this embodiment are fetal cells that entered the mother's blood.
  • the fetal cells contained in the mother's blood are red blood cells with a nucleus and are referred to as nucleated red blood cells (NRBC) (N).
  • NRBC nucleated red blood cells
  • the rare cells described in the present invention are described as nucleated red blood cells (N) in the blood, but are not limited to this and various embodiments such as cancer cells in the blood are possible.
  • the disk unit 10 includes a rotating disk-shaped disk body 11. This disk unit 10 is provided with a rotation drive means (not shown) for rotating the disk body 11, and the disk body 11 is connected to the rotation center 12 by connection with the rotation drive means (not shown). It rotates around .
  • the disk unit 10 can be rotated 360 degrees around the rotation center 12, or can be rotated back and forth within a predetermined rotation angle.
  • the disc body 11 of the disc unit 10 is provided with first and second passages 13 and 14 to provide a movement path for fluid, including blood, and these first and second passages 13 )
  • the configuration of 14 will be described in more detail later along with the configuration of the injection unit 20, separation unit 30, and collection unit 40.
  • the injection unit 20 is provided on one side of the disc unit 10 and rotates together with the disc unit 10, and whole blood, dissolved substances (L), and microbeads (M) are injected.
  • whole blood (B), dissolved material (L), and microbeads (M) injected into the injection unit 20 may be injected in a mixed state or may be injected individually.
  • the whole blood (B) is the mother's blood, and the lytic substance (L) dissolves unnecessary cells, including red blood cells, contained in the whole blood (B).
  • the microbeads (M) are combined with nucleated red blood cells (N) in whole blood (B) that have not been dissolved by the lysing agent (L).
  • the lysate (L) uses RBC lysis buffer (Red Blood cell Lysis buffer), which lyses red blood cells by osmotic pressure.
  • RBC lysis buffer does not dissolve nucleated red blood cells (N), which are red blood cells with nuclei, the nucleated red blood cells (N), which are rare cells contained in whole blood (B), do not dissolve but bind to the microbeads (M). do.
  • Microbeads are a type of antibody that binds to nucleated red blood cells (N), which are antigens, through an antigen-antibody reaction. Additionally, in this example, the microbeads (M) are illustrated to include CD71 microbeads (M), but this is not a limitation. These microbeads (M) are high-density materials, and their density increases by combining with nucleated red blood cells (N), which have the highest density in whole blood (B).
  • the injection unit 20 may include a blood chamber 21 provided relatively adjacent to the rotation center 12 of the disc body 11.
  • Whole blood (B), dissolved material (L), and microbeads (M) are injected into the blood chamber 21 and mixed.
  • the blood chamber 21 is provided with a first flow path 13 in the disc body 11 for injection of whole blood (B), dissolved material (L), and microbeads (M).
  • the separation unit 30 is provided to be connected to the disk unit 10 adjacent to the injection unit 20, and the whole blood (B), dissolved material (L), and microbeads (M) provided from the injection unit 20 are mixed. Only nucleated red blood cells (N), which are rare cells combined with microbeads (M), are separated from the mixed solution by density difference using centrifugal force.
  • the separation part 30 is provided adjacent to the injection part 20, and with respect to the rotation center 12 of the disk body 11, the injection part 20 moves in a radial arc from the rotation center 12. ) and a separation chamber 31 located further away from the blood chamber 11.
  • the separation chamber 31 may be connected to the blood chamber 21 of the injection unit 20 with a blood flow path 22 therebetween.
  • a valve 23 that can be opened and closed may be provided in the blood flow path 22, and the mixed whole blood (B) is dissolved in the blood chamber 21 of the injection unit 20 by opening or closing the valve 23.
  • a fluid containing the substance (L) and the microbeads (M) may flow into the separation chamber 31.
  • a density gradient material (DGM) is provided at the rear end of the separation chamber 31 based on a direction gradually moving away from the rotation center 12 of the disk body 11 in the radial direction.
  • the density gradient material (D) may be a material having a density of approximately 1.13 to 1.17 g/mL, which is higher than the density of water, in order to separate only the nucleated red blood cells (N) bound to the microbeads (M) from blood. More preferably, the density gradient material (D) is made of a material having a density range that is higher than that of whole blood (B) and lower than the density of nucleated red blood cells (N) bound to microbeads (M), but is prepared as a fluid. good night.
  • nucleated red blood cells (N) As the nucleated red blood cells (N) combined with the microbeads (M) moving in the radial direction due to the centrifugal force of the disc body 11 pass through this density gradient material (D), the nucleated red blood cells (N) are separated from the blood. .
  • the collection unit 40 is connected to the disc unit 10 adjacent to the separation unit 30 and collects nucleated red blood cells (N), which are rare cells that have passed through the density gradient material (D).
  • the collection unit 40 is provided adjacent to the separation unit 30 in the radial direction from the rotation center 12 of the disk body 11, and is connected to the separation chamber 31 and the separation passage 32 of the separation unit 30. It includes a collection chamber 41 connected to it. This collection chamber 41 is provided adjacent to the arc of the disc body 11, so that it is spaced farther away from the rotation center 12 of the disc body 11 than the blood chamber 21 and the separation chamber 31 described above. It is provided in location.
  • the density gradient material D provided at the rear end of the separation chamber 31 is in the collection chamber 41. It is filled to the inside. That is, the density gradient material D filled from the collection chamber 41 to the rear end of the separation chamber 31 is in a fluid state due to centrifugal force caused by the rotation of the disk body 11.
  • a jaw 42 may be provided in the separation passage 32 provided between the separation chamber 31 and the collection chamber 41.
  • the chin 42 is provided in the shape of a kind of triangular protrusion, so that blood in the separation chamber 31 can be blocked from flowing into the collection chamber 41.
  • the blood chamber 21, the separation chamber 31, and the collection chamber 41 are sequentially arranged to be adjacent to each other in a radial arc from the rotation center 12 of the disc body 11.
  • Each of these blood chambers 21, separation chambers 31 and collection chambers 41 all have an internal cross-sectional shape that narrows obliquely in a direction radially away from the center of rotation 12. Therefore, the inclined shape of the blood chamber 21, separation chamber 31, and collection chamber 41 guides the components in the blood so that they can be easily separated by the density difference caused by the centrifugal force caused by the rotation of the disc body 11. can do.
  • the blood chamber 21 of the injection unit 20, the separation chamber 31 of the separation unit 30, and the collection unit are provided adjacent to each other. More preferably, as shown in FIG. 3, the disc body 11 can be rotated back and forth within a predetermined angle range while standing vertically, and the blood chamber 21 and the separation chamber are formed based on the rotation center 12. (31) and the collection chamber (41) are arranged to be gradually spaced apart in the radial direction.
  • whole blood (B), lysate (L), and microbeads (M) flow into the blood chamber 21, whole blood (B), lysate (L), and microbeads ( M) are mutually mixed.
  • the lytic substance (L) dissolves cells other than the nucleated red blood cells (N) in the whole blood (B), so that the nucleated red blood cells (N) and the microbeads (M) are easily combined with each other.
  • the lysate (L) dissolves red blood cells with a density similar to that of the nucleated red blood cells (N), thereby separating the red blood cells from the whole blood (B) together with the nucleated red blood cells (N) by the density difference in the separation chamber 31. to block collection into the collection chamber 41.
  • the mixed whole blood (B), lysate (L), and microbeads (M) flow into the separation chamber (31) connected to the blood flow path (22) by opening the valve (23), and within the separation chamber (31) Nucleated red blood cells (N) combined with relatively high-density microbeads (M) are moved to the rear end of the separation chamber 31 by centrifugal force. At this time, a density gradient material (D) is provided at the rear end of the separation chamber 31, so that the nucleated red blood cells (N) combined with the high-density microbeads (M) pass through the density gradient material (D) and enter the adjacent collection chamber. It is gathered as (41).
  • a jaw 42 is provided in the separation passage 32 between the separation chamber 31 and the collection chamber 41, so that blood in the separation chamber 31 does not flow into the collection chamber 41. Additionally, blood in the separation chamber 31 that is not collected in the collection chamber 41 may be discharged through the second flow path 14.
  • the user collects the nucleated red blood cells (N) that pass through the density gradient material (D) and are collected in the collection chamber 41 by the density difference caused by centrifugal force, thereby allowing the user to separate and test the nucleated red blood cells (N) in the blood. You can do it.
  • a rare cell separation device 100 using centrifugal force according to another preferred embodiment of the present invention is schematically shown.
  • the rare cell separation device 100 using centrifugal force includes a disk unit 110, an injection unit 120, a separation unit 130, and a collection unit 140. Includes.
  • the disk unit 110 includes a disk body 111 that is provided in a disk shape and rotates about the rotation center 112. Since this disk unit 110 is similar to the above-described embodiment, detailed description will be omitted.
  • the injection unit 120 is provided on one side of the disc unit 110 and rotates with the disc unit 110, and whole blood (B), dissolved material (L), and microbeads (M) are injected.
  • This injection unit 120 includes a blood chamber 121, a collection chamber 122, and a bead chamber 123.
  • Whole blood (B) and dissolved material (L) are injected into the blood chamber 121.
  • Such whole blood (B) and dissolved material (L) may be injected into the blood chamber 121 through the blood supply passage 113 provided in the disc body 111.
  • the whole blood (B) and the lysed material (L) injected into the blood chamber 121 are mixed with each other by the reciprocating rotation movement of the disc body 111, so that unnecessary cells such as red blood cells in the whole blood (B) are mixed with the lysed material (L). dissolved by
  • the collection chamber 122 collects the remainder of the whole blood (B) dissolved by the dissolved substance (L) from the blood chamber (121). That is, the collection chamber 122 collects residues including red blood cells, which are unnecessary cells dissolved by the dissolved substance (L) in the whole blood (B), and is connected to the blood chamber 121 through the collection passage 124. . The residue collected in the collection chamber 122 may be discharged through the residue discharge passage 115.
  • the bead chamber 123 injects high-density microbeads (M) into the blood chamber 121 after the residue is collected from the blood chamber 121 into the collection chamber 122.
  • This bead chamber 123 can receive microbeads (M) injected through the bead supply passage 116 provided in the disk body 111.
  • M microbeads
  • Micro beads (M) are supplied. As a result, the nucleated red blood cells (N) have better binding force with the microbeads (M) inside the blood chamber 121.
  • the bead chamber 123 is provided closest to the rotation center 112 of the disc body 111, and the bead chamber 123 A blood chamber 121 is provided adjacent to the radial direction away from the rotation center 112. Additionally, the collection chamber 122 may be provided to adjoin the blood chamber 121 in the circumferential direction.
  • the blood chamber 121, the collection chamber 122, and the bead chamber 123 may all have a cross-sectional shape in which the internal space becomes narrower as the radial distance from the rotation center 112 of the disc body 111 increases. there is. Therefore, the inclined shapes of the blood chamber 121, the collection chamber 122, and the bead chamber 123 are guided so that the blood components can be easily separated by the density difference due to the centrifugal force caused by the rotation of the disc body 111. can do.
  • the separation unit 130 is provided adjacent to the injection unit 120 on the disc unit 110, and is provided to collect nucleated red blood cells, which are rare cells combined with microbeads (M), from the blood provided from the blood chamber 121 of the injection unit 120. Only (N) is separated by density difference due to centrifugal force.
  • the separation unit 130 includes a separation chamber 131 and a density gradient material D (see FIG. 5) provided at the rear end of the separation chamber 131, as in one embodiment.
  • This density gradient material (D) has a density range that is higher in density than whole blood (B) and lower in density than nucleated red blood cells (N), thereby providing a density boundary between whole blood (B) and nucleated red blood cells (N).
  • the nucleated red blood cells (N) combined with the microbeads (M) move away in the radial direction of the disk body 111 by centrifugal force and pass through the density gradient material (D). Blood other than the nucleated red blood cells (N) bound to the microbeads (M) in the whole blood (B) can be discharged through the discharge passage 114 provided in the disc body 111.
  • the collection unit 140 is provided adjacent to the separation unit 130 on the disk unit 110 and collects nucleated red blood cells (N), which are rare cells that have passed through the density gradient material (D).
  • This collection unit 140 includes a separation chamber 131 provided in the disk body 111 and a collection chamber 141 provided adjacent to the separation passage 132 with the separation channel 132 in between.
  • the separation passage 132 is provided with a jaw 42 (see FIG. 2), so that blood, excluding the nucleated red blood cells (N) bound to the microbeads (M), is collected into the collection chamber ( 141), the inflow can be blocked.
  • separation chambers 131 and collection chambers 141 are provided adjacent to each other in a direction radially away from the rotation center 112 with respect to the disk body 111, and have an inclined shape so that the internal space in the radial direction is gradually narrowed. By having , it is possible to guide the collection of density differences in blood by centrifugal force. Additionally, the collection chamber 141 is located above the separation chamber 131 with respect to the disk body 111, and the separation passage 132 between the collection chamber 141 and the separation chamber 131 is open. Therefore, the density gradient material D, which is a fluid, may be filled from the collection chamber 141 to the rear end of the separation chamber 131.
  • whole blood (B) and lysate (L) are first injected into the blood chamber 121, and unnecessary cells such as red blood cells in the whole blood (B) are dissolved by the lysate (L). At this time, whole blood (B) and dissolved material (L) may be supplied through the blood supply channel 113.
  • the residue in the dissolved whole blood (B) is collected into the collection chamber 122 through the collection passage 124, and the residue collected in the collection chamber 122 can be discharged through the residue discharge passage 115. there is.
  • microbeads (M) are introduced into the blood chamber 121 from the bead chamber 123 through the bead passage 125.
  • the bead chamber 123 can receive microbeads (M) through the bead supply passage 116 and provide them to the blood chamber 121.
  • microbeads (M) are supplied into the blood chamber 121, nucleated red blood cells (N) that are not dissolved in whole blood (B) are combined with the microbeads (M).
  • N nucleated red blood cells
  • B microbeads
  • the separation chamber 131 separates the nucleated red blood cells (N) bound to the relatively high-density microbeads (M) by centrifugal force caused by the rotation of the disk body 111.
  • the nucleated red blood cells (N) combined with the microbeads (M) are moved in the radial direction away from the rotation center 112 of the disc body 111 by centrifugal force, thereby passing through the density gradient material (D) and producing whole blood (B). ) can be separated from.
  • the nucleated red blood cells (N) combined with the separated microbeads (M) flow into the collection chamber 141 through the separation passage 132 and are finally collected.
  • the separation passage 132 is provided with a jaw 142 to prevent whole blood B from flowing into the separation passage 132.
  • valves 124a, 125a, and 126a are provided in the collection flow path 124, the bead flow path 125, and the blood flow path 126, respectively, so that the collection flow path 124 and the beads
  • the flow path 125 and the blood flow path 126 can be selectively opened and closed, but this is not a limitation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Centrifugal Separators (AREA)

Abstract

A rare cell isolation device using centrifugal force according to the present invention comprises: a rotating disc part; an inlet part which is arranged on one side of the disc part and rotates together therewith, and in which whole blood, a lytic material that lyses red blood cells, and microbeads that are combined with rare cells having nuclei in the whole blood are injected and mixed; an isolation part which is arranged in the disc part to be connected adjacent to the inlet part and isolates, by density difference using centrifugal force, only the rare cells combined with the microbeads from the mixed solution of the whole blood, the lytic material, and the microbeads, by passing the rare cells through a density gradient material, the mixed solution being provided from the inlet part; and a collection part which is arranged in the disc part to be connected adjacent to the isolation part and collects the rare cells having passed through the density gradient material. By this configuration, only nucleated red blood cells can be isolated by density difference using centrifugal force after red blood cells in blood are lysed, thus enabling high-purity isolation of rare cells.

Description

원심력을 이용한 희소세포 분리장치Rare cell separation device using centrifugal force
본 발명은 원심력을 이용한 희소세포 분리장치에 관한 것으로서, 보다 구체적으로는 혈액내 핵을 가지는 희소세포와 마이크로 비드 사이의 결합력을 증대시켜 원심력에 의한 밀도차이로 희소세포의 검출율을 효과적으로 향상시킬 수 있는 원심력을 이용한 희소세포 분리장치에 관한 것이다.The present invention relates to a device for separating rare cells using centrifugal force. More specifically, it can effectively improve the detection rate of rare cells by increasing the binding force between rare cells with nuclei in the blood and microbeads and the density difference caused by centrifugal force. This is about a rare cell separation device using centrifugal force.
암은 심혈관 질환과 더불어 전 세계적으로 가장 높은 사망원인 중의 하나이다. 특히, 암은 지난 50여년간 암에 의한 사망률이 거의 감소하지 않고 있음으로써, 평균수명까지 생존할 경우의 암 발생 확률은 대략 34%로 3명 중 1명의 암 발생율을 가진다. 이에 따라, 암을 조기 진단하여 암 치료율을 높임으로써, 암에 의한 사망률을 줄이기 위한 다양한 연구가 이루어지고 있다. Cancer is one of the leading causes of death worldwide, along with cardiovascular disease. In particular, the death rate due to cancer has hardly decreased over the past 50 years, so the probability of cancer occurring if one survives to the average life expectancy is approximately 34%, or 1 in 3 people. Accordingly, various studies are being conducted to reduce the mortality rate from cancer by diagnosing cancer early and increasing the cancer treatment rate.
이러한 암 조기 진단의 방법 중 하나로, 근래에는 혈액 내에 존재하는 혈중 암세포를 마이크로 비드를 이용해 선별적으로 인지하는 방식이 적용되고 있다. 마이크로 비드는 혈중 암세포와 결합시켜 고밀도 특성을 이용해 혈액으로부터 암세포를 분리시킨다. 한편, 이러한 혈중 암세포와 같은 희소 세포를 검출을 위해 분리하기 위한 방법 중 가장 중요한 단계가 마이크로 비드를 혈중 암세포에 결합시키는 단계임에 따라, 근래에는 세포 검출율을 높이기 위한 다양한 연구가 지속적으로 이루어지고 있는 추세이다.As one of these early cancer diagnosis methods, a method of selectively recognizing circulating cancer cells existing in the blood using microbeads has been recently applied. Microbeads bind to cancer cells in the blood and use their high-density properties to separate cancer cells from the blood. Meanwhile, as the most important step in the method of isolating rare cells such as cancer cells in the blood for detection is the step of binding microbeads to cancer cells in the blood, various studies have been continuously conducted in recent years to increase the cell detection rate. There is a trend.
본 발명의 목적은 혈액내의 핵을 가지는 희소세포와 마이크로 비드 사이의 결합력을 증대시켜 희소세포의 검출율을 향상시킬 수 있는 원심력을 이용한 희소세포 분리장치를 제공하기 위한 것이다.The purpose of the present invention is to provide a rare cell separation device using centrifugal force that can improve the detection rate of rare cells by increasing the binding force between rare cells with nuclei in the blood and microbeads.
상기 목적을 달성하기 위한 본 발명에 의한 원심력을 이용한 희소세포 분리장치는, 회전되는 디스크부, 상기 디스크부의 일측에 마련되어 상기 디스크부와 함께 회전되며, 전혈, 적혈구를 용해하는 용해물질 및 상기 전혈내의 핵을 가지는 희소세포와 결합되는 마이크로 비드가 주입되어 혼합되는 주입부, 상기 디스크부에 상기 주입부와 이웃하여 연결되도록 마련되어, 상기 주입부로부터 제공된 상기 전혈, 용해물질 및 마이크로 비드의 혼합액으로부터 상기 마이크로 비드와 결합된 상기 희소세포만을 원심력에 의한 밀도차이로 밀도구배물질을 통과시켜 분리하는 분리부 및, 상기 디스크부에 상기 분리부와 이웃하여 연결되도록 마련되어, 상기 밀도구배물질을 통과한 상기 희소세포를 수집하는 수집부를 포함한다. A rare cell separation device using centrifugal force according to the present invention to achieve the above object includes a rotating disc unit, provided on one side of the disc unit and rotated together with the disc unit, and contains whole blood, a lytic substance that dissolves red blood cells, and a substance in the whole blood. An injection unit where microbeads bound to rare cells with nuclei are injected and mixed, the disk unit is adjacent to and connected to the injection unit, and the microbeads are supplied from the mixture of whole blood, lysate, and microbeads provided from the injection unit. A separation unit that separates only the rare cells bound to beads by passing a density gradient material through a density difference caused by centrifugal force, and the disk unit is provided adjacent to the separation unit and connected to the rare cells that have passed through the density gradient material. It includes a collection unit that collects.
또한, 상기 희소세포는 유핵적혈구 또는 암세포를 포함할 수 있다. Additionally, the rare cells may include nucleated red blood cells or cancer cells.
또한, 상기 디스크부는 원반 형상의 디스크 몸체를 포함하여 회전중심을 중심으로 회전되며, 상기 주입부, 분리부 및 수집부는 상기 디스크 몸체의 상기 회전중심으로부터 반경방향으로 원호를 향해 순차적으로 이웃하도록 마련될 수 있다. In addition, the disk portion includes a disk-shaped disk body and rotates about a rotation center, and the injection portion, separation portion, and collection portion are arranged to be sequentially adjacent to each other in a circular arc in the radial direction from the rotation center of the disk body. You can.
또한, 상기 주입부는, 상기 전혈, 용해물질 및 마이크로 비드가 주입되는 혈액 챔버가 상기 디스크부의 회전 중심에 이웃하게 마련될 수 있다. Additionally, the injection unit may include a blood chamber into which the whole blood, dissolved material, and microbeads are injected, adjacent to the rotation center of the disc unit.
또한, 상기 주입부는, 상기 전혈과 용해물질이 주입되어 상기 전혈로부터 상기 적혈구를 용해시키는 혈액 챔버, 상기 혈액 챔버로부터 상기 용해물질에 의해 용해된 잔여물을 수거하는 수거 챔버 및, 상기 혈액 챔버로부터 상기 잔여물이 수거되면, 상기 혈액 챔버로 상기 마이크로 비드를 주입하는 비드 챔버를 포함할 수 있다. In addition, the injection unit may include a blood chamber into which the whole blood and the lysate are injected to lyse the red blood cells from the whole blood, a collection chamber for collecting the residue dissolved by the lysate from the blood chamber, and Once the residue is collected, it may include a bead chamber for injecting the microbeads into the blood chamber.
또한, 상기 주입부와 상기 분리부 사이에는 밸브가 마련되어 상기 혼합액의 이동을 선택적으로 개방 또는 폐쇄시킬 수 있다. Additionally, a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixed liquid.
또한, 상기 분리부는 상기 주입부와 밸브를 사이에 두고 상기 혼합액이 유입되도록, 상기 주입부와 이웃하게 마련된 분리 챔버를 포함하며, 상기 분리 챔버는 상기 디스크부의 회전중심으로부터 반경방향으로 상기 주입부보다 멀어지는 위치에 마련될 수 있다. In addition, the separation unit includes a separation chamber provided adjacent to the injection unit to allow the mixed liquid to flow in between the injection unit and the valve, and the separation chamber is located further than the injection unit in a radial direction from the rotation center of the disk unit. It can be arranged in a remote location.
또한, 상기 용해물질은 적혈구를 용해시키는 RBC 라이시스 버퍼(Red Blood cell Lysis buffer)를 포함하고, 상기 마이크로 비드는 상기 전혈의 밀도보다 높으며, 상기 유핵적혈구의 밀도보다 낮은 밀도를 가질 수 있다. In addition, the lysate contains RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells, and the microbeads may have a density higher than that of the whole blood and lower than that of the nucleated red blood cells.
또한, 상기 마이크로 비드는 1.13 내지 1.17g/mL의 밀도를 가질 수 있다. Additionally, the microbeads may have a density of 1.13 to 1.17 g/mL.
또한, 상기 수집부는, 상기 분리 챔버와 분리 유로를 사이에 두고 연결되도록, 상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 분리 챔버와 이웃하게 마련되는 수집 챔버를 포함하며, 상기 디스크부의 회전중심으로부터 반경방향을 기준으로 상기 분리 챔버의 후단으로부터 상기분리 유로로 연결된 상기 수집 챔버에 상기 밀도구배물질이 채워질 수 있다. In addition, the collection unit includes a collection chamber provided adjacent to the separation chamber at a position radially away from the rotation center of the disk unit so as to be connected to the separation chamber and a separation passage therebetween, and the rotation center of the disk unit. The density gradient material may be filled in the collection chamber connected to the separation passage from the rear end of the separation chamber in the radial direction.
본 발명의 바람직한 다른 측면에 의한 원심력을 이용한 희소세포 분리장치는, 회전되는 디스크부, 상기 디스크부의 회전중심과 이웃하도록 상기 디스크부에 마련되어 상기 디스크부와 함께 회전되며, 전혈, 적혈구를 용해하는 용해물질 및 상기 전혈내의 핵을 가지는 희소세포와 결합되는 마이크로 비드가 주입되는 주입부, 상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 주입부와 이웃하여 연결되도록 상기 디스크부에 마련되며, 상기 주입부로부터 제공된 상기 전혈, 용해물질 및 마이크로 비드로부터 상기 마이크로 비드와 결합된 상기 희소세포만을 원심력에 의한 밀도차이로 분리시키는 분리부 및, 상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 분리부와 이웃하여 연결되도록 상기 디스크부에 마련되며, 상기 디스크부에 상기 분리부와 이웃하여 연결되도록 마련되어, 상기 분리부로부터 분리된 상기 희소세포를 수집하는 수집부를 포함한다. A rare cell separation device using centrifugal force according to another preferred aspect of the present invention is provided with a rotating disc unit, the disc unit adjacent to the rotation center of the disc unit, and rotated together with the disc unit, and dissolves whole blood and red blood cells. An injection unit through which the material and microbeads bound to rare cells with nuclei in the whole blood are injected, and an injection unit provided in the disc unit so as to be adjacent to and connected to the injection unit at a position radially away from the rotation center of the disc unit, wherein the injection unit is provided. A separation unit that separates only the rare cells bound to the microbeads from the whole blood, lysate, and microbeads provided from the unit by density difference by centrifugal force, and a separation unit located at a position radially away from the rotation center of the disc unit. It is provided in the disk unit to be connected adjacently, and is provided in the disk unit to be adjacent to and connected to the separation unit, and includes a collection unit that collects the rare cells separated from the separation unit.
상기 희소세포는 유핵적혈구 또는 암세포를 포함할 수 있다. The rare cells may include nucleated red blood cells or cancer cells.
또한, 상기 디스크부는 원반 형상의 디스크 몸체를 포함하여 회전중심을 중심으로 회전되되, 소정 회전각도 범위내에서 왕복 회전될 수 있다. In addition, the disk unit includes a disc-shaped disk body and rotates around a rotation center, and can reciprocate within a predetermined rotation angle range.
또한, 상기 주입부는, 상기 전혈, 용해물질 및 마이크로 비드가 주입되는 혈액 챔버를 포함할 수 있다. Additionally, the injection unit may include a blood chamber into which the whole blood, dissolved material, and microbeads are injected.
또한, 상기 주입부는, 상기 전혈과 용해물질이 주입되어 상기 전혈로부터 상기 적혈구를 용해시키는 혈액 챔버, 상기 혈액 챔버로부터 상기 용해물질에 의해 용해된 잔여물을 수거하는 수거 챔버 및, 상기 혈액 챔버로부터 상기 잔여물이 수거되면, 상기 혈액 챔버로 상기 마이크로 비드를 주입하는 비드 챔버를 포함할 수 있다. In addition, the injection unit may include a blood chamber into which the whole blood and the lysate are injected to lyse the red blood cells from the whole blood, a collection chamber for collecting the residue dissolved by the lysate from the blood chamber, and Once the residue is collected, it may include a bead chamber for injecting the microbeads into the blood chamber.
또한, 상기 주입부와 상기 분리부 사이에는 밸브가 마련되어 상기 전혈, 용해물질 및 마이크로 비드의 혼합액의 이동을 선택적으로 개방 또는 폐쇄시킬 수 있다. Additionally, a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixture of whole blood, dissolved material, and microbeads.
또한, 상기 분리부는 상기 주입부와 밸브를 사이에 두고 상기 전혈, 용해물질 및 마이크로 비드의 혼합액이 유입되도록, 상기 주입부와 이웃하게 마련된 분리 챔버를 포함할 수 있다. Additionally, the separation unit may include a separation chamber provided adjacent to the injection unit to allow the mixture of whole blood, dissolved material, and microbeads to flow in between the injection unit and the valve.
또한, 상기 용해물질은 적혈구를 용해시키는 RBC 라이시스 버퍼(Red Blood cell Lysis buffer)를 포함하고, 상기 마이크로 비드는 상기 전혈의 밀도보다 높으며, 상기 유핵적혈구의 밀도보다 낮은 밀도를 가질 수 있다. In addition, the lysate contains RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells, and the microbeads may have a density higher than that of the whole blood and lower than that of the nucleated red blood cells.
또한, 상기 마이크로 비드는 1.13 내지 1.17g/mL의 밀도를 가질 수 있다. Additionally, the microbeads may have a density of 1.13 to 1.17 g/mL.
또한, 상기 수집부는, 상기 분리 챔버와 분리 유로를 사이에 두고 연결되는 수집 챔버를 포함하며, 상기 디스크부의 회전중심으로부터 반경방향을 기준으로 상기 분리 챔버의 후단으로부터 상기분리 유로로 연결된 상기 수집 챔버에 상기 밀도구배물질이 채워질 수 있다.In addition, the collection unit includes a collection chamber connected to the separation chamber and the separation passage, and is connected to the collection chamber connected to the separation passage from the rear end of the separation chamber in the radial direction from the rotation center of the disk unit. The density gradient material may be filled.
상기와 같은 구성을 가지는 본 발명에 의하면, 첫째, 검출하고자 하는 희소세포인 유핵적혈구를 제외한 전혈내의 세포들을 용해시킴에 따라, 유핵적혈구와 마이크로 비드 사이의 결합력을 증대시킬 수 있다. According to the present invention having the above configuration, first, by lysing cells in whole blood except nucleated red blood cells, which are rare cells to be detected, the binding force between nucleated red blood cells and microbeads can be increased.
둘째, 전혈내에 유핵적혈구와 밀도 성분이 유사한 적혈구를 용해물질로 용해시킨 후에 밀도차에 의해 유핵적혈구를 분리 검출할 수 있어, 고순도의 희소세포 검출율을 향상시킬 수 있다.Second, the nucleated red blood cells can be separated and detected by density difference after dissolving red blood cells with similar density components to nucleated red blood cells in whole blood with a lytic substance, thereby improving the detection rate of high-purity rare cells.
셋째, 유핵적혈구와 마이크로 비드가 상호 결합된 상태로 밀도 차이에 의해 밀도구배물질을 통과하여 혈액으로부터 분리될 수 있어, 희소세포의 분리 검출율을 향상시킬 수 있다. Third, nucleated red blood cells and microbeads can be separated from blood by passing through a density gradient material due to the density difference in a combined state, thereby improving the separation and detection rate of rare cells.
넷째, 기존의 희소세포와 마이크로 비드 결합을 위한 밸브 개폐시의 디스크부의 회전 정지가 불필요해짐에 따라, 기존의 혈액 챔버내의 혈액 역류 방지를 위한 구성이 불필요해진다. 그로 인해, 혈액 챔버내에서의 희소세포와 마이크로 비드 사이의 혼합력을 향상시킬 수 있어, 회전되는 디스크부의 원심력에 의해 혈액 챔버내에서 희소세포와 마이크로 비드 사이의 결합에 따른 세포층 분리가 보다 정확해진다. Fourth, as it becomes unnecessary to stop the rotation of the disc portion when opening and closing the valve for combining existing rare cells and microbeads, a configuration to prevent blood backflow in the existing blood chamber becomes unnecessary. As a result, the mixing power between rare cells and microbeads in the blood chamber can be improved, and cell layer separation due to the combination between rare cells and microbeads in the blood chamber becomes more accurate due to the centrifugal force of the rotating disk unit. .
다섯째, 유핵적혈구를 비롯해, 혈중 암세포와 같은 희소세포의 검출율을 증대시킬 수 있어, 의료 기술 향상과 국민 건강을 증진시킬 수 있다.Fifth, the detection rate of rare cells such as nucleated red blood cells and cancer cells in the blood can be increased, thereby improving medical technology and improving public health.
도 1은 본 발명의 바람직한 일 실시예에 원심력을 이용한 희소세포 분리장치를 개략적으로 도시한 도면이다. Figure 1 is a diagram schematically showing a rare cell separation device using centrifugal force in a preferred embodiment of the present invention.
도 2는 도 1에 도시된 Ⅱ-Ⅱ선을 따라 절단하여 개략적으로 도시한 단면도이다. FIG. 2 is a schematic cross-sectional view taken along line II-II shown in FIG. 1.
도 3은 도 1에 도시된 일 실시예에 의한 원심력을 이용한 희소세포 분리장치의 분리 동작을 설명하기 위해 개략적으로 도시한 구성도이다. FIG. 3 is a schematic configuration diagram to explain the separation operation of the rare cell separation device using centrifugal force according to an embodiment shown in FIG. 1.
도 4는 본 발명의 바람직한 다른 실시예에 원심력을 이용한 희소세포 분리장치를 개략적으로 도시한 도면이다. 그리고, Figure 4 is a diagram schematically showing a rare cell separation device using centrifugal force in another preferred embodiment of the present invention. and,
도 5는 도 4에 도시된 다른 실시예에 의한 원심력을 이용한 희소세포 분리장치의 분리 동작을 설명하기 위해 개략적으로 도시한 구성도이다.Figure 5 is a schematic configuration diagram to explain the separation operation of a rare cell separation device using centrifugal force according to another embodiment shown in Figure 4.
이하, 본 발명의 바람직한 일 실시예를 첨부된 도면을 참고하여 설명한다. 다만, 본 발명의 사상이 그와 같은 실시예에 제한되지 않고, 본 발명의 사상은 실시예를 이루는 구성요소의 부가, 변경 및 삭제 등에 의해서 다르게 제안될 수 있을 것이나, 이 또한 발명의 사상에 포함되는 것이다. Hereinafter, a preferred embodiment of the present invention will be described with reference to the attached drawings. However, the spirit of the present invention is not limited to such embodiments, and the spirit of the present invention may be proposed differently by adding, changing, or deleting components constituting the embodiments, but this is also included in the spirit of the invention. It will happen.
도 1을 참고하면, 본 발명의 바람직한 일 실시예에 의한 도 1은 원심력을 이용한 희소세포 분리장치(1)는 디스크부(10), 주입부(20), 분리부(30) 및 수집부(40)를 포함한다. Referring to Figure 1, according to a preferred embodiment of the present invention, a rare cell separation device (1) using centrifugal force includes a disk unit (10), an injection unit (20), a separation unit (30), and a collection unit ( 40).
참고로, 본 발명에서 설명하는 원심력을 이용한 희소세포 분리장치(1)는 혈액 내 희소세포를 분리하여 검출하기 위한 것으로써, 본 실시예에서 설명하는 희소세포는 산모의 혈액에 들어간 태아세포이다. 여기서, 산모의 혈액에 포함된 태아세포는 핵을 가지는 적혈구로써, 유핵적혈구(NRBC)(N)로 지칭한다. 한편, 본 발명에서 설명하는 희소세포는 혈액내 유핵적혈구(N)로 설명하나, 꼭 이에 한정되지 않으며 혈중 암세포와 같이 다양한 실시예가 가능하다. For reference, the rare cell separation device 1 using centrifugal force described in the present invention is for separating and detecting rare cells in the blood, and the rare cells described in this embodiment are fetal cells that entered the mother's blood. Here, the fetal cells contained in the mother's blood are red blood cells with a nucleus and are referred to as nucleated red blood cells (NRBC) (N). Meanwhile, the rare cells described in the present invention are described as nucleated red blood cells (N) in the blood, but are not limited to this and various embodiments such as cancer cells in the blood are possible.
디스크부(10)는 회전되는 원반 형상의 디스크 몸체(11)를 포함한다. 이러한 디스크부(10)는 디스크 몸체(11)를 회전시키기 위한 회전 구동수단(미도시)을 구비하며, 회전 구동수단(미도시)과의 연결에 의해 디스크 몸체(11)가 회전중심(12)을 중심으로 회전하게 된다. 여기서, 디스크부(10)는 회전중심(12)을 중심으로 360도 회전되거나, 소정 회전각도 내에서 왕복 회전될 수 있다. The disk unit 10 includes a rotating disk-shaped disk body 11. This disk unit 10 is provided with a rotation drive means (not shown) for rotating the disk body 11, and the disk body 11 is connected to the rotation center 12 by connection with the rotation drive means (not shown). It rotates around . Here, the disk unit 10 can be rotated 360 degrees around the rotation center 12, or can be rotated back and forth within a predetermined rotation angle.
한편, 디스크부(10)의 디스크 몸체(11)에는 혈액을 포함한 유체의 이동 경로를 제공하기 위한 제1 및 제2유로(13)(14)가 마련되며, 이러한 제1 및 제2유로(13)(14)의 구성은 주입부(20), 분리부(30) 및 수집부(40)의 구성과 함께 보다 자세히 후술한다. Meanwhile, the disc body 11 of the disc unit 10 is provided with first and second passages 13 and 14 to provide a movement path for fluid, including blood, and these first and second passages 13 ) The configuration of 14 will be described in more detail later along with the configuration of the injection unit 20, separation unit 30, and collection unit 40.
주입부(20)는 디스크부(10)의 일측에 마련되어 디스크부(10)와 함께 회전되며, 전혈(Whole blood), 용해물질(L) 및 마이크로 비드(M)가 주입된다. 여기서, 주입부(20)에 주입되는 전혈(B), 용해물질(L) 및 마이크로 비드(M)가 혼합된 상태로 주입되거나, 각각 개별적으로 주입될 수 있다. 여기서, 전혈(B)은 산모의 혈액이며, 용해물질(L)은 전혈(B) 중에 포함된 적혈구를 포함한 불필요한 세포들을 용해시킨다. 마이크로 비드(M)는 용해물질(L)에 의해 용해되지 않은 전혈(B) 중의 유핵적혈구(N)와 결합된다. The injection unit 20 is provided on one side of the disc unit 10 and rotates together with the disc unit 10, and whole blood, dissolved substances (L), and microbeads (M) are injected. Here, whole blood (B), dissolved material (L), and microbeads (M) injected into the injection unit 20 may be injected in a mixed state or may be injected individually. Here, the whole blood (B) is the mother's blood, and the lytic substance (L) dissolves unnecessary cells, including red blood cells, contained in the whole blood (B). The microbeads (M) are combined with nucleated red blood cells (N) in whole blood (B) that have not been dissolved by the lysing agent (L).
본 실시예에서는 용해물질(L)이 삼투압에 의해 적혈구를 용해시키는 RBC 라이시스 버퍼(Red Blood cell Lysis buffer)를 사용하는 것으로 예시한다. 이러한 RBC 라이시스 버퍼는 핵이 있는 적혈구인 유핵적혈구(N)는 용해시키지 않음에 따라, 전혈(B) 내에 포함된 희소세포인 유핵적혈구(N)는 용해되지 않고 마이크로 비드(M)와 결합되게 된다. In this example, it is exemplified that the lysate (L) uses RBC lysis buffer (Red Blood cell Lysis buffer), which lyses red blood cells by osmotic pressure. As this RBC lysis buffer does not dissolve nucleated red blood cells (N), which are red blood cells with nuclei, the nucleated red blood cells (N), which are rare cells contained in whole blood (B), do not dissolve but bind to the microbeads (M). do.
마이크로 비드(M)는 일종의 항체로써, 항원인 유핵적혈구(N)와 항원-항체 반응에 의해 상호 결합된다. 또한, 본 실시예에서는 마이크로 비드(M)가 CD71 마이크로 비드(M)를 포함하는 것으로 예시하나, 한정 사항은 아니다. 이러한 마이크로 비드(M)는 고밀도 물질로써, 전혈(B) 중에서 밀도가 가장 높은 유핵적혈구(N)와의 결합에 의해 밀도가 높아지게 된다. Microbeads (M) are a type of antibody that binds to nucleated red blood cells (N), which are antigens, through an antigen-antibody reaction. Additionally, in this example, the microbeads (M) are illustrated to include CD71 microbeads (M), but this is not a limitation. These microbeads (M) are high-density materials, and their density increases by combining with nucleated red blood cells (N), which have the highest density in whole blood (B).
한편, 주입부(20)는 디스크 몸체(11)의 회전중심(12)과 상대적으로 인접하게 마련된 혈액 챔버(21)를 포함할 수 있다. 이러한 혈액 챔버(21)의 내부로 전혈(B), 용해물질(L) 및 마이크로 비드(M)가 주입되어 혼합된다. 이때, 혈액 챔버(21)는 전혈(B), 용해물질(L) 및 마이크로 비드(M)의 주입을 위한 제1유로(13)가 디스크 몸체(11)에 마련된다. Meanwhile, the injection unit 20 may include a blood chamber 21 provided relatively adjacent to the rotation center 12 of the disc body 11. Whole blood (B), dissolved material (L), and microbeads (M) are injected into the blood chamber 21 and mixed. At this time, the blood chamber 21 is provided with a first flow path 13 in the disc body 11 for injection of whole blood (B), dissolved material (L), and microbeads (M).
분리부(30)는 디스크부(10)에 주입부(20)와 이웃하게 연결되도록 마련되어, 주입부(20)로부터 제공된 전혈(B), 용해물질(L) 및 마이크로 비드(M)가 혼합된 혼합액으로부터 마이크로 비드(M)와 결합된 희소세포인 유핵적혈구(N)만을 원심력에 의한 밀도차로 분리시킨다. 여기서, 분리부(30)는 주입부(20)와 이웃하게 마련되되, 디스크 몸체(11)의 회전중심(12)을 기준으로, 회전중심(12)으로부터 반경방향으로 원호를 향해 주입부(20)의 혈액 챔버(11)보다 더 먼 위치에 위치하는 분리 챔버(31)를 포함한다. The separation unit 30 is provided to be connected to the disk unit 10 adjacent to the injection unit 20, and the whole blood (B), dissolved material (L), and microbeads (M) provided from the injection unit 20 are mixed. Only nucleated red blood cells (N), which are rare cells combined with microbeads (M), are separated from the mixed solution by density difference using centrifugal force. Here, the separation part 30 is provided adjacent to the injection part 20, and with respect to the rotation center 12 of the disk body 11, the injection part 20 moves in a radial arc from the rotation center 12. ) and a separation chamber 31 located further away from the blood chamber 11.
분리 챔버(31)는 주입부(20)의 혈액 챔버(21)와의 사이에 혈액 유로(22)를 사이에 두고 상호 연결될 수 있다. 혈액 유로(22)에는 개폐 가능한 밸브(23)가 마련될 수 있으며, 이러한 밸브(23)의 개방 또는 폐쇄 동작에 의해 주입부(20)의 혈액 챔버(21)에서 혼합된 전혈(B), 용해물질(L) 및 마이크로 비드(M)를 포함하는 유체가 분리 챔버(31)로 유입될 수 있다. The separation chamber 31 may be connected to the blood chamber 21 of the injection unit 20 with a blood flow path 22 therebetween. A valve 23 that can be opened and closed may be provided in the blood flow path 22, and the mixed whole blood (B) is dissolved in the blood chamber 21 of the injection unit 20 by opening or closing the valve 23. A fluid containing the substance (L) and the microbeads (M) may flow into the separation chamber 31.
한편, 디스크부(10)의 디스크 몸체(11)가 회전됨으로써, 혈액 챔버(21) 내에서 전혈(B), 용해물질(L) 및 마이크로 비드(M)는 디스크 몸체(11)의 회전에 의해 상호 혼합된다. 이때, 디스크 몸체(11)는 회전중심(12)을 중심으로 소정 각도 왕복 회전됨으로써, 혈액 챔버(21)내의 전혈(B), 용해물질(L) 및 마이크로 비드(M)를 혼합시킬 수 있다. 이렇게 혈액 챔버(21) 내에서 혼합된 전혈(B), 용해물질(L) 및 마이크로 비드(M)는 디스크 몸체(11)의 회전에 의해 발생된 원심력에 의해, 디스크 몸체(11)의 반경방향으로 이동됨으로써 분리 챔버(31)로 유입되게 된다. Meanwhile, as the disk body 11 of the disk unit 10 rotates, whole blood (B), dissolved material (L), and microbeads (M) within the blood chamber 21 are rotated by the disk body 11. are mixed together. At this time, the disk body 11 is reciprocally rotated at a predetermined angle around the rotation center 12, thereby mixing the whole blood (B), dissolved material (L), and microbeads (M) in the blood chamber 21. The whole blood (B), dissolved material (L), and microbeads (M) mixed in the blood chamber 21 are moved in the radial direction of the disc body 11 by the centrifugal force generated by the rotation of the disc body 11. By moving to , it flows into the separation chamber 31.
이렇게 분리 챔버(31)로 유입된 전혈(B), 용해물질(L) 및 마이크로 비드(M)의 혼합액 중에서 상대적으로 밀도가 높은 마이크로 비드(M)와 유핵적혈구(N)는 원심력에 의해 디스크 몸체(11)의 반경방향으로 계속 이동됨으로써, 밀도차이에 의해 전혈(B)로부터 분리된다. 즉, 전혈(B) 중에서 마이크로 비드(M)와 결합된 유핵적혈구(N)를 제외한 세포들은 용해물질(L)에 의해 용해된 상태로 유핵적혈구(N) 및 마이크로 비드(M)와 분리되는 것이다. Among the mixture of whole blood (B), lysate (L), and microbeads (M) introduced into the separation chamber 31 in this way, relatively high-density microbeads (M) and nucleated red blood cells (N) are separated from the disc body by centrifugal force. As it continues to move in the radial direction of (11), it is separated from the whole blood (B) due to the density difference. That is, in whole blood (B), cells other than the nucleated red blood cells (N) bound to the microbeads (M) are separated from the nucleated red blood cells (N) and microbeads (M) in a dissolved state by the lysate (L). .
디스크 몸체(11)의 회전중심(12)으로부터 반경방향으로 점점 멀어지는 방향을 기준으로, 분리 챔버(31)의 후단에는 밀도구배물질(D)(Density Gradient Material, DGM)이 마련된다. 여기서, 밀도구배물질(D)은 마이크로 비드(M)에 결합된 유핵적혈구(N)만을 혈액으로부터 분리하기 위해 물의 밀도보다 높은 대략 1.13 내지 1.17g/mL의 밀도를 가지는 물질일 수 있다. 보다 바람직하게는 밀도구배물질(D)은 전혈(B)의 밀도보다 높으며, 마이크로 비드(M)와 결합된 유핵적혈구(N)의 밀도보다 낮은 밀도 범위를 가지는 물질로 마련되되, 유체로 마련됨이 좋다. A density gradient material (DGM) is provided at the rear end of the separation chamber 31 based on a direction gradually moving away from the rotation center 12 of the disk body 11 in the radial direction. Here, the density gradient material (D) may be a material having a density of approximately 1.13 to 1.17 g/mL, which is higher than the density of water, in order to separate only the nucleated red blood cells (N) bound to the microbeads (M) from blood. More preferably, the density gradient material (D) is made of a material having a density range that is higher than that of whole blood (B) and lower than the density of nucleated red blood cells (N) bound to microbeads (M), but is prepared as a fluid. good night.
이러한 밀도구배물질(D)을 디스크 몸체(11)의 원심력에 의해 반경방향으로 이동하는 마이크로 비드(M)와 결합된 유핵적혈구(N)가 통과함으로써, 유핵적혈구(N)가 혈액으로부터 분리되게 된다. As the nucleated red blood cells (N) combined with the microbeads (M) moving in the radial direction due to the centrifugal force of the disc body 11 pass through this density gradient material (D), the nucleated red blood cells (N) are separated from the blood. .
참고로, 분리 챔버(31)내에서 원심력에 의해 밀도구배물질(D)을 통과하지 않는 전혈(B)과, 전혈(B)에 포함된 세포들은 디스크 몸체(11)에 마련된 제2유로(14)를 통해 배출될 수 있다. For reference, whole blood (B) that does not pass through the density gradient material (D) due to centrifugal force in the separation chamber (31), and cells included in the whole blood (B) are transferred to the second flow path (14) provided in the disc body (11). ) can be discharged through.
수집부(40)는 디스크부(10)에 분리부(30)와 이웃하게 연결되도록 마련되어, 밀도구배물질(D)을 통과한 희소세포인 유핵적혈구(N)를 수집한다. 수집부(40)는 디스크 몸체(11)의 회전중심(12)으로부터 반경방향으로 분리부(30)와 이웃하게 마련되되, 분리부(30)의 분리 챔버(31)와 분리 유로(32)로 연결되는 수집 챔버(41)를 포함한다. 이러한 수집 챔버(41)는 디스크 몸체(11)의 원호와 인접하게 마련됨으로써, 상술한 혈액 챔버(21) 및 분리 챔버(31)보다 디스크 몸체(11)의 회전중심(12)으로부터 가장 멀리 이격된 위치에 마련된다. The collection unit 40 is connected to the disc unit 10 adjacent to the separation unit 30 and collects nucleated red blood cells (N), which are rare cells that have passed through the density gradient material (D). The collection unit 40 is provided adjacent to the separation unit 30 in the radial direction from the rotation center 12 of the disk body 11, and is connected to the separation chamber 31 and the separation passage 32 of the separation unit 30. It includes a collection chamber 41 connected to it. This collection chamber 41 is provided adjacent to the arc of the disc body 11, so that it is spaced farther away from the rotation center 12 of the disc body 11 than the blood chamber 21 and the separation chamber 31 described above. It is provided in location.
한편, 분리 챔버(31)와 수집 챔버(41)의 사이의 분리 유로(32)는 개방된 상태임에 따라, 분리 챔버(31)의 후단에 마련된 밀도구배물질(D)은 수집 챔버(41)의 내부까지 채워진 상태이다. 즉, 디스크 몸체(11)의 회전에 의한 원심력으로 수집 챔버(41)로부터 분리 챔버(31)의 후단까지 채워진 밀도구배물질(D)가 유체 상태로 채워진 상태인 것이다. Meanwhile, since the separation passage 32 between the separation chamber 31 and the collection chamber 41 is in an open state, the density gradient material D provided at the rear end of the separation chamber 31 is in the collection chamber 41. It is filled to the inside. That is, the density gradient material D filled from the collection chamber 41 to the rear end of the separation chamber 31 is in a fluid state due to centrifugal force caused by the rotation of the disk body 11.
한편, 도 2의 도시와 같이, 분리 챔버(31)와 수집 챔버(41)의 사이에 마련된 분리 유로(32)에는 턱(42)이 마련될 수 있다. 여기서, 턱(42)은 일종의 삼각돌기 형상으로 마련됨으로써, 분리 챔버(31)내의 혈액이 수집 챔버(41)로 유입됨을 차단시킬 수 있다. Meanwhile, as shown in FIG. 2, a jaw 42 may be provided in the separation passage 32 provided between the separation chamber 31 and the collection chamber 41. Here, the chin 42 is provided in the shape of a kind of triangular protrusion, so that blood in the separation chamber 31 can be blocked from flowing into the collection chamber 41.
상기와 같이, 디스크 몸체(11)의 회전중심(12)으로부터 반경방향으로 원호를 향해 혈액 챔버(21), 분리 챔버(31) 및 수집 챔버(41)가 순차적으로 상호 이웃하도록 마련된다. 이러한 혈액 챔버(21), 분리 챔버(31) 및 수집 챔버(41) 각각은 모두 회전 중심(12)으로부터 반경방향으로 멀어지는 방향으로 경사지게 좁아지는 내부 단면 형상을 가진다. 그로 인해, 디스크 몸체(11)의 회전에 의한 원심력에 의한 밀도차로 혈액내의 성분이 용이하게 분리될 수 있도록 혈액 챔버(21), 분리 챔버(31) 및 수집 챔버(41)의 경사진 형상이 가이드할 수 있다. As described above, the blood chamber 21, the separation chamber 31, and the collection chamber 41 are sequentially arranged to be adjacent to each other in a radial arc from the rotation center 12 of the disc body 11. Each of these blood chambers 21, separation chambers 31 and collection chambers 41 all have an internal cross-sectional shape that narrows obliquely in a direction radially away from the center of rotation 12. Therefore, the inclined shape of the blood chamber 21, separation chamber 31, and collection chamber 41 guides the components in the blood so that they can be easily separated by the density difference caused by the centrifugal force caused by the rotation of the disc body 11. can do.
상기와 같은 구성을 가지는 본 발명의 바람직한 일 실시예에 의한 원심력을 이용한 희소세포 분리장치(1)의 희소세포 분리 동작을 도 1 및 도 3을 참고하여 설명하면, 다음과 같다. The rare cell separation operation of the rare cell separation device 1 using centrifugal force according to a preferred embodiment of the present invention having the above configuration will be described with reference to FIGS. 1 and 3 as follows.
도 1 및 도 3과 같이, 디스크 몸체(11)의 회전중심(12)으로부터 반경방향으로 주입부(20)의 혈액 챔버(21), 분리부(30)의 분리 챔버(31) 및 수집부(40)의 수집 챔버(41)가 상호 이웃하게 마련된다. 보다 바람직하게는, 도 3의 도시와 같이, 디스크 몸체(11)는 수직하게 세워진 상태로 소정 각도 범위내에서 왕복 회전될 수 있으며, 회전중심(12)을 기준으로 혈액 챔버(21), 분리 챔버(31) 및 수집 챔버(41)가 반경방향으로 점차 멀어지도록 마련된다. 1 and 3, the blood chamber 21 of the injection unit 20, the separation chamber 31 of the separation unit 30, and the collection unit ( The collection chambers 41 of 40 are provided adjacent to each other. More preferably, as shown in FIG. 3, the disc body 11 can be rotated back and forth within a predetermined angle range while standing vertically, and the blood chamber 21 and the separation chamber are formed based on the rotation center 12. (31) and the collection chamber (41) are arranged to be gradually spaced apart in the radial direction.
혈액 챔버(21)에 전혈(B), 용해물질(L) 및 마이크로 비드(M)가 유입되면, 디스크 몸체(11)의 왕복 회전에 의해 전혈(B), 용해물질(L) 및 마이크로 비드(M)은 상호 혼합된다. 이때, 용해물질(L)은 전혈(B) 내의 유핵적혈구(N)를 제외한 다른 세포들을 용해시킴으로써, 유핵적혈구(N)와 마이크로 비드(M)가 상호 용이하게 결합된다. 참고로, 용해물질(L)은 유핵적혈구(N)와 유사한 밀도를 가지는 적혈구를 용해시킴으로써, 분리 챔버(31) 내에서 전혈(B)로부터 적혈구가 유핵적혈구(N)와 함께 밀도차에 의해 분리되어 수집 챔버(41)로 수집됨을 차단한다. When whole blood (B), lysate (L), and microbeads (M) flow into the blood chamber 21, whole blood (B), lysate (L), and microbeads ( M) are mutually mixed. At this time, the lytic substance (L) dissolves cells other than the nucleated red blood cells (N) in the whole blood (B), so that the nucleated red blood cells (N) and the microbeads (M) are easily combined with each other. For reference, the lysate (L) dissolves red blood cells with a density similar to that of the nucleated red blood cells (N), thereby separating the red blood cells from the whole blood (B) together with the nucleated red blood cells (N) by the density difference in the separation chamber 31. to block collection into the collection chamber 41.
상호 혼합된 전혈(B), 용해물질(L) 및 마이크로 비드(M)는 밸브(23) 개방에 의해 혈액 유로(22)와 연결된 분리 챔버(31)로 유입되며, 분리 챔버(31)내에서 원심력에 의해 상대적으로 밀도가 높은 마이크로 비드(M)와 결합된 유핵적혈구(N)가 분리 챔버(31)의 후단으로 이동하게 된다. 이때, 분리 챔버(31)의 후단에는 밀도구배물질(D)이 마련됨으로써, 고밀도의 마이크로 비드(M)와 결합된 유핵적혈구(N)는 밀도구배물질(D)을 통과하여, 이웃한 수집 챔버(41)로 모여진다. 여기서, 분리 챔버(31)와 수집 챔버(41) 사이의 분리 유로(32)에는 턱(42)이 마련됨으로써, 분리 챔버(31) 내의 혈액은 수집 챔버(41)로 유입되지 않는다. 또한, 수집 챔버(41)로 수집되지 않는 분리 챔버(31) 내의 혈액은 제2유로(14)를 통해 배출될 수 있다. The mixed whole blood (B), lysate (L), and microbeads (M) flow into the separation chamber (31) connected to the blood flow path (22) by opening the valve (23), and within the separation chamber (31) Nucleated red blood cells (N) combined with relatively high-density microbeads (M) are moved to the rear end of the separation chamber 31 by centrifugal force. At this time, a density gradient material (D) is provided at the rear end of the separation chamber 31, so that the nucleated red blood cells (N) combined with the high-density microbeads (M) pass through the density gradient material (D) and enter the adjacent collection chamber. It is gathered as (41). Here, a jaw 42 is provided in the separation passage 32 between the separation chamber 31 and the collection chamber 41, so that blood in the separation chamber 31 does not flow into the collection chamber 41. Additionally, blood in the separation chamber 31 that is not collected in the collection chamber 41 may be discharged through the second flow path 14.
이와 같이, 밀도구배물질(D)을 통과하여 원심력에 의한 밀도차에 의해 수집 챔버(41)로 모여진 유핵적혈구(N)를 사용자가 수거함으로써, 사용자는 혈액내의 유핵적혈구(N)를 분리하여 검사할 수 있게 된다. In this way, the user collects the nucleated red blood cells (N) that pass through the density gradient material (D) and are collected in the collection chamber 41 by the density difference caused by centrifugal force, thereby allowing the user to separate and test the nucleated red blood cells (N) in the blood. You can do it.
도 4 및 도 5를 참고하면, 본 발명의 바람직한 다른 실시예에 의한 원심력을 이용한 희소세포 분리장치(100)가 개략적으로 도시된다. Referring to Figures 4 and 5, a rare cell separation device 100 using centrifugal force according to another preferred embodiment of the present invention is schematically shown.
도 4 및 도 5의 도시와 같이, 다른 실시예에 의한 원심력을 이용한 희소세포 분리장치(100)는 디스크부(110), 주입부(120), 분리부(130) 및 수집부(140)를 포함한다. As shown in FIGS. 4 and 5, the rare cell separation device 100 using centrifugal force according to another embodiment includes a disk unit 110, an injection unit 120, a separation unit 130, and a collection unit 140. Includes.
디스크부(110)는 상술한 일 실시예와 마찬가지로, 원반 형상으로 마련되어 회전중심(112)을 중심으로 회전되는 디스크 몸체(111)를 포함한다. 이러한 디스크부(110)는 상술한 일 실시예와 유사하므로, 자세한 설명은 생략한다. Like the above-described embodiment, the disk unit 110 includes a disk body 111 that is provided in a disk shape and rotates about the rotation center 112. Since this disk unit 110 is similar to the above-described embodiment, detailed description will be omitted.
주입부(120)는 디스크부(110)의 일측에 마련되어 디스크부(110)와 함께 회전하며, 전혈(B), 용해물질(L) 및 마이크로 비드(M)가 주입된다. 이러한 주입부(120)는 혈액 챔버(121), 수거 챔버(122) 및 비드 챔버(123)를 포함한다. The injection unit 120 is provided on one side of the disc unit 110 and rotates with the disc unit 110, and whole blood (B), dissolved material (L), and microbeads (M) are injected. This injection unit 120 includes a blood chamber 121, a collection chamber 122, and a bead chamber 123.
혈액 챔버(121)는 전혈(B)과 용해물질(L)이 주입된다. 이러한 전혈(B) 및 용해물질(L)은 디스크 몸체(111)에 마련된 혈액 공급유로(113)를 통해 혈액 챔버(121)로 주입될 수 있다. 혈액 챔버(121)로 주입된 전혈(B)과 용해물질(L)은 디스크 몸체(111)의 왕복 회전운동에 의해 상호 혼합됨으로써, 전혈(B) 내의 적혈구와 같은 불필요한 세포가 용해물질(L)에 의해 용해된다. Whole blood (B) and dissolved material (L) are injected into the blood chamber 121. Such whole blood (B) and dissolved material (L) may be injected into the blood chamber 121 through the blood supply passage 113 provided in the disc body 111. The whole blood (B) and the lysed material (L) injected into the blood chamber 121 are mixed with each other by the reciprocating rotation movement of the disc body 111, so that unnecessary cells such as red blood cells in the whole blood (B) are mixed with the lysed material (L). dissolved by
수거 챔버(122)는 혈액 챔버(121)로부터 용해물질(L)에 의해 용해된 전혈(B)의 잔여물을 수거한다. 즉, 수거 챔버(122)는 전혈(B)내의 용해물질(L)에 의해 용해된 불필요한 세포인 적혈구를 포함한 잔여물을 수거하는 것으로서, 혈액 챔버(121)와 수거 유로(124)를 통해 연결된다. 수거 챔버(122)로 수거된 잔여물은 잔여물 배출유로(115)를 통해 배출될 수 있다. The collection chamber 122 collects the remainder of the whole blood (B) dissolved by the dissolved substance (L) from the blood chamber (121). That is, the collection chamber 122 collects residues including red blood cells, which are unnecessary cells dissolved by the dissolved substance (L) in the whole blood (B), and is connected to the blood chamber 121 through the collection passage 124. . The residue collected in the collection chamber 122 may be discharged through the residue discharge passage 115.
비드 챔버(123)는 혈액 챔버(121)로부터 잔여물이 수거 챔버(122)로 수거된 이후에, 혈액 챔버(121)로 고밀도의 마이크로 비드(M)를 주입한다. 이러한 비드 챔버(123)는 디스크 몸체(111)에 마련된 비드 공급유로(116)을 통해 마이크로 비드(M)를 주입 받을 수 있다. 비드 챔버(123)로부터 비드 유로(125)를 사이에 두고 혈액 챔버(121)와 연결됨으로써, 전혈(B) 내에 잔여물이 제거되고 유핵적혈구(N)만이 잔류된 혈액 챔버(121)의 내부로 마이크로 비드(M)가 공급된다. 그로 인해, 혈액 챔버(121)의 내부에서 유핵적혈구(N)는 마이크로 비드(M)와 결합력이 보다 우수해진다. The bead chamber 123 injects high-density microbeads (M) into the blood chamber 121 after the residue is collected from the blood chamber 121 into the collection chamber 122. This bead chamber 123 can receive microbeads (M) injected through the bead supply passage 116 provided in the disk body 111. By connecting the bead chamber 123 to the blood chamber 121 across the bead passage 125, residues in the whole blood (B) are removed and only the nucleated red blood cells (N) remain inside the blood chamber 121. Micro beads (M) are supplied. As a result, the nucleated red blood cells (N) have better binding force with the microbeads (M) inside the blood chamber 121.
상술한 혈액 챔버(121), 수거 챔버(122) 및 비드 챔버(123) 중, 비드 챔버(123)는 디스크 몸체(111)의 회전중심(112)과 가장 인접하게 마련되며, 비드 챔버(123)와 회전중심(112)으로부터 멀어지는 반경방향으로 이웃하게 혈액 챔버(121)가 마련된다. 또한, 혈액 챔버(121)와 원주 방향으로 이웃하도록 수거 챔버(122)가 마련될 수 있다. 이러한 혈액 챔버(121), 수거 챔버(122) 및 비드 챔버(123)들은 모두, 디스크 몸체(111)의 회전중심(112)으로부터 반경방향으로 멀어질수록 내부 공간이 경사지게 좁아지는 단면 형상을 가질 수 있다. 그로 인해, 디스크 몸체(111)의 회전에 의한 원심력으로 밀도차에 의해 혈액 성분이 용이하게 분리될 수 있도록 혈액 챔버(121), 수거 챔버(122) 및 비드 챔버(123)들의 경사진 형상이 가이드할 수 있다. Among the blood chamber 121, collection chamber 122, and bead chamber 123 described above, the bead chamber 123 is provided closest to the rotation center 112 of the disc body 111, and the bead chamber 123 A blood chamber 121 is provided adjacent to the radial direction away from the rotation center 112. Additionally, the collection chamber 122 may be provided to adjoin the blood chamber 121 in the circumferential direction. The blood chamber 121, the collection chamber 122, and the bead chamber 123 may all have a cross-sectional shape in which the internal space becomes narrower as the radial distance from the rotation center 112 of the disc body 111 increases. there is. Therefore, the inclined shapes of the blood chamber 121, the collection chamber 122, and the bead chamber 123 are guided so that the blood components can be easily separated by the density difference due to the centrifugal force caused by the rotation of the disc body 111. can do.
분리부(130)는 디스크부(110)에 주입부(120)와 이웃하게 마련되어, 주입부(120)의 혈액 챔버(121)로부터 제공된 혈액으로부터 마이크로 비드(M)와 결합된 희소세포인 유핵적혈구(N)만을 원심력에 의한 밀도차로 분리한다. 이를 위해, 분리부(130)는 일 실시예와 마찬가지로, 분리 챔버(131)와 분리 챔버(131)의 후단에 마련된 밀도구배물질(D)(도 5 참조)을 포함한다. 이러한 밀도구배물질(D)은 전혈(B)보다 밀도가 높으며, 유핵적혈구(N)보다 밀도가 낮은 밀도 범위를 가짐으로써, 전혈(B)과 유핵적혈구(N) 사이의 밀도 경계를 제공한다. The separation unit 130 is provided adjacent to the injection unit 120 on the disc unit 110, and is provided to collect nucleated red blood cells, which are rare cells combined with microbeads (M), from the blood provided from the blood chamber 121 of the injection unit 120. Only (N) is separated by density difference due to centrifugal force. To this end, the separation unit 130 includes a separation chamber 131 and a density gradient material D (see FIG. 5) provided at the rear end of the separation chamber 131, as in one embodiment. This density gradient material (D) has a density range that is higher in density than whole blood (B) and lower in density than nucleated red blood cells (N), thereby providing a density boundary between whole blood (B) and nucleated red blood cells (N).
분리 챔버(131)의 내부에서 마이크로 비드(M)와 결합된 유핵적혈구(N)는 원심력에 의해 디스크 몸체(111)의 반경방향으로 멀어짐으로써, 밀도구배물질(D)을 통과하게 된다. 전혈(B)내에서 마이크로 비드(M)와 결합된 유핵적혈구(N)를 제외한 혈액들은 디스크 몸체(111)에 마련된 배출유로(114)를 통해 배출될 수 있다. Inside the separation chamber 131, the nucleated red blood cells (N) combined with the microbeads (M) move away in the radial direction of the disk body 111 by centrifugal force and pass through the density gradient material (D). Blood other than the nucleated red blood cells (N) bound to the microbeads (M) in the whole blood (B) can be discharged through the discharge passage 114 provided in the disc body 111.
수집부(140)는 디스크부(110)에 분리부(130)와 이웃하게 마련되어, 밀도구배물질(D)을 통과한 희소세포인 유핵적혈구(N)를 수집한다. 이러한 수집부(140)는 디스크 몸체(111)에 마련된 분리 챔버(131)와 분리 유로(132)를 사이에 두고 이웃하게 마련된 수집 챔버(141)를 포함한다. 여기서, 자세히 도시되지 않았으나, 일 실시예와 마찬가지로 분리 유로(132)에는 턱(42)(도 2 참조)이 마련되어, 마이크로 비드(M)와 결합된 유핵적혈구(N)를 제외한 혈액이 수집 챔버(141)로 유입됨을 차단할 수 있다. The collection unit 140 is provided adjacent to the separation unit 130 on the disk unit 110 and collects nucleated red blood cells (N), which are rare cells that have passed through the density gradient material (D). This collection unit 140 includes a separation chamber 131 provided in the disk body 111 and a collection chamber 141 provided adjacent to the separation passage 132 with the separation channel 132 in between. Here, although not shown in detail, as in one embodiment, the separation passage 132 is provided with a jaw 42 (see FIG. 2), so that blood, excluding the nucleated red blood cells (N) bound to the microbeads (M), is collected into the collection chamber ( 141), the inflow can be blocked.
이러한 분리 챔버(131) 및 수집 챔버(141)는 디스크 몸체(111)에 대해 회전중심(112)으로부터 반경방향으로 멀어지는 방향으로 상호 이웃하게 마련되며, 반경방향으로 내부 공간이 점차 좁아지도록 경사진 형상을 가짐으로써 원심력에 의한 혈액의 밀도차 수집을 가이드할 수 있다. 또한, 수집 챔버(141)가 디스크 몸체(111)에 대해 분리 챔버(131)보다 상측에 위치하고 수집 챔버(141)와 분리 챔버(131) 사이의 분리 유로(132)는 개방된 상태이다. 그로 인해, 유체인 밀도구배물질(D)은 수집 챔버(141)로부터 분리 챔버(131)의 후단까지 채워진 상태일 수 있다. These separation chambers 131 and collection chambers 141 are provided adjacent to each other in a direction radially away from the rotation center 112 with respect to the disk body 111, and have an inclined shape so that the internal space in the radial direction is gradually narrowed. By having , it is possible to guide the collection of density differences in blood by centrifugal force. Additionally, the collection chamber 141 is located above the separation chamber 131 with respect to the disk body 111, and the separation passage 132 between the collection chamber 141 and the separation chamber 131 is open. Therefore, the density gradient material D, which is a fluid, may be filled from the collection chamber 141 to the rear end of the separation chamber 131.
이상과 같은 구성을 가지는 본 발명의 다른 실시예에 의한 원심력을 이용한 희소세포 분리장치(100)의 분리 동작을 도 4 및 도 5를 참고하여 설명하면, 다음과 같다. The separation operation of the rare cell separation device 100 using centrifugal force according to another embodiment of the present invention having the above configuration will be described with reference to FIGS. 4 and 5 as follows.
도 4 및 도 5와 같이, 혈액 챔버(121)에 전혈(B)과 용해물질(L)이 먼저 주입되어, 전혈(B)내에 적혈구와 같은 불필요한 세포들이 용해물질(L)에 의해 용해된다. 이때, 전혈(B)과 용해물질(L)은 혈액 공급유로(113)을 통해 공급될 수 있다. 이렇게 용해된 전혈(B) 내의 잔여물은 수거 챔버(122)로 수거 유로(124)를 통해 수거되며, 수거 챔버(122)내에 수거된 잔여물을 잔여물 배출유로(115)를 통해 배출될 수 있다. 4 and 5, whole blood (B) and lysate (L) are first injected into the blood chamber 121, and unnecessary cells such as red blood cells in the whole blood (B) are dissolved by the lysate (L). At this time, whole blood (B) and dissolved material (L) may be supplied through the blood supply channel 113. The residue in the dissolved whole blood (B) is collected into the collection chamber 122 through the collection passage 124, and the residue collected in the collection chamber 122 can be discharged through the residue discharge passage 115. there is.
혈액 챔버(121)내에 잔여물이 제거된 상태에서, 비드 챔버(123)로부터 마이크로 비드(M)가 비드 유로(125)를 통해 혈액 챔버(121)의 내부로 유입된다. 여기서, 비드 챔버(123)는 비드 공급유로(116)를 통해 마이크로 비드(M)를 공급받아, 혈액 챔버(121)로 제공할 수 있다. 혈액 챔버(121) 내부로 마이크로 비드(M)가 공급되면, 전혈(B)내에 용해되지 않은 유핵적혈구(N)는 마이크로 비드(M)와 결합된다. 이때, 디스크 몸체(111)가 소정 회전각도내에서 왕복 회전됨으로써, 혈액 챔버(121) 내에서 마이크로 비드(M)와 유핵적혈구(N) 사이의 결합이 보다 용이하다. With the residue in the blood chamber 121 removed, microbeads (M) are introduced into the blood chamber 121 from the bead chamber 123 through the bead passage 125. Here, the bead chamber 123 can receive microbeads (M) through the bead supply passage 116 and provide them to the blood chamber 121. When microbeads (M) are supplied into the blood chamber 121, nucleated red blood cells (N) that are not dissolved in whole blood (B) are combined with the microbeads (M). At this time, as the disk body 111 reciprocates within a predetermined rotation angle, bonding between the microbeads (M) and the nucleated red blood cells (N) within the blood chamber 121 is easier.
마이크로 비드(M)와 결합된 유핵적혈구(N)가 포함된 전혈(B)은 혈액 유로(126)를 통해 연결된 분리 챔버(131)로 유입된다. 분리 챔버(131)는 디스크 몸체(111)의 회전에 의한 원심력으로 상대적으로 밀도가 높은 마이크로 비드(M)와 결합된 유핵적혈구(N)를 분리시킨다. 여기서, 마이크로 비드(M)와 결합된 유핵적혈구(N)는 원심력에 의해 디스크 몸체(111)의 회전중심(112)으로부터 멀어지는 반경방향으로 이동됨으로써, 밀도구배물질(D)을 통과하여 전혈(B)로부터 분리될 수 있게 된다. Whole blood (B) containing nucleated red blood cells (N) combined with microbeads (M) flows into the separation chamber 131 connected through the blood flow path 126. The separation chamber 131 separates the nucleated red blood cells (N) bound to the relatively high-density microbeads (M) by centrifugal force caused by the rotation of the disk body 111. Here, the nucleated red blood cells (N) combined with the microbeads (M) are moved in the radial direction away from the rotation center 112 of the disc body 111 by centrifugal force, thereby passing through the density gradient material (D) and producing whole blood (B). ) can be separated from.
분리된 마이크로 비드(M)와 결합된 유핵적혈구(N)는 분리 유로(132)를 통해 수집 챔버(141)로 유입됨으로써, 최종적으로 수집된다. 참고로, 분리 유로(132)에는 턱(142)이 마련되어, 분리 유로(132)의 내부로 전혈(B)이 유입됨을 방지할 수 있다. The nucleated red blood cells (N) combined with the separated microbeads (M) flow into the collection chamber 141 through the separation passage 132 and are finally collected. For reference, the separation passage 132 is provided with a jaw 142 to prevent whole blood B from flowing into the separation passage 132.
한편, 도 5의 도시와 같이, 수거 유로(124), 비드 유로(125) 및 혈액 유로(126)에는 각각 밸브들(124a)(125a)(126a)이 마련됨으로써, 수거 유로(124), 비드 유로(125) 및 혈액 유로(126)를 선택적으로 개폐시킬 수 있으나, 한정 사항은 아니다.Meanwhile, as shown in FIG. 5, valves 124a, 125a, and 126a are provided in the collection flow path 124, the bead flow path 125, and the blood flow path 126, respectively, so that the collection flow path 124 and the beads The flow path 125 and the blood flow path 126 can be selectively opened and closed, but this is not a limitation.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although the present invention has been described with reference to preferred embodiments, those skilled in the art may make various modifications and changes to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can do it.
본문에 포함되어 있음.Included in the text.

Claims (20)

  1. 회전되는 디스크부; a rotating disk unit;
    상기 디스크부의 일측에 마련되어 상기 디스크부와 함께 회전되며, 전혈, 적혈구를 용해하는 용해물질 및 상기 전혈내의 핵을 가지는 희소세포와 결합되는 마이크로 비드가 주입되어 혼합되는 주입부; An injection unit provided on one side of the disc unit and rotated with the disc unit, where whole blood, a lytic substance that dissolves red blood cells, and microbeads combined with rare cells with nuclei in the whole blood are injected and mixed;
    상기 디스크부에 상기 주입부와 이웃하여 연결되도록 마련되어, 상기 주입부로부터 제공된 상기 전혈, 용해물질 및 마이크로 비드의 혼합액으로부터 상기 마이크로 비드와 결합된 상기 희소세포만을 원심력에 의한 밀도차이로 밀도구배물질을 통과시켜 분리하는 분리부; 및The disk unit is provided to be adjacent to and connected to the injection unit, and from the mixture of whole blood, dissolved material and microbeads provided from the injection unit, only the rare cells combined with the microbeads are infused with a density gradient material through a density difference due to centrifugal force. A separation part that passes through and separates; and
    상기 디스크부에 상기 분리부와 이웃하여 연결되도록 마련되어, 상기 밀도구배물질을 통과한 상기 희소세포를 수집하는 수집부; A collection unit provided in the disk unit adjacent to and connected to the separation unit to collect the rare cells that have passed through the density gradient material;
    를 포함하는 원심력을 이용한 희소세포 분리장치.Rare cell separation device using centrifugal force including.
  2. 제1항에 있어서, According to paragraph 1,
    상기 희소세포는 유핵적혈구 또는 암세포를 포함하는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force, wherein the rare cells include nucleated red blood cells or cancer cells.
  3. 제1항에 있어서,According to paragraph 1,
    상기 디스크부는 원반 형상의 디스크 몸체를 포함하여 회전중심을 중심으로 회전되며, The disk unit includes a disk-shaped disk body and rotates around a rotation center,
    상기 주입부, 분리부 및 수집부는 상기 디스크 몸체의 상기 회전중심으로부터 반경방향으로 원호를 향해 순차적으로 이웃하도록 마련되는 원심력을 이용한 희소세포 분리장치. A rare cell separation device using centrifugal force wherein the injection unit, separation unit, and collection unit are sequentially adjacent to each other in a circular arc in a radial direction from the rotation center of the disc body.
  4. 제1항에 있어서,According to paragraph 1,
    상기 주입부는, The injection part,
    상기 전혈, 용해물질 및 마이크로 비드가 주입되는 혈액 챔버가 상기 디스크부의 회전 중심에 이웃하게 마련되는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force in which a blood chamber into which the whole blood, dissolved material, and microbeads are injected is provided adjacent to the rotation center of the disc unit.
  5. 제1항에 있어서, According to paragraph 1,
    상기 주입부는, The injection part,
    상기 전혈과 용해물질이 주입되어 상기 전혈로부터 상기 적혈구를 용해시키는 혈액 챔버; a blood chamber into which the whole blood and lysate are injected to lyse the red blood cells from the whole blood;
    상기 혈액 챔버로부터 상기 용해물질에 의해 용해된 잔여물을 수거하는 수거 챔버; 및a collection chamber for collecting residue dissolved by the dissolved material from the blood chamber; and
    상기 혈액 챔버로부터 상기 잔여물이 수거되면, 상기 혈액 챔버로 상기 마이크로 비드를 주입하는 비드 챔버;a bead chamber for injecting the microbeads into the blood chamber when the residue is collected from the blood chamber;
    를 포함하는 원심력을 이용한 희소세포 분리장치. Rare cell separation device using centrifugal force including.
  6. 제1항에 있어서, According to paragraph 1,
    상기 주입부와 상기 분리부 사이에는 밸브가 마련되어 상기 혼합액의 이동을 선택적으로 개방 또는 폐쇄시키는 원심력을 이용한 희소세포 분리장치. A rare cell separation device using centrifugal force where a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixed solution.
  7. 제1항에 있어서, According to paragraph 1,
    상기 분리부는 상기 주입부와 밸브를 사이에 두고 상기 혼합액이 유입되도록, 상기 주입부와 이웃하게 마련된 분리 챔버를 포함하며,The separation unit includes a separation chamber provided adjacent to the injection unit so that the mixed solution flows in between the injection unit and the valve,
    상기 분리 챔버는 상기 디스크부의 회전중심으로부터 반경방향으로 상기 주입부보다 멀어지는 위치에 마련되는 원심력을 이용한 희소세포 분리장치.The separation chamber is a rare cell separation device using centrifugal force, wherein the separation chamber is provided at a position farther away from the injection unit in a radial direction from the rotation center of the disc unit.
  8. 제2항에 있어서, According to paragraph 2,
    상기 용해물질은 적혈구를 용해시키는 RBC 라이시스 버퍼(Red Blood cell Lysis buffer)를 포함하고, The lysate includes RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells,
    상기 마이크로 비드는 상기 전혈의 밀도보다 높으며, 상기 유핵적혈구의 밀도보다 낮은 밀도를 가지는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force wherein the microbeads have a density higher than the density of the whole blood and lower than the density of the nucleated red blood cells.
  9. 제8항에 있어서, According to clause 8,
    상기 마이크로 비드는 1.13 내지 1.17g/mL의 밀도를 가지는 원심력을 이용한 희소세포 분리장치.The microbeads are a rare cell separation device using centrifugal force having a density of 1.13 to 1.17 g/mL.
  10. 제7항에 있어서,In clause 7,
    상기 수집부는, 상기 분리 챔버와 분리 유로를 사이에 두고 연결되도록, 상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 분리 챔버와 이웃하게 마련되는 수집 챔버를 포함하며, The collection unit includes a collection chamber provided adjacent to the separation chamber at a position radially away from the rotation center of the disk unit so as to be connected to the separation chamber with a separation passage therebetween,
    상기 디스크부의 회전중심으로부터 반경방향을 기준으로 상기 분리 챔버의 후단으로부터 상기분리 유로로 연결된 상기 수집 챔버에 상기 밀도구배물질이 채워지는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force in which the density gradient material is filled into the collection chamber connected to the separation passage from the rear end of the separation chamber based on the radial direction from the rotation center of the disk unit.
  11. 회전되는 디스크부; a rotating disk unit;
    상기 디스크부의 회전중심과 이웃하도록 상기 디스크부에 마련되어 상기 디스크부와 함께 회전되며, 전혈, 적혈구를 용해하는 용해물질 및 상기 전혈내의 핵을 가지는 희소세포와 결합되는 마이크로 비드가 주입되는 주입부; An injection unit provided in the disc unit adjacent to the rotation center of the disc unit and rotated together with the disc unit, into which whole blood, a lytic substance that dissolves red blood cells, and microbeads combined with rare cells having a nucleus in the whole blood are injected;
    상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 주입부와 이웃하여 연결되도록 상기 디스크부에 마련되며, 상기 주입부로부터 제공된 상기 전혈, 용해물질 및 마이크로 비드로부터 상기 마이크로 비드와 결합된 상기 희소세포만을 원심력에 의한 밀도차이로 분리시키는 분리부; 및The disc unit is provided to be adjacent to and connected to the injection unit at a position radially away from the rotation center of the disc unit, and the rare cells combined with the microbeads from the whole blood, lysed material, and microbeads provided from the injection unit. A separation unit that separates the bays by density difference due to centrifugal force; and
    상기 디스크부의 회전중심으로부터 반경방향으로 멀어지는 위치에 상기 분리부와 이웃하여 연결되도록 상기 디스크부에 마련되며, 상기 디스크부에 상기 분리부와 이웃하여 연결되도록 마련되어, 상기 분리부로부터 분리된 상기 희소세포를 수집하는 수집부; The disk portion is provided to be adjacent to and connected to the separation portion at a position radially away from the rotation center of the disk portion, and the disk portion is provided to be adjacent to and connected to the separation portion, and the rare cells separated from the separation portion are provided. a collection unit that collects;
    를 포함하는 원심력을 이용한 희소세포 분리장치. Rare cell separation device using centrifugal force including.
  12. 제11항에 있어서, According to clause 11,
    상기 희소세포는 유핵적혈구 또는 암세포를 포함하는 원심력을 이용한 희소세포 분리장치. A rare cell separation device using centrifugal force, wherein the rare cells include nucleated red blood cells or cancer cells.
  13. 제11항에 있어서,According to clause 11,
    상기 디스크부는 원반 형상의 디스크 몸체를 포함하여 회전중심을 중심으로 회전되되, 소정 회전각도 범위내에서 왕복 회전되는 원심력을 이용한 희소세포 분리장치. A rare cell separation device using centrifugal force where the disk unit includes a disk-shaped disk body and rotates around a rotation center, reciprocating within a predetermined rotation angle range.
  14. 제1항에 있어서,According to paragraph 1,
    상기 주입부는, The injection part,
    상기 전혈, 용해물질 및 마이크로 비드가 주입되는 혈액 챔버를 포함하는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force including a blood chamber into which the whole blood, lysate, and microbeads are injected.
  15. 제11항에 있어서, According to clause 11,
    상기 주입부는, The injection part,
    상기 전혈과 용해물질이 주입되어 상기 전혈로부터 상기 적혈구를 용해시키는 혈액 챔버; a blood chamber into which the whole blood and lysate are injected to lyse the red blood cells from the whole blood;
    상기 혈액 챔버로부터 상기 용해물질에 의해 용해된 잔여물을 수거하는 수거 챔버; 및a collection chamber for collecting residue dissolved by the dissolved material from the blood chamber; and
    상기 혈액 챔버로부터 상기 잔여물이 수거되면, 상기 혈액 챔버로 상기 마이크로 비드를 주입하는 비드 챔버;a bead chamber for injecting the microbeads into the blood chamber when the residue is collected from the blood chamber;
    를 포함하는 원심력을 이용한 희소세포 분리장치. Rare cell separation device using centrifugal force including.
  16. 제11항에 있어서, According to clause 11,
    상기 주입부와 상기 분리부 사이에는 밸브가 마련되어 상기 전혈, 용해물질 및 마이크로 비드의 혼합액의 이동을 선택적으로 개방 또는 폐쇄시키는 원심력을 이용한 희소세포 분리장치. A rare cell separation device using centrifugal force, wherein a valve is provided between the injection unit and the separation unit to selectively open or close the movement of the mixture of whole blood, lysate, and microbeads.
  17. 제11항에 있어서, According to clause 11,
    상기 분리부는 상기 주입부와 밸브를 사이에 두고 상기 전혈, 용해물질 및 마이크로 비드의 혼합액이 유입되도록, 상기 주입부와 이웃하게 마련된 분리 챔버를 포함하는 원심력을 이용한 희소세포 분리장치.The separation unit is a rare cell separation device using centrifugal force including a separation chamber provided adjacent to the injection unit so that the mixture of whole blood, lysate, and microbeads flows in between the injection unit and the valve.
  18. 제12항에 있어서, According to clause 12,
    상기 용해물질은 적혈구를 용해시키는 RBC 라이시스 버퍼(Red Blood cell Lysis buffer)를 포함하고, The lysate includes RBC lysis buffer (Red Blood cell Lysis buffer) that lyses red blood cells,
    상기 마이크로 비드는 상기 전혈의 밀도보다 높으며, 상기 유핵적혈구의 밀도보다 낮은 밀도를 가지는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force wherein the microbeads have a density higher than the density of the whole blood and lower than the density of the nucleated red blood cells.
  19. 제18항에 있어서, According to clause 18,
    상기 마이크로 비드는 1.13 내지 1.17g/mL의 밀도를 가지는 원심력을 이용한 희소세포 분리장치.The microbeads are a rare cell separation device using centrifugal force having a density of 1.13 to 1.17 g/mL.
  20. 제17항에 있어서,According to clause 17,
    상기 수집부는, 상기 분리 챔버와 분리 유로를 사이에 두고 연결되는 수집 챔버를 포함하며, The collection unit includes a collection chamber connected to the separation chamber with a separation passage therebetween,
    상기 디스크부의 회전중심으로부터 반경방향을 기준으로 상기 분리 챔버의 후단으로부터 상기분리 유로로 연결된 상기 수집 챔버에 상기 밀도구배물질이 채워지는 원심력을 이용한 희소세포 분리장치.A rare cell separation device using centrifugal force in which the density gradient material is filled into the collection chamber connected to the separation passage from the rear end of the separation chamber based on the radial direction from the rotation center of the disk unit.
PCT/KR2023/018531 2022-11-18 2023-11-17 Rare cell isolation device using centrifugal force WO2024106996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220155110A KR20240073374A (en) 2022-11-18 2022-11-18 Rare cell separation apparatus using centrifugal force
KR10-2022-0155110 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024106996A1 true WO2024106996A1 (en) 2024-05-23

Family

ID=91084974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018531 WO2024106996A1 (en) 2022-11-18 2023-11-17 Rare cell isolation device using centrifugal force

Country Status (2)

Country Link
KR (1) KR20240073374A (en)
WO (1) WO2024106996A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868770B1 (en) * 2006-08-11 2008-11-17 삼성전자주식회사 Centrifugal force based magnet position control device and compact disk-shaped micro fluidic system using the same
KR100883658B1 (en) * 2007-04-02 2009-02-18 삼성전자주식회사 Centrifugal force-based microfluidic device and microfluidic system including the same
KR101722548B1 (en) * 2010-01-29 2017-04-03 삼성전자주식회사 Centrifugal Micro-fluidic Device and Method for detecting analytes from liquid specimen
KR102124056B1 (en) * 2012-11-28 2020-06-18 삼성전자주식회사 microfluidic apparatus and method of enriching target cell
KR102155587B1 (en) * 2018-11-15 2020-09-14 재단법인대구경북과학기술원 Microfluidic apparatus and method for separating target cell using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012315A1 (en) 2013-07-24 2015-01-29 愛知県 Device for isolating peripheral circulating tumor cells or rare cells, and method for isolating peripheral circulating tumor cells or rare cells
KR20150045816A (en) 2013-10-21 2015-04-29 삼성전자주식회사 Microfluidic apparatus and target cell detecting method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868770B1 (en) * 2006-08-11 2008-11-17 삼성전자주식회사 Centrifugal force based magnet position control device and compact disk-shaped micro fluidic system using the same
KR100883658B1 (en) * 2007-04-02 2009-02-18 삼성전자주식회사 Centrifugal force-based microfluidic device and microfluidic system including the same
KR101722548B1 (en) * 2010-01-29 2017-04-03 삼성전자주식회사 Centrifugal Micro-fluidic Device and Method for detecting analytes from liquid specimen
KR102124056B1 (en) * 2012-11-28 2020-06-18 삼성전자주식회사 microfluidic apparatus and method of enriching target cell
KR102155587B1 (en) * 2018-11-15 2020-09-14 재단법인대구경북과학기술원 Microfluidic apparatus and method for separating target cell using the same

Also Published As

Publication number Publication date
KR20240073374A (en) 2024-05-27

Similar Documents

Publication Publication Date Title
CN104360050B (en) A kind of method of lymphocyte immunity typing and test kit
Fathman et al. Thymus cell maturation: II. Differentiation of three “mature” subclasses in Vivo
CN103869060B (en) Circulating tumor stem cell detection kit based on magnetic beads and microfluidic chip
WO2016028011A1 (en) Target material separation apparatus and target material separation method
CN103940997B (en) A kind of breast carcinoma circulating tumor cell detecting system and test kit
WO2023068685A1 (en) Microfluidic bubble trap
CN113019485B (en) Micro-fluidic chip, circulating tumor cell automatic separation detection system and method
WO2024106996A1 (en) Rare cell isolation device using centrifugal force
CN109187978A (en) It is a kind of detect circulating tumor cell HER2, ER, PR immunofluorescent reagent box and its application
CN104360049B (en) A kind of method of T lymphocyte immunity typing and test kit
Nelson et al. Infectious mononucleosis hepatitis: a clinicopathologic study
CN110079457A (en) Micro-fluidic chip and excretion body extracting method
US20210170409A1 (en) Microfluidic chip for circulating tumor cell separation, circulating tumor cell separation method and counting method
CN109187977A (en) It is a kind of detect HER2 antigen different loci immunofluorescent reagent box and application
Yao et al. Increased numbers of macrophages in noninflamed gastroduodenal mucosa of patients with Crohn's disease
Ponzetto et al. Helicobacter pylori infection in patients with Hepatitis C Virus positive chronic liver diseases
WO2021071172A1 (en) Apparatus and method for unbiased and continuous separation of circulating tumor cells
CN111500407B (en) CTC capture detection chip based on three-layer microstructure
CN108025320A (en) The method and apparatus that sample is separated and collected
CN108686722A (en) A kind of centrifugal immunological magnetic bead sorting micro-fluidic chip and device
Gonzalo et al. Common inflammatory disorders and neoplasia of the ileal pouch: a review of histopathology
Williams et al. Glomerular immune complex formation and induction of lymphoma in athymic nude mice by tissue filtrates of Crohn's disease patients
CN207866824U (en) A kind of the anti-of efficient detection determines card
CN112924363A (en) Intermediate circulating tumor cell as tumor diagnosis and prognosis marker and application thereof
WO2020204232A1 (en) Multi-system for simultaneously performing biochemical test and blood test, and multi-disc used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892059

Country of ref document: EP

Kind code of ref document: A1