WO2024106967A1 - Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same, and method for preparing same - Google Patents

Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same, and method for preparing same Download PDF

Info

Publication number
WO2024106967A1
WO2024106967A1 PCT/KR2023/018435 KR2023018435W WO2024106967A1 WO 2024106967 A1 WO2024106967 A1 WO 2024106967A1 KR 2023018435 W KR2023018435 W KR 2023018435W WO 2024106967 A1 WO2024106967 A1 WO 2024106967A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
olefin copolymer
ethylene alpha
catalyst
Prior art date
Application number
PCT/KR2023/018435
Other languages
French (fr)
Korean (ko)
Inventor
채병훈
홍연진
이래하
김호석
박희만
김소현
민경대
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2024106967A1 publication Critical patent/WO2024106967A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64168Tetra- or multi-dentate ligand
    • C08F4/64186Dianionic ligand
    • C08F4/64193OOOO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Definitions

  • the solar energy market is also growing explosively, and among them, olefin materials are widely used as encapsulating materials for solar panels.
  • the encapsulant can be manufactured using the same material, as well as formed using two or more different materials.
  • EVA ethylene vinyl acetate
  • this material has poor adhesion to glass and other parts of the module. Accordingly, when a photovoltaic module is used for a long period of time, peeling is easily caused between each layer of the module, which causes problems such as lowering the efficiency of the module or causing corrosion due to moisture penetration.
  • the EVA-based encapsulants known to date have poor resistance to ultraviolet (UV) rays, etc., and when used for a long period of time, discoloration or discoloration problems occur, which also reduces the efficiency of the module.
  • the EVA-based encapsulant has a problem in that stress is generated during curing, causing damage to the module.
  • Ethylene alpha-olefin copolymer material protects the cells that produce solar energy and provides adhesion to the glass and backsheet to protect against moisture and external shocks. In order to perfectly perform this role, it must be possible to prevent loss of power obtained from solar power generation, and for this, the volume resistance value of the encapsulant must be above a certain standard.
  • the purpose of the present invention is to provide a catalyst for polymerization of ethylene alpha-olefin copolymers capable of polymerization at high temperatures.
  • Another object of the present invention is to provide an ethylene alpha-olefin copolymer with excellent light transmittance and volume resistance and a method for producing the same.
  • a catalyst for polymerization of ethylene alpha-olefin copolymers containing a transition metal compound represented by the following formula (1) is provided.
  • M is a group 4 transition metal
  • (X) n of n is 0, 1, 2 or 3;
  • Z 1 , Z 2 , Z 3 and Z 4 are the same or different from each other and are each independently oxygen or sulfur,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently hydrogen; (C 1 -C 20 )alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 )alkenyl with or without acetal, ketal or ether groups; (C 1 -C 20 )alkyl(C 6 -C 20 )aryl with or without an acetal, ketal or ether group; (C 6 -C 20 )aryl(C 1 -C 20 )alkyl with or without an acetal, ketal or ether group; or (C 1 -C 20 )silyl with or without an acetal, ketal or ether group).
  • the volume resistance is 1.0 ⁇ 10
  • An ethylene alpha-olefin copolymer having a thickness of at least 16 ⁇ cm is provided.
  • it includes the step of polymerizing an ethylene structural unit and an alpha-olefin structural unit in the presence of a catalyst for polymerizing ethylene alpha-olefin copolymer, wherein the polymerization step is performed at a temperature of 150 to 200° C.
  • a method for producing an ethylene alpha-olefin copolymer is provided, which is carried out in.
  • the catalyst for polymerization of ethylene alpha-olefin copolymer according to the present invention can polymerize alpha-olefin copolymer at high temperature.
  • the ethylene alpha-olefin copolymer obtained using the catalyst for polymerization of ethylene alpha-olefin copolymer according to the present invention has high volume resistance, high light transmittance, and low yellowing index.
  • alkyl refers to a monovalent straight-chain or branched saturated hydrocarbon radical consisting of only carbon and hydrogen atoms.
  • alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t- Including but not limited to butyl, pentyl, hexyl, octyl, dodecyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, etc.
  • alkenyl refers to a straight-chain or branched-chain hydrocarbon radical containing one or more carbon-carbon double bonds, and includes ethenyl, propenyl, butenyl, pentenyl, etc. It is not limited to this.
  • alkynyl refers to a straight-chain or branched-chain hydrocarbon radical containing one or more carbon-carbon triple bonds, such as methynyl, ethynyl, propynyl, butynyl, pentynyl, and hexy. Includes, but is not limited to, nyl, heptinyl, octinyl, etc.
  • aryl described in the present invention is an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, and includes a single or fused ring system. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
  • alkylaryl refers to an organic group in which one or more hydrogens of an aryl group are replaced by an alkyl group, such as methylphenyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl, isopropylphenyl, It includes, but is not limited to, butylphenyl, t-butylphenyl, etc.
  • arylalkyl refers to an organic group in which one or more hydrogens of an alkyl group are replaced by an aryl group, and includes, but is not limited to, phenylpropyl, phenylhexyl, etc.
  • arylamido means an organic group in which at least one hydrogen in -NH 2 of the amido group is replaced with an aryl group, and the alkyl group in the alkylamido group and the aryl group in the arylamido group are It may be the same as the examples of the alkyl group and aryl group described above, but is not limited thereto.
  • alkylidene used in the present invention refers to a divalent aliphatic hydrocarbon group in which two hydrogen atoms are removed from the same carbon atom of the alkyl group, and includes ethylidene, propylidene, isopropylidene, butylidene, and pentylidene. It includes, but is not limited to, etc.
  • acetal refers to an organic group formed by the combination of an alcohol and an aldehyde, that is, a substituent with two ether (-OR) bonds on one carbon, methoxymethoxy, 1-methoxy, Toxyethoxy, 1-methoxypropyloxy, 1-methoxybutyloxy, 1-ethoxyethoxy, 1-ethoxypropyloxy, 1-ethoxybutyloxy, 1-(n-butoxy)ethoxy, 1-(iso-butoxy)ethoxy, 1-(sec-butoxy)ethoxy, 1-(tertiary-butoxy)ethoxy, 1-(cyclohexyloxy)ethoxy, 1-methoxy -1-methylmethoxy, 1-methoxy-1-methylethoxy, etc., but not limited thereto.
  • ether as used in the present invention is an organic group having at least one ether bond (-O-), and includes 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, and 2-phenoxyethyl. , 2-(2-methoxyethoxy)ethyl, 3-methoxypropyl, 3-butoxypropyl, 3-phenoxypropyl, 2-methoxy-1-methylethyl, 2-methoxy-2-methylethyl , 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, 2-phenoxyethyl, etc., but are not limited thereto.
  • sil refers to a -SiH 3 radical derived from silane, and at least one of the hydrogen atoms in the silyl group may be substituted with various organic groups such as alkyl and halogen, and may be substituted with various organic groups such as alkyl and halogen.
  • trimethylsilyl triethylsilyl, t-butyldimethylsilyl, vinyldimethylsilyl, propyldimethylsilyl, Includes, but is not limited to, triphenylsilyl, diphenylsilyl, phenylsilyl, trimethoxysilyl, methyldimeroxysilyl, ethyldiethoxysilyl, triethoxysilyl, vinyldimethoxysilyl, triphenoxysilyl, etc.
  • alkoxy refers to an -O-alkyl radical, where ‘alkyl’ is as defined above.
  • alkoxy radicals include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, etc.
  • halogen used in the present invention means a fluorine, chlorine, bromine or iodine atom.
  • C n the number of carbon atoms is n.
  • the catalyst for ethylene alpha-olefin copolymer polymerization provided by the present invention contains a transition metal compound having a symmetric structure and is a compound represented by the following formula (1).
  • M is a group 4 transition metal
  • (X) n of n is 0, 1, 2 or 3;
  • Z 1 , Z 2 , Z 3 and Z 4 are the same or different from each other and are each independently oxygen or sulfur,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently hydrogen; (C 1 -C 20 )alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 )alkenyl with or without acetal, ketal or ether groups; (C 1 -C 20 )alkyl(C 6 -C 20 )aryl with or without an acetal, ketal or ether group; (C 6 -C 20 )aryl(C 1 -C 20 )alkyl with or without an acetal, ketal or ether group; or (C 1 -C 20 ) silyl with or without an acetal, ketal or ether group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 may each independently be substituted with a substituent containing an acetal, ketal or ether group. When substituted with the above substituent, it may be more advantageous for supporting the transition metal compound on the surface of the carrier. there is.
  • M may be titanium (Ti), zirconium (Zr), or hafnium (Hf).
  • Z 1 , Z 2 , Z 3 and Z 4 may be the same as or different from each other, and preferably each independently may be oxygen.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may each independently be hydrogen or (C 1 -C 20 )alkyl, and preferably may each independently be hydrogen or methyl. More preferably, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may each independently be hydrogen or methyl. However, at least one of R 1 and R 14 may be methyl.
  • R 1 and R 14 may each be (C 1 -C 20 )alkyl(C 6 -C 20 )aryl. More preferably, R 1 and R 14 may each independently be (C 1 -C 20 )alkyl(C 6 -C 20 )aryl in which two or more hydrogens of the aryl group are replaced by an alkyl group.
  • the transition metal compound represented by Formula 1 preferably contains the above substituents to control the electronic and steric environment around the metal.
  • the catalyst composition may further include a cocatalyst compound.
  • the co-catalyst compound activates the catalyst compound, and may be an aluminoxane compound, an organo-aluminum compound, or a bulky compound that activates the catalyst compound.
  • the cocatalyst compound may be selected from the group consisting of compounds represented by the following formulas 2 to 4.
  • Ra is each independently halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,
  • n is an integer of 2 or more.
  • Q is aluminum or boron
  • Rb is each independently halogen; Or it is a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen.
  • [W] + is a cationic Lewis acid; or a cationic Lewis acid with a hydrogen atom bonded to it,
  • Z is a group 13 element
  • Rc is each independently a (C 6 -C 20 )aryl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group; It is a (C 1 -C 20 )alkyl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group.
  • the cocatalyst compound is included in a catalyst together with the transition metal compound represented by Formula 1 and serves to activate the transition metal compound. Specifically, in order for the transition metal compound to become an active catalyst component used in olefin polymerization, the ligand in the transition metal compound is extracted to cationize the central metal (M 1 or M 2 ) while generating a counter ion with a weak binding force, that is, an anion.
  • a compound containing a unit represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4 that can act together act as cocatalysts.
  • the 'unit' represented by Formula 2 is a structure in which n structures within [ ] are connected in the compound. If it contains the unit represented by Formula 2, other structures in the compound are not particularly limited, and the repetition of Formula 2 It may be a cluster-type compound in which units are connected to each other, for example, a spherical compound.
  • the compound represented by Formula 2 is not particularly limited as long as it is alkylaluminoxane, but preferred examples include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, and butylaluminoxane. Oxylic acid and the like, and a particularly preferable compound is methylaluminoxane.
  • the compound represented by Formula 3 is not particularly limited as an alkyl metal compound, and non-limiting examples thereof include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloroaluminum, and triiso Propyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyldimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri-p-tolyl These include aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, and tributyl boron.
  • the transition metal compound one or two or more types selected from the group consisting of trimethyl aluminum, triethyl aluminum, and triis
  • the compound represented by Formula 4 is a dimethylanilinium cation when [W] + is a cationic Lewis acid to which a hydrogen atom is bonded, and when [W] + is a cationic Lewis acid, [ (C 6 H 5 ) 3 C] + , and [Z(Rc) 4 ] - may be preferably used as [B(C 6 F 5 ) 4 ] - .
  • the compound represented by Formula 4 is not particularly limited, but non-limiting examples where [W] + is a cationic Lewis acid to which a hydrogen atom is bonded include triphenylcarbenium borate, trimethylammonium tetraphenylborate, and methyldioctadecylammonium tetraphenyl.
  • a catalyst can be prepared using the compounds of Formula 1 to Formula 4.
  • the method exemplified below can be used to prepare the catalyst.
  • the catalyst can be prepared by contacting a mixture of the transition metal compound of Formula 1 and the compounds represented by Formulas 3 and 4, or by directly adding the compounds represented by Formulas 3 and 4 into a polymerizer, respectively.
  • the amount of the co-catalyst compound added can be determined by considering the amount of the transition metal compound represented by Formula 1 and the amount necessary to sufficiently activate the transition metal compound.
  • the content of the co-catalyst compound may be 1:1 to 100,000, preferably 1:1, based on the molar ratio of the metal contained in the co-catalyst compound to 1 mole of the transition metal contained in the transition metal compound represented by Formula 1. It may be 1 to 10,000, more preferably 1:1 to 5,000.
  • the compound represented by Formula 2 is preferably used in a molar ratio of 1:10 to 5,000, more preferably in a molar ratio of 1:50 to 1,000, with respect to the transition metal compound represented by Formula 1.
  • it may be included in a molar ratio of 1:100 to 1,000. If the molar ratio of the compound represented by Formula 2 to the transition metal compound of Formula 1 is less than 1:10, the amount of aluminoxane is so small that a problem may occur in which activation of the transition metal compound cannot proceed completely, and 1:5,000 may occur. If it is exceeded, the excess aluminoxane may act as a catalyst poison and the polymer chain may not grow well.
  • the ratio is 1:1 to 100, preferably 1:1 to 10, with respect to the transition metal compound represented by Formula 1.
  • it may be included in a molar ratio of 1:1 to 3.
  • a of the cocatalyst compound represented by Formula 3 is aluminum, it may vary depending on the amount of water in the polymerization system, but is 1:1 to 1000, preferably 1:1, with respect to the transition metal compound represented by Formula 1. It may be included in a molar ratio of 1 to 500, more preferably 1:1 to 100.
  • the cocatalyst compound represented by Formula 4 may be included in a molar ratio of 1:0.5 to 30, preferably 1:0.7 to 20, and more preferably 1:1 to 10 with respect to the transition metal compound represented by Formula 1. . If the ratio of the cocatalyst compound represented by Formula 4 is less than 1:0.5, the amount of activator is relatively small and the metal compound cannot be completely activated, which may cause a problem in that the activity of the resulting catalyst composition decreases. If it exceeds 30, the metal compound is completely activated, but the unit cost of the catalyst composition may not be economical due to the remaining excess activator, or the purity of the produced polymer may be low.
  • the catalyst composition of the present invention containing the transition metal compound and the cocatalyst compound may further include a carrier.
  • a carrier any carrier made of inorganic or organic materials used in the production of catalysts in the technical field to which the present invention pertains may be used without limitation.
  • the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -Cr 2 O 3 , SiO 2 -TiO 2 -MgO, bauxite, zeolite, starch, cyclodextrin (cyclodextrine), or it may be a synthetic polymer.
  • the carrier includes a hydroxy group on the surface, and is selected from the group consisting of silica (SiO 2 ), silica-alumina (SiO 2 -Al 2 O 3 ), and silica-magnesia (SiO 2 -MgO). There may be more than one species.
  • Methods for supporting a catalyst containing the transition metal compound and the co-catalyst compound on the carrier include directly supporting the transition metal compound on a dehydrated carrier; A method of pretreating the carrier with the cocatalyst compound and then supporting the transition metal compound; A method of supporting the transition metal compound on the carrier and then post-treating it with the cocatalyst compound; A method of reacting the transition metal compound and the co-catalyst compound and then adding the carrier for reaction may be used.
  • the solvent that can be used in the above supporting method may be an aromatic hydrocarbon-based solvent, an aromatic hydrocarbon-based solvent, a halogenated aliphatic hydrocarbon-based solvent, or a mixture thereof.
  • the aliphatic hydrocarbon-based solvent includes, but is not limited to, Pentane, Hexane, Heptane, Octane, Nonane, Decane, Undecane, or Dodecane ( Dodecane), etc.
  • Non-limiting examples of the aromatic hydrocarbon solvent include benzene, monochlorobenzene, dichlorobenzene, trichlorobenzene, or toluene.
  • Non-limiting examples of the halogenated aliphatic hydrocarbon-based solvent include dichloromethane, trichloromethane, dichloroethane, or trichloroethane.
  • the loading method is carried out at a temperature of -70 to 200°C, preferably -50 to 150°C, and more preferably 0 to 100°C.
  • the catalyst site is relatively insoluble and/or fixed, so that the polymer chain is not subject to this information. Accordingly, it can be prepared by polymerization of monomers under conditions that allow rapid immobilization. This immobilization can be accomplished, for example, by using a solid insoluble catalyst, by carrying out the polymerization in a medium in which the resulting polymer is generally insoluble, and by maintaining the polymerization reactants and products below the crystallization temperature (T c ) of the polymer. .
  • the above-mentioned catalyst can be preferably applied to the copolymerization of ethylene and alpha-olefin.
  • a method for producing an ethylene alpha-olefin copolymer including the step of copolymerizing ethylene and alpha-olefin in the presence of the catalyst will be described.
  • Processes for polymerizing ethylene alpha-olefin copolymers are well known in the art and include bulk polymerization, solution polymerization, slurry polymerization, and low pressure gas phase polymerization.
  • Metallocene catalysts are particularly useful in known forms of operation using fixed bed, moving bed or slurry processes carried out in single, series or parallel reactors.
  • a solvent or propylene or ethylene monomer itself can be used as a medium.
  • the catalyst presented in the present invention exists in a uniform form within the polymerization reactor, it is preferable to apply it to a solution polymerization process conducted at a temperature above the melting point of the polymer.
  • a heterogeneous catalyst composition obtained by supporting the transition metal compound and cocatalyst on a porous metal oxide support may be used in slurry polymerization or gas phase polymerization processes. Therefore, if the catalyst of the present invention is used with an inorganic carrier or an organic polymer carrier, it can be applied to slurry or gas phase processes. That is, the transition metal compound and co-catalyst compound can be used in a form supported on an inorganic carrier or an organic polymer carrier.
  • Solvents that can be used during the polymerization reaction may be aliphatic hydrocarbon-based solvents, aromatic hydrocarbon-based solvents, halogenated aliphatic hydrocarbon-based solvents, or mixtures thereof.
  • the aliphatic hydrocarbon-based solvent includes, butane, isobutane, pentane, hexane, heptane, octane, nonane, and decane as non-limiting examples. (Decane), Undecane, Dodecane, Cyclopentane, Methylcyclopentane, Cyclohexane, etc.
  • the aromatic hydrocarbon solvents include, but are not limited to, benzene, monochlorobenzene, dichlorobenzene, trichlorobenzene, toluene, xylene, and chlorobenzene. (Chlorobenzene), etc. may be mentioned.
  • the halogenated aliphatic hydrocarbon solvent includes, but is not limited to, dichloromethane, trichloromethane, chloroethane, dichloroethane, trichloroethane, and 1,2-dichloroethane. (1,2-Dichloroethane) and the like.
  • the present invention provides an ethylene alpha-olefin copolymer prepared using the catalyst for polymerization of the ethylene alpha-olefin copolymer and a method for producing the same.
  • the ethylene alpha-olefin copolymer according to the present invention can be prepared by polymerizing ethylene and alpha-olefin comonomer in the presence of the above catalyst composition.
  • the transition metal compound and the cocatalyst component can be added separately into the reactor, or each component can be mixed in advance and then added to the reactor, and there are no restrictions on mixing conditions such as the order of addition, temperature, or concentration.
  • 1-butene when producing a copolymer of ethylene and 1-butene, 1-butene may be included in an amount of 0.1 to 99.9% by weight, preferably 1 to 75% by weight, more preferably 5 to 50% by weight. may be included.
  • the amount of the catalyst added in the polymerization reaction according to the present invention is not particularly limited because it can be determined within a range where the polymerization reaction of the monomer can sufficiently occur depending on the slurry phase, liquid phase, gas phase, or solution process.
  • the amount of the catalyst added is preferably 10 -8 to 1 mol/L, based on the concentration of the central metal (M) in the transition metal compound per unit volume (L) of monomer, and 10 -7 to 10 -1 mol. It is more preferable that it is /L, and it is even more preferable that it is 10 -7 to 10 -2 mol/L.
  • the polymerization reaction of the present invention may be conducted as a batch type, semi-continuous type, or continuous type reaction, and is preferably performed as a continuous reaction.
  • the temperature conditions for the polymerization reaction of the present invention can be determined considering the efficiency of the polymerization reaction depending on the type of reaction to be applied and the type of reactor, but the polymerization temperature may be 120°C or higher, preferably 150 to 200°C. Since the reactivity increases as the polymerization temperature increases in the polymerization process, the catalyst for polymerization of ethylene alpha-olefin copolymers has the advantage of being capable of polymerization at a high temperature of 150°C or higher.
  • the pressure conditions for the polymerization reaction of the present invention can be determined considering the efficiency of the polymerization reaction depending on the type of reaction to be applied and the type of reactor, but the polymerization pressure may be 1 to 100 atmospheres, preferably 5 to 50 atmospheres. .
  • the volume resistance of the ethylene alpha-olefin copolymer measured according to the ASTM D257 evaluation method is 1.0 ⁇ 10 16 ⁇ cm or more. You can have The ethylene alpha-olefin copolymer of the present invention has high volume resistance and may be suitable for use as a solar encapsulant.
  • the ethylene alpha-olefin copolymer according to the present invention satisfies the above-mentioned physical properties while simultaneously exhibiting physical properties similar to those of the ethylene alpha-olefin copolymer polymerized under a catalyst containing a transition metal compound.
  • the ethylene alpha-olefin copolymer according to the present invention may exhibit a density of 0.850 to 0.920 g/mL and a melt index (MI) of 0.1 to 40 g/10min.
  • the ethylene alpha-olefin copolymer according to the present invention may exhibit a molecular weight distribution (Mw/Mn) of 1 to 10, preferably 1.5 to 8, and more preferably 1.5 to 6.
  • the ethylene alpha-olefin copolymer according to the present invention is manufactured by copolymerization of ethylene and alpha-olefin, and the alpha-olefin may be a C 3 -C 12 or C 3 -C 8 aliphatic olefin.
  • the alpha-olefin is propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, 4,4-dimethyl-1-pentene, 4, Examples include 4-diethyl-1-hexene or 3,4-dimethyl-1-hexene, and any one or a mixture of two or more of these may be used.
  • the ratio of ethylene and alpha-olefin added to the reactor during polymerization is not particularly limited, but it is preferable that ethylene:alpha-olefin is added at a weight ratio of 1:0.5 to 1:1.3.
  • ethylene and alpha-olefin are added in the above weight ratio, an olefin copolymer having a high molecular weight and a high comonomer content can be obtained.
  • the transition metal compound represented by Formula 1 has excellent catalytic activity, preferably 200 kg/g-cat or more.
  • the ethylene alpha-olefin copolymer of the present invention can have a light transmittance of 90% or more as measured by ASTM D1003 by polymerizing in a catalyst composition containing a transition metal compound represented by Formula 1 above.
  • the ethylene alpha-olefin copolymer of the present invention is polymerized in the presence of a catalyst composition containing a transition metal compound represented by Formula 1, thereby producing an ethylene alpha-olefin copolymer with a yellowing index of 2.0 or less according to the ASTM D1925 evaluation method.
  • a catalyst composition containing a transition metal compound represented by Formula 1 thereby producing an ethylene alpha-olefin copolymer with a yellowing index of 2.0 or less according to the ASTM D1925 evaluation method.
  • the reaction was terminated using ethanol, the temperature was lowered to room temperature, and excess gas was discharged.
  • the copolymer polymerization solution dispersed in the solvent was transferred to a container and dried in a vacuum oven at 80° C. for more than 15 hours to prepare an ethylene alpha-olefin copolymer.
  • An ethylene alpha-olefin copolymer was prepared in the same manner as in the Example, except that Compound 2 below was used as a catalyst for polymerization of the ethylene alpha-olefin copolymer instead of Compound 1.
  • An ethylene alpha-olefin copolymer was prepared in the same manner as in the Example, except that Compound 3 below was used as a catalyst for polymerization of the ethylene alpha-olefin copolymer instead of Compound 1.
  • Example 1 Compound 1 120 0.85
  • Example 2 Compound 1 150 0.85
  • Example 3 Compound 1 180 0.85 Comparative Example 1 compound 2 120 1.1 Comparative Example 2
  • Compound 3 150 0.9
  • MI Melt index
  • Catalytic activity This is a value converted by measuring the weight of the produced ethylene alpha-olefin copolymer compared to the catalyst composition added during polymerization of the ethylene alpha-olefin copolymer.
  • Yellowing Index The yellowing index was measured for 3 mm thick injection molded specimens of the resin composition according to ASTM D 1925.
  • volume resistance ( ⁇ m): Place in a mold with a thickness of 3 mm and 8 cm in width and height, press and melt at 125°C for 7 minutes using a press molding machine, and then cool for 5 minutes. Regarding this, volume resistance was measured according to ASTM D257 evaluation method.
  • Example 1 Comonomer type Comonomer content (weight%) catalytic activity (kg/g-cat) density (g/mL) MI (g/10min) MWD
  • Example 1 1-butene 33.9 210.5 0.868 0.5 2.23
  • Example 2 1-butene 32.5 231.1 0.869 3.3 2.25
  • Example 3 1-butene 32.0 228.1 0.872 5.1 2.31
  • Comparative Example 1 1-butene 35.2 190.5 0.869 4.9 2.32
  • Comparative Example 2 1-butene 36.2 166.3 0.872 5.0 2.18
  • the ethylene alpha-olefin copolymers prepared according to Examples 1 to 3 had a volume resistance of 1.0 ⁇ 10 16 ⁇ m or more.
  • the ethylene alpha-olefin copolymers prepared according to Examples 1 to 3 have higher catalytic activity, compared to the ethylene alpha-olefin copolymers prepared according to Comparative Examples 1 and 2 and having similar density and melt index (MI). It can be seen that it exhibits high light transmittance and low yellowing index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention pertains to: a catalyst for the polymerization of an ethylene alpha-olefin copolymer, the catalyst containing a transition metal compound; an ethylene alpha-olefin copolymer using said catalyst; and a method for preparing the ethylene alpha-olefin copolymer. Provided is a catalyst for the polymerization of an ethylene alpha-olefin copolymer, the catalyst containing a transition metal compound represented by chemical formula 1. [Chemical formula 1] (In chemical formula 1, M is a Group 4 transition metal; n in (X)n is 0, 1, 2, or 3; X is a halogen, a (C1-C20)alkyl, a (C2-C20)alkenyl, a (C2-C20)alkynyl, a (C6-C20)aryl, a (C1-C20)alkyl(C6-C20)aryl, a (C6-C20)aryl(C1- C20)alkyl, a (C1-C20)alkylamido, a (C6-C20)arylamido, or a (C1-C20)alkylidene; Z1, Z2, Z3, and Z4 are identical to or different from each other and are each independently oxygen or sulfur; and R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are each independently hydrogen, a (C1-C20)alkyl with or without acetal, ketal or ether groups, a (C2-C20)alkenyl with or without acetal, ketal or ether groups, a (C1-C20)alkyl(C6-C20)aryl with or without acetal, ketal or ether groups, a (C6-C20)aryl(C1-C20)alkyl with or without acetal, ketal or ether groups, or a (C1-C20)silyl with or without acetal, ketal or ether groups).

Description

에틸렌 알파-올레핀 공중합체 중합용 촉매, 이를 이용한 에틸렌 알파-올레핀 공중합체 및 이의 제조방법Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using the same, and method for producing the same
본 발명은 에틸렌 알파-올레핀 공중합체 중합용 촉매 이를 이용한 에틸렌 알파-올레핀 공중합체 및 이의 제조방법에 관한 것이다. The present invention relates to a catalyst for polymerizing ethylene alpha-olefin copolymers, an ethylene alpha-olefin copolymer using the same, and a method for producing the same.
최근 신재생 에너지 시장의 확대와 함께 태양광 시장도 폭발적으로 성장하고 있으며, 그 중 올레핀 소재가 태양광 패널의 봉지재로 널리 사용되고 있다. 통상적으로, 봉지재는 동일한 재료를 사용하여 제조할 수 있음은 물론, 상이한 2 이상의 재료를 사용하여 형성할 수 있다. 현재 봉지재에 가장 범용되는 소재로는, 광전지 또는 광전지 어레이를 강유전체에 부착하고, 캡슐화하기 위해 사용되는 EVA(ethylene vinyl acetate)계 소재이나, 이는 유리 및 모듈의 타 부품과의 접착성이 떨어지고 이에 따라, 광전지 모듈을 장기간 사용하게 되면 모듈의 각 층간에 박리가 쉽게 유발되며, 이는 모듈의 효율 저하나 수분 침투에 의한 부식을 유발하는 문제가 존재한다.Recently, with the expansion of the renewable energy market, the solar energy market is also growing explosively, and among them, olefin materials are widely used as encapsulating materials for solar panels. Typically, the encapsulant can be manufactured using the same material, as well as formed using two or more different materials. Currently, the most commonly used material for encapsulation is EVA (ethylene vinyl acetate)-based material, which is used to attach and encapsulate photovoltaic cells or photovoltaic arrays to ferroelectrics. However, this material has poor adhesion to glass and other parts of the module. Accordingly, when a photovoltaic module is used for a long period of time, peeling is easily caused between each layer of the module, which causes problems such as lowering the efficiency of the module or causing corrosion due to moisture penetration.
또한, 현재까지 알려진 EVA계 봉지재는 자외선(UV) 등에 대한 내성이 떨어져서, 장기간 사용될 경우 탈색 또는 변색되는 문제가 발생하여, 이 역시 모듈의 효율을 저하시킨다. 또한, EVA계 봉지재는 경화시에 응력이 발생하여 모듈에 손상을 주는 문제점이 있다.In addition, the EVA-based encapsulants known to date have poor resistance to ultraviolet (UV) rays, etc., and when used for a long period of time, discoloration or discoloration problems occur, which also reduces the efficiency of the module. In addition, the EVA-based encapsulant has a problem in that stress is generated during curing, causing damage to the module.
이러한 문제를 해결하기 위해, 최근에는 에틸렌 알파-올레핀 공중합체의 사용이 각광받고 있다. 에틸렌 알파-올레핀 공중합체 소재는 태양광 에너지를 생산하는 셀을 보호하는 동시에 유리 및 백시트와 접착성을 부여하여 수분 및 외부로부터의 충격으로부터 보호하는 역할을 하고 있다. 이러한 역할을 완벽하게 수행하기 위해서는 태양광 발전으로 얻어진 전력의 손실을 방지할 수 있어야 하며, 이를 위해서 봉지재의 체적저항 값이 일정 기준치 이상이어야만 한다.To solve this problem, the use of ethylene alpha-olefin copolymers has recently been in the spotlight. Ethylene alpha-olefin copolymer material protects the cells that produce solar energy and provides adhesion to the glass and backsheet to protect against moisture and external shocks. In order to perfectly perform this role, it must be possible to prevent loss of power obtained from solar power generation, and for this, the volume resistance value of the encapsulant must be above a certain standard.
본 발명의 목적은 높은 온도에서 중합이 가능한 에틸렌 알파-올레핀 공중합체 중합용 촉매를 제공하는 것이다.The purpose of the present invention is to provide a catalyst for polymerization of ethylene alpha-olefin copolymers capable of polymerization at high temperatures.
또한 본 발명의 다른 목적은 광투과율 및 체적저항이 우수한 에틸렌 알파-올레핀 공중합체 및 이의 제조방법을 제공하는 것이다.Another object of the present invention is to provide an ethylene alpha-olefin copolymer with excellent light transmittance and volume resistance and a method for producing the same.
본 발명의 일 견지에 의하면, 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 에틸렌 알파-올레핀 공중합체 중합용 촉매가 제공된다.According to one aspect of the present invention, a catalyst for polymerization of ethylene alpha-olefin copolymers containing a transition metal compound represented by the following formula (1) is provided.
[화학식 1][Formula 1]
Figure PCTKR2023018435-appb-img-000001
Figure PCTKR2023018435-appb-img-000001
(상기 화학식 1에서, (In Formula 1 above,
M은 4족 전이금속이고;M is a group 4 transition metal;
(X)n의 n은 0, 1, 2 또는 3이며;(X) n of n is 0, 1, 2 or 3;
X는 할로겐, (C1-C20) 알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1- C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이며; and (C 6 -C 20 )aryl, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl, (C 1 -C 20 )alkylamido, (C 6 -C 20 )arylamido or (C 1 -C 20 )alkylidene;
Z1, Z2, Z3 및 Z4는 서로 동일하거나 상이하고, 각각 독립적으로산소 또는 황이며,Z 1 , Z 2 , Z 3 and Z 4 are the same or different from each other and are each independently oxygen or sulfur,
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 및 R14는 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이다).R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently hydrogen; (C 1 -C 20 )alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 )alkenyl with or without acetal, ketal or ether groups; (C 1 -C 20 )alkyl(C 6 -C 20 )aryl with or without an acetal, ketal or ether group; (C 6 -C 20 )aryl(C 1 -C 20 )alkyl with or without an acetal, ketal or ether group; or (C 1 -C 20 )silyl with or without an acetal, ketal or ether group).
본 발명의 다른 견지에 의하면, 에틸렌 알파-올레핀 공중합체 중합용 촉매의 존재 하에서 중합되고, 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 포함하는 에틸렌 알파-올레핀 공중합체에 있어서, 체적저항이 1.0 × 1016 Ω·cm 이상인, 에틸렌 알파-올레핀 공중합체가 제공된다. According to another aspect of the present invention, in the ethylene alpha-olefin copolymer polymerized in the presence of a catalyst for polymerization of ethylene alpha-olefin copolymer and comprising an ethylene structural unit and an alpha-olefin structural unit, the volume resistance is 1.0 × 10 An ethylene alpha-olefin copolymer having a thickness of at least 16 Ω·cm is provided.
본 발명의 또 다른 견지에 의하면, 에틸렌 알파-올레핀 공중합체 중합용 촉매의 존재 하에서, 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 중합하는 단계를 포함하고, 상기 중합하는 단계는 150 내지 200℃의 온도에서 수행되는 것인, 에틸렌 알파-올레핀 공중합체 제조방법이 제공된다.According to another aspect of the present invention, it includes the step of polymerizing an ethylene structural unit and an alpha-olefin structural unit in the presence of a catalyst for polymerizing ethylene alpha-olefin copolymer, wherein the polymerization step is performed at a temperature of 150 to 200° C. A method for producing an ethylene alpha-olefin copolymer is provided, which is carried out in.
본 발명에 따른 에틸렌 알파-올레핀 공중합체 중합용 촉매는 높은 온도에서 알파-올레핀 공중합체를 중합할 수 있다.The catalyst for polymerization of ethylene alpha-olefin copolymer according to the present invention can polymerize alpha-olefin copolymer at high temperature.
또한, 본 발명에 따른 에틸렌 알파-올레핀 공중합체 중합용 촉매를 사용하여 얻어진 에틸렌 알파-올레핀 공중합체는 높은 체적저항, 높은 광투과율 및 낮은 황변지수를 갖는다.In addition, the ethylene alpha-olefin copolymer obtained using the catalyst for polymerization of ethylene alpha-olefin copolymer according to the present invention has high volume resistance, high light transmittance, and low yellowing index.
이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명에 기재된 용어 「알킬」은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 도데실, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실 등을 포함하지만 이에 한정되지는 않는다.The term “alkyl” as used in the present invention refers to a monovalent straight-chain or branched saturated hydrocarbon radical consisting of only carbon and hydrogen atoms. Examples of such alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t- Including but not limited to butyl, pentyl, hexyl, octyl, dodecyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, etc.
또한, 본 발명에 기재된 용어 「알케닐」은 하나 이상의 탄소-탄소 이중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 포함하지만, 이에 한정되지는 않는다.In addition, the term “alkenyl” as used in the present invention refers to a straight-chain or branched-chain hydrocarbon radical containing one or more carbon-carbon double bonds, and includes ethenyl, propenyl, butenyl, pentenyl, etc. It is not limited to this.
또한, 본 발명에 기재된 용어 「알키닐」은 하나 이상의 탄소-탄소 삼중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 메티닐, 에티닐, 프로피닐, 부티닐, 펜티닐, 헥시닐, 헵티닐, 옥티닐 등을 포함하지만, 이에 한정되지는 않는다.In addition, the term "alkynyl" as used in the present invention refers to a straight-chain or branched-chain hydrocarbon radical containing one or more carbon-carbon triple bonds, such as methynyl, ethynyl, propynyl, butynyl, pentynyl, and hexy. Includes, but is not limited to, nyl, heptinyl, octinyl, etc.
또한, 본 발명에 기재된 용어 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 단일 또는 융합고리계를 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.In addition, the term “aryl” described in the present invention is an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, and includes a single or fused ring system. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
또한, 본 발명에 기재된 용어 「알킬아릴」은 아릴기의 1 이상의 수소가 알킬기에 의하여 치환된 유기기를 의미하는 것으로, 메틸페닐, 에틸페닐, n-프로필페닐, 이소프로필페닐, n-부틸페닐, 이소부틸페닐, t-부틸페닐 등을 포함하지만, 이에 한정되지 않는다.In addition, the term "alkylaryl" as used in the present invention refers to an organic group in which one or more hydrogens of an aryl group are replaced by an alkyl group, such as methylphenyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl, isopropylphenyl, It includes, but is not limited to, butylphenyl, t-butylphenyl, etc.
또한, 본 발명에 기재된 용어 「아릴알킬」은 알킬기의 1 이상의 수소가 아릴기에 의하여 치환된 유기기를 의미하는 것으로, 페닐프로필, 페닐헥실 등을 포함하지만, 이에 한정되지는 않는다.Additionally, the term “arylalkyl” as used in the present invention refers to an organic group in which one or more hydrogens of an alkyl group are replaced by an aryl group, and includes, but is not limited to, phenylpropyl, phenylhexyl, etc.
또한, 본 발명에 기재된 용어 「아미도」는 카르보닐기(C=O)에 결합된 아미노기(-NH2)를 의미하며, 「알킬아미도」는 아미도기의 -NH2에서 적어도 하나의 수소가 알킬기로 치환된 유기기를 의미하며, 「아릴아미도」는 아미도기의 -NH2에서 적어도 하나의 수소가 아릴기로 치환된 유기기를 의미하고, 상기 알킬아미도기에서 알킬기, 상기 아릴아미도기에서의 아릴기는 전술한 알킬기 및 아릴기의 예시와 같을 수 있으나, 이에 한정하지 않는다.In addition, the term `` Amido '' described in the present invention means an amino group (-NH 2 ) coupled to the carbonyl group (C = O), and the alkylamido is at least one hydrogen in the -NH 2 of the amido group. means an organic group substituted with, and "arylamido" means an organic group in which at least one hydrogen in -NH 2 of the amido group is replaced with an aryl group, and the alkyl group in the alkylamido group and the aryl group in the arylamido group are It may be the same as the examples of the alkyl group and aryl group described above, but is not limited thereto.
또한, 본 발명에 기재된 용어 「알킬리덴」은 알킬기의 동일한 탄소원자로부터 2개의 수소 원자가 제거된 2가의 지방족 탄화수소기를 의미하는 것으로, 에틸리덴, 프로필리덴, 이소프로필리덴, 부틸리덴, 펜틸리덴 등을 포함하지만, 이에 한정되지는 않는다.In addition, the term "alkylidene" used in the present invention refers to a divalent aliphatic hydrocarbon group in which two hydrogen atoms are removed from the same carbon atom of the alkyl group, and includes ethylidene, propylidene, isopropylidene, butylidene, and pentylidene. It includes, but is not limited to, etc.
또한, 본 발명에 기재된 용어 「아세탈」은 알코올과 알데하이드의 결합으로 형성되는 유기기 즉, 한 개의 탄소에 두 개의 에테르(-OR)결합을 가진 치환기를 의미하며, 메톡시메톡시, 1-메톡시에톡시, 1-메톡시프로필옥시, 1-메톡시부틸옥시, 1-에톡시에톡시, 1-에톡시프로필옥시, 1-에톡시부틸옥시, 1-(n-부톡시)에톡시, 1-(이소-부톡시)에톡시, 1-(2급-부톡시)에톡시, 1-(3급-부톡시)에톡시, 1-(시클로헥실옥시)에톡시, 1-메톡시-1-메틸메톡시, 1-메톡시-1-메틸에톡시 등을 포함하지만 이에 한정되지는 않는다In addition, the term "acetal" as used in the present invention refers to an organic group formed by the combination of an alcohol and an aldehyde, that is, a substituent with two ether (-OR) bonds on one carbon, methoxymethoxy, 1-methoxy, Toxyethoxy, 1-methoxypropyloxy, 1-methoxybutyloxy, 1-ethoxyethoxy, 1-ethoxypropyloxy, 1-ethoxybutyloxy, 1-(n-butoxy)ethoxy, 1-(iso-butoxy)ethoxy, 1-(sec-butoxy)ethoxy, 1-(tertiary-butoxy)ethoxy, 1-(cyclohexyloxy)ethoxy, 1-methoxy -1-methylmethoxy, 1-methoxy-1-methylethoxy, etc., but not limited thereto.
또한, 본 발명에 기재된 용어 「에테르」는 적어도 1개의 에테르 결합(-O-)을 지니는 유기기이며, 2-메톡시에틸, 2-에톡시에틸, 2-부톡시에틸, 2-페녹시에틸, 2-(2-메톡시에톡시)에틸, 3-메톡시프로필, 3-부톡시프로필, 3-페녹시프로필, 2-메톡시-1-메틸에틸, 2-메톡시-2-메틸에틸, 2-메톡시에틸, 2-에톡시에틸, 2-부톡시에틸, 2-페녹시에틸 등을 포함하지만 이에 한정되지는 않는다.In addition, the term "ether" as used in the present invention is an organic group having at least one ether bond (-O-), and includes 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, and 2-phenoxyethyl. , 2-(2-methoxyethoxy)ethyl, 3-methoxypropyl, 3-butoxypropyl, 3-phenoxypropyl, 2-methoxy-1-methylethyl, 2-methoxy-2-methylethyl , 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl, 2-phenoxyethyl, etc., but are not limited thereto.
또한, 본 발명에 기재된 용어 「실릴」은 실란(silane)으로부터 유도된 -SiH3 라디칼을 의미하며, 상기 실릴기 내 수소 원자 중 적어도 하나가 알킬, 할로겐 등의 다양한 유기기로 치환될 수 있으며, 구체적으로 트리메틸실릴, 트리에틸실릴, t-부틸디메틸실릴, 비닐디메틸실릴, 프로필디메틸실릴, 트리페닐실릴, 디페닐실릴, 페닐실릴, 트리메톡시실릴, 메틸디메록시실릴, 에틸디에톡시실릴, 트리에톡시실릴, 비닐디메톡시실릴, 트리페녹시실릴 등을 포함하지만 이에 한정되지는 않는다.In addition, the term "silyl" described in the present invention refers to a -SiH 3 radical derived from silane, and at least one of the hydrogen atoms in the silyl group may be substituted with various organic groups such as alkyl and halogen, and may be substituted with various organic groups such as alkyl and halogen. trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, vinyldimethylsilyl, propyldimethylsilyl, Includes, but is not limited to, triphenylsilyl, diphenylsilyl, phenylsilyl, trimethoxysilyl, methyldimeroxysilyl, ethyldiethoxysilyl, triethoxysilyl, vinyldimethoxysilyl, triphenoxysilyl, etc.
또한, 본 발명에 기재된 용어 「알콕시」는 -O-알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알콕시 라디칼의 예는 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함하지만 이에 한정되지는 않는다.Additionally, the term “alkoxy” described in the present invention refers to an -O-alkyl radical, where ‘alkyl’ is as defined above. Examples of such alkoxy radicals include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, etc.
또한, 본 발명에 기재된 용어 「할로겐」은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.Additionally, the term “halogen” used in the present invention means a fluorine, chlorine, bromine or iodine atom.
또한, 본 발명에 기재된 용어 「Cn」은 탄소수가 n개인 것을 의미한다.Additionally, the term “C n ” described in the present invention means that the number of carbon atoms is n.
본 발명에서 제공하는 에틸렌 알파-올레핀 공중합체 중합용 촉매는 대칭 구조를 갖는 전이금속 화합물을 포함하는 것으로서, 하기 화학식 1로 표시되는 화합물이다.The catalyst for ethylene alpha-olefin copolymer polymerization provided by the present invention contains a transition metal compound having a symmetric structure and is a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023018435-appb-img-000002
Figure PCTKR2023018435-appb-img-000002
상기 화학식 1에서, In Formula 1,
M은 4족 전이금속이고;M is a group 4 transition metal;
(X)n의 n은 0, 1, 2 또는 3이며;(X) n of n is 0, 1, 2 or 3;
X는 할로겐, (C1-C20) 알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1- C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이며; and (C 6 -C 20 )aryl, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl, (C 1 -C 20 )alkylamido, (C 6 -C 20 )arylamido or (C 1 -C 20 )alkylidene;
Z1, Z2, Z3 및 Z4는 서로 동일하거나 상이하고, 각각 독립적으로산소 또는 황이며,Z 1 , Z 2 , Z 3 and Z 4 are the same or different from each other and are each independently oxygen or sulfur,
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 및 R14는 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이다.R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently hydrogen; (C 1 -C 20 )alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 )alkenyl with or without acetal, ketal or ether groups; (C 1 -C 20 )alkyl(C 6 -C 20 )aryl with or without an acetal, ketal or ether group; (C 6 -C 20 )aryl(C 1 -C 20 )alkyl with or without an acetal, ketal or ether group; or (C 1 -C 20 ) silyl with or without an acetal, ketal or ether group.
본 발명에 따르면, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 및 R14는 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함하는 치환기로 치환된 것일 수 있는데, 상기와 같은 치환기로 치환될 경우 담체의 표면에 전이금속 화합물을 담지시키는데 보다 유리할 수 있다.According to the present invention, in the transition metal compound represented by Formula 1, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 may each independently be substituted with a substituent containing an acetal, ketal or ether group. When substituted with the above substituent, it may be more advantageous for supporting the transition metal compound on the surface of the carrier. there is.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.Additionally, in the transition metal compound represented by Formula 1, M may be titanium (Ti), zirconium (Zr), or hafnium (Hf).
또한, 상기 Z1, Z2, Z3 및 Z4는 서로 동일하거나 상이하고, 바람직하게는 각각 독립적으로 산소일 수 있다.Additionally, Z 1 , Z 2 , Z 3 and Z 4 may be the same as or different from each other, and preferably each independently may be oxygen.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 독립적으로 수소 또는 (C1-C20)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R1 및 R14 중 적어도 하나는 메틸일 수 있다.Additionally, in the transition metal compound represented by Formula 1, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may each independently be hydrogen or (C 1 -C 20 )alkyl, and preferably may each independently be hydrogen or methyl. More preferably, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may each independently be hydrogen or methyl. However, at least one of R 1 and R 14 may be methyl.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 바람직하게는 상기 R1 및 R14는 각각 (C1-C20)알킬(C6-C20)아릴일 수 있다. 보다 바람직하게는, 상기 R1 및 R14는 각각 독립적으로 아릴기의 2 이상의 수소가 알킬기에 의하여 치환된 (C1-C20)알킬(C6-C20)아릴일 수 있다.Additionally, in the transition metal compound represented by Formula 1, preferably, R 1 and R 14 may each be (C 1 -C 20 )alkyl(C 6 -C 20 )aryl. More preferably, R 1 and R 14 may each independently be (C 1 -C 20 )alkyl(C 6 -C 20 )aryl in which two or more hydrogens of the aryl group are replaced by an alkyl group.
상기 화학식 1로 표시되는 전이금속 화합물은 상기와 같은 치환기들을 포함하는 것이 금속 주위의 전자적, 입체적 환경 제어를 위해 선호된다.The transition metal compound represented by Formula 1 preferably contains the above substituents to control the electronic and steric environment around the metal.
본 발명에서 상기 촉매 조성물은 조촉매 화합물을 더 포함할 수 있다. 상기 조촉매 화합물은 촉매 화합물을 활성화시키는 것으로, 알루미녹산(Aluminoxane) 화합물, 유기알루미늄(Organo-aluminum) 화합물, 또는 촉매 화합물을 활성화시키는 벌키(Bulky)한 화합물 등을 사용할 수 있다. 구체적으로, 상기 조촉매 화합물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택될 수 있다. In the present invention, the catalyst composition may further include a cocatalyst compound. The co-catalyst compound activates the catalyst compound, and may be an aluminoxane compound, an organo-aluminum compound, or a bulky compound that activates the catalyst compound. Specifically, the cocatalyst compound may be selected from the group consisting of compounds represented by the following formulas 2 to 4.
[화학식 2][Formula 2]
-[Al(Ra)-O]n--[Al(Ra)-O] n -
상기 화학식 2에서, In Formula 2,
Ra는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이고,Ra is each independently halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,
n은 2 이상의 정수이다.n is an integer of 2 or more.
[화학식 3][Formula 3]
Q(Rb)3 Q(Rb) 3
상기 화학식 3에서, In Formula 3 above,
Q는 알루미늄 또는 보론이고, Q is aluminum or boron,
Rb는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이다.Rb is each independently halogen; Or it is a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen.
[화학식 4][Formula 4]
[W]+[Z(Rc)4]- [W] + [Z(Rc) 4 ] -
상기 화학식 4에서, In Formula 4 above,
[W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,[W] + is a cationic Lewis acid; or a cationic Lewis acid with a hydrogen atom bonded to it,
Z는 13족 원소이고,Z is a group 13 element,
Rc는 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다.Rc is each independently a (C 6 -C 20 )aryl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group; It is a (C 1 -C 20 )alkyl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group.
상기 조촉매 화합물은 상기 화학식 1로 표시되는 전이금속 화합물과 함께 촉매에 포함되어 상기 전이금속 화합물을 활성화시키는 역할을 한다. 구체적으로, 상기 전이금속 화합물이 올레핀 중합에 사용되는 활성 촉매 성분이 되기 위하여, 전이금속 화합물 중의 리간드를 추출하여 중심금속(M1 또는 M2)을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 상기 화학식 2로 표시되는 단위를 포함하는 화합물, 화학식 3으로 표시되는 화합물 및 화학식 4로 표시되는 화합물이 조촉매로서 함께 작용한다.The cocatalyst compound is included in a catalyst together with the transition metal compound represented by Formula 1 and serves to activate the transition metal compound. Specifically, in order for the transition metal compound to become an active catalyst component used in olefin polymerization, the ligand in the transition metal compound is extracted to cationize the central metal (M 1 or M 2 ) while generating a counter ion with a weak binding force, that is, an anion. A compound containing a unit represented by Formula 2, a compound represented by Formula 3, and a compound represented by Formula 4 that can act together act as cocatalysts.
상기 화학식 2로 표시되는 '단위'는 화합물 내에서 [ ] 내의 구조가 n개 연결되는 구조로, 화학식 2로 표시되는 단위를 포함하는 경우라면 화합물 내의 다른 구조는 특별히 한정하지 않으며, 화학식 2의 반복 단위가 서로 연결된 클러스터형 예컨대, 구상의 화합물일 수 있다.The 'unit' represented by Formula 2 is a structure in which n structures within [ ] are connected in the compound. If it contains the unit represented by Formula 2, other structures in the compound are not particularly limited, and the repetition of Formula 2 It may be a cluster-type compound in which units are connected to each other, for example, a spherical compound.
조촉매 화합물이 보다 우수한 활성화 효과를 나타낼 수 있도록 하기 위하여, 상기 화학식 2로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나, 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.In order for the co-catalyst compound to exhibit a better activation effect, the compound represented by Formula 2 is not particularly limited as long as it is alkylaluminoxane, but preferred examples include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, and butylaluminoxane. Oxylic acid and the like, and a particularly preferable compound is methylaluminoxane.
또한 상기 화학식 3으로 표시되는 화합물은 알킬 금속 화합물로서 특별히 한정되지 않으며, 이의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄로 이루어진 군에서 선택된 1종 또는 2종 이상이 바람직하게 사용될 수 있다.In addition, the compound represented by Formula 3 is not particularly limited as an alkyl metal compound, and non-limiting examples thereof include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloroaluminum, and triiso Propyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyldimethyl aluminum, methyldiethyl aluminum, triphenyl aluminum, tri-p-tolyl These include aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, and tributyl boron. Considering the activity of the transition metal compound, one or two or more types selected from the group consisting of trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum may be preferably used.
화학식 4로 표시되는 화합물은 상기 전이금속 화합물의 활성을 고려할 때, 상기 [W]+가 수소 원자가 결합한 양이온성 루이스 산인 경우, 디메틸아닐리늄 양이온이고, [W]+가 양이온성 루이스 산인 경우, [(C6H5)3C]+이고, 상기 [Z(Rc)4]-는 [B(C6F5)4]-인 것이 바람직하게 사용될 수 있다.Considering the activity of the transition metal compound, the compound represented by Formula 4 is a dimethylanilinium cation when [W] + is a cationic Lewis acid to which a hydrogen atom is bonded, and when [W] + is a cationic Lewis acid, [ (C 6 H 5 ) 3 C] + , and [Z(Rc) 4 ] - may be preferably used as [B(C 6 F 5 ) 4 ] - .
화학식 4로 표시되는 화합물은 특별히 한정되지 않으나, [W]+가 수소 원자가 결합한 양이온성 루이스산인 경우의 비제한적인 예로는 트리페닐카르베늄 보레이트, 트리메틸암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데시클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트, 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2,6-디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디(옥타데실)암모늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디(테트라데실)-암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리이틸 테트라키스(펜타플루오로페닐)보레이트 등을 들 수 있다.The compound represented by Formula 4 is not particularly limited, but non-limiting examples where [W] + is a cationic Lewis acid to which a hydrogen atom is bonded include triphenylcarbenium borate, trimethylammonium tetraphenylborate, and methyldioctadecylammonium tetraphenyl. Borate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri(n-butyl)ammonium tetraphenylborate, methyltetradecyclooctadecylammonium tetraphenylborate, N,N-dimethylaninium tetraphenylborate, N ,N-diethylanilium tetraphenylborate, N,N-dimethyl(2,4,6-trimethylaninium)tetraphenylborate,trimethylammonium tetrakis(pentafluorophenyl)borate,methylditetradecylammonium tetrakis (pentaphenyl)borate, methyldioctadecylammonium tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tri(n) -Butyl)ammonium tetrakis(pentafluorophenyl)borate, tri(sec-butyl)ammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylaninium tetrakis(pentafluorophenyl)borate, N ,N-Diethylaninium tetrakis(pentafluorophenyl)borate, N,N-dimethyl(2,4,6-trimethylaninium)tetrakis(pentafluorophenyl)borate, trimethylammonium tetrakis(2, 3,4,6-tetrafluorophenyl)borate, triethylammonium tetrakis(2,3,4,6-tetrafluorophenyl)borate, tripropylammonium tetrakis(2,3,4,6-tetrafluoride) Lophenyl)borate, tri(n-butyl)ammonium tetrakis(2,3,4,6-tetrafluorophenyl)borate, dimethyl(t-butyl)ammonium tetrakis(2,3,4,6-tetrafluorophenyl)borate Lophenyl)borate, N,N-dimethylaninium tetrakis(2,3,4,6-tetrafluorophenyl)borate, N,N-diethylanylnium tetrakis(2,3,4,6-tetra Fluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylaninium)tetrakis-(2,3,4,6-tetrafluorophenyl)borate, dioctadecylammonium tetrakis(penta) Fluorophenyl)borate, Ditetradecylammonium tetrakis(pentafluorophenyl)borate, Dicyclohexylammonium tetrakis(pentafluorophenyl)borate, Triphenylphosphonium tetrakis(pentafluorophenyl)borate, Methyldi Octadecylphosphonium tetrakis(pentafluorophenyl)borate, tri(2,6-dimethylphenyl)phosphonium tetrakis(pentafluorophenyl)borate, methyldi(octadecyl)ammonium tetrakis(pentafluorophenyl) Borate, methyldi(tetradecyl)-ammonium tetrakis(pentafluorophenyl)borate, triityl tetrakis(pentafluorophenyl)borate, etc. are mentioned.
상기 화학식 1 내지 화학식 4의 화합물을 이용하여 촉매를 제조할 수 있으며 이때 촉매 제조방법으로는 하기 예시된 방법을 이용할 수 있다.A catalyst can be prepared using the compounds of Formula 1 to Formula 4. In this case, the method exemplified below can be used to prepare the catalyst.
첫 번째로, 화학식 1로 표시되는 전이금속 화합물에 화학식 2로 표시되는 화합물을 접촉시키는 방법이 있다. 두 번째로 화학식 1의 전이금속 화합물과 화학식 3 및 4로 표시되는 화합물의 혼합물을 접촉시켜 촉매를 제조할 수 있고, 혹은 화학식 3 및 4로 표시되는 화합물을 각각 중합기에 직접 투입하여 제조하기도 한다.First, there is a method of contacting the compound represented by Formula 2 with the transition metal compound represented by Formula 1. Second, the catalyst can be prepared by contacting a mixture of the transition metal compound of Formula 1 and the compounds represented by Formulas 3 and 4, or by directly adding the compounds represented by Formulas 3 and 4 into a polymerizer, respectively.
조촉매 화합물의 첨가량은 화학식 1로 표시되는 전이금속 화합물의 첨가량 및 전이금속 화합물을 충분히 활성화시키는 데 필요한 양 등을 고려하여 결정될 수 있다. 조촉매 화합물의 함량은 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여, 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000일 수 있고, 바람직하게는 1:1~10,000, 보다 바람직하게는 1:1~5,000일 수 있다.The amount of the co-catalyst compound added can be determined by considering the amount of the transition metal compound represented by Formula 1 and the amount necessary to sufficiently activate the transition metal compound. The content of the co-catalyst compound may be 1:1 to 100,000, preferably 1:1, based on the molar ratio of the metal contained in the co-catalyst compound to 1 mole of the transition metal contained in the transition metal compound represented by Formula 1. It may be 1 to 10,000, more preferably 1:1 to 5,000.
보다 구체적으로, 상기 첫 번째 방법의 경우, 화학식 2로 표시되는 화합물은 화학식 1로 표시되는 전이금속 화합물에 대하여 바람직하게는 1:10~5,000 몰비, 더욱 바람직하게는 1:50~1,000 몰비, 가장 바람직하게는 1:100~1,000 몰비로 포함될 수 있다. 화학식 1의 전이금속 화합물에 대한 화학식 2로 표시되는 화합물의 몰비가 1:10 미만일 경우에는 알루미녹산의 양이 매우 작아 전이금속 화합물의 활성화가 완전히 진행되지 못하는 문제가 발생할 수 있고, 1:5,000을 초과하는 경우에는 과량의 알루미녹산이 촉매독으로 작용하여 고분자 사슬이 잘 자라지 못할 수 있다.More specifically, in the case of the first method, the compound represented by Formula 2 is preferably used in a molar ratio of 1:10 to 5,000, more preferably in a molar ratio of 1:50 to 1,000, with respect to the transition metal compound represented by Formula 1. Preferably, it may be included in a molar ratio of 1:100 to 1,000. If the molar ratio of the compound represented by Formula 2 to the transition metal compound of Formula 1 is less than 1:10, the amount of aluminoxane is so small that a problem may occur in which activation of the transition metal compound cannot proceed completely, and 1:5,000 may occur. If it is exceeded, the excess aluminoxane may act as a catalyst poison and the polymer chain may not grow well.
상기 두 번째 방법의 경우에 있어서 화학식 3으로 표시되는 조촉매 화합물의 A가 보론인 경우에는, 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1~100, 바람직하게는 1:1~10, 더욱 바람직하게는 1:1~3의 몰비로 포함될 수 있다. 또한, 화학식 3으로 표시되는 조촉매 화합물의 A가 알루미늄인 경우에는, 중합시스템 내의 물의 양에 따라 달라질 수 있으나, 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1~1000, 바람직하게는 1:1~500, 더욱 바람직하게는 1:1~100의 몰비로 포함될 수 있다.In the case of the second method, when A of the cocatalyst compound represented by Formula 3 is boron, the ratio is 1:1 to 100, preferably 1:1 to 10, with respect to the transition metal compound represented by Formula 1. Preferably, it may be included in a molar ratio of 1:1 to 3. In addition, when A of the cocatalyst compound represented by Formula 3 is aluminum, it may vary depending on the amount of water in the polymerization system, but is 1:1 to 1000, preferably 1:1, with respect to the transition metal compound represented by Formula 1. It may be included in a molar ratio of 1 to 500, more preferably 1:1 to 100.
또한 화학식 4로 표시되는 조촉매 화합물은 화학식 1로 표시되는 전이금속 화합물에 대하여 1:0.5~30, 바람직하게는 1:0.7~20, 더욱 바람직하게는 1:1~10의 몰비로 포함될 수 있다. 화학식 4로 표시되는 조촉매 화합물의 비가 1:0.5 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해, 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있을 수 있고, 1:30을 초과하는 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적이지 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있을 수 있다.In addition, the cocatalyst compound represented by Formula 4 may be included in a molar ratio of 1:0.5 to 30, preferably 1:0.7 to 20, and more preferably 1:1 to 10 with respect to the transition metal compound represented by Formula 1. . If the ratio of the cocatalyst compound represented by Formula 4 is less than 1:0.5, the amount of activator is relatively small and the metal compound cannot be completely activated, which may cause a problem in that the activity of the resulting catalyst composition decreases. If it exceeds 30, the metal compound is completely activated, but the unit cost of the catalyst composition may not be economical due to the remaining excess activator, or the purity of the produced polymer may be low.
한편, 상기 전이금속 화합물 및 상기 조촉매 화합물을 포함하는 본 발명의 촉매 조성물은 담체를 더 포함할 수 있다. 여기서, 상기 담체로는 본 발명이 속하는 기술분야에서 촉매의 제조에 사용되는 무기 또는 유기 소재의 담체가 제한 없이 사용될 수 있다.Meanwhile, the catalyst composition of the present invention containing the transition metal compound and the cocatalyst compound may further include a carrier. Here, as the carrier, any carrier made of inorganic or organic materials used in the production of catalysts in the technical field to which the present invention pertains may be used without limitation.
본 발명에 따르면, 상기 담체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-Cr2O3, SiO2-TiO2-MgO, 보오크사이트, 제올라이트, 전분(starch), 사이클로덱스트린(cyclodextrine), 또는 합성고분자일 수 있다.According to the present invention, the carrier is SiO 2 , Al 2 O 3 , MgO, MgCl 2 , CaCl 2 , ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 , SiO 2 -Al 2 O 3 , SiO 2 -MgO, SiO 2 -TiO 2 , SiO 2 -V 2 O 5 , SiO 2 -Cr 2 O 3 , SiO 2 -TiO 2 -MgO, bauxite, zeolite, starch, cyclodextrin (cyclodextrine), or it may be a synthetic polymer.
바람직하게는, 상기 담체는 표면에 히드록시기를 포함하는 것으로서, 실리카(SiO2), 실리카-알루미나(SiO2-Al2O3) 및 실리카-마그네시아(SiO2-MgO)로 이루어진 군에서 선택되는 1종 이상일 수 있다.Preferably, the carrier includes a hydroxy group on the surface, and is selected from the group consisting of silica (SiO 2 ), silica-alumina (SiO 2 -Al 2 O 3 ), and silica-magnesia (SiO 2 -MgO). There may be more than one species.
상기 담체에 상기 전이금속 화합물 및 상기 조촉매 화합물을 포함하는 촉매를 담지시키는 방법으로는 수분이 제거된(dehydrated) 담체에 상기 전이금속 화합물을 직접 담지시키는 방법; 상기 담체를 상기 조촉매 화합물로 전처리한 후 상기 전이금속 화합물을 담지시키는 방법; 상기 담체에 상기 전이금속 화합물을 담지시킨 후 상기 조촉매 화합물로 후처리하는 방법; 상기 전이금속 화합물과 상기 조촉매 화합물을 반응시킨 후 상기 담체를 첨가하여 반응시키는 방법 등이 사용될 수 있다.Methods for supporting a catalyst containing the transition metal compound and the co-catalyst compound on the carrier include directly supporting the transition metal compound on a dehydrated carrier; A method of pretreating the carrier with the cocatalyst compound and then supporting the transition metal compound; A method of supporting the transition metal compound on the carrier and then post-treating it with the cocatalyst compound; A method of reacting the transition metal compound and the co-catalyst compound and then adding the carrier for reaction may be used.
상기 담지 방법에서 사용 가능한 용매는 방향족 탄화수소계 용매, 방향족 탄화수소계 용매, 할로겐화 지방족 탄화수소계 용매 또는 이들의 혼합물일 수 있다.The solvent that can be used in the above supporting method may be an aromatic hydrocarbon-based solvent, an aromatic hydrocarbon-based solvent, a halogenated aliphatic hydrocarbon-based solvent, or a mixture thereof.
상기 지방족 탄화수소계 용매는 비제한적인 예로, 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane) 또는 도데칸(Dodecane) 등을 들일 수 있다.The aliphatic hydrocarbon-based solvent includes, but is not limited to, Pentane, Hexane, Heptane, Octane, Nonane, Decane, Undecane, or Dodecane ( Dodecane), etc.
상기 방향족 탄화수소계 용매로는 비제한적인 예로, 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 또는 톨루엔(Toluene) 등을 들수 있다. Non-limiting examples of the aromatic hydrocarbon solvent include benzene, monochlorobenzene, dichlorobenzene, trichlorobenzene, or toluene.
상기 할로겐화 지방족 탄화수소계 용매는 비제한적인 예로, 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 디클로로에탄(Dichloroethane), 또는 트리클로로에탄(Trichloroethane) 등을 들수 있다.Non-limiting examples of the halogenated aliphatic hydrocarbon-based solvent include dichloromethane, trichloromethane, dichloroethane, or trichloroethane.
또한, 상기 담지 방법은 -70 내지 200℃ 바람직하게는 -50 내지 150℃ 보다 바람직하게는 0 내지 100℃의 온도 하에서 수행되는 것이 담지 공정의 효율면에서 유리하다.In addition, it is advantageous in terms of efficiency of the loading process that the loading method is carried out at a temperature of -70 to 200°C, preferably -50 to 150°C, and more preferably 0 to 100°C.
한편, 본 발명에서 에틸렌 및 알파-올레핀 공단량체 화합물을 직접 접촉시켜 수행되는 중합 과정을 통해 생성되는 에틸렌 알파-올레핀 공중합체는, 촉매 부위가 비교적 불용성이고/이거나 고정성이어서 중합체 사슬이 이들 정보에 따라 신속하게 고정화되는 조건하에 단량체들의 중합에 의해 제조될 수 있다. 이러한 고정화는 예를 들면, 고체 불용성 촉매를 사용하고, 생성된 중합체가 일반적으로 불용성인 매질에서 중합이 수행되고, 중합 반응물 및 생성물을 중합체의 결정화 온도(Tc) 이하로 유지시킴으로써 수행될 수 있다.On the other hand, in the ethylene alpha-olefin copolymer produced through a polymerization process carried out by direct contact of ethylene and alpha-olefin comonomer compounds in the present invention, the catalyst site is relatively insoluble and/or fixed, so that the polymer chain is not subject to this information. Accordingly, it can be prepared by polymerization of monomers under conditions that allow rapid immobilization. This immobilization can be accomplished, for example, by using a solid insoluble catalyst, by carrying out the polymerization in a medium in which the resulting polymer is generally insoluble, and by maintaining the polymerization reactants and products below the crystallization temperature (T c ) of the polymer. .
전술한 촉매는 에틸렌 및 알파-올레핀의 공중합에 바람직하게 적용할 수 있다. 이하에서는 상기 촉매 하에서 에틸렌 및 알파-올레핀을 공중합시키는 단계를 포함하는 에틸렌 알파-올레핀 공중합체 제조방법에 대해 설명한다.The above-mentioned catalyst can be preferably applied to the copolymerization of ethylene and alpha-olefin. Hereinafter, a method for producing an ethylene alpha-olefin copolymer including the step of copolymerizing ethylene and alpha-olefin in the presence of the catalyst will be described.
에틸렌 알파-올레핀 공중합체 중합 공정은 당업계에서 익히 공지되어 있으며, 벌크 중합, 용액 중합, 슬러리 중합 및 저압 기상 중합을 포함한다. 메탈로센 촉매는 단일, 직렬 또는 병렬 반응기에서 수행되는 고정층, 이동층 또는 슬러리 공정을 사용하는 공지된 조작 형태에 특히 유용하다.Processes for polymerizing ethylene alpha-olefin copolymers are well known in the art and include bulk polymerization, solution polymerization, slurry polymerization, and low pressure gas phase polymerization. Metallocene catalysts are particularly useful in known forms of operation using fixed bed, moving bed or slurry processes carried out in single, series or parallel reactors.
상기 중합 반응이 액상 또는 슬러리상에서 실시될 경우에는 용매 또는 프로필렌 또는 에틸렌 단량체 자체를 매질로 사용할 수 있다.When the polymerization reaction is performed in a liquid or slurry phase, a solvent or propylene or ethylene monomer itself can be used as a medium.
본 발명에서 제시된 촉매는 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액 중합 공정에 적용하는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속 옥사이드 지지체에 상기 전이금속 화합물 및 조촉매를 지지시켜 얻어지는 비균일 촉매 조성물의 형태로 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다. 따라서, 본 발명의 상기 촉매를 무기계 담체 또는 유기 고분자 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다. 즉, 상기 전이금속 화합물과 조촉매 화합물은 무기계 담체 또는 유기 고분자 담체에 담지된 형태로도 이용할 수 있다.Since the catalyst presented in the present invention exists in a uniform form within the polymerization reactor, it is preferable to apply it to a solution polymerization process conducted at a temperature above the melting point of the polymer. However, as disclosed in U.S. Patent No. 4,752,597, a heterogeneous catalyst composition obtained by supporting the transition metal compound and cocatalyst on a porous metal oxide support may be used in slurry polymerization or gas phase polymerization processes. Therefore, if the catalyst of the present invention is used with an inorganic carrier or an organic polymer carrier, it can be applied to slurry or gas phase processes. That is, the transition metal compound and co-catalyst compound can be used in a form supported on an inorganic carrier or an organic polymer carrier.
중합 반응 시 사용 가능한 용매는 지방족 탄화수소계 용매, 방향족 탄화수소계 용매, 할로겐화 지방족 탄화수소계 용매 또는 이들의 혼합물일 수 있다. 여기서, 상기 지방족 탄화수소계 용매는 비제한적인 예로, 부탄(Butane), 이소부탄(Isobutane), 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane), 도데칸(Dodecane), 시클로펜탄(Cyclopentane), 메틸시클로펜탄(Methylcyclopentane), 시클로헥산(Cyclohexane) 등을 들 수 있다. 또한 상기 방향족 탄화수소계 용매는 비제한적인 예로, 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로벤젠(Chlorobenzene) 등을 들 수 있다. 또한 상기 할로겐화 지방족 탄화수소 용매는 비제한적인 예로, 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 클로로에탄(Chloroethane), 디클로로에탄(Dichloroethane), 트리클로로에탄(Trichloroethane), 1,2-디클로로에탄(1,2-Dichloroethane) 등을 들 수 있다.Solvents that can be used during the polymerization reaction may be aliphatic hydrocarbon-based solvents, aromatic hydrocarbon-based solvents, halogenated aliphatic hydrocarbon-based solvents, or mixtures thereof. Here, the aliphatic hydrocarbon-based solvent includes, butane, isobutane, pentane, hexane, heptane, octane, nonane, and decane as non-limiting examples. (Decane), Undecane, Dodecane, Cyclopentane, Methylcyclopentane, Cyclohexane, etc. In addition, the aromatic hydrocarbon solvents include, but are not limited to, benzene, monochlorobenzene, dichlorobenzene, trichlorobenzene, toluene, xylene, and chlorobenzene. (Chlorobenzene), etc. may be mentioned. In addition, the halogenated aliphatic hydrocarbon solvent includes, but is not limited to, dichloromethane, trichloromethane, chloroethane, dichloroethane, trichloroethane, and 1,2-dichloroethane. (1,2-Dichloroethane) and the like.
본 발명은 상기 에틸렌 알파-올레핀 공중합체 중합용 촉매를 사용하여 제조한 에틸렌 알파-올레핀 공중합체 및 이의 제조방법을 제공한다. The present invention provides an ethylene alpha-olefin copolymer prepared using the catalyst for polymerization of the ethylene alpha-olefin copolymer and a method for producing the same.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 상기의 촉매 조성물의 존재 하에서 에틸렌 및 알파-올레핀 공단량체를 중합시켜 제조될 수 있다. 이때 전이금속 화합물과 조촉매 성분은 별도로 반응기 내에 투입되거나 또는 각 성분을 미리 혼합하여 반응기에 투입할 수 있으며, 투입 순서, 온도 또는 농도 등의 혼합조건은 별도의 제한이 없다. 예를 들어, 에틸렌 및 1-부텐의 공중합체를 제조하는 경우 1-부텐은 0.1~99.9 중량% 함량으로 포함될 수 있으며, 바람직하게는 1~75 중량%, 더욱 바람직하게는 5~50 중량% 함량으로 포함될 수 있다. The ethylene alpha-olefin copolymer according to the present invention can be prepared by polymerizing ethylene and alpha-olefin comonomer in the presence of the above catalyst composition. At this time, the transition metal compound and the cocatalyst component can be added separately into the reactor, or each component can be mixed in advance and then added to the reactor, and there are no restrictions on mixing conditions such as the order of addition, temperature, or concentration. For example, when producing a copolymer of ethylene and 1-butene, 1-butene may be included in an amount of 0.1 to 99.9% by weight, preferably 1 to 75% by weight, more preferably 5 to 50% by weight. may be included.
한편, 본 발명에 따른 중합 반응에서 상기 촉매의 첨가량은 슬러리상, 액상, 기상 또는 용액 공정에 따라 단량체의 중합 반응이 충분히 일어날 수 있는 범위 내에서 결정될 수 있으므로, 특별히 제한하지 않는다. 다만, 상기 촉매의 첨가량은 단량체의 단위 부피(L)당 전이금속 화합물에서 중심금속(M)의 농도를 기준으로 10-8 내지 1 mol/L인 것이 바람직하고, 10-7 내지 10-1 mol/L인 것이 더욱 바람직하고, 10-7 내지 10-2 mol/L인 것이 더욱 더 바람직하다.Meanwhile, the amount of the catalyst added in the polymerization reaction according to the present invention is not particularly limited because it can be determined within a range where the polymerization reaction of the monomer can sufficiently occur depending on the slurry phase, liquid phase, gas phase, or solution process. However, the amount of the catalyst added is preferably 10 -8 to 1 mol/L, based on the concentration of the central metal (M) in the transition metal compound per unit volume (L) of monomer, and 10 -7 to 10 -1 mol. It is more preferable that it is /L, and it is even more preferable that it is 10 -7 to 10 -2 mol/L.
또한, 본 발명의 중합 반응은 배치식(Batch Type), 반연속식(Semi-continuous Type) 또는 연속식(Continuous Type) 반응으로 이루어지며, 바람직하게는 연속식 반응으로 이루어질 수 있다. In addition, the polymerization reaction of the present invention may be conducted as a batch type, semi-continuous type, or continuous type reaction, and is preferably performed as a continuous reaction.
본 발명의 중합 반응의 온도 조건은 적용하고자 하는 반응의 종류 및 반응기의 종류에 따라 중합 반응의 효율을 고려하여 결정할 수 있으나, 중합 온도가 120℃ 이상, 바람직하게는 150~200℃일 수 있다. 중합 공정에서 중합 온도가 상승할수록 반응도가 상승하므로, 상기 에틸렌 알파-올레핀 공중합체 중합용 촉매는 150℃ 이상의 높은 온도에서 중합이 가능한 이점이 있다.The temperature conditions for the polymerization reaction of the present invention can be determined considering the efficiency of the polymerization reaction depending on the type of reaction to be applied and the type of reactor, but the polymerization temperature may be 120°C or higher, preferably 150 to 200°C. Since the reactivity increases as the polymerization temperature increases in the polymerization process, the catalyst for polymerization of ethylene alpha-olefin copolymers has the advantage of being capable of polymerization at a high temperature of 150°C or higher.
본 발명의 중합 반응의 압력 조건은 적용하고자 하는 반응의 종류 및 반응기의 종류에 따라 중합 반응의 효율을 고려하여 결정할 수 있으나, 중합 압력이 1~100 기압, 바람직하게는 5~50 기압일 수 있다.The pressure conditions for the polymerization reaction of the present invention can be determined considering the efficiency of the polymerization reaction depending on the type of reaction to be applied and the type of reactor, but the polymerization pressure may be 1 to 100 atmospheres, preferably 5 to 50 atmospheres. .
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 전이금속 화합물을 포함하는 촉매 조성물 하에서 중합되므로, 상기 에틸렌 알파-올레핀 공중합체는 ASTM D257 평가법에 따라 측정된 체적저항은 1.0 × 1016Ω·cm 이상인 값을 가질 수 있다. 본 발명의 에틸렌 알파-올레핀 공중합체는 높은 체적저항을 가짐으로써 태양광용 봉지재로 사용하기 적합할 수 있다.Since the ethylene alpha-olefin copolymer according to the present invention is polymerized under a catalyst composition containing a transition metal compound, the volume resistance of the ethylene alpha-olefin copolymer measured according to the ASTM D257 evaluation method is 1.0 × 10 16 Ω·cm or more. You can have The ethylene alpha-olefin copolymer of the present invention has high volume resistance and may be suitable for use as a solar encapsulant.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 상술한 물성을 만족하면서 동시에 전이금속 화합물 함유 촉매 하에서 중합된 에틸렌 알파-올레핀 공중합체와 유사한 물성을 나타낼 수 있다. The ethylene alpha-olefin copolymer according to the present invention satisfies the above-mentioned physical properties while simultaneously exhibiting physical properties similar to those of the ethylene alpha-olefin copolymer polymerized under a catalyst containing a transition metal compound.
바람직하게는 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 0.850 내지 0.920 g/mL의 밀도, 0.1 내지 40 g/10min의 용융지수(MI)를 나타낼 수 있다. Preferably, the ethylene alpha-olefin copolymer according to the present invention may exhibit a density of 0.850 to 0.920 g/mL and a melt index (MI) of 0.1 to 40 g/10min.
또한, 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 1 내지 10, 바람직하게는 1.5 내지 8, 더욱 바람직하게는 1.5 내지 6의 분자량 분포(Mw/Mn)를 나타낼 수 있다. Additionally, the ethylene alpha-olefin copolymer according to the present invention may exhibit a molecular weight distribution (Mw/Mn) of 1 to 10, preferably 1.5 to 8, and more preferably 1.5 to 6.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 에틸렌과 알파-올레핀의 공중합에 의해 제조된 것으로, 상기 알파-올레핀은 C3-C12, 또는 C3-C8의 지방족 올레핀일 수 있다. 보다 구체적으로 상기 알파-올레핀은 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-데센(1-decene), 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센 또는 3,4-디메틸-1-헥센 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. The ethylene alpha-olefin copolymer according to the present invention is manufactured by copolymerization of ethylene and alpha-olefin, and the alpha-olefin may be a C 3 -C 12 or C 3 -C 8 aliphatic olefin. More specifically, the alpha-olefin is propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-itocene, 4,4-dimethyl-1-pentene, 4, Examples include 4-diethyl-1-hexene or 3,4-dimethyl-1-hexene, and any one or a mixture of two or more of these may be used.
중합 시 반응기에 투입되는 에틸렌 및 알파-올레핀의 비율은 특별히 한정되지 않으나, 에틸렌:알파-올레핀이 1:0.5~1:1.3의 중량비로 투입되는 것이 바람직하다. 상기 중량비로 에틸렌 및 알파-올레핀이 투입될 경우, 고분자량을 가지면서도 공단량체 함량이 높은 올레핀 공중합체를 얻을 수 있다. The ratio of ethylene and alpha-olefin added to the reactor during polymerization is not particularly limited, but it is preferable that ethylene:alpha-olefin is added at a weight ratio of 1:0.5 to 1:1.3. When ethylene and alpha-olefin are added in the above weight ratio, an olefin copolymer having a high molecular weight and a high comonomer content can be obtained.
상기 화학식 1로 표시되는 전이금속 화합물은 우수한 촉매 활성을 가지며, 바람직하게는 200 kg/g-cat 이상일 수 있다.The transition metal compound represented by Formula 1 has excellent catalytic activity, preferably 200 kg/g-cat or more.
또한, 본 발명의 에틸렌 알파-올레핀 공중합체는 상기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매 조성물 하에서 중합됨으로써 ASTM D1003으로 측정한 광투과율이 90% 이상일 수 있다In addition, the ethylene alpha-olefin copolymer of the present invention can have a light transmittance of 90% or more as measured by ASTM D1003 by polymerizing in a catalyst composition containing a transition metal compound represented by Formula 1 above.
또한, 본 발명의 에틸렌 알파-올레핀 공중합체는 상기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매 조성물 하에서 중합됨으로써 ASTM D1925 평가법에 따른 황변지수(Yellow Index)가 2.0 이하인 에틸렌 알파-올레핀 공중합체를 제조할 수 있다는 이점이 있다.In addition, the ethylene alpha-olefin copolymer of the present invention is polymerized in the presence of a catalyst composition containing a transition metal compound represented by Formula 1, thereby producing an ethylene alpha-olefin copolymer with a yellowing index of 2.0 or less according to the ASTM D1925 evaluation method. There is an advantage in that it can be manufactured.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for understanding of the present invention and do not limit the present invention.
실시예(에틸렌 알파-올레핀 공중합체 제조)Example (preparation of ethylene alpha-olefin copolymer)
상온에서 고압 반응기(내부 용량: 2 L, 스테인레스 스틸)의 내부를 질소로 치환한 후, 노르말 헥산 1 L와 트리아이소부틸알루미늄 2 mL를 가하였다. 이어서, 에틸렌 가스 100g을 기준으로 공단량체(1-부텐 또는 1-옥텐)를 하기 표 1에 나타낸 비율만큼 주입하였다. 그 후 반응기 온도를 하기 표 1에 나타낸 온도로 예열하고, 하기 화합물 1로 표시되는 전이금속 화합물(1.5 μmol)과 트리아이소부틸 알루미늄(187.5 μmol)의 혼합용액에 디메틸아닐리늄 테트라키스 (펜타블루오로페닐) 보레이트 조촉매 (45.0 μmol) 용액을 혼합하여 반응기 내에 주입한 후 5 분 동안 중합 반응을 실시하였다.After purging the inside of a high-pressure reactor (internal capacity: 2 L, stainless steel) with nitrogen at room temperature, 1 L of normal hexane and 2 mL of triisobutylaluminum were added. Next, comonomer (1-butene or 1-octene) was injected at the ratio shown in Table 1 below, based on 100 g of ethylene gas. Afterwards, the reactor temperature was preheated to the temperature shown in Table 1 below, and dimethylanilinium tetrakis (pentablue oro) was added to a mixed solution of a transition metal compound (1.5 μmol) represented by Compound 1 below and triisobutyl aluminum (187.5 μmol). A solution of phenyl)borate cocatalyst (45.0 μmol) was mixed and injected into the reactor, and then polymerization reaction was performed for 5 minutes.
중합 반응이 끝나면 에탄올을 이용하여 반응을 종결한 후 온도를 상온으로 낮춘 다음 여분의 가스를 배출시켰다. 이어서, 용매 속에 분산되어 있는 공중합체 중합 용액을 용기에 옮긴 후, 진공 오븐 내에서 80 ℃로 15 시간 이상 건조시켜 에틸렌 알파-올레핀 공중합체를 제조하였다.When the polymerization reaction was completed, the reaction was terminated using ethanol, the temperature was lowered to room temperature, and excess gas was discharged. Next, the copolymer polymerization solution dispersed in the solvent was transferred to a container and dried in a vacuum oven at 80° C. for more than 15 hours to prepare an ethylene alpha-olefin copolymer.
[화합물 1][Compound 1]
Figure PCTKR2023018435-appb-img-000003
Figure PCTKR2023018435-appb-img-000003
비교예 1Comparative Example 1
에틸렌 알파-올레핀 공중합체 중합용 촉매로서 상기 화합물 1 대신, 하기 화합물 2를 이용한 것을 제외하고, 실시예와 동일한 방법으로 에틸렌 알파-올레핀 공중합체를 제조하였다. An ethylene alpha-olefin copolymer was prepared in the same manner as in the Example, except that Compound 2 below was used as a catalyst for polymerization of the ethylene alpha-olefin copolymer instead of Compound 1.
[화합물 2][Compound 2]
Figure PCTKR2023018435-appb-img-000004
Figure PCTKR2023018435-appb-img-000004
비교예 2Comparative Example 2
에틸렌 알파-올레핀 공중합체 중합용 촉매로서 상기 화합물 1 대신, 하기 화합물 3을 이용한 것을 제외하고, 실시예와 동일한 방법으로 에틸렌 알파-올레핀 공중합체를 제조하였다. An ethylene alpha-olefin copolymer was prepared in the same manner as in the Example, except that Compound 3 below was used as a catalyst for polymerization of the ethylene alpha-olefin copolymer instead of Compound 1.
[화합물 3][Compound 3]
Figure PCTKR2023018435-appb-img-000005
Figure PCTKR2023018435-appb-img-000005
촉매 종류Catalyst type 중합 온도(℃)Polymerization temperature (℃) 공단량체/에틸렌 (중량비)Comonomer/ethylene (weight ratio)
실시예 1Example 1 화합물 1Compound 1 120120 0.850.85
실시예 2Example 2 화합물 1Compound 1 150150 0.850.85
실시예 3Example 3 화합물 1Compound 1 180180 0.850.85
비교예 1Comparative Example 1 화합물 2compound 2 120120 1.11.1
비교예 2Comparative Example 2 화합물 3Compound 3 150150 0.90.9
에틸렌 알파-올레핀 공중합체의 물성 분석Physical property analysis of ethylene alpha-olefin copolymer
실시예 및 비교예에서 제조된 에틸렌 알파-올레핀 공중합체의 샘플을 두께 3mm, 가로 및 세로 8cm의 성형 몰드에 넣고, 프레스(Press) 성형기를 이용하여 125℃에서 7분간 압착 용융 시킨 후, 5분간 냉각시켜 시편을 제작하였으며, 이에 대한 물성을 측정하여 표 2 및 표 3에 기재하였다. Samples of the ethylene alpha-olefin copolymer prepared in Examples and Comparative Examples were placed in a mold with a thickness of 3 mm and a width and length of 8 cm, and were pressed and melted at 125°C for 7 minutes using a press molding machine, and then melted for 5 minutes. A specimen was produced by cooling, and its physical properties were measured and listed in Tables 2 and 3.
(1) 공중합체 내 공단량체 함량: 400 MHz의 NMR(장치명: Ascend 400, 제조사: Bruker) 스펙트럼 분석법으로 테트라클로로에탄-d2 용매를 이용하여 100 ℃에서 측정하였다.(1) Comonomer content in the copolymer: Measured at 100°C using a 400 MHz NMR (device name: Ascend 400, manufacturer: Bruker) spectral analysis using tetrachloroethane-d2 solvent.
(2) 밀도: 메틀러(Mettler) 저울에서 측정하였다.(2) Density: Measured on a Mettler scale.
(3) 용융지수(Melt index, MI): ASTM D-1238(조건 E, 190℃, 2.16 kg 하중)법을 적용하여 기기(제조사: Mirage, 모델명: SD-120L)로 측정하였다.(3) Melt index (MI): Measured with an instrument (manufacturer: Mirage, model name: SD-120L) by applying the ASTM D-1238 (condition E, 190°C, 2.16 kg load) method.
(4) 분자량 분포(MWD): GPC(Gel Permeation Chromatography, 장치명: PL-GPC220, 제조사: Agilent) 분석법으로 1,2,4-트리클로로벤젠 용매를 이용하여 160 ℃에서 측정하였다.(4) Molecular weight distribution (MWD): Measured at 160°C using 1,2,4-trichlorobenzene solvent using GPC (Gel Permeation Chromatography, device name: PL-GPC220, manufacturer: Agilent) analysis method.
(5) 촉매 활성: 에틸렌 알파-올레핀 공중합체 중합 시 투입된 촉매 조성물 대비 생성된 에틸렌 알파-올레핀 공중합체의 무게를 측정하여 환산한 값이다.(5) Catalytic activity: This is a value converted by measuring the weight of the produced ethylene alpha-olefin copolymer compared to the catalyst composition added during polymerization of the ethylene alpha-olefin copolymer.
(6) 황변지수(Yellow Index): ASTM D 1925에 따라 상기 수지 조성물의 3 mm 두께 사출 시편에 대하여 황변지수를 측정하였다.(6) Yellowing Index: The yellowing index was measured for 3 mm thick injection molded specimens of the resin composition according to ASTM D 1925.
(7) 광투과율: ASTM D1003 평가법에 따라, 시편(3 mm 두께)에 대하여 Hazemeter를 사용하여 광투과율(Total Transmittance)을 측정하였다.(7) Light transmittance: According to the ASTM D1003 evaluation method, the light transmittance (Total Transmittance) was measured using a Hazemeter for the specimen (3 mm thick).
(8) 체적저항(Ω·m): 두께 3mm, 가로 및 세로 8cm의 성형 몰드에 넣고, 프레스(Press) 성형기를 이용하여 125℃에서 7분간 압착 용융 시킨 후, 5분간 냉각시켜 제작된 시편에 대하여, ASTM D257 평가법에 따라 체적저항을 측정하였다.(8) Volume resistance (Ω·m): Place in a mold with a thickness of 3 mm and 8 cm in width and height, press and melt at 125°C for 7 minutes using a press molding machine, and then cool for 5 minutes. Regarding this, volume resistance was measured according to ASTM D257 evaluation method.
공단량체 종류Comonomer type 공단량체 함량
(중량%)
Comonomer content
(weight%)
촉매 활성
(kg/g-cat)
catalytic activity
(kg/g-cat)
밀도
(g/mL)
density
(g/mL)
MI
(g/10min)
MI
(g/10min)
MWDMWD
실시예 1Example 1 1-부텐1-butene 33.933.9 210.5210.5 0.8680.868 0.50.5 2.232.23
실시예 2Example 2 1-부텐1-butene 32.532.5 231.1231.1 0.8690.869 3.33.3 2.252.25
실시예 3Example 3 1-부텐1-butene 32.032.0 228.1228.1 0.8720.872 5.15.1 2.312.31
비교예 1Comparative Example 1 1-부텐1-butene 35.235.2 190.5190.5 0.8690.869 4.94.9 2.322.32
비교예 2Comparative Example 2 1-부텐1-butene 36.236.2 166.3166.3 0.8720.872 5.05.0 2.182.18
Yellow IndexYellow Index 광투과율(%)Light transmittance (%) 체적저항 (Ω·m)Volume resistance (Ω·m)
실시예1Example 1 0.20.2 92.592.5 1.2 × 1016 1.2 × 10 16
실시예2Example 2 0.40.4 92.892.8 2.5 × 1016 2.5 × 10 16
실시예3Example 3 0.30.3 93.193.1 2.0 × 1016 2.0 × 10 16
비교예1Comparative Example 1 2.32.3 90.190.1 8.5 × 1014 8.5 × 10 14
비교예2Comparative example 2 5.95.9 88.288.2 3.3 × 1015 3.3 × 10 15
표 2 및 표 3을 참조하면, 실시예 1 내지 3에 따라 제조된 에틸렌 알파-올레핀 공중합체는 체적저항이 1.0 × 1016Ω·m 이상인 것을 알 수 있다. Referring to Tables 2 and 3, it can be seen that the ethylene alpha-olefin copolymers prepared according to Examples 1 to 3 had a volume resistance of 1.0 × 10 16 Ω·m or more.
또한, 실시예 1 내지 3에 따라 제조된 에틸렌 알파-올레핀 공중합체는 비교예 1 및 2에 따라 제조된 유사한 밀도 및 용융지수(MI)를 갖는 에틸렌 알파-올레핀 공중합체에 비해, 높은 촉매 활성, 높은 광투과율 및 낮은 황변지수를 나타내는 것을 알 수 있다.In addition, the ethylene alpha-olefin copolymers prepared according to Examples 1 to 3 have higher catalytic activity, compared to the ethylene alpha-olefin copolymers prepared according to Comparative Examples 1 and 2 and having similar density and melt index (MI). It can be seen that it exhibits high light transmittance and low yellowing index.

Claims (7)

  1. 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 에틸렌 알파-올레핀 공중합체 중합용 촉매:Catalyst for polymerization of ethylene alpha-olefin copolymers comprising a transition metal compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2023018435-appb-img-000006
    Figure PCTKR2023018435-appb-img-000006
    (상기 화학식 1에서, (In Formula 1 above,
    M은 4족 전이금속이고;M is a group 4 transition metal;
    (X)n의 n은 0, 1, 2 또는 3이며;(X) n of n is 0, 1, 2 or 3;
    X는 할로겐, (C1-C20) 알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1- C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이며; and (C 6 -C 20 )aryl, (C 6 -C 20 )aryl(C 1 -C 20 )alkyl, (C 1 -C 20 )alkylamido, (C 6 -C 20 )arylamido or (C 1 -C 20 )alkylidene;
    Z1, Z2, Z3 및 Z4는 서로 동일하거나 상이하고, 각각 독립적으로 산소 또는 황이며,Z 1 , Z 2 , Z 3 and Z 4 are the same or different from each other and are each independently oxygen or sulfur,
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 및 R14는 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴이다).R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently hydrogen; (C 1 -C 20 )alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 )alkenyl with or without acetal, ketal or ether groups; (C 1 -C 20 )alkyl(C 6 -C 20 )aryl with or without an acetal, ketal or ether group; (C 6 -C 20 )aryl(C 1 -C 20 )alkyl with or without an acetal, ketal or ether group; or (C 1 -C 20 )silyl with or without an acetal, ketal or ether group).
  2. 제1항에 있어서, According to paragraph 1,
    상기 화학식 1로 표시되는 전이금속 화합물은 하기 화학식 1-1로 표시되는 전이금속 화합물인 에틸렌 알파-올레핀 공중합체 중합용 촉매:The transition metal compound represented by Formula 1 is a catalyst for polymerization of ethylene alpha-olefin copolymer, which is a transition metal compound represented by Formula 1-1:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2023018435-appb-img-000007
    Figure PCTKR2023018435-appb-img-000007
  3. 제1항에 있어서, According to paragraph 1,
    상기 촉매 조성물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 조촉매 화합물을 더 포함하는 에틸렌 알파-올레핀 공중합체 중합용 촉매. The catalyst composition is a catalyst for ethylene alpha-olefin copolymer polymerization, further comprising a cocatalyst compound selected from the group consisting of compounds represented by the following formulas 2 to 4.
    [화학식 2][Formula 2]
    -[Al(Ra)-O]n--[Al(Ra)-O] n -
    (상기 화학식 2에서, (In Formula 2 above,
    Ra는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이고,Ra is each independently halogen; or a (C 1 -C 20 ) hydrocarbyl group substituted or unsubstituted with halogen,
    n은 2 이상의 정수이다),n is an integer greater than or equal to 2),
    [화학식 3][Formula 3]
    Q(Rb)3 Q(Rb) 3
    (상기 화학식 3에서, (In Formula 3 above,
    Q는 알루미늄 또는 보론이고, Q is aluminum or boron,
    Rb는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이다),Rb is each independently halogen; or a (C 1 -C 20 )hydrocarbyl group substituted or unsubstituted with halogen),
    [화학식 4][Formula 4]
    [W]+[Z(Rc)4]- [W] + [Z(Rc) 4 ] -
    (상기 화학식 4에서, (In Formula 4 above,
    [W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,[W] + is a cationic Lewis acid; or a cationic Lewis acid with a hydrogen atom bonded to it,
    Z는 13족 원소이고,Z is a group 13 element,
    Rc는 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다).Rc is each independently a (C 6 -C 20 )aryl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group; It is a (C 1 -C 20 )alkyl group substituted with one or two or more substituents selected from the group consisting of halogen, (C 1 -C 20 )hydrocarbyl group, alkoxy group, and phenoxy group).
  4. 제1항 내지 제3항 중 어느 한 항의 에틸렌 알파-올레핀 공중합체 중합용 촉매의 존재 하에서 중합되고, 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 포함하는 에틸렌 알파-올레핀 공중합체에 있어서, 체적저항이 1.0 × 1016 Ω·cm 이상인, 에틸렌 알파-올레핀 공중합체.In the ethylene alpha-olefin copolymer polymerized in the presence of the catalyst for polymerization of the ethylene alpha-olefin copolymer of any one of claims 1 to 3 and comprising an ethylene structural unit and an alpha-olefin structural unit, the volume resistance is Ethylene alpha-olefin copolymer, greater than or equal to 1.0 × 10 16 Ω·cm.
  5. 제4항에 있어서, According to clause 4,
    상기 에틸렌 알파-올레핀 공중합체는 광투과율이 90% 이상인, 에틸렌 알파-올레핀 공중합체.The ethylene alpha-olefin copolymer has a light transmittance of 90% or more.
  6. 제4항에 있어서, According to clause 4,
    상기 에틸렌 알파-올레핀 공중합체는 황변지수(Yellow Index)가 2.0 이하인, 에틸렌 알파-올레핀 공중합체.The ethylene alpha-olefin copolymer has a yellowing index of 2.0 or less.
  7. 제1항 내지 제3항 중 어느 한 항의 에틸렌 알파-올레핀 공중합체 중합용 촉매의 존재 하에서, 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 중합하는 단계를 포함하고,A step of polymerizing ethylene structural units and alpha-olefin structural units in the presence of a catalyst for polymerizing ethylene alpha-olefin copolymers of any one of claims 1 to 3,
    상기 중합하는 단계는 150 내지 200℃의 온도에서 수행되는 것인, 에틸렌 알파-올레핀 공중합체의 제조방법.A method of producing an ethylene alpha-olefin copolymer, wherein the polymerization step is performed at a temperature of 150 to 200°C.
PCT/KR2023/018435 2022-11-17 2023-11-16 Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same, and method for preparing same WO2024106967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220154164A KR20240072510A (en) 2022-11-17 2022-11-17 Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same and method for preparing same
KR10-2022-0154164 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106967A1 true WO2024106967A1 (en) 2024-05-23

Family

ID=91084992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018435 WO2024106967A1 (en) 2022-11-17 2023-11-16 Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same, and method for preparing same

Country Status (2)

Country Link
KR (1) KR20240072510A (en)
WO (1) WO2024106967A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110024033A (en) * 2009-09-01 2011-03-09 주식회사 엘지화학 Ethylene-alphaolefin copolymers and method for preparing the same
US20110213190A1 (en) * 2007-05-14 2011-09-01 Ifp Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains a phenoxy ligand that is functionalized by a heteroatom
KR20150058065A (en) * 2013-11-19 2015-05-28 주식회사 엘지화학 Method for preparing propylene-based polymer
KR102117624B1 (en) * 2018-05-04 2020-06-02 주식회사 엘지화학 Olefin based copolymer and preparation method for the same
KR20210067264A (en) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 Ethylene alpha-olefin copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110213190A1 (en) * 2007-05-14 2011-09-01 Ifp Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains a phenoxy ligand that is functionalized by a heteroatom
KR20110024033A (en) * 2009-09-01 2011-03-09 주식회사 엘지화학 Ethylene-alphaolefin copolymers and method for preparing the same
KR20150058065A (en) * 2013-11-19 2015-05-28 주식회사 엘지화학 Method for preparing propylene-based polymer
KR102117624B1 (en) * 2018-05-04 2020-06-02 주식회사 엘지화학 Olefin based copolymer and preparation method for the same
KR20210067264A (en) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 Ethylene alpha-olefin copolymer

Also Published As

Publication number Publication date
KR20240072510A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2015046705A1 (en) Transition metal compound, catalyst composition containing same, and method for preparing polymer by using same
WO2013133595A1 (en) Hybrid supported metallocene catalyst, method for preparing the same, and process for preparing polyolefin using the same
WO2015057001A1 (en) Transition metal compound having heteroatom, a catalyst composition comprising same, and method for preparing polymer using same
WO2022131693A1 (en) Olefin-based polymer and preparation method therefor
WO2017026605A1 (en) Transition metal compound, transition metal catalyst composition for olefin polymerization comprising same, and method for producing olefin-based polymer by using same
WO2024106967A1 (en) Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same, and method for preparing same
WO2020130517A1 (en) Method for preparing olefin polymerization catalyst, olefin polymerization catalyst, and olefin-based polymer
KR20210128309A (en) Ethylene/alpha-olefin copolymer having excellent electrical insulation
WO2023096368A1 (en) Ethylene alpha-olefin copolymer, and preparing method thereof
WO2024112084A1 (en) Ethylene alpha-olefin copolymer and method for preparing same
WO2018106029A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
EP2619236A2 (en) Ethylene copolymer having improved hygienic property and process for preparing the same
WO2023096370A1 (en) Ethylene alpha-olefin copolymer and resin composition comprising same
WO2012176946A1 (en) Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same
KR102348518B1 (en) Ethylene/alpha-olefin copolymer having excellent electrical insulation
KR20240071716A (en) Catalyst for polymerization of ethylene alpha-olefin copolymer, ethylene alpha-olefin copolymer using same and method for preparing same
WO2024112038A1 (en) Method for preparing ethylene-alpha-olefin copolymer
WO2023096308A1 (en) Polyolefin copolymer having improved light transmittance and productivity, and film prepared using same
WO2020111777A1 (en) Polypropylene resin having excellent melt characteristics, and preparation method therefor
WO2023096341A1 (en) Ethylene-alpha-olefin-based copolymer having controlled short chain branch amount, preparation method therefor, and resin composition and molded product which comprise olefin-based copolymer
WO2023096369A1 (en) Ethylene alpha-olefin copolymer and resin composition containing same
WO2024112040A1 (en) Method for preparing ethylene/alpha-olefin copolymer
WO2020116842A1 (en) Method for preparing catalyst for olefin polymerization
WO2020122500A1 (en) Method for preparing olefin polymerization catalyst
WO2023038351A1 (en) Method for preparing olefin-based polymer and olefin-based polymer prepared using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892030

Country of ref document: EP

Kind code of ref document: A1