WO2024106573A1 - Display device and method for manufacturing display device - Google Patents

Display device and method for manufacturing display device Download PDF

Info

Publication number
WO2024106573A1
WO2024106573A1 PCT/KR2022/018280 KR2022018280W WO2024106573A1 WO 2024106573 A1 WO2024106573 A1 WO 2024106573A1 KR 2022018280 W KR2022018280 W KR 2022018280W WO 2024106573 A1 WO2024106573 A1 WO 2024106573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
display device
emitting device
coating layer
slope
Prior art date
Application number
PCT/KR2022/018280
Other languages
French (fr)
Korean (ko)
Inventor
최환준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2022/018280 priority Critical patent/WO2024106573A1/en
Publication of WO2024106573A1 publication Critical patent/WO2024106573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • Embodiments relate to a display device and a method of manufacturing the display device.
  • embodiments apply to a display device including a partition structure and a method of manufacturing the display device.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • GaAsP compound semiconductor in 1962, it has been followed by green LED of GaP:N series. It has been used as a light source for display images in electronic devices, including information and communication devices. Accordingly, a method of solving the above-mentioned problems can be proposed by implementing a display using the semiconductor light-emitting device.
  • the semiconductor light emitting device has various advantages over filament-based light emitting devices, such as long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance.
  • the display device stacks a phosphor layer on the light emitting diode, for example. Light emitted from the light emitting diode is excited by the phosphor layer. At this time, the display device provides a partition between the light emitting diodes to prevent color mixing between light emitted from the phosphor layer. The partition blocks the light excited by the phosphor layer from mixing with each other, improving color purity.
  • the partition wall forms a side slope
  • the effect of improving color purity is greater.
  • Embodiments describe a display device and a method of manufacturing the display device that solve the above-described problems.
  • Embodiments aim to form a slope on the side of the partition.
  • Embodiments aim to form partition walls through various materials.
  • a wiring board A plurality of light emitting devices formed on a wiring board; One or more partition walls formed between at least some of the plurality of light emitting devices; and a coating layer surrounding one or more partition walls; A display device including a is provided.
  • a display device in which the coating layer forms an inclination from the top of the partition toward the light emitting element.
  • a display device in which the coating layer is formed concavely with an inclination toward the upper surface.
  • the slope includes a first slope close to the top of the partition, a second slope close to the light emitting element, and a third slope located between the first slope and the second slope, the first slope being the third slope.
  • a display device is provided, wherein the tilt is greater than the tilt, and the third tilt is greater than the second tilt.
  • a display device in which the second tilt is formed in a range of 15 degrees to 80 degrees.
  • a display device wherein the coating layer includes a lower portion on a side facing the light emitting device, and the height of the lower portion is lower than the height of the light emitting device.
  • the partition wall provides a display device in which the upper part of the partition wall is formed to be wider than the lower part of the partition wall.
  • a display device includes a metal layer formed on a coating layer; A display device is provided, further comprising:
  • a display device wherein at least one of the partition wall and the coating layer includes a white material.
  • a display device in which the partition wall includes a plurality of pores, and a coating layer is formed on at least a portion of the pores.
  • a display device in which the partition wall is formed by a plurality of rods arranged to be offset from each other.
  • a phosphor layer is formed on the light emitting device and converts the color of light emitted from the light emitting device;
  • a display device including a is provided.
  • a display device includes a color filter formed on a light-emitting device and converting the color of light emitted from the light-emitting device; A display device including a is provided.
  • a display device where the light emitting element is a micro LED having a micro size.
  • forming one or more partition walls between the plurality of light emitting devices on a wiring board on which the plurality of light emitting devices are spaced apart; And forming a coating layer surrounding one or more partition walls; Provides a method of manufacturing a display device including.
  • Embodiments may provide a display device with improved color purity.
  • Embodiments can reduce production costs when manufacturing COW (Chip On the Wafer).
  • Embodiments allow for a variety of barrier materials.
  • Embodiments may provide a display device in which the phosphor filling space is maximized.
  • Embodiments may provide a display device with improved light efficiency.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light-emitting device of the present invention.
  • Figure 2 is a partial enlarged view of part A of Figure 1.
  • FIGS. 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram showing the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams showing various forms of implementing color in relation to a flip chip type semiconductor light emitting device.
  • Figure 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • Figure 7 is a perspective view showing another embodiment of a display device using the semiconductor light-emitting device of the present invention.
  • Figure 8 is a cross-sectional view taken along line D-D in Figure 7.
  • FIG. 9 is a conceptual diagram showing the vertical semiconductor light emitting device of FIG. 8.
  • Figure 10 schematically shows a cross-sectional view of a display device according to embodiments.
  • Figure 11 is a diagram explaining the slope of the coating layer according to embodiments.
  • Figure 12 is a diagram explaining the height of a coating layer according to embodiments.
  • Figure 13 is a diagram explaining the degree of slope depending on the viscosity of the coating layer according to embodiments.
  • FIG. 14 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
  • FIG. 15 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
  • Figure 16 schematically shows a cross-sectional view of a display device according to embodiments.
  • Figure 17 shows a flowchart of a method for controlling a display device according to embodiments.
  • an element such as a layer, region or substrate is referred to as being “on” another component, it is to be understood that it may be present directly on the other element or that there may be intermediate elements in between. There will be.
  • the display device described in this specification is a concept that includes all display devices that display information using a unit pixel or a set of unit pixels. Therefore, it is not limited to finished products but can also be applied to parts.
  • a panel corresponding to a part of a digital TV also independently corresponds to a display device in this specification.
  • Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, PDAs (personal digital assistants), PMPs (portable multimedia players), navigation, Slate PCs, Tablet PCs, and Ultra This may include books, digital TVs, desktop computers, etc.
  • semiconductor light emitting devices mentioned in this specification include LEDs, micro LEDs, etc., and may be used interchangeably.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light-emitting device of the present invention.
  • information processed by the control unit (not shown) of the display device 100 may be displayed using a flexible display.
  • Flexible displays include, for example, displays that can be bent, bent, twisted, folded, or rolled by an external force.
  • a flexible display can be, for example, a display manufactured on a thin, flexible substrate that can be bent, bent, folded, or rolled like paper, while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area when the display area is bent by an external force (for example, a state with a finite radius of curvature, hereinafter referred to as the second state), the display area may become a curved surface.
  • information displayed in the second state may be visual information output on a curved surface.
  • This visual information is implemented by independently controlling the light emission of unit pixels (sub-pixels) arranged in a matrix form.
  • the unit pixel means, for example, the minimum unit for implementing one color.
  • a unit pixel of the flexible display may be implemented by a semiconductor light-emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed in a small size, and through this, it can function as a unit pixel even in the second state.
  • Figure 2 is a partial enlarged view of part A of Figure 1.
  • FIGS. 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram showing the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams showing various forms of implementing color in relation to a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is exemplified.
  • PM passive matrix
  • AM active matrix
  • the display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device, as shown in FIG. 2. Includes (150).
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • the substrate 110 may be made of either a transparent or opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be located on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be located in the insulating layer 160.
  • the insulating layer 160 is stacked on the substrate 110 to form a single wiring board. More specifically, the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, or PEN, and can be integrated with the substrate 110 to form one substrate.
  • PI polyimide
  • PET PET
  • PEN PEN
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is located on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through the electrode hole 171 penetrating the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via hole with a conductive material.
  • a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • the conductive adhesive layer 130 may function as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity. For this purpose, a conductive material and an adhesive material may be mixed in the conductive adhesive layer 130. Additionally, the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, etc.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 may be configured as a layer that allows electrical interconnection in the Z direction penetrating the thickness, but has electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be called a Z-axis conductive layer (however, hereinafter referred to as 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive due to the anisotropic conductive medium.
  • heat and pressure are applied to the anisotropic conductive film, but other methods may be applied to make the anisotropic conductive film partially conductive. Other methods described above can be, for example, applying only one of the heat and pressure, UV curing, etc.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only specific portions become conductive due to the conductive balls.
  • An anisotropic conductive film may contain a plurality of particles in which the core of a conductive material is covered by an insulating film made of polymer. In this case, the area where heat and pressure are applied becomes conductive due to the destruction of the insulating film and the core. .
  • the shape of the core can be modified to form layers that contact each other in the thickness direction of the film.
  • heat and pressure are applied entirely to the anisotropic conductive film, and an electrical connection in the Z-axis direction is partially formed due to a height difference between the objects adhered by the anisotropic conductive film.
  • an anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core.
  • the conductive material is deformed (pressed) in the area where heat and pressure are applied and becomes conductive in the direction of the thickness of the film.
  • the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which a conductive ball is inserted into one surface of an insulating base member. More specifically, the insulating base member is made of an adhesive material, and the conductive balls are concentrated on the bottom of the insulating base member, and are deformed together with the conductive balls when heat and pressure are applied to the base member. It becomes conductive in the vertical direction.
  • ACF fixed array anisotropic conductive film
  • the present invention is not necessarily limited to this, and the anisotropic conductive film has a form in which conductive balls are randomly mixed into an insulating base member, or a form in which conductive balls are arranged in one layer (double-layer) consisting of a plurality of layers. ACF), etc. are all possible.
  • Anisotropic conductive paste is a combination of paste and conductive balls, and can be a paste in which conductive balls are mixed with an insulating and adhesive base material. Additionally, the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
  • the second electrode 140 is located in the insulating layer 160 and spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 where the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. When enabled, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( 154) includes an n-type semiconductor layer 153 formed on the n-type semiconductor layer 153 and an n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 may be electrically connected to the second electrode 140. It can be connected to .
  • the auxiliary electrode 170 is formed long in one direction, so that one auxiliary electrode can be electrically connected to a plurality of semiconductor light emitting devices 150.
  • one auxiliary electrode can be electrically connected to a plurality of semiconductor light emitting devices 150.
  • p-type electrodes of semiconductor light emitting devices on the left and right around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light-emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light-emitting device 150 is formed through this. And, only the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity due to the absence of press fit of the semiconductor light emitting device. In this way, the conductive adhesive layer 130 not only bonds the semiconductor light-emitting device 150 and the auxiliary electrode 170 and the semiconductor light-emitting device 150 and the second electrode 140 to each other, but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • the semiconductor light emitting devices may be arranged in, for example, several rows, and the semiconductor light emitting devices in each row may be electrically connected to one of the plurality of first electrodes.
  • the semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Additionally, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, an individual unit pixel can be formed even in a small size.
  • a partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate individual unit pixels from each other and may be formed integrally with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 can have reflective characteristics and increase contrast even without a separate black insulator.
  • a reflective partition may be separately provided as the partition wall 190.
  • the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When using a partition made of white insulator, it can have the effect of increasing reflectivity, and when using a partition made of black insulator, it can have reflective characteristics and increase contrast at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 180 functions to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting an individual pixel.
  • a red phosphor 181 capable of converting blue light into red (R) light can be stacked on the blue semiconductor light emitting device, and at a position forming a green unit pixel, a blue phosphor 181 can be stacked on the blue semiconductor light emitting device.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • red (R), green (G), and blue (B) unit pixels may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Accordingly, one line in the first electrode 120 can be an electrode that controls one color. That is, red (R), green (G), and blue (B) can be arranged in order along the second electrode 140, and through this, a unit pixel can be implemented.
  • unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and quantum dots (QD) instead of the phosphor. there is.
  • a black matrix 191 may be disposed between each phosphor layer to improve contrast. In other words, this black matrix 191 can improve contrast between light and dark.
  • the present invention is not necessarily limited to this, and other structures for implementing blue, red, and green colors may be applied.
  • each semiconductor light emitting device 150 is made of gallium nitride (GaN) as the main material, and indium (In) and/or aluminum (Al) are added together to form a high-output device that emits various lights, including blue. It can be implemented as a light emitting device.
  • GaN gallium nitride
  • Al aluminum
  • the semiconductor light emitting device 150 may be a red, green, and blue semiconductor light emitting device to form a unit pixel (sub-pixel).
  • red, green, and blue semiconductor light emitting devices R, G, B
  • R, G, B red, green, and blue semiconductor light emitting devices
  • unit pixels of red, green, and blue are generated by the red, green, and blue semiconductor light emitting devices. They form one pixel, and through this, a full color display can be implemented.
  • the semiconductor light emitting device 150a may include a white light emitting device (W) in which a yellow phosphor layer is provided for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device (W) to form a unit pixel.
  • a unit pixel can be formed on the white light emitting device (W) using a color filter that repeats red, green, and blue.
  • a structure in which a red phosphor layer 184, a green phosphor layer 185, and a blue phosphor layer 186 are provided on the ultraviolet light emitting device 150b is also possible.
  • semiconductor light-emitting devices can be used in all areas, not only visible light but also ultraviolet (UV) light, and can be expanded to the form of a semiconductor light-emitting device in which ultraviolet light (UV) can be used as an excitation source for the upper phosphor. .
  • the semiconductor light emitting device is located on the conductive adhesive layer and constitutes a unit pixel in the display device. Since semiconductor light-emitting devices have excellent luminance, individual unit pixels can be formed even in small sizes.
  • the size of such an individual semiconductor light emitting device 150 may have a side length of 80 ⁇ m or less and may be a rectangular or square device. In the case of a rectangular shape, the size may be less than 20
  • the unit pixel size is a rectangular pixel with one side of 600 ⁇ m and the other side of 300 ⁇ m, the distance between the semiconductor light emitting devices becomes relatively large enough.
  • a display device using the semiconductor light emitting device described above can be manufactured using a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • Figure 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • a conductive adhesive layer 130 is formed on the insulating layer 160 where the auxiliary electrode 170 and the second electrode 140 are located.
  • An insulating layer 160 is laminated on the wiring board 110, and a first electrode 120, an auxiliary electrode 170, and a second electrode 140 are disposed on the wiring board 110.
  • the first electrode 120 and the second electrode 140 may be arranged in directions orthogonal to each other.
  • the wiring board 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • the anisotropic conductive film may be applied to the substrate on which the insulating layer 160 is located.
  • a temporary substrate 112 corresponding to the position of the auxiliary electrode 170 and the second electrode 140 and on which a plurality of semiconductor light-emitting devices 150 constituting individual pixels are located is placed, and the semiconductor light-emitting devices 150 ) is arranged to face the auxiliary electrode 170 and the second electrode 140.
  • the temporary substrate 112 is a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, it can be effectively used in a display device by having a gap and size that can form a display device.
  • the wiring board and the temporary board 112 are heat-compressed.
  • the wiring board and the temporary board 112 can be heat-compressed using an ACF press head.
  • the wiring board and the temporary board 112 are bonded by the thermal compression. Due to the characteristics of the anisotropic conductive film that becomes conductive by heat compression, only the portion between the semiconductor light-emitting device 150 and the auxiliary electrode 170 and the second electrode 140 becomes conductive, and through this, the electrodes and the semiconductor light emitte. Element 150 may be electrically connected. At this time, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, and a partition wall can be formed between the semiconductor light emitting devices 150 through this.
  • the temporary substrate 112 is removed.
  • the temporary substrate 112 can be removed using a laser lift-off (LLO) method or a chemical lift-off (CLO) method.
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating the wiring board to which the semiconductor light emitting device 150 is coupled with silicon oxide (SiOx).
  • the step of forming a phosphor layer on one side of the semiconductor light emitting device 150 may be further included.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer can be formed on one side of the device.
  • the manufacturing method or structure of a display device using a semiconductor light emitting device described above can be modified into various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • Figure 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention
  • Figure 8 is a cross-sectional view taken along line D-D of Figure 7
  • Figure 9 shows the vertical semiconductor light emitting device of Figure 8. It is a concept diagram.
  • the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and at least one semiconductor light emitting device 250.
  • the substrate 210 is a wiring board on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible can be used.
  • the first electrode 220 is located on the substrate 210 and may be formed as a bar-shaped electrode that is long in one direction.
  • the first electrode 220 may be configured to function as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 where the first electrode 220 is located.
  • the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), an anisotropic conductive paste, and conductive particles. ), etc.
  • ACF anisotropic conductive film
  • this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by an anisotropic conductive film.
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film with the first electrode 220 positioned on the substrate 210 and connecting the semiconductor light emitting device 250 by applying heat and pressure, the semiconductor light emitting device 250 is connected to the first electrode 220. It is electrically connected to the electrode 220. At this time, the semiconductor light emitting device 250 is preferably disposed on the first electrode 220.
  • the electrical connection is created because the anisotropic conductive film becomes partially conductive in the thickness direction when heat and pressure are applied. Therefore, the anisotropic conductive film is divided into a conductive part and a non-conductive part in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is located on the conductive adhesive layer 230 and constitutes an individual pixel in the display device. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be formed even in small sizes.
  • the size of such an individual semiconductor light emitting device 250 may have a side length of 80 ⁇ m or less and may be a rectangular or square device. In the case of a rectangular shape, the size may be, for example, 20
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 are disposed in a direction crossing the longitudinal direction of the first electrode 220 and are electrically connected to the vertical semiconductor light emitting devices 250.
  • this vertical semiconductor light emitting device 250 includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and a p-type semiconductor layer 255. It includes an active layer 254, an n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the p-type electrode 256 located at the bottom may be electrically connected to the first electrode 220 and the conductive adhesive layer 230, and the n-type electrode 252 located at the top may be connected to the second electrode 240, which will be described later. ) can be electrically connected to.
  • This vertical semiconductor light emitting device 250 has a great advantage in that it can reduce the chip size because electrodes can be arranged up and down.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and is provided with a phosphor layer 280 to convert this blue (B) light into the color of a unit pixel. It can be.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting blue light into red (R) light can be stacked on the blue semiconductor light emitting device, and at a position forming a green unit pixel, a blue phosphor 281 can be stacked on the blue semiconductor light emitting device.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • only a blue semiconductor light emitting device can be used alone in the portion forming the blue unit pixel. In this case, red (R), green (G), and blue (B) unit pixels may form one pixel.
  • the present invention is not necessarily limited to this, and as described above, in a display device using a flip chip type light emitting device, other structures for implementing blue, red, and green colors may be applied.
  • the second electrode 240 is located between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be located between the rows of the semiconductor light emitting devices 250.
  • the second electrode 240 can be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as a long bar-shaped electrode in one direction and may be arranged in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 can be electrically connected.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) containing silicon oxide (SiOx) or the like may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is placed after the transparent insulating layer is formed, the second electrode 240 is located on the transparent insulating layer. Additionally, the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, light extraction efficiency can be improved by using a conductive material with good adhesion to the n-type semiconductor layer as a horizontal electrode without being restricted by the selection of a transparent material.
  • a partition 290 may be located between the semiconductor light emitting devices 250. That is, a partition 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels.
  • the partition wall 290 may serve to separate individual unit pixels from each other, and may be formed integrally with the conductive adhesive layer 230.
  • the base member of the anisotropic conductive film may form the partition wall by inserting the semiconductor light emitting device 250 into the anisotropic conductive film.
  • the partition 290 can have reflective characteristics and increase contrast even without a separate black insulator.
  • a reflective partition may be separately provided as the partition wall 190.
  • the partition 290 may include a black or white insulator depending on the purpose of the display device.
  • the partition wall 290 is located between the vertical semiconductor light emitting devices 250 and the second electrode 240. It can be located in between. Therefore, an individual unit pixel can be formed even in a small size using the semiconductor light-emitting device 250, and the distance between the semiconductor light-emitting devices 250 is relatively large enough to connect the second electrode 240 to the semiconductor light-emitting device 250. ), and has the effect of implementing a flexible display device with HD image quality.
  • a black matrix 291 may be disposed between each phosphor to improve contrast.
  • this black matrix 291 can improve contrast between light and dark.
  • the partition walls (190 and 290 in FIGS. 1 to 9) have an oblique angle, they have an effect of improving light efficiency with respect to the phosphor filled in the light emitting device.
  • the barrier rib is formed of relatively transparent negative photoresist (negative PR) in order to have a high shape compared to the width.
  • the partition formed through negative PR may have a protruding top, a vertical shape, or an inverted pyramid structure.
  • the partition wall may form an incline on the side as reflow progresses during the baking process depending on the material characteristics.
  • there is a limit to the distance the material can move due to thermal energy so there is a limit to the angle change for forming the side slope.
  • Figure 10 schematically shows a cross-sectional view of a display device according to embodiments.
  • 1000 represents a display device according to embodiments.
  • the display device 1000 according to embodiments provides a structure in which light efficiency is improved and color purity is improved.
  • the display device 1000 includes a wiring board 1100 (e.g., the substrate described in FIGS. 1 to 9) and a plurality of light emitting elements 1200 (e.g., the substrate described in FIGS. 1 to 9). 9), a barrier rib 1300 (e.g., a barrier rib described in FIGS. 1 to 9), and a coating layer 1400.
  • the components of the display device 1000 are not limited to those shown in FIG. 10.
  • the display device 1000 may include more components than those shown in FIG. 10 or may include fewer components than the components shown in FIG. 10 .
  • the wiring board 1100 is a board including a printed circuit that applies electrical signals to one or more light emitting devices 1200.
  • the wiring board 1100 has wiring such as a first electrode 120, a second electrode 140, and an insulating layer 160 printed on the board 110.
  • the wiring board 1100 is, for example, a flexible board and includes, for example, glass or polyimide.
  • the wiring board 1100 includes a board made of a flexible material, such as polyethylene naphthatalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthatalate
  • PET polyethylene terephthalate
  • the light emitting device 1200 is formed on the wiring board 1100.
  • the light emitting device 1200 receives electrical signals from the outside through wiring printed on the wiring board 1100.
  • the light emitting device 1200 emits the supplied electrical signal as light. Through this, the light emitting device 1200 emits light.
  • the light emitting device 1200 is, for example, an LED (Light Emditting Diode).
  • One or more partition walls 1300 are formed between at least a portion of the plurality of light emitting devices 1200 .
  • the partition wall 1300 is formed between the light emitting devices 1200 to provide a space filled with, for example, the phosphor layer 1700 (see FIG. 16).
  • the partition wall 1300 is formed between the plurality of light emitting devices 1200 to prevent light emitted from the light emitting devices 1200 from being mixed with each other. Additionally, the partition wall 1300 functions as a reflective layer or absorption layer.
  • the coating layer 1400 is formed surrounding one or more partition walls 1300. As shown in FIG. 10, the coating layer 1400 forms the side surface of the partition wall 1300. The coating layer 1400 forms a lateral slope of the partition wall 1400. The coating layer 1400 is formed to cover the partition wall 1400, and its thickness gradually increases from the top of the partition wall 1400 toward the bottom of the partition wall 1400. That is, the coating layer 1400 is inclined from the top of the partition 1400 toward the light emitting device 1200.
  • the coating layer 1400 may form a slope on the side of the partition wall 1300 that could not be realized through the materials of the existing partition wall 1300 itself.
  • the coating layer 1400 causes light emitted from the light emitting device 1200 to be reflected toward the top of the light emitting device 1200 by the coating layer 1400. Additionally, the coating layer 1400 prevents light emitted from the light emitting devices 1200 from crossing the partition wall 1300 and mixing colors with each other.
  • the display device 1000 can improve color purity and improve luminous efficiency.
  • partition wall 1300 and/or the coating layer 1400 will be described in more detail.
  • Figure 11 is a diagram explaining the slope of the coating layer according to embodiments.
  • the display device 1000 includes a coating layer 1400 formed from the top of the partition 1300 toward the light emitting device 1200 .
  • FIG. 11 (a) is a diagram illustrating an example of the inclination of the coating layer 1400.
  • the coating layer 1400 forms an inclination.
  • the coating layer 1400 includes a concave slope formed toward the upper surface. Accordingly, the coating layer 1400 is formed with different slopes from the top of the partition 1300 toward the light emitting device 1200. These inclined surfaces may be connected to each other to form a curved surface that is concave toward the top.
  • the coating layer 1400 includes a slope.
  • the slope includes a first slope ( ⁇ ), a second slope ( ⁇ ), and a third slope ( ⁇ ).
  • the first slope ( ⁇ ) is a slope formed relatively close to the top of the partition wall 1300.
  • the second slope ⁇ is a slope formed relatively close to the light emitting device 1200.
  • the third slope ( ⁇ ) is a slope located between the first slope ( ⁇ ) and the second slope ( ⁇ ). At this time, the first slope ( ⁇ ) is greater than the third slope ( ⁇ ). Additionally, the third slope ( ⁇ ) is greater than the second slope ( ⁇ ). Additionally, the third inclination ( ⁇ ) is formed in a range of, for example, 15 degrees to 80 degrees. Through this, the coating layer 1400 is formed from the top of the partition 1300 toward the light emitting device 1200, and is formed concavely.
  • FIG. 11 (b) is a diagram explaining the light emission and/or reflection angle of the light emitting device 1200 depending on the inclination of the coating layer 1400.
  • the luminance coming into the 120-degree viewing angle of the person looking at the screen is important. Accordingly, it is important for the display device 1000 to increase the efficiency of the light source or to convert the light source to emit front light. This is because, in the case of the display device 1000, the luminance of the display device 1000 varies depending on the change in the reflection angle of the side of the light emitting element 1200 included in the display device 1000.
  • the light emitting device 1200 emits light through the top and side surfaces of the light emitting device 1200. At this time, relatively more light is emitted from the side of the light-emitting device 1200 than from the top surface of the light-emitting device 1200. Therefore, as light emitted from the side of the light emitting device 1200 is converted into front light, luminance is improved.
  • the display device 1000 includes a coating layer 1400 formed in a curved structure. Accordingly, the light emitted from the light emitting device 1200 is reflected by the coating layer 1400. At this time, the more horizontal the light emitted from the light emitting device 1200 is, the lower the side reflection angle must be for converting it into front light. That is, as the divergence angle (a) increases, the reflection angle (b) on the front light conversion side decreases. Accordingly, the coating layer 1400 according to embodiments has a steep slope in the upper area where light with a large divergence angle (a) is reflected.
  • the lower area of the coating layer 1400 where light with a small divergence angle (a) is reflected, has a relatively gentle slope. That is, the coating layer 1400 forms an inclination with a concave curved surface from the top of the partition wall 1300 toward the light emitting device 1200.
  • the display device 1000 can efficiently convert divergent light into front light in a limited pixel space by changing the side angle of the partition wall 1300 according to the curved structure. Additionally, embodiments improve light efficiency.
  • Figure 12 is a diagram explaining the height of a coating layer according to embodiments.
  • the display device 1000 includes a coating layer 1400 that is inclined from the top of the partition wall 1300 toward the light emitting device 1200 .
  • the coating layer formed on the upper side of the partition 1300 in the inclined area of the coating layer 1400 is referred to as the upper end 1410 of the coating layer.
  • the coating layer formed on the light emitting device 1200 side is called the lower end 1420 of the coating layer.
  • h1 represents the height of the light emitting device 1200. Additionally, in FIG. 12, h2 represents the height of the lower end 1420 of the coating layer. At this time, the height is the height from the substrate 1100.
  • the coating layer 1400 is formed so that light emitted from the light emitting device 1200 is not interrupted by the coating layer 1400. Therefore, the coating layer 1400 must be formed so that the side light of the light emitting device 1200 is reflected by the coating layer 1400 to become front light. Accordingly, the coating layer 1400 is formed so that the height h2 of the lower end 1420 of the coating layer is lower than the height h1 of the light emitting device 1200.
  • the height of the partition wall 1300 is higher than the height h1 of the light emitting device 1200.
  • the coating layer 1400 sloping from the top of the partition 1300 converts most of the light emitted from the side of the light emitting device 1200 into front light.
  • the display device 1000 does not interfere with the light emitted from the light-emitting device 1200 and simultaneously converts all or most of the light emitted from the light-emitting device 1200 into front light. Accordingly, embodiments allow light efficiency to be improved.
  • Figure 13 is a diagram explaining the degree of slope depending on the viscosity of the coating layer according to embodiments.
  • the coating layer 1400 described in FIGS. 10 to 12 is formed, for example, by coating with a liquid solution or attaching a film.
  • the coating layer 1400 forms a curved slope.
  • the solution contains a substance in which the polymer is dissolved as a solvent.
  • solvents include Propylene glycol monomethyl ether (PGME), Propylene glycol monomethyl ether acetate (PGMEA), Cyclopentanone, Cyclohexanone, Diethylene glycol monoethyl ether acetat (DGMEA), Methyl ethyl ketone (MEK), acetone, ethanol, Isopropyl alcohole (IPA) ), xylene, etc.
  • PGME Propylene glycol monomethyl ether
  • PMEA Propylene glycol monomethyl ether acetate
  • Cyclopentanone Cyclohexanone
  • DMEA Diethylene glycol monoethyl ether acetat
  • MEK Methyl ethyl ketone
  • IPA Isopropyl alcohole
  • Figure 13 (a) shows a coating layer formed by a low viscosity liquid coating.
  • the coating layer 1400 when the viscosity of the solution is low, the coating layer 1400 has a small curvature and forms a curved surface. Accordingly, the coating layer 1400 has a relatively steep slope and is formed with a relatively thin thickness. In this case, for example, it is advantageous for side emission of the light emitting device 1200.
  • Figure 13(b) shows a coating layer formed by a high viscosity liquid coating.
  • the coating layer 1400 has a large curvature and forms a curved surface. Accordingly, the coating layer 1400 has a relatively gentle slope and is formed to be relatively thick. In this case, for example, it is advantageous for side emission of light emitting devices 1200 manufactured to different standards.
  • the coating layer 1400 according to the embodiments is formed by appropriately adjusting the shape of the coating layer 1400 according to the environment in which the coating layer 1400 is used.
  • FIG. 14 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
  • the display device 1000 includes a partition wall 1300 and a coating layer 1400 that covers the partition wall 1300 and forms a slope.
  • the partition wall 1300 is formed in a bar shape with the upper and lower widths being the same or similar.
  • the partition wall 1300 has high light transmittance. Therefore, the bar-shaped partition 1300 provides high light efficiency.
  • the partition wall 1300 is formed in an inverted pyramid shape where the top width is wider than the bottom width.
  • the partition wall 1300 may have a high height relative to the light emitting device 1200. Accordingly, the partition wall 1300 blocks all or most of the light emitted from the light emitting device 1200 from mixing with each other.
  • the partition wall 1300 is formed through negative photoresist.
  • the shape of the partition wall 1300 is not limited to this, and for example, the partition wall 1300 may have any shape such as a pyramid shape.
  • the method of forming the barrier rib 1300 is not limited to this, and may be formed using, for example, positive photoresist.
  • partition wall 1300 or the coating layer 1400 that further improve color purity and/or light efficiency will be described.
  • Figure 14(a) explains an example in which a metal layer 1500 is further included.
  • the display device 1000 may further include a metal layer 1500 deposited on the coating layer 1400.
  • the metal layer 1500 is, for example, deposited on the partition wall 1300 and/or the coating layer 1400 coated on the partition wall 1300.
  • Metal layer 1500 is, for example, a reflective structure.
  • the metal layer 1500 includes, for example, Al, Ag, Ti, Sn metal oxide, etc.
  • the metal layer 1500 may be formed including several layers, such as a reflective layer and an adhesive layer that bonds the reflective layer and the coating layer 1400.
  • the metal layer 1500 is formed to have a thickness of, for example, 50 nm or more.
  • the metal layer 1500 is deposited on the partition wall 1300 and/or the coating layer 1400 in particle units, such as by sputtering.
  • the metal layer 1500 is grown in an island format from particle units. Accordingly, the metal layer 1500 forms a reflective layer in certain parts and cannot form a reflective layer in other certain parts until a certain thickness or more is formed. At this time, the constant thickness is about 50 nm. Accordingly, the metal layer 1500 is deposited on the partition wall 1300 and/or the coating layer 1400 to a thickness of 50 nm or more.
  • the embodiments more efficiently convert the light emitted from the light emitting device 1200 into front light and further improve light efficiency.
  • Figure 14(b) explains an example in which the partition 1300 or the coating layer 1400 includes a white material.
  • the partition wall 1300 and/or the coating layer 1400 include a white material.
  • White materials include white materials such as TiO2, for example.
  • the coating layer 1400 is evenly cured over the entire coating layer 1400.
  • the partition wall 1300 is generally formed of metal using vacuum equipment. However, in this case, there are process difficulties due to the use of vacuum equipment.
  • the partition wall 1300 may be formed using a light-transmissive material.
  • the partition wall 1300 may be formed thinner.
  • the display device 1000 when the display device 1000 includes a phosphor layer as will be described later, the display device 1000 can accommodate a larger amount of the phosphor layer.
  • the partition wall 1300 may include a low content of white material, and the coating layer 1400 may include a high content of white material.
  • the embodiments form the partition wall 1300 relatively easily and provide a coating layer 1400 with improved reflective ability.
  • the partition 1300 may be formed of a transparent material that is easy to expose, and the coating layer 1400 may be formed of a white material that is easy to form patterns.
  • the embodiments improve ease of manufacture.
  • Figure 14(c) explains an example in which the partition 1300 includes pores.
  • the partition wall 1300 includes a plurality of pores 1301.
  • a coating layer 1400 is formed on at least a portion of the pores 1301.
  • the coating layer 1400 includes, for example, a high-content reflective material.
  • the coating layer 1400 penetrates at least a portion of the pores 1301. Through this, at least a portion of the pores 1301 may be filled with the coating layer 1400.
  • embodiments can improve the transmittance of not only the coating layer 1400 but also the partition wall 1300 itself.
  • Figure 14(d) explains an example in which the coating layer is formed relatively narrowly.
  • the display device 1000 includes a partition wall 1300 formed of a transparent material and a coating layer 1400 formed on the partition wall 1300 through white photoresist through UV exposure.
  • a partition wall 1300 formed of a transparent material
  • a coating layer 1400 formed on the partition wall 1300 through white photoresist through UV exposure.
  • FIG. 14 various examples providing the effect of improving color purity or improving light efficiency through the structure of the partition wall 1300 or the coating layer 1400 are described.
  • FIG. 15 a method of improving color purity or light efficiency through arrangement of the partition wall 1300 or the coating layer 1400 will be described.
  • FIG. 15 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
  • the partition 1300 may be composed of one wall.
  • the partition 1300 may be formed by, for example, a plurality of rods spaced apart from each other in order to increase the surface area of the coating layer 1400 deposited on the partition 1300.
  • a plurality of rods eg, 1301, 1302, and 1303 are arranged to be spaced apart from each other and misaligned.
  • each rod eg, 1301, 1302, and 1303 is formed of negative or positive type PR material, PR material including white material, or transparent material serving as a UV optical waveguide.
  • each rod may be formed in a size smaller than the pixel unit size.
  • the coating layer 1400 is deposited to have a large surface area while surrounding each rod (eg, 1301, 1302, and 1303).
  • the display device 1000 provides a method of increasing the filling rate inside the partition wall 1300 structure.
  • Figure 16 schematically shows a cross-sectional view of a display device according to embodiments.
  • FIG. 16 an example in which the partition wall 1300 and the coating layer 1400 described with reference to FIGS. 10 to 15 are applied to the display device 1000 will be described.
  • Figure 16 (a) explains an example of color conversion of a light emitting device through a phosphor layer or a color filter.
  • Figure 16(a) shows a display device 1000 that outputs RGB colors.
  • the display device 1000 includes a light-emitting element 1200 and a phosphor layer (e.g., 1700r, 1700g) or a color filter 1600 that converts the color of light emitted from the light-emitting element 1200.
  • a phosphor layer e.g., 1700r, 1700g
  • a color filter 1600 that converts the color of light emitted from the light-emitting element 1200.
  • the light emitting device 1200 is, for example, a blue light emitting device and emits blue light, for example.
  • the phosphor layer 1700 converts the color of light emitted from the light emitting device 1200.
  • the phosphor layer 1700 includes phosphor.
  • Phosphors include, for example, organic phosphors, inorganic phosphors, quantum dots, etc.
  • the phosphor layer 1700r converts blue light into red light.
  • the phosphor layer 1700g converts blue light into green light.
  • the phosphor layer 1700 is formed to have a thickness of, for example, a predetermined size or more.
  • the predetermined size is 15 um to 25 um, and is preferably 20 um.
  • the predetermined size is 8 um to 13 um, and is preferably 10 um.
  • the phosphor layer 1700 is formed to have a thickness of a predetermined size or more, thereby performing color conversion.
  • the barrier rib 1300 and the coating layer 1400 surrounding the barrier rib 1300 prevent the lights converted by the phosphor layer 1700 from mixing with each other.
  • embodiments provide a method of increasing color purity of a display device.
  • the color filter 1600 improves the purity of light excited by the phosphor layer 1700.
  • the display device 1000 provides a method to further improve color purity.
  • Figure 16(b) explains an example of controlling the roughness of the phosphor surface.
  • the boundary area 1701 between the phosphor layer 1700 and the light emitting device 1200 is formed with a rough surface.
  • the boundary area 1701 of the phosphor layer is formed with roughness so that light emitted from the light emitting device 1200 passes through the rough surface and is further converted into front light by the coating layer 1400.
  • the embodiments provide a method of increasing color purity and light efficiency.
  • Figure 16(c) explains an example in which the light emitting device is a micro LED.
  • the display device 1000 includes a light-emitting element 1200, for example, a micro-sized light-emitting element.
  • the light emitting device 1200 includes, for example, a red LED (1200r) that emits red light, a green LED (1200g) that emits green light, and a blue LED (1200b) that emits blue light. That is, the light emitting device 1200 emits RGB colors without a color conversion layer such as a fluorescent layer or a color filter.
  • the partition 1300 and/or the coating layer 1400 according to embodiments may be applied even when they do not include a color conversion layer. Through this, the display device 1000 according to embodiments provides a display device 1000 with improved light efficiency.
  • the partition wall 1300 and/or the coating layer 1400 according to the embodiments can also be applied to the display device 1000 that does not involve color conversion.
  • the display device 1000 may further include a light diffusion layer coated on the light emitting device 1200.
  • the display device 1000 allows light emitted from the light emitting device 1200 to be further diffused through the light diffusion layer. Through this, the embodiments further improve the light efficiency of the light emitting device 1200.
  • the display device 1000 can be applied to various structures or forms, such as a display device structure, a color filter forming method, and a panel structure.
  • Figure 17 shows a flowchart of a method for controlling a display device according to embodiments.
  • FIG. 17 a method of manufacturing the display device 1000 described with reference to FIGS. 10 to 18 will be described.
  • the control method of the display device 1000 includes forming one or more partition walls 1300 between the plurality of light emitting elements 1200 (s101). Includes.
  • the method of controlling the display device 1000 includes forming a coating layer 1400 surrounding one or more partition walls 1300 (s102).
  • the coating layer 1400 is formed surrounding the partition wall 1300 using a slit coating method.
  • the coating layer 1400 is formed in an asymmetric structure with respect to the light emitting device 1200 by the discharge port moving in one direction perpendicular to the partition wall 1300.
  • the coating layer 1400 is formed in a symmetrical structure with respect to the light emitting device 1200 by a discharge port that moves in a reciprocating manner.
  • the coating layer 1400 is formed in a symmetrical structure with respect to the light emitting device 1200 by a discharge port that moves along the partition wall 1300 in parallel with the partition wall 1300 .
  • the coating layer 1400 is formed through an individual ejection nozzle, such as an inkjet.
  • the coating layer 1400 forms a curved surface on the side of the partition wall 1300 by attaching a white film.
  • the coating method of the coating layer 1400 is not limited to this. As such, the coating layer 1400 according to embodiments is formed through various methods.
  • the light-emitting device, the display device including the light-emitting device, and the manufacturing method thereof according to the embodiments of the present invention have been described above as specific embodiments, but this is only an example and the present invention is not limited thereto, and the disclosure disclosed herein It should be interpreted as having the widest scope according to the basic idea.
  • the light-emitting device, the display device including the light-emitting device, and the manufacturing method according to the embodiments have industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

According to embodiments, provided is a display device comprising: a circuit board; a plurality of light-emitting elements formed on the circuit board; one or more barriers formed on at least one portion between the plurality of light-emitting elements; and a coating layer encompassing the one or more barriers.

Description

디스플레이 장치 및 디스플레이 장치의 제조 방법Display device and method of manufacturing the display device
실시예들은 디스플레이 장치 및 디스플레이 장치의 제조 방법에 관한 것이다. 예를 들어, 실시예들은 격벽 구조를 포함하는 디스플레이 장치 및 디스플레이 장치의 제조 방법에 적용된다.Embodiments relate to a display device and a method of manufacturing the display device. For example, embodiments apply to a display device including a partition structure and a method of manufacturing the display device.
디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.In the field of display technology, display devices with excellent characteristics such as thinness and flexibility are being developed. In contrast, currently commercialized major displays are represented by LCD (Liquid Crystal Display) and OLED (Organic Light Emitting Diodes).
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 갖는다.Meanwhile, Light Emitting Diode (LED) is a semiconductor light-emitting device well known for converting current into light. Starting with the commercialization of red LED using GaAsP compound semiconductor in 1962, it has been followed by green LED of GaP:N series. It has been used as a light source for display images in electronic devices, including information and communication devices. Accordingly, a method of solving the above-mentioned problems can be proposed by implementing a display using the semiconductor light-emitting device. The semiconductor light emitting device has various advantages over filament-based light emitting devices, such as long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance.
이때, 디스플레이 장치는 예를 들어 이러한 발광 다이오드 상에 형광체층을 적층한다. 발광 다이오드로부터 방출되는 빛은 형광체층에 의해 여기된다. 이때, 디스플레이 장치는 형광체층으로부터 방출되는 빛 간의 혼색을 방지하기 위하여, 발광 다이오드 사이에 격벽을 마련한다. 격벽은 형광체층에 의해 여기되는 빛이 서로 섞이는 것을 차단하여, 색 순도를 향상시킨다.At this time, the display device stacks a phosphor layer on the light emitting diode, for example. Light emitted from the light emitting diode is excited by the phosphor layer. At this time, the display device provides a partition between the light emitting diodes to prevent color mixing between light emitted from the phosphor layer. The partition blocks the light excited by the phosphor layer from mixing with each other, improving color purity.
이때, 격벽이 측면 경사를 형성하는 경우 색순도 향상의 효과가 더 커진다. 그러나, 격벽에 포함되는 물질들이 이동을 통해 측면 경사를 크게 형성하는 것은 어렵다. 따라서, 디스플레이 장치는 격벽을 통해 효과적으로 색순도를 향상시키기 어려운 문제가 있다.At this time, if the partition wall forms a side slope, the effect of improving color purity is greater. However, it is difficult to form a large side slope through movement of the materials included in the partition. Therefore, the display device has a problem in that it is difficult to effectively improve color purity through the partition.
실시예들은 상술한 문제를 해결하는 디스플레이 장치 및 디스플레이 장치의 제조 방법을 설명한다.Embodiments describe a display device and a method of manufacturing the display device that solve the above-described problems.
실시예들은 격벽의 측면에 경사를 형성하는 것을 목적으로 한다.Embodiments aim to form a slope on the side of the partition.
실시예들은 다양한 재료를 통해 격벽을 형성하는 것을 목적으로 한다.Embodiments aim to form partition walls through various materials.
실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.The technical challenges to be achieved in the embodiments are not limited to the matters mentioned above, and other technical challenges not mentioned may be considered by those skilled in the art from the various embodiments described below. You can.
실시예들에 따르면, 배선 기판; 배선 기판 상에 형성되는 복수 개의 발광 소자; 복수 개의 발광 소자 사이 중 적어도 일부에 형성되는 하나 또는 그 이상의 격벽; 및 하나 또는 그 이상의 격벽을 감싸는 코팅층; 을 포함하는, 디스플레이 장치를 제공한다.According to embodiments, a wiring board; A plurality of light emitting devices formed on a wiring board; One or more partition walls formed between at least some of the plurality of light emitting devices; and a coating layer surrounding one or more partition walls; A display device including a is provided.
실시예들에 따르면, 코팅층은, 격벽의 상단으로부터 발광 소자를 향하여 경사를 형성하는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided in which the coating layer forms an inclination from the top of the partition toward the light emitting element.
실시예들에 따르면, 코팅층은, 경사는 상면을 향하여 오목하게 형성되는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided in which the coating layer is formed concavely with an inclination toward the upper surface.
실시예들에 따르면, 경사는, 격벽의 상단에 가까운 제 1 기울기, 발광 소자에 가까운 제 2 기울기 및 제 1 기울기와 제 2 기울기 사이에 위치하는 제 3 기울기를 포함하고, 제 1 기울기는 제 3 기울기보다 크고, 제 3 기울기는 제 2 기울기보다 큰, 디스플레이 장치를 제공한다.According to embodiments, the slope includes a first slope close to the top of the partition, a second slope close to the light emitting element, and a third slope located between the first slope and the second slope, the first slope being the third slope. A display device is provided, wherein the tilt is greater than the tilt, and the third tilt is greater than the second tilt.
실시예들에 따르면, 제 2 기울기는 15도 내지 80도의 범위에서 형성되는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided in which the second tilt is formed in a range of 15 degrees to 80 degrees.
실시예들에 따르면, 코팅층은, 발광 소자를 향하는 측인 하단부를 포함하고, 하단부의 높이는 발광 소자의 높이보다 낮은, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided wherein the coating layer includes a lower portion on a side facing the light emitting device, and the height of the lower portion is lower than the height of the light emitting device.
실시예들에 따르면, 격벽은, 격벽의 상부가 격벽의 하부보다 넓게 형성되는, 디스플레이 장치를 제공한다.According to embodiments, the partition wall provides a display device in which the upper part of the partition wall is formed to be wider than the lower part of the partition wall.
실시예들에 따르면, 디스플레이 장치는, 코팅층 상에 형성되는 금속층; 을 더 포함하는, 디스플레이 장치를 제공한다.According to embodiments, a display device includes a metal layer formed on a coating layer; A display device is provided, further comprising:
실시예들에 따르면, 격벽 및 코팅층 중 적어도 하나는, 화이트 재료를 포함하는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided wherein at least one of the partition wall and the coating layer includes a white material.
실시예들에 따르면, 격벽은 복수 개의 포어(pore)를 포함하고, 포어의 적어도 일부에는 코팅층이 형성되는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided in which the partition wall includes a plurality of pores, and a coating layer is formed on at least a portion of the pores.
실시예들에 따르면, 격벽은, 서로 어긋나게 배치되는 복수 개의 로드(rod)에 의해 형성되는, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided in which the partition wall is formed by a plurality of rods arranged to be offset from each other.
실시예들에 따르면, 발광 소자 상에 형성되고, 발광 소자로부터 발산되는 빛의 색을 변환하는 형광체층; 을 포함하는, 디스플레이 장치를 제공한다.According to embodiments, a phosphor layer is formed on the light emitting device and converts the color of light emitted from the light emitting device; A display device including a is provided.
실시예들에 따르면, 디스플레이 장치는, 발광소자 상에 형성되고, 발광 소자로부터 발산되는 빛의 색을 변환하는 컬러 필터; 를 포함하는, 디스플레이 장치를 제공한다.According to embodiments, a display device includes a color filter formed on a light-emitting device and converting the color of light emitted from the light-emitting device; A display device including a is provided.
실시예들에 따르면, 발광 소자는, 마이크로 사이즈를 갖는 마이크로 LED인, 디스플레이 장치를 제공한다.According to embodiments, a display device is provided where the light emitting element is a micro LED having a micro size.
실시예들에 따르면, 복수 개의 발광 소자가 이격되어 마련되는 배선 기판 상에, 복수 개의 발광 소자 사이 중 적어도 일부에 하나 또는 그 이상의 격벽을 형성하는 단계; 및 하나 또는 그 이상의 격벽을 감싸는 코팅층을 형성하는 단계; 를 포함하는, 디스플레이 장치의 제조 방법을 제공한다.According to embodiments, forming one or more partition walls between the plurality of light emitting devices on a wiring board on which the plurality of light emitting devices are spaced apart; And forming a coating layer surrounding one or more partition walls; Provides a method of manufacturing a display device including.
실시예들은 색순도가 개선되는 디스플레이 장치를 제공할 수 있다.Embodiments may provide a display device with improved color purity.
실시예들은 COW(Chip On the Wafer) 제작 시 생산 단가를 감소할 수 있다.Embodiments can reduce production costs when manufacturing COW (Chip On the Wafer).
실시예들은 격벽 재료의 다양화가 가능하도록 한다.Embodiments allow for a variety of barrier materials.
실시예들은 형광체 충진 공간이 최대화되는 디스플레이 장치를 제공할 수 있다.Embodiments may provide a display device in which the phosphor filling space is maximized.
실시예들은 광효율이 향상되는 디스플레이 장치를 제공할 수 있다.Embodiments may provide a display device with improved light efficiency.
실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.The effects that can be obtained from the examples are not limited to the effects mentioned above, and other effects not mentioned can be clearly derived and understood by those skilled in the art based on the detailed description below. It can be.
실시예들에 대한 이해를 돕기 위해 상세한 설명의 일부로 포함된, 첨부 도면은 다양한 실시예들을 제공하고, 상세한 설명과 함께 다양한 실시예들의 기술적 특징을 설명한다.The accompanying drawings, which are included as part of the detailed description to aid understanding of the embodiments, provide various embodiments and together with the detailed description describe technical features of the various embodiments.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light-emitting device of the present invention.
도 2는 도 1의 A부분의 부분 확대도 이다.Figure 2 is a partial enlarged view of part A of Figure 1.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.FIGS. 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.FIG. 4 is a conceptual diagram showing the flip chip type semiconductor light emitting device of FIG. 3.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.5A to 5C are conceptual diagrams showing various forms of implementing color in relation to a flip chip type semiconductor light emitting device.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.Figure 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.Figure 7 is a perspective view showing another embodiment of a display device using the semiconductor light-emitting device of the present invention.
도 8은 도 7의 라인 D-D를 따라 절단된 단면도이다.Figure 8 is a cross-sectional view taken along line D-D in Figure 7.
도 9는 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.FIG. 9 is a conceptual diagram showing the vertical semiconductor light emitting device of FIG. 8.
도 10은 실시예들에 따른 디스플레이 장치의 단면도를 개략적으로 도시한 것이다.Figure 10 schematically shows a cross-sectional view of a display device according to embodiments.
도 11은 실시예들에 따른 코팅층의 기울기를 설명하는 도면이다.Figure 11 is a diagram explaining the slope of the coating layer according to embodiments.
도 12는 실시예들에 따른 코팅층의 높이를 설명하는 도면이다.Figure 12 is a diagram explaining the height of a coating layer according to embodiments.
도 13은 실시예들에 따른 코팅층의 점도에 따른 기울기 정도를 설명하는 도면이다.Figure 13 is a diagram explaining the degree of slope depending on the viscosity of the coating layer according to embodiments.
도 14는 실시예들에 따른 격벽 및/또는 코팅층의 다양한 예시를 설명하는 도면이다.14 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
도 15는 실시예들에 따른 격벽 및/또는 코팅층의 다양한 예시를 설명하는 도면이다.FIG. 15 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
도 16은 실시예들에 따른 디스플레이 장치의 단면도를 개략적으로 도시한 것이다.Figure 16 schematically shows a cross-sectional view of a display device according to embodiments.
도 17은 실시예들에 따른 디스플레이 장치의 제어 방법의 순서도를 도시한 것이다.Figure 17 shows a flowchart of a method for controlling a display device according to embodiments.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.Hereinafter, embodiments disclosed in the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted. The suffixes “module” and “part” for components used in the following description are given or used interchangeably only for the ease of preparing the specification, and do not have distinct meanings or roles in themselves. Additionally, in describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions will be omitted. In addition, it should be noted that the attached drawings are only for easy understanding of the embodiments disclosed in this specification, and should not be construed as limiting the technical idea disclosed in this specification by the attached drawings.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.Furthermore, although each drawing is described for convenience of explanation, it is within the scope of the present invention for a person skilled in the art to implement another embodiment by combining at least two or more drawings.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다. Additionally, when an element such as a layer, region or substrate is referred to as being “on” another component, it is to be understood that it may be present directly on the other element or that there may be intermediate elements in between. There will be.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다. The display device described in this specification is a concept that includes all display devices that display information using a unit pixel or a set of unit pixels. Therefore, it is not limited to finished products but can also be applied to parts. For example, a panel corresponding to a part of a digital TV also independently corresponds to a display device in this specification. Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, PDAs (personal digital assistants), PMPs (portable multimedia players), navigation, Slate PCs, Tablet PCs, and Ultra This may include books, digital TVs, desktop computers, etc.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.However, those skilled in the art will easily understand that the configuration according to the embodiment described in this specification can be applied to a device capable of displaying, even if it is a new product type that is developed in the future.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.In addition, the semiconductor light emitting devices mentioned in this specification include LEDs, micro LEDs, etc., and may be used interchangeably.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light-emitting device of the present invention.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.As shown in FIG. 1, information processed by the control unit (not shown) of the display device 100 may be displayed using a flexible display.
플렉서블 디스플레이는, 예를 들어 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.Flexible displays include, for example, displays that can be bent, bent, twisted, folded, or rolled by an external force.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.Furthermore, a flexible display can be, for example, a display manufactured on a thin, flexible substrate that can be bent, bent, folded, or rolled like paper, while maintaining the display characteristics of a conventional flat panel display.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.When the flexible display is not bent (for example, a state with an infinite radius of curvature, hereinafter referred to as the first state), the display area of the flexible display becomes flat. In the first state, when the display area is bent by an external force (for example, a state with a finite radius of curvature, hereinafter referred to as the second state), the display area may become a curved surface. As shown in FIG. 1, information displayed in the second state may be visual information output on a curved surface. This visual information is implemented by independently controlling the light emission of unit pixels (sub-pixels) arranged in a matrix form. The unit pixel means, for example, the minimum unit for implementing one color.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.A unit pixel of the flexible display may be implemented by a semiconductor light-emitting device. In the present invention, a light emitting diode (LED) is exemplified as a type of semiconductor light emitting device that converts current into light. The light emitting diode is formed in a small size, and through this, it can function as a unit pixel even in the second state.
상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 보다 상세히 설명한다.The flexible display implemented using the light emitting diode will be described in more detail with reference to the drawings below.
도 2는 도 1의 A부분의 부분 확대도 이다.Figure 2 is a partial enlarged view of part A of Figure 1.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.FIGS. 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.FIG. 4 is a conceptual diagram showing the flip chip type semiconductor light emitting device of FIG. 3.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.5A to 5C are conceptual diagrams showing various forms of implementing color in relation to a flip chip type semiconductor light emitting device.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.As shown in FIGS. 2, 3A, and 3B, a display device 100 using a passive matrix (PM) type semiconductor light emitting device is exemplified. However, the examples described below are also applicable to active matrix (AM) type semiconductor light emitting devices.
도 1에 도시된 디스플레이 장치(100)는, 도 2에 도시된 바와 같이 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.The display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device, as shown in FIG. 2. Includes (150).
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.The substrate 110 may be a flexible substrate. For example, in order to implement a flexible display device, the substrate 110 may include glass or polyimide (PI). In addition, any material that has insulating properties and is flexible, such as PEN (Polyethylene Naphthalate) or PET (Polyethylene Terephthalate), can be used. Additionally, the substrate 110 may be made of either a transparent or opaque material.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.The substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be located on the substrate 110.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.As shown in FIG. 3A, the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be located in the insulating layer 160. In this case, the insulating layer 160 is stacked on the substrate 110 to form a single wiring board. More specifically, the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, or PEN, and can be integrated with the substrate 110 to form one substrate.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.The auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is located on the insulating layer 160 and disposed to correspond to the position of the first electrode 120. For example, the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through the electrode hole 171 penetrating the insulating layer 160. The electrode hole 171 may be formed by filling a via hole with a conductive material.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.As shown in Figure 2 or Figure 3a, a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto. For example, a structure in which a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130, or in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible. In a structure in which the conductive adhesive layer 130 is disposed on the substrate 110, the conductive adhesive layer 130 may function as an insulating layer.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.The conductive adhesive layer 130 may be a layer having adhesiveness and conductivity. For this purpose, a conductive material and an adhesive material may be mixed in the conductive adhesive layer 130. Additionally, the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).As such an example, the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, etc. The conductive adhesive layer 130 may be configured as a layer that allows electrical interconnection in the Z direction penetrating the thickness, but has electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be called a Z-axis conductive layer (however, hereinafter referred to as 'conductive adhesive layer').
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.The anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive due to the anisotropic conductive medium. Hereinafter, it will be explained that heat and pressure are applied to the anisotropic conductive film, but other methods may be applied to make the anisotropic conductive film partially conductive. Other methods described above can be, for example, applying only one of the heat and pressure, UV curing, etc.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.Additionally, the anisotropic conductive medium may be, for example, conductive balls or conductive particles. For example, the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only specific portions become conductive due to the conductive balls. An anisotropic conductive film may contain a plurality of particles in which the core of a conductive material is covered by an insulating film made of polymer. In this case, the area where heat and pressure are applied becomes conductive due to the destruction of the insulating film and the core. . At this time, the shape of the core can be modified to form layers that contact each other in the thickness direction of the film. As a more specific example, heat and pressure are applied entirely to the anisotropic conductive film, and an electrical connection in the Z-axis direction is partially formed due to a height difference between the objects adhered by the anisotropic conductive film.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.As another example, an anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core. In this case, the conductive material is deformed (pressed) in the area where heat and pressure are applied and becomes conductive in the direction of the thickness of the film. As another example, it is possible for the conductive material to penetrate the insulating base member in the Z-axis direction and be conductive in the thickness direction of the film. In this case, the conductive material may have a pointed end.
상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 상기 베이스 부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.The anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which a conductive ball is inserted into one surface of an insulating base member. More specifically, the insulating base member is made of an adhesive material, and the conductive balls are concentrated on the bottom of the insulating base member, and are deformed together with the conductive balls when heat and pressure are applied to the base member. It becomes conductive in the vertical direction.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.However, the present invention is not necessarily limited to this, and the anisotropic conductive film has a form in which conductive balls are randomly mixed into an insulating base member, or a form in which conductive balls are arranged in one layer (double-layer) consisting of a plurality of layers. ACF), etc. are all possible.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.Anisotropic conductive paste is a combination of paste and conductive balls, and can be a paste in which conductive balls are mixed with an insulating and adhesive base material. Additionally, the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
다시 도3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.Referring again to FIG. 3A, the second electrode 140 is located in the insulating layer 160 and spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 where the auxiliary electrode 170 and the second electrode 140 are located.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. When enabled, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.Referring to FIG. 4, the semiconductor light emitting device may be a flip chip type light emitting device.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도3에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.For example, the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( 154) includes an n-type semiconductor layer 153 formed on the n-type semiconductor layer 153 and an n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153. In this case, the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 may be electrically connected to the second electrode 140. It can be connected to .
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.Referring again to FIGS. 2, 3A, and 3B, the auxiliary electrode 170 is formed long in one direction, so that one auxiliary electrode can be electrically connected to a plurality of semiconductor light emitting devices 150. For example, p-type electrodes of semiconductor light emitting devices on the left and right around the auxiliary electrode may be electrically connected to one auxiliary electrode.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.More specifically, the semiconductor light-emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light-emitting device 150 is formed through this. And, only the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity due to the absence of press fit of the semiconductor light emitting device. In this way, the conductive adhesive layer 130 not only bonds the semiconductor light-emitting device 150 and the auxiliary electrode 170 and the semiconductor light-emitting device 150 and the second electrode 140 to each other, but also forms an electrical connection.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.Additionally, the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.The light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values. Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120. For example, there may be a plurality of first electrodes 120, the semiconductor light emitting devices may be arranged in, for example, several rows, and the semiconductor light emitting devices in each row may be electrically connected to one of the plurality of first electrodes.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.Additionally, since the semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Additionally, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, an individual unit pixel can be formed even in a small size.
도3에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 상기 격벽을 형성할 수 있다.As shown in FIG. 3, a partition wall 190 may be formed between the semiconductor light emitting devices 150. In this case, the partition wall 190 may serve to separate individual unit pixels from each other and may be formed integrally with the conductive adhesive layer 130. For example, when the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.Additionally, if the base member of the anisotropic conductive film is black, the partition 190 can have reflective characteristics and increase contrast even without a separate black insulator.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.As another example, a reflective partition may be separately provided as the partition wall 190. In this case, the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When using a partition made of white insulator, it can have the effect of increasing reflectivity, and when using a partition made of black insulator, it can have reflective characteristics and increase contrast at the same time.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.The phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150. For example, the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 functions to convert the blue (B) light into the color of a unit pixel. The phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting an individual pixel.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.That is, at a position forming a red unit pixel, a red phosphor 181 capable of converting blue light into red (R) light can be stacked on the blue semiconductor light emitting device, and at a position forming a green unit pixel, a blue phosphor 181 can be stacked on the blue semiconductor light emitting device. A green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device. Additionally, only a blue semiconductor light emitting device can be used alone in the portion forming the blue unit pixel. In this case, red (R), green (G), and blue (B) unit pixels may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Accordingly, one line in the first electrode 120 can be an electrode that controls one color. That is, red (R), green (G), and blue (B) can be arranged in order along the second electrode 140, and through this, a unit pixel can be implemented.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.However, the present invention is not necessarily limited to this, and unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and quantum dots (QD) instead of the phosphor. there is.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.Additionally, a black matrix 191 may be disposed between each phosphor layer to improve contrast. In other words, this black matrix 191 can improve contrast between light and dark.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.However, the present invention is not necessarily limited to this, and other structures for implementing blue, red, and green colors may be applied.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.Referring to FIG. 5A, each semiconductor light emitting device 150 is made of gallium nitride (GaN) as the main material, and indium (In) and/or aluminum (Al) are added together to form a high-output device that emits various lights, including blue. It can be implemented as a light emitting device.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.In this case, the semiconductor light emitting device 150 may be a red, green, and blue semiconductor light emitting device to form a unit pixel (sub-pixel). For example, red, green, and blue semiconductor light emitting devices (R, G, B) are arranged alternately, and unit pixels of red, green, and blue are generated by the red, green, and blue semiconductor light emitting devices. They form one pixel, and through this, a full color display can be implemented.
도 5b를 참조하면, 반도체 발광 소자(150a)는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.Referring to FIG. 5B, the semiconductor light emitting device 150a may include a white light emitting device (W) in which a yellow phosphor layer is provided for each individual device. In this case, a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device (W) to form a unit pixel. Additionally, a unit pixel can be formed on the white light emitting device (W) using a color filter that repeats red, green, and blue.
도 5c를 참조하면, 자외선 발광 소자(150b) 상에 적색 형광체층(184), 녹색 형광체층(185), 및 청색 형광체층(186)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.Referring to FIG. 5C, a structure in which a red phosphor layer 184, a green phosphor layer 185, and a blue phosphor layer 186 are provided on the ultraviolet light emitting device 150b is also possible. In this way, semiconductor light-emitting devices can be used in all areas, not only visible light but also ultraviolet (UV) light, and can be expanded to the form of a semiconductor light-emitting device in which ultraviolet light (UV) can be used as an excitation source for the upper phosphor. .
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.Looking again at this example, the semiconductor light emitting device is located on the conductive adhesive layer and constitutes a unit pixel in the display device. Since semiconductor light-emitting devices have excellent luminance, individual unit pixels can be formed even in small sizes.
이와 같은 개별 반도체 발광 소자(150)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20 X 80㎛ 이하의 크기가 될 수 있다.For example, the size of such an individual semiconductor light emitting device 150 may have a side length of 80 μm or less and may be a rectangular or square device. In the case of a rectangular shape, the size may be less than 20
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.In addition, even if a square semiconductor light emitting device 150 with a side length of 10 μm is used as a unit pixel, sufficient brightness to form a display device appears.
따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한 변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다.Therefore, taking as an example the case where the unit pixel size is a rectangular pixel with one side of 600 μm and the other side of 300 μm, the distance between the semiconductor light emitting devices becomes relatively large enough.
따라서, 이러한 경우, HD화질 이상의 고화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.Therefore, in this case, it is possible to implement a flexible display device with high definition quality, HD quality or higher.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조 방법에 대하여 설명한다.A display device using the semiconductor light emitting device described above can be manufactured using a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.Figure 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
도 6에 도시된 바와 같이, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 배선기판(110)에 절연층(160)이 적층되며, 상기 배선기판(110)에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 배선기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.As shown in FIG. 6, first, a conductive adhesive layer 130 is formed on the insulating layer 160 where the auxiliary electrode 170 and the second electrode 140 are located. An insulating layer 160 is laminated on the wiring board 110, and a first electrode 120, an auxiliary electrode 170, and a second electrode 140 are disposed on the wiring board 110. In this case, the first electrode 120 and the second electrode 140 may be arranged in directions orthogonal to each other. Additionally, in order to implement a flexible display device, the wiring board 110 and the insulating layer 160 may each include glass or polyimide (PI).
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.The conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film. For this purpose, the anisotropic conductive film may be applied to the substrate on which the insulating layer 160 is located.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 임시기판(112)을, 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 마주하도록 배치한다.Next, a temporary substrate 112 corresponding to the position of the auxiliary electrode 170 and the second electrode 140 and on which a plurality of semiconductor light-emitting devices 150 constituting individual pixels are located is placed, and the semiconductor light-emitting devices 150 ) is arranged to face the auxiliary electrode 170 and the second electrode 140.
이 경우에, 임시기판(112)은 반도체 발광 소자(150)를 성장시키는 성장기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.In this case, the temporary substrate 112 is a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.When the semiconductor light emitting device is formed in a wafer unit, it can be effectively used in a display device by having a gap and size that can form a display device.
그 다음에, 배선기판과 임시기판(112)을 열 압착한다. 예를 들어, 배선기판과 임시기판(112)은 ACF 프레스 헤드를 적용하여 열 압착할 수 있다. 상기 열 압착에 의하여 배선기판과 임시기판(112)은 본딩(bonding)된다. 열 압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광 소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.Next, the wiring board and the temporary board 112 are heat-compressed. For example, the wiring board and the temporary board 112 can be heat-compressed using an ACF press head. The wiring board and the temporary board 112 are bonded by the thermal compression. Due to the characteristics of the anisotropic conductive film that becomes conductive by heat compression, only the portion between the semiconductor light-emitting device 150 and the auxiliary electrode 170 and the second electrode 140 becomes conductive, and through this, the electrodes and the semiconductor light emitte. Element 150 may be electrically connected. At this time, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, and a partition wall can be formed between the semiconductor light emitting devices 150 through this.
그 다음에, 상기 임시기판(112)을 제거한다. 예를 들어, 임시기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.Next, the temporary substrate 112 is removed. For example, the temporary substrate 112 can be removed using a laser lift-off (LLO) method or a chemical lift-off (CLO) method.
마지막으로, 상기 임시기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.Finally, the temporary substrate 112 is removed to expose the semiconductor light emitting devices 150 to the outside. If necessary, a transparent insulating layer (not shown) may be formed by coating the wiring board to which the semiconductor light emitting device 150 is coupled with silicon oxide (SiOx).
또한, 상기 반도체 발광 소자(150)의 일 면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.Additionally, the step of forming a phosphor layer on one side of the semiconductor light emitting device 150 may be further included. For example, the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light. A layer can be formed on one side of the device.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법이나 구조는 여러 가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다.The manufacturing method or structure of a display device using a semiconductor light emitting device described above can be modified into various forms. As an example, a vertical semiconductor light emitting device may also be applied to the display device described above.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.In addition, in the modified examples or embodiments described below, the same or similar reference numbers are assigned to the same or similar components as the previous example, and the description is replaced with the first description.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.Figure 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention, Figure 8 is a cross-sectional view taken along line D-D of Figure 7, and Figure 9 shows the vertical semiconductor light emitting device of Figure 8. It is a concept diagram.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.Referring to these drawings, the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 적어도 하나의 반도체 발광 소자(250)를 포함한다.The display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and at least one semiconductor light emitting device 250.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.The substrate 210 is a wiring board on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device. In addition, any material that is insulating and flexible can be used.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1 전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.The first electrode 220 is located on the substrate 210 and may be formed as a bar-shaped electrode that is long in one direction. The first electrode 220 may be configured to function as a data electrode.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(Anisotropy Conductive Film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시 예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.The conductive adhesive layer 230 is formed on the substrate 210 where the first electrode 220 is located. Like a display device with a flip chip type light emitting device, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), an anisotropic conductive paste, and conductive particles. ), etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by an anisotropic conductive film.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.After placing the anisotropic conductive film with the first electrode 220 positioned on the substrate 210 and connecting the semiconductor light emitting device 250 by applying heat and pressure, the semiconductor light emitting device 250 is connected to the first electrode 220. It is electrically connected to the electrode 220. At this time, the semiconductor light emitting device 250 is preferably disposed on the first electrode 220.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께 방향으로 전도성을 가지는 부분과 전도성을 가지지 않는 부분으로 구획된다.As described above, the electrical connection is created because the anisotropic conductive film becomes partially conductive in the thickness direction when heat and pressure are applied. Therefore, the anisotropic conductive film is divided into a conductive part and a non-conductive part in the thickness direction.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.Additionally, because the anisotropic conductive film contains an adhesive component, the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 예를 들어, 20 X 80㎛ 이하의 크기가 될 수 있다.In this way, the semiconductor light emitting device 250 is located on the conductive adhesive layer 230 and constitutes an individual pixel in the display device. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be formed even in small sizes. For example, the size of such an individual semiconductor light emitting device 250 may have a side length of 80 μm or less and may be a rectangular or square device. In the case of a rectangular shape, the size may be, for example, 20
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다. The semiconductor light emitting device 250 may have a vertical structure.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.Between the vertical semiconductor light emitting devices, a plurality of second electrodes 240 are disposed in a direction crossing the longitudinal direction of the first electrode 220 and are electrically connected to the vertical semiconductor light emitting devices 250.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자(250)는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.Referring to FIG. 9, this vertical semiconductor light emitting device 250 includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and a p-type semiconductor layer 255. It includes an active layer 254, an n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253. In this case, the p-type electrode 256 located at the bottom may be electrically connected to the first electrode 220 and the conductive adhesive layer 230, and the n-type electrode 252 located at the top may be connected to the second electrode 240, which will be described later. ) can be electrically connected to. This vertical semiconductor light emitting device 250 has a great advantage in that it can reduce the chip size because electrodes can be arranged up and down.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.Referring again to FIG. 8, a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250. For example, the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and is provided with a phosphor layer 280 to convert this blue (B) light into the color of a unit pixel. It can be. In this case, the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.That is, at a position forming a red unit pixel, a red phosphor 281 capable of converting blue light into red (R) light can be stacked on the blue semiconductor light emitting device, and at a position forming a green unit pixel, a blue phosphor 281 can be stacked on the blue semiconductor light emitting device. A green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device. Additionally, only a blue semiconductor light emitting device can be used alone in the portion forming the blue unit pixel. In this case, red (R), green (G), and blue (B) unit pixels may form one pixel.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.However, the present invention is not necessarily limited to this, and as described above, in a display device using a flip chip type light emitting device, other structures for implementing blue, red, and green colors may be applied.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.Looking at this embodiment again, the second electrode 240 is located between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250. For example, the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be located between the rows of the semiconductor light emitting devices 250.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.Since the distance between the semiconductor light emitting devices 250 forming individual pixels is sufficiently large, the second electrode 240 can be positioned between the semiconductor light emitting devices 250.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.The second electrode 240 may be formed as a long bar-shaped electrode in one direction and may be arranged in a direction perpendicular to the first electrode.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.Additionally, the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240. More specifically, the connection electrode may be an n-type electrode of the semiconductor light emitting device 250. For example, the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 can be electrically connected.
다시 도 8을 참조하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.Referring again to FIG. 8, the second electrode 240 may be positioned on the conductive adhesive layer 230. In some cases, a transparent insulating layer (not shown) containing silicon oxide (SiOx) or the like may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed. When the second electrode 240 is placed after the transparent insulating layer is formed, the second electrode 240 is located on the transparent insulating layer. Additionally, the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.If a transparent electrode such as ITO (Indium Tin Oxide) is used to place the second electrode 240 on the semiconductor light emitting device 250, the ITO material has a problem of poor adhesion to the n-type semiconductor layer. there is. Therefore, the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, light extraction efficiency can be improved by using a conductive material with good adhesion to the n-type semiconductor layer as a horizontal electrode without being restricted by the selection of a transparent material.
다시 도 8을 참조하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.Referring again to FIG. 8, a partition 290 may be located between the semiconductor light emitting devices 250. That is, a partition 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be formed integrally with the conductive adhesive layer 230. For example, the base member of the anisotropic conductive film may form the partition wall by inserting the semiconductor light emitting device 250 into the anisotropic conductive film.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.Additionally, if the base member of the anisotropic conductive film is black, the partition 290 can have reflective characteristics and increase contrast even without a separate black insulator.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.As another example, a reflective partition may be separately provided as the partition wall 190. The partition 290 may include a black or white insulator depending on the purpose of the display device.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이 사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.If the second electrode 240 is located directly on the conductive adhesive layer 230 between the semiconductor light emitting devices 250, the partition wall 290 is located between the vertical semiconductor light emitting devices 250 and the second electrode 240. It can be located in between. Therefore, an individual unit pixel can be formed even in a small size using the semiconductor light-emitting device 250, and the distance between the semiconductor light-emitting devices 250 is relatively large enough to connect the second electrode 240 to the semiconductor light-emitting device 250. ), and has the effect of implementing a flexible display device with HD image quality.
또한, 도8에 도시된 바와 같이, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.Additionally, as shown in FIG. 8, a black matrix 291 may be disposed between each phosphor to improve contrast. In other words, this black matrix 291 can improve contrast between light and dark.
한편, 상술한 바와 같이 격벽(도 1 내지 도 9의 190, 290)은 비스듬한 각도를 가진 경우 발광 소자 상에 충진된 형광체에 대해 광효율 개선 효과를 가진다. 이때, 격벽은 폭 대비 높은 형태를 갖기 위하여, 상대적으로 투명한 네거티브 포토 레지스트(negative photoresist, negative PR)에 의해 형성된다. 이와 같이 네거티브 PR을 통해 형성된 격벽은 상단이 튀어나오거나, 또는 수직한 형태이거나 또는 역 피라미드 구조를 형성할 수 있다. 또한, 이때 격벽은 재료 특성에 따라 베이킹 진행 과정에서 리플로우(reflow)가 진행되면서 측면에 경사를 형성할 수 있다. 그러나, 열에너지에 의한 물질의 이동 거리에 한계가 있어, 측면 경사 형성을 위한 각도 변화에 한계가 있다.Meanwhile, as described above, when the partition walls (190 and 290 in FIGS. 1 to 9) have an oblique angle, they have an effect of improving light efficiency with respect to the phosphor filled in the light emitting device. At this time, the barrier rib is formed of relatively transparent negative photoresist (negative PR) in order to have a high shape compared to the width. In this way, the partition formed through negative PR may have a protruding top, a vertical shape, or an inverted pyramid structure. Additionally, at this time, the partition wall may form an incline on the side as reflow progresses during the baking process depending on the material characteristics. However, there is a limit to the distance the material can move due to thermal energy, so there is a limit to the angle change for forming the side slope.
따라서, 이하에서는 격벽의 측면 경사를 형성하는 디스플레이 장치에 대해 상세하게 설명한다. Therefore, hereinafter, a display device that forms a lateral slope of the partition will be described in detail.
도 10은 실시예들에 따른 디스플레이 장치의 단면도를 개략적으로 도시한 것이다.Figure 10 schematically shows a cross-sectional view of a display device according to embodiments.
도 10에서, 1000은 실시예들에 따른 디스플레이 장치를 나타낸다. 실시예들에 따른 디스플레이 장치(1000)는 광 효율이 향상되고, 색순도가 개선되는 구조를 제공한다.In FIG. 10, 1000 represents a display device according to embodiments. The display device 1000 according to embodiments provides a structure in which light efficiency is improved and color purity is improved.
이를 위해, 실시예들에 따른 디스플레이 장치(1000)는 배선 기판(1100)(예를 들어, 도 1 내지 도 9에서 설명한 기판), 복수 개의 발광 소자(1200)(예를 들어, 도 1 내지 도 9에서 설명한 반도체 발광 소자), 격벽(1300)(예를 들어, 도 1 내지 도 9에서 설명한 격벽) 및 코팅층(1400)을 포함한다. 도 10에 도시한 바와 달리, 디스플레이 장치(1000)의 구성 요소는 도 10에 도시된 구성에 한정되지 않는다. 디스플레이 장치(1000)는 도 10에 도시한 구성 요소보다 더 많은 구성 요소를 포함할 수 있고, 또는, 도 10에 도시한 구성 요소보다 더 적은 구성 요소들을 포함하여도 된다.To this end, the display device 1000 according to embodiments includes a wiring board 1100 (e.g., the substrate described in FIGS. 1 to 9) and a plurality of light emitting elements 1200 (e.g., the substrate described in FIGS. 1 to 9). 9), a barrier rib 1300 (e.g., a barrier rib described in FIGS. 1 to 9), and a coating layer 1400. Unlike shown in FIG. 10, the components of the display device 1000 are not limited to those shown in FIG. 10. The display device 1000 may include more components than those shown in FIG. 10 or may include fewer components than the components shown in FIG. 10 .
배선 기판(1100)은 하나 또는 그 이상의 발광 소자(1200)에 대해 전기 신호를 인가하는 인쇄 회로를 포함하는 기판이다. 예를 들어, 배선 기판(1100)은 기판(110) 상에 제 1 전극(120), 제 2 전극(140), 절연층(160) 등의 배선이 인쇄된다. 배선 기판(1100)은 예를 들어 플렉서블 기판으로서, 예를 들어 유리, 폴리이미드를 포함한다. 또는, 배선 기판(1100)은 예를 들어 PEN(Polyethylene Naphthatalate), PET(Polyethylene Terephthaltae) 등의 유연성 있는 재질의 기판을 포함한다.The wiring board 1100 is a board including a printed circuit that applies electrical signals to one or more light emitting devices 1200. For example, the wiring board 1100 has wiring such as a first electrode 120, a second electrode 140, and an insulating layer 160 printed on the board 110. The wiring board 1100 is, for example, a flexible board and includes, for example, glass or polyimide. Alternatively, the wiring board 1100 includes a board made of a flexible material, such as polyethylene naphthatalate (PEN) or polyethylene terephthalate (PET).
발광 소자(1200)는 배선 기판(1100) 상에 형성된다. 발광 소자(1200)는 배선 기판(1100) 상에 인쇄된 배선에 의해, 외부로부터 전기 신호를 공급받는다. 발광 소자(1200)는 공급받은 전기 신호를 빛으로 방출한다. 이를 통해 발광 소자(1200)는 빛을 발광한다. 발광 소자(1200)는 예를 들어 LED(Litght Emditting Diode)이다.The light emitting device 1200 is formed on the wiring board 1100. The light emitting device 1200 receives electrical signals from the outside through wiring printed on the wiring board 1100. The light emitting device 1200 emits the supplied electrical signal as light. Through this, the light emitting device 1200 emits light. The light emitting device 1200 is, for example, an LED (Light Emditting Diode).
격벽(1300)은 복수 개의 발광 소자(1200) 사이 중 적어도 일부에 하나 또는 그 이상 형성된다. 격벽(1300)은 발광 소자(1200) 사이에 형성되어, 예를 들어 형광체층(1700, 도 16 참조)이 충진되는 공간을 제공한다. 격벽(1300)은 복수 개의 발광 소자(1200)들 사이에 형성되어, 발광 소자(1200)로부터 방출되는 빛이 서로 혼합되지 않도록 한다. 또한, 격벽(1300)은 반사층 또는 흡수층의 역할을 수행한다. One or more partition walls 1300 are formed between at least a portion of the plurality of light emitting devices 1200 . The partition wall 1300 is formed between the light emitting devices 1200 to provide a space filled with, for example, the phosphor layer 1700 (see FIG. 16). The partition wall 1300 is formed between the plurality of light emitting devices 1200 to prevent light emitted from the light emitting devices 1200 from being mixed with each other. Additionally, the partition wall 1300 functions as a reflective layer or absorption layer.
코팅층(1400)은 하나 또는 그 이상의 격벽(1300)을 감싸면서 형성된다. 도 10에 도시한 바와 같이, 코팅층(1400)은 격벽(1300)의 측면을 형성한다. 코팅층(1400)은 격벽(1400)의 측면 경사를 형성한다. 코팅층(1400)은 격벽(1400)을 덮으면서 형성되고, 격벽(1400)의 상단으로부터 격벽(1400)의 하단을 향해 점차 두께가 증가하도록 형성된다. 즉, 코팅층(1400)은 격벽(1400)의 상단으로부터 발광 소자(1200)를 향하여 경사를 형성한다. The coating layer 1400 is formed surrounding one or more partition walls 1300. As shown in FIG. 10, the coating layer 1400 forms the side surface of the partition wall 1300. The coating layer 1400 forms a lateral slope of the partition wall 1400. The coating layer 1400 is formed to cover the partition wall 1400, and its thickness gradually increases from the top of the partition wall 1400 toward the bottom of the partition wall 1400. That is, the coating layer 1400 is inclined from the top of the partition 1400 toward the light emitting device 1200.
실시예들에 따른 코팅층(1400)은 기존 격벽(1300) 자체의 재료들을 통해 구현하지 못한 격벽(1300) 측면의 경사를 형성할 수 있다. 코팅층(1400)은 발광 소자(1200)로부터 방출되는 빛이 코팅층(1400)에 의해 발광 소자(1200)의 상부를 향하여 반사되도록 한다. 또한, 코팅층(1400)은 발광 소자(1200)들로부터 방출되는 빛이 격벽(1300)을 넘어 서로 혼색되는 것을 방지한다. The coating layer 1400 according to embodiments may form a slope on the side of the partition wall 1300 that could not be realized through the materials of the existing partition wall 1300 itself. The coating layer 1400 causes light emitted from the light emitting device 1200 to be reflected toward the top of the light emitting device 1200 by the coating layer 1400. Additionally, the coating layer 1400 prevents light emitted from the light emitting devices 1200 from crossing the partition wall 1300 and mixing colors with each other.
이를 통해, 실시예들에 따른 디스플레이 장치(1000)는 색순도를 개선하고 발광 효율이 향상되도록 할 수 있다.Through this, the display device 1000 according to embodiments can improve color purity and improve luminous efficiency.
이하에서는, 이러한 격벽(1300) 및/또는 코팅층(1400)의 구조에 대해 더 상세하게 설명한다.Below, the structure of the partition wall 1300 and/or the coating layer 1400 will be described in more detail.
도 11은 실시예들에 따른 코팅층의 기울기를 설명하는 도면이다.Figure 11 is a diagram explaining the slope of the coating layer according to embodiments.
도 10에서 설명한 바와 같이, 실시예들에 따른 디스플레이 장치1000)는 격벽(1300)의 상단으로부터 발광 소자(1200)를 향하면서 형성되는 코팅층(1400)을 포함한다.As described in FIG. 10 , the display device 1000 according to embodiments includes a coating layer 1400 formed from the top of the partition 1300 toward the light emitting device 1200 .
도 11의 (a)는 코팅층(1400)의 경사의 예시를 설명하는 도면이다.FIG. 11 (a) is a diagram illustrating an example of the inclination of the coating layer 1400.
도 11의 (a)에 도시한 바와 같이, 코팅층(1400)은 경사를 형성한다. 코팅층(1400)은 상면을 향하여 오목하게 형성되는 경사를 포함한다. 이에 따라, 코팅층(1400)은 격벽(1300)의 상단으로부터 발광 소자(1200)를 향하여 서로 다른 경사면을 가지면서 형성된다. 이러한 경사면은 서로 연결되어 상부를 향해 오목한 형태의 곡면을 형성할 수 있다.As shown in (a) of FIG. 11, the coating layer 1400 forms an inclination. The coating layer 1400 includes a concave slope formed toward the upper surface. Accordingly, the coating layer 1400 is formed with different slopes from the top of the partition 1300 toward the light emitting device 1200. These inclined surfaces may be connected to each other to form a curved surface that is concave toward the top.
예를 들어, 코팅층(1400)은 경사를 포함한다. 경사는 제 1 기울기(α), 제 2 기울기(β) 및 제 3 기울기(γ)를 포함한다. 이때, 예를 들어 제 1 기울기(α)는 상대적으로 격벽(1300)의 상단에 가까이 형성되는 기울기이다. 또한, 예를 들어, 제 2 기울기(γ)는 상대적으로 발광 소자(1200)에 가까이 형성되는 기울기이다. 또한, 예를 들어, 제 3 기울기(β)는 제 1 기울기(α)와 제 2 기울기(γ) 사이에 위치하는 기울기이다. 이때, 제 1 기울기(α)는 제 3 기울기(β)보다 크다. 또한, 제 3 기울기(β)는 제 2 기울기(γ)보다 크다. 또한, 제 3 기울기(β)는 예를 들어 15도 내지 80도의 범위로 형성된다. 이를 통해, 코팅층(1400)은 격벽(1300)의 상단으로부터 발광 소자(1200)를 향해 형성되되, 오목하게 형성된다.For example, the coating layer 1400 includes a slope. The slope includes a first slope (α), a second slope (β), and a third slope (γ). At this time, for example, the first slope (α) is a slope formed relatively close to the top of the partition wall 1300. Also, for example, the second slope γ is a slope formed relatively close to the light emitting device 1200. Also, for example, the third slope (β) is a slope located between the first slope (α) and the second slope (γ). At this time, the first slope (α) is greater than the third slope (β). Additionally, the third slope (β) is greater than the second slope (γ). Additionally, the third inclination (β) is formed in a range of, for example, 15 degrees to 80 degrees. Through this, the coating layer 1400 is formed from the top of the partition 1300 toward the light emitting device 1200, and is formed concavely.
도 11의 (b)는 코팅층(1400)의 경사에 따른 발광 소자(1200)의 발광 및/또는 반사 각도를 설명하는 도면이다.FIG. 11 (b) is a diagram explaining the light emission and/or reflection angle of the light emitting device 1200 depending on the inclination of the coating layer 1400.
디스플레이 장치(1000)는 조명과 달리 화면을 봐라보는 사람의 120도 각도의 사야각에 들어오는 휘도가 중요하다. 이에 따라 디스플레이 장치(1000)는 광원의 효율을 높이거나 또는 광원이 전면광으로 발광하도록 변환하는 것이 중요하다. 디스플레이 장치(1000)의 경우, 디스플레이 장치(1000)가 포함하는 발광 소자(1200)의 측면의 반사 각도의 변화에 따라 디스플레이 장치(1000)의 휘도가 달라지게 되기 때문이다. For the display device 1000, unlike lighting, the luminance coming into the 120-degree viewing angle of the person looking at the screen is important. Accordingly, it is important for the display device 1000 to increase the efficiency of the light source or to convert the light source to emit front light. This is because, in the case of the display device 1000, the luminance of the display device 1000 varies depending on the change in the reflection angle of the side of the light emitting element 1200 included in the display device 1000.
예를 들어, 발광 소자(1200)는 발광 소자(1200)의 상면 및 측면을 통해 빛을 발산한다. 이때, 상대적으로, 발광 소자(1200)의 상면에 비해 발광 소자(1200)의 측면으로부터 방출되는 광이 더 많을 수 있다. 따라서, 이와 같이 발광 소자(1200)의 측면으로부터 방출되는 광을 전면광으로 변환할수록 휘도가 개선된다.For example, the light emitting device 1200 emits light through the top and side surfaces of the light emitting device 1200. At this time, relatively more light is emitted from the side of the light-emitting device 1200 than from the top surface of the light-emitting device 1200. Therefore, as light emitted from the side of the light emitting device 1200 is converted into front light, luminance is improved.
한편, 도 11의 (a)를 통해 설명한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)는 곡면 구조로 형성되는 코팅층(1400)을 포함한다. 이에 따라, 발광 소자(1200)로부터 방출되는 광은 코팅층(1400)에 의해 반사된다. 이때, 발광 소자(1200)로부터 발산한 광은 수평한 광일수록 전면광으로 변환하기 위한 측면 반사 각도가 낮아야 한다. 즉, 발산각(a)이 커질수록 전면광 변환 측면의 반사 각도(b)는 낮아지게 된다. 이에 따라, 실시예들에 따른 코팅층(1400)은 발산각(a)이 큰 광이 반사되는 상부 영역은 가파른 경사를 갖는다. 또한, 코팅층(1400)은 발산각(a)이 작은 광이 반사되는 하부 영역은 상대적으로 완만한 경사를 갖는다. 즉, 코팅층(1400)은 격벽(1300)의 상부로부터 발광소자(1200)를 향하여 오목한 곡면을 갖는 경사를 형성한다.Meanwhile, as explained through (a) of FIG. 11, the display device 1000 according to embodiments includes a coating layer 1400 formed in a curved structure. Accordingly, the light emitted from the light emitting device 1200 is reflected by the coating layer 1400. At this time, the more horizontal the light emitted from the light emitting device 1200 is, the lower the side reflection angle must be for converting it into front light. That is, as the divergence angle (a) increases, the reflection angle (b) on the front light conversion side decreases. Accordingly, the coating layer 1400 according to embodiments has a steep slope in the upper area where light with a large divergence angle (a) is reflected. Additionally, the lower area of the coating layer 1400, where light with a small divergence angle (a) is reflected, has a relatively gentle slope. That is, the coating layer 1400 forms an inclination with a concave curved surface from the top of the partition wall 1300 toward the light emitting device 1200.
이러한 구조에 따라, 실시예들에 따른 디스플레이 장치(1000)는 곡면 구조에 따른 격벽(1300) 측면 각도의 변화로 제한된 픽셀 공간에서 효율적으로 발산광을 전면광으로 변환할 수 있다. 또한, 실시예들은 광효율을 개선한다. According to this structure, the display device 1000 according to embodiments can efficiently convert divergent light into front light in a limited pixel space by changing the side angle of the partition wall 1300 according to the curved structure. Additionally, embodiments improve light efficiency.
도 12는 실시예들에 따른 코팅층의 높이를 설명하는 도면이다.Figure 12 is a diagram explaining the height of a coating layer according to embodiments.
도 10 내지 도 11에서 설명한 바와 같이, 디스플레이 장치(1000)는 격벽(1300)의 상단으로부터 발광 소자(1200)를 향하여 경사를 형성하는 코팅층(1400)을 포함한다. 설명의 편의를 위하여, 코팅층(1400)의 경사 영역에 있어서, 격벽(1300)의 상단측에 형성되는 코팅층을 코팅층의 상단부(1410)라고 칭한다. 또한, 코팅층(1400)의 경사 영역에 있어서, 발광 소자(1200) 측에 형성되는 코팅층을 코팅층의 하단부(1420)라고 칭한다.As described in FIGS. 10 and 11 , the display device 1000 includes a coating layer 1400 that is inclined from the top of the partition wall 1300 toward the light emitting device 1200 . For convenience of explanation, the coating layer formed on the upper side of the partition 1300 in the inclined area of the coating layer 1400 is referred to as the upper end 1410 of the coating layer. Additionally, in the inclined area of the coating layer 1400, the coating layer formed on the light emitting device 1200 side is called the lower end 1420 of the coating layer.
도 12에서, h1은 발광 소자(1200)의 높이를 나타낸다. 또한, 도 12에서, h2는 코팅층의 하단부(1420)의 높이를 나타낸다. 이때, 높이는 기판(1100)으로부터의 높이이다.In Figure 12, h1 represents the height of the light emitting device 1200. Additionally, in FIG. 12, h2 represents the height of the lower end 1420 of the coating layer. At this time, the height is the height from the substrate 1100.
코팅층(1400)은 발광 소자(1200)로부터 방출되는 광이 코팅층(1400)에 의해 방해받지 않도록 형성된다. 따라서, 코팅층(1400)은 발광 소자(1200)의 측면광이 코팅층(1400)에 반사되어 전면광이 되도록 형성되어야 한다. 이에 따라, 코팅층(1400)은 코팅층의 하단부(1420)의 높이(h2)가 발광 소자(1200)의 높이(h1)보다 낮도록 형성된다. The coating layer 1400 is formed so that light emitted from the light emitting device 1200 is not interrupted by the coating layer 1400. Therefore, the coating layer 1400 must be formed so that the side light of the light emitting device 1200 is reflected by the coating layer 1400 to become front light. Accordingly, the coating layer 1400 is formed so that the height h2 of the lower end 1420 of the coating layer is lower than the height h1 of the light emitting device 1200.
한편, 별도로 도시하지는 않았으나, 격벽(1300)의 높이는 발광 소자(1200)의 높이(h1)보다 높다. 이를 통해, 격벽(1300)의 상단으로부터 경사를 이루는 코팅층(1400)은 발광 소자(1200)의 측면으로부터 방출되는 대부분의 광이 전면광으로 변환되도록 한다.Meanwhile, although not separately shown, the height of the partition wall 1300 is higher than the height h1 of the light emitting device 1200. Through this, the coating layer 1400 sloping from the top of the partition 1300 converts most of the light emitted from the side of the light emitting device 1200 into front light.
이를 통해 실시예들에 따른 디스플레이 장치(1000)는 발광 소자(1200)로부터 방출되는 광을 방해하지 않으면서 동시에 발광 소자(1200)로부터 방출되는 광의 전부 또는 대부분이 전면광으로 변환되도록 한다. 이에 따라 실시예들은 광효율이 향상되도록 한다.Through this, the display device 1000 according to embodiments does not interfere with the light emitted from the light-emitting device 1200 and simultaneously converts all or most of the light emitted from the light-emitting device 1200 into front light. Accordingly, embodiments allow light efficiency to be improved.
도 13은 실시예들에 따른 코팅층의 점도에 따른 기울기 정도를 설명하는 도면이다.Figure 13 is a diagram explaining the degree of slope depending on the viscosity of the coating layer according to embodiments.
도 10 내지 도 12에서 설명한 코팅층(1400)은, 예를 들어 액상의 용액으로 코팅하거나 또는 필름을 부착하여 형성된다. The coating layer 1400 described in FIGS. 10 to 12 is formed, for example, by coating with a liquid solution or attaching a film.
이때, 용액을 통해 코팅하는 경우, 코팅층(1400)은 곡면 형태의 경사를 형성한다. 이를 위해, 용액은 고분자가 용해되는 물질을 용매로서 포함한다. 예를 들어 용매는 Propylen glycol monomethyl ether(PGME), Propylene glycol monomethyl ether acetate(PGMEA), Cyclopentanone, Cyclohexanone, Diethylene glycol monoethyl ether acetat(DGMEA), Methyl ethyl ketone(MEK), acetone, ethanol, Isopropyl alcohole(IPA), xylene 등이 있다. 용액은 용매가 휘발되면서 곡면 형태의 경사를 형성한다.At this time, when coating using a solution, the coating layer 1400 forms a curved slope. For this purpose, the solution contains a substance in which the polymer is dissolved as a solvent. For example, solvents include Propylene glycol monomethyl ether (PGME), Propylene glycol monomethyl ether acetate (PGMEA), Cyclopentanone, Cyclohexanone, Diethylene glycol monoethyl ether acetat (DGMEA), Methyl ethyl ketone (MEK), acetone, ethanol, Isopropyl alcohole (IPA) ), xylene, etc. The solution forms a curved slope as the solvent volatilizes.
도 13의 (a)는 점도가 낮은 액상 코팅에 의해 형성된 코팅층을 도시한 것이다. 도 13의 (a)에 도시한 바와 같이, 용액의 점도가 낮은 경우, 코팅층(1400)은 작은 곡률을 갖고 곡면을 형성한다. 이에 따라, 코팅층(1400)은 상대적으로 가파른 경사를 갖고, 상대적으로 얇은 두께로 형성된다. 이 경우 예를 들어 발광 소자(1200)의 측면 발광에 유리하다.Figure 13 (a) shows a coating layer formed by a low viscosity liquid coating. As shown in (a) of FIG. 13, when the viscosity of the solution is low, the coating layer 1400 has a small curvature and forms a curved surface. Accordingly, the coating layer 1400 has a relatively steep slope and is formed with a relatively thin thickness. In this case, for example, it is advantageous for side emission of the light emitting device 1200.
도 13의 (b)는 점도가 높은 액상 코팅에 의해 형성된 코팅층을 도시한 것이다. 도 13의 (b)에 도시한 바와 같이, 용액의 점도가 높은 경우, 코팅층(1400)은 큰 곡률을 갖고 곡면을 형성한다. 이에 따라, 코팅층(1400)은 상대적으로 완만한 경사를 갖고, 상대적으로 두꺼운 두께로 형성된다. 이 경우 예를 들어 상이한 규격으로 제작된 발광 소자(1200)의 측면 발광에 유리하다.Figure 13(b) shows a coating layer formed by a high viscosity liquid coating. As shown in (b) of FIG. 13, when the viscosity of the solution is high, the coating layer 1400 has a large curvature and forms a curved surface. Accordingly, the coating layer 1400 has a relatively gentle slope and is formed to be relatively thick. In this case, for example, it is advantageous for side emission of light emitting devices 1200 manufactured to different standards.
따라서, 실시예들에 따른 코팅층(1400)은 코팅층(1400)이 사용되는 환경에 따라 코팅층(1400)의 형상을 적절하게 조절하여 형성되도록 한다.Therefore, the coating layer 1400 according to the embodiments is formed by appropriately adjusting the shape of the coating layer 1400 according to the environment in which the coating layer 1400 is used.
도 14는 실시예들에 따른 격벽 및/또는 코팅층의 다양한 예시를 설명하는 도면이다.14 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
도 10 내지 도 13에서 설명한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)는 격벽(1300) 및 격벽(1300)을 덮으면서 경사를 형성하는 코팅층(1400)을 포함한다. As described in FIGS. 10 to 13 , the display device 1000 according to embodiments includes a partition wall 1300 and a coating layer 1400 that covers the partition wall 1300 and forms a slope.
이때, 격벽(1300)은 상면 폭과 하면 폭이 같거나 유사한 막대 형상으로 형성된다. 이 경우 격벽(1300)은 높은 광투과율을 갖는다. 따라서 막대 형상의 격벽(1300)은 높은 광효율을 제공한다. At this time, the partition wall 1300 is formed in a bar shape with the upper and lower widths being the same or similar. In this case, the partition wall 1300 has high light transmittance. Therefore, the bar-shaped partition 1300 provides high light efficiency.
또는, 격벽(1300)은 상면 폭이 하면 폭보다 넓게 형성되는 역피라미드 형상으로 형성된다. 이 경우, 격벽(1300)은 발광 소자(1200)에 대해 높은 높이를 형성할 수 있다. 이에 따라 격벽(1300)은 발광 소자(1200)로부터 방출되는 광이 서로 혼색되는 것을 전부 또는 거의 대부분 차단한다. 이때, 격벽(1300)은 negative 포토 레지스트를 통해 형성된다. 그러나, 격벽(1300)의 형상은 이에 한정되지 않으며, 예를 들어 격벽(1300)은 피라미드 형상 등 어떤 형태이어도 된다. 또한, 격벽(1300)의 형성 방법 역시 이에 한정되지 않으며, 예를 들어 positive 포토 레지스트를 통해 형성되어도 된다.Alternatively, the partition wall 1300 is formed in an inverted pyramid shape where the top width is wider than the bottom width. In this case, the partition wall 1300 may have a high height relative to the light emitting device 1200. Accordingly, the partition wall 1300 blocks all or most of the light emitted from the light emitting device 1200 from mixing with each other. At this time, the partition wall 1300 is formed through negative photoresist. However, the shape of the partition wall 1300 is not limited to this, and for example, the partition wall 1300 may have any shape such as a pyramid shape. Additionally, the method of forming the barrier rib 1300 is not limited to this, and may be formed using, for example, positive photoresist.
이하에서는, 색순도 및/또는 광효율을 더 향상시키는 격벽(1300) 또는 코팅층(1400)의 다양한 형상에 대해 설명한다.Below, various shapes of the partition wall 1300 or the coating layer 1400 that further improve color purity and/or light efficiency will be described.
도 14의 (a)는 금속층(1500)이 더 포함되는 예시를 설명한다.Figure 14(a) explains an example in which a metal layer 1500 is further included.
실시예들에 따른 디스플레이 장치(1000)는 코팅층(1400) 상에 증착되는 금속층(1500)을 더 포함하여도 된다. 금속층(1500)은 예를 들어 격벽(1300) 및/또는 격벽(1300) 상에 코팅된 코팅층(1400) 상에 증착된다. 금속층(1500)은 예를 들어 반사 구조물이다. 금속층(1500)은 예를 들어 Al, Ag, Ti, Sn 금속 산화물 등을 포함한다. 도시하지는 않았으나, 금속층(1500)은 반사층 및 반사층과 코팅층(1400)을 접착하는 접착층 등 여러 층을 포함하여 형성되어도 된다.The display device 1000 according to embodiments may further include a metal layer 1500 deposited on the coating layer 1400. The metal layer 1500 is, for example, deposited on the partition wall 1300 and/or the coating layer 1400 coated on the partition wall 1300. Metal layer 1500 is, for example, a reflective structure. The metal layer 1500 includes, for example, Al, Ag, Ti, Sn metal oxide, etc. Although not shown, the metal layer 1500 may be formed including several layers, such as a reflective layer and an adhesive layer that bonds the reflective layer and the coating layer 1400.
한편, 금속층(1500)은 예를 들어 50nm 이상의 두께로 형성된다. 금속층(1500)은 예를 들어 스퍼터링 등 입자 단위로 격벽(1300) 및/또는 코팅층(1400) 상에 증착된다. 금속층(1500)은 입자 단위로부터 아일랜드 형식으로 성장된다. 따라서 금속층(1500)은 일정 두께 이상이 형성되기 전에는 일정 부분에서는 반사층을 형성하고 다른 일정 부분에서는 반사층을 형성하지 못한다. 이때 일정 두께는 약 50nm이다. 따라서, 금속층(1500)은 50nm 이상의 두께로 격벽(1300) 및/또는 코팅층(1400) 상에 증착된다.Meanwhile, the metal layer 1500 is formed to have a thickness of, for example, 50 nm or more. The metal layer 1500 is deposited on the partition wall 1300 and/or the coating layer 1400 in particle units, such as by sputtering. The metal layer 1500 is grown in an island format from particle units. Accordingly, the metal layer 1500 forms a reflective layer in certain parts and cannot form a reflective layer in other certain parts until a certain thickness or more is formed. At this time, the constant thickness is about 50 nm. Accordingly, the metal layer 1500 is deposited on the partition wall 1300 and/or the coating layer 1400 to a thickness of 50 nm or more.
이를 통해 실시예들은 발광 소자(1200)로부터 방출되는 광을 전면광으로 더 효율적으로 변환하고, 광효율이 더 향상되도록 한다.Through this, the embodiments more efficiently convert the light emitted from the light emitting device 1200 into front light and further improve light efficiency.
도 14의 (b)는 격벽(1300) 또는 코팅층(1400)이 화이트 재료를 포함하는 예시를 설명한다.Figure 14(b) explains an example in which the partition 1300 or the coating layer 1400 includes a white material.
실시예들에 따른 격벽(1300) 및/또는 코팅층(1400)은 화이트 재료를 포함한다. 화이트 재료는 예를 들어 TiO2 등의 white 재료를 포함한다. 코팅층(1400)이 화이트 재료를 포함하는 경우, 코팅층(1400)은 코팅층(1400) 전체에 걸쳐서 골고루 경화가 형성된다. The partition wall 1300 and/or the coating layer 1400 according to embodiments include a white material. White materials include white materials such as TiO2, for example. When the coating layer 1400 includes a white material, the coating layer 1400 is evenly cured over the entire coating layer 1400.
한편, 격벽(1300)은 일반적으로 진공 설비를 이용하여 금속으로 형성된다. 그러나 이 경우 진공 설비 사용에 따른 공정 상의 어려움이 존재한다. Meanwhile, the partition wall 1300 is generally formed of metal using vacuum equipment. However, in this case, there are process difficulties due to the use of vacuum equipment.
이에 따라 격벽(1300)은 광투과성 재료를 통해 형성될 수 있다. 또는 격벽(1300)이 화이트 재료를 포함하는 경우, 격벽(1300)은 더 얇게 형성되어도 된다. 이 경우, 예를 들어 후술하는 바와 같이 디스플레이 장치(1000)가 형광체층을 포함하는 경우, 디스플레이 장치(1000)는 더 많은 양의 형광체층을 수용할 수 있다.Accordingly, the partition wall 1300 may be formed using a light-transmissive material. Alternatively, when the partition wall 1300 includes a white material, the partition wall 1300 may be formed thinner. In this case, for example, when the display device 1000 includes a phosphor layer as will be described later, the display device 1000 can accommodate a larger amount of the phosphor layer.
이때, 격벽(1300)은 저함량의 화이트 재료를 포함하고, 코팅층(1400)은 고함량의 화이트 재료를 포함하여 형성되어도 된다. 이를 통해 실시예들은 비교적 용이하게 격벽(1300)을 형성하고, 반사 능력이 더 향상된 코팅층(1400)을 제공한다.At this time, the partition wall 1300 may include a low content of white material, and the coating layer 1400 may include a high content of white material. Through this, the embodiments form the partition wall 1300 relatively easily and provide a coating layer 1400 with improved reflective ability.
또는, 격벽(1300)은 노광이 용이한 투명 재료를 통해 형성되고, 코팅층(1400)은 패턴 형성이 용이한 white 재료를 통해 형성되어도 된다. 이를 통해 실시예들은 제조 용이성을 제고한다.Alternatively, the partition 1300 may be formed of a transparent material that is easy to expose, and the coating layer 1400 may be formed of a white material that is easy to form patterns. Through this, the embodiments improve ease of manufacture.
도 14의 (c)는 격벽(1300)이 포어(pore)를 포함하는 예시를 설명한다.Figure 14(c) explains an example in which the partition 1300 includes pores.
실시예들에 따른 격벽(1300)은 복수 개의 포어(1301)를 포함한다. 포어(1301)의 적어도 일부에는 코팅층(1400)이 형성된다. 이때, 코팅층(1400)은 예를 들어 고함량 반사 물질을 포함한다. 코팅층(1400)은 포어(1301)의 적어도 일부에 침투한다. 이를 통해, 포어(1301)의 적어도 일부는 코팅층(1400)으로 메워질 수 있다. 이와 같은 구조를 통해, 실시예들은 코팅층(1400) 뿐만 아니라 격벽(1300) 자체의 투과율을 향상시킬 수 있다.The partition wall 1300 according to embodiments includes a plurality of pores 1301. A coating layer 1400 is formed on at least a portion of the pores 1301. At this time, the coating layer 1400 includes, for example, a high-content reflective material. The coating layer 1400 penetrates at least a portion of the pores 1301. Through this, at least a portion of the pores 1301 may be filled with the coating layer 1400. Through this structure, embodiments can improve the transmittance of not only the coating layer 1400 but also the partition wall 1300 itself.
도 14의 (d)는 상대적으로 코팅층이 좁게 형성되는 예시를 설명한다.Figure 14(d) explains an example in which the coating layer is formed relatively narrowly.
실시예들에 따른 디스플레이 장치(1000)는 투명한 재료를 통해 형성되는 격벽(1300) 및 격벽(1300) 상에 UV 노광을 통해 white 포토레지스트를 통해 형성되는 코팅층(1400)을 포함한다. 이와 같은 구조를 통해, 실시예들은 예를 들어 피치가 좁은 상황에도 격벽(1300) 및 코팅층(1400)을 형성하여 색순도 개선 및 광효율 향상 효과를 제공한다.The display device 1000 according to embodiments includes a partition wall 1300 formed of a transparent material and a coating layer 1400 formed on the partition wall 1300 through white photoresist through UV exposure. Through this structure, embodiments provide the effect of improving color purity and light efficiency by forming the partition wall 1300 and the coating layer 1400 even in situations where the pitch is narrow, for example.
도 14에서는 격벽(1300) 또는 코팅층(1400)의 구조를 통해 색순도를 개선하거나 또는 광효율을 향상하는 효과를 제공하는 다양한 예시를 설명하였다. 이하의 도 15에서는 격벽(1300) 또는 코팅층(1400)의 배치를 통해 색순도 개선 또는 광효율을 향상하는 방안에 대해 설명한다.In FIG. 14 , various examples providing the effect of improving color purity or improving light efficiency through the structure of the partition wall 1300 or the coating layer 1400 are described. In FIG. 15 below, a method of improving color purity or light efficiency through arrangement of the partition wall 1300 or the coating layer 1400 will be described.
도 15는 실시예들에 따른 격벽 및/또는 코팅층의 다양한 예시를 설명하는 도면이다.FIG. 15 is a diagram illustrating various examples of partition walls and/or coating layers according to embodiments.
실시예들에 따른 격벽(1300)은 하나의 벽으로 이루어질 수 있다. 그러나 격벽(1300)은 격벽(1300) 상에 증착되는 코팅층(1400)의 표면적을 증가시키기 위하여, 예를 들어 서로 이격되어 배치되는 복수 개의 로드(rod)에 의해 형성될 수 있다. 이 경우, 복수 개의 로드(예를 들어, 1301, 1302, 1303)는 서로 이격된 상태에서 어긋나게 배치된다. The partition 1300 according to embodiments may be composed of one wall. However, the partition 1300 may be formed by, for example, a plurality of rods spaced apart from each other in order to increase the surface area of the coating layer 1400 deposited on the partition 1300. In this case, a plurality of rods (eg, 1301, 1302, and 1303) are arranged to be spaced apart from each other and misaligned.
도 15의 (a)에 도시한 바와 같이, 예를 들어, 제 1 로드(1301)는 제 2 로드(1302)와 서로 이격되어 대각선 방향에 형성된다. 또한, 예를 들어, 제 2 로드(1302)는 제 3 로드(1303)와 서로 이격되어 대각선 방향에 형성된다. 이때 각각의 로드(예를 들어, 1301, 1302, 1303)는 negative, positive 타입의 PR 재료, white 재료를 포함하는 PR 재료 또는 UV 광도파로 역할을 수행하는 투명한 재료 등으로 형성된다. 이때, 각각의 로드는 픽셀 단위 크기보다 작은 크기로 형성될 수 있다.As shown in (a) of FIG. 15, for example, the first rod 1301 and the second rod 1302 are formed in a diagonal direction and spaced apart from each other. Also, for example, the second rod 1302 is formed in a diagonal direction and spaced apart from the third rod 1303. At this time, each rod (eg, 1301, 1302, and 1303) is formed of negative or positive type PR material, PR material including white material, or transparent material serving as a UV optical waveguide. At this time, each rod may be formed in a size smaller than the pixel unit size.
이 경우, 도 15의 (b)에 도시한 바와 같이, 코팅층(1400)은 복수 개의 로드(예를 들어, 1301, 1302, 1303)는 각각의 로드를 감싸면서 넓은 표면적을 가지고 증착된다. In this case, as shown in (b) of FIG. 15, the coating layer 1400 is deposited to have a large surface area while surrounding each rod (eg, 1301, 1302, and 1303).
이를 통해, 실시예들에 따른 디스플레이 장치(1000)는 격벽(1300) 구조물 내부의 충진률을 높이는 방안을 제공한다.Through this, the display device 1000 according to embodiments provides a method of increasing the filling rate inside the partition wall 1300 structure.
도 16은 실시예들에 따른 디스플레이 장치의 단면도를 개략적으로 도시한 것이다.Figure 16 schematically shows a cross-sectional view of a display device according to embodiments.
도 16에서는, 도 10 내지 도 15를 통해 설명한 격벽(1300) 및 코팅층(1400)이 디스플레이 장치(1000)에 적용되는 예시를 설명한다.In FIG. 16 , an example in which the partition wall 1300 and the coating layer 1400 described with reference to FIGS. 10 to 15 are applied to the display device 1000 will be described.
도 16의 (a)는 발광 소자를 형광체층 또는 컬러필터를 통해 색변환하는 예시를 설명한다.Figure 16 (a) explains an example of color conversion of a light emitting device through a phosphor layer or a color filter.
도 16의 (a)는 RGB 컬러를 출력하는 디스플레이 장치(1000)를 도시한다. 디스플레이 장치(1000)는 RGB 컬러를 출력하기 위하여, 발광 소자(1200) 및 발광 소자(1200)로부터 발광되는 광의 색을 변환하는 형광체층(예를 들어, 1700r, 1700g) 또는 컬러필터(1600)를 포함한다.Figure 16(a) shows a display device 1000 that outputs RGB colors. In order to output RGB colors, the display device 1000 includes a light-emitting element 1200 and a phosphor layer (e.g., 1700r, 1700g) or a color filter 1600 that converts the color of light emitted from the light-emitting element 1200. Includes.
발광 소자(1200)는 예를 들어 청색 발광 소자이고, 예를 들어 청색 광을 방출한다.The light emitting device 1200 is, for example, a blue light emitting device and emits blue light, for example.
형광체층(1700)은 발광 소자(1200)로부터 발광되는 광의 색을 변환한다. 이를 위해 형광체층(1700)은 형광체를 포함한다. 형광체는 예를 들어 유기 형광체, 무기 형광체, 퀀텀닷(quantum dots) 등을 포함한다. 예를 들어 형광체층(1700r)은 청색 광을 적색 광으로 변환한다. 또는, 예를 들어, 형광체층(1700g)은 청색 광을 녹색 광으로 변환한다.The phosphor layer 1700 converts the color of light emitted from the light emitting device 1200. For this purpose, the phosphor layer 1700 includes phosphor. Phosphors include, for example, organic phosphors, inorganic phosphors, quantum dots, etc. For example, the phosphor layer 1700r converts blue light into red light. Or, for example, the phosphor layer 1700g converts blue light into green light.
이때, 형광체층(1700)은 예를 들어 소정 크기 이상의 두께를 가지고 형성된다. 소정 크기는 예를 들어 형광체층(1700)에 포함되는 형광체가 무기 형광체인 경우 15um 내지 25um이고, 바람직하게는 20um이다. 소정 크기는 예를 들어 형광체층(1700)에 포함되는 형광체가 유기 형광체인 경우 8um 내지 13um이고, 바람직하게는 10um이다. 형광체층(1700)은 이와 같이 소정 크기 이상의 두께로 형성됨으로써, 색변환을 수행한다.At this time, the phosphor layer 1700 is formed to have a thickness of, for example, a predetermined size or more. For example, when the phosphor included in the phosphor layer 1700 is an inorganic phosphor, the predetermined size is 15 um to 25 um, and is preferably 20 um. For example, when the phosphor included in the phosphor layer 1700 is an organic phosphor, the predetermined size is 8 um to 13 um, and is preferably 10 um. The phosphor layer 1700 is formed to have a thickness of a predetermined size or more, thereby performing color conversion.
실시예들에 따른 격벽(1300) 및 격벽(1300)을 감싸는 코팅층(1400)은 형광체층(1700)에 의해 변환된 광들이 서로 섞이지 않도록 한다. 이를 통해, 실시예들은 디스플레이 장치의 색순도를 높이는 방안을 제공한다. 한편, 컬러 필터(1600)는 형광체층(1700)에 의해 여기되는 광들의 순도를 향상시킨다. 이를 통해, 디스플레이 장치(1000)는 색순도를 더 향상시키는 방안을 제공한다.The barrier rib 1300 and the coating layer 1400 surrounding the barrier rib 1300 according to embodiments prevent the lights converted by the phosphor layer 1700 from mixing with each other. Through this, embodiments provide a method of increasing color purity of a display device. Meanwhile, the color filter 1600 improves the purity of light excited by the phosphor layer 1700. Through this, the display device 1000 provides a method to further improve color purity.
도 16의 (b)는 형광체 표면의 거칠기를 조절하는 예시를 설명한다. Figure 16(b) explains an example of controlling the roughness of the phosphor surface.
도 16의 (b)에 도시한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)는 형광체층(1700)과 발광 소자(1200)의 경계 영역(1701)이 거친 면으로 형성된다. 실시예들은, 형광체층의 경계 영역(1701)이 거칠기를 갖고 형성되도록 하여, 발광 소자(1200)로부터 발광하는 빛이 거친 면을 통과하면서 코팅층(1400)에 의해 더 전면광으로 변환되도록 한다. As shown in (b) of FIG. 16, in the display device 1000 according to embodiments, the boundary area 1701 between the phosphor layer 1700 and the light emitting device 1200 is formed with a rough surface. In embodiments, the boundary area 1701 of the phosphor layer is formed with roughness so that light emitted from the light emitting device 1200 passes through the rough surface and is further converted into front light by the coating layer 1400.
이를 통해 실시예들은 색순도 및 광효율을 높이는 방안을 제공한다. Through this, the embodiments provide a method of increasing color purity and light efficiency.
도 16의 (c)는 발광 소자가 마이크로 LED인 예시를 설명한다. Figure 16(c) explains an example in which the light emitting device is a micro LED.
실시예들에 따른 디스플레이 장치(1000)는 발광 소자(1200)를 포함하고, 예를 들어 마이크로 사이즈의 발광 소자를 포함한다. 발광 소자(1200)는 예를 들어 적색광을 발광하는 적색 LED(1200r), 녹색광을 발광하는 녹색 LED(1200g) 및 청색광을 발광하는 청색 LED(1200b)을 포함한다. 즉, 발광 소자(1200)는 형광층 또는 컬러 필터와 같은 색변환층이 없이도 RGB 컬러를 발광한다. 실시예들에 따른 격벽(1300) 및/또는 코팅층(1400)은 이와 같이 색변환층을 포함하지 않는 경우에도 적용될 수 있다. 이를 통해, 실시예들에 따른 디스플레이 장치(1000)는 광효율이 개선되는 디스플레이 장치(1000)를 제공한다.The display device 1000 according to embodiments includes a light-emitting element 1200, for example, a micro-sized light-emitting element. The light emitting device 1200 includes, for example, a red LED (1200r) that emits red light, a green LED (1200g) that emits green light, and a blue LED (1200b) that emits blue light. That is, the light emitting device 1200 emits RGB colors without a color conversion layer such as a fluorescent layer or a color filter. The partition 1300 and/or the coating layer 1400 according to embodiments may be applied even when they do not include a color conversion layer. Through this, the display device 1000 according to embodiments provides a display device 1000 with improved light efficiency.
이와 같이, 예를 들어 실시예들에 따른 격벽(1300) 및/또는 코팅층(1400)은 색변환을 수반하지 않는 디스플레이 장치(1000)에 대하여도 적용 가능하다. In this way, for example, the partition wall 1300 and/or the coating layer 1400 according to the embodiments can also be applied to the display device 1000 that does not involve color conversion.
한편, 도 16에서 도시하지는 않았으나, 예를 들어 디스플레이 장치(1000)는 발광 소자(1200) 상에 코팅되는 광 확산층을 더 포함하여도 된다. 디스플레이 장치(1000)는 광 확산층을 통해 발광 소자(1200)로부터 발광되는 빛이 더 확산되도록 한다. 이를 통해, 실시예들은 발광 소자(1200)의 광효율을 더 향상시킨다.Meanwhile, although not shown in FIG. 16, for example, the display device 1000 may further include a light diffusion layer coated on the light emitting device 1200. The display device 1000 allows light emitted from the light emitting device 1200 to be further diffused through the light diffusion layer. Through this, the embodiments further improve the light efficiency of the light emitting device 1200.
상술한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)는 디스플레이 장치의 구조, 컬러필터 형성 방법, 패널 구조 등 다양한 구조 또는 형태에 대하여도 적용 가능하다.As described above, the display device 1000 according to embodiments can be applied to various structures or forms, such as a display device structure, a color filter forming method, and a panel structure.
도 17은 실시예들에 따른 디스플레이 장치의 제어 방법의 순서도를 도시한 것이다.Figure 17 shows a flowchart of a method for controlling a display device according to embodiments.
도 17에서는 도 10 내지 도 18을 통해 설명한 디스플레이 장치(1000)를 제조하는 방법에 대해 설명한다.In FIG. 17 , a method of manufacturing the display device 1000 described with reference to FIGS. 10 to 18 will be described.
도 17에 도시한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)의 제어 방법은 복수 개의 발광 소자(1200) 사이 중 적어도 일부에 하나 또는 그 이상의 격벽(1300)을 형성하는 단계(s101)를 포함한다.As shown in FIG. 17, the control method of the display device 1000 according to embodiments includes forming one or more partition walls 1300 between the plurality of light emitting elements 1200 (s101). Includes.
도 17에 도시한 바와 같이, 실시예들에 따른 디스플레이 장치(1000)의 제어 방법은 하나 또는 그 이상의 격벽(1300)을 감싸는 코팅층(1400)을 형성하는 단계(s102)를 포함한다. 예를 들어, 코팅층(1400)은 슬릿 코팅(slit coating) 방법에 의해 격벽(1300)을 감싸면서 형성된다. 이때, 코팅층(1400)은 격벽(1300)과 수직한 일 방향으로 이동하는 토출구에 의해 발광 소자(1200)에 대해 비대칭 구조로 형성된다. 또는, 코팅층(1400)은 왕복으로 이동하는 토출구에 의해 발광 소자(1200)에 대해 대칭 구조로 형성된다. 또는, 코팅층(1400)은 격벽(1300)과 수평하게 격벽(1300)을 따라 이동하는 토출구에 의해 발광 소자(1200)에 대해 대칭 구조로 형성된다. 또는, 예를 들어, 코팅층(1400)은 잉크젯 등의 개별 토출 노즐을 통해 형성된다. 또는, 예를 들어 코팅층(1400)은 white film 부착을 통해 격벽(1300)의 측면에 곡면을 형성한다. 코팅층(1400)의 코팅 방법은 이에 한정되지 않느다. 이와 같이, 실시예들에 따른 코팅층(1400)은 다양한 방법을 통해 형성된다.As shown in FIG. 17 , the method of controlling the display device 1000 according to embodiments includes forming a coating layer 1400 surrounding one or more partition walls 1300 (s102). For example, the coating layer 1400 is formed surrounding the partition wall 1300 using a slit coating method. At this time, the coating layer 1400 is formed in an asymmetric structure with respect to the light emitting device 1200 by the discharge port moving in one direction perpendicular to the partition wall 1300. Alternatively, the coating layer 1400 is formed in a symmetrical structure with respect to the light emitting device 1200 by a discharge port that moves in a reciprocating manner. Alternatively, the coating layer 1400 is formed in a symmetrical structure with respect to the light emitting device 1200 by a discharge port that moves along the partition wall 1300 in parallel with the partition wall 1300 . Or, for example, the coating layer 1400 is formed through an individual ejection nozzle, such as an inkjet. Or, for example, the coating layer 1400 forms a curved surface on the side of the partition wall 1300 by attaching a white film. The coating method of the coating layer 1400 is not limited to this. As such, the coating layer 1400 according to embodiments is formed through various methods.
이상 본 발명의 실시예들에 따른 발광 소자, 발광 소자를 포함하는 디스플레이 장치 및 이의 제조 방법에 대해 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. The light-emitting device, the display device including the light-emitting device, and the manufacturing method thereof according to the embodiments of the present invention have been described above as specific embodiments, but this is only an example and the present invention is not limited thereto, and the disclosure disclosed herein It should be interpreted as having the widest scope according to the basic idea.
당업자는 개시된 실시 형태들을 조합, 치환하여 적시되지 않은 실시 형태를 실시할 수 있으나, 이 역시 본 발명의 권리범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.A person skilled in the art may combine and substitute the disclosed embodiments to implement embodiments not specified, but this also does not deviate from the scope of the present invention. In addition, a person skilled in the art can easily change or modify the embodiments disclosed based on the present specification, and it is clear that such changes or modifications also fall within the scope of the present invention.
이전 목차에서 발명의 실시를 위한 다양한 형태들에 대해 상세히 전술한 바 있다.In the previous table of contents, various forms for implementing the invention have been described in detail.
실시예들에 따른 발광 소자, 발광 소자를 포함하는 디스플레이 장치 및 이의 제조 방법은 산업상 이용 가능성이 있다.The light-emitting device, the display device including the light-emitting device, and the manufacturing method according to the embodiments have industrial applicability.

Claims (15)

  1. 배선 기판;wiring board;
    상기 배선 기판 상에 형성되는 복수 개의 발광 소자;a plurality of light emitting devices formed on the wiring board;
    상기 복수 개의 발광 소자 사이 중 적어도 일부에 형성되는 하나 또는 그 이상의 격벽; 및one or more partition walls formed between at least some of the plurality of light emitting devices; and
    상기 하나 또는 그 이상의 격벽을 감싸는 코팅층;a coating layer surrounding the one or more partition walls;
    을 포함하는,Including,
    디스플레이 장치.Display device.
  2. 제1항에 있어서,According to paragraph 1,
    상기 코팅층은,The coating layer is,
    상기 격벽의 상단으로부터 상기 발광 소자를 향하여 경사를 형성하는,Forming a slope from the top of the partition toward the light emitting element,
    디스플레이 장치.Display device.
  3. 제2항에 있어서,According to paragraph 2,
    상기 코팅층은,The coating layer is,
    상기 경사는 상면을 향하여 오목하게 형성되는,The slope is formed concavely toward the upper surface,
    디스플레이 장치.Display device.
  4. 제2항에 있어서,According to paragraph 2,
    상기 경사는,The slope is,
    상기 격벽의 상단에 가까운 제 1 기울기, 상기 발광 소자에 가까운 제 2 기울기 및 상기 제 1 기울기와 상기 제 2 기울기 사이에 위치하는 제 3 기울기를 포함하고,A first slope close to the top of the partition, a second slope close to the light emitting element, and a third slope located between the first slope and the second slope,
    상기 제 1 기울기는 상기 제 3 기울기 보다 크고, 상기 제 3 기울기는 상기 제 2 기울기 보다 큰,The first slope is greater than the third slope, and the third slope is greater than the second slope,
    디스플레이 장치.Display device.
  5. 제4항에 있어서,According to clause 4,
    상기 제 3 기울기는 15 도 내지 80 도의 범위에서 형성되는,The third tilt is formed in the range of 15 degrees to 80 degrees,
    디스플레이 장치.Display device.
  6. 제1항에 있어서,According to paragraph 1,
    상기 코팅층은,The coating layer is,
    상기 발광 소자를 향하는 측인 하단부를 포함하고,It includes a lower portion that faces the light emitting device,
    상기 하단부의 높이는 상기 발광 소자의 높이보다 낮은,The height of the lower part is lower than the height of the light emitting element,
    디스플레이 장치.Display device.
  7. 제1항에 있어서,According to paragraph 1,
    상기 격벽은,The bulkhead is,
    상기 격벽의 상부가 상기 격벽의 하부보다 넓게 형성되는,The upper part of the partition wall is formed to be wider than the lower part of the partition wall,
    디스플레이 장치.Display device.
  8. 제1항에 있어서,According to paragraph 1,
    상기 디스플레이 장치는,The display device is,
    상기 코팅층 상에 형성되는 금속층;a metal layer formed on the coating layer;
    을 더 포함하는,Containing more,
    디스플레이 장치.Display device.
  9. 제1항에 있어서,According to paragraph 1,
    상기 격벽 또는 상기 코팅층은, 화이트 재료를 포함하는,The partition wall or the coating layer includes a white material,
    디스플레이 장치.Display device.
  10. 제1항에 있어서,According to paragraph 1,
    상기 격벽은 복수 개의 포어(pore)를 포함하고,The partition wall includes a plurality of pores,
    상기 포어의 적어도 일부에는 상기 코팅층이 형성되는,The coating layer is formed on at least a portion of the pores,
    디스플레이 장치.Display device.
  11. 제1항에 있어서,According to paragraph 1,
    상기 격벽은,The bulkhead is,
    서로 어긋나게 배치되는 복수 개의 로드(rod)에 의해 형성되는,Formed by a plurality of rods arranged at odds with each other,
    디스플레이 장치.Display device.
  12. 제1항에 있어서,According to paragraph 1,
    상기 발광 소자 상에 형성되고, 상기 발광 소자로부터 발산되는 빛의 색을 변환하는 형광체층;을 포함하는,A phosphor layer formed on the light-emitting device and converting the color of light emitted from the light-emitting device.
    디스플레이 장치.Display device.
  13. 제1항에 있어서,According to paragraph 1,
    상기 디스플레이 장치는,The display device is,
    상기 발광 소자 상에 형성되고, 상기 발광 소자로부터 발산되는 빛의 색을 변환하는 컬러 필터;를 포함하는,A color filter formed on the light-emitting device and converting the color of light emitted from the light-emitting device.
    디스플레이 장치.Display device.
  14. 제1항에 있어서,According to paragraph 1,
    상기 발광 소자는,The light emitting device is,
    마이크로 사이즈를 갖는 마이크로 LED 인,A micro LED with a micro size,
    디스플레이 장치.Display device.
  15. 복수 개의 발광 소자가 이격되어 마련되는 배선 기판 상에, 상기 복수 개의 발광 소자 사이 중 적어도 일부에 하나 또는 그 이상의 격벽을 형성하는 단계; 및On a wiring board on which a plurality of light emitting devices are spaced apart, forming one or more partition walls between at least some of the plurality of light emitting devices; and
    상기 하나 또는 그 이상의 격벽을 감싸는 코팅층을 형성하는 단계;forming a coating layer surrounding the one or more partition walls;
    를 포함하는,Including,
    디스플레이 장치의 제조 방법.Method of manufacturing a display device.
PCT/KR2022/018280 2022-11-18 2022-11-18 Display device and method for manufacturing display device WO2024106573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/018280 WO2024106573A1 (en) 2022-11-18 2022-11-18 Display device and method for manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/018280 WO2024106573A1 (en) 2022-11-18 2022-11-18 Display device and method for manufacturing display device

Publications (1)

Publication Number Publication Date
WO2024106573A1 true WO2024106573A1 (en) 2024-05-23

Family

ID=91084598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018280 WO2024106573A1 (en) 2022-11-18 2022-11-18 Display device and method for manufacturing display device

Country Status (1)

Country Link
WO (1) WO2024106573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820370B1 (en) * 2007-05-02 2008-04-08 (주)엠아이에프피디 Flat light source with electrodes facing each other and method for manufacturing the same
KR20100061686A (en) * 2007-08-16 2010-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Optical element coupled to low profile side emitting led
KR20110062524A (en) * 2009-12-03 2011-06-10 (주) 아모엘이디 Multi-chip led package and method of manufacturing a multi-chip led package
KR101115847B1 (en) * 2008-09-17 2012-03-09 파나소닉 주식회사 Plasma display panel
KR20210151980A (en) * 2019-06-28 2021-12-14 청두 비스타 옵토일렉트로닉스 씨오., 엘티디. Display panel, display device, and manufacturing method of display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820370B1 (en) * 2007-05-02 2008-04-08 (주)엠아이에프피디 Flat light source with electrodes facing each other and method for manufacturing the same
KR20100061686A (en) * 2007-08-16 2010-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Optical element coupled to low profile side emitting led
KR101115847B1 (en) * 2008-09-17 2012-03-09 파나소닉 주식회사 Plasma display panel
KR20110062524A (en) * 2009-12-03 2011-06-10 (주) 아모엘이디 Multi-chip led package and method of manufacturing a multi-chip led package
KR20210151980A (en) * 2019-06-28 2021-12-14 청두 비스타 옵토일렉트로닉스 씨오., 엘티디. Display panel, display device, and manufacturing method of display panel

Similar Documents

Publication Publication Date Title
WO2021040066A1 (en) Display device using micro led and method for manufacturing same
WO2021025202A1 (en) Method for manufacturing display device, and substrate for manufacture of display device
WO2021002490A1 (en) Display device using micro led, and manufacturing method therefor
WO2018101539A1 (en) Display device using semiconductor light-emitting diode
WO2017209437A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2015133821A1 (en) Display device using semiconductor light emitting device
WO2019151550A1 (en) Display device using semiconductor light-emitting element and manufacturing method therefor
WO2018092977A1 (en) Display apparatus using semiconductor light emitting device, and manufacturing method therefor
WO2019004508A1 (en) Display device using semiconductor light emitting element
WO2021117979A1 (en) Display device related to micro-led and manufacturing method therefor
WO2017007215A1 (en) Display device using semiconductor light-emitting device and manufacturing method therefor
WO2017142315A1 (en) Display apparatus using semi-conductor light-emitting device
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2021070977A1 (en) Display device using micro led and method of manufacturing same
WO2018048019A1 (en) Display device using semiconductor light-emitting element
WO2021054491A1 (en) Display device using micro led, and manufacturing method therefor
WO2018056477A1 (en) Display apparatus using semiconductor light emitting device and manufacturing method therefor
WO2021060595A1 (en) Display device using micro-leds and method for manufacturing same
WO2018135704A1 (en) Display device using semiconductor light-emitting element
WO2020166777A1 (en) Display device using semiconductor light-emitting elements, and method for manufacturing same
WO2021125421A1 (en) Display device using light emitting elements and manufacturing method therefor
WO2019135441A1 (en) Display apparatus using semiconductor light-emitting device
WO2021107270A1 (en) Display device using semiconductor light emitting elements, and method for manufacturing same
WO2021025201A1 (en) Method for manufacturing display device, and transfer substrate for manufacturing display device
WO2022050454A1 (en) Display apparatus