WO2024106549A1 - Air circulation system for plant factory - Google Patents

Air circulation system for plant factory Download PDF

Info

Publication number
WO2024106549A1
WO2024106549A1 PCT/KR2022/017916 KR2022017916W WO2024106549A1 WO 2024106549 A1 WO2024106549 A1 WO 2024106549A1 KR 2022017916 W KR2022017916 W KR 2022017916W WO 2024106549 A1 WO2024106549 A1 WO 2024106549A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
hole
circulation system
cultivation
plant factory
Prior art date
Application number
PCT/KR2022/017916
Other languages
French (fr)
Korean (ko)
Inventor
백경훈
김기훈
이도건
Original Assignee
주식회사 엔씽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씽 filed Critical 주식회사 엔씽
Publication of WO2024106549A1 publication Critical patent/WO2024106549A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/08Mechanical apparatus for circulating the air
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an air circulation system, and more specifically, to an air circulation system for precisely controlling the temperature inside a closed plant factory.
  • a plant factory is a technology that produces plants in a closed space with a controlled internal environment, and can be said to be an environment-preserving production system aimed at providing safe food and annual supply of planting material.
  • these plant factories have stable supply, are not affected by weather fluctuations such as freezing or disturbance, typhoons, are not damaged by pathogens or pests, and have a certain amount, certain shape or taste, nutritional value, etc. And the ability to supply crops at stable prices is mentioned as an advantage.
  • plant factories have high stability and no invasion of pathogens or pests, there is no need to spray pesticides for their prevention or extermination, and safe production without pesticides is expected to be possible.
  • plant factories developed to date are still in their early stages. In other words, controlling the closed environment of a plant factory requires very detailed control. In other words, a plant factory must control the operation of various target devices in a closed environment, and the operation of all target devices must be controlled in relation to each other. For example, even when controlling the internal temperature, if only the temperature of the area adjacent to the air conditioner is controlled, the overall temperature control of the cultivation unit where the crops are placed cannot be controlled, ultimately destroying the plant growth environment at a rapid rate.
  • the present applicant invented a system that precisely controls air circulation in the plant factory as in the prior art literature, but as the crops grow, the direction of convection is disturbed, and the temperature or humidity varies widely as the growing season progresses. This occurred, causing variation in crop quality.
  • Korean Patent Publication No. 10-2022-0084848 (2022.6.21), AIR CIRCURATION SYSTEM FOR A CLOSED PLANT FACTORY
  • the present invention is intended to solve the problems of the prior art described above.
  • the purpose of the present invention is to control air circulation in a closed plant factory with extreme precision to increase the uniformity of temperature and humidity and to further maximize production of plants. Provides factory air circulation system.
  • a plant factory air circulation system includes a container in which crops are grown isolated from the outside and placed in a cultivation module, and a first air conditioner disposed on one side of the container and discharging air at a first set temperature to the other side. , a duct portion connected to the first air conditioner and having a plurality of through holes formed therein to deliver air at a first set temperature to the other side and uniformly deliver air at a first set temperature to the cultivation module, wherein the through holes are It is formed along the longitudinal direction of the cultivation module.
  • the cultivation module includes a first group cultivation module consisting of a plurality of rows and a second group cultivation module arranged spaced apart from the first group cultivation module and forming a plurality of rows, and the duct portion is configured to operate the first group cultivation module. It is disposed between the module and the second group of cultivation modules, and the through hole may be formed by rotating the first group of cultivation modules and the second group of cultivation modules at the center of the bottom of the duct portion according to the distance from each other.
  • the through hole may include a first through hole formed toward the bottom of the duct portion and a second through hole formed toward the side of the duct portion.
  • the duct portion may be composed of a plurality of duct portions, and the air emitted from the first through hole provided in one duct portion may be arranged to be close to the air emitted from the first through hole provided in another adjacent duct portion. there is.
  • the air emitted from the second through-hole provided in one of the duct parts may be arranged to be away from the air emitted from the second through-hole provided in another adjacent duct part.
  • the sizes of the through holes may vary from one side to the other.
  • first through hole and the second through hole may have different sizes.
  • a guide plate is installed at the other end of the duct section, and the guide plate prevents the backflow of the supplied air of the first set temperature and at the same time allows the air of the first set temperature to be delivered only to the lower part of the other side.
  • a second air conditioner is further installed on the other side of the container, a dehumidifying unit is further installed on one side or the other side of the container, the height of the first air conditioner is installed higher than the second air conditioner, and the first air conditioner or The second air conditioner is installed adjacent to the direction in which the dehumidifier discharges air, and can directly suck in the air discharged by the dehumidifier.
  • the present invention spreads the set temperature uniformly to the other side and the cultivation module through a duct coupled to the air conditioner.
  • the present invention can achieve remarkably uniform temperature control by organically arranging and controlling the dehumidifying unit and the ventilation unit together.
  • the present invention separates the heat emitted from the light source and intensively cools the separated portion at the end of the duct, thereby achieving more uniform temperature control.
  • the present invention can achieve more efficient temperature control and air circulation control because the heat controlled by the air conditioner and the heat emitted by other target devices are controlled together in one air circulation path.
  • Figure 1 is a configuration diagram of a closed plant factory air circulation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the sensor unit of FIG. 1 in more detail.
  • FIG. 3 is a diagram showing the target device of FIG. 1 in more detail.
  • Figure 4 is a diagram for explaining the air delivery process of the plant factory air circulation system according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view of the duct part of Figure 4.
  • Figure 6 is an installation photo of the duct part of Figure 4.
  • a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
  • the term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • FIG. 1 is a configuration diagram of a closed plant factory air circulation system according to an embodiment of the present invention
  • Figure 2 is a diagram showing the sensor unit of Figure 1 in more detail
  • Figure 3 is a diagram showing the target device of Figure 1 in more detail.
  • FIG. 4 is a diagram for explaining the operation of each target device in a closed plant factory air circulation system according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the duct part of FIG. 4
  • FIG. 6 is an installation photo of the duct part of Figure 4.
  • the plant factory air circulation system 1000 is blocked from the external atmosphere and external light and separately and independently controls the internal crop growth conditions. It largely consists of a sensor unit 100 and a control unit. It includes (200), a target device (300), a cultivation module (400), and a server (500).
  • the sensor unit 100 detects the internal environmental conditions and includes a temperature sensor 110 that detects the internal temperature in more detail, a humidity sensor 120 that detects the internal humidity, and an internal CO2 concentration. It includes a CO2 sensor 130 that measures and a flow sensor 140 that detects the flow of water, and may further include a pH sensor (not shown), an EC sensor 150, etc.
  • the above-mentioned temperature sensor 110, humidity sensor 120, and CO2 sensor 130 are placed in an internal gas atmosphere, and a plurality of them are placed in each zone to obtain an average value. This is because a temperature gradient may occur even when dividing the internal space using a large-area container.
  • control unit 200 controls the target device 300 according to the detection value of the sensor unit 100 to optimize internal environmental conditions.
  • control unit controls the air conditioner 310, the light source 320, the dehumidifier 330, the ventilation unit 340, and the local fan 350, which are the target devices 400, to control overall air circulation.
  • the spatial organicity of each target device 400 becomes very important.
  • the air circulation system 1000 is isolated from the outside and includes a container C in which crops are grown where a cultivation module 400 is placed.
  • the cultivation module 400 is arranged inside the container C to form a plurality of stages 400a and 400b.
  • the cultivation modules 400 are formed of two, but this is not limited to this, and it is preferable to arrange them so that the number of rows and columns is maximized within the allowable interior area.
  • the cultivation module 400 may be composed of a first group of cultivation modules consisting of a plurality of rows and a second group of cultivation modules arranged to be spaced apart from the first group of cultivation modules and also consisting of a plurality of rows. Furthermore, it may be composed of a first group of cultivation modules consisting of a plurality of columns and rows, and a second group of cultivation modules arranged separately from the first group of cultivation modules and similarly consisting of a plurality of columns and rows.
  • the cultivation module 400 basically allows a plurality of crops 11 to grow by placing them on the crop base 12 and causes roots to emerge from the lower part of the crop base 12. At this time, the water pump 380 transfers water from the lower part to the cultivation module 400, so that each crop 11 receives water.
  • the cultivation module 400 forms a height gradient so that water moves to one side according to gravity, and the final moved water falls into the irrigation tank 370.
  • the installation height of the cultivation module is formed to be higher on the right than on the left. That is, water flows from the right to the left of the cultivation module 400 according to this height purchase. At this time, in Figure 4, there is no significant difference between the right and left heights of the cultivation module. However, in an actual large-capacity container, when one cultivation module has a height gradient, the actual length deviation may be very large.
  • the first air conditioner 310a is disposed at the top, above one side (left) of the container C, and discharges air of the first set temperature to the other side (right).
  • the left side of the upper cultivation module 400a has a relatively lower temperature (or a significantly higher temperature) than the right side. ) may be approved.
  • the first air conditioner 310a does not discharge air of the first set temperature directly into the space, but rather discharges air at the first set temperature through the duct portion 311. Allow air to move.
  • the first set temperature refers to a temperature that is greater or less than the target temperature after the set time.
  • the first set temperature can be changed in various ways depending on the control temperature conditions.
  • This duct portion 311 is made of fabric material or tin material and is connected to the discharge portion of the first air conditioner 310a to move the discharged air of the first set temperature to the other side to prevent leakage. Meanwhile, it is also obvious that a plurality of duct units 311 may be provided depending on the size of the container.
  • through-holes 313 and 315 are formed in the duct portion 311, and the through-holes 313 and 315 are formed along the longitudinal direction of the cultivation module 400 to provide air discharged from the first air conditioner 310a to the cultivation module 400. is formed to be transmitted. Accordingly, air of the same first set temperature is uniformly delivered to all crops horizontally arranged in the cultivation module 400.
  • the cultivation module 400 may be composed of a first group of cultivation modules forming a plurality of stages (rows) and a second group of cultivation modules spaced apart from this and forming a plurality of stages (rows).
  • the duct portion 311 is disposed in the middle of the spaced apart space for uniform temperature transfer.
  • the duct portion 311 consists of two parallel to each other.
  • the formation positions of the above-mentioned through holes 313 and 315 are very important.
  • the circulation of temperature occurs largely clockwise, but in addition to being applied to the crops 11 placed in each cultivation module 400, the temperature is applied to the ground direction of FIG. 4, that is, a plane perpendicular to FIG. 4. This is because direction must be taken into account.
  • the circulation of air is carried out in the direction perpendicular to the above-mentioned plane (direction perpendicular to the longitudinal direction of the cultivation module) to the crops placed in each cultivation module, in addition to the direction in which the duct part 311 delivers air at a largely set temperature. This is because convection must be taken into account.
  • the duct portion 311 be formed by dividing the through holes into a first through hole 313 and a second through hole 315.
  • the first through hole 313 refers to one formed on the lower side of the duct portion 311 (approximately toward the cultivation module)
  • the second through hole 315 refers to one formed on the side along the longitudinal direction of the duct portion.
  • the duct portion 311 is formed in two, it is preferable that the first through hole 313 is formed at an angle spaced apart from the lower center of the duct portion by rotation, as shown in FIG. 5 .
  • the first through hole 313 formed in the duct portion on the left side is formed at a position rotated from the center to the right, and the first through hole 313 formed in the duct portion on the right side is rotated from the center to the left. formed in location. Accordingly, the air discharged from the first through hole 313 formed in the duct section on the left and the air discharged from the first through hole 313 formed in the duct section on the right side become closer to each other, and first exist in the area adjacent to that area. It also functions to sufficiently mix with other air particles. At the same time, since the target temperature is transmitted by contact with each crop 11 of the cultivation module 400, a more even temperature application is possible.
  • the second through hole 315 refers to a side formed along the longitudinal direction of the duct portion 311.
  • the second through hole 315 is formed in two parallel duct portions 311.
  • the air emitted from the second through-hole 315 provided in one duct portion is arranged to be away from the air emitted from the second through-hole 315 provided in another adjacent duct portion. That is, the air emitted from the second through hole is emitted toward the wall of the container.
  • the air discharged from the second through-hole is rotated on the wall of the container and falls to the bottom (in the case of cooled air), which is mixed with the surrounding air that was previously placed and is applied to the crops placed in the adjacent cultivation module. Therefore, air of the target temperature is delivered uniformly to the cultivation module in a direction perpendicular to the longitudinal direction while preventing shock to the crops.
  • the size of the first through hole 313 is formed differently from the size of the second through hole 315.
  • the size of the second through hole 315 is larger than the size of the first through hole 313. This is because the cultivation modules are generally formed to be long in the horizontal direction, and the temperature applied to the crops placed in each cultivation module is more directly affected by the discharge from the first through hole 313.
  • the second through-holes 315 it would be preferable to form the second through-holes 315 to be smaller than the number of first through-holes 313. Additionally, taking pressure into account, it is desirable to make the size of the through hole different or larger from one side (left) to the other side (right).
  • a guide plate 319 is formed at the other end of the duct portion 311.
  • the guide plate prevents the backflow of the supplied air of the first set temperature and at the same time serves to deliver the air of the first set temperature only to the lower part of the other side.
  • this embodiment may further include a second air conditioner 310b.
  • the second air conditioner 310b is suitable for creating a heat circulation (cooling air circulation) structure as shown in FIG. 4 by discharging air at the second set temperature downward.
  • a duct (not shown) to the second air conditioner 310b to transmit air from the other side to one side, and to transmit air with a precise temperature to each cultivation module through the penetration portion.
  • the mixing efficiency of the air becomes lower than when the duct is located at the top, so as described above, it is preferable that the duct 311 is installed only at the top.
  • cold air which is air of the target set temperature
  • the second air conditioner 310b is not installed on the upper side of the other side of the container. It is desirable to install it further down. That is, the height of the second air conditioner must be installed lower than that of the first air conditioner to further maximize cooling efficiency and significantly reduce power consumption.
  • the dehumidifying unit 400 serves to remove moisture generated by crops through transpiration.
  • the dehumidifying unit 330 is composed of at least one dehumidifier, and the air discharged from the dehumidifier is used in the first air conditioner 310a or the second air conditioner 310b. Direct it towards the side so that the heat emitted in the minimum path is absorbed.
  • the first air conditioner (310a) absorbs the heat emitted by the first dehumidifier (330a) on the shortest path
  • the second air conditioner (310b) absorbs the heat emitted by the second dehumidifier (330b) on the shortest path. It is shown that air dehumidified for absorption is discharged.
  • the duct portion directly transmits air of the first temperature to the other side, so the humidity on the other side is dramatically lowered compared to the conventional structure. Therefore, in the air circulation system according to this embodiment, it is possible to omit the installation of the second dehumidifier 330b, which leads to significant cost savings.
  • the light source 320 may be composed of a plurality of LEDs that are disposed on the cultivation module 400 and apply light to the cultivation module 400. At this time, it is desirable for the LED to be used in a mixture of normal white light and red light to supplement the red light, which is the wavelength peak lacking in normal white light. In addition, at this time, white light is initially emitted using a blue-based bare chip, and when the light is excited by the phosphor and expresses white, the blue wavelength peak is highlighted and can be used to supplement the blue-based light required for photosynthesis. , if the wavelength peak of the bare chip itself is light distant from the blue series, it is also desirable to add another LED that separately emits blue light. Accordingly, the growth rate can be increased by allowing the chlorophyll of crops to mainly absorb blue-violet light (430-460 nm) and red light (630-680 nm).
  • an AC-DC converter 325 that converts direct current supplied to the LED is installed spaced apart on the cultivation module 400.
  • the AC-DC converter 325 is electrically connected to an LED module composed of a plurality of LEDs and is spaced apart from a set distance or more.
  • the AC-DC converter 325 is installed to directly contact the air blown out from the duct unit 330. Accordingly, the heat emitted by the AC-DC converter 325 can be directly cooled according to the transfer of the set temperature of the duct described above.
  • the ventilation unit 340 is disposed on the lower side of the container C to guide the air discharged from the second air conditioner 310b to one side downward.
  • the ventilation unit 340 serves to guide air from the other side to one side (left direction in FIG. 4).
  • the ventilation unit 340 is shown as one unit in FIG. 4, it may be arranged in plural numbers in proportion to the length of the cultivation module 400.
  • the cultivation module 400 is preferably placed on the ventilation unit 340.
  • the cultivation module 400 is preferably formed in a plurality of stages for high-intensity mass production.
  • the degree of integration is further increased, eddy currents may be generated between each cultivation module, which may act as an obstacle to air circulation.
  • at least one local fan 350 for guiding air in one direction may be further attached to each cultivation module 400a and 400b.
  • the air induction direction of the local fan 350 disposed at the top is different from the air induction direction of the local fan 350 disposed at the bottom.
  • the local fan 350 placed at the top assists in guiding air to the right, which is the same direction as the main air movement, and in the case of the local fan placed at the bottom, it guides air to the left, which is the same as the main air movement direction. It is shown that it is assisting.
  • the action of the local fan 350 assists air circulation in the main direction, thereby enabling more uniform air circulation and temperature control.
  • the present invention can achieve remarkably uniform temperature control by organically installing the air conditioner, dehumidifying unit, and ventilation unit and controlling them together. Additionally, the present invention separates the heat emitted from the light source and allows the separated portion to be directly absorbed into the air conditioner, thereby achieving more uniform temperature control. In addition, the present invention can achieve more efficient temperature control and air circulation control because the heat controlled by the air conditioner and the heat emitted by other target devices are controlled together in one air circulation path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Environmental Sciences (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • Sustainable Development (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Greenhouses (AREA)

Abstract

The present invention relates to an air circulation system for a plant factory, which enables extremely precise control of air circulation in a plant factory so as to enhance uniformity of temperature and humidity and further maximize production. The air circulation system for a plant factory, according to one aspect of the present invention, comprises: a container for growing crops disposed in a cultivation module, isolated from the outside; a first air conditioner disposed on one side of the container to discharge air at a first set temperature toward the other side; and a duct part, which is connected to the first air conditioner to convey air at the first set temperature toward the other side and has a plurality of through-holes formed therein so as to convey air at the first set temperature uniformly throughout the cultivation module, wherein the through-holes are formed along the longitudinal direction of the cultivation module.

Description

식물공장 공기 순환 시스템Plant factory air circulation system
본 발명은 공기 순환 시스템에 대한 것으로서, 더욱 상세하게는 폐쇄형 식물공장 내부의 온도를 정밀하게 제어하기 위한 공기 순환 시스템에 대한 것이다. The present invention relates to an air circulation system, and more specifically, to an air circulation system for precisely controlling the temperature inside a closed plant factory.
식물공장은 내부 환경을 조절한 폐쇄적 공간에서 식물을 폐쇄적으로 생산하는 기술로서, 안전한 식료공급, 식재의 주년 공급을 목적으로 하는 환경 보전형의 생산 체계라고 할 수 있다.A plant factory is a technology that produces plants in a closed space with a controlled internal environment, and can be said to be an environment-preserving production system aimed at providing safe food and annual supply of planting material.
이러한 식물공장은 이론적으로는 안정공급, 냉하 또는 난동, 태풍 등의 기상변동의 영향을 받는 경우가 없고, 병원균 또는 해충의 피해를 받는 경우가 없으며 일정한 양, 일정한 형 또는 맛, 영양가 등의 품질, 그리고 안정된 가격으로 작물의 공급이 가능한 것이 장점으로 언급되고 있다. 또한, 식물공장은 높은 안정성, 병원균 또는 해충의 침입이 없기 때문에 이들의 예방, 구제를 위한 농약의 살포도 필요하지 않게 되고, 무농약에 의한 안전한 생산도 가능할 것으로 전망된다. In theory, these plant factories have stable supply, are not affected by weather fluctuations such as freezing or disturbance, typhoons, are not damaged by pathogens or pests, and have a certain amount, certain shape or taste, nutritional value, etc. And the ability to supply crops at stable prices is mentioned as an advantage. In addition, because plant factories have high stability and no invasion of pathogens or pests, there is no need to spray pesticides for their prevention or extermination, and safe production without pesticides is expected to be possible.
그러나, 현재까지 개발된 식물공장은 아직 초기 단계에 불과하다. 즉, 식물공장의 폐쇄된 환경을 제어하는 것은 매우 세밀한 제어가 필요하다. 다시 말해 식물공장은 폐쇄된 환경에서 각종 타켓 디바이스의 작동을 제어해야 되는데 모든 타겟 디바이스의 작동이 서로 관련되어 제어되어야 한다. 일례로 내부의 온도를 제어하는 경우에도 공조기와 인접한 영역의 온도만을 제어하는 경우에는 작물이 배치된 재배기 등의 전체적인 온도 제어가 이루어지지 못해 결국 식물의 생육 환경이 빠른 속도로 파괴된다. However, plant factories developed to date are still in their early stages. In other words, controlling the closed environment of a plant factory requires very detailed control. In other words, a plant factory must control the operation of various target devices in a closed environment, and the operation of all target devices must be controlled in relation to each other. For example, even when controlling the internal temperature, if only the temperature of the area adjacent to the air conditioner is controlled, the overall temperature control of the cultivation unit where the crops are placed cannot be controlled, ultimately destroying the plant growth environment at a rapid rate.
이에 본 출원인은 선행기술문헌에서와 같이 식물공장에서의 공기 순환을 정밀하게 제어하는 시스템을 발명하였으나, 작물이 생장함에 따라 대류의 방향이 방해를 받아서 작기 후반으로 갈수록 온도 또는 습도의 편차가 광범위하게 발생하게 되었고, 이는 작물의 품질 편차를 유발하게 되었다. Accordingly, the present applicant invented a system that precisely controls air circulation in the plant factory as in the prior art literature, but as the crops grow, the direction of convection is disturbed, and the temperature or humidity varies widely as the growing season progresses. This occurred, causing variation in crop quality.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
한국공개특허 제10-2022-0084848호(2022.6.21), 폐쇄형 식물공장 공기 순환 시스템AIR CIRCURATION SYSTEM FOR A CLOSED PLANT FACTORYKorean Patent Publication No. 10-2022-0084848 (2022.6.21), AIR CIRCURATION SYSTEM FOR A CLOSED PLANT FACTORY
본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 폐쇄형 식물공장에서의 공기 순환을 극정밀하게 제어하여 온도 및 습도의 균일도를 증대하고 생산량을 더욱 극대화할 수 있는 식물공장 공기 순환 시스템을 제공한다. The present invention is intended to solve the problems of the prior art described above. The purpose of the present invention is to control air circulation in a closed plant factory with extreme precision to increase the uniformity of temperature and humidity and to further maximize production of plants. Provides factory air circulation system.
본 발명의 일 측면에 따른 식물공장 공기 순환 시스템은 외부로부터 격리되어 재배모듈에 배치된 작물이 생장하는 컨테이너, 상기 컨테이너의 일측에 배치되어 타측 방향으로 제1 설정 온도의 공기를 배출하는 제1 공조기, 상기 제1 공조기와 연결되어 제1 설정 온도의 공기를 상기 타측 방향으로 전달하면서 재배모듈에 균일하게 제1 설정 온도의 공기를 전달하도록 복수 개의 관통홀이 형성된 덕트부를 포함하고, 상기 관통홀은 상기 재배모듈의 길이 방향에 따라 형성된다. A plant factory air circulation system according to an aspect of the present invention includes a container in which crops are grown isolated from the outside and placed in a cultivation module, and a first air conditioner disposed on one side of the container and discharging air at a first set temperature to the other side. , a duct portion connected to the first air conditioner and having a plurality of through holes formed therein to deliver air at a first set temperature to the other side and uniformly deliver air at a first set temperature to the cultivation module, wherein the through holes are It is formed along the longitudinal direction of the cultivation module.
이때, 상기 재배모듈은 복수의 행으로 이루어지는 제1그룹 재배모듈과 상기 제1그룹 재배모듈에서 이격되어 배치되며 복수의 행을 이루는 제2그룹 재배모듈을 포함하고, 상기 덕트부는 상기 제1그룹 재배모듈과 상기 제2그룹 재배모듈의 사이에 배치되고, 상기 관통홀은 상기 제1그룹 재배모듈과 상기 제2그룹 재배모듈이 서로 이격된 길이에 따라 덕트부 하단 중심에서 회전되어 형성될 수 있다. At this time, the cultivation module includes a first group cultivation module consisting of a plurality of rows and a second group cultivation module arranged spaced apart from the first group cultivation module and forming a plurality of rows, and the duct portion is configured to operate the first group cultivation module. It is disposed between the module and the second group of cultivation modules, and the through hole may be formed by rotating the first group of cultivation modules and the second group of cultivation modules at the center of the bottom of the duct portion according to the distance from each other.
또한, 상기 관통홀은 덕트부의 하단 쪽으로 형성된 제1관통홀과 상기 덕트부의 측방향으로 형성된 제2관통홀을 포함할 수 있다. Additionally, the through hole may include a first through hole formed toward the bottom of the duct portion and a second through hole formed toward the side of the duct portion.
또한, 상기 덕트부는 복수 개로 이루어지고, 어느 하나의 덕트부에 구비된 제1관통홀에서 출사되는 공기는 인접하는 다른 덕트부에 구비된 제1관통홀에서 출사되는 공기와 서로 가까워지도록 배치될 수 있다. In addition, the duct portion may be composed of a plurality of duct portions, and the air emitted from the first through hole provided in one duct portion may be arranged to be close to the air emitted from the first through hole provided in another adjacent duct portion. there is.
또한, 상기 어느 하나의 덕트부에 구비된 제2관통홀에서 출사되는 공기는 인접하는 다른 덕트부에 구비된 제2관통홀에서 출사되는 공기와 서로 멀어지도록 배치될 수 있다. Additionally, the air emitted from the second through-hole provided in one of the duct parts may be arranged to be away from the air emitted from the second through-hole provided in another adjacent duct part.
또한, 상기 관통홀의 크기는 상기 일측에서 타측 방향으로 갈수록 서로 다르게 형성될 수 있다. Additionally, the sizes of the through holes may vary from one side to the other.
또한, 상기 제1관통홀과 상기 제2관통홀의 크기는 서로 다르게 형성될 수 있다. Additionally, the first through hole and the second through hole may have different sizes.
또한, 상기 덕트부의 타측 끝단에는 가이드판이 설치되고 상기 가이드판은 공급된 제1 설정 온도의 공기의 역류를 방지하며 동시에 제1 설정 온도의 공기를 타측 하부로만 전달하도록 할 수 있다. In addition, a guide plate is installed at the other end of the duct section, and the guide plate prevents the backflow of the supplied air of the first set temperature and at the same time allows the air of the first set temperature to be delivered only to the lower part of the other side.
또한, 상기 컨네이너의 타측에는 제2 공조기가 더 설치되고, 상기 컨네이너의 일측 또는 타측에는 제습부가 더 설치되고, 상기 제1 공조기의 높이는 상기 제2 공조기보다 높게 설치되며, 상기 제1 공조기 또는 상기 제2 공조기는 상기 제습부가 공기를 토출하는 방향에 인접하게 설치되어 상기 제습부가 토출한 공기를 직접 흡입할 수 있다. In addition, a second air conditioner is further installed on the other side of the container, a dehumidifying unit is further installed on one side or the other side of the container, the height of the first air conditioner is installed higher than the second air conditioner, and the first air conditioner or The second air conditioner is installed adjacent to the direction in which the dehumidifier discharges air, and can directly suck in the air discharged by the dehumidifier.
본 발명은 공조기에 결합된 덕트부를 통해 설정 온도를 타측 방향과 재배모듈에 균일하게 전파시킨다. The present invention spreads the set temperature uniformly to the other side and the cultivation module through a duct coupled to the air conditioner.
또한, 본 발명은 이와 함께 제습부, 및 환풍부를 유기적으로 배치하고 함께 제어하여 현저하게 균일한 온도 제어를 달성할 수 있다. In addition, the present invention can achieve remarkably uniform temperature control by organically arranging and controlling the dehumidifying unit and the ventilation unit together.
또한, 본 발명은 광원이 배출하는 열을 분리하여 그 분리된 부분을 덕트부의 말단이 집중적으로 냉각하게 되므로 더욱 균일한 온도 제어를 달성할 수 있다. In addition, the present invention separates the heat emitted from the light source and intensively cools the separated portion at the end of the duct, thereby achieving more uniform temperature control.
또한, 본 발명은 공조기가 제어하는 열과 다른 타켓 디바이스가 방출한 열을 하나의 공기 순환 경로에서 함께 제어하게 되므로 보다 효율적인 온도 제어 및 공기 순환 제어를 달성할 수 있다. In addition, the present invention can achieve more efficient temperature control and air circulation control because the heat controlled by the air conditioner and the heat emitted by other target devices are controlled together in one air circulation path.
도 1은 본 발명의 일 실시예에 따른 폐쇄형 식물공장 공기 순환 시스템의 구성도이다. Figure 1 is a configuration diagram of a closed plant factory air circulation system according to an embodiment of the present invention.
도 2는 도 1의 센서부를 더욱 자세하게 도시한 도면이다. FIG. 2 is a diagram showing the sensor unit of FIG. 1 in more detail.
도 3은 도 1의 타겟 디바이스를 더욱 자세하게 도시한 도면이다. FIG. 3 is a diagram showing the target device of FIG. 1 in more detail.
도 4는 본 발명의 일 실시예에 따른 식물공장 공기 순환 시스템의 공기 전달 과정을 설명하기 위한 도면이다. Figure 4 is a diagram for explaining the air delivery process of the plant factory air circulation system according to an embodiment of the present invention.
도 5는 도 4의 덕트부에 대한 단면도이다. Figure 5 is a cross-sectional view of the duct part of Figure 4.
도 6은 도 4의 덕트부에 대한 설치 사진이다. Figure 6 is an installation photo of the duct part of Figure 4.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 당업자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하여 상세하게 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice it. Since the present invention can be subject to various changes and can have various embodiments, specific embodiments will be described in detail by illustrating them in the drawings. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms containing ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.For example, a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component. The term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
이하, 본 발명의 일 실시예에 따른 폐쇄형 식물공장 공기 순환 시스템(1000)을 설명한다. 도 1은 본 발명의 일 실시예에 따른 폐쇄형 식물공장 공기 순환 시스템의 구성도이고, 도 2는 도 1의 센서부를 더욱 자세하게 도시한 도면이며, 도 3은 도 1의 타겟 디바이스를 더욱 자세하게 도시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 폐쇄형 식물공장 공기 순환 시스템에서 각 타겟 디바이스의 작용을 설명하기 위한 도면이고, 도 5는 도 4의 덕트부에 대한 단면도이며, 도 6은 도 4의 덕트부에 대한 설치 사진이다. Hereinafter, a closed plant factory air circulation system 1000 according to an embodiment of the present invention will be described. Figure 1 is a configuration diagram of a closed plant factory air circulation system according to an embodiment of the present invention, Figure 2 is a diagram showing the sensor unit of Figure 1 in more detail, and Figure 3 is a diagram showing the target device of Figure 1 in more detail. It is a diagram, FIG. 4 is a diagram for explaining the operation of each target device in a closed plant factory air circulation system according to an embodiment of the present invention, FIG. 5 is a cross-sectional view of the duct part of FIG. 4, and FIG. 6 is an installation photo of the duct part of Figure 4.
도 1을 참조하면, 본 발명의 일 실시예에 따른 식물공장 공기 순환 시스템(1000)은 외부 분위기 및 외부 광과 차단되어 내부의 작물 생육 조건을 별도로 독립 제어하게 되는데 크게 센서부(100), 제어부(200), 타겟 디바이스(300), 재배모듈(400) 및 서버(500)를 포함하여 이루어진다. Referring to FIG. 1, the plant factory air circulation system 1000 according to an embodiment of the present invention is blocked from the external atmosphere and external light and separately and independently controls the internal crop growth conditions. It largely consists of a sensor unit 100 and a control unit. It includes (200), a target device (300), a cultivation module (400), and a server (500).
도 2를 참조하면, 센서부(100)는 내부의 환경 조건을 감지하는데 더욱 상세하게 내부의 온도를 감지하는 온도센서(110), 내부의 습도를 감지하는 습도센서(120), 내부의 CO2 농도를 측정하는 CO2센서(130), 및 물의 흐름을 감지하는 유량센서(140)를 함하고 pH센서(미도시), 및 EC센서(150) 등을 더 포함할 수 있다. Referring to FIG. 2, the sensor unit 100 detects the internal environmental conditions and includes a temperature sensor 110 that detects the internal temperature in more detail, a humidity sensor 120 that detects the internal humidity, and an internal CO2 concentration. It includes a CO2 sensor 130 that measures and a flow sensor 140 that detects the flow of water, and may further include a pH sensor (not shown), an EC sensor 150, etc.
이때 상기한 온도센서(110), 습도센서(120) 및 CO2센서(130)는 내부의 기체 분위기 상 배치되는 것이 바람직하고 구역별로 복수 개 배치되어 평균값을 취득하도록 하는 것이 바람직하다. 대면적의 컨테이너를 이용하여 내부 공간을 구획하는 경우에도 온도 구배가 발생될 수 있기 때문이다. At this time, it is preferable that the above-mentioned temperature sensor 110, humidity sensor 120, and CO2 sensor 130 are placed in an internal gas atmosphere, and a plurality of them are placed in each zone to obtain an average value. This is because a temperature gradient may occur even when dividing the internal space using a large-area container.
한편, 제어부(200)는 센서부(100)의 감지값에 따라 타겟 디바이스(300)를 제어하여 내부 환경 조건을 최적화하는 역할을 수행한다. 더욱 상세하게 제어부는 타겟 디바이스(400)인 공조기(310), 광원(320), 제습부(330), 환풍부(340), 및 로컬팬(350)을 제어하여 전체 공기 순환을 제어하게 된다. 이때, 각 타겟 디바이스(400)의 공간적인 유기성이 함께 매우 중요하게 된다. Meanwhile, the control unit 200 controls the target device 300 according to the detection value of the sensor unit 100 to optimize internal environmental conditions. In more detail, the control unit controls the air conditioner 310, the light source 320, the dehumidifier 330, the ventilation unit 340, and the local fan 350, which are the target devices 400, to control overall air circulation. At this time, the spatial organicity of each target device 400 becomes very important.
이에 도 4를 참조하면, 우선 본 발명의 일 실시예에 따른 공기 순환 시스템(1000)은 외부로부터 격리되어 재배모듈(400)이 배치된 작물이 생장하는 컨테이너(C)를 구비한다. Referring to FIG. 4, first, the air circulation system 1000 according to an embodiment of the present invention is isolated from the outside and includes a container C in which crops are grown where a cultivation module 400 is placed.
본 실시예에 따른 재배모듈(400)은 컨테이너(C) 내부에서 복수개(400a, 400b)의 단을 이루며 배치된다. 도면에서 재배모듈(400)은 2개로 형성되어 있으나 이에 한정되지 않으며 내무 면적이 허용되는 한도에서 행과 열의 개수가 최대가 되도록 배치되는 것이 바람직하다. The cultivation module 400 according to this embodiment is arranged inside the container C to form a plurality of stages 400a and 400b. In the drawing, the cultivation modules 400 are formed of two, but this is not limited to this, and it is preferable to arrange them so that the number of rows and columns is maximized within the allowable interior area.
따라서, 재배모듈(400)은 복수의 행으로 이루어지는 제1그룹 재배모듈과 상기 제1그룹 재배모듈에서 이격되어 배치되며 역시 복수의 행으로 이루어지는 제2그룹 재배모듈로 구성될 수 있다. 나아가 복수의 열과 행으로 이루어지는 제1그룹 재배모듈과 제1그룹 재배모듈에서 이격되어 배치되며 마찬가지로 복수의 열과 행으로 이루는 제2그룹 재배모듈로 구성될 수 있다. Accordingly, the cultivation module 400 may be composed of a first group of cultivation modules consisting of a plurality of rows and a second group of cultivation modules arranged to be spaced apart from the first group of cultivation modules and also consisting of a plurality of rows. Furthermore, it may be composed of a first group of cultivation modules consisting of a plurality of columns and rows, and a second group of cultivation modules arranged separately from the first group of cultivation modules and similarly consisting of a plurality of columns and rows.
또한, 기본적으로 재배모듈(400)은 복수개의 작물(11)이 작물베이스(12)에서 배치되어 생육되도록 하고, 작물베이스(12)의 하부에 뿌리가 나오도록 한다. 이때, 워터펌프(380)는 하부의 물을 재배모듈(400)로 이송하므로 각 작물(11)은 물을 공급받게 된다. 재배모듈(400)은 높이 구배를 형성하여 한쪽으로 물이 중력에 따라 이동되도록 하고 최종 이동된 물은 관수통(370)으로 낙하되도록 한다. Additionally, the cultivation module 400 basically allows a plurality of crops 11 to grow by placing them on the crop base 12 and causes roots to emerge from the lower part of the crop base 12. At this time, the water pump 380 transfers water from the lower part to the cultivation module 400, so that each crop 11 receives water. The cultivation module 400 forms a height gradient so that water moves to one side according to gravity, and the final moved water falls into the irrigation tank 370.
이때, 도 4에서는, 재배모듈의 설치 높이가 왼쯕보다 오른쪽이 높게 형성된다. 즉, 이러한 높이 구매에 따라 재배모듈(400)의 오른쪽에서 왼쪽으로 물이 흐르게 된다. 이때, 도 4에서는 재배모듈의 오른쪽 높이와 왼쪽 높이가 큰 차이가 없게 도시되었으나 실제 대용량 컨테이너에서 하나의 재배모듈이 높이 구배를 가지는 경우에 실제 길이의 편차는 매우 크게 발생될 수 있다. At this time, in Figure 4, the installation height of the cultivation module is formed to be higher on the right than on the left. That is, water flows from the right to the left of the cultivation module 400 according to this height purchase. At this time, in Figure 4, there is no significant difference between the right and left heights of the cultivation module. However, in an actual large-capacity container, when one cultivation module has a height gradient, the actual length deviation may be very large.
따라서, 도 4에서 제1 공조기(310a)는 상단에 배치되어 있는데, 컨테이너(C)의 일측(왼쪽) 상방에 배치되어 타측(오른쪽)으로 제1 설정 온도의 공기를 배출한다. 그런데 전술한 바와 같이 재배모듈의 높이 구배와 최초로 제1 공조기(310a)의 온도가 인가되는 부분이기 때문에 상단 재배모듈(400a)의 왼편은 상대적으로 오른편에 비해서 더 크게 낮은 온도(혹은 더 크게 높은 온도)가 인가될 수 있다. Therefore, in FIG. 4, the first air conditioner 310a is disposed at the top, above one side (left) of the container C, and discharges air of the first set temperature to the other side (right). However, as described above, because the height gradient of the cultivation module and the temperature of the first air conditioner 310a are applied for the first time, the left side of the upper cultivation module 400a has a relatively lower temperature (or a significantly higher temperature) than the right side. ) may be approved.
따라서, 본 실시예에서는 이러한 직접적인 강력한 온도 인가를 피하고 후술하는 바와 같이 균일한 온도 전달을 위해서 제1 공조기(310a)는 공간에 바로 제1 설정 온도의 공기를 배출하지 않고 덕트부(311)에 의해 공기가 이동되도록 한다. 한편, 여기서 제1 설정 온도는 설정 시간 후의 타겟 온도보다 크거나 작은 온도를 말한다. 그러나, 제1 설정 온도는 제어 온도 조건에 따라서 다양하게 변경될 수 있음은 자명하다. Therefore, in this embodiment, in order to avoid such direct strong temperature application and to transmit uniform temperature as will be described later, the first air conditioner 310a does not discharge air of the first set temperature directly into the space, but rather discharges air at the first set temperature through the duct portion 311. Allow air to move. Meanwhile, here, the first set temperature refers to a temperature that is greater or less than the target temperature after the set time. However, it is obvious that the first set temperature can be changed in various ways depending on the control temperature conditions.
이러한 덕트부(311)는 패브릭 재질 또는 함석 재질로 이루어지는데 제1 공조기(310a)의 토출부와 연결되어 토출되는 제1 설정 온도의 공기가 새지 않도록 타측으로 이동시키게 된다. 한편, 덕트부(311)는 컨테이너의 크기에 따라 복수 개로 구비될 수 있음도 자명하다. This duct portion 311 is made of fabric material or tin material and is connected to the discharge portion of the first air conditioner 310a to move the discharged air of the first set temperature to the other side to prevent leakage. Meanwhile, it is also obvious that a plurality of duct units 311 may be provided depending on the size of the container.
또한, 이러한 덕트부(311)에는 관통홀(313,315)이 형성되는데, 관통홀(313,315)는 재배모듈(400)의 길이 방향으로 따라 재배모듈(400)에게 제1 공조기(310a)가 배출하는 공기가 전달되도록 형성된다. 따라서, 재배모듈(400)에 수평하게 배치된 모든 작물에 동일한 제1 설정 온도의 공기가 균일하게 전달되도록 한다. In addition, through- holes 313 and 315 are formed in the duct portion 311, and the through- holes 313 and 315 are formed along the longitudinal direction of the cultivation module 400 to provide air discharged from the first air conditioner 310a to the cultivation module 400. is formed to be transmitted. Accordingly, air of the same first set temperature is uniformly delivered to all crops horizontally arranged in the cultivation module 400.
한편, 전술한 바와 같이 재배모듈(400)은 복수의 단(행)을 이루는 제1그룹의 재배모듈과 여기에서 이격되어 마찬가지로 복수의 단(행)을 이루는 제2그룹의 재배모듈로 이루질 수 있는데, 덕트부(311)는 균일한 온도 전달을 위해서 이들이 이격된 간격의 중간에 배치되는 것이 바람직하다. Meanwhile, as described above, the cultivation module 400 may be composed of a first group of cultivation modules forming a plurality of stages (rows) and a second group of cultivation modules spaced apart from this and forming a plurality of stages (rows). However, it is preferable that the duct portion 311 is disposed in the middle of the spaced apart space for uniform temperature transfer.
또한, 이 경우에 고른 온도 전달을 위해서 덕트부(311)는 서로 평행한 두개로 이루어지는 것이 바람직하다. 그런데, 이 경우에는 상기한 관통홀(313,315)의 형성 위치가 매우 중요하다. 온도의 순환은 도 4에서 보았을 때와 같이 크게 시계방향으로만 이루어지되, 각 재배모듈(400)에 배치된 작물(11)에 인가되는 것에서 나아가 도 4의 지면 방향 즉, 도 4와 수직인 평면 방향을 고려해야 되기 때문이다. 다시 말해, 공기의 순환은 덕트부(311)가 크게 설정 온도의 공기를 전달하는 방향 이외에도 각 재배모듈에 배치된 작물에 상기한 수직인 평면 방향(재배모듈의 길이 방향과 수직인 방향)으로 공기가 대류하는 것을 고려해야 되기 때문이다. Also, in this case, for even temperature transfer, it is preferable that the duct portion 311 consists of two parallel to each other. However, in this case, the formation positions of the above-mentioned through holes 313 and 315 are very important. As seen in FIG. 4, the circulation of temperature occurs largely clockwise, but in addition to being applied to the crops 11 placed in each cultivation module 400, the temperature is applied to the ground direction of FIG. 4, that is, a plane perpendicular to FIG. 4. This is because direction must be taken into account. In other words, the circulation of air is carried out in the direction perpendicular to the above-mentioned plane (direction perpendicular to the longitudinal direction of the cultivation module) to the crops placed in each cultivation module, in addition to the direction in which the duct part 311 delivers air at a largely set temperature. This is because convection must be taken into account.
이에, 본 실시예에 따른 덕트부(311)는 관통홀을 제1관통홀(313)과 제2관통홀(315)로 구분하여 형성하는 것이 바람직하다. 여기서 제1관통홀(313)은 덕트부(311)의 하측(대략 재배모듈 쪽 방향)으로 형성된 것을 말하며, 제2관통홀(315)는 덕트부의 길이방향을 따라 측면으로 형성된 것을 말한다. Accordingly, it is preferable that the duct portion 311 according to this embodiment be formed by dividing the through holes into a first through hole 313 and a second through hole 315. Here, the first through hole 313 refers to one formed on the lower side of the duct portion 311 (approximately toward the cultivation module), and the second through hole 315 refers to one formed on the side along the longitudinal direction of the duct portion.
그런데, 전술한 바와 같이 재배모듈에 배치된 작물은 직접적으로 공조기가 최초로 토출한 공기를 접촉하는 것보다는 간접적으로 혹은 공간을 소정 거리 이동한 공기가 접촉되는 것이 쇼크를 줄이게 된다. 따라서, 덕트부(311)가 두개로 형성되는 경우에 제1관통홀(313)은 도 5에서와 같이 덕트부의 하부 중심보다 회전되어 이격된 각도의 위치에 형성되는 것이 바람직하다. However, as described above, shock is reduced when the crops placed in the cultivation module are contacted indirectly or with air that has moved a predetermined distance in space rather than directly with the air initially discharged by the air conditioner. Therefore, when the duct portion 311 is formed in two, it is preferable that the first through hole 313 is formed at an angle spaced apart from the lower center of the duct portion by rotation, as shown in FIG. 5 .
즉, 도 5에서 왼편의 덕트부에 형성된 제1관통홀(313)은 중심에서 오른편으로 회전된 위치에 형성되고, 오른편의 덕트부에 형성된 제1관통홀(313)은 중심에서 왼편으로 회전된 위치에 형성된다. 이에 따라 왼편의 덕트부에 형성된 제1관통홀(313)에서 토출된 공기와 오른편 덕트부에 형성된 제1관통홀(313)에서 토출된 공기는 서로 가까워지게 되는데 먼저 그 부위에 인접하는 영역에 존재하는 다른 공기 입자 와도 충분히 섞이는 작용을 함께 하게 된다. 그러면서 이후 재배모듈(400)의 각 작물(11)과 접촉되어 목표 온도를 전달하게 되므로 더욱 고른 온도의 인가가 가능하게 된다. That is, in FIG. 5, the first through hole 313 formed in the duct portion on the left side is formed at a position rotated from the center to the right, and the first through hole 313 formed in the duct portion on the right side is rotated from the center to the left. formed in location. Accordingly, the air discharged from the first through hole 313 formed in the duct section on the left and the air discharged from the first through hole 313 formed in the duct section on the right side become closer to each other, and first exist in the area adjacent to that area. It also functions to sufficiently mix with other air particles. At the same time, since the target temperature is transmitted by contact with each crop 11 of the cultivation module 400, a more even temperature application is possible.
한편, 전술한 바와 같이 제2관통홀(315)는 덕트부(311)의 길이방향을 따라 측면으로 형성된 것을 말하는데, 제2관통홀(315)는 덕트부(311)가 평행하게 두개로 형성되는 경우에 어느 하나의 덕트부에 구비된 제2관통홀(315)에서 출사되는 공기는 인접하는 다른 덕트부에 구비된 제2관통홀(315)에서 출사되는 공기와 서로 멀어지도록 배치된다. 즉, 제2관통홀에서 출사되는 공기는 각각 컨테이너의 벽을 향하도록 출사된다.Meanwhile, as described above, the second through hole 315 refers to a side formed along the longitudinal direction of the duct portion 311. The second through hole 315 is formed in two parallel duct portions 311. In this case, the air emitted from the second through-hole 315 provided in one duct portion is arranged to be away from the air emitted from the second through-hole 315 provided in another adjacent duct portion. That is, the air emitted from the second through hole is emitted toward the wall of the container.
이에 따라 제2관통홀에서 토출되는 공기는 컨테이너의 벽에서 회전되어 하부로(냉각된 공기인 경우) 떨어지게 되고, 이는 역시 먼저 배치되었던 주변 공기가 섞이면서 인접한 재배모듈에 배치된 작물에게 인가되게 된다. 따라서, 작물의 쇼크를 막으면서 재배모듈을 길이 방향과 수직인 방향으로 균일하게 목표 온도의 공기를 전달하게 된다. Accordingly, the air discharged from the second through-hole is rotated on the wall of the container and falls to the bottom (in the case of cooled air), which is mixed with the surrounding air that was previously placed and is applied to the crops placed in the adjacent cultivation module. Therefore, air of the target temperature is delivered uniformly to the cultivation module in a direction perpendicular to the longitudinal direction while preventing shock to the crops.
그런데, 여기서 제1관통홀(313)의 크기는 제2관통홀(315)의 크기와 다르게 형성되는 것이 바람직하다. 더욱 상세하게 제2관통홀(315)의 크기는 제1관통홀(313)의 크기보다 크게 형성되는 것이 바람직하다. 이는 재배모듈이 일반적으로 수평 방향으로 길게 형성됨에 기인하는데, 각 재배모듈에 배치된 작물에 인가되는 온도는 제1관통홀(313)에서 토출되는 것이 보다 직접적인 영향을 미치기 때문이다. 그런데 이 경우에 유속과 압력을 감안하여 제2관통홀(315)의 개수는 제1관통홀(313)의 개수보다 작게 형성하는 것이 바람직할 것이다. 또한, 압력을 감안하여 관통홀의 크기를 일측(왼쪽)에서 타측(오른쪽)으로 갈수록 다르게 또는 저 크게 형성하는 것도 바람직하다. However, here, it is preferable that the size of the first through hole 313 is formed differently from the size of the second through hole 315. In more detail, it is preferable that the size of the second through hole 315 is larger than the size of the first through hole 313. This is because the cultivation modules are generally formed to be long in the horizontal direction, and the temperature applied to the crops placed in each cultivation module is more directly affected by the discharge from the first through hole 313. However, in this case, considering the flow rate and pressure, it would be preferable to form the second through-holes 315 to be smaller than the number of first through-holes 313. Additionally, taking pressure into account, it is desirable to make the size of the through hole different or larger from one side (left) to the other side (right).
한편, 덕트부(311)의 타측 끝단에는 가이드판(319)이 형성된다. 가이드판은 공급된 제1 설정 온도의 공기의 역류를 방지하며 동시에 제1 설정 온도의 공기를 타측 하부로만 전달하는 역할을 수행한다. Meanwhile, a guide plate 319 is formed at the other end of the duct portion 311. The guide plate prevents the backflow of the supplied air of the first set temperature and at the same time serves to deliver the air of the first set temperature only to the lower part of the other side.
한편, 도시한 바와 같이 본 실시예에서는 제2 공조기(310b)를 더 포함할 수 있다. 제2 공조기(310b)는 제2 설정 온도의 공기를 하방으로 배출하여 도 4와 같은 열순환(냉각 공기의 순환) 구조를 만드는데 적합하다. 한편, 본 실시예에서는 제2 공조기(310b)에 마찬가지로 덕트부(미도시)를 연결하여 타방에서 일방으로 공기를 전달하면서 관통부를 통해 각 재배모듈에 정밀한 온도를 갖는 공기를 전달하는 것도 가능할 것이지만 냉각된 공기의 경우에는 낙하되는 성질을 가짐에 비추어 덕트부가 상측에 있는 경우보다는 공기의 혼합 효율이 작아지게 되므로 전술한 바와 같이 덕트부(311)는 상부에만 설치되는 것도 바람직하다. Meanwhile, as shown, this embodiment may further include a second air conditioner 310b. The second air conditioner 310b is suitable for creating a heat circulation (cooling air circulation) structure as shown in FIG. 4 by discharging air at the second set temperature downward. Meanwhile, in this embodiment, it is also possible to connect a duct (not shown) to the second air conditioner 310b to transmit air from the other side to one side, and to transmit air with a precise temperature to each cultivation module through the penetration portion. In the case of the air, which has the property of falling, the mixing efficiency of the air becomes lower than when the duct is located at the top, so as described above, it is preferable that the duct 311 is installed only at the top.
그런데 이러한 덕트부(311)의 설치에 따라 타측 상부는 목표하는 설정 온도의 공기인 찬 공기가 직접적으로 역류하지 않고 도달한 후 낙하하게 되므로 제2 공조기(310b)는 컨테이너의 타측 상측에 설치되지 않고 하측으로 더 내려와 설치되는 것이 바람직하다. 즉, 제2 공조기의 높이는 상기 제1 공조기보다 낮게 설치되어야 냉각 효율을 더 극대화하여 소모전력을 더 현저하게 낮출 수 있게 된다. However, due to the installation of the duct part 311, cold air, which is air of the target set temperature, does not flow directly back to the upper part of the other side, but falls after reaching the upper part, so the second air conditioner 310b is not installed on the upper side of the other side of the container. It is desirable to install it further down. That is, the height of the second air conditioner must be installed lower than that of the first air conditioner to further maximize cooling efficiency and significantly reduce power consumption.
한편, 제습부(400)는 작물이 증산 작용에 의해 발생시킨 수분을 제거하는 역할을 수행하는데 대용량 식물공장에서는 광범위한 수분의 제거가 필요하고 이때 열 방출이 큰 폭으로 발생하게 된다. 따라서, 본 발명의 일 실시예에 따른 공기 순환 시스템(1000)에서는 제습부(330)가 적어도 하나의 제습기로 이루어지고, 제습기에서 토출되는 공기가 제1 공조기(310a) 또는 제2 공조기(310b) 쪽으로 향하도록 하여 최소 경로 상에서 방출된 열이 흡수되도록 한다. Meanwhile, the dehumidifying unit 400 serves to remove moisture generated by crops through transpiration. In large-capacity plant factories, extensive removal of moisture is required, and at this time, heat emission occurs to a large extent. Therefore, in the air circulation system 1000 according to an embodiment of the present invention, the dehumidifying unit 330 is composed of at least one dehumidifier, and the air discharged from the dehumidifier is used in the first air conditioner 310a or the second air conditioner 310b. Direct it towards the side so that the heat emitted in the minimum path is absorbed.
이에 도 4에서는 제1 제습기(330a)가 발산한 열을 제1 공조기(310a)이 최단 경로 상에서 흡수하도록 하고, 제2 제습기(330b)가 발산한 열을 제2 공조기(310b)가 최단 경로 상에서 흡수하도록 제습된 공기가 토출되는 것이 도시되어 있다. 그런데 본 실시예에 따른 공기순환 시스템에서는 덕트부가 제1 온도의 공기를 타측으로 그대로 전달하기 때문에 종래의 구조에 비해 타측의 습도도 획기적으로 낮아지게 되었다. 따라서 본 실시예에 따른 공기순환 시스템에서는 제2 제습기(330b)의 설치는 생략하는 것이 가능하고 이는 상당한 원가 절감을 이끌어낸다. Accordingly, in Figure 4, the first air conditioner (310a) absorbs the heat emitted by the first dehumidifier (330a) on the shortest path, and the second air conditioner (310b) absorbs the heat emitted by the second dehumidifier (330b) on the shortest path. It is shown that air dehumidified for absorption is discharged. However, in the air circulation system according to this embodiment, the duct portion directly transmits air of the first temperature to the other side, so the humidity on the other side is dramatically lowered compared to the conventional structure. Therefore, in the air circulation system according to this embodiment, it is possible to omit the installation of the second dehumidifier 330b, which leads to significant cost savings.
광원(320)은 재배모듈(400) 상에 배치되어 재배모듈(400)에 광을 인가하는 복수개의 LED로 이루어질 수 있다. 이때 LED는 통상의 백색광과 통상의 백색광에서 부족한 파장 피크인 레드 계열의 광을 보충하기 위해서 적색 계열의 광을 혼합하여 사용하는 것이 바람직하다. 또한, 이때 백색광은 최초 블루 계열의 베어칩을 사용하여 출사된 광이 형광체에 의해 여기되어 백색을 표출하는 경우에는 블루 계열의 파장 피크가 두드려져 광합성에 필요한 블루계열의 광을 보충하는데 사용할 수 있으나, 베어칩 자체의 파장 피크가 블루계열에서 이격된 광인 경우에는 별도로 블루광을 출사하는 또 다른 LED를 추가하는 것도 바람직하다. 이에 작물의 엽록소가 청자색광(430~460nm)과 적색광(630~680nm)을 주로 흡수하도록 하여 성장 속도를 증대시킬 수 있다. The light source 320 may be composed of a plurality of LEDs that are disposed on the cultivation module 400 and apply light to the cultivation module 400. At this time, it is desirable for the LED to be used in a mixture of normal white light and red light to supplement the red light, which is the wavelength peak lacking in normal white light. In addition, at this time, white light is initially emitted using a blue-based bare chip, and when the light is excited by the phosphor and expresses white, the blue wavelength peak is highlighted and can be used to supplement the blue-based light required for photosynthesis. , if the wavelength peak of the bare chip itself is light distant from the blue series, it is also desirable to add another LED that separately emits blue light. Accordingly, the growth rate can be increased by allowing the chlorophyll of crops to mainly absorb blue-violet light (430-460 nm) and red light (630-680 nm).
그런데, 본 발명의 일 실시예에 따른 식물공장 공기 순환 시스템(1000)은 LED에 공급되는 직류를 변환하는 교류-직류 변환부(325)가 재배모듈(400) 상에서 이격되어 설치된다. 다시 말해, 교류-직류 변환부(325)는 복수개의 LED가 구성하는 LED 모듈과 설정 거리 이상 이격되어 전기적으로 연결 배치된다. 더욱 나아가 도 4에 도시된 것과 같이 교류-직류 변환부(325)는 덕트부(330)에서 토츨되는 공기와 바로 접촉되도록 설치된다. 따라서, 교류-직류 변환부(325)가 방출하는 열은 전술한 덕트부의 설정 온도 전달에 따라 직접적으로 냉각될 수 있게 된다. However, in the plant factory air circulation system 1000 according to an embodiment of the present invention, an AC-DC converter 325 that converts direct current supplied to the LED is installed spaced apart on the cultivation module 400. In other words, the AC-DC converter 325 is electrically connected to an LED module composed of a plurality of LEDs and is spaced apart from a set distance or more. Furthermore, as shown in FIG. 4, the AC-DC converter 325 is installed to directly contact the air blown out from the duct unit 330. Accordingly, the heat emitted by the AC-DC converter 325 can be directly cooled according to the transfer of the set temperature of the duct described above.
환풍부(340)는 제2 공조기(310b)에서 배출된 공기를 일측 하방으로 유도하도록 컨테이너(C)의 하측에 배치된다. 여기서 환풍부(340)는 타측에서 일측방향으로(도 4의 왼쪽 방향) 공기를 유도하는 역할을 수행한다. 마찬가지로, 도 4에서 환풍부(340)는 1개로 도시되었지만 재배모듈(400)의 길이에 비례하여 복수개로 배치 형성될 수 있다. 이때 공기 순환의 정합성을 담보하기 위해서 재배모듈(400)은 환풍부(340) 위에 배치되는 것이 바람직하다. The ventilation unit 340 is disposed on the lower side of the container C to guide the air discharged from the second air conditioner 310b to one side downward. Here, the ventilation unit 340 serves to guide air from the other side to one side (left direction in FIG. 4). Likewise, although the ventilation unit 340 is shown as one unit in FIG. 4, it may be arranged in plural numbers in proportion to the length of the cultivation module 400. At this time, in order to ensure consistency of air circulation, the cultivation module 400 is preferably placed on the ventilation unit 340.
한편, 전술한 바와 같이 재배모듈(400)은 고집약적 양산을 위해 복수개의 단을 이루며 형성되는 것이 바람직하다. 이 경우에 집적도를 더욱 높이게 되면 각 재배모듈 사이에는 와류가 발생하게 되어 공기 순환의 장애로 작용할 수 있다. 따라서, 본 발명의 일 실시예에 따른 공기 순환 시스템(1000)에서는 각 재배모듈(400a,400b)에 일측 방향으로의 공기 유도를 위한 적어도 하나의 로컬팬(350)을 더 부착할 수 있다. Meanwhile, as described above, the cultivation module 400 is preferably formed in a plurality of stages for high-intensity mass production. In this case, if the degree of integration is further increased, eddy currents may be generated between each cultivation module, which may act as an obstacle to air circulation. Accordingly, in the air circulation system 1000 according to an embodiment of the present invention, at least one local fan 350 for guiding air in one direction may be further attached to each cultivation module 400a and 400b.
이때, 최상단에 배치된 로컬팬(350)의 공기 유도 방향과 최하단에 비치된 로컬팬(350)의 공기 유도 방향이 서로 다르게 형성되는 것이 바람직하다. 도 4에서 최상단에 배치된 로컬팬(350)의 경우에는 주된 공기의 이동 방향과 같은 오른편으로 공기 유도를 보조하고 있으며 최하단에 배치된 로컬팬의 경우에는 주된 공기의 이동 방향과 같은 왼편으로 공기 유도를 보조하고 있는 것이 도시되어 있다. 이러한 로컬팬(350)의 작용에 의해 주된 방향으로의 공기 순환이 보조되게 되므로 보다 균일한 공기 순환 및 온도 제어가 가능하게 된다. At this time, it is preferable that the air induction direction of the local fan 350 disposed at the top is different from the air induction direction of the local fan 350 disposed at the bottom. In FIG. 4, the local fan 350 placed at the top assists in guiding air to the right, which is the same direction as the main air movement, and in the case of the local fan placed at the bottom, it guides air to the left, which is the same as the main air movement direction. It is shown that it is assisting. The action of the local fan 350 assists air circulation in the main direction, thereby enabling more uniform air circulation and temperature control.
이상과 같이 본 발명은 공조기, 제습부, 및 환풍부를 유기적으로 설치하고 함께 제어하여 현저하게 균일한 온도 제어를 달성할 수 있다. 또한, 본 발명은 광원이 배출하는 열을 분리하여 그 분리된 부분을 공조기에 바로 흡수되도록 하여 더욱 균일한 온도 제어를 달성할 수 있다. 또한, 본 발명은 공조기가 제어하는 열과 다른 타켓 디바이스가 방출한 열을 하나의 공기 순환 경로에서 함께 제어하게 되므로 보다 효율적인 온도 제어 및 공기 순환 제어를 달성할 수 있다. As described above, the present invention can achieve remarkably uniform temperature control by organically installing the air conditioner, dehumidifying unit, and ventilation unit and controlling them together. Additionally, the present invention separates the heat emitted from the light source and allows the separated portion to be directly absorbed into the air conditioner, thereby achieving more uniform temperature control. In addition, the present invention can achieve more efficient temperature control and air circulation control because the heat controlled by the air conditioner and the heat emitted by other target devices are controlled together in one air circulation path.
이상 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. In the above specification and drawings, preferred embodiments of the present invention have been disclosed, and although specific terms have been used, these are merely used in a general sense to easily explain the technical content of the present invention and aid understanding of the present invention. It is not intended to limit the scope. It is obvious to those skilled in the art that in addition to the embodiments disclosed herein, other modifications based on the technical idea of the present invention can be implemented.
[부호의 설명][Explanation of symbols]
C: 컨테이너C: container
11: 작물11: Crops
12: 작물베이스12: Crop base
100: 센서부100: sensor unit
110: 온도센서110: Temperature sensor
120: 습도센서120: Humidity sensor
130: CO2센서130: CO2 sensor
140: 물흐름감지센서140: Water flow detection sensor
200: 제어부200: control unit
300: 타겟 디바이스300: target device
310,310a,310b: 공조기310,310a,310b: Air conditioner
311: 덕트부311: Duct part
313: 제1관통홀313: First through hole
315: 제2관통홀315: Second through hole
319: 가이드판319: Guide plate
320: 광원320: light source
325: 교류-직류 변환부325: AC-DC conversion unit
330,330a,330b: 제습부330,330a,330b: Dehumidification unit
340: 환풍부340: Ventilation unit
350: 로컬팬350: Local fan
360: CO2밸브360: CO2 valve
370: 관수통370: Irrigation container
380: 워터펌프380: Water pump
400,400a,400b: 재배모듈400,400a,400b: Cultivation module
500: 서버500: Server
1000: 식물공장 공기 순환 시스템1000: Plant factory air circulation system

Claims (9)

  1. 외부로부터 격리되어 재배모듈에 배치된 작물이 생장하는 컨테이너;A container for growing crops isolated from the outside and placed in a cultivation module;
    상기 컨테이너의 일측에 배치되어 타측 방향으로 제1 설정 온도의 공기를 배출하는 제1 공조기; a first air conditioner disposed on one side of the container and discharging air at a first set temperature toward the other side;
    상기 제1 공조기와 연결되어 제1 설정 온도의 공기를 상기 타측 방향으로 전달하면서 재배모듈에 균일하게 제1 설정 온도의 공기를 전달하도록 복수 개의 관통홀이 형성된 덕트부;A duct part connected to the first air conditioner and having a plurality of through holes formed therein to deliver air at a first set temperature to the other side and uniformly deliver air at a first set temperature to the cultivation modules;
    를 포함하고,Including,
    상기 관통홀은 상기 재배모듈의 길이 방향에 따라 형성된 것을 특징으로 하는 식물공장 공기 순환 시스템. A plant factory air circulation system, wherein the through hole is formed along the longitudinal direction of the cultivation module.
  2. 제1항에 있어서,According to paragraph 1,
    상기 재배모듈은 복수의 행으로 이루어지는 제1그룹 재배모듈과 상기 제1그룹 재배모듈에서 이격되어 배치되며 복수의 행을 이루는 제2그룹 재배모듈을 포함하고, The cultivation module includes a first group of cultivation modules consisting of a plurality of rows and a second group of cultivation modules arranged spaced apart from the first group of cultivation modules and forming a plurality of rows,
    상기 덕트부는 상기 제1그룹 재배모듈과 상기 제2그룹 재배모듈의 사이에 배치되고,The duct portion is disposed between the first group cultivation module and the second group cultivation module,
    상기 관통홀은 상기 제1그룹 재배모듈과 상기 제2그룹 재배모듈이 서로 이격된 길이에 따라 덕트부 하단 중심에서 회전되어 형성되는 것을 특징으로 하는 식물공장 공기 순환 시스템. The through hole is a plant factory air circulation system, characterized in that the first group of cultivation modules and the second group of cultivation modules are formed by rotating at the bottom center of the duct part according to the distance from each other.
  3. 제2항에 있어서,According to paragraph 2,
    상기 관통홀은 덕트부의 하단 쪽으로 형성된 제1관통홀과 상기 덕트부의 측방향으로 형성된 제2관통홀을 포함하는 것을 특징으로 하는 식물공장 공기 순환 시스템. The through hole is a plant factory air circulation system characterized in that it includes a first through hole formed toward the bottom of the duct portion and a second through hole formed toward the side of the duct portion.
  4. 제3항에 있어서,According to paragraph 3,
    상기 덕트부는 복수 개로 이루어지고,The duct portion consists of a plurality of pieces,
    어느 하나의 덕트부에 구비된 제1관통홀에서 출사되는 공기는 인접하는 다른 덕트부에 구비된 제1관통홀에서 출사되는 공기와 서로 가까워지도록 배치되는 것을 특징으로 하는 식물공장 공기 순환 시스템. A plant factory air circulation system, characterized in that the air emitted from the first through hole provided in one duct part is arranged to be close to the air emitted from the first through hole provided in another adjacent duct part.
  5. 제4항에 있어서,According to clause 4,
    상기 어느 하나의 덕트부에 구비된 제2관통홀에서 출사되는 공기는 인접하는 다른 덕트부에 구비된 제2관통홀에서 출사되는 공기와 서로 멀어지도록 배치되는 것을 특징으로 하는 식물공장 공기 순환 시스템. A plant factory air circulation system, characterized in that the air emitted from the second through-hole provided in one of the duct parts is arranged to be away from the air emitted from the second through-hole provided in another adjacent duct part.
  6. 제1항에 있어서,According to paragraph 1,
    상기 관통홀의 크기는 상기 일측에서 타측 방향으로 갈수록 서로 다르게 형성되는 것을 특징으로 하는 식물공장 공기 순환 시스템. A plant factory air circulation system, characterized in that the size of the through hole is formed differently from one side to the other side.
  7. 제3항에 있어서,According to paragraph 3,
    상기 제1관통홀과 상기 제2관통홀의 크기는 서로 다르게 형성되는 것을 특징으로 하는 식물공장 공기 순환 시스템. A plant factory air circulation system, wherein the first through hole and the second through hole have different sizes.
  8. 제1항에 있어서,According to paragraph 1,
    상기 덕트부의 타측 끝단에는 가이드판이 설치되고 상기 가이드판은 공급된 제1 설정 온도의 공기의 역류를 방지하며 동시에 제1 설정 온도의 공기를 타측 하부로만 전달하도록 하는 것을 특징으로 하는 식물공장 공기 순환 시스템. A guide plate is installed at the other end of the duct section, and the guide plate prevents the backflow of the supplied air of the first set temperature and at the same time transmits the air of the first set temperature only to the lower part of the other side. .
  9. 제8항에 있어서, According to clause 8,
    상기 컨네이너의 타측에는 제2 공조기가 더 설치되고,A second air conditioner is further installed on the other side of the container,
    상기 컨네이너의 일측 또는 타측에는 제습부가 더 설치되고,A dehumidifying unit is further installed on one side or the other side of the container,
    상기 제1 공조기의 높이는 상기 제2 공조기보다 높게 설치되며, The height of the first air conditioner is installed higher than the second air conditioner,
    상기 제1 공조기 또는 상기 제2 공조기는 상기 제습부가 공기를 토출하는 방향에 인접하게 설치되어 상기 제습부가 토출한 공기를 직접 흡입하는 것을 특징으로 하는 식물공장 공기 순환 시스템. The plant factory air circulation system, wherein the first air conditioner or the second air conditioner is installed adjacent to the direction in which the dehumidifier discharges air and directly suctions the air discharged by the dehumidifier.
PCT/KR2022/017916 2022-11-14 2022-11-14 Air circulation system for plant factory WO2024106549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220151502A KR20240070756A (en) 2022-11-14 2022-11-14 Air circuration system for a closed plant factory
KR10-2022-0151502 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024106549A1 true WO2024106549A1 (en) 2024-05-23

Family

ID=91084635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017916 WO2024106549A1 (en) 2022-11-14 2022-11-14 Air circulation system for plant factory

Country Status (2)

Country Link
KR (1) KR20240070756A (en)
WO (1) WO2024106549A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140132598A (en) * 2013-05-08 2014-11-18 정석규 Farm for heating systems and hot air devices
JP2017205072A (en) * 2016-05-19 2017-11-24 パナソニックIpマネジメント株式会社 Plant cultivation apparatus
JP2020112341A (en) * 2019-01-16 2020-07-27 ▲い▼光農業科技股▲ふん▼有限公司 Temperature and humidity-controllable air flow system
JP2021000042A (en) * 2019-06-24 2021-01-07 日本テクノサービス株式会社 Blowing apparatus of vegetable cultivation factory
KR20220084848A (en) * 2020-12-14 2022-06-21 주식회사 엔씽 Air circuration system for a closed plant factory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140132598A (en) * 2013-05-08 2014-11-18 정석규 Farm for heating systems and hot air devices
JP2017205072A (en) * 2016-05-19 2017-11-24 パナソニックIpマネジメント株式会社 Plant cultivation apparatus
JP2020112341A (en) * 2019-01-16 2020-07-27 ▲い▼光農業科技股▲ふん▼有限公司 Temperature and humidity-controllable air flow system
JP2021000042A (en) * 2019-06-24 2021-01-07 日本テクノサービス株式会社 Blowing apparatus of vegetable cultivation factory
KR20220084848A (en) * 2020-12-14 2022-06-21 주식회사 엔씽 Air circuration system for a closed plant factory

Also Published As

Publication number Publication date
KR20240070756A (en) 2024-05-22

Similar Documents

Publication Publication Date Title
US7278237B2 (en) Transplant production system
CN105873434A (en) Automated tower with many novel applications
JP6056929B1 (en) Cultivation apparatus and cultivation method
WO2022255670A1 (en) Aquaponics smart farm
AU2014202160A1 (en) Plant growth apparatus of multistage rack type and plant growth system
KR101934482B1 (en) Plant Grower Cooling System with Vaporizing Heat Cooling
US2641687A (en) Fluorescent lighting fixture having air-cooled lamp and ballast chamber
WO2023008788A1 (en) Modular hydroponic apparatus
WO2024106549A1 (en) Air circulation system for plant factory
CN105409592B (en) Edible bacterium planting apparatus
AU2018229982A1 (en) Rice seedling cultivation device and rice seedling cultivation method
KR20150071834A (en) Plant Cultivating Apparatus with Air Circulating-Air Cleaning-cum-Cooling Device
WO2016140495A1 (en) Precise airflow type plant tissue culture table
KR102107635B1 (en) Smart Farm System for Cultivating Ginseng
CN102550329A (en) Full-numerical-control track-type seeding culturing device
JP2008212078A (en) Air-conditioning method in multistage plant-cultivation device
KR20200027208A (en) Water supplying apparatus for cultivating mushroom
KR20200027207A (en) Ventilation Apparatus for cultivating mushroom
KR102627119B1 (en) Air circuration system for a closed plant factory
US10667473B2 (en) Grow light system
WO2023113077A1 (en) Light-concentrated plant factory system
RU206253U1 (en) FITOTRON ENERGY-SAVING UNIVERSAL MODULAR
CN214593421U (en) Container formula plant planting device
WO2024106550A1 (en) Light correction system for closed plant factory
EP3772897B1 (en) Growing space for vertical farming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965870

Country of ref document: EP

Kind code of ref document: A1