WO2024106474A1 - Electrolytic capacitor comprising conductive polymer compound and method for producing same - Google Patents

Electrolytic capacitor comprising conductive polymer compound and method for producing same Download PDF

Info

Publication number
WO2024106474A1
WO2024106474A1 PCT/JP2023/041118 JP2023041118W WO2024106474A1 WO 2024106474 A1 WO2024106474 A1 WO 2024106474A1 JP 2023041118 W JP2023041118 W JP 2023041118W WO 2024106474 A1 WO2024106474 A1 WO 2024106474A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
acid
phase
liquid substance
base component
Prior art date
Application number
PCT/JP2023/041118
Other languages
French (fr)
Japanese (ja)
Inventor
真之 坂口
陽介 野澤
Original Assignee
ルビコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルビコン株式会社 filed Critical ルビコン株式会社
Publication of WO2024106474A1 publication Critical patent/WO2024106474A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor having a conductive polymer compound.
  • the present invention relates to an electrolytic capacitor having a liquid substance phase containing an acid component and a basic component in addition to a solid electrolyte phase containing a conductive polymer compound.
  • the present invention also relates to a method for producing an electrolytic capacitor.
  • Solid electrolytic capacitors that use conductive polymer compounds as the electrolyte (solid electrolyte) are known. Such capacitors can exhibit low ESR and excellent low-temperature characteristics. In addition, by using a conductive polymer that is solid and highly heat-resistant as the electrolyte, such capacitors can provide capacitors with high reliability.
  • an electrolytic capacitor (hybrid capacitor) that uses a conductive polymer compound and an electrolytic solution as the electrolyte.
  • a capacitor has advantages, for example, in terms of the capacitance appearance rate and film repairability in the initial capacitor characteristics.
  • Patent Document 1 describes a method for manufacturing an electrolytic capacitor, which includes impregnating a capacitor element with a dispersion containing a conductive solid, evaporating the solvent to form a conductive solid layer, and impregnating the gaps in the conductive solid layer with an electrolyte.
  • Patent Document 2 and Patent Document 3 describe an electrolytic capacitor having a driving electrolyte solution containing an acid component and a base component, and state that the acid component is in excess of the base component in terms of molar ratio.
  • Patent Document 4 describes a hybrid solid electrolytic capacitor that includes a solid electrolyte phase that includes a conductive polymer compound, and a liquid substance phase that surrounds the solid electrolyte phase and includes a liquid substance, and describes that the amounts of base and acid components in the liquid substance phase satisfy the relationship (number of moles of base component) > (number of moles of acid component) ⁇ 0.
  • the liquid substance can include a base component in an amount of 0.3% to 50% by weight based on the weight of the liquid substance, but that the amount of base component included in the liquid substance phase is preferably 10% by weight or less based on the weight of the liquid substance phase, and further describes that in the examples, a liquid substance that includes 0.3 to 1.5% by weight of base component is used.
  • Patent document 5 describes an electrolytic capacitor that includes a solid electrolyte layer and an electrolyte solution, and describes that the solute contained in the electrolyte solution has a carboxylic acid component and a base component, and that the carboxylic acid component in the solute is 200 parts by mass or more per 100 parts by mass of the base component.
  • the present disclosure aims to provide an electrolytic capacitor having a conductive polymer compound and a liquid substance phase, which exhibits excellent liquid resistivity and excellent heat resistance.
  • the liquid phase further comprises an acid component and a base component; the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
  • the amount of the base component and the acid component in the liquid substance phase is (number of moles of the base component)>(number of moles of the acid component)
  • the relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
  • Electrolytic capacitor ⁇ Aspect 2> 2. The electrolytic capacitor of claim 1, wherein the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase satisfy B>A/2. ⁇ Aspect 3> 3. The electrolytic capacitor of claim 1 or 2, wherein the base component comprises an amine. ⁇ Aspect 4> 4. The electrolytic capacitor according to claim 3, wherein the base component contains at least one selected from morpholine, methylmorpholine, ethylmorpholine, triethanolamine, and diethanolamine. ⁇ Aspect 5> 5. The electrolytic capacitor according to any one of aspects 1 to 4, wherein the acid component is phthalic acid. ⁇ Aspect 6> 6.
  • the liquid substance phase has a resistivity of 6.0 k ⁇ cm or less.
  • a method for manufacturing an electrolytic capacitor comprising: forming a capacitor element including an anode foil and a cathode foil each having an oxide film formed on a surface thereof; introducing a solid electrolyte phase containing a conductive polymer compound into a gap between the anode foil and the cathode foil; and introducing a liquid material phase, the liquid material phase including a liquid material, into a gap between the anode foil and the cathode foil;
  • the liquid phase further comprises an acid component and a base component; the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
  • the amount of base component and acid component in the liquid substance phase is (number of moles of the base component)>(number of moles of the acid component)
  • the relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
  • the electrolytic capacitor according to the present disclosure is an electrolytic capacitor having a conductive polymer compound and a liquid substance phase, and exhibits excellent liquid resistivity and excellent heat resistance.
  • FIG. 1a is a cross-sectional schematic diagram of an electrolytic capacitor according to one embodiment of the present disclosure.
  • FIG. 1b is a perspective schematic diagram of a capacitor element according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a main part of the solid electrolyte phase of FIG.
  • the electrolytic capacitor according to the present disclosure comprises: an anode foil having an oxide film formed on its surface; A cathode foil; In the gap between the anode foil and the cathode foil, A solid electrolyte phase including a conductive polymer compound; and a liquid material phase including a liquid material,
  • the liquid phase further comprises an acid component and a base component; the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
  • the amount of base and acid components in the liquid phase is (number of moles of base component)>(number of moles of acid component)
  • the acid component is in a range of 2.6% by mass to 20% by mass in the liquid phase. It is.
  • electrolytic capacitors that use a conductive polymer compound and an electrolytic solution as the electrolyte are known (hybrid capacitors). Such capacitors can provide excellent film repairability and an excellent capacitance appearance rate.
  • conventional capacitors can have problems with heat resistance. In particular, when the concentration of the solute in conventional capacitors is relatively high, the characteristics of the capacitor can deteriorate when exposed to high temperatures during the reflow process.
  • the inventors of the present invention have discovered that even when a relatively high concentration of solute (acid component and base component) is used, by using a base component with a relatively low basicity as the base component that constitutes the solute, the change in characteristics after reflow can be suppressed.
  • solute concentration By increasing the solute concentration, the liquid resistivity of the liquid material phase contained in the capacitor can be reduced, so that according to the present invention, an electrolytic capacitor with improved electrical characteristics can be obtained while avoiding problems such as changes in characteristics after reflow.
  • FIGS. 1A and 1B are diagrams for explaining an electrolytic capacitor 1 according to an embodiment of the present invention.
  • Fig. 1A is a cross-sectional view of the electrolytic capacitor 1
  • Fig. 1B is a perspective view of a capacitor element 20.
  • FIG. 2 is a diagram for explaining the main parts of the electrolytic capacitor 1 according to the embodiment.
  • FIG. 2 is a cross-sectional view of the main parts of the electrolytic capacitor 1.
  • the electrolytic capacitor 1 is a wound-type electrolytic capacitor, and as shown in FIG. 1, includes a cylindrical metal case 10 with a bottom, a capacitor element 20, and a sealing member 40.
  • the bottom surface of the metal case 10 is substantially circular, with a valve (not shown) located near the center. This allows the valve to break and release the internal pressure to the outside when the internal pressure rises.
  • the side surface of the metal case 10 stands upright in a substantially vertical direction from the outer edge of the bottom surface.
  • the opening of the metal case 10 is sealed with a sealing member 40, and the two leads 29, 30 of the capacitor element 20 are pulled out to the outside through a through hole provided in the sealing member 40.
  • the capacitor element 20 is housed inside the metal case 10, and as shown in Figures 1(b) and 2, it comprises an anode foil 21, a cathode foil 23, and a separator 25 disposed between the anode foil 21 and the cathode foil 23, and the anode foil 21 and the cathode foil 23 are overlapped and wound with the separator 25 in between.
  • a solid electrolyte phase consisting of a fine particle conductive polymer compound 26 and a liquid substance phase 27 containing a liquid substance are introduced into the gap between the anode foil 21 and the cathode foil 23, and the liquid substance phase 27 is present so as to surround the solid electrolyte consisting of the conductive polymer compound 26.
  • the anode foil 21 and the cathode foil 23 have oxide films 22 and 24 on their surfaces, respectively.
  • the term "gap between the anode foil and the cathode foil” includes not only “gaps between the anode foil and the separator and between the cathode foil and the separator” but also “gaps between fibers in the separator.”
  • the term “gap between the anode foil and the cathode foil” also includes "gaps in etching pits (recesses) formed in the surface of the anode foil or cathode foil by roughening through etching.”
  • a capacitor according to the present disclosure includes a liquid substance phase.
  • the liquid substance phase includes a liquid substance, and further includes an acid component and a base component.
  • liquid substance phase before impregnation the content in the liquid substance phase impregnated into the capacitor during the capacitor manufacturing process
  • additives e.g. polyols
  • the additives may be added to the liquid substance phase as liquid substances.
  • the content of each component in the liquid substance phase is determined taking into account the additives.
  • the liquid phase can be present surrounding the solid electrolyte phase.
  • the liquid substance phase is preferably composed of a liquid substance, an acid component, and a base component, and contains other components at a ratio of 10% by weight or less, 5% by weight or less, 2% by weight or less, 1% by weight or less, or even 0.1% by weight or less.
  • the liquid substance phase may be a liquid in which the acid component, the base component, and optionally other components are dissolved and/or dispersed in the liquid substance, and in particular may be a liquid in which these components are dissolved in the liquid substance.
  • Aromatic components include aromatic nitro compounds.
  • the proportion of the liquid material phase in the gap between the anode foil and the cathode foil may be 10 vol% to 99 vol%, particularly 50 vol% to 99 vol%, or even 70 vol% to 99 vol%.
  • the liquid substance constituting the liquid substance phase is a liquid capable of retaining an acid component and a base component.
  • the liquid substance is, in particular, a solvent in which the acid component and the base component as solutes can be dissolved. Note that even if the acid component and the base component are liquid substances by themselves, they are not included in the "liquid substance" according to the present application.
  • the liquid substance may be an organic solvent, particularly a polymeric organic solvent, but is not particularly limited.
  • the liquid substance may be, for example, water, a hydrophilic polymer compound, a component having a hydroxyl group, such as polyoxyalkylene and its derivatives (polyglycerin), water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacrylic, water-soluble polyacrylamide, water-soluble silicone, polyvinyl alcohol, polyacrylic acid, etc., or a mixture thereof.
  • liquid substances include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, other polyethylene glycols, and their derivatives, glycerin, diglycerin, and their derivatives, ⁇ -butyrolactone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and dimethylformamide. These may be used alone or in combination of two or more. Of these, glycol compounds, that is, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, other polyethylene glycols, and their derivatives, are preferred, with ethylene glycol and diethylene glycol being most preferred. When ethylene glycol and/or diethylene glycol are used as the liquid substance, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
  • the content of the liquid substance may be 50% by mass or more, or 60% by mass or more, and/or 95% by mass or less, 92% by mass or less, or 90% by mass or less, relative to the liquid substance phase.
  • the content of the liquid substance (particularly the solvent) is preferably 80% by mass to 95% by mass, more preferably 85% by mass to 92% by mass, relative to the liquid substance phase.
  • the liquid substance phase contains glycol compounds (in particular ethylene glycol and/or diethylene glycol) in a total amount of 60% to 95% by weight, or even 65% to 90% by weight.
  • glycol compounds in particular ethylene glycol and/or diethylene glycol
  • the liquid substance phase contains an acid component.
  • the acid component is generally a substance that is acidic (pH of the aqueous solution is ⁇ 7) and acts in pairs with a base, and refers to a chemical species that donates a proton (H + ) or accepts an electron pair.
  • the acid component is contained in the liquid substance phase at 2.6% to 20% by mass.
  • This content of the acid component in the liquid substance phase may be 2.7% by weight or more, 2.8% by weight or more, 2.9% by weight or more, 3% by weight or more, 3.5% by weight or more, 4% by weight or more, 4.5% by weight or more, 5% by weight or more, 6% by weight or more, 7% by weight or more, or 8% by weight or more, and/or 19% by weight or less, 18% by weight or less, 17% by weight or less, 16% by weight or less, 15% by weight or less, 14% by weight or less, 13% by weight or less, 12% by weight or less, 11% by weight or less, or 10% by weight or less.
  • the content of the acid component in the liquid substance phase is preferably 3% by mass to 18% by mass, more preferably 4% by mass to 16% by mass, even more preferably 5% by mass to 14% by mass, and particularly preferably 6% by mass to 12% by mass.
  • an electrolytic capacitor with particularly good reflow characteristics can be obtained.
  • the content of the acid component in the liquid substance phase may be 3% by mass to 24% by mass relative to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase.
  • This content ratio of the acid component to the total of the glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be 3.2% by mass or more, 3.4% by mass or more, 3.6% by mass or more, 3.8% by mass or more, 4% by mass or more, 4.2% by mass or more, 4.4% by mass or more, 4.6% by mass or more, 4.8% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 22% by mass or less, 20% by mass or less, 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
  • the content ratio of the acid component to the total of the glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase is preferably 3% by mass to 22% by mass, more preferably 3.5% by mass to 20% by mass, even more preferably 4% by mass to 18% by mass, and particularly preferably 4% by mass to 16% by mass.
  • an electrolytic capacitor with particularly good reflow characteristics can be obtained.
  • liquid substance phase used for impregnation may be diluted by additives contained in the conductive polymer dispersion during the manufacturing process. Therefore, it may be preferable that the liquid substance phase used for impregnation in the capacitor manufacturing process ("liquid substance phase before impregnation") contains an acid component and/or a base component at a relatively higher concentration than desired in the capacitor.
  • the content of the acid component in the liquid substance phase before impregnation may be 3% by mass to 20% by mass, and in particular, 4% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
  • the content of the acid component in the liquid substance phase before impregnation is preferably 4% by mass to 18% by mass, more preferably 5% by mass to 16% by mass, and even more preferably 6% by mass to 14% by mass. In this case, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
  • the content ratio of the acid component to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be the same as the above-mentioned content.
  • the acid components include organic acids, inorganic acids, and complex compounds thereof.
  • Organic acids include carboxylic acids, phenols, and sulfonic acids.
  • Carboxylic acids include formic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, sulfosalicylic acid, maleic acid, adipic acid, benzoic acid, tricarboxylic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, resorcylic acid, phloroglucinic acid, gallic acid, and citric acid.
  • Inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
  • composite compounds of organic and inorganic acids include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.
  • the above-mentioned acid components may be used alone or in combination of two or more.
  • the acid component is particularly preferably phthalic acid.
  • the liquid substance phase contains a base component.
  • the base component is generally a substance that exhibits basicity (pH of the aqueous solution is >7) and acts in combination with an acid, and refers to a chemical species that accepts a proton (H + ) or donates an electron pair.
  • the base component may be one or more selected from amines, amidines, and ammonia, and is preferably an amine.
  • the base component contained in the liquid substance phase of the electrolytic capacitor according to the present disclosure has an acid dissociation constant (pKa) of the conjugate acid of 10.0 or less. This pKa can be measured by neutralization titration at 25°C.
  • the pKa of the base component is preferably 9.5 or less, more preferably 9.0 or less, even more preferably 8.5 or less, and particularly preferably 8.0 or less. There is no particular limit to this lower limit, but it may be, for example, 7.2 or more, or 7.3 or more.
  • the base component may be contained in an amount of 1% to 20% by mass relative to the liquid substance phase.
  • the content of the base component may be 1.5% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more, and/or 18% by mass or less, 15% by mass or less, 14% by mass or less, 12% by mass or less, 10% by mass or less, or 8% by mass or less, based on the liquid substance phase.
  • the amount of the base component and the acid component in the liquid substance phase is: (number of moles of base component)>(number of moles of acid component) The following relation is satisfied.
  • the number of moles of the acid component when the number of moles of the acid component is taken as 1, the number of moles of the base component may be greater than 1, 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, and/or 3.0 or less, 2.5 or less, 2.0 or less, 1.8 or less, or 1.6 or less.
  • the number of moles of the acid component when taken as 1, the number of moles of the base component is greater than 1 and 1.5 or less, or even greater than 1 and 1.3 or less.
  • the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase are: B>A/2 Meet the following.
  • the liquid substance phase contained in the electrolytic capacitor according to the present disclosure has a resistivity of 6.0 k ⁇ cm or less when measured with an electric conductivity meter.
  • This resistivity can be measured using an extract obtained by disassembling the electrolytic capacitor and subjecting it to centrifugation or the like as the liquid substance phase.
  • This resistivity is more preferably 5.5 k ⁇ cm or less, 5.0 k ⁇ cm or less, 4.5 k ⁇ cm or less, 4.0 k ⁇ cm or less, or even 3.5 k ⁇ cm or less. There is no particular limit to this lower limit, but it may be, for example, 0.1 k ⁇ cm or more.
  • the resistivity of the liquid material phase before impregnation used in the capacitor manufacturing process may show a different value from the resistivity of the liquid material phase in the finished electrolytic capacitor. This is thought to be because additives (e.g. polyols) used in the conductive polymer dispersion or solution also affect the resistivity value in the finished electrolytic capacitor.
  • additives e.g. polyols
  • the liquid material phase impregnated into the capacitor during the capacitor manufacturing process may be preferable for the liquid material phase impregnated into the capacitor during the capacitor manufacturing process to have a resistivity of 3.0 k ⁇ cm or less, 2.5 k ⁇ cm or less, 2.0 k ⁇ cm or less, or even 1.5 k ⁇ cm or less. There is no particular lower limit to this, but it may be, for example, 0.1 k ⁇ cm or more.
  • the liquid substance phase of the electrolytic capacitor according to the present disclosure may contain an aromatic nitro compound.
  • the aromatic nitro compound is an aromatic compound having a nitro group.
  • the aromatic nitro compound can have the effect of improving the pressure resistance and heat resistance of the capacitor by absorbing hydrogen gas generated by a re-chemical reaction or the like.
  • the proportion of the aromatic nitro compound in the liquid phase may be 0.5% to 10% by weight, 0.5% to 5% by weight, or even 1% to 5% by weight.
  • the aromatic nitro compound may be at least one selected from the group consisting of nitrophenol, nitroacetophenone, nitrobenzyl alcohol, nitrobenzoic acid, nitrobenzaldehyde, nitroanisole, nitrobenzene carboxylic acid, nitrobenzene dicarboxylic acid, nitroaniline, nitroacetanilide, nitrotoluene, nitrophenyl acetic acid, nitrocresol, dinitrobenzoic acid, methyl nitrobenzoic acid, nitroterephthalic acid, and nitroisophthalic acid. These may be used alone or in combination of two or more.
  • the aromatic nitro compound is at least one selected from the group consisting of nitrophenol, nitroacetophenone, nitrobenzyl alcohol, nitrobenzoic acid, and nitrobenzaldehyde.
  • the aromatic nitro compound is particularly preferably nitroacetophenone.
  • the liquid phase may contain water.
  • the liquid substance phase present in the gap between the anode foil and the cathode foil contains "water” in addition to the liquid water-soluble polymer compound, even if defects occur in the oxide film during the process of manufacturing the electrolytic capacitor, it is possible to use the moisture from the "water” in addition to the moisture held by the water-soluble polymer compound to repair the defects. As a result, particularly good effects can be obtained in terms of reducing the density of defects in the oxide film and reducing leakage current.
  • the water content may be 0% to 10% by mass, preferably 0.1% to 10% by mass, and more preferably 0.5 to 5% by mass, relative to the liquid substance phase.
  • the oxide film defect repair effect can be sufficiently obtained, and adverse effects caused by an excessive water content (such as expansion of the capacitor that can occur when used for a long period of time in a high-temperature environment) can be avoided or suppressed.
  • a capacitor according to the present disclosure includes an anode foil having an oxide film formed on its surface.
  • the anode foil may be formed from a valve metal such as aluminum, tantalum, or niobium.
  • the anode foil has an oxide film on its surface.
  • an oxide film can be formed on the surface of the anode foil by roughening it with an etching process according to a known method and then performing a chemical conversion treatment.
  • a capacitor according to the present disclosure includes a cathode foil.
  • the cathode foil may be formed from a valve metal such as aluminum, tantalum, or niobium.
  • the cathode foil may have an oxide film formed on its surface.
  • the surface of the cathode foil may be roughened by etching in the same manner as the anode foil, and then an oxide film may be formed by natural oxidation.
  • the cathode foil may also be subjected to a chemical conversion treatment at a desired voltage (e.g., 2 V), which may result in the formation of an oxide film.
  • a capacitor according to the present disclosure includes a separator disposed between the anode foil and the cathode foil.
  • separator those formed from cellulose fibers that are chemically compatible with conductive polymer particles and water-soluble polymers, and synthetic resins such as nylon, PET, and PPS that have excellent heat resistance are preferable, and for example, heat-resistant cellulose paper and heat-resistant flame-retardant paper can be used.
  • examples of the separator include cellulose and mixed papers such as kraft, Manila hemp, esparto, hemp, and rayon, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof, polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides, polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins, and these resins can be used alone or in combination.
  • polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof, polytetrafluoroethylene-based resins, polyvin
  • Capacitors according to the present disclosure include a solid electrolyte phase in the gap between the anode and cathode foils.
  • the solid electrolyte phase contains a conductive polymer compound, and in particular is substantially composed of a conductive polymer compound.
  • the solid electrolyte phase may be in various forms, for example a continuous uniform thick or thin layer, a membrane (film-like), or an aggregate of fine particles containing a conductive polymer compound and optionally a dopant, or a structure in which such fine particles and their aggregates (particularly chains) are bonded to each other to form a network.
  • the solid electrolyte phase may also be a fine particle layer composed of fine particles containing a conductive polymer compound and optionally a dopant.
  • the conductive polymer compound may be at least one selected from polythiophene, polypyrrole, polyaniline, and derivatives thereof.
  • the conductive polymer compound may be at least one of these.
  • a preferred conductive polymer compound is polyethylenedioxythiophene (PEDOT) (particularly poly(3,4-ethylenedioxythiophene)).
  • the solid electrolyte phase may further include a dopant.
  • the dopant include aromatic sulfonic acids such as benzenesulfonic acid or its derivatives, naphthalenesulfonic acid or its derivatives, and anthraquinonesulfonic acid or its derivatives; polymeric sulfonic acids such as polystyrenesulfonic acid (PSS), sulfonated polyester, phenolsulfonic acid novolac resin, and copolymers of styrenesulfonic acid and non-sulfonic acid monomers (methacrylic acid esters, acrylic acid esters, unsaturated hydrocarbon-containing alkoxysilane compounds or their hydrolysates); and chain sulfones such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and butanesulfonic acid. These may be used alone or in combination of two or more.
  • the polystyrene sulfonic acid preferably has a weight average molecular weight of 10,000 to 1,000,000.
  • the solid electrolyte phase comprises polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) as a dopant.
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrenesulfonic acid
  • the conductive polymer compound may be in the form of fine particles.
  • the average particle size of the fine particle conductive polymer compound is preferably in the range of 1 nm to 300 nm, or even 5 nm to 200 nm (e.g., 20 nm).
  • the fine particle conductive polymer compound may contain a dopant.
  • the average particle size of the fine particles composed of a conductive polymer and, optionally, a dopant can be determined, for example, from the particle size distribution measured by dynamic light scattering.
  • the proportion of the conductive polymer compound in the gap between the anode foil and the cathode foil may be 0.5 vol% to 20 vol%, or even 1 vol% to 10 vol%.
  • the method for forming the solid electrolyte phase containing the conductive polymer compound is not particularly limited, but it can be formed by, for example, a dipping impregnation method.
  • the solid electrolyte phase can be formed by filling a dispersion liquid (conductive polymer compound dispersion liquid) in which the conductive polymer compound is dispersed in a dispersion medium or a solution (conductive polymer compound solution) in which the conductive polymer compound is dissolved in a solvent into the voids, and then removing the dispersion medium or the solvent from the voids by heating and drying or the like.
  • a capacitor element is immersed in a conductive polymer dispersion liquid or a conductive polymer solution using an introduction tank.
  • the capacitor element is then removed from the conductive polymer dispersion liquid or the conductive polymer solution, and the capacitor element is heat-treated to form a solid electrolyte phase in the gap between the anode foil and the cathode foil of the capacitor element.
  • This operation may be repeated multiple times, thereby increasing the amount of solid electrolyte phase filled.
  • the solid electrolyte phase containing the conductive polymer compound may be formed by polymerizing the monomer in a so-called "in-situ polymerization".
  • the conductive polymer content in the conductive polymer compound dispersion or conductive polymer compound solution may be 0.1 to 10 mass%, 0.2 to 5 mass%, and particularly 0.5 to 3 mass%.
  • protic solvents such as water, alcohol (e.g., methanol, ethanol, 1-propanol, butanol), and mixtures thereof can be used.
  • a solvent for the conductive polymer compound solution for example, protic solvents such as water, alcohol (e.g., methanol, ethanol, 1-propanol, butanol), and mixtures thereof can be used.
  • An aromatic nitro compound may be contained in the conductive polymer compound dispersion or the conductive polymer compound solution.
  • the conductive polymer dispersion or conductive polymer solution may contain other compounds as additives, for example, high boiling point compounds (particularly compounds having a boiling point of 150°C or higher).
  • additives include glycerin, diglycerin, polyglycerin, ethylene glycol, diethylene glycol, and other polyethylene glycols, as well as derivatives thereof, gamma-butyrolactone, butanediol, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, dimethyl sulfolane, and polyethylene glycol, as well as derivatives thereof. These may be used alone, or two or more of them may be used in combination.
  • the content of the additive in the conductive polymer compound dispersion or conductive polymer compound solution may be 1 to 40% by mass, in particular 2 to 30% by mass, or even 5 to 25% by mass. This content may be 1 to 20% by mass.
  • Capacitors according to the present disclosure can have a capacitance of 1 to 5000 ⁇ F, or even 10 to 1000 ⁇ F, when measured at 120 Hz according to the method described in the Examples.
  • ESR Capacitors may have an ESR of 5 to 30 m ⁇ , or even 8 to 20 m ⁇ , when measured at 100 kHz according to the method described in the Examples.
  • the method for manufacturing the capacitor according to the present invention is not particularly limited.
  • the capacitor according to the present invention includes, for example, a capacitor element manufacturing step, a chemical conversion treatment step, a solid electrolyte phase introduction step, a liquid substance phase introduction step, and an assembly and sealing step in this order.
  • a capacitor element manufacturing step for example, a capacitor element manufacturing step, a chemical conversion treatment step, a solid electrolyte phase introduction step, a liquid substance phase introduction step, and an assembly and sealing step in this order.
  • Capacitor Element Preparation Process In an exemplary method for an electrolytic capacitor, first, an aluminum foil is provided as an anode foil 21. After the surface of the aluminum foil is roughened by a surface enlarging process, a predetermined voltage of 2V to 500V is applied to the roughened surface of the aluminum foil to perform a chemical conversion process, thereby forming an oxide film 22 on the surface of the aluminum foil. Then, a capacitor element is prepared that includes an anode foil 21 having an oxide film 22, a cathode foil 23, and a separator 25 disposed between the anode foil 21 and the cathode foil 23 (see FIG. 1(b)).
  • the anode foil 21 having an uneven surface (rough surface) and the oxide film 22 formed on the uneven surface and the cathode foil 23 having an uneven surface are overlapped and wound through the separator 25 to prepare a capacitor element 20.
  • a lead 30 is connected to the anode foil 21, and a lead 29 is connected to the cathode foil 23.
  • the capacitor element 20 is immersed in a chemical conversion solution in a chemical conversion solution tank, and a predetermined voltage (e.g., 100 V) is applied between the anode lead 30 and the chemical conversion solution for 5 minutes.
  • a predetermined voltage e.g. 100 V
  • This operation repairs defects in the oxide film present at the edge of the anode foil 21 and defects in the oxide film that may be present on the surface.
  • the chemical conversion liquid may be an aqueous solution of, for example, ammonium adipate, ammonium borate, ammonium phosphate, ammonium glutarate, ammonium azelaate, ammonium tartrate, ammonium sebacate, ammonium pimelate, or ammonium suberate.
  • Solid Electrolyte Phase Introducing Step a solid electrolyte phase consisting of fine particle conductive polymer compound 26 is introduced into the gap between the anode foil 21 and the cathode foil 23 so that the ratio of the solid electrolyte phase occupying the gap is within a range of, for example, 2 vol % to 30 vol %.
  • a conductive polymer compound dispersion liquid in which a conductive polymer compound is dispersed in a dispersion medium is filled into the gap, and then the dispersion medium is removed from the gap, thereby introducing the solid electrolyte phase into the gap.
  • a solution in which a conductive polymer compound is dissolved in a solvent may be used.
  • the solid electrolyte phase introduction step can be performed by a dipping impregnation method. That is, after filling an introduction tank with a conductive polymer compound dispersion liquid (e.g., conductive polymer compound concentration 2 vol%), the capacitor element is immersed in the conductive polymer compound dispersion liquid. Next, the capacitor element is removed from the introduction tank, and then the capacitor element is heat-treated.
  • a conductive polymer compound dispersion liquid e.g., conductive polymer compound concentration 2 vol%
  • the conductive polymer dispersion liquid can be produced by polymerizing (radical polymerization or oxidative polymerization) a monomer (e.g., PEDOT monomer) in suspension to produce a conductive polymer compound in the form of fine particles made of a conductive polymer compound (e.g., PEDOT polymer) to which a dopant or emulsifier has been added, and dispersing the fine particles of the conductive polymer compound in a specified dispersion medium.
  • the average particle size of the conductive polymer compound can be adjusted by appropriately setting the polymerization reaction conditions (e.g., concentrations of initiator, monomer, polymerization aid, etc., reaction temperature, stirring conditions of the reaction solution, etc.). It can also be adjusted by carrying out a known crushing process (e.g., stirring crushing process, vibration crushing process, etc.). The particle size can also be made uniform by a preparative filtration process.
  • the number of times the above operation is repeated can be increased and/or the polymer concentration in the conductive polymer compound dispersion can be increased.
  • the number of times the above operation is repeated can be decreased and/or the polymer concentration in the conductive polymer compound dispersion can be decreased.
  • liquid substance phase introducing step for example, the liquid substance phase 27 is introduced into the gap between the anode foil 21 and the cathode foil 23 so as to surround the solid electrolyte and so that the ratio of the liquid substance phase 27 occupying the gap is within a range of 10 vol % to 99 vol %.
  • the liquid substance phase introducing step can be performed as follows (a) and (b).
  • a liquid substance phase can be prepared by providing a liquid substance (e.g., ethylene glycol), adding a predetermined amount of an acid component and a base component to the liquid substance, and then stirring the mixture. These operations may be performed by heating the mixture to, for example, about 40 to 60°C.
  • a liquid substance e.g., ethylene glycol
  • the sealing member 40 is attached to the capacitor element 20, and the capacitor element 20 is inserted into the metal case 10, and then the metal case 10 is crimped near the open end of the metal case 10.
  • IIR isobutylene-isoprene rubber
  • rubber materials such as ethylene-propylene terpolymer (EPT), EPT-IIR blend rubber, silicone rubber, and rubber composite materials in which resins such as phenolic resin (Bakelite), epoxy resin, and fluororesin are bonded to rubber can also be used.
  • an aging process is performed by applying a predetermined voltage in a high-temperature atmosphere as desired. This completes the electrolytic capacitor 1 according to the embodiment.
  • the capacitor according to the present disclosure can be produced in particular by the method for producing an electrolytic capacitor according to the present disclosure as follows: 1. A method for manufacturing an electrolytic capacitor, comprising the steps of: forming a capacitor element including an anode foil and a cathode foil having an oxide film formed on the surface thereof (capacitor element fabrication process); Introducing a solid electrolyte phase containing a conductive polymer compound into a gap between the anode foil and the cathode foil (solid electrolyte phase introduction step); and A liquid substance phase containing a liquid substance is introduced into the gap between the anode foil and the cathode foil (liquid substance phase introduction step).
  • the liquid phase further comprises an acid component and a base component; the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
  • the amount of base and acid components in the liquid phase is (number of moles of the base component)>(number of moles of the acid component) The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
  • the content of the acid component in the liquid substance phase may be, in particular, 3 to 20% by mass, and may further be 4% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
  • the content of the acid component in the liquid phase is preferably 4% by mass to 18% by mass, more preferably 5% by mass to 16% by mass, and even more preferably 6% by mass to 14% by mass.
  • an electrolytic capacitor with particularly good reflow characteristics can be obtained.
  • the content ratio of the acid component to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be the same as the above-mentioned content.
  • the content of the liquid substance may be 45 mass% or more, 50 mass% or more, or 60 mass% or more, and/or 95 mass% or less, 92 mass% or less, 90 mass% or less, or 80 mass% or less, relative to the liquid substance phase.
  • the content of the liquid substance (particularly the solvent) is preferably 70 mass% to 95 mass%, or 82 mass% to 92 mass%, more preferably 85 mass% to 90 mass%, relative to the liquid substance phase.
  • the base component may be contained in an amount of 0.5% to 20% by mass, or 1% to 18% by mass, relative to the liquid substance phase.
  • the content of the base component may be 1.0% by mass or more, 1.5% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more, relative to the liquid substance phase, and/or 20% by mass or less, 18% by mass or less, 15% by mass or less, 14% by mass or less, 12% by mass or less, 10% by mass or less, or 8% by mass or less.
  • the proportion of the aromatic nitro compound in the liquid phase in the liquid phase introduction step may be 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass, 0.5% by mass to 5% by mass, or even 1% by mass to 5% by mass.
  • the water content may be 0% by mass to 10% by mass, or 0% by mass to 9% by mass, relative to the liquid substance phase. In one embodiment, it is preferably 0.1% by mass to 9% by mass, and more preferably 0.4% by mass to 4% by mass.
  • the above-mentioned manufacturing method may further have at least one of the following features: With respect to the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase, B>A/2; and/or the base component contains an amine; and/or the base component contains at least one selected from morpholine, methylmorpholine, ethylmorpholine, triethanolamine, and diethanolamine; and/or the acid component is phthalic acid; and/or the liquid substance contains diethylene glycol or ethylene glycol; and/or the resistivity of the liquid substance phase is 6.0 k ⁇ cm or less.
  • CAP ⁇ CAP>
  • the CAP ( ⁇ F) of the capacitor was measured at room temperature and 120 Hz using an LCR meter (Keysight Technologies Precision LCR Meter (E4980A)).
  • ⁇ Resistivity> The resistivity of the liquid substance phase was measured at a liquid temperature of 30.0 ⁇ 0.2° C. using the liquid substance phase before it was impregnated into the capacitor element with an electric conductivity meter (manufactured by Toa DKK: CM-40S, cell: CG-511B).
  • the resistivity value of the liquid substance phase before impregnation is relatively reduced, it is believed that the resistivity value of the liquid substance phase in the completed electrolytic capacitor will also be relatively reduced. Note that the resistivity value of the liquid substance phase before impregnation may differ from the resistivity value of the liquid substance phase extracted from the electrolytic capacitor. This is believed to be because additives (e.g. polyols) used in the conductive polymer dispersion or solution may affect the resistivity value of the liquid extracted from the electrolytic capacitor.
  • additives e.g. polyols
  • the liquid extracted from the capacitor was used as the liquid substance phase, and the electrical conductivity and resistivity of the liquid substance phase were measured at 25°C using an electrical conductivity meter (HORIBA Compact Conductivity Meter B-173).
  • Example 1 Capacitor manufacturing Anode foil (made of aluminum) and cathode foil (made of aluminum) with a withstand voltage of about 60V were wound with a separator (made of cellulose) between them, and then the end faces and defects were chemically formed using a chemical formation solution, and then the solid electrolyte was vacuum-impregnated and dried to produce a capacitor element having a solid electrolyte phase.
  • the solid electrolyte phase contained polyethylenedioxythiophene (PEDOT) as a conductive polymer compound and polystyrenesulfonic acid (PSS) as a dopant.
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrenesulfonic acid
  • Example 1 In the liquid substance phase of Example 1, the molar ratio of the acid component to the base component was 1:1.2.
  • the reflow process was performed twice with a peak temperature of 260°C.
  • Example 1 The results for Example 1 are shown in Tables 1-1 and 1-2 below. Note that Table 1-1 shows the solute content in the liquid material phase before impregnation, and Table 1-2 shows the solute content in the liquid material phase taking into account the additives used in the conductive polymer dispersion.
  • Table 1-2 also lists the solute content of glycol compounds in the liquid substance phase.
  • Example 2 In Example 2, except that the amount of solute was changed as shown in Table 1-1 below, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1. The results of Example 2 are shown in Table 1-2 below.
  • Comparative Example 2 In Comparative Example 2, except that the amount of solute was changed as shown in Table 1-1 below, a capacitor was manufactured and its performance was evaluated in the same manner as in Comparative Example 1. The results of Comparative Example 2 are shown in Table 1-2 below.
  • Example 1 and 2 the electrical conductivity and resistivity were measured using the liquid substance phase before impregnation and the capacitor extract as the liquid substance phase. As can be seen in Table 1-2, the capacitors of Examples 1 and 2 exhibited good resistivity. Furthermore, the resistivity value was higher when measured using the capacitor extract compared to when measured using the liquid substance phase before impregnation. Although there is no intention to be limited by theory, it is believed that in the case of the capacitor extract, the additives added to the conductive polymer dispersion during the capacitor manufacturing process affected the resistivity value.
  • Reference Examples 1 to 3 capacitors were manufactured and their performance evaluated in the same manner as in Example 1 above, except that the amount of solute was set as shown in Table 2-1 below.
  • the results for Reference Examples 1 to 3 are shown in Table 2-2 below.
  • Table 2-1 shows the content of the solute in the liquid substance phase before impregnation
  • Table 2-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion.
  • Table 2-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
  • Reference Examples 4 to 6 capacitors were manufactured and their performance evaluated in the same manner as in Example 1, except that diethylamine was used instead of ethylmorpholine as the base component and the amount of solute was set as shown in Table 2 below. The results of Reference Examples 4 to 6 are shown in Table 2-2 below.
  • Examples 3 to 5 and Comparative Examples 3 to 5>> In Examples 3 to 5 and Comparative Examples 3 to 5, a base component with a relatively low basicity and a base component with a relatively high basicity were used, respectively, and the case where the concentration of the solute was relatively high was investigated.
  • Table 3-1 shows the content of the solute in the liquid substance phase before impregnation
  • Table 3-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion.
  • Table 3-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
  • the resistivity and pH of the liquid substance phase were measured. The results for Comparative Examples 3 to 5 are shown in Table 3-2 below.
  • the cases where base components having various basicities were used were investigated under conditions where the mass ratio of the acid component and the molar ratio of the acid component and the base component were constant.
  • Examples 6 to 9 and Comparative Examples 6 to 7 capacitors were manufactured and their performance evaluated in the same manner as in Example 1 above, except that the substances shown in Table 4-1 below were used instead of ethylmorpholine as the base component, and the amount of solute was set as shown in Table 4-1 below.
  • Table 4-2 shows the solute content in the liquid substance phase before impregnation
  • Table 4-2 shows the solute content in the liquid substance phase taking into account the additives used in the conductive polymer dispersion.
  • Table 4-2 also shows the solute content relative to the glycol compound in the liquid substance phase.
  • Example 10 In Example 10, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1, except that morpholine was used instead of ethylmorpholine as the base component and the amount of solute was set as shown in Table 5-1 below.
  • the resistivity and pH of the liquid substance phase were measured.
  • the results of Example 10 are shown in Table 5-2 below. Note that Table 5-1 shows the content of the solute in the liquid substance phase before impregnation, and Table 5-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion. Table 5-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
  • Comparative Example 8 In Comparative Example 8, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1, except that diethylamine was used instead of ethylmorpholine as the base component and the amount of solute was changed as shown in Table 5-1 below. In Comparative Example 8, the resistivity and pH of the liquid substance phase were measured. The results of Comparative Example 8 are shown in Table 5-2 below.
  • Comparative Examples 9 to 10 In Comparative Examples 9 and 10, except that azelaic acid and adipic acid were used instead of phthalic acid as the acid component, respectively, capacitors were manufactured and their performance was evaluated in the same manner as in Comparative Example 8. The results of Comparative Examples 9 to 10 are shown in Table 5-2 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present disclosure is to provide: an electrolytic capacitor which comprises a conductive polymer compound and a liquid substance phase, and which exhibits excellent liquid resistivity and excellent heat resistance; and a method for producing this electrolytic capacitor. An electrolytic capacitor according to the present invention is provided with an anode foil, on the surface of which an oxide coating film is formed, and a cathode foil; this electrolytic capacitor has, between the anode foil and the cathode foil, a solid electrolyte phase that contains a conductive polymer compound and a liquid substance phase that contains a liquid substance; the liquid substance phase additionally contains an acid component and a base component; the acid dissociation constant (pKa) of a conjugate acid in the base component is 10.0 or less; the amounts of the base component and the acid component in the liquid substance phase satisfy the relational expression (number of moles of base component) > (number of moles of acid component); and the acid component accounts for 2.6% by mass to 20% by mass in the liquid substance phase.

Description

導電性高分子化合物を有する電解コンデンサ及びその製造方法Electrolytic capacitor having conductive polymer compound and method for manufacturing same
 本発明は、導電性高分子化合物を有する電解コンデンサに関する。特に、本発明は、導電性高分子化合物を含む固体電解質相に加えて、酸成分及び塩基性成分を含有する液状物質相を有する電解コンデンサに関する。本発明は、電解コンデンサを製造する方法にも関する。 The present invention relates to an electrolytic capacitor having a conductive polymer compound. In particular, the present invention relates to an electrolytic capacitor having a liquid substance phase containing an acid component and a basic component in addition to a solid electrolyte phase containing a conductive polymer compound. The present invention also relates to a method for producing an electrolytic capacitor.
 従来、電解質(固体電解質)として導電性高分子化合物を用いた固体電解コンデンサが知られている。このようなコンデンサは、低ESR性及び優れた低温特性を示しうる。また、このようなコンデンサでは、電解質として固体であり耐熱性の高い導電性高分子を使用することにより、高い信頼性を有するコンデンサを提供することができる。 Solid electrolytic capacitors that use conductive polymer compounds as the electrolyte (solid electrolyte) are known. Such capacitors can exhibit low ESR and excellent low-temperature characteristics. In addition, by using a conductive polymer that is solid and highly heat-resistant as the electrolyte, such capacitors can provide capacitors with high reliability.
 また、電解質として導電性高分子化合物と電解液とを用いた電解コンデンサ(ハイブリッド型のコンデンサ)が知られている。このようなコンデンサでは、例えば、初期コンデンサ特性における容量出現率、及び皮膜修復性の点で有利である。 Also known is an electrolytic capacitor (hybrid capacitor) that uses a conductive polymer compound and an electrolytic solution as the electrolyte. Such a capacitor has advantages, for example, in terms of the capacitance appearance rate and film repairability in the initial capacitor characteristics.
 特許文献1は、コンデンサ素子に導電性固体を含む分散体を含浸させた後に、溶媒を蒸発させて導電性固体層を形成すること、及び、導電性固体層の隙間に電解液を含浸させることを含む、電解コンデンサの製造方法を記載している。 Patent Document 1 describes a method for manufacturing an electrolytic capacitor, which includes impregnating a capacitor element with a dispersion containing a conductive solid, evaporating the solvent to form a conductive solid layer, and impregnating the gaps in the conductive solid layer with an electrolyte.
 特許文献2及び特許文献3は、酸成分と塩基成分とを含む駆動用電解液を有する電解コンデンサを記載しており、酸成分を塩基成分よりもモル比で過剰にすることを記載している。 Patent Document 2 and Patent Document 3 describe an electrolytic capacitor having a driving electrolyte solution containing an acid component and a base component, and state that the acid component is in excess of the base component in terms of molar ratio.
 特許文献4は、導電性高分子化合物を含む固体電解質相と、固体電解質相を取り囲むように存在しかつ液状物質を含む液状物質相と、を含むハイブリッド型固体電解コンデンサを記載しており、液状物質相における塩基成分と酸成分の量が、(塩基成分のモル数)>(酸成分のモル数)≧0の関係式を満たすことを記載している。この文献は、液状物質が、液状物質の重量を基準にして、0.3重量%以上50重量%以下の量の塩基成分を含みうることを記載している一方で、液状物質相に含まれる塩基成分の量は、液状物質相の重量を基準にして、10重量%以下であることが好ましいとしており、また、実施例では、0.3~1.5重量%の塩基成分を含む液状物質を用いている。 Patent Document 4 describes a hybrid solid electrolytic capacitor that includes a solid electrolyte phase that includes a conductive polymer compound, and a liquid substance phase that surrounds the solid electrolyte phase and includes a liquid substance, and describes that the amounts of base and acid components in the liquid substance phase satisfy the relationship (number of moles of base component) > (number of moles of acid component) ≥ 0. This document describes that the liquid substance can include a base component in an amount of 0.3% to 50% by weight based on the weight of the liquid substance, but that the amount of base component included in the liquid substance phase is preferably 10% by weight or less based on the weight of the liquid substance phase, and further describes that in the examples, a liquid substance that includes 0.3 to 1.5% by weight of base component is used.
 特許文献5は、固体電解質層と電解液とを備える電解コンデンサを記載しており、電解液に含まれる溶質がカルボン酸成分及び塩基成分を有し、溶質におけるカルボン酸成分が、塩基成分100質量部に対して、200質量部以上であることを記載している。 Patent document 5 describes an electrolytic capacitor that includes a solid electrolyte layer and an electrolyte solution, and describes that the solute contained in the electrolyte solution has a carboxylic acid component and a base component, and that the carboxylic acid component in the solute is 200 parts by mass or more per 100 parts by mass of the base component.
特開2008-10657号公報JP 2008-10657 A 特開2012-109635号公報JP 2012-109635 A 特開2013-191897号公報JP 2013-191897 A 特開2020-119916号公報JP 2020-119916 A 国際公開第2017/017947号International Publication No. 2017/017947
 導電性高分子化合物及び電解液を有する従来の電解コンデンサでは、電解液の液比抵抗、及び耐熱性(特にリフロー後の特性変化)の点で、不十分である場合があった。特に、溶質の濃度が比較的高い場合に、リフロー後の特性変化などが問題となることがあった。  Conventional electrolytic capacitors that contain conductive polymer compounds and electrolytes are sometimes insufficient in terms of the electrolyte's liquid resistivity and heat resistance (especially changes in characteristics after reflow). In particular, when the concentration of the solute is relatively high, changes in characteristics after reflow can be problematic.
 本開示は、導電性高分子化合物及び液状物質相を有する電解コンデンサであって、優れた液比抵抗及び優れた耐熱性を示す電解コンデンサを提供することを目的とする。 The present disclosure aims to provide an electrolytic capacitor having a conductive polymer compound and a liquid substance phase, which exhibits excellent liquid resistivity and excellent heat resistance.
 本開示に係る上記の課題は、下記の本開示に係る発明によって解決することができる。
<態様1>
 表面に酸化皮膜が形成された陽極箔と、
 陰極箔と、
を備え
 前記陽極箔と前記陰極箔との間の空隙に、
 導電性高分子化合物を含む固体電解質相と、
 液状物質を含む液状物質相と
を有する、電解コンデンサであって、
 前記液状物質相は、さらに、酸成分及び塩基成分を含み、
 前記塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
 前記液状物質相における前記塩基成分と前記酸成分の量が、
 (前記塩基成分のモル数)>(前記酸成分のモル数)
の関係式を満たし、かつ
 前記酸成分が、前記液状物質相中で、2.6質量%~20質量%である、
電解コンデンサ。
<態様2>
 前記液状物質相における前記塩基成分の質量(B)及び前記酸成分の質量(A)に関して、B>A/2である、態様1に記載の電解コンデンサ。
<態様3>
 前記塩基成分が、アミンを含む、態様1又は2に記載の電解コンデンサ。
<態様4>
 前記塩基成分が、モルホリン、メチルモルホリン、エチルモルホリン、トリエタノールアミン、及びジエタノールアミンから選択される少なくとも1つを含有する、態様3に記載の電解コンデンサ。
<態様5>
 前記酸成分が、フタル酸である、態様1~4のいずれかに記載の電解コンデンサ。
<態様6>
 前記液状物質が、ジエチレングリコール又はエチレングリコールを含む、態様1~5のいずれかに記載の電解コンデンサ。
<態様7>
 前記液状物質相の比抵抗が、6.0kΩ・cm以下である、態様1~6のいずれかに記載の電解コンデンサ。
<態様8>
 電解コンデンサを製造する方法であって、
 表面に酸化皮膜が形成された陽極箔と陰極箔とを備えるコンデンサ素子を形成すること、
 前記陽極箔と前記陰極箔との間の空隙に、導電性高分子化合物を含む固体電解質相を導入すること、及び、
 前記陽極箔と前記陰極箔との間の空隙に、液状物質を含む液状物質相を導入すること
を含み、
 前記液状物質相は、さらに、酸成分及び塩基成分を含み、
 前記塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
 前記液状物質相における塩基成分と酸成分の量が、
 (前記塩基成分のモル数)>(前記酸成分のモル数)
の関係式を満たし、かつ
 前記酸成分が、前記液状物質相中で、2.6質量%~20質量%である、
方法。
The above problems related to the present disclosure can be solved by the inventions related to the present disclosure described below.
<Aspect 1>
an anode foil having an oxide film formed on its surface;
A cathode foil;
In a gap between the anode foil and the cathode foil,
A solid electrolyte phase including a conductive polymer compound;
and a liquid material phase including a liquid material,
The liquid phase further comprises an acid component and a base component;
the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
The amount of the base component and the acid component in the liquid substance phase is
(number of moles of the base component)>(number of moles of the acid component)
The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
Electrolytic capacitor.
<Aspect 2>
2. The electrolytic capacitor of claim 1, wherein the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase satisfy B>A/2.
<Aspect 3>
3. The electrolytic capacitor of claim 1 or 2, wherein the base component comprises an amine.
<Aspect 4>
4. The electrolytic capacitor according to claim 3, wherein the base component contains at least one selected from morpholine, methylmorpholine, ethylmorpholine, triethanolamine, and diethanolamine.
<Aspect 5>
5. The electrolytic capacitor according to any one of aspects 1 to 4, wherein the acid component is phthalic acid.
<Aspect 6>
6. The electrolytic capacitor according to any one of aspects 1 to 5, wherein the liquid substance comprises diethylene glycol or ethylene glycol.
<Aspect 7>
The electrolytic capacitor according to any one of aspects 1 to 6, wherein the liquid substance phase has a resistivity of 6.0 kΩ cm or less.
<Aspect 8>
1. A method for manufacturing an electrolytic capacitor, comprising:
forming a capacitor element including an anode foil and a cathode foil each having an oxide film formed on a surface thereof;
introducing a solid electrolyte phase containing a conductive polymer compound into a gap between the anode foil and the cathode foil; and
introducing a liquid material phase, the liquid material phase including a liquid material, into a gap between the anode foil and the cathode foil;
The liquid phase further comprises an acid component and a base component;
the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
The amount of base component and acid component in the liquid substance phase is
(number of moles of the base component)>(number of moles of the acid component)
The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
Method.
 本開示に係る電解コンデンサによれば、導電性高分子化合物及び液状物質相を有する電解コンデンサであって、優れた液比抵抗及び優れた耐熱性を示す電解コンデンサを提供することができる。 The electrolytic capacitor according to the present disclosure is an electrolytic capacitor having a conductive polymer compound and a liquid substance phase, and exhibits excellent liquid resistivity and excellent heat resistance.
図1aは、本開示の1つの実施態様に係る電解コンデンサの断面概略図である。FIG. 1a is a cross-sectional schematic diagram of an electrolytic capacitor according to one embodiment of the present disclosure. 図1bは、本開示の1つの実施態様に係るコンデンサ素子の斜視概略図である。FIG. 1b is a perspective schematic diagram of a capacitor element according to one embodiment of the present disclosure. 図2は、図1の固体電解質相の要部断面概略図である。FIG. 2 is a schematic cross-sectional view of a main part of the solid electrolyte phase of FIG.
<<コンデンサ>>
 本開示に係る電解コンデンサは、
 表面に酸化皮膜が形成された陽極箔と、
 陰極箔と、
を備え
 陽極箔と陰極箔との間の空隙に、
 導電性高分子化合物を含む固体電解質相と、
 液状物質を含む液状物質相と
を有し、
 液状物質相は、さらに、酸成分及び塩基成分を含み、
 塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
 液状物質相における塩基成分と酸成分の量が、
 (塩基成分のモル数)>(酸成分のモル数)
の関係式を満たし、かつ
 酸成分が、液状物質相中で、2.6質量%~20質量%
である。
<< Capacitor >>
The electrolytic capacitor according to the present disclosure comprises:
an anode foil having an oxide film formed on its surface;
A cathode foil;
In the gap between the anode foil and the cathode foil,
A solid electrolyte phase including a conductive polymer compound;
and a liquid material phase including a liquid material,
The liquid phase further comprises an acid component and a base component;
the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
The amount of base and acid components in the liquid phase is
(number of moles of base component)>(number of moles of acid component)
The acid component is in a range of 2.6% by mass to 20% by mass in the liquid phase.
It is.
 従来、電解質として導電性高分子化合物と電解液とを用いた電解コンデンサが知られている(ハイブリッド型のコンデンサ)。このようなコンデンサでは、優れた皮膜修復性を得ることができるとともに、優れた容量出現率を得ることができる。しかしながら、従来のコンデンサでは、耐熱性に問題がある場合があった。特に、従来のコンデンサでは、溶質の濃度が比較的高い場合に、リフロー工程で高温にさらされることによってコンデンサの特性が低下することがあった。  Conventionally, electrolytic capacitors that use a conductive polymer compound and an electrolytic solution as the electrolyte are known (hybrid capacitors). Such capacitors can provide excellent film repairability and an excellent capacitance appearance rate. However, conventional capacitors can have problems with heat resistance. In particular, when the concentration of the solute in conventional capacitors is relatively high, the characteristics of the capacitor can deteriorate when exposed to high temperatures during the reflow process.
 これに対して、本発明の発明者らは、比較的高濃度の溶質(酸成分及び塩基成分)を用いた場合であっても、溶質を構成する塩基成分として比較的塩基性の低い塩基成分を用いることによって、リフロー後の特性変化を抑制できることを見出した。溶質濃度を高めることによって、コンデンサに含まれる液状物質相の液比抵抗を低減することができるので、本発明によれば、リフロー後の特性変化等の問題を回避しつつ、向上した電気特性を有する電解コンデンサを得ることができる。 In response to this, the inventors of the present invention have discovered that even when a relatively high concentration of solute (acid component and base component) is used, by using a base component with a relatively low basicity as the base component that constitutes the solute, the change in characteristics after reflow can be suppressed. By increasing the solute concentration, the liquid resistivity of the liquid material phase contained in the capacitor can be reduced, so that according to the present invention, an electrolytic capacitor with improved electrical characteristics can be obtained while avoiding problems such as changes in characteristics after reflow.
 図面を用いて、本発明に係る例示的な実施態様をより詳細に説明する。なお、これらの図面及び例示的な実施態様は、本発明を限定するものではない。図面は概略図であり、必ずしも縮尺どおりではない。 The drawings are used to explain exemplary embodiments of the present invention in more detail. Note that these drawings and exemplary embodiments are not intended to limit the present invention. The drawings are schematic and are not necessarily drawn to scale.
<実施形態に係る電解コンデンサ1の構成>
 図1は、実施形態に係る電解コンデンサ1を説明するために示す図である。図1(a)は電解コンデンサ1の断面図であり、図1(b)はコンデンサ素子20の斜視図である。
<Configuration of electrolytic capacitor 1 according to embodiment>
1A and 1B are diagrams for explaining an electrolytic capacitor 1 according to an embodiment of the present invention. Fig. 1A is a cross-sectional view of the electrolytic capacitor 1, and Fig. 1B is a perspective view of a capacitor element 20.
 図2は、実施形態に係る電解コンデンサ1の要部を説明するために示す図である。図2は電解コンデンサ1の要部断面図である。 FIG. 2 is a diagram for explaining the main parts of the electrolytic capacitor 1 according to the embodiment. FIG. 2 is a cross-sectional view of the main parts of the electrolytic capacitor 1.
 実施形態に係る電解コンデンサ1は、巻回型の電解コンデンサであって、図1に示すように、有底筒状の金属ケース10と、コンデンサ素子20と、封口部材40とを備える。 The electrolytic capacitor 1 according to the embodiment is a wound-type electrolytic capacitor, and as shown in FIG. 1, includes a cylindrical metal case 10 with a bottom, a capacitor element 20, and a sealing member 40.
 金属ケース10の底面部は、ほぼ円形形状をしており、中心付近に弁(図示せず。)が設けられている。このため、内圧が上昇した際に、当該弁が割れて内圧を外部に逃がすことができる構造となっている。金属ケース10の側面部は、底面部の外縁からほぼ垂直な方向に立設されている。金属ケース10の開口部は、封口部材40によって封口され、封口部材40に設けられた貫通穴を通してコンデンサ素子20の2つのリード29,30が外部に引き出されている。 The bottom surface of the metal case 10 is substantially circular, with a valve (not shown) located near the center. This allows the valve to break and release the internal pressure to the outside when the internal pressure rises. The side surface of the metal case 10 stands upright in a substantially vertical direction from the outer edge of the bottom surface. The opening of the metal case 10 is sealed with a sealing member 40, and the two leads 29, 30 of the capacitor element 20 are pulled out to the outside through a through hole provided in the sealing member 40.
 コンデンサ素子20は、金属ケース10の内部に収納され、図1(b)及び図2に示すように、陽極箔21と、陰極箔23と、陽極箔21と陰極箔23との間に配設されたセパレータ25とを備え、セパレータ25を介して陽極箔21と陰極箔23とが重ね合わせて巻回されている。 The capacitor element 20 is housed inside the metal case 10, and as shown in Figures 1(b) and 2, it comprises an anode foil 21, a cathode foil 23, and a separator 25 disposed between the anode foil 21 and the cathode foil 23, and the anode foil 21 and the cathode foil 23 are overlapped and wound with the separator 25 in between.
 図2の態様では、陽極箔21と陰極箔23との間の空隙に、微粒子状の導電性高分子化合物26からなる固体電解質相と、液状物質を含む液状物質相27とが導入されており、液状物質相27が、導電性高分子化合物26からなる固体電解質を取り囲むように存在している。陽極箔21及び陰極箔23は、それぞれ、その表面に、酸化皮膜22及び24を有する。 In the embodiment shown in FIG. 2, a solid electrolyte phase consisting of a fine particle conductive polymer compound 26 and a liquid substance phase 27 containing a liquid substance are introduced into the gap between the anode foil 21 and the cathode foil 23, and the liquid substance phase 27 is present so as to surround the solid electrolyte consisting of the conductive polymer compound 26. The anode foil 21 and the cathode foil 23 have oxide films 22 and 24 on their surfaces, respectively.
<空隙>
 本開示において、「陽極箔と陰極箔との間の空隙」は、「陽極箔とセパレータとの間及び陰極箔とセパレータとの間の空隙」のみならず、「セパレータ内における繊維間の空隙」を含む。また、「陽極箔と陰極箔との間の空隙」は、「エッチング処理による粗面化で陽極箔又は陰極箔の表面に形成されたエッチングピット(凹部)における空隙」も含む。
<Gaps>
In the present disclosure, the term "gap between the anode foil and the cathode foil" includes not only "gaps between the anode foil and the separator and between the cathode foil and the separator" but also "gaps between fibers in the separator." In addition, the term "gap between the anode foil and the cathode foil" also includes "gaps in etching pits (recesses) formed in the surface of the anode foil or cathode foil by roughening through etching."
<液状物質相>
 本開示に係るコンデンサは、液状物質相を含む。液状物質相は、液状物質を含み、さらに、酸成分及び塩基成分を含む。
<Liquid substance phase>
A capacitor according to the present disclosure includes a liquid substance phase. The liquid substance phase includes a liquid substance, and further includes an acid component and a base component.
 液状物質相における各成分の含有量に関して、基本的には、コンデンサの製造過程でコンデンサに含浸される液状物質相(「含浸前の液状物質相」)中における含有量は、製造後のコンデンサ中での含有量と変わらない。ただし、コンデンサの製造過程で導電性高分子分散液に添加剤(例えばポリオール類)を用いた場合には、添加剤が液状物質として液状物質相に加わることがある。この場合には、液状物質相における各成分の含有量は、添加剤も考慮して決定される。 Regarding the content of each component in the liquid substance phase, basically, the content in the liquid substance phase impregnated into the capacitor during the capacitor manufacturing process ("liquid substance phase before impregnation") is the same as the content in the capacitor after manufacturing. However, if additives (e.g. polyols) are used in the conductive polymer dispersion during the capacitor manufacturing process, the additives may be added to the liquid substance phase as liquid substances. In this case, the content of each component in the liquid substance phase is determined taking into account the additives.
 液状物質相は、固体電解質相を取り囲むように存在することができる。 The liquid phase can be present surrounding the solid electrolyte phase.
 液状物質相は、好ましくは、液状物質並びに酸成分及び塩基成分から構成されており、これら以外の他の成分を、10質量%以下、5質量%以下、2質量%以下、1質量%以下、又はさらには0.1質量%以下の割合で含む。1つの実施態様において、液状物質相は、液状物質中に、酸成分、塩基成分、及び随意の他の成分が溶解及び/又は分散した液体であってよく、特にはこれらの成分が液状物質中に溶解した液体であってよい。 The liquid substance phase is preferably composed of a liquid substance, an acid component, and a base component, and contains other components at a ratio of 10% by weight or less, 5% by weight or less, 2% by weight or less, 1% by weight or less, or even 0.1% by weight or less. In one embodiment, the liquid substance phase may be a liquid in which the acid component, the base component, and optionally other components are dissolved and/or dispersed in the liquid substance, and in particular may be a liquid in which these components are dissolved in the liquid substance.
 「他の成分」としては、芳香族ニトロ化合物が挙げられる。 "Other components" include aromatic nitro compounds.
 本開示に係るコンデンサにおいて、陽極箔及び陰極箔の間の空隙に占める液状物質相の割合は、10vol%~99vol%%、特には50vol%~99vol%、又はさらには70vol%~99vol%であってよい。 In the capacitor according to the present disclosure, the proportion of the liquid material phase in the gap between the anode foil and the cathode foil may be 10 vol% to 99 vol%, particularly 50 vol% to 99 vol%, or even 70 vol% to 99 vol%.
(液状物質)
 液状物質相を構成する液状物質は、酸成分及び塩基成分を保持することができる液体である。液状物質は、特には、溶媒であり、溶質としての酸成分及び塩基成分をこの溶媒中に溶解できる。なお、酸成分及び塩基成分が単独で液状物質である場合であっても、これらは、本願に係る「液状物質」には含まれない。
(Liquid substance)
The liquid substance constituting the liquid substance phase is a liquid capable of retaining an acid component and a base component. The liquid substance is, in particular, a solvent in which the acid component and the base component as solutes can be dissolved. Note that even if the acid component and the base component are liquid substances by themselves, they are not included in the "liquid substance" according to the present application.
 液状物質は、有機溶媒、特に高分子の有機溶媒であってもよく、特には限定されない。液状物質は、例えば、水、親水性高分子化合物、水酸基を有する成分、例えばポリオキシアルキレン及びその誘導体(ポリグリセリン)、水溶性ポリウレタン、水溶性ポリエステル、水溶性ポリアミド、水溶性ポリイミド、水溶性ポリアクリル、水溶性ポリアクリルアミド、水溶性シリコーン、ポリビニルアルコール、ポリアクリル酸など、あるいはその混合物であってよい。 The liquid substance may be an organic solvent, particularly a polymeric organic solvent, but is not particularly limited. The liquid substance may be, for example, water, a hydrophilic polymer compound, a component having a hydroxyl group, such as polyoxyalkylene and its derivatives (polyglycerin), water-soluble polyurethane, water-soluble polyester, water-soluble polyamide, water-soluble polyimide, water-soluble polyacrylic, water-soluble polyacrylamide, water-soluble silicone, polyvinyl alcohol, polyacrylic acid, etc., or a mixture thereof.
 特に、液状物質としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、及びその他のポリエチレングリコール、並びにこれらの誘導体、グリセリン、及びジグリセリン、並びにこれらの誘導体、γ-ブチロラクトン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、及びジメチルホルムアミドが挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのうち、グリコール化合物、すなわち、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、その他のポリエチレングリコール、及びこれらの誘導体が好ましく、エチレングリコール及びジエチレングリコールが最も好ましい。液状物質としてエチレングリコール及び/又はジエチレングリコールを用いた場合には、特に良好なリフロー特性を有する電解コンデンサを得ることができる。 Particularly, examples of liquid substances include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, other polyethylene glycols, and their derivatives, glycerin, diglycerin, and their derivatives, γ-butyrolactone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and dimethylformamide. These may be used alone or in combination of two or more. Of these, glycol compounds, that is, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, other polyethylene glycols, and their derivatives, are preferred, with ethylene glycol and diethylene glycol being most preferred. When ethylene glycol and/or diethylene glycol are used as the liquid substance, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
 液状物質(特には溶媒)の含有量は、液状物質相に対して、50質量%以上、若しくは60質量%以上であってよく、かつ/又は、95質量%以下、92質量%以下、若しくは90質量%以下であってよい。 The content of the liquid substance (particularly the solvent) may be 50% by mass or more, or 60% by mass or more, and/or 95% by mass or less, 92% by mass or less, or 90% by mass or less, relative to the liquid substance phase.
 液状物質(特には溶媒)の含有量は、液状物質相に対して、好ましくは80質量%~95質量%、より好ましくは85質量%~92質量%である。 The content of the liquid substance (particularly the solvent) is preferably 80% by mass to 95% by mass, more preferably 85% by mass to 92% by mass, relative to the liquid substance phase.
 また、特には、液状物質相は、グリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)を、合計で、60質量%~95質量%、又はさらには65質量%~90質量%の割合で含む。 In particular, the liquid substance phase contains glycol compounds (in particular ethylene glycol and/or diethylene glycol) in a total amount of 60% to 95% by weight, or even 65% to 90% by weight.
<酸成分>
 液状物質相は、酸成分を含む。酸成分は、一般的には、酸性(水溶液のpH<7)を示し塩基と対になって働く物質であり、プロトン(H)を与える又は電子対を受け取る化学種をいう。
<Acid component>
The liquid substance phase contains an acid component. The acid component is generally a substance that is acidic (pH of the aqueous solution is <7) and acts in pairs with a base, and refers to a chemical species that donates a proton (H + ) or accepts an electron pair.
 酸成分は、液状物質相に対して、2.6質量%~20質量%で含有される。 The acid component is contained in the liquid substance phase at 2.6% to 20% by mass.
 液状物質相中での酸成分のこの含有割合は、2.7質量%以上、2.8質量%以上、2.9質量%以上、3質量%以上、3.5質量%以上、4質量%以上、4.5質量%以上、5質量%以上、6質量%以上、7質量%以上、若しくは8質量%以上であってよく、かつ/又は、19質量%以下、18質量%以下、17質量%以下、16質量%以下、15質量%以下、14質量%以下、13質量%以下、12質量%以下、11質量%以下、若しくは10質量%以下であってよい。 This content of the acid component in the liquid substance phase may be 2.7% by weight or more, 2.8% by weight or more, 2.9% by weight or more, 3% by weight or more, 3.5% by weight or more, 4% by weight or more, 4.5% by weight or more, 5% by weight or more, 6% by weight or more, 7% by weight or more, or 8% by weight or more, and/or 19% by weight or less, 18% by weight or less, 17% by weight or less, 16% by weight or less, 15% by weight or less, 14% by weight or less, 13% by weight or less, 12% by weight or less, 11% by weight or less, or 10% by weight or less.
 液状物質相中での酸成分のこの含有割合は、好ましくは3質量%~18質量%、より好ましくは4質量%~16質量%、さらに好ましくは5質量%~14質量%、特に好ましくは6質量%~12質量%である。この場合には、特に良好なリフロー特性を有する電解コンデンサを得ることができる。 The content of the acid component in the liquid substance phase is preferably 3% by mass to 18% by mass, more preferably 4% by mass to 16% by mass, even more preferably 5% by mass to 14% by mass, and particularly preferably 6% by mass to 12% by mass. In this case, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
 液状物質相中での酸成分の含有割合は、液状物質相に含まれるグリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)の合計に対して、3質量%~24質量%であってよい。 The content of the acid component in the liquid substance phase may be 3% by mass to 24% by mass relative to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase.
 液状物質相に含まれるグリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)の合計に対する酸成分のこの含有割合は、3.2質量%以上、3.4質量%以上、3.6質量%以上、3.8質量%以上、4質量%以上、4.2質量%以上、4.4質量%以上、4.6質量%以上、4.8質量%以上、5質量%以上、6質量%以上、7質量%以上、若しくは8質量%以上であってよく、かつ/又は、22質量%以下、20質量%以下、19質量%以下、18質量%以下、17質量%以下、16質量%以下、15質量%以下、14質量%以下、13質量%以下、12質量%以下、11質量%以下、若しくは10質量%以下であってよい。 This content ratio of the acid component to the total of the glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be 3.2% by mass or more, 3.4% by mass or more, 3.6% by mass or more, 3.8% by mass or more, 4% by mass or more, 4.2% by mass or more, 4.4% by mass or more, 4.6% by mass or more, 4.8% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 22% by mass or less, 20% by mass or less, 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
 液状物質相に含まれるグリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)の合計に対する酸成分のこの含有割合は、好ましくは3質量%~22質量%、より好ましくは3.5質量%~20質量%、さらに好ましくは4質量%~18質量%、特に好ましくは4質量%~16質量%である。この場合には、特に良好なリフロー特性を有する電解コンデンサを得ることができる。 The content ratio of the acid component to the total of the glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase is preferably 3% by mass to 22% by mass, more preferably 3.5% by mass to 20% by mass, even more preferably 4% by mass to 18% by mass, and particularly preferably 4% by mass to 16% by mass. In this case, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
 なお、コンデンサ中では、製造過程で導電性高分子分散液等に含まれる添加剤等によって、含浸に用いた液状物質相が希釈されることがある。したがって、コンデンサの製造過程で含浸に用いる液状物質相(「含浸前の液状物質相」)は、コンデンサ中で所望されるよりも比較的高い濃度で、酸成分及び/又は塩基成分を含有することが好ましい場合がある。 In addition, in the capacitor, the liquid substance phase used for impregnation may be diluted by additives contained in the conductive polymer dispersion during the manufacturing process. Therefore, it may be preferable that the liquid substance phase used for impregnation in the capacitor manufacturing process ("liquid substance phase before impregnation") contains an acid component and/or a base component at a relatively higher concentration than desired in the capacitor.
 具体的には、含浸前の液状物質相における酸成分の含有割合は、3質量%~20質量%であってよく、特には、4質量%以上、5質量%以上、6質量%以上、7質量%以上、若しくは8質量%以上であってよく、かつ/又は、19質量%以下、18質量%以下、17質量%以下、16質量%以下、15質量%以下、14質量%以下、13質量%以下、12質量%以下、11質量%以下、若しくは10質量%以下であってよい。 Specifically, the content of the acid component in the liquid substance phase before impregnation may be 3% by mass to 20% by mass, and in particular, 4% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
 含浸前の液状物質相中での酸成分の含有割合は、好ましくは4質量%~18質量%、より好ましくは5質量%~16質量%、さらに好ましくは6質量%~14質量%である。この場合には、特に良好なリフロー特性を有する電解コンデンサを得ることができる。 The content of the acid component in the liquid substance phase before impregnation is preferably 4% by mass to 18% by mass, more preferably 5% by mass to 16% by mass, and even more preferably 6% by mass to 14% by mass. In this case, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
 なお、含浸前の液状物質相に関して、液状物質相に含まれるグリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)の合計に対する酸成分の含有割合は、上述した含有量と同様であってよい。 In addition, with respect to the liquid substance phase before impregnation, the content ratio of the acid component to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be the same as the above-mentioned content.
 酸成分としては、有機酸及び無機酸並びにこれらの複合化合物が挙げられる。 The acid components include organic acids, inorganic acids, and complex compounds thereof.
 有機酸としては、カルボン酸、フェノール類、スルホン酸が挙げられる。カルボン酸としては、ギ酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、スルホサリチル酸、マレイン酸、アジピン酸、安息香酸、トリイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、レゾルシン酸、フロログルシン酸、没食子酸、クエン酸が挙げられる。 Organic acids include carboxylic acids, phenols, and sulfonic acids. Carboxylic acids include formic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, sulfosalicylic acid, maleic acid, adipic acid, benzoic acid, tricarboxylic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, resorcylic acid, phloroglucinic acid, gallic acid, and citric acid.
 無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸が挙げられる。 Inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
 有機酸及び無機酸の複合化合物として、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸が挙げられる。 Examples of composite compounds of organic and inorganic acids include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.
 上記に記載した酸成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The above-mentioned acid components may be used alone or in combination of two or more.
 酸成分は、特に好ましくは、フタル酸である。 The acid component is particularly preferably phthalic acid.
<塩基成分>
 液状物質相は、塩基成分を含む。塩基成分は、一般的に、塩基性(水溶液のpH>7)を示し酸と対になって働く物質であり、プロトン(H)を受け取る又は電子対を与える化学種をいう。
<Base component>
The liquid substance phase contains a base component. The base component is generally a substance that exhibits basicity (pH of the aqueous solution is >7) and acts in combination with an acid, and refers to a chemical species that accepts a proton (H + ) or donates an electron pair.
 塩基成分は、アミン、アミジン、アンモニアから選択される1種以上であってよく、好ましくはアミンである。 The base component may be one or more selected from amines, amidines, and ammonia, and is preferably an amine.
(塩基成分の解離定数)
 本開示に係る電解コンデンサの液状物質相に含有される塩基成分に関して、共役酸の酸解離定数(pKa)が、10.0以下である。このpKaは、25℃で中和滴定によって計測できる。
(Dissociation constant of base component)
The base component contained in the liquid substance phase of the electrolytic capacitor according to the present disclosure has an acid dissociation constant (pKa) of the conjugate acid of 10.0 or less. This pKa can be measured by neutralization titration at 25°C.
 このような塩基成分としては、
 4-メチルモルホリン(25℃でのpKa=7.4)、
 4-エチルモルホリン(25℃でのpKa=7.7)、
 トリエタノールアミン(25℃でのpKa=7.8)
 モルホリン(25℃でのpKa=8.3)、
 ジエタノールアミン(25℃でのpKa=8.9)
が挙げられる。
Such base components include:
4-methylmorpholine (pKa=7.4 at 25° C.),
4-Ethylmorpholine (pKa=7.7 at 25° C.),
Triethanolamine (pKa=7.8 at 25° C.)
Morpholine (pKa=8.3 at 25° C.),
Diethanolamine (pKa=8.9 at 25° C.)
Examples include:
 塩基成分のpKaは、好ましくは9.5以下、より好ましくは9.0以下、さらに好ましくは8.5以下、特に好ましくは8.0以下である。この下限は特に限定されないが、例えば、7.2以上、又は7.3以上であってよい。 The pKa of the base component is preferably 9.5 or less, more preferably 9.0 or less, even more preferably 8.5 or less, and particularly preferably 8.0 or less. There is no particular limit to this lower limit, but it may be, for example, 7.2 or more, or 7.3 or more.
 塩基成分は、液状物質相に対して、1質量%~20質量%で含有されてよい。 The base component may be contained in an amount of 1% to 20% by mass relative to the liquid substance phase.
 塩基成分の含有割合は、液状物質相に対して、1.5質量%以上、2質量%以上、3質量%以上、若しくは4質量%以上であってよく、かつ/又は、18質量%以下、15質量%以下、14質量%以下、12質量%以下、10質量%以下、若しくは8質量%以下であってよい。 The content of the base component may be 1.5% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more, and/or 18% by mass or less, 15% by mass or less, 14% by mass or less, 12% by mass or less, 10% by mass or less, or 8% by mass or less, based on the liquid substance phase.
<酸成分と塩基成分>
 本開示に係る電解コンデンサでは、液状物質相における塩基成分と酸成分の量が、
 (塩基成分のモル数)>(酸成分のモル数)
の関係式を満たす。
<Acid and base components>
In the electrolytic capacitor according to the present disclosure, the amount of the base component and the acid component in the liquid substance phase is:
(number of moles of base component)>(number of moles of acid component)
The following relation is satisfied.
 特に、酸成分のモル数を1としたときに、塩基成分のモル数が、1超、1.1以上、1.2以上、1.3以上、1.4以上、1.5以上であってよく、かつ/又は、3.0以下、2.5以下、2.0以下、1.8以下、若しくは1.6以下であってよい。特に好ましくは、酸成分のモル数を1としたときに、塩基成分のモル数が、1超1.5以下であり、又はさらには1超1.3以下である。 In particular, when the number of moles of the acid component is taken as 1, the number of moles of the base component may be greater than 1, 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, and/or 3.0 or less, 2.5 or less, 2.0 or less, 1.8 or less, or 1.6 or less. Particularly preferably, when the number of moles of the acid component is taken as 1, the number of moles of the base component is greater than 1 and 1.5 or less, or even greater than 1 and 1.3 or less.
 さらに、本開示に係る1つの実施態様に係る電解コンデンサでは、液状物質相における前記塩基成分の質量(B)及び前記酸成分の質量(A)が、
 B>A/2
を満たす。
Furthermore, in an electrolytic capacitor according to one embodiment of the present disclosure, the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase are:
B>A/2
Meet the following.
<液比抵抗>
 好ましくは、本開示に係る電解コンデンサに含有される液状物質相は、電気伝導率計で計測したときに、6.0kΩ・cm以下の比抵抗を示す。この比抵抗は、電解コンデンサを分解及び遠心処理などして抽出した抽出液を液状物質相として、測定することができる。 
<Liquid resistivity>
Preferably, the liquid substance phase contained in the electrolytic capacitor according to the present disclosure has a resistivity of 6.0 kΩ cm or less when measured with an electric conductivity meter. This resistivity can be measured using an extract obtained by disassembling the electrolytic capacitor and subjecting it to centrifugation or the like as the liquid substance phase.
 この比抵抗は、より好ましくは、5.5kΩ・cm以下、5.0kΩ・cm以下、4.5kΩ・cm以下、4.0kΩ・cm以下、又はさらには3.5kΩ・cm以下である。この下限は特に限定されないが、例えば、0.1kΩ・cm以上であってよい。 This resistivity is more preferably 5.5 kΩ·cm or less, 5.0 kΩ·cm or less, 4.5 kΩ·cm or less, 4.0 kΩ·cm or less, or even 3.5 kΩ·cm or less. There is no particular limit to this lower limit, but it may be, for example, 0.1 kΩ·cm or more.
 コンデンサの製造過程で用いられる含浸前の液状物質相の比抵抗は、完成した電解コンデンサ中の液状物質相の比抵抗とは異なる値を示すことがある。これは、完成した電解コンデンサでは、導電性高分子分散液又は溶液に用いられる添加剤(例えばポリオール類)なども比抵抗値に影響することによると考えられる。 The resistivity of the liquid material phase before impregnation used in the capacitor manufacturing process may show a different value from the resistivity of the liquid material phase in the finished electrolytic capacitor. This is thought to be because additives (e.g. polyols) used in the conductive polymer dispersion or solution also affect the resistivity value in the finished electrolytic capacitor.
 したがって、所望の比抵抗を有する電解コンデンサを得るためには、コンデンサの製造過程でコンデンサに含浸させる液状物質相が、3.0kΩ・cm以下、2.5kΩ・cm以下、2.0kΩ・cm以下、又はさらには1.5kΩ・cm以下の比抵抗を有することが好ましいことがある。この下限は特に限定されないが、例えば、0.1kΩ・cm以上であってよい。 Therefore, in order to obtain an electrolytic capacitor with a desired resistivity, it may be preferable for the liquid material phase impregnated into the capacitor during the capacitor manufacturing process to have a resistivity of 3.0 kΩ·cm or less, 2.5 kΩ·cm or less, 2.0 kΩ·cm or less, or even 1.5 kΩ·cm or less. There is no particular lower limit to this, but it may be, for example, 0.1 kΩ·cm or more.
<芳香族ニトロ化合物>
 本開示に係る電解コンデンサの液状物質相は、芳香族ニトロ化合物を含有することができる。芳香族ニトロ化合物は、ニトロ基を有する芳香族化合物である。芳香族ニトロ化合物は、再化成反応等で生成する水素ガスを吸収することによって、コンデンサの耐圧性や耐熱性を向上させる効果を有しうる。
<Aromatic nitro compounds>
The liquid substance phase of the electrolytic capacitor according to the present disclosure may contain an aromatic nitro compound. The aromatic nitro compound is an aromatic compound having a nitro group. The aromatic nitro compound can have the effect of improving the pressure resistance and heat resistance of the capacitor by absorbing hydrogen gas generated by a re-chemical reaction or the like.
 芳香族ニトロ化合物を用いる場合、液状物質相における芳香族ニトロ化合物の割合は、0.5質量%~10質量%、0.5質量%~5質量%、又はさらには1質量%~5質量%であってよい。 When an aromatic nitro compound is used, the proportion of the aromatic nitro compound in the liquid phase may be 0.5% to 10% by weight, 0.5% to 5% by weight, or even 1% to 5% by weight.
 芳香族ニトロ化合物は、ニトロフェノール、ニトロアセトフェノン、ニトロベンジルアルコール、ニトロ安息香酸、ニトロベンズアルデヒド、ニトロアニソール、ニトロベンゼンカルボン酸、ニトロベンゼンジカルボン酸、ニトロアニリン,ニトロアセトアニリド、ニトロトルエン、ニトロフェニル酢酸、ニトロクレゾール、ジニトロ安息香酸、メチルニトロ安息香酸、ニトロテレフタル酸、及びニトロイソフタルからなる群より選択される少なくとも1つであってよい。これらは、単独で用いてもよく、2種以上を組み合わせて併用してもよい。 The aromatic nitro compound may be at least one selected from the group consisting of nitrophenol, nitroacetophenone, nitrobenzyl alcohol, nitrobenzoic acid, nitrobenzaldehyde, nitroanisole, nitrobenzene carboxylic acid, nitrobenzene dicarboxylic acid, nitroaniline, nitroacetanilide, nitrotoluene, nitrophenyl acetic acid, nitrocresol, dinitrobenzoic acid, methyl nitrobenzoic acid, nitroterephthalic acid, and nitroisophthalic acid. These may be used alone or in combination of two or more.
 好ましくは、芳香族ニトロ化合物は、ニトロフェノール、ニトロアセトフェノン、ニトロベンジルアルコール、ニトロ安息香酸、及びニトロベンズアルデヒドからなる群より選択される少なくとも1つである。芳香族ニトロ化合物は、特に好ましくは、ニトロアセトフェノンである。 Preferably, the aromatic nitro compound is at least one selected from the group consisting of nitrophenol, nitroacetophenone, nitrobenzyl alcohol, nitrobenzoic acid, and nitrobenzaldehyde. The aromatic nitro compound is particularly preferably nitroacetophenone.
<水>
 液状物質相は、水を含有してもよい。
<Water>
The liquid phase may contain water.
 陽極箔と陰極箔との間の空隙に存在する液状物質相が、液体状の水溶性高分子化合物に加えて「水」を含有する場合には、電解コンデンサを作製する過程で酸化皮膜に欠損が生じたとしても、水溶性高分子化合物が保持する水分に加えて「水」由来の水分を欠損の修復に使用することが可能となる。その結果、酸化皮膜の欠損密度の低減、及び漏れ電流の低減に関して、特に良好な効果を得ることができる。 If the liquid substance phase present in the gap between the anode foil and the cathode foil contains "water" in addition to the liquid water-soluble polymer compound, even if defects occur in the oxide film during the process of manufacturing the electrolytic capacitor, it is possible to use the moisture from the "water" in addition to the moisture held by the water-soluble polymer compound to repair the defects. As a result, particularly good effects can be obtained in terms of reducing the density of defects in the oxide film and reducing leakage current.
 水の含有量は、液状物質相に対して、0質量%~10質量%であってよく、好ましくは0.1質量%~10質量%であり、より好ましくは0.5~5質量%である。水の含有量がこの範囲にある場合には、酸化皮膜の欠損修復効果を十分に得ることができ、かつ、水の含有量が多すぎることによる弊害(高温環境下で長期間使用した場合に起こり得るコンデンサの膨張など)を回避又は抑制できることがある。 The water content may be 0% to 10% by mass, preferably 0.1% to 10% by mass, and more preferably 0.5 to 5% by mass, relative to the liquid substance phase. When the water content is within this range, the oxide film defect repair effect can be sufficiently obtained, and adverse effects caused by an excessive water content (such as expansion of the capacitor that can occur when used for a long period of time in a high-temperature environment) can be avoided or suppressed.
<陽極箔>
 本開示に係るコンデンサは、表面に酸化皮膜が形成された陽極箔を含む。
<Anode foil>
A capacitor according to the present disclosure includes an anode foil having an oxide film formed on its surface.
 陽極箔は、アルミニウム、タンタル、ニオブなどの弁金属から形成されてよい。 The anode foil may be formed from a valve metal such as aluminum, tantalum, or niobium.
 陽極箔は、その表面に、酸化皮膜を有する。例えば、公知の方法に従ったエッチング処理による粗面化及びその後の化成処理によって、陽極箔の表面に酸化皮膜を形成することができる。 The anode foil has an oxide film on its surface. For example, an oxide film can be formed on the surface of the anode foil by roughening it with an etching process according to a known method and then performing a chemical conversion treatment.
<陰極箔>
 本開示に係るコンデンサは、陰極箔を含む。
<Cathode foil>
A capacitor according to the present disclosure includes a cathode foil.
 陰極箔は、陽極箔と同様に、アルミニウム、タンタル、ニオブなどの弁金属から形成されてよい。 The cathode foil, like the anode foil, may be formed from a valve metal such as aluminum, tantalum, or niobium.
 陰極箔は、その表面に酸化皮膜が形成されてもよい。陰極箔の表面は、例えば、陽極箔と同様にエッチング処理により粗面化された後、自然酸化によって、酸化皮膜が形成されていてよい。また、陰極箔は、所望の電圧(例えば2V)で化成処理されてもよく、それによって酸化皮膜が形成されていてもよい。 The cathode foil may have an oxide film formed on its surface. The surface of the cathode foil may be roughened by etching in the same manner as the anode foil, and then an oxide film may be formed by natural oxidation. The cathode foil may also be subjected to a chemical conversion treatment at a desired voltage (e.g., 2 V), which may result in the formation of an oxide film.
<セパレータ>
 本開示に係るコンデンサは、セパレータを含む。セパレータは、陽極箔及び陰極箔の間に配設される。
<Separator>
A capacitor according to the present disclosure includes a separator disposed between the anode foil and the cathode foil.
 セパレータとしては、導電性高分子粒子や水溶性高分子と化学的に馴染み易いセルロース繊維、耐熱性に優れたナイロン、PET、PPSのような合成樹脂で形成されたものが好ましく、例えば、耐熱性セルロース紙や耐熱性難燃紙を用いることができる。より詳細には、セパレータとしては、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロース及びこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。 As the separator, those formed from cellulose fibers that are chemically compatible with conductive polymer particles and water-soluble polymers, and synthetic resins such as nylon, PET, and PPS that have excellent heat resistance are preferable, and for example, heat-resistant cellulose paper and heat-resistant flame-retardant paper can be used. More specifically, examples of the separator include cellulose and mixed papers such as kraft, Manila hemp, esparto, hemp, and rayon, polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof, polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides, polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins, and these resins can be used alone or in combination.
<固体電解質相>
 本開示に係るコンデンサは、陽極箔及び陰極箔の間の空隙に、固体電解質相を含む。
<Solid electrolyte phase>
Capacitors according to the present disclosure include a solid electrolyte phase in the gap between the anode and cathode foils.
(導電性高分子化合物)
 固体電解質相は、導電性高分子化合物を含み、特には導電性高分子化合物から実質的に構成される。
(Conductive polymer compound)
The solid electrolyte phase contains a conductive polymer compound, and in particular is substantially composed of a conductive polymer compound.
 固体電解質相は、種々の形態であってよく、例えば、連続した一様の厚層若しくは薄層、膜(フィルム状)であってよく、あるいは、導電性高分子化合物及び随意にドーパントを含む微粒子の集合体、又はこのような微粒子及びその集合体(特には鎖)が互いに結合してネットワークを形成した構造体であってよい。また、固体電解質相は、導電性高分子化合物及び随意にドーパントを含む微粒子から構成される微粒子層であってもよい。  The solid electrolyte phase may be in various forms, for example a continuous uniform thick or thin layer, a membrane (film-like), or an aggregate of fine particles containing a conductive polymer compound and optionally a dopant, or a structure in which such fine particles and their aggregates (particularly chains) are bonded to each other to form a network. The solid electrolyte phase may also be a fine particle layer composed of fine particles containing a conductive polymer compound and optionally a dopant.
 導電性高分子化合物としては、ポリチオフェン、ポリピロール、及びポリアリニン、並びにこれらの誘導体から選択される少なくとも1つが挙げられる。導電性高分子化合物は、これらのうちの少なくとも1つであってよい。好ましい導電性高分子化合物は、ポリエチレンジオキシチオフェン(PEDOT)(特には、ポリ(3,4エチレンジオキシチオフェン))である。 The conductive polymer compound may be at least one selected from polythiophene, polypyrrole, polyaniline, and derivatives thereof. The conductive polymer compound may be at least one of these. A preferred conductive polymer compound is polyethylenedioxythiophene (PEDOT) (particularly poly(3,4-ethylenedioxythiophene)).
 固体電解質相は、ドーパントをさらに含むことができる。ドーパントとしては、ベンゼンスルホン酸またはその誘導体、ナフタレンスルホン酸またはその誘導体、アントラキノンスルホン酸またはその誘導体などの芳香族系スルホン酸;ポリスチレンスルホン酸(PSS)、スルホン化ポリエステル、フェノールスルホン酸ノボラック樹脂、スチレンスルホン酸と非スルホン酸系モノマー(メタクリル酸エステル、アクリル酸エステル、不飽和炭化水素含有アルコキシシラン化合物またはその加水分解物など)との共重合体などの高分子スルホン酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸などの鎖状スルホンが挙げられる。これらは、1つを単独で用いてもよく、2種以上を併用してもよい。 The solid electrolyte phase may further include a dopant. Examples of the dopant include aromatic sulfonic acids such as benzenesulfonic acid or its derivatives, naphthalenesulfonic acid or its derivatives, and anthraquinonesulfonic acid or its derivatives; polymeric sulfonic acids such as polystyrenesulfonic acid (PSS), sulfonated polyester, phenolsulfonic acid novolac resin, and copolymers of styrenesulfonic acid and non-sulfonic acid monomers (methacrylic acid esters, acrylic acid esters, unsaturated hydrocarbon-containing alkoxysilane compounds or their hydrolysates); and chain sulfones such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, and butanesulfonic acid. These may be used alone or in combination of two or more.
 ポリスチレンスルホン酸としては、重量平均分子量が10,000~1,000,000のものが好ましい。 The polystyrene sulfonic acid preferably has a weight average molecular weight of 10,000 to 1,000,000.
 好ましい実施態様では、固体電解質相が、ポリエチレンジオキシチオフェン(PEDOT)、及びドーパントとしてのポリスチレンスルホン酸(PSS)を含む。 In a preferred embodiment, the solid electrolyte phase comprises polyethylenedioxythiophene (PEDOT) and polystyrenesulfonic acid (PSS) as a dopant.
 導電性高分子化合物は、微粒子状であってよい。微粒子状の導電性高分子化合物の平均粒子径は、好ましくは、1nm~300nm、又はさらには5nm~200nmの範囲(例えば20nm)である。微粒子状の導電性高分子化合物は、ドーパントを含んでよい。導電性高分子及び随意にドーパントから構成される微粒子の平均粒子径は、例えば、動的光散乱法によって測定される粒度分布から求めることができる。 The conductive polymer compound may be in the form of fine particles. The average particle size of the fine particle conductive polymer compound is preferably in the range of 1 nm to 300 nm, or even 5 nm to 200 nm (e.g., 20 nm). The fine particle conductive polymer compound may contain a dopant. The average particle size of the fine particles composed of a conductive polymer and, optionally, a dopant, can be determined, for example, from the particle size distribution measured by dynamic light scattering.
 本開示に係るコンデンサにおいて、陽極箔及び陰極箔の間の空隙に占める導電性高分子化合物の割合は、0.5vol%~20vol%、又はさらには1vol%~10vol%であってよい。 In the capacitor according to the present disclosure, the proportion of the conductive polymer compound in the gap between the anode foil and the cathode foil may be 0.5 vol% to 20 vol%, or even 1 vol% to 10 vol%.
(固体電解質相の形成)
 導電性高分子化合物を含む固体電解質相を形成する方法は、特に限定されないが、例えば、浸漬含浸法によって形成することができる。例えば、導電性高分子化合物を分散媒に分散させた分散液(導電性高分子化合物分散液)又は導電性高分子化合物を溶媒に溶解させた溶液(導電性高分子化合物溶液)を空隙に充填した後、加熱乾燥などによって空隙から分散媒又は溶媒を除去することによって、固体電解質相を形成することができる。
(Formation of solid electrolyte phase)
The method for forming the solid electrolyte phase containing the conductive polymer compound is not particularly limited, but it can be formed by, for example, a dipping impregnation method. For example, the solid electrolyte phase can be formed by filling a dispersion liquid (conductive polymer compound dispersion liquid) in which the conductive polymer compound is dispersed in a dispersion medium or a solution (conductive polymer compound solution) in which the conductive polymer compound is dissolved in a solvent into the voids, and then removing the dispersion medium or the solvent from the voids by heating and drying or the like.
 より具体的には、例えば、導入槽を用いて、導電性高分子化合物分散液又は導電性高分子化合物溶液に、コンデンサ素子を浸漬する。そして、コンデンサ素子を導電性高分子化合物分散液又は導電性高分子化合物溶液から取り出し、コンデンサ素子を加熱処理することによって、コンデンサ素子の陽極箔と陰極箔との間の空隙に固体電解質相を形成することができる。この操作は、複数回にわたって繰り返してよく、それによって、固体電解質相の充填量を増加させることができる。 More specifically, for example, a capacitor element is immersed in a conductive polymer dispersion liquid or a conductive polymer solution using an introduction tank. The capacitor element is then removed from the conductive polymer dispersion liquid or the conductive polymer solution, and the capacitor element is heat-treated to form a solid electrolyte phase in the gap between the anode foil and the cathode foil of the capacitor element. This operation may be repeated multiple times, thereby increasing the amount of solid electrolyte phase filled.
 導電性高分子化合物を含む固体電解質相は、モノマーをいわゆる「その場重合」で重合させて形成してもよい。 The solid electrolyte phase containing the conductive polymer compound may be formed by polymerizing the monomer in a so-called "in-situ polymerization".
 導電性高分子化合物分散液又は導電性高分子化合物溶液における導電性高分子の含有量は、0.1~10質量%、0.2~5質量%、特には0.5~3質量%であってよい。 The conductive polymer content in the conductive polymer compound dispersion or conductive polymer compound solution may be 0.1 to 10 mass%, 0.2 to 5 mass%, and particularly 0.5 to 3 mass%.
 導電性高分子化合物分散液のための分散媒としては、例えば、水、アルコール(例えば、メタノール、エタノール、1-プロパノール、ブタノール)などのプロトン性溶媒、及びこれらの混和物を用いることができる。導電性高分子化合物溶液のための溶媒としては、例えば、水、アルコール(例えば、メタノール、エタノール、1-プロパノール、ブタノール)などのプロトン性溶媒、及びこれらの混和物などを用いることができる。なお、導電性高分子化合物分散液又は導電性高分子化合物溶液に芳香族ニトロ化合物を含有させてもよい。 As a dispersion medium for the conductive polymer compound dispersion, for example, protic solvents such as water, alcohol (e.g., methanol, ethanol, 1-propanol, butanol), and mixtures thereof can be used. As a solvent for the conductive polymer compound solution, for example, protic solvents such as water, alcohol (e.g., methanol, ethanol, 1-propanol, butanol), and mixtures thereof can be used. An aromatic nitro compound may be contained in the conductive polymer compound dispersion or the conductive polymer compound solution.
 導電性高分子化合物分散液又は導電性高分子化合物溶液は、添加剤としてその他の化合物を含有することができ、例えば、高沸点化合物(特には150℃以上の沸点を有する化合物)を含有することができる。添加剤としては、グリセリン、ジグリセリン、ポリグリセリン、エチレングリコール、ジエチレングリコール、及びその他のポリエチレングリコール、並びにこれらの誘導体、γ-ブチロラクトン、ブタンジオール、ジメチルスルホキシド、スルホラン、N-メチルピロリドン、ジメチルスルホラン、及びポリエチレングリコール、並びにこれらの誘導体が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 The conductive polymer dispersion or conductive polymer solution may contain other compounds as additives, for example, high boiling point compounds (particularly compounds having a boiling point of 150°C or higher). Examples of additives include glycerin, diglycerin, polyglycerin, ethylene glycol, diethylene glycol, and other polyethylene glycols, as well as derivatives thereof, gamma-butyrolactone, butanediol, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, dimethyl sulfolane, and polyethylene glycol, as well as derivatives thereof. These may be used alone, or two or more of them may be used in combination.
 導電性高分子化合物分散液又は導電性高分子化合物溶液における添加剤の含有量は、1~40質量%であってよく、特には、2~30質量%、又はさらには5~25質量%であってよい。この含有量は、1~20質量%であってもよい。 The content of the additive in the conductive polymer compound dispersion or conductive polymer compound solution may be 1 to 40% by mass, in particular 2 to 30% by mass, or even 5 to 25% by mass. This content may be 1 to 20% by mass.
<コンデンサ>
(CAP)
 本開示に係るコンデンサは、実施例で記載される方法に従って120Hzで計測したときに、1~5000μF、又はさらには10~1000μFの容量を有することができる。
<Capacitor>
(CAP)
Capacitors according to the present disclosure can have a capacitance of 1 to 5000 μF, or even 10 to 1000 μF, when measured at 120 Hz according to the method described in the Examples.
(ESR)
 本開示に係るコンデンサは、実施例で記載される方法に従って100kHzで計測したときに、5~30mΩ、又はさらには8~20mΩのESRを有することができる。
(ESR)
Capacitors according to the present disclosure may have an ESR of 5 to 30 mΩ, or even 8 to 20 mΩ, when measured at 100 kHz according to the method described in the Examples.
<<コンデンサの製造方法>>
 本発明に係るコンデンサを製造する方法は、特に限定されない。本発明に係るコンデンサは、例えば、コンデンサ素子作製工程と、化成処理工程と、固体電解質相導入工程と、液状物質相導入工程と、組立・封止工程とをこの順序で含む。以下、各工程に沿って、例示的な実施形態における電解コンデンサの製造方法を説明する。
<<Capacitor manufacturing method>>
The method for manufacturing the capacitor according to the present invention is not particularly limited. The capacitor according to the present invention includes, for example, a capacitor element manufacturing step, a chemical conversion treatment step, a solid electrolyte phase introduction step, a liquid substance phase introduction step, and an assembly and sealing step in this order. Below, the manufacturing method of the electrolytic capacitor in the exemplary embodiment will be described along with each step.
(1)コンデンサ素子作製工程
 電解コンデンサの例示的な方法では、まず、陽極箔21として、アルミニウム箔を提供する。拡面化処理によってアルミニウム箔の表面を粗面化した後に、粗面化されたアルミニウム箔の表面に2V~500Vの所定の電圧を印加して化成処理を施し、それによって、アルミニウム箔の表面に酸化皮膜22を形成する。そして、酸化皮膜22を有する陽極箔21と、陰極箔23と、陽極箔21と陰極箔23との間に配設されたセパレータ25とを備えるコンデンサ素子を作製する(図1(b)参照。)。具体的には、セパレータ25を介して、凹凸表面(粗面)を有し当該凹凸表面に酸化皮膜22が形成された陽極箔21と凹凸表面を有する陰極箔23とを重ね合わせて巻回することによってコンデンサ素子20を作製する。このとき、陽極箔21にはリード30が接続されており、陰極箔23にはリード29が接続されている。
(1) Capacitor Element Preparation Process In an exemplary method for an electrolytic capacitor, first, an aluminum foil is provided as an anode foil 21. After the surface of the aluminum foil is roughened by a surface enlarging process, a predetermined voltage of 2V to 500V is applied to the roughened surface of the aluminum foil to perform a chemical conversion process, thereby forming an oxide film 22 on the surface of the aluminum foil. Then, a capacitor element is prepared that includes an anode foil 21 having an oxide film 22, a cathode foil 23, and a separator 25 disposed between the anode foil 21 and the cathode foil 23 (see FIG. 1(b)). Specifically, the anode foil 21 having an uneven surface (rough surface) and the oxide film 22 formed on the uneven surface and the cathode foil 23 having an uneven surface are overlapped and wound through the separator 25 to prepare a capacitor element 20. At this time, a lead 30 is connected to the anode foil 21, and a lead 29 is connected to the cathode foil 23.
(2)化成処理工程
 次に、コンデンサ素子20を化成液槽中の化成液に浸漬するとともに、陽極側のリード30と化成液との間に所定の電圧(例えば100V)を5分間印加する。この操作によって、陽極箔21の端部に存在する酸化皮膜欠損部及び表面に存在することがある酸化皮膜欠損部が修復される。
(2) Chemical Conversion Treatment Step Next, the capacitor element 20 is immersed in a chemical conversion solution in a chemical conversion solution tank, and a predetermined voltage (e.g., 100 V) is applied between the anode lead 30 and the chemical conversion solution for 5 minutes. This operation repairs defects in the oxide film present at the edge of the anode foil 21 and defects in the oxide film that may be present on the surface.
 化成液としては、化成液(例えば、アジピン酸アンモニウム、ホウ酸アンモニウム、リン酸アンモニウム、グルタル酸アンモニウム、アゼライン酸アンモニウム、酒石酸アンモニウム、セバシン酸アンモニウム、ピメリン酸アンモニウム、スベリン酸アンモニウムなどの水溶液)を用いることができる。 The chemical conversion liquid may be an aqueous solution of, for example, ammonium adipate, ammonium borate, ammonium phosphate, ammonium glutarate, ammonium azelaate, ammonium tartrate, ammonium sebacate, ammonium pimelate, or ammonium suberate.
(3)固体電解質相導入工程
 次に、陽極箔21と陰極箔23との間の空隙に、微粒子状の導電性高分子化合物26からなる固体電解質相を、空隙に占める固体電解質相の割合が例えば2vol%~30vol%の範囲内になるように導入する。固体電解質相導入工程では、例えば、導電性高分子化合物を分散媒に分散させた導電性高分子化合物分散液を空隙に充填した後、空隙から分散媒を除去することによって、空隙に固体電解質相を導入することができる。導電性高分子化合物分散液の代わりに、導電性高分子化合物を溶媒に溶解させた溶液(導電性高分子化合物溶液)を用いてもよい。
(3) Solid Electrolyte Phase Introducing Step Next, a solid electrolyte phase consisting of fine particle conductive polymer compound 26 is introduced into the gap between the anode foil 21 and the cathode foil 23 so that the ratio of the solid electrolyte phase occupying the gap is within a range of, for example, 2 vol % to 30 vol %. In the solid electrolyte phase introducing step, for example, a conductive polymer compound dispersion liquid in which a conductive polymer compound is dispersed in a dispersion medium is filled into the gap, and then the dispersion medium is removed from the gap, thereby introducing the solid electrolyte phase into the gap. Instead of the conductive polymer compound dispersion liquid, a solution in which a conductive polymer compound is dissolved in a solvent (conductive polymer compound solution) may be used.
 より具体的には、固体電解質相導入工程は、浸漬含浸法により行うことができる。すなわち、導電性高分子化合物分散液(例えば導電性高分子化合物濃度2vol%)を導入槽中に満たした後、コンデンサ素子を導電性高分子化合物分散液に浸漬する。次に、コンデンサ素子を導入槽から取り出し、その後、コンデンサ素子を加熱処理する。 More specifically, the solid electrolyte phase introduction step can be performed by a dipping impregnation method. That is, after filling an introduction tank with a conductive polymer compound dispersion liquid (e.g., conductive polymer compound concentration 2 vol%), the capacitor element is immersed in the conductive polymer compound dispersion liquid. Next, the capacitor element is removed from the introduction tank, and then the capacitor element is heat-treated.
 導電性高分子化合物分散液は、懸濁状態にあるモノマー(例えばPEDOTモノマー)を重合(ラジカル重合又は酸化重合)させることによってドーパントや乳化剤が添加された導電性高分子化合物(例えばPEDOTポリマー)からなる微粒子状の導電性高分子化合物を作製し、当該微粒子状の導電性高分子化合物を所定の分散媒に分散させることによって、作製することができる。導電性高分子化合物の平均粒子径は、重合反応条件(例えば、開始剤、モノマー、重合補助剤などの濃度、反応温度、反応溶液の攪拌条件など)を適宜設定することによって調節することができる。また、公知の粉砕処理(例えば、攪拌粉砕処理、振動粉砕処理など)を施すことによって調節することもできる。また、分取濾過処理により粒子径を均一化することもできる。 The conductive polymer dispersion liquid can be produced by polymerizing (radical polymerization or oxidative polymerization) a monomer (e.g., PEDOT monomer) in suspension to produce a conductive polymer compound in the form of fine particles made of a conductive polymer compound (e.g., PEDOT polymer) to which a dopant or emulsifier has been added, and dispersing the fine particles of the conductive polymer compound in a specified dispersion medium. The average particle size of the conductive polymer compound can be adjusted by appropriately setting the polymerization reaction conditions (e.g., concentrations of initiator, monomer, polymerization aid, etc., reaction temperature, stirring conditions of the reaction solution, etc.). It can also be adjusted by carrying out a known crushing process (e.g., stirring crushing process, vibration crushing process, etc.). The particle size can also be made uniform by a preparative filtration process.
 なお、空隙に占める固体電解質相の割合を増加させるためには、上記操作の反復回数を増やすことができ、かつ/又は、導電性高分子化合物分散液におけるポリマー濃度を高くすることができる。一方、空隙に占める固体電解質相の割合を低減するためには、上記操作の反復回数を減らすことができ、かつ/又は、導電性高分子化合物分散液におけるポリマー濃度を低くすることができる。 In order to increase the proportion of the solid electrolyte phase occupying the voids, the number of times the above operation is repeated can be increased and/or the polymer concentration in the conductive polymer compound dispersion can be increased. On the other hand, in order to decrease the proportion of the solid electrolyte phase occupying the voids, the number of times the above operation is repeated can be decreased and/or the polymer concentration in the conductive polymer compound dispersion can be decreased.
(4)液状物質相導入工程
 液状物質相導入工程では、例えば、陽極箔21と陰極箔23との間の空隙に、液状物質相27を、固体電解質を取り囲むように、かつ、空隙に占める液状物質相27の割合が10vol%~99vol%の範囲内になるように導入する。液状物質相導入工程は、具体的には、以下の(a)及び(b)のようにして行うことができる。
(4) Liquid substance phase introducing step In the liquid substance phase introducing step, for example, the liquid substance phase 27 is introduced into the gap between the anode foil 21 and the cathode foil 23 so as to surround the solid electrolyte and so that the ratio of the liquid substance phase 27 occupying the gap is within a range of 10 vol % to 99 vol %. Specifically, the liquid substance phase introducing step can be performed as follows (a) and (b).
(a)液状物質相の作製
 液状物質(例えばエチレングリコール)を提供し、この液状物質に、所定量の酸成分及び塩基成分を添加した後、撹拌することによって、液状物質相を作製することができる。これらの操作は、例えば40~60℃程度にまで加熱して行ってよい。
(a) Preparation of liquid substance phase A liquid substance phase can be prepared by providing a liquid substance (e.g., ethylene glycol), adding a predetermined amount of an acid component and a base component to the liquid substance, and then stirring the mixture. These operations may be performed by heating the mixture to, for example, about 40 to 60°C.
(b)液状物質相の導入
 液状物質相の充填を、浸漬含浸法によって行う場合には、液状物質相を導入槽中に満たした後、コンデンサ素子を液状物質相に浸漬することによって、空隙に液状物質相を導入する。
(b) Introduction of Liquid Material Phase When the filling of the liquid material phase is carried out by the immersion impregnation method, the liquid material phase is filled into an introduction tank, and then the capacitor element is immersed in the liquid material phase to introduce the liquid material phase into the voids.
(5)組立・封止工程
 組立・封止工程では、封口部材40をコンデンサ素子20に取り付けるとともに、コンデンサ素子20を金属ケース10に挿入した後、金属ケース10の開口端近傍で金属ケース10をかしめる。封口部材40としては、例えば、イソブチレン・イソプレンゴム(IIR)を用いることができる。イソブチレン・イソプレンゴム(IIR)に代えて、エチレン・プロピレン・ターポリマー(EPT)、EPT-IIRブレンドゴム、シリコーンゴムなどのゴム材料や、フェノール樹脂(ベークライト)、エポキシ樹脂、フッ素樹脂などの樹脂とゴムとを貼り合わせたゴム複合材料を用いることもできる。その後、随意に、高温雰囲気下で所定の電圧を印加してエージング工程を実施する。これにより、実施形態に係る電解コンデンサ1が完成する。
(5) Assembly and sealing process In the assembly and sealing process, the sealing member 40 is attached to the capacitor element 20, and the capacitor element 20 is inserted into the metal case 10, and then the metal case 10 is crimped near the open end of the metal case 10. As the sealing member 40, for example, isobutylene-isoprene rubber (IIR) can be used. Instead of isobutylene-isoprene rubber (IIR), rubber materials such as ethylene-propylene terpolymer (EPT), EPT-IIR blend rubber, silicone rubber, and rubber composite materials in which resins such as phenolic resin (Bakelite), epoxy resin, and fluororesin are bonded to rubber can also be used. Thereafter, an aging process is performed by applying a predetermined voltage in a high-temperature atmosphere as desired. This completes the electrolytic capacitor 1 according to the embodiment.
 本開示に係るコンデンサは、特には下記の本開示に係る電解コンデンサの製造方法によって製造できる:
 電解コンデンサを製造する方法であって、
 表面に酸化皮膜が形成された陽極箔と陰極箔とを備えるコンデンサ素子を形成すること(コンデンサ素子作製工程)、
 陽極箔と陰極箔との間の空隙に、導電性高分子化合物を含む固体電解質相を導入すること(固体電解質相導入工程)、及び、
 陽極箔と陰極箔との間の空隙に、液状物質を含む液状物質相を導入すること(液状物質相導入工程)
を含み、
 液状物質相は、さらに、酸成分及び塩基成分を含み、
 塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
 液状物質相における塩基成分と酸成分の量が、
 (前記塩基成分のモル数)>(前記酸成分のモル数)
の関係式を満たし、かつ
 酸成分が、前記液状物質相中で、2.6質量%~20質量%である、
方法。
The capacitor according to the present disclosure can be produced in particular by the method for producing an electrolytic capacitor according to the present disclosure as follows:
1. A method for manufacturing an electrolytic capacitor, comprising the steps of:
forming a capacitor element including an anode foil and a cathode foil having an oxide film formed on the surface thereof (capacitor element fabrication process);
Introducing a solid electrolyte phase containing a conductive polymer compound into a gap between the anode foil and the cathode foil (solid electrolyte phase introduction step); and
A liquid substance phase containing a liquid substance is introduced into the gap between the anode foil and the cathode foil (liquid substance phase introduction step).
Including,
The liquid phase further comprises an acid component and a base component;
the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
The amount of base and acid components in the liquid phase is
(number of moles of the base component)>(number of moles of the acid component)
The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
Method.
 本開示に係るこの製造方法の各工程及び各構成要素の詳細については、本開示に係る電解コンデンサに関する上記の記載、及びコンデンサの製造方法に関する上記の具体的な記載を参照できる。 For details of each step and each component of the manufacturing method according to the present disclosure, please refer to the above description of the electrolytic capacitor according to the present disclosure and the above specific description of the manufacturing method of the capacitor.
 この製造方法の液状物質相導入工程において、液状物質相における酸成分の含有割合は、特には、3~20質量%であってよく、さらには、4質量%以上、5質量%以上、6質量%以上、7質量%以上、若しくは8質量%以上であってよく、かつ/又は、19質量%以下、18質量%以下、17質量%以下、16質量%以下、15質量%以下、14質量%以下、13質量%以下、12質量%以下、11質量%以下、若しくは10質量%以下であってよい。 In the liquid substance phase introduction step of this manufacturing method, the content of the acid component in the liquid substance phase may be, in particular, 3 to 20% by mass, and may further be 4% by mass or more, 5% by mass or more, 6% by mass or more, 7% by mass or more, or 8% by mass or more, and/or 19% by mass or less, 18% by mass or less, 17% by mass or less, 16% by mass or less, 15% by mass or less, 14% by mass or less, 13% by mass or less, 12% by mass or less, 11% by mass or less, or 10% by mass or less.
 この製造方法の液状物質相導入工程において、液状物質相中での酸成分の含有割合は、好ましくは4質量%~18質量%、より好ましくは5質量%~16質量%、さらに好ましくは6質量%~14質量%である。この場合には、特に良好なリフロー特性を有する電解コンデンサを得ることができる。 In the liquid phase introduction step of this manufacturing method, the content of the acid component in the liquid phase is preferably 4% by mass to 18% by mass, more preferably 5% by mass to 16% by mass, and even more preferably 6% by mass to 14% by mass. In this case, an electrolytic capacitor with particularly good reflow characteristics can be obtained.
 なお、液状物質相に含まれるグリコール化合物(特にはエチレングリコール及び/又はジエチレングリコール)の合計に対する酸成分の含有割合は、上述した含有量と同様であってよい。 The content ratio of the acid component to the total amount of glycol compounds (particularly ethylene glycol and/or diethylene glycol) contained in the liquid substance phase may be the same as the above-mentioned content.
 液状物質相導入工程において、液状物質(特には溶媒)の含有量は、液状物質相に対して、45質量%以上、50質量%以上、若しくは60質量%以上であってよく、かつ/又は、95質量%以下、92質量%以下、90質量%以下、若しくは80質量%以下であってよい。液状物質(特には溶媒)の含有量は、液状物質相に対して、好ましくは、70質量%~95質量%、又は82質量%~92質量%、より好ましくは85質量%~90質量%である。 In the liquid substance phase introduction step, the content of the liquid substance (particularly the solvent) may be 45 mass% or more, 50 mass% or more, or 60 mass% or more, and/or 95 mass% or less, 92 mass% or less, 90 mass% or less, or 80 mass% or less, relative to the liquid substance phase. The content of the liquid substance (particularly the solvent) is preferably 70 mass% to 95 mass%, or 82 mass% to 92 mass%, more preferably 85 mass% to 90 mass%, relative to the liquid substance phase.
 液状物質相導入工程において、塩基成分は、液状物質相に対して、0.5質量%~20質量%、又は1質量%~18質量%で含有されてよい。塩基成分の含有割合は、液状物質相に対して、1.0質量%以上、1.5質量%以上、2質量%以上、3質量%以上、若しくは4質量%以上であってよく、かつ/又は、20質量%以下、18質量%以下、15質量%以下、14質量%以下、12質量%以下、10質量%以下、若しくは8質量%以下であってよい。 In the liquid substance phase introduction step, the base component may be contained in an amount of 0.5% to 20% by mass, or 1% to 18% by mass, relative to the liquid substance phase. The content of the base component may be 1.0% by mass or more, 1.5% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more, relative to the liquid substance phase, and/or 20% by mass or less, 18% by mass or less, 15% by mass or less, 14% by mass or less, 12% by mass or less, 10% by mass or less, or 8% by mass or less.
 芳香族ニトロ化合物を用いる場合、液状物質相導入工程において、液状物質相における芳香族ニトロ化合物の割合は、0.1質量%~10質量%、0.5質量%~8質量%、0.5質量%~5質量%、又はさらには1質量%~5質量%であってよい。 When an aromatic nitro compound is used, the proportion of the aromatic nitro compound in the liquid phase in the liquid phase introduction step may be 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass, 0.5% by mass to 5% by mass, or even 1% by mass to 5% by mass.
 液状物質相導入工程において、水の含有量は、液状物質相に対して、0質量%~10質量%、又は0質量%~9質量%であってよい。1つの実施態様では、好ましくは0.1質量%~9質量%であり、より好ましくは0.4~4質量%である。 In the liquid substance phase introduction step, the water content may be 0% by mass to 10% by mass, or 0% by mass to 9% by mass, relative to the liquid substance phase. In one embodiment, it is preferably 0.1% by mass to 9% by mass, and more preferably 0.4% by mass to 4% by mass.
 本開示に係る上記製造方法の1つの好ましい実施態様では、下記のうちの少なくとも1つの特徴をさらに有してよい: 
 液状物質相における塩基成分の質量(B)及び酸成分の質量(A)に関して、B>A/2であり;かつ/又は
 塩基成分が、アミンを含み;かつ/又は
 塩基成分が、モルホリン、メチルモルホリン、エチルモルホリン、トリエタノールアミン、及びジエタノールアミンから選択される少なくとも1つを含有し;かつ/又は
 酸成分が、フタル酸であり;かつ/又は
 液状物質が、ジエチレングリコール又はエチレングリコールを含み;かつ/又は
 液状物質相の比抵抗が、6.0kΩ・cm以下である。
In one preferred embodiment of the above-mentioned manufacturing method according to the present disclosure, it may further have at least one of the following features:
With respect to the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase, B>A/2; and/or the base component contains an amine; and/or the base component contains at least one selected from morpholine, methylmorpholine, ethylmorpholine, triethanolamine, and diethanolamine; and/or the acid component is phthalic acid; and/or the liquid substance contains diethylene glycol or ethylene glycol; and/or the resistivity of the liquid substance phase is 6.0 kΩ·cm or less.
 以下で、実施例を参照して、本発明の実施態様をより詳細に説明する。下記の実施例及び比較例は本発明を限定するものではない。 Below, the embodiments of the present invention will be described in more detail with reference to examples. The following examples and comparative examples are not intended to limit the present invention.
<<測定方法>>
 実施例及び比較例で行った測定方法は、下記のとおりである。
<<Measurement method>>
The measurement methods used in the examples and comparative examples are as follows.
<CAP>
 コンデンサのCAP(μF)は、LCRメーター(Keysight Technologies社製 Precision LCR Meter(E4980A))を用いて常温において120Hzで計測した。
<CAP>
The CAP (μF) of the capacitor was measured at room temperature and 120 Hz using an LCR meter (Keysight Technologies Precision LCR Meter (E4980A)).
<ESR>
 コンデンサのESR(mΩ)は、LCRメーター(Keysight Technologies社製 Precision LCR Meter(E4980A))を用いて常温において100kHzで計測した。
<ESR>
The ESR (mΩ) of the capacitor was measured at room temperature and 100 kHz using an LCR meter (Keysight Technologies Precision LCR Meter (E4980A)).
<比抵抗>
 液状物質相の比抵抗は、コンデンサ素子に含浸させる前の液状物質相を用いて、電気伝導率計(東亜DKK製:CM-40S、セル:CG-511B)によって、液温30.0±0.2℃で計測した。
<Resistivity>
The resistivity of the liquid substance phase was measured at a liquid temperature of 30.0±0.2° C. using the liquid substance phase before it was impregnated into the capacitor element with an electric conductivity meter (manufactured by Toa DKK: CM-40S, cell: CG-511B).
 含浸前の液状物質相の比抵抗値が比較的低減されていれば、完成した電解コンデンサにおける液状物質相の比抵抗値も同様に比較的低減されると考えられる。なお、含浸前の液状物質相の比抵抗値は、電解コンデンサから抽出した液状物質相の比抵抗値とは異なる場合がある。これは、電解コンデンサからの抽出液では、導電性高分子分散液又は溶液に用いられる添加剤(例えばポリオール類)等が比抵抗値に影響しうるためと考えられる。 If the resistivity value of the liquid substance phase before impregnation is relatively reduced, it is believed that the resistivity value of the liquid substance phase in the completed electrolytic capacitor will also be relatively reduced. Note that the resistivity value of the liquid substance phase before impregnation may differ from the resistivity value of the liquid substance phase extracted from the electrolytic capacitor. This is believed to be because additives (e.g. polyols) used in the conductive polymer dispersion or solution may affect the resistivity value of the liquid extracted from the electrolytic capacitor.
 実施例1及び2については、コンデンサから抽出した抽出液を液状物質相として、電気伝導率計(HORIBA製 コンパクト導電率計 B-173)によって、25℃で、液状物質相の電導度及び比抵抗を測定した。 For Examples 1 and 2, the liquid extracted from the capacitor was used as the liquid substance phase, and the electrical conductivity and resistivity of the liquid substance phase were measured at 25°C using an electrical conductivity meter (HORIBA Compact Conductivity Meter B-173).
<pH>
 液状物質相のpHは、コンデンサ素子に含浸させる前の液状物質相を用いて、pHメーター(東亜DKK製、型番:HM-30R、セル:GST-5741C)によって、液温25~30℃で計測した。
<pH>
The pH of the liquid substance phase was measured at a liquid temperature of 25 to 30° C. using the liquid substance phase before it was impregnated into the capacitor element with a pH meter (manufactured by Toa DKK, model number: HM-30R, cell: GST-5741C).
<<実施例1~2及び比較例1~2>>
 実施例1~2及び比較例1~2では、それぞれ、比較的塩基性の低い塩基成分及び比較的塩基性の高い塩基成分を用い、かつ溶質の濃度が比較的高い場合について検討した。
<<Examples 1-2 and Comparative Examples 1-2>>
In Examples 1 and 2 and Comparative Examples 1 and 2, a base component with a relatively low basicity and a base component with a relatively high basicity were used, respectively, and the case where the concentration of the solute was relatively high was examined.
<実施例1>
(コンデンサの製造)
 約60Vの耐圧の(アルミ二ウム製の)陽極箔と(アルミ二ウム製の)陰極箔とを(セルロース製の)セパレータを介して巻回し、その後、化成液を用いて端面及び欠陥部を化成し、その後、固体電解質を真空含浸し、乾燥して、固体電解質相を有するコンデンサ素子を作製した。固体電解質相は、導電性高分子化合物としてのポリエチレンジオキシチオフェン(PEDOT)及びドーパントとしてのポリスチレンスルホン酸(PSS)を含有していた。このコンデンサ素子に下記の液状物質相を含浸させて、実施例1に係るコンデンサを得た。
Example 1
(Capacitor manufacturing)
Anode foil (made of aluminum) and cathode foil (made of aluminum) with a withstand voltage of about 60V were wound with a separator (made of cellulose) between them, and then the end faces and defects were chemically formed using a chemical formation solution, and then the solid electrolyte was vacuum-impregnated and dried to produce a capacitor element having a solid electrolyte phase. The solid electrolyte phase contained polyethylenedioxythiophene (PEDOT) as a conductive polymer compound and polystyrenesulfonic acid (PSS) as a dopant. The capacitor element was impregnated with the following liquid substance phase to obtain the capacitor according to Example 1.
 実施例1のコンデンサに含浸した液状物質相は、下記の組成を有していた。
・溶媒:90.9質量%のエチレングリコール
・酸成分:4.0質量%のフタル酸
・塩基成分:3.3質量%のエチルモルホリン(pKa=7.7)
・水:0.9質量%
・ニトロアセトフェノン:0.9質量%
The liquid phase impregnated in the capacitor of Example 1 had the following composition:
Solvent: 90.9% by weight ethylene glycol; Acid component: 4.0% by weight phthalic acid; Base component: 3.3% by weight ethylmorpholine (pKa=7.7)
Water: 0.9% by mass
Nitroacetophenone: 0.9% by mass
 実施例1に係る液状物質相において、酸成分と塩基成分とのモル比は、1:1.2であった。 In the liquid substance phase of Example 1, the molar ratio of the acid component to the base component was 1:1.2.
(性能評価)
 製造した実施例1に係るコンデンサについて、リフロー処理の前後で性能評価を行い、容量の変化率(ΔC)及びESRの変化率(ΔESR)を測定した。
(Performance evaluation)
The manufactured capacitor according to Example 1 was subjected to a performance evaluation before and after the reflow treatment, and the rate of change in capacitance (ΔC) and the rate of change in ESR (ΔESR) were measured.
 リフロー処理では、ピーク温度が260℃のリフローを計2回行った。 The reflow process was performed twice with a peak temperature of 260°C.
 実施例1に係る結果を、下記の表1-1及び表1-2に示す。なお、表1-1は、含浸前の液状物質相における溶質の含有量を記載しており、表1-2は、導電性高分子分散液に用いた添加剤も考慮した液状物質相における溶質の含有量を記載している。 The results for Example 1 are shown in Tables 1-1 and 1-2 below. Note that Table 1-1 shows the solute content in the liquid material phase before impregnation, and Table 1-2 shows the solute content in the liquid material phase taking into account the additives used in the conductive polymer dispersion.
 表1-2では、液状物質相におけるグリコール化合物に対する溶質の含有量も記載している。 Table 1-2 also lists the solute content of glycol compounds in the liquid substance phase.
<実施例2>
 実施例2では、溶質の量を下記の表1-1のように変更したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。実施例2に係る結果を、下記の表1-2に示す。
Example 2
In Example 2, except that the amount of solute was changed as shown in Table 1-1 below, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1. The results of Example 2 are shown in Table 1-2 below.
<比較例1>
 比較例1では、塩基成分としてエチルモルホリンの代わりにジエチルアミン(pKa=11.0)を用い、かつ溶質の量を下記の表1-1のように変更したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。比較例1に係る結果を、下記の表1-2に示す。
<Comparative Example 1>
In Comparative Example 1, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1, except that diethylamine (pKa = 11.0) was used instead of ethylmorpholine as the base component and the amount of solute was changed as shown in Table 1-1 below. The results of Comparative Example 1 are shown in Table 1-2 below.
<比較例2>
 比較例2では、溶質の量を下記の表1-1のように変更したこと以外は、比較例1と同様にして、コンデンサの製造及び性能評価を行った。比較例2に係る結果を、下記の表1-2に示す。
<Comparative Example 2>
In Comparative Example 2, except that the amount of solute was changed as shown in Table 1-1 below, a capacitor was manufactured and its performance was evaluated in the same manner as in Comparative Example 1. The results of Comparative Example 2 are shown in Table 1-2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1-2で見られるとおり、酸成分及び塩基成分の濃度が比較的高い場合(含浸前酸成分=4~6重量%、酸成分:塩基成分のモル比=1:1.2)には、比較的低い塩基性(pKa=7.7)を示す塩基成分を用いることによって、比較的高い塩基性(pKa=11.0)を示す塩基成分を用いた場合と比較して、リフロー後のコンデンサの特性変動(ΔC及びΔESR)が抑制されることが分かる。 As can be seen from Table 1-2, when the concentrations of the acid and base components are relatively high (acid component before impregnation = 4-6 wt %, molar ratio of acid component:base component = 1:1.2), the use of a base component with relatively low basicity (pKa = 7.7) suppresses the characteristic fluctuations of the capacitor after reflow (ΔC and ΔESR) compared to when a base component with relatively high basicity (pKa = 11.0) is used.
 実施例1及び2では、含浸前の液状物質相及びコンデンサ抽出液を液状物質相として、電導度及び比抵抗をそれぞれ計測した。表1-2で見られるように、実施例1及び2のコンデンサは、良好な比抵抗を示した。なお、含浸前の液状物質相で計測した場合と比較して、コンデンサ抽出液で計測した場合に、比抵抗の値が高くなっていた。理論によって限定する意図はないが、コンデンサ抽出液の場合には、コンデンサの製造過程で導電性高分子分散液に添加した添加剤が比抵抗値に影響したと考えられる。 In Examples 1 and 2, the electrical conductivity and resistivity were measured using the liquid substance phase before impregnation and the capacitor extract as the liquid substance phase. As can be seen in Table 1-2, the capacitors of Examples 1 and 2 exhibited good resistivity. Furthermore, the resistivity value was higher when measured using the capacitor extract compared to when measured using the liquid substance phase before impregnation. Although there is no intention to be limited by theory, it is believed that in the case of the capacitor extract, the additives added to the conductive polymer dispersion during the capacitor manufacturing process affected the resistivity value.
<<参考例1~3及び参考例4~6>>
 参考例1~3及び参考例4~6では、それぞれ、比較的塩基性の低い塩基成分及び比較的塩基性の高い塩基成分を用い、かつ溶質の濃度が比較的低い場合について検討した。
<<Reference Examples 1 to 3 and Reference Examples 4 to 6>>
In Reference Examples 1 to 3 and Reference Examples 4 to 6, a base component with a relatively low basicity and a base component with a relatively high basicity were used, respectively, and the solute concentration was relatively low.
<参考例1~3>
 参考例1~3では、溶質の量を下記の表2-1のように設定したこと以外は、上記の実施例1と同様にして、コンデンサの製造及び性能評価を行った。参考例1~3に係る結果を、下記の表2-2に示す。なお、表2-1は、含浸前の液状物質相における溶質の含有量を記載しており、表2-2は、導電性高分子分散液に用いた添加剤も考慮した液状物質相における溶質の含有量を記載している。表2-2では、液状物質相におけるグリコール化合物に対する溶質の含有量も記載している。
<Reference Examples 1 to 3>
In Reference Examples 1 to 3, capacitors were manufactured and their performance evaluated in the same manner as in Example 1 above, except that the amount of solute was set as shown in Table 2-1 below. The results for Reference Examples 1 to 3 are shown in Table 2-2 below. Note that Table 2-1 shows the content of the solute in the liquid substance phase before impregnation, and Table 2-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion. Table 2-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
<参考例4~6>
 参考例4~6では、塩基成分としてエチルモルホリンの代わりにジエチルアミンを用い、かつ溶質の量を下記の表2のように設定したこと以外は、上記の実施例1と同様にして、コンデンサの製造及び性能評価を行った。参考例4~6に係る結果を、下記の表2-2に示す。
<Reference Examples 4 to 6>
In Reference Examples 4 to 6, capacitors were manufactured and their performance evaluated in the same manner as in Example 1, except that diethylamine was used instead of ethylmorpholine as the base component and the amount of solute was set as shown in Table 2 below. The results of Reference Examples 4 to 6 are shown in Table 2-2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2-2で見られるとおり、酸成分及び塩基成分の濃度が比較的低い場合(含浸前酸成分=0.5~2.0重量%、酸成分:塩基成分のモル比=1:1.2)には、比較的低い塩基性(pKa=7.7)を示す塩基成分を用いた場合、及び比較的高い塩基性(pKa=11.0)を示す塩基成分を用いた場合のいずれの場合にも、リフロー後のコンデンサの特性変動(ΔC及びΔESR)が一定程度に抑制されることが分かる。 As can be seen from Table 2-2, when the concentrations of the acid and base components are relatively low (acid component before impregnation = 0.5 to 2.0 wt %, molar ratio of acid component:base component = 1:1.2), the characteristic fluctuations of the capacitor after reflow (ΔC and ΔESR) are suppressed to a certain degree in both cases where a base component exhibiting relatively low basicity (pKa = 7.7) is used, and where a base component exhibiting relatively high basicity (pKa = 11.0) is used.
<<実施例3~5及び比較例3~5>>
 実施例3~5及び比較例3~5では、それぞれ、比較的塩基性の低い塩基成分及び比較的塩基性の高い塩基成分を用い、かつ溶質の濃度がさらに比較的高い場合について検討した。
<<Examples 3 to 5 and Comparative Examples 3 to 5>>
In Examples 3 to 5 and Comparative Examples 3 to 5, a base component with a relatively low basicity and a base component with a relatively high basicity were used, respectively, and the case where the concentration of the solute was relatively high was investigated.
(実施例3~5)
 実施例3~5では、塩基成分としてエチルモルホリンの代わりにモルホリン(pKa=8.3)を用い、かつ溶質の量を下記の表3-1のように設定したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。また、実施例3~5では、液状物質相の比抵抗及びpHを計測した。実施例3~5に係る結果を、下記の表3-2に示す。なお、表3-1は、含浸前の液状物質相における溶質の含有量を記載しており、表3-2は、導電性高分子分散液に用いた添加剤も考慮した液状物質相における溶質の含有量を記載している。表3-2では、液状物質相におけるグリコール化合物に対する溶質の含有量も記載している。
(Examples 3 to 5)
In Examples 3 to 5, capacitors were manufactured and their performance evaluated in the same manner as in Example 1, except that morpholine (pKa = 8.3) was used instead of ethylmorpholine as the base component, and the amount of solute was set as shown in Table 3-1 below. In Examples 3 to 5, the resistivity and pH of the liquid substance phase were measured. The results of Examples 3 to 5 are shown in Table 3-2 below. Table 3-1 shows the content of the solute in the liquid substance phase before impregnation, and Table 3-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion. Table 3-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
(比較例3~5)
 比較例3~5では、塩基成分としてエチルモルホリンの代わりにジエチルアミン(pKa=11.0)を用い、かつ溶質の量を下記の表3-1のように設定したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。また、比較例3~5では、液状物質相の比抵抗及びpHを計測した。比較例3~5に係る結果を、下記の表3-2に示す。
(Comparative Examples 3 to 5)
In Comparative Examples 3 to 5, capacitors were manufactured and their performance evaluated in the same manner as in Example 1, except that diethylamine (pKa = 11.0) was used instead of ethylmorpholine as the base component and the amount of solute was set as shown in Table 3-1 below. In Comparative Examples 3 to 5, the resistivity and pH of the liquid substance phase were measured. The results for Comparative Examples 3 to 5 are shown in Table 3-2 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3-2で見られるとおり、酸成分及び塩基成分の濃度がさらに比較的高い場合(含浸前酸成分=4.3~12.9重量%、酸成分のモル比<塩基成分のモル比)であっても、比較的低い塩基性(pKa=8.3)を示す塩基成分を用いることによって、比較的高い塩基性(pKa=11.0)を示す塩基成分を用いた場合と比較して、リフロー後のコンデンサの特性変動(ΔC及びΔESR)が抑制されることが分かる。 As can be seen from Table 3-2, even when the concentrations of the acid and base components are relatively high (acid component before impregnation = 4.3 to 12.9 wt %, molar ratio of acid component < molar ratio of base component), the use of a base component with relatively low basicity (pKa = 8.3) suppresses the characteristic fluctuations of the capacitor after reflow (ΔC and ΔESR) compared to when a base component with relatively high basicity (pKa = 11.0) is used.
 さらに、表3-2で見られるとおり、酸成分及び塩基成分の濃度が高くなるにつれて、液状物質相の比抵抗が低下することがわかる。 Furthermore, as can be seen in Table 3-2, as the concentrations of acid and base components increase, the resistivity of the liquid substance phase decreases.
<<実施例6~9及び比較例6~7>>
 実施例6~9及び比較例6~7では、酸成分の質量割合並びに酸成分及び塩基成分のモル比が一定の条件下において、種々の塩基性を有する塩基成分を用いた場合について検討した。
<<Examples 6 to 9 and Comparative Examples 6 to 7>>
In Examples 6 to 9 and Comparative Examples 6 to 7, the cases where base components having various basicities were used were investigated under conditions where the mass ratio of the acid component and the molar ratio of the acid component and the base component were constant.
 実施例6~9及び比較例6~7では、それぞれ、塩基成分としてエチルモルホリンの代わりに下記の表4-1に示す物質を用い、かつ溶質の量を下記の表4-1のように設定したこと以外は、上記の実施例1と同様にして、コンデンサの製造及び性能評価を行った。実施例6~9及び比較例6~7係る結果を、下記の表4-2に示す。なお、表4-1は、含浸前の液状物質相における溶質の含有量を記載しており、表4-2は、導電性高分子分散液に用いた添加剤も考慮した液状物質相における溶質の含有量を記載している。表4-2では、液状物質相におけるグリコール化合物に対する溶質の含有量も記載している。 In Examples 6 to 9 and Comparative Examples 6 to 7, capacitors were manufactured and their performance evaluated in the same manner as in Example 1 above, except that the substances shown in Table 4-1 below were used instead of ethylmorpholine as the base component, and the amount of solute was set as shown in Table 4-1 below. The results for Examples 6 to 9 and Comparative Examples 6 to 7 are shown in Table 4-2 below. Note that Table 4-1 shows the solute content in the liquid substance phase before impregnation, and Table 4-2 shows the solute content in the liquid substance phase taking into account the additives used in the conductive polymer dispersion. Table 4-2 also shows the solute content relative to the glycol compound in the liquid substance phase.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4-2で見られるとおり、酸成分及び塩基成分の濃度が比較的高い場合(含浸前酸成分=4.3重量%、酸成分のモル比<塩基成分のモル比)において、比較的低い塩基性(pKa=7.7~8.9)を示す塩基成分を用いることによって、比較的高い塩基性(pKa=10.8~11.0)を示す塩基成分を用いた場合と比較して、リフロー後のコンデンサの特性変動(ΔC及びΔESR)が抑制されることが分かる。 As can be seen from Table 4-2, when the concentrations of the acid and base components are relatively high (acid component before impregnation = 4.3 wt%, molar ratio of acid component < molar ratio of base component), the use of a base component with relatively low basicity (pKa = 7.7 to 8.9) suppresses the characteristic fluctuations of the capacitor after reflow (ΔC and ΔESR) compared to when a base component with relatively high basicity (pKa = 10.8 to 11.0) is used.
<<実施例10及び比較例8~10>>
実施例10及び比較例8~10では、リフロー後の特性変動に加えて、寿命試験後の特性変動についても検討した。
<<Example 10 and Comparative Examples 8 to 10>>
In Example 10 and Comparative Examples 8 to 10, in addition to the characteristic variation after reflow, the characteristic variation after a life test was also examined.
(寿命試験)
 コンデンサの寿命試験では、コンデンサを135℃及び25Vの電圧印加の条件下で2000時間にわたって静置した。この寿命試験の前後のコンデンサの特性をそれぞれ計測し、特性変化を計測した(ΔC及びΔESR)。
(Life Test)
In the life test of the capacitor, the capacitor was left to stand for 2000 hours under conditions of 135° C. and an applied voltage of 25 V. The characteristics of the capacitor were measured before and after this life test, and the changes in characteristics were measured (ΔC and ΔESR).
(実施例10)
 実施例10では、塩基成分としてエチルモルホリンの代わりにモルホリンを用い、かつ溶質の量を下記の表5-1のように設定したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。また、実施例10では、液状物質相の比抵抗及びpHを計測した。実施例10に係る結果を、下記の表5-2に示す。なお、表5-1は、含浸前の液状物質相における溶質の含有量を記載しており、表5-2は、導電性高分子分散液に用いた添加剤も考慮した液状物質相における溶質の含有量を記載している。表5-2では、液状物質相におけるグリコール化合物に対する溶質の含有量も記載している。
Example 10
In Example 10, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1, except that morpholine was used instead of ethylmorpholine as the base component and the amount of solute was set as shown in Table 5-1 below. In Example 10, the resistivity and pH of the liquid substance phase were measured. The results of Example 10 are shown in Table 5-2 below. Note that Table 5-1 shows the content of the solute in the liquid substance phase before impregnation, and Table 5-2 shows the content of the solute in the liquid substance phase taking into account the additives used in the conductive polymer dispersion. Table 5-2 also shows the content of the solute relative to the glycol compound in the liquid substance phase.
(比較例8)
 比較例8では、塩基成分としてエチルモルホリンの代わりにジエチルアミンを用い、かつ溶質の量を下記の表5-1のように変更したこと以外は、実施例1と同様にして、コンデンサの製造及び性能評価を行った。また、比較例8では、液状物質相の比抵抗及びpHを計測した。比較例8に係る結果を、下記の表5-2に示す。
(Comparative Example 8)
In Comparative Example 8, a capacitor was manufactured and its performance was evaluated in the same manner as in Example 1, except that diethylamine was used instead of ethylmorpholine as the base component and the amount of solute was changed as shown in Table 5-1 below. In Comparative Example 8, the resistivity and pH of the liquid substance phase were measured. The results of Comparative Example 8 are shown in Table 5-2 below.
(比較例9~10)
 比較例9~10では、酸成分としてフタル酸の代わりにそれぞれアゼライン酸及びアジピン酸を用いたこと以外は、比較例8と同様にして、コンデンサの製造及び性能評価を行った。比較例9~10に係る結果を、下記の表5-2に示す。
(Comparative Examples 9 to 10)
In Comparative Examples 9 and 10, except that azelaic acid and adipic acid were used instead of phthalic acid as the acid component, respectively, capacitors were manufactured and their performance was evaluated in the same manner as in Comparative Example 8. The results of Comparative Examples 9 to 10 are shown in Table 5-2 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表5-2(特に実施例10及び比較例8)で見られるとおり、酸成分及び塩基成分の濃度が比較的高い場合(含浸前酸成分=3~4重量%、酸成分のモル比<塩基成分のモル比)には、比較的低い塩基性(pKa=8.3)を示す塩基成分を用いることによって、比較的高い塩基性(pKa=11.0)を示す塩基成分を用いた場合と比較して、リフロー後のコンデンサの特性変動(ΔC及びΔESR)が抑制されるとともに、寿命試験後の特性変動も同様に抑制されることが分かる。 As can be seen from Table 5-2 (particularly Example 10 and Comparative Example 8), when the concentrations of the acid and base components are relatively high (acid component before impregnation = 3-4 wt %, molar ratio of acid component < molar ratio of base component), the use of a base component with relatively low basicity (pKa = 8.3) suppresses the characteristic fluctuations of the capacitor after reflow (ΔC and ΔESR) compared to the use of a base component with relatively high basicity (pKa = 11.0), and the characteristic fluctuations after the life test are also suppressed.
 また、表5-2(特に比較例9及び10)で見られるとおり、比較的強い塩基性を有する塩基成分を用いた場合には、酸成分の種類を変更したとしても、リフロー後の特性変動及び寿命試験後の特性変動がともに比較的大きくなることが分かる。 Also, as can be seen from Table 5-2 (particularly Comparative Examples 9 and 10), when a base component with relatively strong basicity is used, the characteristic variation after reflow and the characteristic variation after the life test are both relatively large, even if the type of acid component is changed.
 1     電解コンデンサ
 10    金属ケース
 20    コンデンサ素子
 21    陽極箔
 22、24 酸化皮膜
 23    陰極箔
 25    セパレータ
 26    固体電解質相
 27    液状物質相
 29、30 リード
 40    封口部材
REFERENCE SIGNS LIST 1 electrolytic capacitor 10 metal case 20 capacitor element 21 anode foil 22, 24 oxide film 23 cathode foil 25 separator 26 solid electrolyte phase 27 liquid material phase 29, 30 lead 40 sealing member

Claims (8)

  1.  表面に酸化皮膜が形成された陽極箔と、
     陰極箔と、
    を備え
     前記陽極箔と前記陰極箔との間の空隙に、
     導電性高分子化合物を含む固体電解質相と、
     液状物質を含む液状物質相と
    を有する、電解コンデンサであって、
     前記液状物質相は、さらに、酸成分及び塩基成分を含み、
     前記塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
     前記液状物質相における前記塩基成分と前記酸成分の量が、
     (前記塩基成分のモル数)>(前記酸成分のモル数)
    の関係式を満たし、かつ
     前記酸成分が、前記液状物質相中で、2.6質量%~20質量%である、
    電解コンデンサ。
    an anode foil having an oxide film formed on its surface;
    A cathode foil;
    In a gap between the anode foil and the cathode foil,
    A solid electrolyte phase including a conductive polymer compound;
    and a liquid material phase including a liquid material,
    The liquid phase further comprises an acid component and a base component;
    the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
    The amount of the base component and the acid component in the liquid substance phase is
    (number of moles of the base component)>(number of moles of the acid component)
    The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
    Electrolytic capacitor.
  2.  前記液状物質相における前記塩基成分の質量(B)及び前記酸成分の質量(A)に関して、B>A/2である、請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the mass (B) of the base component and the mass (A) of the acid component in the liquid substance phase are B>A/2.
  3.  前記塩基成分が、アミンを含む、請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the base component includes an amine.
  4.  前記塩基成分が、モルホリン、メチルモルホリン、エチルモルホリン、トリエタノールアミン、及びジエタノールアミンから選択される少なくとも1つを含有する、請求項3に記載の電解コンデンサ。 The electrolytic capacitor according to claim 3, wherein the base component contains at least one selected from morpholine, methylmorpholine, ethylmorpholine, triethanolamine, and diethanolamine.
  5.  前記酸成分が、フタル酸である、請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the acid component is phthalic acid.
  6.  前記液状物質が、ジエチレングリコール又はエチレングリコールを含む、請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the liquid substance contains diethylene glycol or ethylene glycol.
  7.  前記液状物質相の比抵抗が、6.0kΩ・cm以下である、請求項1又は2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the resistivity of the liquid substance phase is 6.0 kΩ·cm or less.
  8.  電解コンデンサを製造する方法であって、
     表面に酸化皮膜が形成された陽極箔と陰極箔とを備えるコンデンサ素子を形成すること、
     前記陽極箔と前記陰極箔との間の空隙に、導電性高分子化合物を含む固体電解質相を導入すること、及び、
     前記陽極箔と前記陰極箔との間の空隙に、液状物質を含む液状物質相を導入すること
    を含み、
     前記液状物質相は、さらに、酸成分及び塩基成分を含み、
     前記塩基成分の共役酸の酸解離定数(pKa)が、10.0以下であり、
     前記液状物質相における塩基成分と酸成分の量が、
     (前記塩基成分のモル数)>(前記酸成分のモル数)
    の関係式を満たし、かつ
     前記酸成分が、前記液状物質相中で、2.6質量%~20質量%である、
    方法。
    1. A method for manufacturing an electrolytic capacitor, comprising the steps of:
    forming a capacitor element including an anode foil and a cathode foil each having an oxide film formed on a surface thereof;
    introducing a solid electrolyte phase containing a conductive polymer compound into a gap between the anode foil and the cathode foil; and
    introducing a liquid material phase, the liquid material phase including a liquid material, into a gap between the anode foil and the cathode foil;
    The liquid phase further comprises an acid component and a base component;
    the acid dissociation constant (pKa) of the conjugate acid of the base component is 10.0 or less;
    The amount of base component and acid component in the liquid substance phase is
    (number of moles of the base component)>(number of moles of the acid component)
    The relationship formula is satisfied, and the acid component is 2.6% by mass to 20% by mass in the liquid substance phase.
    Method.
PCT/JP2023/041118 2022-11-15 2023-11-15 Electrolytic capacitor comprising conductive polymer compound and method for producing same WO2024106474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182716 2022-11-15
JP2022182716 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106474A1 true WO2024106474A1 (en) 2024-05-23

Family

ID=91084519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041118 WO2024106474A1 (en) 2022-11-15 2023-11-15 Electrolytic capacitor comprising conductive polymer compound and method for producing same

Country Status (1)

Country Link
WO (1) WO2024106474A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044636A1 (en) * 2020-08-27 2022-03-03 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044636A1 (en) * 2020-08-27 2022-03-03 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP6737830B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP6745580B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP7117647B2 (en) Electrolytic capacitor
JP6740579B2 (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
WO2014098006A1 (en) Electrolytic capacitor and method for manufacturing same
JP6822757B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP2022100374A (en) Solid electrolytic capacitor and method for manufacturing the same
JP7294816B2 (en) Solid electrolytic capacitor and its manufacturing method
WO2015119047A1 (en) Solid electrolytic capacitor and manufacturing method thereof
CN110098057B (en) Method for manufacturing electrolytic capacitor
WO2024106474A1 (en) Electrolytic capacitor comprising conductive polymer compound and method for producing same
JP7067598B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP7308405B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2021170656A (en) Electrolytic capacitor and method for manufacturing the same
CN112735833A (en) Solid-state aluminum electrolytic capacitor with small leakage current and preparation method thereof
JP7115618B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2024079211A (en) Electrolytic capacitor having conductive polymer compound and method for manufacturing same
WO2022255045A1 (en) Solid electrolytic capacitor and method for manufacturing same
WO2022255057A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP7294494B2 (en) Solid electrolytic capacitor and its manufacturing method
JP7456242B2 (en) Solid Electrolytic Capacitors
WO2023008288A1 (en) Electrolytic capacitor
JP2017220679A (en) Electrolytic capacitor and method of manufacturing the same
JP2004200657A (en) Electrolytic capacitor