WO2024106451A1 - Skin treatment device and skin treatment method - Google Patents

Skin treatment device and skin treatment method Download PDF

Info

Publication number
WO2024106451A1
WO2024106451A1 PCT/JP2023/041029 JP2023041029W WO2024106451A1 WO 2024106451 A1 WO2024106451 A1 WO 2024106451A1 JP 2023041029 W JP2023041029 W JP 2023041029W WO 2024106451 A1 WO2024106451 A1 WO 2024106451A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin treatment
plasma
skin
treatment substance
substance
Prior art date
Application number
PCT/JP2023/041029
Other languages
French (fr)
Japanese (ja)
Inventor
謙太朗 山▲崎▼
Original Assignee
ヤーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤーマン株式会社 filed Critical ヤーマン株式会社
Publication of WO2024106451A1 publication Critical patent/WO2024106451A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • This disclosure relates to a skin treatment device and a skin treatment method.
  • Patent Document 1 Systems and methods for cosmetic treatment of areas on the surface of a living body using cold atmospheric plasma are known (see, for example, Patent Document 1).
  • the present disclosure therefore aims to allow plasma to act appropriately on skin treatment substances.
  • a plasma generating device is provided, There is provided a skin treatment device in which plasma is applied by the discharge device to a skin treatment substance whose structure or properties are changed by plasma.
  • FIG. 1 is a perspective view showing the appearance of a skin treatment device according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of the function of a head portion of a skin treatment device, and is a schematic diagram (part 1) conceptually showing a partial cross section of the head portion.
  • FIG. 2 is an explanatory diagram of the function of the head portion of the skin treatment device, and is a schematic diagram (part 2) conceptually showing a partial cross section of the head portion.
  • FIG. 2 is an explanatory diagram of a discharge device. This is a table (part 1) showing the test results of the potential change when tap water and a skin treatment substance (hyaluronic acid) are irradiated with plasma for 3 minutes.
  • FIG. 1 is a table showing test results regarding a change in the pH value of water when water (pure water) is irradiated with plasma.
  • FIG. 1 shows test results (electrophoretic measurement results) comparing the molecular weight of hyaluronic acid in samples.
  • FIG. 1 is a diagram showing test results obtained by measuring 1 H-NMR spectrum.
  • FIG. 13 is an explanatory diagram of a plasma application method using a positive charge.
  • FIG. 1 is an explanatory diagram of a plasma application method using a negative charge.
  • FIG. 13 is an explanatory diagram of a plasma application method using a positive charge.
  • FIG. 1 is an explanatory diagram of a plasma application method using ⁇ charges.
  • FIG. 1 is a diagram showing an example of a high voltage generation and control circuit for implementing a plasma application method using electric charge.
  • FIG. 11 is an explanatory diagram of a method for generating various voltages shown in FIG. 10 .
  • 12 is an explanatory diagram of a method for generating various voltages shown typically in FIG. 11 .
  • FIG. 1 is a diagram showing an example of a high voltage generation and control circuit for implementing a plasma application method using electric charge.
  • FIG. 13 is an explanatory diagram of a method for generating a high voltage output. - An explanatory diagram of a method for generating a high voltage output.
  • FIG. 4 is an explanatory diagram of a method for generating ⁇ high voltage outputs.
  • FIG. FIG. 10 is an explanatory diagram of an example of dynamic control of charge generation.
  • FIG. 13 is an explanatory diagram of another example of dynamic control of charge generation.
  • FIG. 1 is a schematic diagram showing an example of a configuration capable of treating a skin treatment substance by applying a DC voltage to a discharge electrode.
  • FIG. 13 is an explanatory diagram of a method for applying a positive DC voltage.
  • FIG. 13 is an explanatory diagram of a method for applying a negative DC voltage.
  • FIG. FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device.
  • FIG. 1 is a perspective view showing the appearance of the skin treatment device 1 of this embodiment.
  • the skin treatment device 1 of this embodiment is configured to apply plasma to a skin treatment substance applied to the skin of the user's face by application or the like, thereby changing the properties of the skin treatment substance, thereby imparting skin-related effects such as cosmetic effects to the skin of the user's face.
  • the skin treatment device 1 may be configured to impart a similar skin-related effect to a part other than the user's face, in addition to or instead of the user's face.
  • the skin-related effect is a concept that includes effects other than cosmetic effects (for example, promoting the effect of transdermal absorption of medicines).
  • the skin treatment substance is any substance that is capable of penetrating into the skin by itself and that is capable of exerting a skin-related effect by penetrating.
  • the skin treatment substance is any substance that is capable of penetrating into the skin by the action of plasma from the skin treatment device 1 and that is capable of exerting a skin-related effect by penetrating.
  • the skin treatment substance is a substance that can be applied to human skin, and is typically a substance that can be expected to have various effects such as cosmetic effects.
  • the skin treatment substance may be, for example, various ingredients contained in cosmetics.
  • the skin treatment substance may be various ingredients contained in topical skin preparations.
  • the topical skin preparation may be used for any purpose, such as a drug or a quasi-drug.
  • the skin treatment substance may also contain a substance that is effective in promoting the percutaneous absorption of a drug that has not been able to fully exert its efficacy due to being metabolized in the liver in a quasi-drug.
  • topical preparation to be absorbed percutaneously is arbitrary, and the topical preparation may be absorbed percutaneously for any purpose, including analgesics, anti-inflammatory agents, whitening agents, moisturizing agents, anti-wrinkle agents, anti-inflammatory agents, antibacterial agents, and antiviral agents.
  • analgesics including analgesics, anti-inflammatory agents, whitening agents, moisturizing agents, anti-wrinkle agents, anti-inflammatory agents, antibacterial agents, and antiviral agents.
  • tranexamic acid tranexamic acid derivatives such as cetyl tranexamate hydrochloride, and niacinamide, but are not limited to these, pyridoxine hydrochloride and its derivatives, which are effective against acne and rough skin, benzalkonium chloride, which is used for sterilization and disinfection, and peptides with an alkaline isoelectric point, such as palmitoyl tripeptide-5, acetyl hexapeptide-8, and dipeptide diaminobutyroyl benzylamide diacetate, which are effective in improving wrinkles, and their derivatives.
  • tranexamic acid tranexamic acid derivatives such as cetyl tranexamate hydrochloride, and niacinamide
  • pyridoxine hydrochloride and its derivatives which are effective against acne and rough skin
  • benzalkonium chloride which is used for sterilization and disinfection
  • allantoin, aldioxa, carnitine HCl, basic amino acids such as lysine, arginine, histidine, tryptophan, and ornithine, ergothioneine, and urea as a moisturizing agent are also examples, but any substance having a functional group that is positively charged or polarized at a pH level near weak acidity to weak alkalinity (even if the charge is small, it is sufficient as long as it is cationic) may be used, and is not limited to these compound groups.
  • ⁇ Compounds that are negatively charged in aqueous solution> include ascorbic acid, L-ascorbic acid 2-glucoside, sodium L-ascorbyl phosphate, magnesium L-ascorbyl phosphate, disodium L-ascorbyl sulfate, ascorbyl palmitate phosphate trisodium, and other ascorbic acid and derivatives thereof, sodium dl- ⁇ -tocopheryl phosphate, etc.
  • Further examples include zinc paraphenolsulfonate, salicylic acid and its sodium salt, and furthermore, sodium lactate, sodium L- or DL-pyrrolidone carboxylate solution, acidic amino acids such as sodium L-glutamate and sodium L-aspartate.
  • the substance may be any substance having a functional group that is negatively charged or polarized at a pH level in the vicinity of weak acidity to weak alkalinity (as long as it is anionic, even if the amount of charge is very small), such as glycyrrhizinic acid, which is said to have an anti-inflammatory effect, glycyrrhizinic acid and its salts such as dipotassium glycyrrhizinate and ammonium glycyrrhizinate, sodium guaiazulene sulfonate, and sodium dilauroyl glutamate lysine, and is not limited to the above.
  • glycyrrhizinic acid which is said to have an anti-inflammatory effect
  • glycyrrhizinic acid and its salts such as dipotassium glycyrrhizinate and ammonium glycyrrhizinate, sodium guaiazulene sul
  • Kojic acid which is said to have a whitening effect, arbutin, hydroquinone, 4-n-butylresorcinol, 5,5'-dipropyl-biphenyl-2,2'-diol, ellagic acid, ascorbic acid derivatives such as 3-O-ethyl ascorbic acid, 3-glyceryl ascorbic acid, bisglyceryl ascorbic acid, hexyl 3-glyceryl ascorbic acid, myristyl 3-glyceryl ascorbic acid, and 3-laurylglyceryl ascorbic acid, D-pantothenyl alcohol, and cholecalciferol.
  • ascorbic acid derivatives such as 3-O-ethyl ascorbic acid, 3-glyceryl ascorbic acid, bisglyceryl ascorbic acid, hexyl 3-glyceryl ascorbic acid, myristyl 3-glyceryl ascorbic acid, and 3-laurylglyceryl ascorbic
  • neutral amino acids and derivatives thereof such as glycine, 3-o-cymen-5-ol (isopropylmethylphenol), glycine, proline, alanine, serine, acetylhydroxyproline, ⁇ -aminocaproic acid, and ⁇ -aminobutyric acid, ampholytes, such as trimethylglycine, sugars, such as xylose, sorbitol, and mannitol, polyols, such as butylene glycol, hexylene glycol, pentylene glycol, and glycerin, and terpenes, such as hinokitiol.
  • poorly soluble substances such as fullerene, oryzanol, ceramide EOP, ceramide EOS, ceramide NG, caproylsphingosine, ceramide NP, N-stearoylphytosphingosine, N-stearoyldihydrosphingosine, ceramide AG, ceramide AP, hydroxystearylphytosphingosine, ceramide 6II, and phytosphingosine can also be included as useful components, regardless of whether they are encapsulated in liposomes or not. Further examples include extracts obtained from useful plants and animals, culture fluids of stem cells, and culture supernatants.
  • flavonoids examples include, but are not limited to, isoflavones, licorice root extract, licorice flavonoids, and liquorice flavonoids.
  • extracts include chamomilla ET, Sophora Angustifolia root extract, Swertia japonica extract, carrot and its root extract, soybean extract and soybean seed extract, tea leaf extract, Galactomyces culture solution, Rice Power No. 11 (rice extract No. 11), astaxanthin solution, red algae extract, placenta extract and placenta extract (1) to (5), water-soluble and hydrolyzed placenta extract, etc.
  • squalane examples include squalane, linoleic acid, ascorbyl tetra-2-hexyldecanoate, ascorbyl dipalmitate, retinol, retinol acetate, retinol palmitate, hydrogenated retinol, retinol linoleate, and other retinol and derivatives thereof, tocopherol nicotinate, dl- ⁇ -tocopherol, d- ⁇ -tocopherol, natural vitamin E, tocopherol and derivatives thereof, such as DL- ⁇ -tocopherol acetate, stearyl glycyrrhetinate, estradiol, ethinyl estradiol, astaxanthin, rice germ oil, and phospholipids such as sphingomyelin, synthetic and vegetable squalane, guaiazulene and guaiazulene
  • ⁇ Comparatively high molecular weight compounds and polymer compounds> examples include human recombinant oligopeptide-1, palmitoyl hexapeptides including palmitoyl hexapeptide-4, palmitoyl pentapeptides, hydrolyzed collagen and its derivatives, hyaluronic acid, sodium hyaluronate, acetylated sodium hyaluronate and other hyaluronic acid and its derivatives, Tremella fuciformis polysaccharides, Alcaligenes-produced polysaccharides, and polyquaterniums.
  • the skin-related effects that skin treatment substances exert may vary from one skin treatment substance to another, and may or may not be noticeable to some users.
  • the cosmetic effect is optional and may include any combination of one or more of the following: elimination of sagging, tightening, burning fat, lifting, making the face smaller, improving skin firmness, radiance, and moisture.
  • the cosmetic effect may be a quantifiable effect or a non-quantifiable effect.
  • the skin treatment device 1 of this embodiment is configured to apply plasma to a skin treatment substance.
  • the skin treatment device 1 of this embodiment is a portable type that can be held by the user's hand, but it may also be applied as a movable type that is movably supported on a fixed device via an arm or the like. Furthermore, the user who holds the skin treatment device 1 and the user to whom the skin treatment substance is applied may be the same person or different people. Hereinafter, the user refers to either user unless otherwise specified.
  • the skin treatment device 1 includes a grip portion 1b and a head portion 10.
  • the user can clamp the grip portion 1b and face the head portion 10 to the skin treatment substance, thereby allowing the plasma from the head portion 10 to act on the skin treatment substance.
  • the grip portion 1b has a shape that allows it to be easily gripped by the user's hand.
  • the grip portion 1b may include a power on/off button 2 and a positive potential/negative potential conversion button 3.
  • the various buttons may be mechanical buttons or touch switches. The placement of the various buttons is arbitrary, and they may be provided on the front side of the grip portion 1b instead of or in addition to the back side of the grip portion 1b as shown in FIG. 1.
  • the head portion 10 is provided at the end of the grip portion 1b.
  • the head portion 10 may be fixed to the grip portion 1b in a substantially unremovable manner, or may be removable, or may be movable relative to the grip portion.
  • Figures 2 and 3 are explanatory diagrams of the function of the head unit 10 of the skin treatment device 1, and are schematic diagrams conceptually showing a partial cross section of the head unit 10.
  • Figure 2 shows the state in which the head unit 10 faces a skin treatment substance on the user's skin 9
  • Figure 3 shows the state in which the head unit 10 faces a skin treatment substance on an object other than the user's skin 9.
  • Figures 2 and 3 conceptually show plasma (see symbol R2).
  • the head unit 10 can face the skin treatment substance.
  • the head unit 10 may face the skin treatment substance applied to the user's skin as shown in FIG. 2, or may face the skin treatment substance on an object other than the user's skin (such as a container) as shown in FIG. 3.
  • the term "facing" the head unit 10 to the skin treatment substance includes, unless otherwise specified, a form in which the head unit 10 faces the skin treatment substance while separated from it, as well as a form in which the head unit 10 faces the skin treatment substance while in contact with it (a form in which it abuts against it).
  • the head portion 10 may have a basic surface that is generally flat (including a curved surface with a relatively large radius of curvature).
  • the basic surface is a plane that can be approximated as a generally straight line in a side view.
  • the shape of the basic surface in a front view can be any shape such as a rectangle, circle, ellipse, polygon, etc., and in this embodiment, as an example, it is a circle.
  • the head unit 10 has a space in which plasma can be generated.
  • the space in which plasma can be generated may be formed by a recess that is recessed toward the inside of the device from the basic surface of the head unit 10. In this case, the recess forms a discharge space 7. Further details of the head unit 10 will be described later.
  • the functions of the skin processing device 1 can be realized by the computer in the skin processing device 1 alone, or by a combination of a computer in the skin processing device 1 (for example, the control device 100 in FIG. 26 described below) and an external server and/or a user terminal.
  • the computer-readable program that realizes the functions of the skin processing device 1 may be executed by the computer in the skin processing device 1, or may be executed by a combination of the computer in the skin processing device 1 and an external server and/or a user terminal.
  • the head portion 10 of the skin treatment device 1 has a discharge device 70 that generates plasma in the discharge space 7. Note that a part or all of the discharge device 70 may be disposed in the grip portion 1b.
  • FIG. 4 is an explanatory diagram of the discharge device 70. As with FIG. 3 and the like, FIG. 4 conceptually shows the skin treatment substance that the head unit 10 faces.
  • the discharge device 70 includes an insulator 5, a discharge electrode 6, and a power source 77.
  • the insulator 5 may be made of a resin material or the like.
  • the insulator 5 has a recess that forms the discharge space 7.
  • the bottom surface of the recess may be flat.
  • the bottom surface of the recess is assumed to be flat, and the direction perpendicular to the bottom surface of the recess is also referred to as the "direction perpendicular to the surface".
  • the depth of the recess i.e., the distance of the discharge space 7 (the distance in the direction perpendicular to the surface) is arbitrary, but is preferably 3 mm or less.
  • the discharge space 7 is substantially blocked. Plasma may be generated in such a blocked discharge space 7.
  • the discharge electrode 6 may be formed of a conductor or a dielectric.
  • the material of the discharge electrode 6 may be a metal (gold, silver, copper, iron, lead, aluminum, stainless steel, titanium, etc.), a carbon material, a glass material (hard glass, quartz glass, sapphire glass, crystal glass, tempered glass, heat-resistant glass, glass ceramics, etc.), a ceramic material (zirconia, alumina, aluminum nitride, silicon carbide, silicon nitride, forsterite, steatite, cordierite, sialon, machinable ceramics, barium titanate, lead zirconate titanate, ferrite, mullite, etc.), a plastic material with a high dielectric constant, etc.
  • the materials may be selected so that the relative dielectric constant of the insulator 5 is less than the relative dielectric constant of the discharge electrode 6.
  • the discharge electrode 6 is held by the insulator 5.
  • the discharge electrode 6 may be in the form of a flat plate that fits along the bottom surface of the recess in the insulator 5.
  • the discharge electrode 6 may be in the form of an uneven surface.
  • the shape of the discharge electrode 6 in a plan view may also be any shape, such as rectangular or circular.
  • the discharge electrode 6 is electrically connected to the power source 77.
  • the discharge electrode 6 is connected to the power source 77 via the conductor 12.
  • the power source 77 may be a power source capable of generating plasma (e.g., a power source with a relatively high rated voltage).
  • the power source 77 may be an external power source or may be built into the skin treatment device 1.
  • the power source 77 may include a high-voltage transformer, etc.
  • Figure 5 is a table showing the test results of the change in potential when plasma was irradiated on tap water and a skin treatment substance (hyaluronic acid) for three minutes.
  • the test results show the measurement results of an electrometer.
  • the potential of the irradiated object skin treatment substance
  • changes decreases
  • Figure 6 is a table showing the test results of the pH change when tap water and a skin treatment substance (hyaluronic acid) were irradiated with plasma for three minutes.
  • the test results show the results of measurements taken with a pH meter. As shown in Figure 6, it can be seen that the pH of the irradiated object changes (decreases) when exposed to plasma.
  • the test results shown in Figure 6 suggest that it may be possible to make the electric potential of hyaluronic acid negative by irradiating it with plasma.
  • FIG. 7 shows tables 801 and 802 showing test results regarding the change in pH value of water (pure water) when plasma is irradiated to the water.
  • Table 801 shows the relationship between plasma irradiation time and pH value. As shown in table 801, it can be seen that the longer the plasma irradiation time, the greater the tendency for the acidity to increase. Also, as shown in table 802, it can be seen that water treated by plasma irradiation tends to return to its original pH value as the time that has elapsed since then increases. Therefore, the plasma irradiation time may be adjusted as appropriate according to the desired pH value.
  • Figure 8 shows the test results (electrophoresis measurement results) comparing the molecular weight of hyaluronic acid in samples between the two samples.
  • the sample was an aqueous solution of hyaluronic acid, and the molecular weight of hyaluronic acid was compared between an untreated sample that had not been discharged and a treated sample that had been discharged.
  • the hyaluronic acid used was "Sodium hyaluronate MW110/160 (1% aqueous solution - PE)." All samples were exposed to plasma treatment for approximately 3 minutes. Changes in the 1H-NMR spectrum peaks of the samples were captured.
  • FIG. 9 is a diagram showing the test results of measuring 1 H-NMR spectrum.
  • the sample is a hyaluronic acid aqueous solution
  • 1 H-NMR spectrum was measured between an untreated sample that was not subjected to discharge treatment and a treated sample that was subjected to discharge treatment.
  • the graph indicated by reference numeral 91 shows the distribution of the untreated sample
  • the graph indicated by reference numeral 92 shows the distribution of the treated sample.
  • the solution was diluted about 5 times with pure water (light water) before use.
  • a significant difference for example, see the points indicated by arrows R81 and R82
  • the structure and/or properties of the skin treatment substance can be changed by applying plasma to the skin treatment substance applied to the skin using the skin treatment device 1, thereby enhancing the skin-related effects exhibited by the skin treatment substance.
  • the structure and/or properties of the skin treatment substance can be changed by applying plasma to the skin treatment substance using the skin treatment device 1, and then the skin treatment substance can be applied to the skin, thereby enhancing the skin-related effects exhibited by the skin treatment substance.
  • plasma by applying plasma to a polymer component, it is possible to reduce the molecular size, promote penetration, lower the pH, etc.
  • the pH by controlling the pH to a suitable level, it is possible to reduce irritation to the skin, increase affinity, and improve the condition of the skin treatment substance.
  • the method of applying a positive charge, the method of applying a negative charge, and the method of applying a ⁇ charge may be selected as appropriate depending on the characteristics of the skin treatment substance to which the plasma is to be applied.
  • the skin treatment device 1 may be dedicated to any one of the methods of applying a positive charge, the method of applying a negative charge, and the method of applying a ⁇ charge, or may be configured to be able to select and realize any one of two or more methods.
  • FIG. 10 is an explanatory diagram of a method of applying plasma using a positive charge.
  • a positively biased high voltage (a time series indicated by the reference numeral 800 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, a negative charge is attracted to the discharge electrode 6, and as a result, a positive charge is transferred to the skin treatment substance.
  • FIG. 11 is an explanatory diagram of a method of applying plasma using a negative charge.
  • a negatively biased high voltage (the time series indicated by the reference symbol 900 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, a positive charge is attracted to the discharge electrode 6, and as a result, a negative charge is transferred to the skin treatment substance. This makes it possible to give a negative charge to specific components contained in the skin treatment substance.
  • FIG. 12 is an explanatory diagram of a method of applying plasma using positive and negative charges.
  • a positive high voltage (the time series indicated by the symbol 1000 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, unlike in FIG. 8 and FIG. 9, no bias in positive and negative charges occurs.
  • Plasma with no bias in positive and negative charges can be applied to specific components contained in the skin treatment substance.
  • Fig. 13 is a diagram showing an example of a high voltage generation/control circuit 110 for realizing the above-mentioned plasma application method using electric charge.
  • the high voltage generation/control circuit 110 may be built in the skin treatment device 1, or may be connected to the skin treatment device 1 from the outside.
  • the power supply 77 is configured to generate a high voltage from a DC power supply 77a.
  • the high voltage generation and control circuit 110 includes a + high voltage generating section 52 , a ⁇ high voltage generating section 53 , and a microcomputer 54 .
  • the high voltage generating unit 52 may include, for example, an oscillator circuit and a transformer, and may have the function of boosting the input voltage several hundred times.
  • the high voltage generating unit 52 is controlled by a high voltage control output signal (OUT) output from the microcomputer 54.
  • OUT high voltage control output signal
  • the high voltage generating unit 52 outputs a high voltage while the high voltage control output signal is being output.
  • the high voltage generating unit 53 may include, for example, an oscillator circuit and a transformer, and may have the function of boosting the input voltage several hundred times. -The high voltage generating unit 53 is controlled by the -high voltage control output signal (-OUT) output from the microcomputer 54.
  • FIGS. 14 and 15 are explanatory diagrams of the method of generating the various voltages shown typically in FIG. 10 and FIG. 11.
  • the +-biased high voltage shown typically in FIG. 10 is output while a control signal is being output from +OUT, as in FIG. 14.
  • the - high voltage output shown typically in FIG. 11 is output while a control signal is being output from -OUT, as in FIG. 15.
  • the high voltage generation and control circuit 110A may be built into the skin treatment device 1 or may be connected to the skin treatment device 1 from the outside.
  • the high voltage generation and control circuit 110A is preferably configured to generate ⁇ high voltage output.
  • the ⁇ high voltage generation unit 55 is composed of, for example, a transformer and boosts the input voltage several hundred times.
  • the ⁇ high voltage generation unit 55 is controlled by two high voltage control output pulse signals (+OUT, -OUT) output from a microcomputer 56.
  • the ⁇ high voltage is generated by periodically outputting these high voltage control output pulse signals.
  • +High voltage output can be generated by periodically outputting a pulse signal from +OUT as shown in Figure 17.
  • a high voltage output can be generated by periodically outputting a pulse signal from -OUT as shown in Figure 18.
  • FIG. 20 is an explanatory diagram of an example of dynamic control of charge generation.
  • the horizontal axis is time and the vertical axis is discharge voltage, and an example of a generation pattern of positive and negative high voltages is shown in time series.
  • the discharge voltage is constant, and the duration of the positive and negative high voltages is variable.
  • FIG. 21 is an explanatory diagram of another example of dynamic control of charge generation.
  • the horizontal axis represents time and the vertical axis represents discharge voltage, and another example of a generation pattern of positive and negative high voltages is shown in time series.
  • the type of discharge voltage may be based on the differences between the above-mentioned methods of applying a positive charge, a negative charge, and a positive charge.
  • plasma is applied to the skin treatment substance by applying an AC voltage to the discharge electrode 6.
  • an AC voltage to the discharge electrode 6.
  • FIG. 22 is a schematic diagram showing an example of a configuration in which a skin treatment substance can be treated by applying a DC voltage to the discharge electrode 6.
  • the circuit that applies the high DC voltage to the dielectric electrode 72 can be the high voltage generation and control circuit 110 that can be used for AC (alternating current) discharge described above with reference to FIG. 13 etc.
  • an ON/OFF output signal can be applied from the microcomputer 54 to the high voltage generating unit 52 or the high voltage generating unit 53.
  • a positive or negative DC voltage can be applied to the dielectric electrode 72 depending on the polarity of the ON signal.
  • FIG. 25 is an explanatory diagram of a modified example.
  • the head portion 10 has a recess that forms the discharge space 7 that is open to the outside, but as shown in the head portion 10B of this modified example, the opening on the outside may be blocked by another member 8 (hereinafter also referred to as a "cover member 8").
  • the cover member 8 is disposed so as to face the discharge electrode 6 across the discharge space 7.
  • the discharge space 7 is formed in a manner that it is sandwiched between the discharge electrode 6 and another member 8.
  • the cover member 8 may be formed of a conductor or a dielectric material.
  • the material of the discharge electrode 6 may be a metal (gold, silver, copper, iron, lead, aluminum, stainless steel, titanium, etc.), a carbon material, a glass material (hard glass, quartz glass, sapphire glass, crystal glass, tempered glass, heat-resistant glass, glass ceramics, etc.), a ceramic material (zirconia, alumina, aluminum nitride, silicon carbide, silicon nitride, forsterite, steatite, cordierite, sialon, machinable ceramics, barium titanate, lead zirconate titanate, ferrite, mullite, etc.), a plastic material with a high dielectric constant, etc.
  • the cover member 8 may be held by the insulator 5, similar to the discharge electrode 6.
  • control device 100 realizes the various functions of the skin treatment device 1 described above or the biased electric potential generation method described below.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the control device 100.
  • a control target 30 is diagrammatically shown in association with the hardware configuration of the control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 11, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 13, an auxiliary storage device 14, a drive device 15, and a communication interface 17, all of which are connected by a bus 19, as well as a wired transceiver 25 and a wireless transceiver 26 connected to the communication interface 17.
  • a part or all of the control device 100 may be in the form of a circuit in which various elements (including elements in the form of chips) are mounted on a substrate or the like.
  • the auxiliary storage device 14 is, for example, a hard disk drive (HDD) or a solid state drive (SSD), and is a storage device that stores data related to application software and the like.
  • the wired transceiver 25 includes a transceiver capable of communicating using a wired network.
  • a control target 30 is connected to the wired transceiver 25. However, a part or all of the control target 30 may be connected to the bus 19 or may be connected to the wireless transceiver 26.
  • the wireless transmission/reception unit 26 is a transmission/reception unit capable of communicating using a wireless network.
  • the wireless network may include a wireless communication network for mobile phones, the Internet, a VPN (Virtual Private Network), a WAN (Wide Area Network), etc.
  • the wireless transmission/reception unit 26 may also include a near field communication (NFC) unit, a Bluetooth (registered trademark) communication unit, a Wi-Fi (Wireless-Fidelity) transmission/reception unit, an infrared transmission/reception unit, etc.
  • the control device 100 may communicate with a server (not shown) via the wireless transmission/reception unit 26 to acquire various information.
  • the control device 100 may be connectable to a recording medium 16.
  • the recording medium 16 stores a specific program.
  • the program stored in the recording medium 16 is installed in the auxiliary storage device 14 of the control device 100 via the drive device 15.
  • the installed specific program can be executed by the CPU 11 of the control device 100.
  • the recording medium 16 may be a recording medium that records information optically, electrically or magnetically, such as a CD (Compact Disc)-ROM, a flexible disk, or a magneto-optical disk, or a semiconductor memory that records information electrically, such as a ROM or a flash memory.
  • the recording medium 16 does not include a carrier wave.
  • the various processes are based on electrical output waveforms, but are not limited to this.
  • electrical output waveforms instead of or in addition to electrical output waveforms, one or more of the following may be used: a method using heat from a heater, a method using light other than an LED (Light Emitting Diode) or light such as an IPL (Intense Pulsed Light), a method using ultrasound, a magnetic method, and a method using electromagnetic waves.
  • LEDs are known to have antibacterial effects in the blue wavelength range, antioxidant effects and inhibition of melanin production in the green wavelength range, and promotion of collagen production and improved firmness in the red wavelength range.
  • the plasma may be used to charge the skin treatment substance, which, in combination with the pulsed electrical stimulation, may enhance the skin penetration effect.
  • a plasma discharge electrode may be provided in the container for storing the skin treatment substance, so that the plasma can be efficiently applied to the skin treatment substance.
  • the recess (the recess in the insulator 5 that forms the discharge space 7) is not necessarily required, and it is sufficient if an appropriate space can be partially secured between the discharge electrode and the container.
  • the skin treatment device 1 in the above-described embodiment is configured to apply plasma to a skin treatment substance, but instead of or in addition to this, it may be configured to apply plasma directly to the user's skin.
  • a head portion that can be brought into contact with the skin of a user;
  • a skin treatment device comprising: a discharge device that generates an electric discharge in the space inside the head portion.
  • the discharge device is A plate-shaped outer member to be placed on the skin side of the user; an inner member disposed inside the head portion relative to the outer member and facing the outer member; a power source electrically connected to the inner member; The skin treatment device of claim 1, wherein the space is formed between the outer member and the inner member.
  • Appendix 3 The skin treatment device described in appendix 1 or 2, wherein the outer member is formed of a conductor or a dielectric.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cosmetics (AREA)

Abstract

Disclosed is a skin treatment device that is provided with a discharge device capable of generating plasma and that causes plasma to act, by means of the discharge device, on a skin treatment substance the structure or characteristics of which change due to the plasma. The discharge device preferably operates on the basis of an AC waveform generated via a power source. The discharge device preferably causes the plasma to act on the skin treatment substance in a state in which, or before, the skin treatment substance is applied on the skin of a person being treated.

Description

肌処理装置及び肌処理方法Skin treatment device and skin treatment method
 本開示は、肌処理装置及び肌処理方法に関する。 This disclosure relates to a skin treatment device and a skin treatment method.
 従来から、コールド大気プラズマを使用する生体表面の部位の美容処理のためのシステムおよび方法が知られている(例えば、特許文献1参照)。  Systems and methods for cosmetic treatment of areas on the surface of a living body using cold atmospheric plasma are known (see, for example, Patent Document 1).
特表2021-532874号公報JP 2021-532874 A
 上記のような従来技術では、プラズマ(放電現象)を肌処理用物質に対して適切に作用させることができない。  The conventional techniques described above do not allow plasma (discharge phenomenon) to act appropriately on skin treatment substances.
 そこで、本開示は、プラズマを肌処理用物質に対して適切に作用させることを目的とする。 The present disclosure therefore aims to allow plasma to act appropriately on skin treatment substances.
 本開示の一局面によれば、プラズマを発生可能な放電装置を備え、
 プラズマにより構造又は特性が変化する肌処理用物質に対して前記放電装置によりプラズマを作用させる、肌処理装置が提供される。
According to one aspect of the present disclosure, a plasma generating device is provided,
There is provided a skin treatment device in which plasma is applied by the discharge device to a skin treatment substance whose structure or properties are changed by plasma.
 本開示によれば、プラズマを肌処理用物質に対して適切に作用させることが可能となる。 According to the present disclosure, it is possible to cause plasma to act appropriately on skin treatment substances.
本実施形態の肌処理装置の外観を示す斜視図である。1 is a perspective view showing the appearance of a skin treatment device according to an embodiment of the present invention; 肌処理装置のヘッド部の機能の説明図であり、ヘッド部の一部断面を概念的に示す概略図(その1)である。FIG. 1 is an explanatory diagram of the function of a head portion of a skin treatment device, and is a schematic diagram (part 1) conceptually showing a partial cross section of the head portion. 肌処理装置のヘッド部の機能の説明図であり、ヘッド部の一部断面を概念的に示す概略図(その2)である。FIG. 2 is an explanatory diagram of the function of the head portion of the skin treatment device, and is a schematic diagram (part 2) conceptually showing a partial cross section of the head portion. 放電装置の説明図である。FIG. 2 is an explanatory diagram of a discharge device. 水道水及び肌処理用物質(ヒアルロン酸)にそれぞれプラズマを3分間照射した場合の電位変化の試験結果を示す表図(その1)である。This is a table (part 1) showing the test results of the potential change when tap water and a skin treatment substance (hyaluronic acid) are irradiated with plasma for 3 minutes. 水道水及び肌処理用物質(ヒアルロン酸)にそれぞれプラズマを3分間照射した場合のpH変化の試験結果を示す表図(その2)である。This is a table (part 2) showing the test results of the pH change when tap water and a skin treatment substance (hyaluronic acid) were irradiated with plasma for 3 minutes. 水(純水)にプラズマを照射したときの水のpH値の1変化に関する試験結果を示す表図である。FIG. 1 is a table showing test results regarding a change in the pH value of water when water (pure water) is irradiated with plasma. 試料中におけるヒアルロン酸の分子量をサンプル間で比較する試験結果(電気泳動測定結果)を示す図である。FIG. 1 shows test results (electrophoretic measurement results) comparing the molecular weight of hyaluronic acid in samples. H-NMRスペクトルを測定した試験結果を示す図である。FIG. 1 is a diagram showing test results obtained by measuring 1 H-NMR spectrum. +電荷を用いたプラズマ適用方法の説明図である。FIG. 13 is an explanatory diagram of a plasma application method using a positive charge. -電荷を用いたプラズマ適用方法の説明図である。FIG. 1 is an explanatory diagram of a plasma application method using a negative charge. ±電荷を用いたプラズマ適用方法の説明図である。FIG. 1 is an explanatory diagram of a plasma application method using ± charges. 電荷を用いたプラズマ適用方法を実現するための高電圧発生・制御回路の一例を示す図であるFIG. 1 is a diagram showing an example of a high voltage generation and control circuit for implementing a plasma application method using electric charge. 図10に模式的に示した各種電圧の生成方法の説明図である。FIG. 11 is an explanatory diagram of a method for generating various voltages shown in FIG. 10 . 図11に模式的に示した各種電圧の生成方法の説明図である。12 is an explanatory diagram of a method for generating various voltages shown typically in FIG. 11 . 電荷を用いたプラズマ適用方法を実現するための高電圧発生・制御回路の一例を示す図である。FIG. 1 is a diagram showing an example of a high voltage generation and control circuit for implementing a plasma application method using electric charge. +高電圧出力の生成方法の説明図である。FIG. 13 is an explanatory diagram of a method for generating a high voltage output. -高電圧出力の生成方法の説明図である。- An explanatory diagram of a method for generating a high voltage output. ±高電圧出力の生成方法の説明図である。4 is an explanatory diagram of a method for generating ±high voltage outputs. FIG. 電荷生成の動的制御の一例の説明図である。FIG. 10 is an explanatory diagram of an example of dynamic control of charge generation. 電荷生成の動的制御の他の一例の説明図である。FIG. 13 is an explanatory diagram of another example of dynamic control of charge generation. 直流電圧を放電電極に印加することで肌処理用物質を処理可能な構成例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a configuration capable of treating a skin treatment substance by applying a DC voltage to a discharge electrode. プラスの直流電圧の印加方法の説明図である。FIG. 13 is an explanatory diagram of a method for applying a positive DC voltage. マイナスの直流電圧の印加方法の説明図である。FIG. 13 is an explanatory diagram of a method for applying a negative DC voltage. 変形例の説明図である。FIG. 制御装置のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device.
 以下、添付図面を参照しながら各実施形態について詳細に説明する。 Each embodiment will be described in detail below with reference to the attached drawings.
 図1は、本実施形態の肌処理装置1の外観を示す斜視図である。 FIG. 1 is a perspective view showing the appearance of the skin treatment device 1 of this embodiment.
 本実施形態の肌処理装置1は、ユーザの顔部の肌に塗布等により付与される肌処理用物質にプラズマを作用させることで、当該肌処理用物質の特性等に変化を与え、それにより、美容効果等の肌関連効果をユーザの顔部の肌に付与するように構成される。ただし、変形例では、肌処理装置1は、ユーザの顔部に加えて又は代えて、ユーザの顔部以外に同様の肌関連効果を付与するように構成されてもよい。なお、肌関連効果は、美容効果とは異なる効果(例えば医薬品の経皮吸収の効果促進)を含む概念である。 The skin treatment device 1 of this embodiment is configured to apply plasma to a skin treatment substance applied to the skin of the user's face by application or the like, thereby changing the properties of the skin treatment substance, thereby imparting skin-related effects such as cosmetic effects to the skin of the user's face. However, in a modified example, the skin treatment device 1 may be configured to impart a similar skin-related effect to a part other than the user's face, in addition to or instead of the user's face. Note that the skin-related effect is a concept that includes effects other than cosmetic effects (for example, promoting the effect of transdermal absorption of medicines).
 肌処理用物質は、それ自体で、肌の内側への浸透が可能でありかつ浸透することで肌関連効果を発現しうる任意の物質である。あるいは、肌処理用物質は、肌処理装置1によりプラズマが作用することで、肌の内側への浸透が可能となりかつ浸透することで肌関連効果を発現しうる任意の物質である。 The skin treatment substance is any substance that is capable of penetrating into the skin by itself and that is capable of exerting a skin-related effect by penetrating. Alternatively, the skin treatment substance is any substance that is capable of penetrating into the skin by the action of plasma from the skin treatment device 1 and that is capable of exerting a skin-related effect by penetrating.
 具体的には、肌処理用物質は、人の皮膚に付与可能な物質であり、典型的には、美容効果などの各種効果を期待できる物質である。肌処理用物質は、例えば、化粧品等に含まれる各種成分であってよい。あるいは、肌処理用物質は、皮膚外用剤に含まれる各種成分であってもよい。なお、皮膚外用剤は、医薬品、及び医薬部外品など物質担体の使用目的は任意である。また、肌処理用物質は、医薬部外品において肝臓で代謝され効果効能が発揮しきれなかった医薬品の経皮吸収の促進にも効果がある物質を含んでよい。また、さらに経皮吸収させる外用剤の使用目的は任意であり、鎮痛剤、消炎剤、美白剤、湿潤剤、抗しわ剤、抗炎症剤、抗菌剤、抗ウイルス薬をはじめとして外用剤の経皮吸収目的を問わない。浸透に適する有用成分のいくつかの例を列挙する。 Specifically, the skin treatment substance is a substance that can be applied to human skin, and is typically a substance that can be expected to have various effects such as cosmetic effects. The skin treatment substance may be, for example, various ingredients contained in cosmetics. Alternatively, the skin treatment substance may be various ingredients contained in topical skin preparations. The topical skin preparation may be used for any purpose, such as a drug or a quasi-drug. The skin treatment substance may also contain a substance that is effective in promoting the percutaneous absorption of a drug that has not been able to fully exert its efficacy due to being metabolized in the liver in a quasi-drug. Furthermore, the purpose of the topical preparation to be absorbed percutaneously is arbitrary, and the topical preparation may be absorbed percutaneously for any purpose, including analgesics, anti-inflammatory agents, whitening agents, moisturizing agents, anti-wrinkle agents, anti-inflammatory agents, antibacterial agents, and antiviral agents. Some examples of useful ingredients suitable for penetration are listed below.
 弱酸性~弱アルカリ性付近のpHにおいて
<水溶液中で+に帯電している化合物群>
 美白効果が知られている成分としてはトラネキサム酸、トラネキサム酸セチル塩酸塩などトラネキサム酸誘導体やナイアシンアミドが挙げられるが、これらに限られず、にきびや肌荒れに有効とされる塩酸ピリドキシン及びその誘導体、殺菌及び消毒に使われるベンザルコニウムクロリド、更には、しわ改善に効果があるとされ等電点がアルカリ側にあるペプチド類、例としてパルミトイルトリペプチド-5、アセチルヘキサペプチド-8、ジ酢酸ジペプチドジアミノブチロイルベンジルアミドなどのペプチド及びその誘導体が挙げられる。また、アラントイン、アルジオキサ、カルニチンHCl、塩基性アミノ酸であるリジン、アルギニン、ヒスチジン、トリプトファン、オルニチン等、更にはエルゴチオネイン、保湿剤として尿素等も一例として挙げられるが、弱酸性~弱アルカリ性付近のpHで+に帯電ないしは分極している官能基を持つ物質(帯電量は微小でもカチオン性であればよい)であればよく、これら化合物群に限らない。
<水溶液中で-に帯電している化合物群>
 美白剤として有効性が認められている4-メトキシサリチル酸カリウム塩、アデノシン一リン酸二ナトリウムの他、アスコルビン酸、L-アスコルビン酸2-グルコシド、リン酸L-アスコルビルナトリウム、リン酸L-アスコルビルマグネシウム、L-アスコルビン酸硫酸エステル二ナトリウム、パルミチン酸アスコルビルリン酸3Naなどアスコルビン酸及びその誘導体、dl-αートコフェリルリン酸ナトリウム等が挙げられる。また、パラフェノールスルホン酸亜鉛、サリチル酸とそのナトリウム塩など、更には乳酸ナトリウム、L-ないしDL-ピロリドンカルボン酸ナトリウム液、L-グルタミン酸ナトリウムやL-アスパラギン酸ナトリウムなど酸性アミノ酸が挙げられる。また、炎症を鎮める効果があるとされるグリチルリチン酸、グリチルリチン酸ジカリウムやグリチルリチン酸アンモニウムなどグリチルリチン酸及びその塩、グアイアズレンスルホン酸ナトリウム、ジラウロイルグルタミン酸リシンNa等、弱酸性~弱アルカリ性付近のpHで-に帯電ないしは分極している官能基を持つ物質(帯電量は微小でもアニオン性であればよい)であればよく、上記に限らない。
<水溶液中でほとんど解離しない化合物ないし両性電解質>
 美白効果があるとされるコウジ酸、アルブチン、ハイドロキノン、4-n-ブチルレゾルシノール、5,5’-ジプロピル-ビフェニル-2,2’-ジオール、エラグ酸、3-O-エチルアスコルビン酸、3-グリセリルアスコルビン酸、ビスグリセリルアスコルビン酸、ヘキシル3-グリセリルアスコルビン酸、ミリスチル3-グリセリルアスコルビン酸、3-ラウリルグリセリルアスコルビン酸などアスコルビン酸誘導体、D-パントテニルアルコール、コレカルシフェロール、3-o-シメン-5-オール(イソプロピルメチルフェノール)、グリシン、プロリン、アラニン、セリン、アセチルヒドロキシプロリン、εーアミノカプロン酸、γ-アミノ酪酸のような中性アミノ酸類及びその誘導体、トリメチルグリシンなどの両性電解質やキシロース、ソルビトール、マンニトールなどの糖類やブチレングリコール、ヘキシレングリコール、ペンチレングリコール、グリセリンなどのポリオール類、ヒノキチオールなどのテルペン類等が挙げられる。また、難溶性物質であるフラーレン、オリザノール、セラミドEOP、セラミドEOS、セラミドNG、カプロオイルスフィンゴシン、セラミドNP、N-ステアロイルフィトスフィンゴシン、N-ステアロイルジヒドロスフィンゴシン、セラミドAG、セラミドAP、ヒドロキシステアリルフィトスフィンゴシン、セラミド6II、フィトスフィンゴシンもリポソームに内包される、されないにかかわらず、有用成分として挙げられる。さらには有用性を発揮する植物、動物から得られるエキス類、幹細胞などの培養液、培養上清液も挙げられる。
Compounds that are positively charged in aqueous solution at pH levels between weakly acidic and weakly alkaline
Ingredients known to have a whitening effect include tranexamic acid, tranexamic acid derivatives such as cetyl tranexamate hydrochloride, and niacinamide, but are not limited to these, pyridoxine hydrochloride and its derivatives, which are effective against acne and rough skin, benzalkonium chloride, which is used for sterilization and disinfection, and peptides with an alkaline isoelectric point, such as palmitoyl tripeptide-5, acetyl hexapeptide-8, and dipeptide diaminobutyroyl benzylamide diacetate, which are effective in improving wrinkles, and their derivatives. In addition, allantoin, aldioxa, carnitine HCl, basic amino acids such as lysine, arginine, histidine, tryptophan, and ornithine, ergothioneine, and urea as a moisturizing agent are also examples, but any substance having a functional group that is positively charged or polarized at a pH level near weak acidity to weak alkalinity (even if the charge is small, it is sufficient as long as it is cationic) may be used, and is not limited to these compound groups.
<Compounds that are negatively charged in aqueous solution>
In addition to potassium 4-methoxysalicylate and disodium adenosine monophosphate, which are recognized to be effective as whitening agents, examples of the active ingredients include ascorbic acid, L-ascorbic acid 2-glucoside, sodium L-ascorbyl phosphate, magnesium L-ascorbyl phosphate, disodium L-ascorbyl sulfate, ascorbyl palmitate phosphate trisodium, and other ascorbic acid and derivatives thereof, sodium dl-α-tocopheryl phosphate, etc. Further examples include zinc paraphenolsulfonate, salicylic acid and its sodium salt, and furthermore, sodium lactate, sodium L- or DL-pyrrolidone carboxylate solution, acidic amino acids such as sodium L-glutamate and sodium L-aspartate. In addition, the substance may be any substance having a functional group that is negatively charged or polarized at a pH level in the vicinity of weak acidity to weak alkalinity (as long as it is anionic, even if the amount of charge is very small), such as glycyrrhizinic acid, which is said to have an anti-inflammatory effect, glycyrrhizinic acid and its salts such as dipotassium glycyrrhizinate and ammonium glycyrrhizinate, sodium guaiazulene sulfonate, and sodium dilauroyl glutamate lysine, and is not limited to the above.
<Compounds or ampholytes that hardly dissociate in aqueous solution>
Kojic acid, which is said to have a whitening effect, arbutin, hydroquinone, 4-n-butylresorcinol, 5,5'-dipropyl-biphenyl-2,2'-diol, ellagic acid, ascorbic acid derivatives such as 3-O-ethyl ascorbic acid, 3-glyceryl ascorbic acid, bisglyceryl ascorbic acid, hexyl 3-glyceryl ascorbic acid, myristyl 3-glyceryl ascorbic acid, and 3-laurylglyceryl ascorbic acid, D-pantothenyl alcohol, and cholecalciferol. neutral amino acids and derivatives thereof, such as glycine, 3-o-cymen-5-ol (isopropylmethylphenol), glycine, proline, alanine, serine, acetylhydroxyproline, ε-aminocaproic acid, and γ-aminobutyric acid, ampholytes, such as trimethylglycine, sugars, such as xylose, sorbitol, and mannitol, polyols, such as butylene glycol, hexylene glycol, pentylene glycol, and glycerin, and terpenes, such as hinokitiol. In addition, poorly soluble substances such as fullerene, oryzanol, ceramide EOP, ceramide EOS, ceramide NG, caproylsphingosine, ceramide NP, N-stearoylphytosphingosine, N-stearoyldihydrosphingosine, ceramide AG, ceramide AP, hydroxystearylphytosphingosine, ceramide 6II, and phytosphingosine can also be included as useful components, regardless of whether they are encapsulated in liposomes or not. Further examples include extracts obtained from useful plants and animals, culture fluids of stem cells, and culture supernatants.
 また、フラボノイドとしてはイソフラボン、カンゾウ根エキス、カンゾウフラボノイド、甘草フラボノイドなどが挙げられるがこの限りではない。エキス類としてはカモミラET、クララ根エキス、センブリエキス、ニンジン及びその根のエキス、ダイズエキス及びダイズ種子エキス、チャ葉エキス、ガラクトミセス培養液、ライスパワーNo.11(米エキスNo.11)、アスタキサンチン液や紅藻類のエキス、プラセンタエキス及びプラセンタエキス(1)~(5)、水溶性及び加水分解プラセンタエキスなどが挙げられる。
<脂質及び油溶性物質>
 スクワラン、リノール酸、テトラ2-ヘキシルデカン酸アスコルビル、ジパルミチン酸アスコルビル、レチノール、酢酸レチノール、パルミチン酸レチノール、水添レチノール、リノール酸レチノールなどレチノール及びその誘導体、ニコチン酸トコフェロール、dl-α-トコフェロール、d-δ-トコフェロール、天然ビタミンE、酢酸DL-α-トコフェロールなどトコフェロールとその誘導体、グリチルレチン酸ステアリル、エストラジオール、エチニルエストラジオール、アスタキサンチン、コメ胚芽油、スフィンゴミエリンなどのリン脂質、合成、植物性を含むスクワラン、グアイアズレン及びグアイアズレンスルホン酸エステル、ステアリン酸アスコルビル、パルミチン酸アスコルビルなどアスコルビン酸の脂肪酸エステル、ラウロイルグルタミン酸ジ(フィトステリル/オクチルドデシル)、油溶性プラセンタなどが挙げられる。
<比較的分子量の高い化合物及び高分子化合物>
 ヒト遺伝子組換オリゴペプチド-1、パルミトイルヘキサペプチド-4を含むパルミトイルヘキサペプチド類、パルミトイルペンタペプチド類、加水分解コラーゲン及びその誘導体、ヒアルロン酸、ヒアルロン酸Na、アセチル化ヒアルロン酸ナトリウムなどヒアルロン酸及びその誘導体、シロキクラゲ多糖体、アルカリゲネス産生多糖体、ポリクオタニウム類が挙げられる。
Examples of flavonoids include, but are not limited to, isoflavones, licorice root extract, licorice flavonoids, and liquorice flavonoids. Examples of extracts include chamomilla ET, Sophora Angustifolia root extract, Swertia japonica extract, carrot and its root extract, soybean extract and soybean seed extract, tea leaf extract, Galactomyces culture solution, Rice Power No. 11 (rice extract No. 11), astaxanthin solution, red algae extract, placenta extract and placenta extract (1) to (5), water-soluble and hydrolyzed placenta extract, etc.
<Lipids and oil-soluble substances>
Examples of the suitable squalane include squalane, linoleic acid, ascorbyl tetra-2-hexyldecanoate, ascorbyl dipalmitate, retinol, retinol acetate, retinol palmitate, hydrogenated retinol, retinol linoleate, and other retinol and derivatives thereof, tocopherol nicotinate, dl-α-tocopherol, d-δ-tocopherol, natural vitamin E, tocopherol and derivatives thereof, such as DL-α-tocopherol acetate, stearyl glycyrrhetinate, estradiol, ethinyl estradiol, astaxanthin, rice germ oil, and phospholipids such as sphingomyelin, synthetic and vegetable squalane, guaiazulene and guaiazulene sulfonate, fatty acid esters of ascorbic acid such as ascorbyl stearate and ascorbyl palmitate, di(phytosteryl/octyldodecyl) lauroyl glutamate, and oil-soluble placenta.
<Comparatively high molecular weight compounds and polymer compounds>
Examples of such compounds include human recombinant oligopeptide-1, palmitoyl hexapeptides including palmitoyl hexapeptide-4, palmitoyl pentapeptides, hydrolyzed collagen and its derivatives, hyaluronic acid, sodium hyaluronate, acetylated sodium hyaluronate and other hyaluronic acid and its derivatives, Tremella fuciformis polysaccharides, Alcaligenes-produced polysaccharides, and polyquaterniums.
 なお、肌処理用物質が発現する肌関連効果は、肌処理用物質ごとに異なりうり、また、ユーザによって体感できる場合やできない場合もありうる。 The skin-related effects that skin treatment substances exert may vary from one skin treatment substance to another, and may or may not be noticeable to some users.
 美容効果は、任意であり、たるみの解消や、引き締め、脂肪燃焼、リフトアップ、小顔化、肌のハリやツヤ、潤いの向上又はその類の1つ以上の任意の組み合わせを含んでよい。また、美容効果は、数値化可能な効果であってもよいし、数値化可能でない効果であってもよい。 The cosmetic effect is optional and may include any combination of one or more of the following: elimination of sagging, tightening, burning fat, lifting, making the face smaller, improving skin firmness, radiance, and moisture. The cosmetic effect may be a quantifiable effect or a non-quantifiable effect.
 本実施形態の肌処理装置1は、肌処理用物質にプラズマを作用するように構成される。 The skin treatment device 1 of this embodiment is configured to apply plasma to a skin treatment substance.
 本実施形態の肌処理装置1は、ユーザの手により把持可能な携帯型であるが、固定機器にアーム等を介して可動に支持される可動式に適用されてもよい。また、肌処理装置1を挟持するユーザと、肌処理用物質が付与されるユーザとは、同じ人であってもよいし、別の人であってもよい。以下、ユーザとは、特に言及しない限り、いずれのユーザをも指す。 The skin treatment device 1 of this embodiment is a portable type that can be held by the user's hand, but it may also be applied as a movable type that is movably supported on a fixed device via an arm or the like. Furthermore, the user who holds the skin treatment device 1 and the user to whom the skin treatment substance is applied may be the same person or different people. Hereinafter, the user refers to either user unless otherwise specified.
 肌処理装置1は、把持部1bと、ヘッド部10とを含む。この場合、ユーザは、把持部1bを挟持して、ヘッド部10を肌処理用物質に対向させることで、ヘッド部10からのプラズマを肌処理用物質に作用させることができる。 The skin treatment device 1 includes a grip portion 1b and a head portion 10. In this case, the user can clamp the grip portion 1b and face the head portion 10 to the skin treatment substance, thereby allowing the plasma from the head portion 10 to act on the skin treatment substance.
 把持部1bは、ユーザの手で把持されやすい形態を有する。把持部1bには、電源のオン/オフボタン2やプラス電位/マイナス電位変換ボタン3を含んでよい。なお、各種ボタンは、機械式のボタンであってもよいし、タッチスイッチであってもよい。また、各種ボタンの配置は任意であり、図1に示すような把持部1bの裏側に代えて又は加えて、把持部1bの表側に設けられてもよい。 The grip portion 1b has a shape that allows it to be easily gripped by the user's hand. The grip portion 1b may include a power on/off button 2 and a positive potential/negative potential conversion button 3. The various buttons may be mechanical buttons or touch switches. The placement of the various buttons is arbitrary, and they may be provided on the front side of the grip portion 1b instead of or in addition to the back side of the grip portion 1b as shown in FIG. 1.
 ヘッド部10は、把持部1bの端部に設けられる。なお、ヘッド部10は、把持部1bに対して実質的に取り外し不能に固定されてもよいし、取り外し可能であってもよいし、把持部に対して可動であってもよい。 The head portion 10 is provided at the end of the grip portion 1b. The head portion 10 may be fixed to the grip portion 1b in a substantially unremovable manner, or may be removable, or may be movable relative to the grip portion.
 図2及び図3は、肌処理装置1のヘッド部10の機能の説明図であり、ヘッド部10の一部断面を概念的に示す概略図である。図2は、ヘッド部10がユーザの肌9上の肌処理用物質に対向している状態を示し、図3は、ヘッド部10が、ユーザの肌9とは異なる物体上の肌処理用物質に対向している状態を示す。また、図2及び図3には、プラズマが概念的に示されている(符号R2参照)。 Figures 2 and 3 are explanatory diagrams of the function of the head unit 10 of the skin treatment device 1, and are schematic diagrams conceptually showing a partial cross section of the head unit 10. Figure 2 shows the state in which the head unit 10 faces a skin treatment substance on the user's skin 9, and Figure 3 shows the state in which the head unit 10 faces a skin treatment substance on an object other than the user's skin 9. Additionally, Figures 2 and 3 conceptually show plasma (see symbol R2).
 ヘッド部10は、肌処理用物質に対向可能である。この際、ヘッド部10は、図2に示すように、ユーザの肌に付与された肌処理用物質に対向してもよいし、図3に示すように、ユーザの肌とは異なる他の物体(例えば容器など)上の肌処理用物質に対向してもよい。なお、本明細書において、ヘッド部10が肌処理用物質に「対向」とは、特に言及しない限り、ヘッド部10が肌処理用物質から離れた状態で対向する形態に加えて、ヘッド部10が肌処理用物質に接触した状態で対向する形態(当接する形態)をも含む概念である。 The head unit 10 can face the skin treatment substance. In this case, the head unit 10 may face the skin treatment substance applied to the user's skin as shown in FIG. 2, or may face the skin treatment substance on an object other than the user's skin (such as a container) as shown in FIG. 3. In this specification, the term "facing" the head unit 10 to the skin treatment substance includes, unless otherwise specified, a form in which the head unit 10 faces the skin treatment substance while separated from it, as well as a form in which the head unit 10 faces the skin treatment substance while in contact with it (a form in which it abuts against it).
 ヘッド部10は、略平面状(比較的大きい曲率半径の曲面状を含む)の基本面を有してよい。基本面は、側面視で略直線に近似できる平面である。正面視での基本面の形態(基本面に対して垂直な方向に視たときの形態)は、矩形や円形、楕円形、多角形等のような任意であり、本実施形態では、一例として、円形である。 The head portion 10 may have a basic surface that is generally flat (including a curved surface with a relatively large radius of curvature). The basic surface is a plane that can be approximated as a generally straight line in a side view. The shape of the basic surface in a front view (the shape when viewed in a direction perpendicular to the basic surface) can be any shape such as a rectangle, circle, ellipse, polygon, etc., and in this embodiment, as an example, it is a circle.
 ヘッド部10は、プラズマを生成可能な空間を有する。プラズマを生成可能な空間は、ヘッド部10における基本面に対して装置内部側に凹んだ凹部により形成されてよい。この場合、凹部により放電空間7が形成される。ヘッド部10の更なる詳細は後述する。 The head unit 10 has a space in which plasma can be generated. The space in which plasma can be generated may be formed by a recess that is recessed toward the inside of the device from the basic surface of the head unit 10. In this case, the recess forms a discharge space 7. Further details of the head unit 10 will be described later.
 肌処理装置1の機能は、肌処理装置1内のコンピュータ単独、又は、肌処理装置1内のコンピュータ(例えば後出の図26の制御装置100)と、外部サーバ及び/又はユーザ端末の組み合わせで実現可能である。また、この場合、肌処理装置1の機能を実現するコンピュータ読み取りプログラムは、肌処理装置1内のコンピュータにより実行されてもよいし、肌処理装置1内のコンピュータと、外部サーバ及び/又はユーザ端末の組み合わせにより実行されてもよい。 The functions of the skin processing device 1 can be realized by the computer in the skin processing device 1 alone, or by a combination of a computer in the skin processing device 1 (for example, the control device 100 in FIG. 26 described below) and an external server and/or a user terminal. In this case, the computer-readable program that realizes the functions of the skin processing device 1 may be executed by the computer in the skin processing device 1, or may be executed by a combination of the computer in the skin processing device 1 and an external server and/or a user terminal.
 次に、図4以降を参照して、本実施形態の肌処理装置1のヘッド部10等に関する更なる特徴的な構成について説明する。 Next, referring to Figure 4 onwards, further characteristic configurations of the head unit 10 and other parts of the skin treatment device 1 of this embodiment will be described.
 肌処理装置1のヘッド部10は、放電空間7内にプラズマを発生させる放電装置70を有する。なお、放電装置70の一部又は全部は、把持部1bに配置されてもよい。 The head portion 10 of the skin treatment device 1 has a discharge device 70 that generates plasma in the discharge space 7. Note that a part or all of the discharge device 70 may be disposed in the grip portion 1b.
 図4は、放電装置70の説明図である。図4には、前出の図3等と同様に、ヘッド部10が対向する肌処理用物質が概念的に示されている。 FIG. 4 is an explanatory diagram of the discharge device 70. As with FIG. 3 and the like, FIG. 4 conceptually shows the skin treatment substance that the head unit 10 faces.
 放電装置70は、図4に示すように、絶縁体5と、放電電極6と、電源77とを含む。 As shown in FIG. 4, the discharge device 70 includes an insulator 5, a discharge electrode 6, and a power source 77.
 絶縁体5は、樹脂材料等により形成されてよい。絶縁体5は、放電空間7を形成する凹部を有する。凹部の底面は、平らであってよい。以下では、凹部の底面は、平らであるとし、凹部の底面に垂直な方向を、「面直方向」とも称する。凹部の深さ、すなわち放電空間7の距離(面直方向の距離)は、任意であるが、好ましくは、3mm以下である。なお、凹部の端面51がユーザの肌等に当接すると、放電空間7を実質的に閉塞される。このような閉塞した放電空間7でプラズマが生成されてもよい。 The insulator 5 may be made of a resin material or the like. The insulator 5 has a recess that forms the discharge space 7. The bottom surface of the recess may be flat. Hereinafter, the bottom surface of the recess is assumed to be flat, and the direction perpendicular to the bottom surface of the recess is also referred to as the "direction perpendicular to the surface". The depth of the recess, i.e., the distance of the discharge space 7 (the distance in the direction perpendicular to the surface) is arbitrary, but is preferably 3 mm or less. When the end surface 51 of the recess comes into contact with the user's skin or the like, the discharge space 7 is substantially blocked. Plasma may be generated in such a blocked discharge space 7.
 放電電極6は、導体により形成されてもよいし、誘電体により形成されてもよい。例えば、放電電極6の材料は、金属(金、銀、銅、鉄、鉛、アルミニウム、ステンレス、チタンなど)、カーボン素材、ガラス素材(硬質ガラス、石英ガラス、サファイアガラス、クリスタルガラス、強化ガラス、耐熱ガラス、ガラスセラミックスなど)、セラミック素材(ジルコニア、アルミナ、チッ化アルミ、炭化ケイ素、チッ化ケイ素、フォルステライト、ステアタイト、コージライト、サイアロン、マシナブルセラミックス、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、ムライトなど)、誘電率の高いプラスチック素材等であってよい。 The discharge electrode 6 may be formed of a conductor or a dielectric. For example, the material of the discharge electrode 6 may be a metal (gold, silver, copper, iron, lead, aluminum, stainless steel, titanium, etc.), a carbon material, a glass material (hard glass, quartz glass, sapphire glass, crystal glass, tempered glass, heat-resistant glass, glass ceramics, etc.), a ceramic material (zirconia, alumina, aluminum nitride, silicon carbide, silicon nitride, forsterite, steatite, cordierite, sialon, machinable ceramics, barium titanate, lead zirconate titanate, ferrite, mullite, etc.), a plastic material with a high dielectric constant, etc.
 なお、放電電極6が誘電体の場合は、絶縁体5の比誘電率<放電電極6の比誘電率となるように、各材料が選定されてよい。 If the discharge electrode 6 is a dielectric, the materials may be selected so that the relative dielectric constant of the insulator 5 is less than the relative dielectric constant of the discharge electrode 6.
 放電電極6は、絶縁体5に保持される。放電電極6は、絶縁体5の凹部の底面に沿う平板状の形態であってよい。ただし、変形例では、放電電極6は、凹凸を有する形態であってよい。また、放電電極6の平面視の形状も、矩形や丸等、任意である。 The discharge electrode 6 is held by the insulator 5. The discharge electrode 6 may be in the form of a flat plate that fits along the bottom surface of the recess in the insulator 5. However, in a modified example, the discharge electrode 6 may be in the form of an uneven surface. The shape of the discharge electrode 6 in a plan view may also be any shape, such as rectangular or circular.
 放電電極6は、電源77に電気的に接続される。例えば、放電電極6は、導線12を介して電源77が接続される。 The discharge electrode 6 is electrically connected to the power source 77. For example, the discharge electrode 6 is connected to the power source 77 via the conductor 12.
 電源77は、プラズマを発生可能な電源(例えば比較的定格電圧が高い電源)であってよい。電源77は、外部電源であってもよいし、肌処理装置1内に内蔵されてもよい。なお、電源77は、高圧トランス等を含んでよい。 The power source 77 may be a power source capable of generating plasma (e.g., a power source with a relatively high rated voltage). The power source 77 may be an external power source or may be built into the skin treatment device 1. The power source 77 may include a high-voltage transformer, etc.
 このような構成では、電源77から印加された電圧により放電空間7を放電された電気は肌処理用物質側へと流れることができる。 In this configuration, electricity discharged from the discharge space 7 by the voltage applied from the power source 77 can flow to the skin treatment substance side.
 次に、図5から図7を参照して、本実施形態の肌処理装置1により実現可能なプラズマ照射に係る効果(作用)について説明する。 Next, the effects (functions) of plasma irradiation that can be achieved by the skin treatment device 1 of this embodiment will be described with reference to Figures 5 to 7.
 図5は、水道水及び肌処理用物質(ヒアルロン酸)にそれぞれプラズマを3分間照射した場合の電位変化の試験結果を示す表図である。本試験結果は、電位計の測定結果を示す。図5に示すように、プラズマを照射すると、照射対象物(肌処理用物質)の電位が変化(低下)することがわかる。 Figure 5 is a table showing the test results of the change in potential when plasma was irradiated on tap water and a skin treatment substance (hyaluronic acid) for three minutes. The test results show the measurement results of an electrometer. As shown in Figure 5, it can be seen that the potential of the irradiated object (skin treatment substance) changes (decreases) when plasma is irradiated.
 図6は、水道水及び肌処理用物質(ヒアルロン酸)にそれぞれプラズマを3分間照射した場合のpH変化の試験結果を示す表図である。本試験結果は、pH計の測定結果を示す。図6に示すように、プラズマを照射すると、照射対象物のpHが変化(低下)することがわかる。図6に示した試験結果には、ヒアルロン酸にプラズマを照射することで、ヒアルロン酸の電位をマイナスにできる可能性が示唆されている。 Figure 6 is a table showing the test results of the pH change when tap water and a skin treatment substance (hyaluronic acid) were irradiated with plasma for three minutes. The test results show the results of measurements taken with a pH meter. As shown in Figure 6, it can be seen that the pH of the irradiated object changes (decreases) when exposed to plasma. The test results shown in Figure 6 suggest that it may be possible to make the electric potential of hyaluronic acid negative by irradiating it with plasma.
 図7は、水(純水)にプラズマを照射したときの水のpH値の変化に関する試験結果を示す表図801、802である。表図801は、プラズマの照射時間とpH値との関係を示す表図である。表図801に示すように、プラズマの照射時間が長くなるにつれて、酸性度合いが増える傾向があることがわかる。また、表図802に示すように、プラズマの照射により処理した水は、その後の経過時間が長くなるにつれて、元のpH値に戻る傾向があることがわかる。従って、プラズマの照射時間は、所望のpH値に応じて適宜調整されてもよい。 FIG. 7 shows tables 801 and 802 showing test results regarding the change in pH value of water (pure water) when plasma is irradiated to the water. Table 801 shows the relationship between plasma irradiation time and pH value. As shown in table 801, it can be seen that the longer the plasma irradiation time, the greater the tendency for the acidity to increase. Also, as shown in table 802, it can be seen that water treated by plasma irradiation tends to return to its original pH value as the time that has elapsed since then increases. Therefore, the plasma irradiation time may be adjusted as appropriate according to the desired pH value.
 図8は、試料中におけるヒアルロン酸の分子量をサンプル間で比較する試験結果(電気泳動測定結果)を示す図である。本試験では、試料は、ヒアルロン酸水溶液であり、放電処理をしていない未処理品と、放電処理をした処理品との間で、ヒアルロン酸の分子量を比較した。ヒアルロン酸は「ヒアルロン酸ナトリウムMW110/160〈1%水溶液-PE〉」使用した。プラズマ処理はいずれの試料においても約3分間照射した。試料にて1H-NMRスペクトルピークの変化を捉えた。なお、分析方法の詳細は、文献“M.K. Cowman et al.による “Improved agarose gel electrophoresis method and molecular mass calculationfor high molecular mass hyaluronan” Anal. Biochem., 417 (2011) 50-56”に基づく。プラズマは、17Vの交流電源を用いて直接的に試料に作用させた。図8からわかるように、プラズマを作用させた処理品と未処理品との間には、ヒアルロン酸の分子量分布において顕著な相違が確認できる。このことから、分子量が小さく変化していることが考えられる。 Figure 8 shows the test results (electrophoresis measurement results) comparing the molecular weight of hyaluronic acid in samples between the two samples. In this test, the sample was an aqueous solution of hyaluronic acid, and the molecular weight of hyaluronic acid was compared between an untreated sample that had not been discharged and a treated sample that had been discharged. The hyaluronic acid used was "Sodium hyaluronate MW110/160 (1% aqueous solution - PE)." All samples were exposed to plasma treatment for approximately 3 minutes. Changes in the 1H-NMR spectrum peaks of the samples were captured. Details of the analysis method are based on the literature "Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan by M.K. Cowman et al., Anal. Biochem., 417 (2011) 50-56." Plasma was applied directly to the sample using a 17V AC power source. As can be seen from Figure 8, a significant difference can be confirmed in the molecular weight distribution of hyaluronic acid between the plasma-treated sample and the untreated sample. This suggests that there has been a small change in molecular weight.
 図9は、H-NMRスペクトルを測定した試験結果を示す図である。本試験では、試料は、ヒアルロン酸水溶液であり、放電処理をしていない未処理品と、放電処理をした処理品との間で、H-NMRスペクトルを測定した。図9において、符号91で示すグラフは、未処理品の分布であり、符号92で示すグラフは、処理品の分布である。なお、溶液は、純水(軽水)で約5倍に希釈して使用した。図9からわかるように、プラズマを作用させた処理品と未処理品との間には、H-NMRスペクトルの分布において顕著な相違(例えば矢印R81、R82で示す箇所参照)が確認できる。 FIG. 9 is a diagram showing the test results of measuring 1 H-NMR spectrum. In this test, the sample is a hyaluronic acid aqueous solution, and 1 H-NMR spectrum was measured between an untreated sample that was not subjected to discharge treatment and a treated sample that was subjected to discharge treatment. In FIG. 9, the graph indicated by reference numeral 91 shows the distribution of the untreated sample, and the graph indicated by reference numeral 92 shows the distribution of the treated sample. The solution was diluted about 5 times with pure water (light water) before use. As can be seen from FIG. 9, a significant difference (for example, see the points indicated by arrows R81 and R82) can be confirmed in the distribution of 1 H-NMR spectrum between the treated sample that was subjected to plasma and the untreated sample.
 図8及び図9に示した試験結果には、ヒアルロン酸にプラズマを照射することで、ヒアルロン酸の分子構造に変化を与えることができる可能性が示唆されている。 The test results shown in Figures 8 and 9 suggest that it may be possible to change the molecular structure of hyaluronic acid by irradiating it with plasma.
 従って、本実施例によれば、肌に塗布された肌処理用物質に肌処理装置1によりプラズマを作用させることで、当該肌処理用物質の構造及び/又は特性を変化させて、当該肌処理用物質が発現する肌関連効果を促進させることを期待できる。あるいは、肌処理用物質に肌処理装置1によりプラズマを作用させることで、当該肌処理用物質の構造及び/又は特性を変化させてから、当該肌処理用物質を肌に付与することで、当該肌処理用物質が発現する肌関連効果を促進させることを期待できる。
 例えば、高分子成分にプラズマを作用させることで、分子サイズを小さく変化させ、浸透を促進させたり、pHを下げたりすることが可能となる。また、好適なpHにコントロールすることで、肌への刺激を弱めより親和性を高めたり、肌処理用物質の状態を改善させたりすることが可能となる。
Therefore, according to this embodiment, it is expected that the structure and/or properties of the skin treatment substance can be changed by applying plasma to the skin treatment substance applied to the skin using the skin treatment device 1, thereby enhancing the skin-related effects exhibited by the skin treatment substance. Alternatively, it is expected that the structure and/or properties of the skin treatment substance can be changed by applying plasma to the skin treatment substance using the skin treatment device 1, and then the skin treatment substance can be applied to the skin, thereby enhancing the skin-related effects exhibited by the skin treatment substance.
For example, by applying plasma to a polymer component, it is possible to reduce the molecular size, promote penetration, lower the pH, etc. In addition, by controlling the pH to a suitable level, it is possible to reduce irritation to the skin, increase affinity, and improve the condition of the skin treatment substance.
 次に、図10以降を参照して、肌処理装置1に係るプラズマ適用方法のバリエーションについて説明する。 Next, variations in the plasma application method for the skin treatment device 1 will be described with reference to Figures 10 onwards.
 電荷を用いたプラズマ適用方法は、+電荷を適用する方法と、-電荷を適用する方法と、±電荷を適用する方法とを含む3つの方法があり、順に説明する。+電荷を適用する方法と、-電荷を適用する方法と、±電荷を適用する方法は、プラズマ適用対象の肌処理用物質の特性等に応じて適宜選択されてよい。また、肌処理装置1は、+電荷を適用する方法と、-電荷を適用する方法と、±電荷を適用する方法のうちのいずれか1つの方法の専用であってもよいし、2つ以上の方法のうちの、いずれかを選択して実現できるように構成されてもよい。 There are three methods of applying plasma using electric charge, including a method of applying a positive charge, a method of applying a negative charge, and a method of applying a ± charge, which will be explained in order. The method of applying a positive charge, the method of applying a negative charge, and the method of applying a ± charge may be selected as appropriate depending on the characteristics of the skin treatment substance to which the plasma is to be applied. Furthermore, the skin treatment device 1 may be dedicated to any one of the methods of applying a positive charge, the method of applying a negative charge, and the method of applying a ± charge, or may be configured to be able to select and realize any one of two or more methods.
 図10は、+電荷を用いたプラズマ適用方法の説明図である。+偏移高電圧(符号800が指す時系列を波形で模式的に図示)を、電極としての放電電極6に印加し放電させると、放電電極6には、-電荷が引き寄せられ、その結果、肌処理用物質には+電荷が移動する。これにより、肌処理用物質に含まれる特定の成分(例えばヒアルロン酸などの有効成分)にプラスの電荷を与えることができる。 FIG. 10 is an explanatory diagram of a method of applying plasma using a positive charge. When a positively biased high voltage (a time series indicated by the reference numeral 800 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, a negative charge is attracted to the discharge electrode 6, and as a result, a positive charge is transferred to the skin treatment substance. This makes it possible to give a positive charge to specific components (for example, active ingredients such as hyaluronic acid) contained in the skin treatment substance.
 図11は、-電荷を用いたプラズマ適用方法の説明図である。-偏移高電圧(符号900が指す時系列を波形で模式的に図示)を、電極としての放電電極6に印加し放電させると、放電電極6には、+電荷が引き寄せられ、その結果、肌処理用物質には-電荷が移動する。これにより、肌処理用物質に含まれる特定の成分にマイナスの電荷を与えることができる。 FIG. 11 is an explanatory diagram of a method of applying plasma using a negative charge. When a negatively biased high voltage (the time series indicated by the reference symbol 900 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, a positive charge is attracted to the discharge electrode 6, and as a result, a negative charge is transferred to the skin treatment substance. This makes it possible to give a negative charge to specific components contained in the skin treatment substance.
 図12は、±電荷を用いたプラズマ適用方法の説明図である。±高電圧(符号1000が指す時系列を波形で模式的に図示)を、電極としての放電電極6に印加し放電させると、図8や図9とは異なり、+電荷と-電荷に偏りが生じない。+電荷と-電荷に偏りがないプラズマを肌処理用物質に含まれる特定の成分に作用させることができる。 FIG. 12 is an explanatory diagram of a method of applying plasma using positive and negative charges. When a positive high voltage (the time series indicated by the symbol 1000 is diagrammatically shown as a waveform) is applied to the discharge electrode 6 as an electrode and discharged, unlike in FIG. 8 and FIG. 9, no bias in positive and negative charges occurs. Plasma with no bias in positive and negative charges can be applied to specific components contained in the skin treatment substance.
 図13は、上述した電荷を用いたプラズマ適用方法を実現するための高電圧発生・制御回路110の一例を示す図である。高電圧発生・制御回路110は、肌処理装置1に内蔵されてもよいし、外部から肌処理装置1に接続されてもよい。なお、図13では、電源77は、直流電源77aから高電圧を発生するように構成される。
 高電圧発生・制御回路110は、+高電圧発生部52と、-高電圧発生部53と、マイコン54とを含む。
Fig. 13 is a diagram showing an example of a high voltage generation/control circuit 110 for realizing the above-mentioned plasma application method using electric charge. The high voltage generation/control circuit 110 may be built in the skin treatment device 1, or may be connected to the skin treatment device 1 from the outside. In Fig. 13, the power supply 77 is configured to generate a high voltage from a DC power supply 77a.
The high voltage generation and control circuit 110 includes a + high voltage generating section 52 , a − high voltage generating section 53 , and a microcomputer 54 .
 +高電圧発生部52は、例えば、発振回路とトランス等を含み、入力電圧を数百倍に昇圧する機能を有してよい。+高電圧発生部52は、マイコン54から出力される+高電圧制御出力信号(+OUT)によって制御される。+高電圧発生部52は、高電圧制御出力信号が出力している期間、高電圧を出力する。 The high voltage generating unit 52 may include, for example, an oscillator circuit and a transformer, and may have the function of boosting the input voltage several hundred times. The high voltage generating unit 52 is controlled by a high voltage control output signal (OUT) output from the microcomputer 54. The high voltage generating unit 52 outputs a high voltage while the high voltage control output signal is being output.
 -高電圧発生部53は、例えば、発振回路とトランス等を含み、入力電圧を数百倍に昇圧する機能を有してよい。-高電圧発生部53は、マイコン54から出力される-高電圧制御出力信号(-OUT)によって制御される。 -The high voltage generating unit 53 may include, for example, an oscillator circuit and a transformer, and may have the function of boosting the input voltage several hundred times. -The high voltage generating unit 53 is controlled by the -high voltage control output signal (-OUT) output from the microcomputer 54.
 図14及び図15は、図10及び図11に模式的に示した各種電圧の生成方法の説明図である。図10に模式的に示した+偏移高電圧は、図14のように+OUTから制御信号が出力されている間、出力される。図11に模式的に示した-高電圧出力も同様に、図15のように-OUTから制御信号が出力されている間、出力される。 FIGS. 14 and 15 are explanatory diagrams of the method of generating the various voltages shown typically in FIG. 10 and FIG. 11. The +-biased high voltage shown typically in FIG. 10 is output while a control signal is being output from +OUT, as in FIG. 14. Similarly, the - high voltage output shown typically in FIG. 11 is output while a control signal is being output from -OUT, as in FIG. 15.
 図16は、上述した電荷を用いたプラズマ適用方法を実現するための高電圧発生・制御回路110Aの一例を示す図である。高電圧発生・制御回路110Aは、肌処理装置1に内蔵されてもよいし、外部から肌処理装置1に接続されてもよい
 高電圧発生・制御回路110Aは、±高電圧出力を生成するのが好適である。±高電圧発生部55は、例えばトランスで構成され入力電圧を数百倍に昇圧する。±高電圧発生部55は、マイコン56から出力される2つの高電圧制御出力パルス信号(+OUT、-OUT)によって制御される。±高電圧は、これらの高電圧制御出力パルス信号を周期的に出力されることで発生する。
16 is a diagram showing an example of a high voltage generation and control circuit 110A for realizing the above-mentioned plasma application method using electric charge. The high voltage generation and control circuit 110A may be built into the skin treatment device 1 or may be connected to the skin treatment device 1 from the outside. The high voltage generation and control circuit 110A is preferably configured to generate ± high voltage output. The ± high voltage generation unit 55 is composed of, for example, a transformer and boosts the input voltage several hundred times. The ± high voltage generation unit 55 is controlled by two high voltage control output pulse signals (+OUT, -OUT) output from a microcomputer 56. The ± high voltage is generated by periodically outputting these high voltage control output pulse signals.
 +高電圧出力は、図17のように+OUTからパルス信号を周期的に出力することで発生することができる。 +High voltage output can be generated by periodically outputting a pulse signal from +OUT as shown in Figure 17.
 -高電圧出力は、図18のように-OUTからパルス信号を周期的に出力することで発生することができる。 - A high voltage output can be generated by periodically outputting a pulse signal from -OUT as shown in Figure 18.
 ±高電圧出力は、図19のように+OUTと-OUTを半周期ずらして出力することで、交互に高電圧が発生し、±高電圧出力を得ることができる。 By outputting +OUT and -OUT with a half-cycle shift as shown in Figure 19, high voltages are generated alternately, making it possible to obtain ± high voltage outputs.
 図20は、電荷生成の動的制御の一例の説明図である。図20では、横軸に時間を取り、縦軸に放電電圧を取り、+、-の高電圧の生成パターンの一例が時系列で示されている。図20に示す例では、放電電圧は一定であり、+、-の高電圧の持続時間は可変とされている。 FIG. 20 is an explanatory diagram of an example of dynamic control of charge generation. In FIG. 20, the horizontal axis is time and the vertical axis is discharge voltage, and an example of a generation pattern of positive and negative high voltages is shown in time series. In the example shown in FIG. 20, the discharge voltage is constant, and the duration of the positive and negative high voltages is variable.
 図21は、電荷生成の動的制御の他の一例の説明図である。図21では、横軸に時間を取り、縦軸に放電電圧を取り、+、-の高電圧の生成パターンの他の一例が時系列で示されている。図21に示す例では、放電電圧は3種類であり、+、-の高電圧の持続時間は可変とされている。なお、放電電圧の種類は、3種類以外であってもよく、2段階や4段階以上であってもよい。 FIG. 21 is an explanatory diagram of another example of dynamic control of charge generation. In FIG. 21, the horizontal axis represents time and the vertical axis represents discharge voltage, and another example of a generation pattern of positive and negative high voltages is shown in time series. In the example shown in FIG. 21, there are three types of discharge voltage, and the duration of the positive and negative high voltages is variable. Note that the types of discharge voltage may be other than three, and may also be two or four or more stages.
 また、放電電圧の種類は、放電電圧以外にも、上述した+電荷を適用する方法と、-電荷を適用する方法と、±電荷を適用する方法の相違に基づく種類であってもよい。 In addition to the discharge voltage, the type of discharge voltage may be based on the differences between the above-mentioned methods of applying a positive charge, a negative charge, and a positive charge.
 上述した実施形態では、放電電極6に交流電圧を印加することで、肌処理用物質にプラズマを作用させているが、これに代えて又は加えて、放電電極6に直流電圧を印加することで、肌処理用物質にプラズマを作用させることも可能である。 In the above-described embodiment, plasma is applied to the skin treatment substance by applying an AC voltage to the discharge electrode 6. However, instead of or in addition to this, it is also possible to apply a DC voltage to the discharge electrode 6 to apply plasma to the skin treatment substance.
 図22は、直流電圧を放電電極6に印加することで肌処理用物質を処理可能な構成例を示す概略図である。 FIG. 22 is a schematic diagram showing an example of a configuration in which a skin treatment substance can be treated by applying a DC voltage to the discharge electrode 6.
 誘電体電極72に直流高電圧を印加することによって、誘電体電極72の電極表面に任意の表面電位を発生させることができる。この誘電体電極72に液体73を接触させると液体73に電位を発生させることが可能となる。すなわち、誘電体電極72に直流高電圧を発生させることで、誘電体電極表面を高電圧に帯電させ、帯電した誘電体電極72を液体73に接液することで、液体73内部を誘電分極させる。 By applying a high DC voltage to the dielectric electrode 72, an arbitrary surface potential can be generated on the electrode surface of the dielectric electrode 72. When the dielectric electrode 72 is brought into contact with the liquid 73, a potential can be generated in the liquid 73. In other words, by generating a high DC voltage on the dielectric electrode 72, the surface of the dielectric electrode is charged to a high voltage, and by bringing the charged dielectric electrode 72 into contact with the liquid 73, the inside of the liquid 73 is dielectrically polarized.
 誘電体電極72に直流高電圧を印加する回路としては、図13等を参照して上述したAC(交流)放電で用いることが可能な高電圧発生・制御回路110を利用できる。この場合、マイコン54からは、ON/OFFの出力信号が高電圧発生部52又は高電圧発生部53に印加されてよい。この場合、図23及び図24に示すように、ON信号の極性に応じて、プラス又はマイナスの直流電圧を誘電体電極72に印加できる。 The circuit that applies the high DC voltage to the dielectric electrode 72 can be the high voltage generation and control circuit 110 that can be used for AC (alternating current) discharge described above with reference to FIG. 13 etc. In this case, an ON/OFF output signal can be applied from the microcomputer 54 to the high voltage generating unit 52 or the high voltage generating unit 53. In this case, as shown in FIG. 23 and FIG. 24, a positive or negative DC voltage can be applied to the dielectric electrode 72 depending on the polarity of the ON signal.
 図25は、変形例の説明図である。 FIG. 25 is an explanatory diagram of a modified example.
 上述した実施形態では、ヘッド部10は、放電空間7を形成する凹部は外側が開口しているが、本変形例のヘッド部10Bに示すように、外側の開口が他の部材8(以下、「カバー部材8」とも称する)により塞がれてもよい。カバー部材8は、放電空間7を挟んで放電電極6に対向するように配置される。この場合、放電空間7は、放電電極6と別の部材8との間に挟まれる態様で形成される。 In the above-described embodiment, the head portion 10 has a recess that forms the discharge space 7 that is open to the outside, but as shown in the head portion 10B of this modified example, the opening on the outside may be blocked by another member 8 (hereinafter also referred to as a "cover member 8"). The cover member 8 is disposed so as to face the discharge electrode 6 across the discharge space 7. In this case, the discharge space 7 is formed in a manner that it is sandwiched between the discharge electrode 6 and another member 8.
 カバー部材8は、導体により形成されてもよいし、誘電体により形成されてもよい。例えば、放電電極6の材料は、金属(金、銀、銅、鉄、鉛、アルミニウム、ステンレス、チタンなど)、カーボン素材、ガラス素材(硬質ガラス、石英ガラス、サファイアガラス、クリスタルガラス、強化ガラス、耐熱ガラス、ガラスセラミックスなど)、セラミック素材(ジルコニア、アルミナ、チッ化アルミ、炭化ケイ素、チッ化ケイ素、フォルステライト、ステアタイト、コージライト、サイアロン、マシナブルセラミックス、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、ムライトなど)、誘電率の高いプラスチック素材等であってよい。 The cover member 8 may be formed of a conductor or a dielectric material. For example, the material of the discharge electrode 6 may be a metal (gold, silver, copper, iron, lead, aluminum, stainless steel, titanium, etc.), a carbon material, a glass material (hard glass, quartz glass, sapphire glass, crystal glass, tempered glass, heat-resistant glass, glass ceramics, etc.), a ceramic material (zirconia, alumina, aluminum nitride, silicon carbide, silicon nitride, forsterite, steatite, cordierite, sialon, machinable ceramics, barium titanate, lead zirconate titanate, ferrite, mullite, etc.), a plastic material with a high dielectric constant, etc.
 カバー部材8は、放電電極6と同様、絶縁体5に保持されてよい。 The cover member 8 may be held by the insulator 5, similar to the discharge electrode 6.
 本変形例によっても、カバー部材8を介して、肌処理用物質にプラズマを作用させることが可能である。 With this modified example, it is also possible to apply plasma to the skin treatment substance through the cover member 8.
 次に、図26を参照して、肌処理装置1に内蔵されてよい制御装置100のハードウェア構成について説明する。制御装置100は、上述した肌処理装置1の各種機能又は後述する偏電位生成方法を実現する。 Next, referring to FIG. 26, the hardware configuration of the control device 100 that may be built into the skin treatment device 1 will be described. The control device 100 realizes the various functions of the skin treatment device 1 described above or the biased electric potential generation method described below.
 図26は、制御装置100のハードウェア構成の一例を示す図である。図26には、制御装置100のハードウェア構成に関連付けて、制御対象30が模式的に図示されている。制御装置100は、バス19で接続されたCPU(Central Processing Unit)11、RAM(Random Access Memory)12、ROM(Read Only Memory)13、補助記憶装置14、ドライブ装置15、及び通信インターフェース17、並びに、通信インターフェース17に接続された有線送受信部25及び無線送受信部26を含む。なお、制御装置100の一部又は全部は、基板等に各種素子(チップの形態を含む素子)が実装された回路の形態であってよい。 FIG. 26 is a diagram showing an example of the hardware configuration of the control device 100. In FIG. 26, a control target 30 is diagrammatically shown in association with the hardware configuration of the control device 100. The control device 100 includes a CPU (Central Processing Unit) 11, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 13, an auxiliary storage device 14, a drive device 15, and a communication interface 17, all of which are connected by a bus 19, as well as a wired transceiver 25 and a wireless transceiver 26 connected to the communication interface 17. Note that a part or all of the control device 100 may be in the form of a circuit in which various elements (including elements in the form of chips) are mounted on a substrate or the like.
 補助記憶装置14は、例えばHDD(Hard Disk Drive)や、SSD(Solid State Drive)などであり、アプリケーションソフトウェアなどに関連するデータを記憶する記憶装置である。 
 有線送受信部25は、有線ネットワークを利用して通信可能な送受信部を含む。有線送受信部25には、制御対象30が接続される。ただし、制御対象30の一部又は全部は、バス19に接続されてもよいし、無線送受信部26に接続されてもよい。
The auxiliary storage device 14 is, for example, a hard disk drive (HDD) or a solid state drive (SSD), and is a storage device that stores data related to application software and the like.
The wired transceiver 25 includes a transceiver capable of communicating using a wired network. A control target 30 is connected to the wired transceiver 25. However, a part or all of the control target 30 may be connected to the bus 19 or may be connected to the wireless transceiver 26.
 無線送受信部26は、無線ネットワークを利用して通信可能な送受信部である。無線ネットワークは、携帯電話の無線通信網、インターネット、VPN(Virtual Private Network)、WAN(Wide Area Network)等を含んでよい。また、無線送受信部26は、近距離無線通信(NFC:Near Field Communication)部、ブルートゥース(Bluetooth、登録商標)通信部、Wi-Fi(Wireless-Fidelity)送受信部、赤外線送受信部などを含んでもよい。なお、制御装置100は、無線送受信部26を介してサーバ(図示せず)と通信し、各種情報を取得してもよい。 The wireless transmission/reception unit 26 is a transmission/reception unit capable of communicating using a wireless network. The wireless network may include a wireless communication network for mobile phones, the Internet, a VPN (Virtual Private Network), a WAN (Wide Area Network), etc. The wireless transmission/reception unit 26 may also include a near field communication (NFC) unit, a Bluetooth (registered trademark) communication unit, a Wi-Fi (Wireless-Fidelity) transmission/reception unit, an infrared transmission/reception unit, etc. The control device 100 may communicate with a server (not shown) via the wireless transmission/reception unit 26 to acquire various information.
 なお、制御装置100は、記録媒体16と接続可能であってもよい。記録媒体16は、所定のプログラムを格納する。この記録媒体16に格納されたプログラムは、ドライブ装置15を介して制御装置100の補助記憶装置14等にインストールされる。インストールされた所定のプログラムは、制御装置100のCPU11により実行可能となる。例えば、記録媒体16は、CD(Compact Disc)-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する記録媒体、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等であってよい。なお、記録媒体16には、搬送波は含まれない。 The control device 100 may be connectable to a recording medium 16. The recording medium 16 stores a specific program. The program stored in the recording medium 16 is installed in the auxiliary storage device 14 of the control device 100 via the drive device 15. The installed specific program can be executed by the CPU 11 of the control device 100. For example, the recording medium 16 may be a recording medium that records information optically, electrically or magnetically, such as a CD (Compact Disc)-ROM, a flexible disk, or a magneto-optical disk, or a semiconductor memory that records information electrically, such as a ROM or a flash memory. The recording medium 16 does not include a carrier wave.
 以上、各実施形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施形態の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
 なお、各種処理は、電気的な出力波形等に基づくが、これに限られない。例えば電気的な出力波形に代えて又は加えて、ヒータ等による熱を用いる方法、LED(Light Emitting Diode)以外の光やIPL(Intense Pulsed Light)のような光を用いる方法、超音波を用いる方法、磁気的方法、及び電磁波を用いる方法のうちのいずれか1つ以上が利用されてもよい。 The various processes are based on electrical output waveforms, but are not limited to this. For example, instead of or in addition to electrical output waveforms, one or more of the following may be used: a method using heat from a heater, a method using light other than an LED (Light Emitting Diode) or light such as an IPL (Intense Pulsed Light), a method using ultrasound, a magnetic method, and a method using electromagnetic waves.
 例えば、LEDは光の波長領域で、青色波長領域では抗菌作用、緑色波長領域では抗酸化効果や、メラニン産生の抑制、赤色波長領域では、コラーゲン産生促進やハリの向上などの効果が知られているが、物質が保有する効能や特性に合わせて、LEDと電位の付与の組合せにより、より高い浸透効果を実現させる事が考えられる。
 肌処理用物質を帯電させるようにプラズマを作用させることで、パルス電気刺激と組み合わせて、肌の浸透効果を促進させることとしてもよい。
 また、肌処理用物質を保存する容器に、プラズマ放電用の電極を構成して、肌処理用物質に効率よくプラズマを作用させるように構成してもよい。また、凹部(絶縁体5における、放電空間7を形成する凹部)は必ずしも必要ではなく、放電電極と適度な空間が一部で確保できればよい。
For example, LEDs are known to have antibacterial effects in the blue wavelength range, antioxidant effects and inhibition of melanin production in the green wavelength range, and promotion of collagen production and improved firmness in the red wavelength range. However, it is thought that a greater penetration effect can be achieved by combining LEDs with the application of an electric potential in accordance with the efficacy and characteristics of the substance.
The plasma may be used to charge the skin treatment substance, which, in combination with the pulsed electrical stimulation, may enhance the skin penetration effect.
In addition, a plasma discharge electrode may be provided in the container for storing the skin treatment substance, so that the plasma can be efficiently applied to the skin treatment substance. Also, the recess (the recess in the insulator 5 that forms the discharge space 7) is not necessarily required, and it is sufficient if an appropriate space can be partially secured between the discharge electrode and the container.
 また、上述した実施形態の肌処理装置1は、肌処理用物質にプラズマを作用するように構成されるが、これに代えて又は加えて、ユーザの肌に直接的にプラズマを作用するように構成されてもよい。 Furthermore, the skin treatment device 1 in the above-described embodiment is configured to apply plasma to a skin treatment substance, but instead of or in addition to this, it may be configured to apply plasma directly to the user's skin.
 以上の実施形態に関連して、更に以下の付記を開示する。 The following notes are further provided in relation to the above embodiments.
[付記1]
 ユーザの肌に当接可能なヘッド部と、
 前記ヘッド部の内部の空間に放電を発生させる放電装置とを備える、肌処理装置。
[Appendix 1]
A head portion that can be brought into contact with the skin of a user;
A skin treatment device comprising: a discharge device that generates an electric discharge in the space inside the head portion.
[付記2]
 前記放電装置は、
ユーザの肌側に配置される板状の外側部材と、
前記外側部材よりも前記ヘッド部の内側に配置され、前記外側部材に対向する内側部材と、
前記内側部材に電気的に接続される電源とを含み、
 前記空間は、前記外側部材と前記内側部材の間に形成される、付記1に記載の肌処理装置。
[Appendix 2]
The discharge device is
A plate-shaped outer member to be placed on the skin side of the user;
an inner member disposed inside the head portion relative to the outer member and facing the outer member;
a power source electrically connected to the inner member;
The skin treatment device of claim 1, wherein the space is formed between the outer member and the inner member.
[付記3]
 前記外側部材は、導体又は誘電体により形成される、付記1又は2に記載の肌処理装置。
[Appendix 3]
The skin treatment device described in appendix 1 or 2, wherein the outer member is formed of a conductor or a dielectric.
[付記4]
 前記外側部材は、ユーザの肌に当接可能な外側表面と、前記内側部材に対向する内側表面とを有する、付記1から3のうちのいずれか1項に記載の肌処理装置。
[Appendix 4]
The skin treatment device according to any one of claims 1 to 3, wherein the outer member has an outer surface that can contact the user's skin and an inner surface that faces the inner member.
[付記5]
 前記空間は、前記外側部材により塞がれている、付記1から4のうちのいずれか1項に記載の肌処理装置。
[Appendix 5]
A skin treatment device according to any one of claims 1 to 4, wherein the space is sealed by the outer member.
[付記6]
 前記ヘッド部は、前記外側部材を保持する絶縁体を備える、付記1から5のうちのいずれか1項に記載の肌処理装置。
[Appendix 6]
The skin treatment device according to any one of claims 1 to 5, wherein the head portion is provided with an insulator that holds the outer member.
[付記7]
 前記放電装置は、前記空間にプラス電荷又はマイナス電荷が偏って存在するように、前記放電を発生させる、付記1から6のうちのいずれか1項に記載の肌処理装置。
[Appendix 7]
The skin treatment device according to any one of claims 1 to 6, wherein the discharge device generates the discharge so that positive or negative charges are biasedly present in the space.
1 肌処理装置
1b 把持部
2 電源のオン/オフボタン
3 プラス電位/マイナス電位変換ボタン
5 絶縁体
6 放電電極
7 放電空間(内部空間)
8 カバー部材
9 肌
10 ヘッド部
12 導線
14 補助記憶装置
15 ドライブ装置
16 記録媒体
17 通信インターフェース
19 バス
25 有線送受信部
26 無線送受信部
52 高電圧発生部
53 高電圧発生部
54 マイコン
55 高電圧発生部
56 マイコン
60 制御対象
70 放電装置
72 誘電体電極
73 液体
77 電源
77a 直流電源
100 制御装置
110 高電圧発生・制御回路
110A 高電圧発生・制御回路
1 Skin treatment device 1b Grip part 2 Power on/off button 3 Positive potential/negative potential conversion button 5 Insulator 6 Discharge electrode 7 Discharge space (internal space)
Reference Signs List 8 Cover member 9 Skin 10 Head unit 12 Conductive wire 14 Auxiliary storage device 15 Drive device 16 Recording medium 17 Communication interface 19 Bus 25 Wired transceiver unit 26 Wireless transceiver unit 52 High voltage generator unit 53 High voltage generator unit 54 Microcomputer 55 High voltage generator unit 56 Microcomputer 60 Control target 70 Discharge device 72 Dielectric electrode 73 Liquid 77 Power source 77a DC power source 100 Control device 110 High voltage generation and control circuit 110A High voltage generation and control circuit

Claims (9)

  1.  プラズマを発生可能な放電装置を備え、
     プラズマにより構造又は特性が変化する肌処理用物質に対して前記放電装置によりプラズマを作用させる、肌処理装置。
    A discharge device capable of generating plasma is provided,
    A skin treatment device that uses the discharge device to apply plasma to a skin treatment substance whose structure or properties are changed by plasma.
  2.  前記放電装置は、電源を介して生成される交流波形に基づいて動作する、請求項1に記載の肌処理装置。 The skin treatment device of claim 1, wherein the discharge device operates based on an AC waveform generated via a power source.
  3.  前記放電装置は、前記肌処理用物質が処理対象の人の肌に付与された状態又は付与される前に、前記肌処理用物質にプラズマを作用させる、請求項1に記載の肌処理装置。 The skin treatment device of claim 1, wherein the discharge device applies plasma to the skin treatment substance when the skin treatment substance is applied to the skin of the person to be treated or before the skin treatment substance is applied to the skin of the person to be treated.
  4.  前記肌処理用物質は、プラズマによりpHが変化する物質を含む、請求項1に記載の肌処理装置。 The skin treatment device according to claim 1, wherein the skin treatment substance includes a substance whose pH changes when exposed to plasma.
  5.  前記肌処理用物質は、水を含む、請求項4に記載の肌処理装置。 The skin treatment device of claim 4, wherein the skin treatment substance includes water.
  6.  前記肌処理用物質は、プラズマにより分子量が変化する物質を含む、請求項1に記載の肌処理装置。 The skin treatment device according to claim 1, wherein the skin treatment substance includes a substance whose molecular weight changes when exposed to plasma.
  7.  前記肌処理用物質は、ヒアルロン酸又はコラーゲンを含む、請求項6に記載の肌処理装置。 The skin treatment device according to claim 6, wherein the skin treatment substance includes hyaluronic acid or collagen.
  8.  ユーザの肌に当接可能なヘッド部を更に備え、
     前記放電装置は、前記ヘッド部の内部の空間であって外部に開口する内部空間に放電を発生させる、請求項1から7のうちのいずれか1項に記載の肌処理装置。
    Further comprising a head portion capable of contacting the skin of a user,
    The skin treatment device according to claim 1 , wherein the discharge device generates an electric discharge in an internal space inside the head portion that is open to the outside.
  9.  プラズマにより構造又は特性が変化する肌処理用物質に対して、プラズマを発生可能な放電装置によりプラズマを作用させる工程を含む、肌処理方法。 A skin treatment method including a step of applying plasma to a skin treatment substance whose structure or characteristics are changed by the plasma using a discharge device capable of generating plasma.
PCT/JP2023/041029 2022-11-16 2023-11-15 Skin treatment device and skin treatment method WO2024106451A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022183124 2022-11-16
JP2022-183124 2022-11-16
JP2023026111 2023-02-22
JP2023-026111 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024106451A1 true WO2024106451A1 (en) 2024-05-23

Family

ID=91084479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041029 WO2024106451A1 (en) 2022-11-16 2023-11-15 Skin treatment device and skin treatment method

Country Status (1)

Country Link
WO (1) WO2024106451A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197246A (en) * 2011-03-22 2012-10-18 Air Water Inc Method for causing protein to be of low molecular weight
US20170050039A1 (en) * 2014-02-18 2017-02-23 University Of South Australia Plasma hydrogel therapy
JP2021532874A (en) * 2018-07-31 2021-12-02 ロレアル Cold plasma generation devices, systems, and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197246A (en) * 2011-03-22 2012-10-18 Air Water Inc Method for causing protein to be of low molecular weight
US20170050039A1 (en) * 2014-02-18 2017-02-23 University Of South Australia Plasma hydrogel therapy
JP2021532874A (en) * 2018-07-31 2021-12-02 ロレアル Cold plasma generation devices, systems, and methods

Similar Documents

Publication Publication Date Title
Keidar Plasma for cancer treatment
ES2743446T3 (en) Devices to provide skin care through the use of phototherapy
JP5886767B2 (en) Device for treating skin conditions
JP2021118853A (en) Devices and methods for enhancing topical application of benefit agent
Collet et al. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies
ES2387536T3 (en) Apparatus for the improvement of pharmacological, chemical and topical agents
KR20190110124A (en) Skin care applicator
EP1091786B1 (en) Apparatus for interfering with pathological cells survival processes
EP2066393A1 (en) Electromagnetic apparatus for respiratory disease and method for using same
Luo et al. Subcellular location and photodynamic therapeutic effect of chlorin e6 in the human tongue squamous cell cancer Tca8113 cell line
CN106714813A (en) Method of making a skin care product
Meijer et al. Favourable and Unfavourable EMF frequency patterns in Cancer: perspectives for improved therapy and prevention
JP2022513171A (en) Polypeptides and methods for improving skin symptoms
US20150112300A1 (en) Method for enhanced trans-tissue delivery of therapeutic substances
WO2024106451A1 (en) Skin treatment device and skin treatment method
KR100303157B1 (en) Skin care apparatus
KR20180027445A (en) Skin therapy device
KR20180091900A (en) Iontophoresis methods for delivering vitamin C, iontophoretic compositions, kits, and iontophoretic devices
WO2024154694A1 (en) Skin treatment apparatus
WO2023234116A1 (en) Skin treatment device, operation method for operating skin treatment device, skin treatment method and program
WO2023095688A1 (en) Skin treatment device
Yao et al. The potential benefits of Oreochromis mossambicus derived hydrophobic peptides in protecting the skin against UVA-induced damage
WO2020010390A1 (en) A method and apparatus for enhanced transdermal, intradermal or transappendageal delivery of hyaluronic acids
CN117915984A (en) Skin treatment device, method for operating skin treatment device, skin treatment method, and program
AU2019301569A1 (en) A method and apparatus for user-controlled or practitioner-prescribed transdermal, intradermal or transappendageal delivery of therapeutic, cosmetic or skin care ingredients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891598

Country of ref document: EP

Kind code of ref document: A1