WO2024106261A1 - Compound, light-emitting material, and light-emitting element - Google Patents

Compound, light-emitting material, and light-emitting element Download PDF

Info

Publication number
WO2024106261A1
WO2024106261A1 PCT/JP2023/039973 JP2023039973W WO2024106261A1 WO 2024106261 A1 WO2024106261 A1 WO 2024106261A1 JP 2023039973 W JP2023039973 W JP 2023039973W WO 2024106261 A1 WO2024106261 A1 WO 2024106261A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
light
compound
unsubstituted
Prior art date
Application number
PCT/JP2023/039973
Other languages
French (fr)
Japanese (ja)
Inventor
琢哉 比嘉
裕太 綿引
桃子 森尾
ウママヘシュ バリジャパリ
善丈 鈴木
幸誠 金原
ユバラズ 凱令
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Publication of WO2024106261A1 publication Critical patent/WO2024106261A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission

Definitions

  • the present invention relates to a compound useful as a light-emitting material and a light-emitting device using the compound.
  • organic electroluminescence elements organic electroluminescence elements
  • various efforts have been made to improve luminous efficiency by developing and combining newly developed electron transport materials, hole transport materials, luminescent materials, etc. that make up organic electroluminescence elements.
  • organic electroluminescence elements that use delayed fluorescent materials.
  • Delayed fluorescent materials are materials that emit fluorescence when they undergo reverse intersystem crossing from an excited triplet state to an excited singlet state in an excited state, and then return from that excited singlet state to the ground state. Fluorescence from this route is observed later than fluorescence from an excited singlet state that occurs directly from the ground state (normal fluorescence), and is therefore called delayed fluorescence.
  • delayed fluorescence when a luminescent compound is excited by carrier injection, the probability of occurrence of an excited singlet state and an excited triplet state is statistically 25%:75%, so there is a limit to the improvement of luminous efficiency when only the fluorescence from the directly excited singlet state is used.
  • delayed fluorescent materials can use not only the excited singlet state but also the excited triplet state for fluorescence emission via the above-mentioned route via reverse intersystem crossing, resulting in a higher luminous efficiency than normal fluorescent materials.
  • Non-Patent Document 1 a compound in which terephthalonitrile is substituted with a donor group.
  • a compound in which terephthalonitrile is substituted with a carbazol-9-yl group, which is a donor group has been proposed, and one example of the compound (4CzTPN) with the following structure is actually used (see Non-Patent Document 1).
  • the inventors have conducted extensive research with the aim of providing compounds that are more useful as light-emitting materials for light-emitting devices. They have also conducted intensive research with the aim of deriving and generalizing a general formula for compounds that are more useful as light-emitting materials.
  • terephthalonitrile derivatives having a structure that satisfies certain conditions are useful as light-emitting materials.
  • the present invention has been proposed based on this knowledge, and specifically has the following configuration.
  • a compound represented by the following general formula (1) [In the general formula (1), X is an oxygen atom, a sulfur atom, or where * represents a bonding position.
  • R 1 to R 3 and Z each independently represent a deuterium atom or a substituent.
  • R 4 to R 8 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of R 1 to R 8 is a substituted or unsubstituted aryl group, or an acceptor group. However, when R 2 is not an acceptor group, at least one of R 1 and R 3 to R 8 is a substituted or unsubstituted 2,4,6-triazinyl group.
  • n1 and n3 each independently represent an integer of 0 to 4, n2 represents an integer of 0 to 2, p represents an integer of 0 to 3, and q represents an integer of 1 to 4.
  • n1 is an integer of 2 or more
  • two or more R 1s may be the same or different
  • n2 is 2
  • n3 is an integer of 2 or more
  • two or more R 3s may be the same or different
  • p is an integer of 2 or more
  • two or more Zs may be the same or different
  • q is an integer of 2 or more, two or more structures in parentheses may be the same or different.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • [5] The compound according to [4], wherein X 1 to X 3 are N.
  • [6] The compound according to any one of [1] to [5], wherein Z is a substituted or unsubstituted diarylamino group (wherein the two aryl groups may be bonded to each other), or a substituted or unsubstituted aryl group.
  • Z is a substituted or unsubstituted carbazol-9-yl group.
  • An organic semiconductor device comprising the compound according to any one of [1] to [11].
  • An organic light-emitting device comprising the compound according to any one of [1] to [11].
  • the organic light-emitting device according to [16] wherein the device has a layer containing the compound, the layer also containing a host material.
  • the layer containing the compound contains a delayed fluorescent material in addition to the compound and the host material, and the minimum excited singlet energy of the delayed fluorescent material is lower than that of the host material and higher than that of the compound.
  • the organic light-emitting element according to [17].
  • the compounds of the present invention exhibit excellent luminescence properties. They are useful as materials for organic light-emitting devices.
  • substituted means an atom or atomic group other than hydrogen atoms and deuterium atoms.
  • substituted or unsubstituted means that hydrogen atoms may be substituted with deuterium atoms or substituents.
  • Z represents a deuterium atom or a substituent. However, Z is not a cyano group, and Z is not a fused carbazol-9-yl group described in the parentheses of q. p represents an integer of 0 to 3. When p is 2 or 3, two or three Zs may be the same or different.
  • the substituent that Z can take may be selected, for example, from the substituent group A described below, or from the substituent group B, or from the substituent group C, or from the substituent group D, or from the substituent group E.
  • the substituent that Z can take is a substituted or unsubstituted aryl group or a substituted or unsubstituted diarylamino group.
  • the diarylamino group referred to here also includes a group in which two aryl groups bonded to a nitrogen atom are bonded to each other via a single bond or a linking group, and includes, for example, a carbazol-9-yl group. However, the fused carbazol-9-yl group described in the parentheses of q is excluded.
  • at least one Z is a substituted or unsubstituted aryl group.
  • At least one Z is a substituted or unsubstituted diarylamino group, for example, at least one Z is a substituted or unsubstituted carbazol-9-yl group. In one embodiment of the present invention, at least one Z is a deuterium atom. In one embodiment of the present invention, all Z are substituted or unsubstituted aryl groups. In one embodiment of the present invention, all Z are substituted or unsubstituted diarylamino groups, for example, all Z are substituted or unsubstituted carbazol-9-yl groups. In one embodiment of the present invention, all Z are deuterium atoms.
  • p is 2 or 3, at least one Z is a substituted or unsubstituted aryl group, and at least one Z is a substituted or unsubstituted diarylamino group. In one embodiment of the present invention, p is 1. In one embodiment of the present invention, p is 2. In one embodiment of the present invention, p is 3.
  • q represents an integer of 1 to 4.
  • p+q is 4.
  • p+q is 3.
  • p+q is 2.
  • p+q is 1.
  • p+q is 2 to 4, more preferably 3 or 4.
  • p is 2 or 3 and q is 1, for example, p is 3 and q is 1, for example, p is 2 and q is 1.
  • p is 1 or 2 and q is 2, for example, p is 2 and q is 2, for example, p is 1 and q is 2.
  • Specific examples of the bonding positions of the fused carbazol-9-yl group described in parentheses of a cyano group, Z, and q are given below, but the bonding positions that can be adopted in the present invention are not limited to the following specific examples.
  • the fused carbazol-9-yl group described in parentheses of q in general formula (1) is represented as Cz.
  • the Z When there are multiple Z, the Z may be the same or different, for example, the same. When there are multiple Cz, the Cz may be the same or different, for example, the same.
  • I7 to I11, P5, P6, and T7 to T10 are specific examples when Z is a deuterium atom (D).
  • the compound has a structure of any one of T1 to T10. In one embodiment of the present invention, the compound has a structure of any one of T1 to T6. For example, the compound has a structure of T1, T3, T4, or T5. For example, the compound has a structure of T3, T4, T5, or T6. For example, the compound has a structure of T5 or T6. In one embodiment of the present invention, the compound has a structure of any one of T7 to T10. For example, the compound has a structure of T7, T8, or T9. In one embodiment of the present invention, the compound has a structure of any one of P1 to P6. In one embodiment of the present invention, the compound has a structure of any one of P1 to P4.
  • the compound has a structure of P3 or P4.
  • the compound has a structure of P1 or P2.
  • the compound has a structure of P5 or P6.
  • the compound has a structure of any one of I1 to I11.
  • the compound has a structure of any one of I1 to I6.
  • the compound has a structure of I1 or I3.
  • the compound has a structure of I2 or I4.
  • the compound has a structure of any one of I7 to I11.
  • the compound has a structure of I7, I9, or I11.
  • the compound has a structure of I8 or I10.
  • the compound has a structure of any one of I1 to I6, P1 to P4, and T1 to T6. In one aspect of the present invention, the compound has a structure of any one of I7 to I11, P5, P6, and T7 to T10. In one aspect of the present invention, the compound has a structure of any one of I1, I3, I5, I7, I9, I11, P3 to P6, T1, T3 to T5, and T7 to T9. In one aspect of the present invention, the compound has a structure of any one of I7 to I11, P5, P6, and T7 to T10. In one aspect of the present invention, the compound has a structure of any one of I7, I9, I11, P5, P6, and T7 to T9.
  • Z is selected from Z1 to Z35. In one aspect of the present invention, Z is selected from Z27 to Z35. In one aspect of the present invention, Z is selected from Z5 to Z26, Z31 to Z35. In one aspect of the present invention, Z is selected from Z7 to Z26, Z33 to Z35.
  • X is an oxygen atom, a sulfur atom, or a group represented by the following general formula (a):
  • * represents a bonding position
  • R 4 to R 8 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • the substituents that R 4 to R 8 can have may be selected from the following Substituent Group A, Substituent Group B, Substituent Group C, Substituent Group D, or Substituent Group E, for example.
  • R 4 to R 8 may be the same, and may be all hydrogen atoms or all deuterium atoms, for example.
  • R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, and a group combining these. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these.
  • R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these.
  • X is an oxygen atom or a sulfur atom, and may be selected as an oxygen atom or a sulfur atom.
  • X is a group represented by general formula (a).
  • a benzofuro[2,3-a]carbazol-9-yl group a benzofuro[3,2-a]carbazol-9-yl group, a benzofuro[2,3-b]carbazol-9-yl group, a benzofuro[3,2-b]carbazol-9-yl group, a benzofuro[2,3-c]carbazol-9-yl group, or a benzofuro[3,2-c]carbazol-9-yl group
  • a benzofuro[2,3-a]carbazol-9-yl group a benzofuro[2,3-a]carbazol-9-yl group, a benzofuro[3,2-a]carbazol-9-yl group, a benzofuro[2,3-a]carbazol-9-yl group, or a benzofuro[3,2-c]carbazol-9-yl group
  • a benzothieno[2,3-a]carbazol-9-yl group a benzothieno[3,2-a]carbazol-9-yl group, a benzothieno[2,3-b]carbazol-9-yl group, a benzothieno[3,2-b]carbazol-9-yl group, a benzothieno[2,3-c]carbazol-9-yl group, or a benzothieno[3,2-c]carbazol-9-yl group
  • a benzothieno[2,3-a]carbazol-9-yl group a benzothieno[2,3-a]carbazol-9-yl group, a benzothieno[3,2-a]carbazol-9-yl group.
  • the ring-fused carbazol-9-yl group may be an indolo[2,3-a]carbazol-9-yl group, an indolo[3,2-a]carbazol-9-yl group, an indolo[2,3-b]carbazol-9-yl group, an indolo[3,2-b]carbazol-9-yl group, an indolo[2,3-c]carbazol-9-yl group, or an indolo[3,2-c]carbazol-9-yl group.
  • the benzene rings constituting these groups are substituted with (R 1 ) n1 , (R 2 ) n2 , and (R 3 ) n3 , respectively, as shown in general formula (1).
  • R 1 to R 3 each independently represent a deuterium atom or a substituent.
  • the substituent that R 1 to R 3 can have may be selected from the below-described Substituent Group A, Substituent Group B, Substituent Group C, Substituent Group D, or Substituent Group E.
  • at least one of R 1 to R 8 is a substituted or unsubstituted aryl group, or an acceptor group.
  • at least one of R 1 to R 3 is a substituted or unsubstituted aryl group, or an acceptor group.
  • At least one of R 2 is a substituted or unsubstituted aryl group, or an acceptor group, and more preferably an acceptor group.
  • the "acceptor group” can be selected from groups having a positive Hammett ⁇ p value.
  • the Hammett ⁇ p value was proposed by L. P. Hammett and quantifies the effect of a substituent on the reaction rate or equilibrium of a para-substituted benzene derivative.
  • k 0 is the rate constant of a benzene derivative having no substituent
  • K 0 is the equilibrium constant of a benzene derivative having no substituent
  • K is the equilibrium constant of a benzene derivative substituted with a substituent
  • is a reaction constant determined by the type and conditions of the reaction.
  • the acceptor groups which can be R 1 to R 8 preferably have a ⁇ p of 0.3 or more, more preferably 0.5 or more, and even more preferably 0.7 or more.
  • the ⁇ p may be selected from the range of 0.9 or more, or 1.1 or more.
  • the acceptor group which can be represented by R 1 to R 8 is a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom, more preferably a group represented by the following general formula (b).
  • X 1 to X 3 each independently represent N or C(R). However, at least one of X 1 to X 3 is N.
  • R represents a hydrogen atom, a deuterium atom, or a substituent. The substituent may be selected from the substituent group A, the substituent group B, the substituent group C, the substituent group D, or the substituent group E.
  • X 1 to X 3 are N.
  • X 1 and X 3 are N
  • X 2 is C(R).
  • X 1 and X 2 are N
  • X 3 is C(R).
  • X 1 is N, and X 2 and X 3 are C(R). In one embodiment of the present invention, X 2 is N, and X 1 and X 3 are C(R). In one embodiment of the present invention, R is a hydrogen atom or a deuterium atom. In one embodiment of the present invention, R is an alkyl group optionally substituted with a deuterium atom. In one embodiment of the present invention, R is an aryl group optionally substituted with a deuterium atom, an alkyl group, or an aryl group.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • the aryl group which Ar 1 and Ar 2 may take, and the aryl group in the present invention may be a single ring or a fused ring in which two or more rings are fused.
  • the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • Specific examples of the ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a triphenylene ring.
  • the aryl group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthalene-1-yl group, or a substituted or unsubstituted naphthalene-2-yl group, and is preferably a substituted or unsubstituted phenyl group.
  • the substituent of the aryl group may be selected from, for example, the substituent group A, the substituent group B, the substituent group C, the substituent group D, or the substituent group E.
  • the substituent of the aryl group is one or more selected from the group consisting of an alkyl group, an aryl group, and a deuterium atom.
  • the aryl group is substituted with at least one deuterium atom.
  • the aryl group is unsubstituted.
  • the heteroaryl groups which Ar 1 and Ar 2 may take, and the heteroaryl group in the present invention may be a single ring or a fused ring in which two or more rings are fused. In the case of a fused ring, the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • the ring include a pyridine ring, a pyrimidine ring, and a pyrrole ring, and these rings may be further fused with another ring.
  • the heteroaryl group include a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a carbazol-9-yl group, a carbazol-1-yl group, a carbazol-2-yl group, a carbazol-3-yl group, and a carbazol-4-yl group.
  • These groups may be substituted with a substituent, for example, a deuterium atom, an alkyl group, an aryl group, a carbazolyl group, or a group combining these.
  • a substituent for example, a deuterium atom, an alkyl group, an aryl group, a carbazolyl group, or a group combining these.
  • Specific examples of the acceptor group that can be used in the present invention are given below. However, the acceptor group that can be used in the present invention is not limited to these specific examples.
  • * represents a bonding position
  • D represents a deuterium atom.
  • the acceptor group is selected from A1 to A32. In one embodiment of the present invention, the acceptor group is selected from A16 to A32. In one embodiment of the present invention, the acceptor group is selected from A4 to A15 and A19 to 32. In one embodiment of the present invention, the acceptor group is selected from A4 to A10 and A19 to 28. In one embodiment of the present invention, the acceptor group is selected from A11 to A14 and A29 to 31.
  • R 1 to R 3 are selected from a deuterium atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted triazinyl group.
  • R 1 to R 3 are selected from a deuterium atom, a substituted or unsubstituted aryl group, and a substituted or unsubstituted 2,4,6-triazinyl group.
  • R 1 to R 3 are selected from a deuterium atom, an aryl group which may be substituted with a deuterium atom, and A1 to A32.
  • n1 and n3 each independently represent an integer of 0 to 4, n2 represents an integer of 0 to 2, and p represents an integer of 0 to 3.
  • n1+n2+n3 is preferably an integer of 1 or more, more preferably 1 to 3, for example, 1, for example, 2.
  • n1 is an integer of 2 or more
  • two or more R 1s may be the same or different
  • n2 is 2
  • two or more R 2s may be the same or different
  • n3 is an integer of 2 or more
  • two or more R 3s may be the same or different
  • p is an integer of 2 or more
  • two or more Zs may be the same or different.
  • At least one of R 1 to R 8 is a substituted or unsubstituted aryl group or an acceptor group.
  • at least one of R 1 to R 8 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group.
  • at least one of R 1 to R 3 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group.
  • At least one of R 3 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group.
  • at least one of R 1 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group.
  • at least one of R2 is an acceptor group, for example a group represented by formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group.
  • R1 and R3 to R8 is a substituted or unsubstituted 2,4,6-triazinyl group.
  • n1+n2+n3 is 1 to 3, at least one (e.g., 1) of R 1 to R 3 is an acceptor group, for example a group represented by general formula (b), and preferably a substituted or unsubstituted 2,4,6-triazinyl group, and 0 to 2 (e.g., 0, for example, 1) of R 1 to R 3 are substituted or unsubstituted aryl groups, for example an aryl group which may be substituted with a deuterium atom, an alkyl group, or an aryl group.
  • R 1 to R 3 is an acceptor group, for example a group represented by general formula (b), and preferably a substituted or unsubstituted 2,4,6-triazinyl group, and 0 to 2 (e.g., 0, for example, 1) of R 1 to R 3 are substituted or unsubstituted aryl groups, for example an aryl group which may be substituted with a deuterium atom, an alky
  • fused carbazol-9-yl group described in parentheses of q are given below.
  • structure of the fused carbazol-9-yl group that can be employed in the present invention is not limited to these specific examples.
  • * represents a bonding position
  • A represents an acceptor group
  • D represents a deuterium atom.
  • the fused carbazol-9-yl group is selected from Cz1 to Cz279. In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz163 to Cz279. In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz1 to Cz48, Cz67 to Cz90, Cz103 to Cz126, Cz139 to Cz146, Cz151 to Cz158, Cz163 to Cz198, Cz216 to Cz233, Cz243 to Cz260, and Cz270 to Cz279.
  • the fused carbazol-9-yl group is selected from Cz49 to Cz66, Cz91 to Cz102, Cz127 to Cz138, Cz147 to Cz150, Cz159 to Cz162, Cz199215, Cz234 to Cz242, and Cz261 to Cz269.
  • the compound represented by the general formula (1) preferably does not contain metal atoms, and may be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, and sulfur atoms.
  • the compound represented by the general formula (1) is composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and oxygen atoms.
  • the compound represented by the general formula (1) may also be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and sulfur atoms.
  • the compound represented by the general formula (1) may also be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, and nitrogen ... and nitrogen atoms. Furthermore, the compound represented by the general formula (1) may not contain hydrogen atoms, but may contain deuterium atoms.
  • substituted group A refers to a deuterium atom, a hydroxyl group, a halogen atom (e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group (e.g., having 1 to 40 carbon atoms), an alkoxy group (e.g., having 1 to 40 carbon atoms), an alkylthio group (e.g., having 1 to 40 carbon atoms), an aryl group (e.g., having 6 to 30 carbon atoms), an aryloxy group (e.g., having 6 to 30 carbon atoms), an arylthio group (e.g., having 6 to 30 carbon atoms), a heteroaryl group (e.g., having 5 to 30 ring skeleton atoms), a heteroaryloxy group (e.g., having 5 to 30 ring skeleton atoms), It means
  • substituted group B means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 40 carbon atoms), an alkoxy group (e.g., having 1 to 40 carbon atoms), an aryl group (e.g., having 6 to 30 carbon atoms), an aryloxy group (e.g., having 6 to 30 carbon atoms), a heteroaryl group (e.g., having 5 to 30 ring skeleton atoms), a heteroaryloxy group (e.g., having 5 to 30 ring skeleton atoms), and a diarylaminoamino group (e.g., having 0 to 20 carbon atoms).
  • an alkyl group e.g., having 1 to 40 carbon atoms
  • an alkoxy group e.g., having 1 to 40 carbon atoms
  • an aryl group e.g., having 6 to 30 carbon
  • substituted group C means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms), an aryl group (e.g., having 6 to 22 carbon atoms), a heteroaryl group (e.g., having 5 to 20 ring skeleton atoms), and a diarylamino group (e.g., having 12 to 20 carbon atoms).
  • an alkyl group e.g., having 1 to 20 carbon atoms
  • an aryl group e.g., having 6 to 22 carbon atoms
  • a heteroaryl group e.g., having 5 to 20 ring skeleton atoms
  • diarylamino group e.g., having 12 to 20 carbon atoms
  • substituted group D means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms), an aryl group (e.g., having 6 to 22 carbon atoms), and a heteroaryl group (e.g., having 5 to 20 ring skeleton atoms).
  • substituted group E means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms) and an aryl group (e.g., having 6 to 22 carbon atoms).
  • the substituent when it is described as “substituted or unsubstituted” or “optionally substituted", the substituent may be selected, for example, from Substituent Group A, or may be selected from Substituent Group B, or may be selected from Substituent Group C, or may be selected from Substituent Group D, or may be selected from Substituent Group E.
  • the basic skeleton (represented as PN) of the structure represented by the following general formula (1) is specified from I1 to I11, P1 to P6, and T1 to T10, and then Z, Cz, and A are specified to specify the structure of each compound.
  • compound 1 has a basic skeleton of T5, and has a structure in which Z in T5 is Z33, Cz in T5 is Cz13, and A in T5 is A1.
  • the structures of compounds 2 to 64 are specified in the same manner.
  • the structures of multiple compounds are collectively specified in each row.
  • the row of compounds 1 to 32 when the basic skeleton is T5, Z is fixed to 33, and Cz is fixed to 13, structures in which A is A1 to A32 are sequentially specified as the structures of compounds 1 to 32. That is, the row of compounds 1 to 32 in Table 2 collectively describes the structures of compounds 1 to 32 in Table 1.
  • the row of compounds 33 to 64 and subsequent rows are also specified in the same manner.
  • the compound represented by formula (1) is selected from the following compound group:
  • the compound represented by formula (1) is selected from the following compound group:
  • the molecular weight of the compound represented by general formula (1) is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight is the molecular weight of the smallest compound represented by general formula (1).
  • the compound represented by the general formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even with a compound having a relatively large molecular weight.
  • the compound represented by the general formula (1) has the advantage that it is easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (1) is easy to apply the coating method and is easy to purify to increase the purity.
  • a polymerizable group may be present in the structure represented by the general formula (1) in advance, and the polymerizable group may be polymerized to obtain a polymer, which may be used as a light-emitting material.
  • a monomer containing a polymerizable functional group at any site of the general formula (1) may be prepared, and the monomer may be polymerized alone or copolymerized with another monomer to obtain a polymer having a repeating unit, which may be used as a light-emitting material.
  • compounds having a structure represented by the general formula (1) may be coupled together to obtain a dimer or trimer, which may be used as a light-emitting material.
  • Examples of polymers having a repeating unit containing a structure represented by general formula (1) include polymers containing a structure represented by either of the following two general formulas.
  • Q represents a group containing a structure represented by general formula (1)
  • L 1 and L 2 represent a linking group.
  • the number of carbon atoms in the linking group is preferably 0 to 20, more preferably 1 to 15, and even more preferably 2 to 10.
  • the linking group preferably has a structure represented by -X 11 -L 11 -.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and more preferably a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenylene group.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent, preferably a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms, an unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, or a chlorine atom, and further preferably an unsubstituted alkyl group having 1 to 3 carbon atoms, or an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking groups represented by L1 and L2 can be bonded to any site of the general formula (1) constituting Q. Two or more linking groups may be bonded to one Q to form a crosslinked structure or a network structure.
  • repeating unit examples include structures represented by the following formulas.
  • a polymer having a repeating unit containing these formulas can be synthesized by introducing a hydroxyl group into any site of general formula (1), reacting the hydroxyl group as a linker with the compound below to introduce a polymerizable group, and polymerizing the polymerizable group.
  • the polymer containing the structure represented by general formula (1) in the molecule may be a polymer consisting of only repeating units having the structure represented by general formula (1), or may be a polymer containing repeating units having other structures.
  • the repeating units having the structure represented by general formula (1) contained in the polymer may be of a single type, or of two or more types. Examples of repeating units not having the structure represented by general formula (1) include those derived from monomers used in ordinary copolymerization. For example, examples include repeating units derived from monomers having an ethylenically unsaturated bond, such as ethylene and styrene.
  • the compound represented by formula (1) is a light-emitting material.
  • the compound represented by general formula (1) is a compound capable of emitting delayed fluorescence.
  • the compounds represented by general formula (1) can emit light in the UV region, the blue, green, yellow, orange, red region of the visible spectrum (e.g., from about 420 nm to about 500 nm, from about 500 nm to about 600 nm, or from about 600 nm to about 700 nm), or the near infrared region when excited by thermal or electronic means.
  • the compounds represented by general formula (1) can emit light in the red or orange region of the visible spectrum (e.g., from about 620 nm to about 780 nm, about 650 nm) when excited by thermal or electronic means. In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the orange or yellow region of the visible spectrum (e.g., about 570 nm to about 620 nm, about 590 nm, about 570 nm) when excited by thermal or electronic means.
  • the compounds represented by general formula (1) can emit light in the green region of the visible spectrum (e.g., from about 490 nm to about 575 nm, about 510 nm) when excited by thermal or electronic means. In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the blue region of the visible spectrum (e.g., from about 400 nm to about 490 nm, about 475 nm) when excited by thermal or electronic means. In certain embodiments of the present disclosure, compounds represented by general formula (1) are capable of emitting light in the ultraviolet region of the spectrum (eg, 280-400 nm) when excited by thermal or electronic means.
  • compounds represented by general formula (1) are capable of emitting light in the infrared spectral region (eg, 780 nm to 2 ⁇ m) when excited by thermal or electronic means.
  • an organic semiconductor element can be prepared using a compound represented by general formula (1).
  • the organic semiconductor element may be an organic optical element in which light is mediated, or an organic element in which light is not mediated.
  • the organic optical element may be an organic light-emitting element that emits light, an organic light-receiving element that receives light, or an element in which energy transfer occurs by light within the element.
  • an organic optical element such as an organic electroluminescence element or a solid-state imaging element (e.g., a CMOS image sensor) can be prepared using a compound represented by general formula (1).
  • a CMOS complementary metal oxide semiconductor
  • a compound represented by general formula (1) can be prepared using a compound represented by general formula (1).
  • the electronic properties of small molecule chemical libraries can be calculated using known ab initio quantum chemical calculations, for example, the Hartree-Fock equations (TD-DFT/B3LYP/6-31G*) can be solved using time-dependent density functional theory with 6-31G* as a basis and a family of functions known as the Becke three-parameter, Lee-Yang-Parr hybrid functional, to screen for molecular fragments (moieties) with HOMOs above a particular threshold and LUMOs below a particular threshold.
  • TD-DFT/B3LYP/6-31G* time-dependent density functional theory with 6-31G* as a basis and a family of functions known as the Becke three-parameter, Lee-Yang-Parr hybrid functional, to screen for molecular fragments (moieties) with HOMOs above a particular threshold and LUMOs below a particular threshold.
  • the donor moiety (“D") can be selected, for example, for its HOMO energy (e.g., ionization potential) of -6.5 eV or greater
  • the acceptor moiety (“A") can be selected, for example, for its LUMO energy (e.g., electron affinity) of -0.5 eV or less.
  • the bridging moiety (“B") prevents overlap between the pi-conjugated systems of the donor and acceptor moieties, for example, by providing a strongly conjugated system that can tightly restrict the acceptor and donor moieties to specific conformations.
  • the compound library is screened using one or more of the following properties: 1. Emission near a particular wavelength2. Calculated triplet state above a particular energy level3.
  • the difference between the lowest singlet excited state and the lowest triplet excited state ( ⁇ E ST ) at 77K is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, less than about 0.2 eV, or less than about 0.1 eV.
  • the ⁇ E ST value is less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03 eV, less than about 0.02 eV, or less than about 0.01 eV.
  • the compounds represented by general formula (1) exhibit a quantum yield of greater than 25%, e.g., about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or more.
  • the compounds represented by the general formula (1) include novel compounds.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions. For example, a cyanobenzene having a substituted or unsubstituted aryl group (e.g., a phenyl group) and a halogen atom can be reacted with a substituted ring-fused carbazole to synthesize a compound represented by the general formula (1) substituted with a substituted ring-fused carbazol-9-yl group.
  • a cyanobenzene having a substituted or unsubstituted aryl group e.g., a phenyl group
  • a halogen atom can be reacted with a substituted ring-fused carbazole to synthesize a compound represented by the general formula (1) substituted with a substituted ring-fused carbazol-9-yl group.
  • the synthesis examples described below can be referred to.
  • the compound of formula (1) is combined with one or more materials (e.g., small molecules, polymers, metals, metal complexes, etc.) that disperse, covalently bond, coat, support, or associate with the compound to form a solid film or layer.
  • the compound of formula (1) can be combined with an electroactive material to form a film.
  • the compound of formula (1) can be combined with a hole transport polymer.
  • the compound of formula (1) can be combined with an electron transport polymer.
  • the compound of formula (1) can be combined with a hole transport polymer and an electron transport polymer.
  • the compound of formula (1) can be combined with a copolymer having both a hole transport moiety and an electron transport moiety.
  • electrons and/or holes formed in the solid film or layer can interact with the compound of formula (1).
  • the film containing the compound represented by general formula (1) can be formed by a wet process.
  • a solution containing the composition containing the compound of the present invention is applied to a surface, and a film is formed after removing the solvent.
  • the wet process include, but are not limited to, spin coating, slit coating, inkjet (spray) printing, gravure printing, offset printing, and flexographic printing.
  • a suitable organic solvent capable of dissolving the composition containing the compound of the present invention is selected and used.
  • a substituent e.g., an alkyl group
  • a substituent that increases the solubility in organic solvents can be introduced into the compound contained in the composition.
  • the film containing the compound of the present invention can be formed by a dry process.
  • the dry process can be a vacuum deposition method, but is not limited thereto.
  • the compounds constituting the film may be co-deposited from individual deposition sources, or may be co-deposited from a single deposition source in which the compounds are mixed.
  • a single deposition source is used, a mixed powder in which the powders of the compounds are mixed may be used, or a compression molded body in which the mixed powder is compressed may be used, or a mixture in which each compound is heated, melted, and cooled may be used.
  • a film having a composition ratio corresponding to the composition ratio of the multiple compounds contained in the deposition source can be formed by performing co-deposition under conditions in which the deposition rates (weight reduction rates) of the multiple compounds contained in a single deposition source are the same or almost the same. If a multiple compound is mixed in the same composition ratio as the composition ratio of the film to be formed and used as a deposition source, a film having a desired composition ratio can be easily formed.
  • a temperature at which each compound to be co-deposited has the same weight reduction rate can be specified, and the temperature can be used as the temperature during co-deposition.
  • the compound represented by the general formula (1) is useful as a material for an organic light-emitting device, and is particularly preferably used for an organic light-emitting diode.
  • Organic Light-Emitting Diode One aspect of the present invention relates to the use of a compound represented by the general formula (1) of the present invention as a light-emitting material of an organic light-emitting device.
  • the compound represented by the general formula (1) of the present invention can be effectively used as a light-emitting material in the light-emitting layer of an organic light-emitting device.
  • the compound represented by the general formula (1) includes a delayed fluorescence (delayed fluorescent material) that emits delayed fluorescence.
  • the present invention provides a delayed fluorescent material having a structure represented by the general formula (1).
  • the present invention relates to the use of a compound represented by the general formula (1) as a delayed fluorescent material.
  • the compound represented by the general formula (1) can be used as a host material and can be used with one or more light-emitting materials, and the light-emitting material can be a fluorescent material, a phosphorescent material, or a TADF.
  • the compound represented by the general formula (1) can also be used as a hole transport material.
  • the compound represented by the general formula (1) can be used as an electron transport material.
  • the present invention relates to a method for generating delayed fluorescence from a compound represented by the general formula (1).
  • an organic light-emitting device containing the compound as a light-emitting material emits delayed fluorescence and exhibits high light emission efficiency.
  • the light-emitting layer comprises a compound represented by formula (1), and the compound represented by formula (1) is aligned parallel to the substrate.
  • the substrate is a film-forming surface.
  • the orientation of the compound represented by formula (1) relative to the film-forming surface affects or dictates the propagation direction of light emitted by the aligned compound.
  • the organic light-emitting device includes an emitting layer.
  • the emitting layer includes a compound represented by general formula (1) as a light-emitting material.
  • the organic light-emitting device is an organic photoluminescence device (organic PL device).
  • the organic light-emitting device is an organic electroluminescence device (organic EL device).
  • the compound represented by general formula (1) assists the light emission of other light-emitting materials included in the emitting layer (as a so-called assist dopant).
  • the compound represented by general formula (1) included in the emitting layer is at its lowest excited singlet energy level, and is included between the lowest excited singlet energy level of the host material included in the emitting layer and the lowest excited singlet energy level of the other light-emitting materials included in the emitting layer.
  • the organic photoluminescent device includes at least one light-emitting layer.
  • the organic electroluminescent device includes at least an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer includes at least a light-emitting layer. In some embodiments, the organic layer includes only a light-emitting layer. In some embodiments, the organic layer includes one or more organic layers in addition to the light-emitting layer. Examples of organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer. In some embodiments, the hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function.
  • the light-emitting layer is a layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons, hi some embodiments, the layer emits light. In some embodiments, only the light-emitting material is used as the light-emitting layer. In some embodiments, the light-emitting layer includes a light-emitting material and a host material. In some embodiments, the light-emitting material is one or more compounds represented by general formula (1).
  • a host material is used in the light-emitting layer in addition to the light-emitting material.
  • the host material is an organic compound.
  • the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the light-emitting material of the present invention.
  • the singlet excitons and triplet excitons generated in the light-emitting material of the present invention are trapped in the molecules of the light-emitting material of the present invention. In some embodiments, the singlet and triplet excitons are sufficiently trapped to improve the light emission efficiency. In some embodiments, the singlet and triplet excitons are not sufficiently trapped, although a high light emission efficiency is still obtained, i.e., a host material that can achieve a high light emission efficiency can be used in the present invention without any particular limitation. In some embodiments, light emission occurs in the light-emitting material in the light-emitting layer of the device of the present invention. In some embodiments, the emitted light includes both fluorescence and delayed fluorescence.
  • the emitted light includes the emitted light from the host material. In some embodiments, the emitted light consists of the emitted light from the host material. In some embodiments, the emitted light includes the emitted light from the compound represented by formula (1) and the emitted light from the host material. In some embodiments, a TADF molecule and a host material are used. In some embodiments, TADF is an assist dopant, and has a lower excited singlet energy than the host material in the light-emitting layer and a higher excited singlet energy than the light-emitting material in the light-emitting layer.
  • various compounds can be adopted as a light-emitting material (preferably a fluorescent material).
  • a light-emitting material preferably a fluorescent material.
  • exemplary skeletons may or may not have a substituent. These exemplary skeletons may also be combined with each other. Examples of light-emitting materials that can be used in combination with the assist dopant having the structure represented by general formula (1) are given below.
  • Further preferred light-emitting materials include compounds represented by the following general formula (2).
  • R 1 , R 3 to R 16 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 2 represents an acceptor group, or R 1 and R 2 are bonded together to form an acceptor group, or R 2 and R 3 are bonded together to form an acceptor group.
  • R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , and R 15 and R 16 may be bonded together to form a cyclic structure.
  • X 1 represents O or NR
  • R represents a substituent.
  • at least one of X 3 and X 4 is O or NR, and the remaining may be O or NR or may not be linked.
  • both ends independently represent a hydrogen atom, a deuterium atom or a substituent.
  • C-R 1 , C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 12 , C-R 13 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
  • R7 is an acceptor group
  • R6 and R7 are bonded to each other to form an acceptor group
  • R7 and R8 are bonded to each other to form an acceptor group
  • X3 is O or NR
  • R10 is an acceptor group
  • R9 and R10 are bonded to each other to form an acceptor group
  • R10 and R11 are bonded to each other to form an acceptor group
  • R15 is an acceptor group
  • R14 and R15 are bonded to each other to form an acceptor group
  • R15 and R16 are bonded to each other to form an acceptor group.
  • R when X4 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding to the carbon atom to which R16 is bonded, at least one of the 3rd and 6th positions of the carbazole ring is substituted with an acceptor group.
  • X1 when X1 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding with the carbon atom to which R1 is bonded, the 3-position of the carbazole ring is substituted with an acceptor group (wherein the 3-position is on the phenyl group).
  • the compound is represented by the following general formula (2a).
  • R 1 , R 3 , R 6 to R 11 , and R to R 16 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • R 2 represents an acceptor group, or R 1 and R 2 are bonded to each other to form an acceptor group, or R 2 and R 3 are bonded to each other to form an acceptor group.
  • R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , R 10 and R 11 , R 14 and R 15 , and R 15 and R 16 may be bonded to each other to form a cyclic structure.
  • X 1 represents O or NR, and R represents a substituent.
  • X 3 and X 4 are O or NR, and the remaining may be O or NR or may not be linked.
  • both ends each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • C-R 1 , C-R 3 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
  • Further preferred light-emitting materials include compounds represented by the following general formula (3).
  • R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 3 to R 16 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • R 1 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 2 , R 2 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , and R 16 and R 1 may be bonded to each other to form a cyclic structure.
  • C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 12 , C-R 13 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
  • R1 and R2 are each independently a substituted or unsubstituted phenyl group which may be condensed with another ring.
  • R3 and R10 are each independently a substituted amino group.
  • at least one combination of R1 and R3 , and R2 and R10 are bonded to each other to form a cyclic structure.
  • the cyclic structure includes a benzoazaborine ring.
  • Further preferred light-emitting materials include compounds represented by the following general formula (4).
  • Z1 and Z2 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring
  • R1 to R9 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • R1 and R2 , R2 and R3 , R3 and R4 , R4 and R5 , R5 and R6 , R7 and R8 , and R8 and R9 may be bonded to each other to form a cyclic structure.
  • At least one of Z 1 , Z 2 , the ring formed by bonding R 1 and R 2 together, the ring formed by bonding R 2 and R 3 together, the ring formed by bonding R 4 and R 5 together, and the ring formed by bonding R 5 and R 6 together is a furan ring of substituted or unsubstituted benzofuran, a thiophene ring of substituted or unsubstituted benzothiophene, or a pyrrole ring of substituted or unsubstituted indole, and at least one of R 1 to R 9 is a substituted or unsubstituted aryl group or an acceptor group, or at least one of Z 1 and Z 2 is a ring having an aryl group or an acceptor group as a substituent.
  • a substitutable carbon atom may be substituted with a nitrogen atom.
  • C-R 1 , C-R 2 , C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 and C-R 9 may be substituted with N.
  • Z 1 and Z 2 are each independently a substituted or unsubstituted non-fused benzene ring, a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or a pyrrole ring fused with a substituted or unsubstituted benzene ring.
  • R 1 to R 9 are each independently a substituted or unsubstituted aryl group or an acceptor group, or one or more rings selected from the group consisting of a ring formed by bonding R 1 and R 2 together, a ring formed by bonding R 2 and R 3 together, a ring formed by bonding R 4 and R 5 together, and a ring formed by bonding R 5 and R 6 together are a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or a pyrrole ring fused with a substituted or unsubstituted benzene ring.
  • R 8 is a substituted or unsubstituted aryl group or an acceptor group.
  • the compound contains two or more rings selected from the group consisting of a benzofuran ring, a benzothiophene ring, and an indole ring.
  • Further preferred light-emitting materials include compounds having a fused ring structure A (wherein a hydrogen atom in the structure may be substituted with a deuterium atom or a substituent) in which a carbon-carbon bond a in the following structure ⁇ is fused with a furan ring constituting a substituted or unsubstituted benzofuran ring, a thiophene ring constituting a substituted or unsubstituted benzothiophene ring, or a pyrrole ring constituting a substituted or unsubstituted indole ring, or a carbon-carbon bond b is fused with a benzene ring constituting a substituted or unsubstituted dibenzofuran ring, a benzene ring constituting a substituted or unsubstituted dibenzothiophene ring, a benzene ring constituting a substituted or unsubstituted carbazole ring,
  • X1 and X2 each independently represent a substituted or unsubstituted aryl group, a nitrogen atom to which a substituted or unsubstituted aryl group is bonded, or an oxygen atom;
  • Z represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring;
  • R1 represents a hydrogen atom, a deuterium atom, or a substituent; and Z and X2 may be bonded to each other to form a cyclic structure.
  • the fused to b and X 1 , the structure fused to b and Z, and Z and X 2 may be bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (5).
  • Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 2 and Z 3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring
  • R 1 represents a hydrogen atom, a deuterium atom, or a substituent
  • R 2 and R 3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • Z 1 and R 1 , R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 are bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (6).
  • X3 represents an oxygen atom or a sulfur atom
  • Z2 and Z3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring
  • R1 and R4 to R7 each independently represent a hydrogen atom, a deuterium atom or a substituent
  • R2 and R3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • R2 and Z2 , Z2 and Z3 , Z3 and R3 , R4 and R5 , R5 and R6 , and R6 and R7 may be bonded to each other to form a cyclic structure. However, at least one pair of R2 and Z2 , Z2 and Z3 , and Z3 and R3 are bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (7).
  • X4 represents an oxygen atom or a sulfur atom
  • Z2 and Z3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring
  • R1 and R4a to R7a each independently represent a hydrogen atom, a deuterium atom or a substituent
  • R2 and R3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • R2 and Z2 , Z2 and Z3 , Z3 and R3 , R4a and R5a , R5a and R6a , R6a and R7a , and R7a and R1 may be bonded to each other to form a cyclic structure.
  • at least one pair of R2 and Z2 , Z2 and Z3 , and Z3 and R3 are bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (8).
  • Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 and R 8 to R 14 each independently represent a hydrogen atom, a deuterium atom, or a substituent
  • R 3 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • Z 1 and R 1 , R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure.
  • Z 1 and Z 4 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 and R 15 to R 17 each independently represent a hydrogen atom, a deuterium atom, or a substituent
  • R 3 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • Z 1 and R 1 , Z 4 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and Z 3 , and Z 3 and R 3 may be
  • Z 1 and Z 5 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 represents a hydrogen atom, a deuterium atom, or a substituent
  • R 2 and R 3 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • Z 1 and R 1 , R 2 and Z 5 , Z 5 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 are bonded to each other to form a cyclic structure.
  • Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 and R 21 to R 27 each independently represent a hydrogen atom, a deuterium atom, or a substituent
  • R 2 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 2 and Z 2 , Z 2 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 , and R 26 and R 27 may be bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (12).
  • Z 1 and Z 6 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 and R 28 to R 30 each independently represent a hydrogen atom, a deuterium atom, or a substituent
  • R 2 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 2 and Z 2 , Z 2 and R 28 , R 28 and R 29 , R 29 and R 30 , and R 30 and Z 6 may be
  • Further preferred light-emitting materials include compounds represented by the following general formula (13).
  • Z 1 and Z 7 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring
  • R 1 represents a hydrogen atom, a deuterium atom, or a substituent
  • R 2 and R 3 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 2 and Z 2 , Z 2 and Z 7 , and Z 7 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 7 , and Z 7 and R 3 are bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (14).
  • Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, and R 1 and R 31 to R 44 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , R 34 and R 35 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 38 and R 39 , R 39 and R 40 , R 40 and R 41 , R 41 and R 42 , R 42 and R 43 , and R 43 and R 44 may be bonded to each other to form a cyclic structure.
  • Z 1 and Z 8 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • R 1 and R 51 to R 60 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • R 1 and Z 1 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 54 and R 55 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 58 and R 59 , R 59 and R 60 , and R 60 and Z 8 may be bonded to each other to form a cyclic structure.
  • Z 1 , Z 8 and Z 9 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • R 1 and R 61 to R 66 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R 1 and Z 1 , Z 9 and R 61 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 64 and R 65 , R 65 and R 66 , and R 66 and Z 8 may be bonded to each other to form a cyclic structure.
  • Z 1 , Z 9 and Z 10 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • R 1 and R 67 to R 69 each independently represent a hydrogen atom, a deuterium atom or a substituent
  • R 70 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , Z 9 and R 67 , R 67 and R 68 , R 68 and R 69 , R 69 and Z 10 , and Z 10 and R 70 may be bonded to each other to form a cyclic structure.
  • Z 1 , Z 11 and Z 12 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • R 1 and R 72 to R 74 each independently represent a hydrogen atom, a deuterium atom or a substituent
  • R 71 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 71 and Z 11 , Z 11 and R 72 , R 72 and R 73 , R 73 and Z 74 , and R 74 and Z 12 may be bonded to each other to form a cyclic structure.
  • Z 1 and Z 11 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring
  • R 1 and R 76 to R 82 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • R 75 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 and Z 1 , R 75 and Z 11 , Z 11 and R 76 , R 76 and R 77 , R 77 and R 78 , R 78 and R 79 , R 79 and R 80 , R 80 and R 81 , and R 81 and R 82 may be bonded to each other to form a cyclic structure.
  • Further preferred light-emitting materials include compounds represented by the following general formula (20).
  • X5 represents an oxygen atom, a sulfur atom, or a nitrogen atom to which a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group is bonded;
  • R101 to R130 each independently represent a hydrogen atom, a deuterium atom, or a substituent;
  • R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group
  • Z 1 and Z 2 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring
  • R 3 to R 9 each independently represent a hydrogen atom, a deuterium atom, or a substituent, provided that at least one of R 1 , R 2 , Z 1 , and Z 2 contains a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted benzothiophene ring, or a substituted or unsubstituted indole ring.
  • R1 and Z1 , Z1 and R3 , R3 and R4 , R4 and R5 , R5 and Z2 , Z2 and R2 , R2 and R6 , R6 and R7 , R7 and R8 , R8 and R9 , and R9 and R1 may be bonded to each other to form a ring structure.
  • the substitutable carbon atoms may be substituted with a nitrogen atom.
  • C- R3 , C- R4 , C- R5 , C- R6 , C- R7 , C- R8 , and C- R9 in the general formula (21) may be substituted with N.
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted phenyl group, or a group containing one or more ring structures selected from the group consisting of a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted benzothiophene ring, and a substituted or unsubstituted indole ring.
  • Z 1 and Z 2 are each independently a substituted or unsubstituted non-fused benzene ring, a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, a pyrrole ring fused with a substituted or unsubstituted benzene ring, a benzene ring fused with a substituted or unsubstituted benzofuran ring, a benzene ring fused with a substituted or unsubstituted benzothiophene ring, or a benzene ring fused with a substituted or unsubstituted indole ring.
  • R 1 and Z 1 are bonded to each other to form a cyclic structure.
  • R 1 and Z 1 are bonded to each other to form a cyclic structure.
  • one of X1 and X2 is a nitrogen atom and the other is a boron atom.
  • R1 to R26 , A1 and A2 each independently represent a hydrogen atom, a deuterium atom or a substituent.
  • R1 and R2 , R2 and R3 , R3 and R4 , R4 and R5 , R5 and R6 , R6 and R7 , R7 and R8 , R8 and R9, R9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R19 , R19 and R20 , R20 and R21 , R21 and R22 , R22 and R23 , R23 and R24 , R24 and R25 , R25 and R 26 may be bonded to each other to form a cyclic structure.
  • R 1 to R 6 is a substituted or unsubstituted aryl group, or any of R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , and R 5 and R 6 are bonded to each other to form an aromatic ring or a heteroaromatic ring.
  • R3 and R6 is a substituent. In one embodiment of the present invention, R3 and R6 are both substituents. In one embodiment of the present invention, the substituents represented by R3 and R6 are one group selected from the group consisting of an alkyl group and an aryl group, or a group consisting of a combination of two or more groups. In one embodiment of the present invention, R8 and R12 are both substituents. In one embodiment of the present invention, the compound is represented by the following general formula (1a).
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 41 and R 42 each independently represent a substituted or unsubstituted alkyl group.
  • m1 and m2 each independently represent an integer of 0 to 5
  • n1 and n3 each independently represent an integer of 0 to 4
  • n2 and n4 each independently represent an integer of 0 to 3.
  • a 1 and A 2 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
  • a 1 and A 2 are each independently a group having a Hammett ⁇ p value of more than 0.2. In one embodiment of the present invention, A 1 and A 2 are both cyano groups. In one embodiment of the present invention, A 1 and A 2 are both halogen atoms. In one embodiment of the present invention, the compound has a rotationally symmetric structure.
  • the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 0.1% by weight or more. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 1% by weight or more. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 50% by weight or less. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 20% by weight or less.
  • the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 10% by weight or less.
  • the host material of the light-emitting layer is an organic compound that has hole transport and electron transport functions.
  • the host material of the light-emitting layer is an organic compound that prevents the wavelength of emitted light from increasing.
  • the host material of the light-emitting layer is an organic compound that has a high glass transition temperature.
  • the host material is selected from the group consisting of:
  • the light-emitting layer comprises two or more kinds of TADF molecules with different structures.
  • the light-emitting layer may comprise three kinds of materials, the excited singlet energy level of which is higher in the order of the host material, the first TADF molecule, and the second TADF molecule.
  • the difference ⁇ E ST between the lowest excited singlet energy level and the lowest excited triplet energy level at 77K of both the first TADF molecule and the second TADF molecule is preferably 0.3 eV or less, more preferably 0.25 eV or less, more preferably 0.2 eV or less, more preferably 0.15 eV or less, even more preferably 0.1 eV or less, even more preferably 0.07 eV or less, even more preferably 0.05 eV or less, even more preferably 0.03 eV or less, and especially preferably 0.01 eV or less.
  • the concentration of the first TADF comprises two or more kinds of TADF
  • the concentration of the host material in the light-emitting layer is preferably greater than the concentration of the second TADF molecule.
  • the concentration of the first TADF molecule in the light-emitting layer may be greater than, less than, or the same as the concentration of the host material.
  • the composition in the light-emitting layer may be 10 to 70% by weight of the host material, 10 to 80% by weight of the first TADF molecule, and 0.1 to 30% by weight of the second TADF molecule.
  • the composition in the light-emitting layer may be 20 to 45% by weight of the host material, 50 to 75% by weight of the first TADF molecule, and 5 to 20% by weight of the second TADF molecule.
  • the light-emitting layer can contain three types of TADF molecules with different structures.
  • the compound of the present invention can be any of the multiple TADF compounds contained in the light-emitting layer.
  • the light-emitting layer can be made of a material selected from the group consisting of a host material, an assist dopant, and a light-emitting material. In some embodiments, the light-emitting layer does not contain a metal element. In some embodiments, the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, and sulfur atoms. Alternatively, the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and oxygen atoms.
  • the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, and oxygen atoms.
  • the TADF material may be a known delayed fluorescent material.
  • Preferred delayed fluorescent materials include those described in paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955, and paragraph 0008 of WO2013/081088.
  • JP 2013-256490 A paragraphs 0009 to 0046 and 0093 to 0134; JP 2013-116975 A, paragraphs 0008 to 0020 and 0038 to 0040; WO 2013/133359 A, paragraphs 0007 to 0032 and 0079 to 0084; WO 2013/161437 A, paragraph 0 No. 008 to 0054 and No.
  • JP2013-253121A JP2013-253121A, WO2013/133359A, WO2014/034535A, WO2014/115743A, WO2014/122895A, WO2014/126200A, WO2014/136758A, WO2014/133121A, WO20 No.
  • the organic electroluminescent device of the present invention is supported by a substrate, which is not particularly limited and may be any material commonly used in organic electroluminescent devices, such as glass, transparent plastic, quartz, and silicon.
  • the anode of the organic electroluminescent device is made of a metal, an alloy, a conductive compound, or a combination thereof.
  • the metal, alloy, or conductive compound has a high work function (4 eV or more).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 , and ZnO.
  • an amorphous material capable of forming a transparent conductive film such as IDIXO ( In2O3 - ZnO ), is used.
  • the anode is a thin film.
  • the thin film is made by evaporation or sputtering.
  • the film is patterned by a photolithographic method.
  • the pattern may be formed using a mask with a shape suitable for evaporation or sputtering on the electrode material.
  • a wet film formation method such as a printing method or a coating method, is used.
  • the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the anode has a thickness of 10 to 1,000 nm. In some embodiments, the anode has a thickness of 10 to 200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
  • the cathode is made of an electrode material such as a metal with a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, a conductive compound, or a combination thereof.
  • the electrode material is selected from sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium-aluminum mixtures, and rare earth elements.
  • a mixture of an electron injecting metal and a second metal is used, the second metal being a stable metal with a higher work function than the electron injecting metal.
  • the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures, and aluminum.
  • the mixture improves electron injecting properties and resistance to oxidation.
  • the cathode is fabricated by forming the electrode material as a thin film by evaporation or sputtering.
  • the cathode has a sheet resistance of a few hundred ohms or less per unit area. In some embodiments, the cathode has a thickness of 10 nm to 5 ⁇ m. In some embodiments, the cathode has a thickness of 50 to 200 nm. In some embodiments, either one of the anode and cathode of the organic electroluminescent device is transparent or semi-transparent to allow the emitted light to pass through. In some embodiments, a transparent or semi-transparent electroluminescent device enhances light radiance.
  • the cathode is formed from a conductive, transparent material as described above for the anode, thereby forming a transparent or semi-transparent cathode, hi some embodiments, an element includes an anode and a cathode, both of which are transparent or semi-transparent.
  • An injection layer is a layer between an electrode and an organic layer.
  • the injection layer reduces driving voltage and enhances light radiance.
  • the injection layer comprises a hole injection layer and an electron injection layer.
  • the injection layer can be disposed between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer.
  • an injection layer is present. In some embodiments, an injection layer is not present. Preferred examples of compounds that can be used as the hole injection material are given below.
  • a barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing outside the light-emitting layer.
  • an electron barrier layer is present between the light-emitting layer and the hole transport layer and prevents electrons from passing through the light-emitting layer to the hole transport layer.
  • a hole barrier layer is present between the light-emitting layer and the electron transport layer and prevents holes from passing through the light-emitting layer to the electron transport layer.
  • a barrier layer prevents excitons from diffusing outside the light-emitting layer.
  • the electron barrier layer and the hole barrier layer constitute an exciton barrier layer.
  • the term "electron barrier layer" or "exciton barrier layer” includes layers that have both the functions of an electron barrier layer and of an exciton barrier layer.
  • Hole blocking layer functions as an electron transport layer. In some embodiments, during electron transport, the hole blocking layer prevents holes from reaching the electron transport layer. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the light-emitting layer.
  • the materials used for the hole blocking layer can be the same materials as those described above for the electron transport layer. Preferred examples of compounds that can be used in the hole blocking layer are given below.
  • Electron Barrier Layer The electron blocking layer transports holes. In some embodiments, during hole transport, the electron blocking layer blocks electrons from reaching the hole transport layer. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the light-emitting layer.
  • the materials used for the electron blocking layer can be the same materials as those described above for the hole transport layer. Specific examples of preferred compounds that can be used as the electron blocking material are given below.
  • Exciton blocking layer prevents excitons generated through the recombination of holes and electrons in the light-emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton blocking layer allows for effective confinement of excitons in the light-emitting layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, the exciton blocking layer is adjacent to the light-emitting layer on either the anode side or the cathode side and on both sides. In some embodiments, when the exciton blocking layer is present on the anode side, the layer may be present between the hole transport layer and the light-emitting layer and adjacent to the light-emitting layer.
  • the layer when the exciton blocking layer is present on the cathode side, the layer may be present between the light-emitting layer and the cathode and adjacent to the light-emitting layer. In some embodiments, a hole injection layer, an electron blocking layer, or a similar layer is present between the anode and the exciton blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, an electron blocking layer, a hole blocking layer, or a similar layer is present between the cathode and the exciton blocking layer adjacent to the light-emitting layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and excited triplet energy, respectively, of the light-emitting material.
  • the hole transport layer comprises a hole transport material.
  • the hole transport layer is a single layer.
  • the hole transport layer has multiple layers.
  • the hole transport material has one of the following properties: hole injection or transport property and electron blocking property.
  • the hole transport material is an organic material.
  • the hole transport material is an inorganic material.
  • Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, allylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (especially thiophene oligomers), or combinations thereof.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as hole transport materials are given below.
  • the electron transport layer comprises an electron transport material.
  • the electron transport layer is a single layer.
  • the electron transport layer has multiple layers.
  • the electron transport material only needs to transport electrons injected from the cathode to the light-emitting layer.
  • the electron transport material also functions as a hole-blocking material.
  • electron transport layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxadiazole derivatives, azole derivatives, azine derivatives, or combinations thereof, or polymers thereof.
  • the electron transport material is a thiadiazole derivative or a quinoxaline derivative.
  • the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as electron transport materials are given below.
  • the light-emitting layer is incorporated into a device, including, but not limited to, an OLED bulb, an OLED lamp, a television display, a computer monitor, a mobile phone, and a tablet.
  • an electronic device includes an OLED having an anode, a cathode, and at least one organic layer including an emissive layer between the anode and the cathode.
  • the compositions described herein may be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
  • compositions may be useful in facilitating charge or energy transfer within devices and/or as hole transport materials, such as organic light emitting diodes (OLEDs), organic integrated circuits (OICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field-quench devices (O-FQDs), light emitting fuel cells (LECs), or organic laser diodes (O-lasers).
  • OLEDs organic light emitting diodes
  • OICs organic integrated circuits
  • O-FETs organic field effect transistors
  • OF-TFTs organic thin film transistors
  • O-LETs organic light emitting transistors
  • O-SCs organic solar cells
  • organic optical detectors organic photoreceptors, organic field-quench devices (O-FQDs), light emitting fuel cells (LECs), or organic laser diodes (O-lasers
  • the electronic device comprises an OLED comprising an anode, a cathode, and at least one organic layer comprising an emissive layer between the anode and the cathode.
  • the device includes OLEDs of different colors.
  • the device includes an array including a combination of OLEDs.
  • the combination of OLEDs is a three-color combination (e.g., RGB).
  • the combination of OLEDs is a combination of colors that are not red, green, or blue (e.g., orange and yellow-green).
  • the combination of OLEDs is a two-color, four-color, or more-color combination.
  • the device comprises: a circuit board having a first side having a mounting surface and an opposing second side, the circuit board defining at least one opening; at least one OLED on the mounting surface, the at least one OLED having a light-emitting configuration including an anode, a cathode, and at least one organic layer including a light-emitting layer between the anode and the cathode; a housing for the circuit board; and at least one connector disposed on an end of the housing, the housing and the connector defining a package suitable for attachment to a lighting fixture.
  • the OLED light comprises a plurality of OLEDs mounted on a circuit board such that light is emitted in a plurality of directions. In some embodiments, a portion of the light emitted in a first direction is polarized and emitted in a second direction. In some embodiments, a reflector is used to polarize the light emitted in the first direction.
  • the light-emitting layer of the present invention can be used in a screen or display.
  • the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, vapor deposition, or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in two-sided etching to provide pixels with unique aspect ratios.
  • the screen also called a mask
  • the corresponding artwork pattern design allows for the placement of very steep narrow tie bars between pixels in the vertical direction, as well as large wide angled openings in the horizontal direction.
  • the internal patterning of the pixel allows for the construction of three-dimensional pixel openings of various aspect ratios in the horizontal and vertical directions. Additionally, the use of imaged "stripes" or halftone circles in the pixel area protects etching in certain areas until those particular patterns are undercut and removed from the substrate. At that point, all pixel areas are treated with similar etch rates, but the depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with different protection rates within the pixel, allowing for the localized deep etching required to create steep vertical bevels.
  • the preferred material for the deposition mask is Invar.
  • the screen or display pattern is a pixel matrix on a substrate.
  • the screen or display pattern is fabricated using lithography (e.g., photolithography and e-beam lithography).
  • the screen or display pattern is fabricated using wet chemical etching.
  • the screen or display pattern is fabricated using plasma etching.
  • OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on the mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating a planarizing film on the TFT, sequentially forming a pixel electrode, a light-emitting layer, a counter electrode and an encapsulation layer, and then cutting the cell panel from the mother panel.
  • TFT thin film transistor
  • OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on the mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating a planarizing film on the TFT, sequentially forming a pixel electrode, a light-emitting layer, a counter electrode and an encapsulation layer, and then cutting the cell panel from the mother panel.
  • TFT thin film transistor
  • a method for manufacturing an organic light emitting diode (OLED) display comprising the steps of: forming a barrier layer on a base substrate of a mother panel; forming a plurality of display units on the barrier layer in the form of a cell panel; forming an encapsulation layer over each of the display units of the cell panel; and applying an organic film to the interface between the cell panels.
  • the barrier layer is an inorganic film, for example made of SiNx, and the ends of the barrier layer are covered with an organic film made of polyimide or acrylic.
  • the organic film helps the mother panel to be cut softly into cell panels.
  • the thin film transistor (TFT) layer has a light-emitting layer, a gate electrode, and source/drain electrodes.
  • Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light-emitting unit formed on the planarization film, and the organic film applied to the interface is formed of the same material as the planarization film and is formed at the same time as the planarization film.
  • the light-emitting unit is connected to the TFT layer by a passivation layer, the planarization film therebetween, and an encapsulation layer that covers and protects the light-emitting unit.
  • the organic film is not connected to the display unit or the encapsulation layer.
  • each of the organic film and the planarization film may comprise one of polyimide and acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be formed of polyimide.
  • the method may further include attaching a carrier substrate formed of a glass material to one surface of the base substrate formed of polyimide prior to forming a barrier layer on the other surface of the base substrate, and separating the carrier substrate from the base substrate prior to cutting along the interface.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film disposed on the TFT layer for covering the TFT layer.
  • the planarization film is an organic film formed on the passivation layer.
  • the planarization film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarization film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer, such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edge of the barrier layer.
  • the light-emitting layer comprises a pixel electrode, a counter electrode, and an organic light-emitting layer disposed between the pixel electrode and the counter electrode, hi some embodiments, the pixel electrode is coupled to a source/drain electrode of a TFT layer. In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, a suitable voltage is formed between the pixel electrode and the counter electrode, which causes the organic light-emitting layer to emit light, thereby forming an image.
  • a display unit an image-forming unit having a TFT layer and a light-emitting unit is referred to as a display unit.
  • the encapsulation layer that covers the display units and prevents the penetration of external moisture may be formed into a thin-film encapsulation structure in which organic films and inorganic films are alternately laminated.
  • the encapsulation layer has a thin-film encapsulation structure in which a plurality of thin films are laminated.
  • the organic film applied to the interface portion is disposed at an interval with each of the plurality of display units.
  • the organic film is formed in such a manner that a portion of the organic film directly contacts the base substrate, and the remaining portion of the organic film contacts the barrier layer while surrounding the end of the barrier layer.
  • the OLED display is flexible and uses a flexible base substrate formed from polyimide, hi some embodiments, the base substrate is formed on a carrier substrate formed from a glass material, and the carrier substrate is then separated.
  • a barrier layer is formed on a surface of the base substrate opposite the carrier substrate.
  • the barrier layer is patterned according to the size of each cell panel. For example, the base substrate is formed on all surfaces of the mother panel, while the barrier layer is formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the grooves.
  • the method further includes a step of cutting along the interface, where a groove is formed in the barrier layer and at least a portion of the organic film is formed in the groove, and the groove does not penetrate the base substrate.
  • a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are disposed on the TFT layer to cover the TFT layer.
  • the planarization film for example made of polyimide or acrylic
  • the groove of the interface is covered with an organic film, for example made of polyimide or acrylic. This prevents cracks from occurring when each cell panel is cut along the groove at the interface by having the organic film absorb the impact that occurs.
  • the groove at the interface between the barrier layers is covered with an organic film to absorb the impact that would otherwise be transmitted to the barrier layer, so that each cell panel can be cut softly and prevent cracks from occurring in the barrier layer.
  • the organic film and the planarization film covering the groove of the interface portion are spaced apart from each other.
  • the organic film and the planarization film are connected to each other as one layer, there is a risk that external moisture may penetrate into the display unit through the planarization film and the remaining portion of the organic film, so the organic film and the planarization film are spaced apart from each other such that the organic film is spaced apart from the display unit.
  • the display unit is formed by forming a light-emitting unit, and the encapsulation layer is disposed on the display unit to cover the display unit.
  • the carrier substrate carrying the base substrate is separated from the base substrate.
  • the carrier substrate is separated from the base substrate due to the difference in thermal expansion coefficient between the carrier substrate and the base substrate.
  • the mother panel is cut into individual cell panels.
  • the mother panel is cut along the interface between the cell panels using a cutter.
  • the grooves of the interface along which the mother panel is cut are covered with an organic film, which absorbs shock during cutting.
  • the barrier layer is prevented from cracking during cutting. In some embodiments, the methods reduce product defect rates and stabilize product quality.
  • Another aspect is an OLED display having a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic film applied to the edges of the barrier layer.
  • the characteristics of the present invention will be described in more detail below with reference to synthesis examples and examples.
  • the materials, processing contents, processing procedures, etc. shown below can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below.
  • the evaluation of the emission characteristics was performed using a source meter (Keithley: 2400 series), a semiconductor parameter analyzer (Agilent Technologies: E5273A), an optical power meter measuring device (Newport: 1930C), an optical spectrometer (Ocean Optics: USB2000), a spectroradiometer (Topcon: SR-3) and a streak camera (Hamamatsu Photonics C4334).
  • the energy of HOMO and LUMO was measured by atmospheric photoelectron spectroscopy (Riken Keiki AC-3, etc.).
  • compounds within the scope of general formula (1) were synthesized.
  • intermediate j Under a nitrogen stream, intermediate i (0.20 g, 0.77 mmol) was added to a dimethylformamide solution (20 mL) of carbazole-1,2,3,4,5,6,7,8-d8 (0.40 g, 2.3 mmol) and potassium carbonate (0.53 g, 3.8 mmol), and the mixture was stirred at room temperature for 2 hours. The mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain intermediate j (0.43 mg, 0.59 mmol, yield 77%). ASAP Mass Spectral Analysis: Calculated 725.27, Observed 726.73
  • intermediate j (0.29 g, 0.40 mmol) was added to a dimethylformamide solution (5 mL) of intermediate a (0.27 g, 0.52 mmol) and cesium carbonate (0.16 g, 0.48 mmol), and the mixture was stirred at 110° C. for 2 hours.
  • the reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol.
  • the obtained solid was purified by silica gel column chromatography to obtain compound 16 (0.42 g, 0.36 mmol, yield 90%).
  • intermediate j (0.417 g, 0.570 mmol) was added to a dimethylformamide solution (20 mL) of intermediate d (0.417 g, 0.750 mmol) and cesium carbonate (0.224 g, 0.689 mmol), and the mixture was stirred at 110° C. for 2 hours.
  • the reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol.
  • the obtained solid was purified by silica gel column chromatography to obtain compound 2608 (0.560 g, 0.451 mmol, yield 78.6%).
  • intermediate j (0.456 g, 0.627 mmol) was added to a degassed dimethylformamide solution (20 mL) of intermediate h (0.420 g, 0.816 mmol) and cesium carbonate (0.245 g, 0.753 mmol), and the mixture was stirred at 110° C. for 2 hours.
  • the reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol.
  • the obtained solid was purified by silica gel column chromatography to obtain compound 880 (0.497 g, 0.428 mmol, yield 68.3%).
  • Example 1 Preparation and evaluation of organic electroluminescence element On a glass substrate on which an anode made of indium tin oxide (ITO) with a film thickness of 50 nm was formed, each thin film was laminated by vacuum deposition at a vacuum degree of 5.0 ⁇ 10 ⁇ 5 Pa.
  • ITO indium tin oxide
  • NPD was formed thereon to a thickness of 30 nm
  • TrisPCz was further formed thereon to a thickness of 10 nm
  • EBL1 was formed thereon to a thickness of 5 nm.
  • H1 and compound 16 were co-deposited from different deposition sources to form a layer with a thickness of 40 nm to serve as an emission layer.
  • the concentration of compound 16 in the emission layer was 35% by mass.
  • SF3-TRZ was formed to a thickness of 10 nm, and then Liq and SF3-TRZ were co-deposited from different deposition sources to form a layer with a thickness of 30 nm.
  • the concentrations of Liq and SF3-TRZ in this layer were 30% by mass and 70% by mass, respectively.
  • Liq was then formed to a thickness of 2 nm, and aluminum (Al) was then evaporated to a thickness of 100 nm to form a cathode, thereby completing the organic electroluminescence element of Example 1.
  • An organic electroluminescence device of Comparative Example 1 was prepared in the same manner as above, except that Comparative Compound 1 was used in place of Compound 16.
  • Example 2 Preparation and Evaluation of Organic Electroluminescence Device Using Compound 16 as an Assist Dopant
  • An organic electroluminescence device of Example 2 was prepared by the same procedure as in Example 1, except that instead of the emitting layer in Example 1, H1, Compound 16, and the dopant E1 were evaporated from different evaporation sources in the amounts of 64.5 wt %, 35.0 wt %, and 0.5 wt %, respectively, to form an emitting layer having a thickness of 40 nm.
  • An organic electroluminescence device of Comparative Example 2 was prepared in the same manner as above, except that Comparative Compound 1 was used in place of Compound 16.
  • Example 3 Preparation and Evaluation of Organic Electroluminescence Device Using Two Types of Host Materials
  • An organic electroluminescence device of Example 3 was prepared by the same procedure as in Example 1, except that instead of the emitting layer in Example 1, H1, H2, compound 16 and E1 were evaporated from different evaporation sources in the amounts of 44.5 wt %, 20.0 wt %, 35.0 wt % and 0.5 wt %, respectively, to form an emitting layer having a thickness of 40 nm.
  • the external quantum yield (EQE) at 15.4 mA/cm 2 was measured to be 14.93%, confirming that good luminescence characteristics were exhibited even when two types of host materials were used.
  • the present invention has a high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This compound, which is represented by the depicted general formula, has excellent light-emitting properties. R1 to R3 and Z represent D or a substituent; R4 to R8 represent H, D, or a substituent; at least one of R1 to R8 represents an aryl group or an acceptor group; p represents 0 to 3; and q represents 1 to 4.

Description

化合物、発光材料および発光素子Compound, light-emitting material and light-emitting device
 本発明は、発光材料として有用な化合物とそれを用いた発光素子に関する。 The present invention relates to a compound useful as a light-emitting material and a light-emitting device using the compound.
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。 Research into improving the luminous efficiency of light-emitting elements such as organic electroluminescence elements (organic EL elements) is being actively conducted. In particular, various efforts have been made to improve luminous efficiency by developing and combining newly developed electron transport materials, hole transport materials, luminescent materials, etc. that make up organic electroluminescence elements. Among these, there is also research into organic electroluminescence elements that use delayed fluorescent materials.
 遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態から基底状態へ戻る際に蛍光を放射する材料である。こうした経路による蛍光は、基底状態から直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。ここで、例えば、発光性化合物をキャリアの注入により励起した場合、励起一重項状態と励起三重項状態の発生確率は統計的に25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、遅延蛍光材料では、励起一重項状態のみならず、励起三重項状態も上記の逆項間交差を介した経路により蛍光発光に利用することができるため、通常の蛍光材料に比べて高い発光効率が得られることになる。 Delayed fluorescent materials are materials that emit fluorescence when they undergo reverse intersystem crossing from an excited triplet state to an excited singlet state in an excited state, and then return from that excited singlet state to the ground state. Fluorescence from this route is observed later than fluorescence from an excited singlet state that occurs directly from the ground state (normal fluorescence), and is therefore called delayed fluorescence. For example, when a luminescent compound is excited by carrier injection, the probability of occurrence of an excited singlet state and an excited triplet state is statistically 25%:75%, so there is a limit to the improvement of luminous efficiency when only the fluorescence from the directly excited singlet state is used. On the other hand, delayed fluorescent materials can use not only the excited singlet state but also the excited triplet state for fluorescence emission via the above-mentioned route via reverse intersystem crossing, resulting in a higher luminous efficiency than normal fluorescent materials.
 このような原理が明らかにされて以降、様々な研究により種々の遅延蛍光材料が発見されるに至っている。その中には、テレフタロニトリルにドナー性基が置換した化合物が幾つか含まれている。例えば、テレフタロニトリルにドナー性基であるカルバゾール-9-イル基が置換した化合物が提案されており、一例として下記の構造を有する化合物(4CzTPN)が実際に使用されている(非特許文献1参照)。 Since this principle was clarified, various researches have led to the discovery of various delayed fluorescent materials. Some of these include compounds in which terephthalonitrile is substituted with a donor group. For example, a compound in which terephthalonitrile is substituted with a carbazol-9-yl group, which is a donor group, has been proposed, and one example of the compound (4CzTPN) with the following structure is actually used (see Non-Patent Document 1).
 遅延蛍光を放射する材料であっても、その特性が極めて良好であって、実用面における課題がないものはこれまでに提供されるに至っていない。このため、発光特性が良好な遅延蛍光材料を提供することができれば、極めて有用である。しかし、遅延蛍光材料の改良は試行錯誤の段階にあり、有用な発光材料の化学構造を一般化することは容易でない。  Even among materials that emit delayed fluorescence, there have been no materials that have such excellent properties that they pose no practical problems. For this reason, it would be extremely useful to be able to provide a delayed fluorescent material with excellent luminescence properties. However, improvements to delayed fluorescent materials are still in the trial and error stage, and it is not easy to generalize the chemical structure of a useful luminescent material.
 このような状況下において本発明者らは、発光素子用の発光材料としてより有用な化合物を提供することを目的として研究を重ねた。そして、発光材料としてより有用な化合物の一般式を導きだして一般化することを目的として鋭意検討を進めた。 Under these circumstances, the inventors have conducted extensive research with the aim of providing compounds that are more useful as light-emitting materials for light-emitting devices. They have also conducted intensive research with the aim of deriving and generalizing a general formula for compounds that are more useful as light-emitting materials.
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、特定の条件を満たす構造を有するテレフタロニトリル誘導体が発光材料として有用であることを見いだした。本発明は、こうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。 As a result of intensive research to achieve the above object, the inventors have found that terephthalonitrile derivatives having a structure that satisfies certain conditions are useful as light-emitting materials. The present invention has been proposed based on this knowledge, and specifically has the following configuration.
[1] 下記一般式(1)で表される化合物。
[一般式(1)において、Xは、酸素原子、硫黄原子、または
を表し、*は結合位置を表す。R~RおよびZは、各々独立に重水素原子または置換基を表す。R~Rは各々独立に水素原子、重水素原子または置換基を表す。R~Rの少なくとも1個は、置換もしくは無置換のアリール基、またはアクセプター性基である。ただし、Rがアクセプター性基でないとき、RおよびR~Rの少なくとも1個は置換もしくは無置換の2,4,6-トリアジニル基である。n1およびn3は、各々独立に0~4のいずれかの整数を表し、n2は0~2のいずれかの整数を表し、pは0~3のいずれかの整数を表し、qは1~4のいずれかの整数を表す。n1が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、n2が2であるとき、2個のRは同一でも異なっていてもよく、n3が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、pが2以上の整数であるとき、2個以上のZは同一でも異なっていてもよく、qが2以上の整数であるとき、2個以上の括弧内の構造は同一でも異なっていてもよい。]
[2] R~Rの少なくとも1個がアクセプター性基である、[1]に記載の化合物。
[3] Rがアクセプター性基である、[2]に記載の化合物。
[4] 前記アクセプター性基が、下記一般式(b)で表される、[1]~[3]のいずれか1つに記載の化合物。
[一般式(b)において、X~Xは、各々独立にNまたはC(R)を表す。ただし、X~Xの少なくとも1個はNである。Rは水素原子、重水素原子または置換基を表す。ArおよびArは、各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。]
[5] X~XがNである、[4]に記載の化合物。
[6] Zが、置換もしくは無置換のジアリールアミノ基(ただし2個のアリール基は互いに結合していてもよい)、または置換もしくは無置換のアリール基である、[1]~[5]のいずれか1つに記載の化合物。
[7] Zが、置換もしくは無置換のカルバゾール-9-イル基である、[6]に記載の化合物。
[8] Xが酸素原子または硫黄原子である、[1]~[7]のいずれか1つに記載の化合物。
[9] qが1である、[1]~[8]のいずれか1つに記載の化合物。
[10] n1+n2+n3が1以上である、[1]~[9]のいずれか1つに記載の化合物。
[11] 重水素原子を少なくとも1つ有する、[1]~[10]のいずれか1つに記載の化合物。
[12] [1]~[11]のいずれか1つに記載の化合物からなる発光材料。
[13] [1]~[11]のいずれか1つに記載の化合物からなる遅延蛍光体。
[14] [1]~[11]のいずれか1つに記載の化合物を含む膜。
[15] [1]~[11]のいずれか1つに記載の化合物を含む有機半導体素子。
[16] [1]~[11]のいずれか1つに記載の化合物を含む有機発光素子。
[17] 前記素子が前記化合物を含む層を有しており、前記層がホスト材料も含む、[16]に記載の有機発光素子。
[18] 前記化合物を含む層が、前記化合物および前記ホスト材料の他に遅延蛍光材料も含み、前記遅延蛍光材料の最低励起一重項エネルギーが前記ホスト材料より低く、前記化合物よりも高い、[17]に記載の有機発光素子。
[19] 前記素子が前記化合物を含む層を有しており、前記層が前記化合物とは異なる構造を有する発光材料も含む、[17]に記載の有機発光素子。
[20] 前記素子に含まれる材料のうち、前記化合物からの発光量が最大である、[17]に記載の有機発光素子。
[21] 前記発光材料からの発光量が前記化合物からの発光量よりも多い、[19]に記載の有機発光素子。
[22] 有機エレクトロルミネッセンス素子である、[16]~[21]のいずれか1つに記載の有機発光素子。
[23] 遅延蛍光を放射する、[16]~[22]のいずれか1つに記載の有機発光素子。
[1] A compound represented by the following general formula (1):
[In the general formula (1), X is an oxygen atom, a sulfur atom, or
where * represents a bonding position. R 1 to R 3 and Z each independently represent a deuterium atom or a substituent. R 4 to R 8 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of R 1 to R 8 is a substituted or unsubstituted aryl group, or an acceptor group. However, when R 2 is not an acceptor group, at least one of R 1 and R 3 to R 8 is a substituted or unsubstituted 2,4,6-triazinyl group. n1 and n3 each independently represent an integer of 0 to 4, n2 represents an integer of 0 to 2, p represents an integer of 0 to 3, and q represents an integer of 1 to 4. When n1 is an integer of 2 or more, two or more R 1s may be the same or different, when n2 is 2, two or more R 2s may be the same or different, when n3 is an integer of 2 or more, two or more R 3s may be the same or different, when p is an integer of 2 or more, two or more Zs may be the same or different, and when q is an integer of 2 or more, two or more structures in parentheses may be the same or different.
[2] The compound according to [1], wherein at least one of R 1 to R 3 is an acceptor group.
[3] The compound according to [2], wherein R 2 is an acceptor group.
[4] The compound according to any one of [1] to [3], wherein the acceptor group is represented by the following general formula (b):
[In the general formula (b), X 1 to X 3 each independently represent N or C(R), provided that at least one of X 1 to X 3 is N. R represents a hydrogen atom, a deuterium atom, or a substituent. Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.]
[5] The compound according to [4], wherein X 1 to X 3 are N.
[6] The compound according to any one of [1] to [5], wherein Z is a substituted or unsubstituted diarylamino group (wherein the two aryl groups may be bonded to each other), or a substituted or unsubstituted aryl group.
[7] The compound according to [6], wherein Z is a substituted or unsubstituted carbazol-9-yl group.
[8] The compound according to any one of [1] to [7], wherein X is an oxygen atom or a sulfur atom.
[9] The compound according to any one of [1] to [8], wherein q is 1.
[10] The compound according to any one of [1] to [9], wherein n1+n2+n3 is 1 or more.
[11] The compound according to any one of [1] to [10], which has at least one deuterium atom.
[12] A light-emitting material comprising the compound according to any one of [1] to [11].
[13] A delayed fluorescent material comprising the compound according to any one of [1] to [11].
[14] A film comprising the compound according to any one of [1] to [11].
[15] An organic semiconductor device comprising the compound according to any one of [1] to [11].
[16] An organic light-emitting device comprising the compound according to any one of [1] to [11].
[17] The organic light-emitting device according to [16], wherein the device has a layer containing the compound, the layer also containing a host material.
[18] The layer containing the compound contains a delayed fluorescent material in addition to the compound and the host material, and the minimum excited singlet energy of the delayed fluorescent material is lower than that of the host material and higher than that of the compound. The organic light-emitting element according to [17].
[19] The organic light-emitting device according to [17], wherein the device has a layer containing the compound, and the layer also contains a light-emitting material having a structure different from that of the compound.
[20] The organic light-emitting device according to [17], wherein the amount of light emitted from the compound is the largest among materials contained in the device.
[21] The organic light-emitting element according to [19], wherein the amount of light emitted from the light-emitting material is greater than the amount of light emitted from the compound.
[22] The organic light-emitting device according to any one of [16] to [21], which is an organic electroluminescence device.
[23] The organic light-emitting device according to any one of [16] to [22], which emits delayed fluorescence.
 本発明の化合物は、優れた発光特性を示す。本発明の化合物は有機発光素子の材料として有用である。 The compounds of the present invention exhibit excellent luminescence properties. They are useful as materials for organic light-emitting devices.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の一部または全部は重水素原子(H、デューテリウムD)に置換することができる。本明細書の化学構造式では、水素原子はHと表示しているか、その表示を省略している。例えばベンゼン環の環骨格構成炭素原子に結合する原子の表示が省略されているとき、表示が省略されている箇所ではHが環骨格構成炭素原子に結合しているものとする。本明細書にて「置換基」という用語は、水素原子および重水素原子以外の原子または原子団を意味する。一方、「置換もしくは無置換の」という用語は、水素原子が重水素原子または置換基で置換されていてもよいことを意味する。 The contents of the present invention will be described in detail below. The following description of the constituent elements may be based on a representative embodiment or specific example of the present invention, but the present invention is not limited to such an embodiment or specific example. In this specification, a numerical range expressed using "~" means a range including the numerical values before and after "~" as the lower and upper limits. In addition, some or all of the hydrogen atoms present in the molecule of the compound used in the present invention can be replaced with deuterium atoms ( 2 H, deuterium D). In the chemical structural formulas in this specification, hydrogen atoms are represented as H or the display is omitted. For example, when the display of atoms bonded to the ring skeleton carbon atoms of a benzene ring is omitted, H is bonded to the ring skeleton carbon atoms at the omitted positions. In this specification, the term "substituent" means an atom or atomic group other than hydrogen atoms and deuterium atoms. On the other hand, the term "substituted or unsubstituted" means that hydrogen atoms may be substituted with deuterium atoms or substituents.
[一般式(1)で表される化合物]
 下記一般式(1)で表される化合物について説明する。
[Compound represented by general formula (1)]
The compound represented by the following general formula (1) will be described.
 一般式(1)において、Zは重水素原子または置換基を表す。ただし、Zがシアノ基であることはなく、また、Zがqの括弧内に記載される縮環カルバゾール-9-イル基であることもない。pは0~3のいずれかの整数を表す。pが2または3であるとき、2個または3個のZは同一であってもよいし、異なってよい。Zが採りうる置換基は、例えば、後述する置換基群Aから選択してもよいし、置換基群Bから選択してもよいし、置換基群Cから選択してもよいし、置換基群Dから選択してもよいし、置換基群Eから選択してもよい。本発明の好ましい一態様では、Zが採りうる置換基は、置換もしくは無置換のアリール基であるか、置換もしくは無置換のジアリールアミノ基である。ここでいうジアリールアミノ基には、窒素原子に結合する2個のアリール基が互いに単結合または連結基を介して結合している基も含まれ、例えばカルバゾール-9-イル基も含まれる。ただし、qの括弧内に記載される縮環カルバゾール-9-イル基は除かれる。
 本発明の一態様では、少なくとも1個のZが置換もしくは無置換のアリール基である。本発明の一態様では、少なくとも1個のZが置換もしくは無置換のジアリールアミノ基であり、例えば少なくとも1個のZが置換もしくは無置換のカルバゾール-9-イル基である。本発明の一態様では、少なくとも1個のZが重水素原子である。本発明の一態様では、すべてのZが置換もしくは無置換のアリール基である。本発明の一態様では、すべてのZが置換もしくは無置換のジアリールアミノ基であり、例えばすべてのZが置換もしくは無置換のカルバゾール-9-イル基である。本発明の一態様では、すべてのZが重水素原子である。本発明の一態様では、pが2または3であり、少なくとも1個のZが置換もしくは無置換のアリール基であり、少なくとも1個のZが置換もしくは無置換のジアリールアミノ基である。本発明の一態様では、pは1である。本発明の一態様では、pは2である。本発明の一態様では、pは3である。
In the general formula (1), Z represents a deuterium atom or a substituent. However, Z is not a cyano group, and Z is not a fused carbazol-9-yl group described in the parentheses of q. p represents an integer of 0 to 3. When p is 2 or 3, two or three Zs may be the same or different. The substituent that Z can take may be selected, for example, from the substituent group A described below, or from the substituent group B, or from the substituent group C, or from the substituent group D, or from the substituent group E. In a preferred embodiment of the present invention, the substituent that Z can take is a substituted or unsubstituted aryl group or a substituted or unsubstituted diarylamino group. The diarylamino group referred to here also includes a group in which two aryl groups bonded to a nitrogen atom are bonded to each other via a single bond or a linking group, and includes, for example, a carbazol-9-yl group. However, the fused carbazol-9-yl group described in the parentheses of q is excluded.
In one embodiment of the present invention, at least one Z is a substituted or unsubstituted aryl group. In one embodiment of the present invention, at least one Z is a substituted or unsubstituted diarylamino group, for example, at least one Z is a substituted or unsubstituted carbazol-9-yl group. In one embodiment of the present invention, at least one Z is a deuterium atom. In one embodiment of the present invention, all Z are substituted or unsubstituted aryl groups. In one embodiment of the present invention, all Z are substituted or unsubstituted diarylamino groups, for example, all Z are substituted or unsubstituted carbazol-9-yl groups. In one embodiment of the present invention, all Z are deuterium atoms. In one embodiment of the present invention, p is 2 or 3, at least one Z is a substituted or unsubstituted aryl group, and at least one Z is a substituted or unsubstituted diarylamino group. In one embodiment of the present invention, p is 1. In one embodiment of the present invention, p is 2. In one embodiment of the present invention, p is 3.
 (Z)が結合しているベンゼン環には、シアノ基が2個結合している。本発明の一態様では、2個のシアノ基はパラの位置関係にある。本発明の一態様では、2個のシアノ基はメタの位置関係にある。本発明の一態様では、2個のシアノ基はオルトの位置関係にある。
 一般式(1)におけるqは1~4のいずれかの整数を表す。本発明の一態様では、p+qは4である。本発明の一態様では、p+qは3である。本発明の一態様では、p+qは2である。本発明の一態様では、p+qは1である。好ましくはp+qは2~4であり、より好ましくは3または4である。本発明の一態様では、pが2または3でqが1であり、例えばpが3でqが1であり、例えばpが2でqが1である。本発明の一態様では、pが1または2でqが2であり、例えばpが2でqが2であり、例えばpが1でqが2である。
 以下において、シアノ基、Z、qの括弧内に記載される縮環カルバゾール-9-イル基の結合位置の具体例を挙げるが、本発明で採用することができる結合位置は以下の具体例により限定的に解釈されることはない。以下の具体例では、一般式(1)のqの括弧内に記載される縮環カルバゾール-9-イル基をCzと表記している。複数のZがある場合は、それらのZは同一であっても異なっていてもよく、例えば同一である。複数のCzがある場合は、それらのCzは同一であっても異なっていてもよく、例えば同一である。I7~I11、P5、P6、T7~T10は、Zが重水素原子(D)である場合の具体例である。
(Z) Two cyano groups are bonded to the benzene ring to which p is bonded. In one embodiment of the present invention, the two cyano groups are in a para-positional relationship. In one embodiment of the present invention, the two cyano groups are in a meta-positional relationship. In one embodiment of the present invention, the two cyano groups are in an ortho-positional relationship.
In the general formula (1), q represents an integer of 1 to 4. In one embodiment of the present invention, p+q is 4. In one embodiment of the present invention, p+q is 3. In one embodiment of the present invention, p+q is 2. In one embodiment of the present invention, p+q is 1. Preferably, p+q is 2 to 4, more preferably 3 or 4. In one embodiment of the present invention, p is 2 or 3 and q is 1, for example, p is 3 and q is 1, for example, p is 2 and q is 1. In one embodiment of the present invention, p is 1 or 2 and q is 2, for example, p is 2 and q is 2, for example, p is 1 and q is 2.
Specific examples of the bonding positions of the fused carbazol-9-yl group described in parentheses of a cyano group, Z, and q are given below, but the bonding positions that can be adopted in the present invention are not limited to the following specific examples. In the following specific examples, the fused carbazol-9-yl group described in parentheses of q in general formula (1) is represented as Cz. When there are multiple Z, the Z may be the same or different, for example, the same. When there are multiple Cz, the Cz may be the same or different, for example, the same. I7 to I11, P5, P6, and T7 to T10 are specific examples when Z is a deuterium atom (D).
 本発明の一態様では、T1~T10のいずれかの構造を有する。本発明の一態様では、T1~T6のいずれかの構造を有する。例えばT1、T3、T4またはT5の構造を有する。例えばT3、T4、T5またはT6の構造を有する。例えばT5またはT6の構造を有する。本発明の一態様では、T7~T10のいずれかの構造を有する。例えば、T7、T8またはT9の構造を有する。本発明の一態様では、P1~P6のいずれかの構造を有する。本発明の一態様では、P1~P4のいずれかの構造を有する。例えばP3またはP4の構造を有する。例えばP1またはP2の構造を有する。本発明の一態様では、P5またはP6の構造を有する。本発明の一態様では、I1~I11のいずれかの構造を有する。本発明の一態様では、I1~I6のいずれかの構造を有する。例えばI1またはI3の構造を有する。例えばI2またはI4の構造を有する。本発明の一態様では、I7~I11のいずれかの構造を有する。例えば、I7、I9またはI11の構造を有する。例えば、I8またはI10の構造を有する。
 本発明の一態様では、I1~I6、P1~P4、T1~T6のいずれかの構造を有する。本発明の一態様では、I7~I11、P5、P6、T7~T10のいずれかの構造を有する。本発明の一態様では、I1、I3、I5、I7、I9、I11、P3~P6、T1、T3~T5、T7~T9のいずれかの構造を有する。本発明の一態様では、I7~I11、P5、P6、T7~T10のいずれかの構造を有する。本発明の一態様では、I7、I9、I11、P5、P6、T7~T9のいずれかの構造を有する。
In one embodiment of the present invention, the compound has a structure of any one of T1 to T10. In one embodiment of the present invention, the compound has a structure of any one of T1 to T6. For example, the compound has a structure of T1, T3, T4, or T5. For example, the compound has a structure of T3, T4, T5, or T6. For example, the compound has a structure of T5 or T6. In one embodiment of the present invention, the compound has a structure of any one of T7 to T10. For example, the compound has a structure of T7, T8, or T9. In one embodiment of the present invention, the compound has a structure of any one of P1 to P6. In one embodiment of the present invention, the compound has a structure of any one of P1 to P4. For example, the compound has a structure of P3 or P4. For example, the compound has a structure of P1 or P2. In one embodiment of the present invention, the compound has a structure of P5 or P6. In one embodiment of the present invention, the compound has a structure of any one of I1 to I11. In one embodiment of the present invention, the compound has a structure of any one of I1 to I6. For example, the compound has a structure of I1 or I3. For example, the compound has a structure of I2 or I4. In one embodiment of the present invention, the compound has a structure of any one of I7 to I11. For example, the compound has a structure of I7, I9, or I11. For example, the compound has a structure of I8 or I10.
In one aspect of the present invention, the compound has a structure of any one of I1 to I6, P1 to P4, and T1 to T6. In one aspect of the present invention, the compound has a structure of any one of I7 to I11, P5, P6, and T7 to T10. In one aspect of the present invention, the compound has a structure of any one of I1, I3, I5, I7, I9, I11, P3 to P6, T1, T3 to T5, and T7 to T9. In one aspect of the present invention, the compound has a structure of any one of I7 to I11, P5, P6, and T7 to T10. In one aspect of the present invention, the compound has a structure of any one of I7, I9, I11, P5, P6, and T7 to T9.
 以下において、Zが採りうる置換基の具体例を挙げる。ただし、Zとして採りうる置換基はこれらの具体例により限定的に解釈されることはない。以下の具体例において、*は結合位置を表し、Dは重水素原子を表す。
Specific examples of the substituent that Z may take are given below. However, the substituent that Z may take is not limited to these specific examples. In the following specific examples, * represents a bonding position, and D represents a deuterium atom.
 本発明の一態様では、ZはZ1~Z35の中から選択する。本発明の一態様では、ZはZ27~Z35の中から選択する。本発明の一態様では、ZはZ5~Z26、Z31~Z35の中から選択する。本発明の一態様では、ZはZ7~Z26、Z33~Z35の中から選択する。 In one aspect of the present invention, Z is selected from Z1 to Z35. In one aspect of the present invention, Z is selected from Z27 to Z35. In one aspect of the present invention, Z is selected from Z5 to Z26, Z31 to Z35. In one aspect of the present invention, Z is selected from Z7 to Z26, Z33 to Z35.
 一般式(1)において、Xは、酸素原子、硫黄原子、または下記一般式(a)
で表される基を表す。一般式(a)において、*は結合位置を表し、R~Rは各々独立に水素原子、重水素原子または置換基を表す。R~Rが採りうる置換基は、例えば、後述する置換基群Aから選択してもよいし、置換基群Bから選択してもよいし、置換基群Cから選択してもよいし、置換基群Dから選択してもよいし、置換基群Eから選択してもよい。R~Rは同一であってもよく、例えばすべてが水素原子であったり、すべてが重水素原子であったりする場合を例示することができる。本発明の一態様では、R~Rは水素原子、重水素原子、アルキル基、アリール基、およびこれらを組み合わせた基の中から選択する。本発明の一態様では、R~Rは水素原子、重水素原子、アルキル基、アリール基、ジアリールアミノ基(2個のアリール基は互いに結合していてもよい)、およびこれらを組み合わせた基の中から選択する。本発明の一態様では、R~Rは水素原子、重水素原子、アルキル基、およびこれらを組み合わせた基の中から選択する。
 本発明の一態様では、Xは酸素原子または硫黄原子であり、酸素原子を選択してもいし、硫黄原子を選択してもよい。本発明の一態様では、Xは一般式(a)で表される基である。一般式(1)において、(Rn3が結合するベンゼン環と(Rn2が結合するベンゼン環を連結するXと単結合の位置関係は逆である場合も含まれる。すなわち、上記一般式(1)では、Xが上側に記載され、単結合が下側に記載されているが、Xが下側にあり、単結合が上側にある場合も一般式(1)に含まれる。
 (Rn3が結合するベンゼン環がXと単結合によりカルバゾール環に縮合することにより、環縮合カルバゾール-9-イル基が形成される。そのような環縮合カルバゾール-9-イル基として、ベンゾフロ[2,3-a]カルバゾール-9-イル基、ベンゾフロ[3,2-a]カルバゾール-9-イル基、ベンゾフロ[2,3-b]カルバゾール-9-イル基、ベンゾフロ[3,2-b]カルバゾール-9-イル基、ベンゾフロ[2,3-c]カルバゾール-9-イル基、ベンゾフロ[3,2-c]カルバゾール-9-イル基を採用することができる。また、環縮合カルバゾール-9-イル基として、ベンゾチエノ[2,3-a]カルバゾール-9-イル基、ベンゾチエノ[3,2-a]カルバゾール-9-イル基、ベンゾチエノ[2,3-b]カルバゾール-9-イル基、ベンゾチエノ[3,2-b]カルバゾール-9-イル基、ベンゾチエノ[2,3-c]カルバゾール-9-イル基、ベンゾチエノ[3,2-c]カルバゾール-9-イル基を採用することもできる。また、環縮合カルバゾール-9-イル基として、インドロ[2,3-a]カルバゾール-9-イル基、インドロ[3,2-a]カルバゾール-9-イル基、インドロ[2,3-b]カルバゾール-9-イル基、インドロ[3,2-b]カルバゾール-9-イル基、インドロ[2,3-c]カルバゾール-9-イル基、インドロ[3,2-c]カルバゾール-9-イル基を採用することもできる。これらの基を構成するベンゼン環は、一般式(1)で示すように(Rn1、(Rn2および(Rn3でそれぞれ置換されている。
In the general formula (1), X is an oxygen atom, a sulfur atom, or a group represented by the following general formula (a):
In the general formula (a), * represents a bonding position, and R 4 to R 8 each independently represent a hydrogen atom, a deuterium atom, or a substituent. The substituents that R 4 to R 8 can have may be selected from the following Substituent Group A, Substituent Group B, Substituent Group C, Substituent Group D, or Substituent Group E, for example. R 4 to R 8 may be the same, and may be all hydrogen atoms or all deuterium atoms, for example. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, and a group combining these. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these. In one embodiment of the present invention, R 4 to R 8 are selected from a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a diarylamino group (two aryl groups may be bonded to each other), and a group combining these.
In one embodiment of the present invention, X is an oxygen atom or a sulfur atom, and may be selected as an oxygen atom or a sulfur atom. In one embodiment of the present invention, X is a group represented by general formula (a). In general formula (1), the positional relationship between X and a single bond connecting a benzene ring to which (R 3 ) n3 is bonded and a benzene ring to which (R 2 ) n2 is bonded may be reversed. That is, in the above general formula (1), X is written on the upper side and a single bond is written on the lower side, but the case where X is on the lower side and a single bond is on the upper side is also included in general formula (1).
A ring-fused carbazol-9-yl group is formed by condensing the benzene ring to which (R 3 ) n3 is bonded to a carbazole ring via a single bond with X. As such a ring-fused carbazol-9-yl group, a benzofuro[2,3-a]carbazol-9-yl group, a benzofuro[3,2-a]carbazol-9-yl group, a benzofuro[2,3-b]carbazol-9-yl group, a benzofuro[3,2-b]carbazol-9-yl group, a benzofuro[2,3-c]carbazol-9-yl group, or a benzofuro[3,2-c]carbazol-9-yl group can be used. In addition, as the ring-fused carbazol-9-yl group, a benzothieno[2,3-a]carbazol-9-yl group, a benzothieno[3,2-a]carbazol-9-yl group, a benzothieno[2,3-b]carbazol-9-yl group, a benzothieno[3,2-b]carbazol-9-yl group, a benzothieno[2,3-c]carbazol-9-yl group, or a benzothieno[3,2-c]carbazol-9-yl group can also be used. In addition, the ring-fused carbazol-9-yl group may be an indolo[2,3-a]carbazol-9-yl group, an indolo[3,2-a]carbazol-9-yl group, an indolo[2,3-b]carbazol-9-yl group, an indolo[3,2-b]carbazol-9-yl group, an indolo[2,3-c]carbazol-9-yl group, or an indolo[3,2-c]carbazol-9-yl group. The benzene rings constituting these groups are substituted with (R 1 ) n1 , (R 2 ) n2 , and (R 3 ) n3 , respectively, as shown in general formula (1).
 R~Rは、各々独立に重水素原子または置換基を表す。R~Rが採りうる置換基は、例えば、後述する置換基群Aから選択してもよいし、置換基群Bから選択してもよいし、置換基群Cから選択してもよいし、置換基群Dから選択してもよいし、置換基群Eから選択してもよい。
 一般式(1)において、R~Rの少なくとも1個は、置換もしくは無置換のアリール基、またはアクセプター性基である。本発明の好ましい一態様では、R~Rの少なくとも1個が、置換もしくは無置換のアリール基、またはアクセプター性基である。本発明のより好ましい一態様では、Rの少なくとも1個が、置換もしくは無置換のアリール基、またはアクセプター性基であり、さらに好ましくはアクセプター性基である。
 「アクセプター性基」は、ハメットのσp値が正の基の中から選択することができる。ハメットのσp値は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
      log(k/k0) = ρσp
または
      log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、k0は置換基を持たないベンゼン誘導体の速度定数、kは置換基で置換されたベンゼン誘導体の速度定数、K0は置換基を持たないベンゼン誘導体の平衡定数、Kは置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。
 R~Rが採りうるアクセプター性基は、σpが0.3以上であることが好ましく、0.5以上であることがより好ましく、0.7以上であることがさらに好ましい。例えば、0.9以上の範囲から選択したり、1.1以上の範囲から選択したりしてもよい。
 本発明の好ましい一態様では、R~Rが採りうるアクセプター性基は、環骨格構成原子として窒素原子を含むヘテロアリール基である。より好ましくは、下記一般式(b)で表される基である。
R 1 to R 3 each independently represent a deuterium atom or a substituent. The substituent that R 1 to R 3 can have may be selected from the below-described Substituent Group A, Substituent Group B, Substituent Group C, Substituent Group D, or Substituent Group E.
In general formula (1), at least one of R 1 to R 8 is a substituted or unsubstituted aryl group, or an acceptor group. In a preferred embodiment of the present invention, at least one of R 1 to R 3 is a substituted or unsubstituted aryl group, or an acceptor group. In a more preferred embodiment of the present invention, at least one of R 2 is a substituted or unsubstituted aryl group, or an acceptor group, and more preferably an acceptor group.
The "acceptor group" can be selected from groups having a positive Hammett σp value. The Hammett σp value was proposed by L. P. Hammett and quantifies the effect of a substituent on the reaction rate or equilibrium of a para-substituted benzene derivative. Specifically, the following formula is established between the substituent in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant:
log(k/ k0 ) = ρσp
or log(K/ K0 ) = ρσp
In the above formula, k 0 is the rate constant of a benzene derivative having no substituent, k is the rate constant of a benzene derivative substituted with a substituent, K 0 is the equilibrium constant of a benzene derivative having no substituent, K is the equilibrium constant of a benzene derivative substituted with a substituent, and ρ is a reaction constant determined by the type and conditions of the reaction. For an explanation of the "Hammett σp value" in the present invention and the numerical values of each substituent, the description of the σp value in Hansch, C. et.al., Chem.Rev., 91, 165-195 (1991) can be referred to.
The acceptor groups which can be R 1 to R 8 preferably have a σp of 0.3 or more, more preferably 0.5 or more, and even more preferably 0.7 or more. For example, the σp may be selected from the range of 0.9 or more, or 1.1 or more.
In a preferred embodiment of the present invention, the acceptor group which can be represented by R 1 to R 8 is a heteroaryl group containing a nitrogen atom as a ring skeleton-constituting atom, more preferably a group represented by the following general formula (b).
 一般式(b)において、X~Xは、各々独立にNまたはC(R)を表す。ただし、X~Xの少なくとも1個はNである。Rは水素原子、重水素原子または置換基を表す。ここでいう置換基は、置換基群Aから選択してもよいし、置換基群Bから選択してもよいし、置換基群Cから選択してもよいし、置換基群Dから選択してもよいし、置換基群Eから選択してもよい。本発明の好ましい一態様では、X~XはNである。本発明の一態様では、XおよびXがNであり、XがC(R)である。本発明の一態様では、XおよびXがNであり、XがC(R)である。本発明の一態様では、XがNであり、XおよびXがC(R)である。本発明の一態様では、XがNであり、XおよびXがC(R)である。本発明の一態様では、Rは水素原子または重水素原子である。本発明の一態様では、Rは重水素原子で置換されていてもよいアルキル基である。本発明の一態様では、Rは重水素原子、アルキル基またはアリール基で置換されていてもよいアリール基である。
 一般式(b)において、ArおよびArは、各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。
 ArおよびArが採りうるアリール基、および本発明におけるアリール基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環を挙げることができる。本発明の一態様では、アリール基は置換もしくは無置換のフェニル基、置換もしくは無置換のナフタレン-1-イル基、または置換もしくは無置換のナフタレン-2-イル基であり、好ましくは置換もしくは無置換のフェニル基である。アリール基の置換基は、例えば置換基群Aから選択してもよいし、置換基群Bから選択してもよいし、置換基群Cから選択してもよいし、置換基群Dから選択してもよいし、置換基群Eから選択してもよい。本発明の一態様では、アリール基の置換基は、アルキル基、アリール基および重水素原子からなる群より選択される1つ以上である。本発明の好ましい一態様では、アリール基は少なくとも1個の重水素原子で置換されている。本発明の一態様では、アリール基は無置換である。
 ArおよびArが採りうるヘテロアリール基、および本発明におけるヘテロアリール基は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ピリジン環、ピリミジン環、ピロール環を挙げることができ、これらの環にはさらに別の環が縮合していてもよい。ヘテロアリール基の具体例として、2-ピリジル基、3-ピリジル基、4-ピリジル基、カルバゾール-9-イル基、カルバゾール-1-イル基、カルバゾール-2-イル基、カルバゾール-3-イル基、カルバゾール-4-イル基を挙げることができる。これらの基には置換基が置換していてもよく、例えば重水素原子、アルキル基、アリール基、カルバゾリル基、およびこれらを組み合わせた基で置換されていてもよい。
 以下において、本発明で採用することができるアクセプター性基の具体例を挙げる。ただし、本発明で採用することができるアクセプター性基は、これらの具体例によって限定的に解釈されることはない。以下の具体例において、*は結合位置を表し、Dは重水素原子を表す。
In the general formula (b), X 1 to X 3 each independently represent N or C(R). However, at least one of X 1 to X 3 is N. R represents a hydrogen atom, a deuterium atom, or a substituent. The substituent may be selected from the substituent group A, the substituent group B, the substituent group C, the substituent group D, or the substituent group E. In a preferred embodiment of the present invention, X 1 to X 3 are N. In one embodiment of the present invention, X 1 and X 3 are N, and X 2 is C(R). In one embodiment of the present invention, X 1 and X 2 are N, and X 3 is C(R). In one embodiment of the present invention, X 1 is N, and X 2 and X 3 are C(R). In one embodiment of the present invention, X 2 is N, and X 1 and X 3 are C(R). In one embodiment of the present invention, R is a hydrogen atom or a deuterium atom. In one embodiment of the present invention, R is an alkyl group optionally substituted with a deuterium atom. In one embodiment of the present invention, R is an aryl group optionally substituted with a deuterium atom, an alkyl group, or an aryl group.
In formula (b), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
The aryl group which Ar 1 and Ar 2 may take, and the aryl group in the present invention may be a single ring or a fused ring in which two or more rings are fused. In the case of a fused ring, the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4. Specific examples of the ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a triphenylene ring. In one embodiment of the present invention, the aryl group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthalene-1-yl group, or a substituted or unsubstituted naphthalene-2-yl group, and is preferably a substituted or unsubstituted phenyl group. The substituent of the aryl group may be selected from, for example, the substituent group A, the substituent group B, the substituent group C, the substituent group D, or the substituent group E. In one embodiment of the present invention, the substituent of the aryl group is one or more selected from the group consisting of an alkyl group, an aryl group, and a deuterium atom. In a preferred embodiment of the present invention, the aryl group is substituted with at least one deuterium atom. In one aspect of the invention, the aryl group is unsubstituted.
The heteroaryl groups which Ar 1 and Ar 2 may take, and the heteroaryl group in the present invention may be a single ring or a fused ring in which two or more rings are fused. In the case of a fused ring, the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4. Specific examples of the ring include a pyridine ring, a pyrimidine ring, and a pyrrole ring, and these rings may be further fused with another ring. Specific examples of the heteroaryl group include a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a carbazol-9-yl group, a carbazol-1-yl group, a carbazol-2-yl group, a carbazol-3-yl group, and a carbazol-4-yl group. These groups may be substituted with a substituent, for example, a deuterium atom, an alkyl group, an aryl group, a carbazolyl group, or a group combining these.
Specific examples of the acceptor group that can be used in the present invention are given below. However, the acceptor group that can be used in the present invention is not limited to these specific examples. In the following specific examples, * represents a bonding position, and D represents a deuterium atom.
 本発明の一態様では、アクセプター性基はA1~A32の中から選択する。本発明の一態様では、アクセプター性基はA16~A32の中から選択する。本発明の一態様では、アクセプター性基はA4~A15、A19~32の中から選択する。本発明の一態様では、アクセプター性基はA4~A10、A19~28の中から選択する。本発明の一態様では、アクセプター性基はA11~A14、A29~31の中から選択する。 In one embodiment of the present invention, the acceptor group is selected from A1 to A32. In one embodiment of the present invention, the acceptor group is selected from A16 to A32. In one embodiment of the present invention, the acceptor group is selected from A4 to A15 and A19 to 32. In one embodiment of the present invention, the acceptor group is selected from A4 to A10 and A19 to 28. In one embodiment of the present invention, the acceptor group is selected from A11 to A14 and A29 to 31.
 本発明の好ましい一態様では、R~Rは、重水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、および、置換もしくは無置換のトリアジニル基の中から選択する。本発明の好ましい一態様では、R~Rは、重水素原子、置換もしくは無置換のアリール基、および、置換もしくは無置換の2,4,6-トリアジニル基の中から選択する。本発明の好ましい一態様では、R~Rは、重水素原子、重水素原子で置換されていてもよいアリール基、および、A1~A32の中から選択する。 In a preferred embodiment of the present invention, R 1 to R 3 are selected from a deuterium atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted triazinyl group. In a preferred embodiment of the present invention, R 1 to R 3 are selected from a deuterium atom, a substituted or unsubstituted aryl group, and a substituted or unsubstituted 2,4,6-triazinyl group. In a preferred embodiment of the present invention, R 1 to R 3 are selected from a deuterium atom, an aryl group which may be substituted with a deuterium atom, and A1 to A32.
 n1およびn3は、各々独立に0~4のいずれかの整数を表し、n2は0~2のいずれかの整数を表し、pは0~3のいずれかの整数を表す。ただし、n1+n2+n3は1以上の整数であることが好ましく、1~3であることがより好ましく、例えば1であり、例えば2である。n1が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、n2が2であるとき、2個のRは同一でも異なっていてもよく、n3が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、pが2以上の整数であるとき、2個以上のZは同一でも異なっていてもよい。 n1 and n3 each independently represent an integer of 0 to 4, n2 represents an integer of 0 to 2, and p represents an integer of 0 to 3. However, n1+n2+n3 is preferably an integer of 1 or more, more preferably 1 to 3, for example, 1, for example, 2. When n1 is an integer of 2 or more, two or more R 1s may be the same or different, when n2 is 2, two or more R 2s may be the same or different, when n3 is an integer of 2 or more, two or more R 3s may be the same or different, and when p is an integer of 2 or more, two or more Zs may be the same or different.
 一般式(1)において、R~Rの少なくとも1個は、置換もしくは無置換のアリール基、またはアクセプター性基である。本発明の好ましい一態様では、R~Rの少なくとも1個がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基である。本発明の好ましい一態様では、R~Rの少なくとも1個がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基である。本発明の一態様では、Rの少なくとも1個がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基である。本発明の好ましい一態様では、Rの少なくとも1個がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基である。本発明のさらに好ましい一態様では、Rの少なくとも1個がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基である。なお、Rがいずれもアクセプター性基でないとき、RおよびR~Rの少なくとも1個は置換もしくは無置換の2,4,6-トリアジニル基である。 In the general formula (1), at least one of R 1 to R 8 is a substituted or unsubstituted aryl group or an acceptor group. In a preferred embodiment of the present invention, at least one of R 1 to R 8 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group. In a preferred embodiment of the present invention, at least one of R 1 to R 3 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group. In one embodiment of the present invention, at least one of R 3 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group. In a preferred embodiment of the present invention, at least one of R 1 is an acceptor group, for example a group represented by general formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group. In a further preferred embodiment of the present invention, at least one of R2 is an acceptor group, for example a group represented by formula (b), preferably a substituted or unsubstituted 2,4,6-triazinyl group. When none of R2 is an acceptor group, at least one of R1 and R3 to R8 is a substituted or unsubstituted 2,4,6-triazinyl group.
 本発明の一態様では、n1+n2+n3は1~3であり、R~Rの少なくとも1個(例えば1個)がアクセプター性基であり、例えば一般式(b)で表される基であり、好ましくは置換もしくは無置換の2,4,6-トリアジニル基であり、なおかつ、R~Rの0~2個(例えば0個、例えば1個)が置換もしくは無置換のアリール基であり、例えば重水素原子、アルキル基またはアリール基で置換されていてもよいアリール基である。 In one embodiment of the present invention, n1+n2+n3 is 1 to 3, at least one (e.g., 1) of R 1 to R 3 is an acceptor group, for example a group represented by general formula (b), and preferably a substituted or unsubstituted 2,4,6-triazinyl group, and 0 to 2 (e.g., 0, for example, 1) of R 1 to R 3 are substituted or unsubstituted aryl groups, for example an aryl group which may be substituted with a deuterium atom, an alkyl group, or an aryl group.
 以下において、qの括弧内に記載される縮環カルバゾール-9-イル基の具体例を挙げる。ただし、本発明で採用することができる縮環カルバゾール-9-イル基の構造はこれらの具体例により限定的に解釈されることはない。以下の具体例において、*は結合位置を表し、Aはアクセプター性基を表し、Dは重水素原子を表す。
Specific examples of the fused carbazol-9-yl group described in parentheses of q are given below. However, the structure of the fused carbazol-9-yl group that can be employed in the present invention is not limited to these specific examples. In the following specific examples, * represents a bonding position, A represents an acceptor group, and D represents a deuterium atom.
 本発明の一態様では、縮環カルバゾール-9-イル基はCz1~Cz279の中から選択する。本発明の一態様では、縮環カルバゾール-9-イル基はCz163~Cz279の中から選択する。本発明の一態様では、縮環カルバゾール-9-イル基はCz1~Cz48、Cz67~Cz90、Cz103~Cz126、Cz139~Cz146、Cz151~Cz158、Cz163~Cz198、Cz216~Cz233、Cz243~Cz260、Cz270~Cz279の中から選択する。本発明の一態様では、縮環カルバゾール-9-イル基はCz49~Cz66、Cz91~Cz102、Cz127~Cz138、Cz147~Cz150、Cz159~Cz162、Cz199215、Cz234~Cz242、Cz261~Cz269の中から選択する。 In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz1 to Cz279. In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz163 to Cz279. In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz1 to Cz48, Cz67 to Cz90, Cz103 to Cz126, Cz139 to Cz146, Cz151 to Cz158, Cz163 to Cz198, Cz216 to Cz233, Cz243 to Cz260, and Cz270 to Cz279. In one embodiment of the present invention, the fused carbazol-9-yl group is selected from Cz49 to Cz66, Cz91 to Cz102, Cz127 to Cz138, Cz147 to Cz150, Cz159 to Cz162, Cz199215, Cz234 to Cz242, and Cz261 to Cz269.
 一般式(1)で表される化合物は、金属原子を含まないことが好ましく、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子だけで構成される化合物であってもよい。本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子だけで構成される。また、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、窒素原子および硫黄原子からなる群より選択される原子だけで構成される化合物であってもよい。一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子および窒素原子からなる群より選択される原子だけで構成される化合物であってもよい。一般式(1)で表される化合物は、炭素原子、水素原子および窒素原子からなる群より選択される原子だけで構成される化合物であってもよい。さらに、一般式(1)で表される化合物は水素原子を含まず、重水素原子を含む化合物であってもよい。 The compound represented by the general formula (1) preferably does not contain metal atoms, and may be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, and sulfur atoms. In a preferred embodiment of the present invention, the compound represented by the general formula (1) is composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and oxygen atoms. The compound represented by the general formula (1) may also be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and sulfur atoms. The compound represented by the general formula (1) may also be a compound composed of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, and nitrogen ... and nitrogen atoms. Furthermore, the compound represented by the general formula (1) may not contain hydrogen atoms, but may contain deuterium atoms.
 本明細書において「置換基群A」とは、重水素原子、ヒドロキシル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アルキルチオ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、アリールチオ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ヘテロアリールチオ基(例えば環骨格構成原子数5~30)、アシル基(例えば炭素数1~40)、アルケニル基(例えば炭素数1~40)、アルキニル基(例えば炭素数1~40)、アルコキシカルボニル基(例えば炭素数1~40)、アリールオキシカルボニル基(例えば炭素数1~40)、ヘテロアリールオキシカルボニル基(例えば炭素数1~40)、シリル基(例えば炭素数1~40のトリアルキルシリル基)およびニトロ基からなる群より選択される1つの原子か基または2つ以上を組み合わせた基を意味する。
 本明細書において「置換基群B」とは、重水素原子、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ジアリールアミノアミノ基(例えば炭素原子数0~20)からなる群より選択される1つの原子か基または2つ以上を組み合わせた基を意味する。
 本明細書において「置換基群C」とは、重水素原子、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)、ヘテロアリール基(例えば環骨格構成原子数5~20)、ジアリールアミノ基(例えば炭素原子数12~20)からなる群より選択される1つの原子か基または2つ以上を組み合わせた基を意味する。
 本明細書において「置換基群D」とは、重水素原子、アルキル基(例えば炭素数1~20)、アリール基(例えば炭素数6~22)およびヘテロアリール基(例えば環骨格構成原子数5~20)からなる群より選択される1つの原子か基または2つ以上を組み合わせた基を意味する。
 本明細書において「置換基群E」とは、重水素原子、アルキル基(例えば炭素数1~20)およびアリール基(例えば炭素数6~22)からなる群より選択される1つの原子か基または2つ以上を組み合わせた基を意味する。
 本明細書において「置換もしくは無置換の」または「置換されていてもよい」と記載されている場合の置換基は、例えば置換基群Aの中から選択してもよいし、置換基群Bの中から選択してもよいし、置換基群Cの中から選択してもよいし、置換基群Dの中から選択してもよいし、置換基群Eの中から選択してもよい。
In the present specification, the term "substituent group A" refers to a deuterium atom, a hydroxyl group, a halogen atom (e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group (e.g., having 1 to 40 carbon atoms), an alkoxy group (e.g., having 1 to 40 carbon atoms), an alkylthio group (e.g., having 1 to 40 carbon atoms), an aryl group (e.g., having 6 to 30 carbon atoms), an aryloxy group (e.g., having 6 to 30 carbon atoms), an arylthio group (e.g., having 6 to 30 carbon atoms), a heteroaryl group (e.g., having 5 to 30 ring skeleton atoms), a heteroaryloxy group (e.g., having 5 to 30 ring skeleton atoms), It means one atom or group, or a combination of two or more selected from the group consisting of heteroarylthio groups (e.g., having 5 to 30 ring atoms), acyl groups (e.g., having 1 to 40 carbon atoms), alkenyl groups (e.g., having 1 to 40 carbon atoms), alkynyl groups (e.g., having 1 to 40 carbon atoms), alkoxycarbonyl groups (e.g., having 1 to 40 carbon atoms), aryloxycarbonyl groups (e.g., having 1 to 40 carbon atoms), heteroaryloxycarbonyl groups (e.g., having 1 to 40 carbon atoms), silyl groups (e.g., trialkylsilyl groups having 1 to 40 carbon atoms), and nitro groups.
As used herein, "substituent group B" means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 40 carbon atoms), an alkoxy group (e.g., having 1 to 40 carbon atoms), an aryl group (e.g., having 6 to 30 carbon atoms), an aryloxy group (e.g., having 6 to 30 carbon atoms), a heteroaryl group (e.g., having 5 to 30 ring skeleton atoms), a heteroaryloxy group (e.g., having 5 to 30 ring skeleton atoms), and a diarylaminoamino group (e.g., having 0 to 20 carbon atoms).
As used herein, "substituent group C" means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms), an aryl group (e.g., having 6 to 22 carbon atoms), a heteroaryl group (e.g., having 5 to 20 ring skeleton atoms), and a diarylamino group (e.g., having 12 to 20 carbon atoms).
As used herein, "substituent group D" means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms), an aryl group (e.g., having 6 to 22 carbon atoms), and a heteroaryl group (e.g., having 5 to 20 ring skeleton atoms).
As used herein, "substituent group E" means one atom or group, or a combination of two or more selected from the group consisting of a deuterium atom, an alkyl group (e.g., having 1 to 20 carbon atoms) and an aryl group (e.g., having 6 to 22 carbon atoms).
In the present specification, when it is described as "substituted or unsubstituted" or "optionally substituted", the substituent may be selected, for example, from Substituent Group A, or may be selected from Substituent Group B, or may be selected from Substituent Group C, or may be selected from Substituent Group D, or may be selected from Substituent Group E.
 以下の表において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
 表1では、下記一般式(1)で表される構造の基本骨格(PNと表記する)をI1~I11、P1~P6、T1~T10の中から特定したうえで、Z、Cz、Aを規定することにより各化合物の構造を特定している。例えば、化合物1であれば、T5の基本骨格を有しており、T5の中のZがZ33であり、T5の中のCzがCz13であり、T5の中のAがA1である構造を有している。化合物2~64についても同じ要領で構造を特定している。
 表2では、各段において複数の化合物の構造をまとめて特定している。例えば化合物1~32の段であれば、基本骨格がT5であって、Zが33、Czが13にそれぞれ固定されているときに、AがA1~A32である構造を順に化合物1~32の構造として特定している。すなわち、表2の化合物1~32の段は、表1の化合物1~32の構造をまとめて記載している。同じ要領で化合物33~64の段や、それ以降の段も特定している。
In the following table, specific examples of the compound represented by the general formula (1) are shown. However, the compounds represented by the general formula (1) that can be used in the present invention should not be construed as being limited by these specific examples.
In Table 1, the basic skeleton (represented as PN) of the structure represented by the following general formula (1) is specified from I1 to I11, P1 to P6, and T1 to T10, and then Z, Cz, and A are specified to specify the structure of each compound. For example, compound 1 has a basic skeleton of T5, and has a structure in which Z in T5 is Z33, Cz in T5 is Cz13, and A in T5 is A1. The structures of compounds 2 to 64 are specified in the same manner.
In Table 2, the structures of multiple compounds are collectively specified in each row. For example, in the row of compounds 1 to 32, when the basic skeleton is T5, Z is fixed to 33, and Cz is fixed to 13, structures in which A is A1 to A32 are sequentially specified as the structures of compounds 1 to 32. That is, the row of compounds 1 to 32 in Table 2 collectively describes the structures of compounds 1 to 32 in Table 1. The row of compounds 33 to 64 and subsequent rows are also specified in the same manner.
 本発明の好ましい一態様では、一般式(1)で表される化合物は、下記の化合物群から選択する。
In a preferred embodiment of the present invention, the compound represented by formula (1) is selected from the following compound group:
 本発明の好ましい一態様では、一般式(1)で表される化合物は、下記の化合物群から選択する。
In a preferred embodiment of the present invention, the compound represented by formula (1) is selected from the following compound group:
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(1)で表される化合物は、有機溶媒に溶解しやすいという利点がある。このため、一般式(1)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
When it is intended to use an organic layer containing the compound represented by general formula (1) by forming it into a film by a vapor deposition method, for example, the molecular weight of the compound represented by general formula (1) is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by general formula (1).
The compound represented by the general formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even with a compound having a relatively large molecular weight. The compound represented by the general formula (1) has the advantage that it is easily dissolved in an organic solvent. Therefore, the compound represented by the general formula (1) is easy to apply the coating method and is easy to purify to increase the purity.
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。例えば、一般式(1)のいずれかの部位に重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
It is also conceivable that the present invention can be applied to use a compound containing a plurality of structures represented by general formula (1) in the molecule as a light-emitting material.
For example, a polymerizable group may be present in the structure represented by the general formula (1) in advance, and the polymerizable group may be polymerized to obtain a polymer, which may be used as a light-emitting material. For example, a monomer containing a polymerizable functional group at any site of the general formula (1) may be prepared, and the monomer may be polymerized alone or copolymerized with another monomer to obtain a polymer having a repeating unit, which may be used as a light-emitting material. Alternatively, compounds having a structure represented by the general formula (1) may be coupled together to obtain a dimer or trimer, which may be used as a light-emitting material.
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記2つの一般式のいずれかで表される構造を含む重合体を挙げることができる。
Examples of polymers having a repeating unit containing a structure represented by general formula (1) include polymers containing a structure represented by either of the following two general formulas.
 上の一般式において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 上の一般式において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)のいずれかの部位に結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
In the above general formula, Q represents a group containing a structure represented by general formula (1), and L 1 and L 2 represent a linking group. The number of carbon atoms in the linking group is preferably 0 to 20, more preferably 1 to 15, and even more preferably 2 to 10. The linking group preferably has a structure represented by -X 11 -L 11 -. Here, X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom. L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and more preferably a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenylene group.
In the above general formula, R 101 , R 102 , R 103 and R 104 each independently represent a substituent, preferably a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms, an unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, or a chlorine atom, and further preferably an unsubstituted alkyl group having 1 to 3 carbon atoms, or an unsubstituted alkoxy group having 1 to 3 carbon atoms.
The linking groups represented by L1 and L2 can be bonded to any site of the general formula (1) constituting Q. Two or more linking groups may be bonded to one Q to form a crosslinked structure or a network structure.
 繰り返し単位の具体的な構造例として、下記式で表される構造を挙げることができる。
Specific structural examples of the repeating unit include structures represented by the following formulas.
 これらの式を含む繰り返し単位を有する重合体は、一般式(1)のいずれかの部位にヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
A polymer having a repeating unit containing these formulas can be synthesized by introducing a hydroxyl group into any site of general formula (1), reacting the hydroxyl group as a linker with the compound below to introduce a polymerizable group, and polymerizing the polymerizable group.
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。 The polymer containing the structure represented by general formula (1) in the molecule may be a polymer consisting of only repeating units having the structure represented by general formula (1), or may be a polymer containing repeating units having other structures. The repeating units having the structure represented by general formula (1) contained in the polymer may be of a single type, or of two or more types. Examples of repeating units not having the structure represented by general formula (1) include those derived from monomers used in ordinary copolymerization. For example, examples include repeating units derived from monomers having an ethylenically unsaturated bond, such as ethylene and styrene.
 ある実施形態では、一般式(1)で表される化合物は発光材料である。
 ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発することができる化合物である。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、UV領域、可視スペクトルのうち青色、緑色、黄色、オレンジ色、赤色領域(例えば約420nm~約500nm、約500nm~約600nmまたは約600nm~約700nm)または近赤外線領域で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち赤色またはオレンジ色領域(例えば約620nm~約780nm、約650nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうちオレンジ色または黄色領域(例えば約570nm~約620nm、約590nm、約570nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち緑色領域(例えば約490nm~約575nm、約510nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、可視スペクトルのうち青色領域(例えば約400nm~約490nm、約475nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、紫外スペクトル領域(例えば280~400nm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物は、熱的または電子的手段で励起されるとき、赤外スペクトル領域(例えば780nm~2μm)で光を発することができる。
 本開示のある実施形態では、一般式(1)で表される化合物を用いた有機半導体素子を作製することができる。ここでいう有機半導体素子は、光が介在する有機光素子であってもよいし、光が介在しない有機素子であってもよい。有機光素子は、素子が光を放射する有機発光素子であってもよいし、光を受け取る有機受光素子であってもよいし、素子内で光によるエネルギー移動を生じる素子であってもよい。本開示のある実施形態では、一般式(1)で表される化合物を用いて有機エレクトロルミネッセンス素子や固体撮像素子(例えばCMOSイメージセンサー)などの有機光素子を作製することができる。本開示のある実施形態では、一般式(1)で表される化合物を用いたCMOS(相補型金属酸化膜半導体)などを作製することができる。
In some embodiments, the compound represented by formula (1) is a light-emitting material.
In an embodiment, the compound represented by general formula (1) is a compound capable of emitting delayed fluorescence.
In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the UV region, the blue, green, yellow, orange, red region of the visible spectrum (e.g., from about 420 nm to about 500 nm, from about 500 nm to about 600 nm, or from about 600 nm to about 700 nm), or the near infrared region when excited by thermal or electronic means.
In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the red or orange region of the visible spectrum (e.g., from about 620 nm to about 780 nm, about 650 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the orange or yellow region of the visible spectrum (e.g., about 570 nm to about 620 nm, about 590 nm, about 570 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the green region of the visible spectrum (e.g., from about 490 nm to about 575 nm, about 510 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, the compounds represented by general formula (1) can emit light in the blue region of the visible spectrum (e.g., from about 400 nm to about 490 nm, about 475 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, compounds represented by general formula (1) are capable of emitting light in the ultraviolet region of the spectrum (eg, 280-400 nm) when excited by thermal or electronic means.
In certain embodiments of the present disclosure, compounds represented by general formula (1) are capable of emitting light in the infrared spectral region (eg, 780 nm to 2 μm) when excited by thermal or electronic means.
In an embodiment of the present disclosure, an organic semiconductor element can be prepared using a compound represented by general formula (1). The organic semiconductor element may be an organic optical element in which light is mediated, or an organic element in which light is not mediated. The organic optical element may be an organic light-emitting element that emits light, an organic light-receiving element that receives light, or an element in which energy transfer occurs by light within the element. In an embodiment of the present disclosure, an organic optical element such as an organic electroluminescence element or a solid-state imaging element (e.g., a CMOS image sensor) can be prepared using a compound represented by general formula (1). In an embodiment of the present disclosure, a CMOS (complementary metal oxide semiconductor) or the like can be prepared using a compound represented by general formula (1).
 小分子の化学物質ライブラリの電子的特性は、公知のab initioによる量子化学計算を用いて算出することができる。例えば、基底として、6-31G*、およびベッケの3パラメータ、Lee-Yang-Parrハイブリッド汎関数として知られている関数群を用いた時間依存的な密度汎関数理論を使用してHartree-Fock方程式(TD-DFT/B3LYP/6-31G*)を解析し、特定の閾値以上のHOMOおよび特定の閾値以下のLUMOを有する分子断片(部分)をスクリーニングすることができる。
 それにより、例えば-6.5eV以上のHOMOエネルギー(例えばイオン化ポテンシャル)があるときは、供与体部分(「D」)が選抜できる。また例えば、-0.5eV以下のLUMOエネルギー(例えば電子親和力)があるときは、受容体部分(「A」)が選抜できる。ブリッジ部分(「B」)は、例えば受容体と供与体部分を特異的な立体構成に厳しく制限できる強い共役系であることにより、供与体および受容体部分のπ共役系間の重複が生じるのを防止する。
 ある実施形態では、化合物ライブラリは、以下の特性のうちの1つ以上を用いて選別される。
1.特定の波長付近における発光
2.算出された、特定のエネルギー準位より上の三重項状態
3.特定値より下のΔEST
4.特定値より上の量子収率
5.HOMO準位
6.LUMO準位
 ある実施形態では、77Kにおける最低の一重項励起状態と最低の三重項励起状態との差(ΔEST)は、約0.5eV未満、約0.4eV未満、約0.3eV未満、約0.2eV未満または約0.1eV未満である。ある実施形態ではΔEST値は、約0.09eV未満、約0.08eV未満、約0.07eV未満、約0.06eV未満、約0.05eV未満、約0.04eV未満、約0.03eV未満、約0.02eV未満または約0.01eV未満である。
 ある実施形態では、一般式(1)で表される化合物は、25%超の、例えば約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%またはそれ以上の量子収率を示す。
The electronic properties of small molecule chemical libraries can be calculated using known ab initio quantum chemical calculations, for example, the Hartree-Fock equations (TD-DFT/B3LYP/6-31G*) can be solved using time-dependent density functional theory with 6-31G* as a basis and a family of functions known as the Becke three-parameter, Lee-Yang-Parr hybrid functional, to screen for molecular fragments (moieties) with HOMOs above a particular threshold and LUMOs below a particular threshold.
Thus, the donor moiety ("D") can be selected, for example, for its HOMO energy (e.g., ionization potential) of -6.5 eV or greater, and the acceptor moiety ("A") can be selected, for example, for its LUMO energy (e.g., electron affinity) of -0.5 eV or less. The bridging moiety ("B") prevents overlap between the pi-conjugated systems of the donor and acceptor moieties, for example, by providing a strongly conjugated system that can tightly restrict the acceptor and donor moieties to specific conformations.
In certain embodiments, the compound library is screened using one or more of the following properties:
1. Emission near a particular wavelength2. Calculated triplet state above a particular energy level3. ΔE ST value below a particular value4. Quantum yield above a particular value5. HOMO level6. LUMO levelIn some embodiments, the difference between the lowest singlet excited state and the lowest triplet excited state (ΔE ST ) at 77K is less than about 0.5 eV, less than about 0.4 eV, less than about 0.3 eV, less than about 0.2 eV, or less than about 0.1 eV. In some embodiments, the ΔE ST value is less than about 0.09 eV, less than about 0.08 eV, less than about 0.07 eV, less than about 0.06 eV, less than about 0.05 eV, less than about 0.04 eV, less than about 0.03 eV, less than about 0.02 eV, or less than about 0.01 eV.
In certain embodiments, the compounds represented by general formula (1) exhibit a quantum yield of greater than 25%, e.g., about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% or more.
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、新規化合物を含む。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、置換もしくは無置換のアリール基(例えばフェニル基)とハロゲン原子を有するシアノベンゼンを、置換された環縮合カルバゾールと反応させることにより、置換された環縮合カルバゾール-9-イル基で置換された一般式(1)の化合物を合成することができる。反応条件の詳細については、後述の合成例を参考にすることができる。
[Method for synthesizing the compound represented by formula (1)]
The compounds represented by the general formula (1) include novel compounds.
The compound represented by the general formula (1) can be synthesized by combining known reactions. For example, a cyanobenzene having a substituted or unsubstituted aryl group (e.g., a phenyl group) and a halogen atom can be reacted with a substituted ring-fused carbazole to synthesize a compound represented by the general formula (1) substituted with a substituted ring-fused carbazol-9-yl group. For details of the reaction conditions, the synthesis examples described below can be referred to.
[一般式(1)で表される化合物を用いた構成物]
 ある実施形態では、一般式(1)で表される化合物と組み合わせ、同化合物を分散させ、同化合物と共有結合し、同化合物をコーティングし、同化合物を担持し、あるいは同化合物と会合する1つ以上の材料(例えば小分子、ポリマー、金属、金属錯体等)と共に用い、固体状のフィルムまたは層を形成させる。例えば、一般式(1)で表される化合物を電気活性材料と組み合わせてフィルムを形成することができる。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を正孔輸送ポリマーおよび電子輸送ポリマーと組み合わせてもよい。いくつかの場合、一般式(1)で表される化合物を、正孔輸送部と電子輸送部との両方を有するコポリマーと組み合わせてもよい。以上のような実施形態により、固体状のフィルムまたは層内に形成される電子および/または正孔を、一般式(1)で表される化合物と相互作用させることができる。
[Construct using the compound represented by general formula (1)]
In some embodiments, the compound of formula (1) is combined with one or more materials (e.g., small molecules, polymers, metals, metal complexes, etc.) that disperse, covalently bond, coat, support, or associate with the compound to form a solid film or layer. For example, the compound of formula (1) can be combined with an electroactive material to form a film. In some cases, the compound of formula (1) can be combined with a hole transport polymer. In some cases, the compound of formula (1) can be combined with an electron transport polymer. In some cases, the compound of formula (1) can be combined with a hole transport polymer and an electron transport polymer. In some cases, the compound of formula (1) can be combined with a copolymer having both a hole transport moiety and an electron transport moiety. In these embodiments, electrons and/or holes formed in the solid film or layer can interact with the compound of formula (1).
[フィルムの形成]
 ある実施形態では、一般式(1)で表される化合物を含むフィルムは、湿式工程で形成することができる。湿式工程では、本発明の化合物を含む組成物を溶解した溶液を面に塗布し、溶媒の除去後にフィルムを形成する。湿式工程として、スピンコート法、スリットコート法、インクジェット法(スプレー法)、グラビア印刷法、オフセット印刷法、フレキソ印刷法を挙げることができるが、これらに限定されるものではない。湿式工程では、本発明の化合物を含む組成物を溶解することができる適切な有機溶媒を選択して用いる。ある実施形態では、組成物に含まれる化合物に、有機溶媒に対する溶解性を上げる置換基(例えばアルキル基)を導入することができる。
 ある実施形態では、本発明の化合物を含むフィルムは、乾式工程で形成することができる。ある実施形態では、乾式工程として真空蒸着法を採用することができる、これに限定されるものではない。真空蒸着法を採用する場合は、フィルムを構成する化合物を個別の蒸着源から共蒸着させてもよいし、化合物を混合した単一の蒸着源から共蒸着させてもよい。単一の蒸着源を用いる場合は、化合物の粉末を混合した混合粉を用いてもよいし、その混合粉を圧縮した圧縮成形体を用いてもよいし、各化合物を加熱溶融して冷却した混合物を用いてもよい。ある実施形態では、単一の蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件で共蒸着を行うことにより、蒸着源に含まれる複数の化合物の組成比に対応する組成比のフィルムを形成することができる。形成されるフィルムの組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有するフィルムを簡便に形成することができる。ある実施形態では、共蒸着される各化合物が同じ重量減少率になる温度を特定して、その温度を共蒸着時の温度として採用することができる。
[Film formation]
In an embodiment, the film containing the compound represented by general formula (1) can be formed by a wet process. In the wet process, a solution containing the composition containing the compound of the present invention is applied to a surface, and a film is formed after removing the solvent. Examples of the wet process include, but are not limited to, spin coating, slit coating, inkjet (spray) printing, gravure printing, offset printing, and flexographic printing. In the wet process, a suitable organic solvent capable of dissolving the composition containing the compound of the present invention is selected and used. In an embodiment, a substituent (e.g., an alkyl group) that increases the solubility in organic solvents can be introduced into the compound contained in the composition.
In an embodiment, the film containing the compound of the present invention can be formed by a dry process. In an embodiment, the dry process can be a vacuum deposition method, but is not limited thereto. When the vacuum deposition method is adopted, the compounds constituting the film may be co-deposited from individual deposition sources, or may be co-deposited from a single deposition source in which the compounds are mixed. When a single deposition source is used, a mixed powder in which the powders of the compounds are mixed may be used, or a compression molded body in which the mixed powder is compressed may be used, or a mixture in which each compound is heated, melted, and cooled may be used. In an embodiment, a film having a composition ratio corresponding to the composition ratio of the multiple compounds contained in the deposition source can be formed by performing co-deposition under conditions in which the deposition rates (weight reduction rates) of the multiple compounds contained in a single deposition source are the same or almost the same. If a multiple compound is mixed in the same composition ratio as the composition ratio of the film to be formed and used as a deposition source, a film having a desired composition ratio can be easily formed. In an embodiment, a temperature at which each compound to be co-deposited has the same weight reduction rate can be specified, and the temperature can be used as the temperature during co-deposition.
[一般式(1)で表される化合物の使用の例]
 一般式(1)で表される化合物は、有機発光素子の材料として有用である。特に有機発光ダイオード等に好ましく用いられる。
有機発光ダイオード:
 本発明の一態様は、有機発光素子の発光材料としての、本発明の一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明の一般式(1)で表される化合物は、有機発光素子の発光層における発光材料として効果的に使用できる。ある実施形態では、一般式(1)で表される化合物は、遅延蛍光を発する遅延蛍光(遅延蛍光体)を含む。ある実施形態では、本発明は一般式(1)で表される構造を有する遅延蛍光体を提供する。ある実施形態では、本発明は遅延蛍光体としての一般式(1)で表される化合物の使用に関する。ある実施形態では、本発明は一般式(1)で表される化合物は、ホスト材料として使用することができ、かつ、1つ以上の発光材料と共に使用することができ、発光材料は蛍光材料、燐光材料またはTADFでよい。ある実施形態では、一般式(1)で表される化合物は、正孔輸送材料として使用することもできる。ある実施形態では、一般式(1)で表される化合物は、電子輸送材料として使用することができる。ある実施形態では、本発明は一般式(1)で表される化合物から遅延蛍光を生じさせる方法に関する。ある実施形態では、化合物を発光材料として含む有機発光素子は、遅延蛍光を発し、高い光放射効率を示す。
 ある実施形態では、発光層は一般式(1)で表される化合物を含み、一般式(1)で表される化合物は、基材と平行に配向される。ある実施形態では、基材はフィルム形成表面である。ある実施形態では、フィルム形成表面に対する一般式(1)で表される化合物の配向は、整列させる化合物によって発せられる光の伝播方向に影響を与えるか、あるいは、当該方向を決定づける。ある実施形態では、一般式(1)で表される化合物によって発される光の伝播方向を整列させることで、発光層からの光抽出効率が改善される。
 本発明の一態様は、有機発光素子に関する。ある実施形態では、有機発光素子は発光層を含む。ある実施形態では、発光層は発光材料として一般式(1)で表される化合物を含む。ある実施形態では、有機発光素子は有機光ルミネッセンス素子(有機PL素子)である。ある実施形態では、有機発光素子は、有機エレクトロルミネッセンス素子(有機EL素子)である。ある実施形態では、一般式(1)で表される化合物は、発光層に含まれる他の発光材料の光放射を(いわゆるアシストドーパントとして)補助する。ある実施形態では、発光層に含まれる一般式(1)で表される化合物は、その最低の励起一重項エネルギー準位にあり、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位との間に含まれる。
 ある実施形態では、有機光ルミネッセンス素子は、少なくとも1つの発光層を含む。ある実施形態では、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および前記陽極と前記陰極との間の有機層を含む。ある実施形態では、有機層は、少なくとも発光層を含む。ある実施形態では、有機層は、発光層のみを含む。ある実施形態では、有機層は、発光層に加えて1つ以上の有機層を含む。有機層の例としては、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層および励起子障壁層が挙げられる。ある実施形態では、正孔輸送層は、正孔注入機能を有する正孔注入輸送層であってもよく、電子輸送層は、電子注入機能を有する電子注入輸送層であってもよい。
[Examples of use of the compound represented by formula (1)]
The compound represented by the general formula (1) is useful as a material for an organic light-emitting device, and is particularly preferably used for an organic light-emitting diode.
Organic Light-Emitting Diode:
One aspect of the present invention relates to the use of a compound represented by the general formula (1) of the present invention as a light-emitting material of an organic light-emitting device. In an embodiment, the compound represented by the general formula (1) of the present invention can be effectively used as a light-emitting material in the light-emitting layer of an organic light-emitting device. In an embodiment, the compound represented by the general formula (1) includes a delayed fluorescence (delayed fluorescent material) that emits delayed fluorescence. In an embodiment, the present invention provides a delayed fluorescent material having a structure represented by the general formula (1). In an embodiment, the present invention relates to the use of a compound represented by the general formula (1) as a delayed fluorescent material. In an embodiment, the compound represented by the general formula (1) can be used as a host material and can be used with one or more light-emitting materials, and the light-emitting material can be a fluorescent material, a phosphorescent material, or a TADF. In an embodiment, the compound represented by the general formula (1) can also be used as a hole transport material. In an embodiment, the compound represented by the general formula (1) can be used as an electron transport material. In an embodiment, the present invention relates to a method for generating delayed fluorescence from a compound represented by the general formula (1). In an embodiment, an organic light-emitting device containing the compound as a light-emitting material emits delayed fluorescence and exhibits high light emission efficiency.
In some embodiments, the light-emitting layer comprises a compound represented by formula (1), and the compound represented by formula (1) is aligned parallel to the substrate. In some embodiments, the substrate is a film-forming surface. In some embodiments, the orientation of the compound represented by formula (1) relative to the film-forming surface affects or dictates the propagation direction of light emitted by the aligned compound. In some embodiments, aligning the propagation direction of light emitted by the compound represented by formula (1) improves the efficiency of light extraction from the light-emitting layer.
One aspect of the present invention relates to an organic light-emitting device. In an embodiment, the organic light-emitting device includes an emitting layer. In an embodiment, the emitting layer includes a compound represented by general formula (1) as a light-emitting material. In an embodiment, the organic light-emitting device is an organic photoluminescence device (organic PL device). In an embodiment, the organic light-emitting device is an organic electroluminescence device (organic EL device). In an embodiment, the compound represented by general formula (1) assists the light emission of other light-emitting materials included in the emitting layer (as a so-called assist dopant). In an embodiment, the compound represented by general formula (1) included in the emitting layer is at its lowest excited singlet energy level, and is included between the lowest excited singlet energy level of the host material included in the emitting layer and the lowest excited singlet energy level of the other light-emitting materials included in the emitting layer.
In some embodiments, the organic photoluminescent device includes at least one light-emitting layer. In some embodiments, the organic electroluminescent device includes at least an anode, a cathode, and an organic layer between the anode and the cathode. In some embodiments, the organic layer includes at least a light-emitting layer. In some embodiments, the organic layer includes only a light-emitting layer. In some embodiments, the organic layer includes one or more organic layers in addition to the light-emitting layer. Examples of organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer. In some embodiments, the hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function.
発光層:
 ある実施形態では、発光層は、陽極および陰極からそれぞれ注入された正孔および電子が再結合して励起子を形成する層である。ある実施形態では、層は光を発する。
 ある実施形態では、発光材料のみが発光層として用いられる。ある実施形態では、発光層は発光材料とホスト材料とを含む。ある実施形態では、発光材料は、一般式(1)で表される1つ以上の化合物である。ある実施形態では、有機エレクトロルミネッセンス素子および有機光ルミネッセンス素子の光放射効率を向上させるため、発光材料において発生する一重項励起子および三重項励起子を、発光材料内に閉じ込める。ある実施形態では、発光層中に発光材料に加えてホスト材料を用いる。ある実施形態では、ホスト材料は有機化合物である。ある実施形態では、有機化合物は励起一重項エネルギーおよび励起三重項エネルギーを有し、その少なくとも1つは、本発明の発光材料のそれらよりも高い。ある実施形態では、本発明の発光材料中で発生する一重項励起子および三重項励起子は、本発明の発光材料の分子中に閉じ込められる。ある実施形態では、一重項および三重項の励起子は、光放射効率を向上させるために十分に閉じ込められる。ある実施形態では、高い光放射効率が未だ得られるにもかかわらず、一重項励起子および三重項励起子は十分に閉じ込められず、すなわち、高い光放射効率を達成できるホスト材料は、特に限定されることなく本発明で使用されうる。ある実施形態では、本発明の素子の発光層中の発光材料において、光放射が生じる。ある実施形態では、放射光は蛍光および遅延蛍光の両方を含む。ある実施形態では、放射光は、ホスト材料からの放射光を含む。ある実施形態では、放射光は、ホスト材料からの放射光からなる。ある実施形態では、放射光は、一般式(1)で表される化合物からの放射光と、ホスト材料からの放射光とを含む。ある実施形態では、TADF分子とホスト材料とが用いられる。ある実施形態では、TADFはアシストドーパントであり、発光層中のホスト材料よりも励起一重項エネルギーが低く、発光層中の発光材料よりも励起一重項エネルギーが高い。
Emitting layer:
In some embodiments, the light-emitting layer is a layer in which holes and electrons injected from the anode and cathode, respectively, recombine to form excitons, hi some embodiments, the layer emits light.
In some embodiments, only the light-emitting material is used as the light-emitting layer. In some embodiments, the light-emitting layer includes a light-emitting material and a host material. In some embodiments, the light-emitting material is one or more compounds represented by general formula (1). In some embodiments, in order to improve the light emission efficiency of organic electroluminescent devices and organic photoluminescent devices, singlet excitons and triplet excitons generated in the light-emitting material are trapped in the light-emitting material. In some embodiments, a host material is used in the light-emitting layer in addition to the light-emitting material. In some embodiments, the host material is an organic compound. In some embodiments, the organic compound has an excited singlet energy and an excited triplet energy, at least one of which is higher than those of the light-emitting material of the present invention. In some embodiments, the singlet excitons and triplet excitons generated in the light-emitting material of the present invention are trapped in the molecules of the light-emitting material of the present invention. In some embodiments, the singlet and triplet excitons are sufficiently trapped to improve the light emission efficiency. In some embodiments, the singlet and triplet excitons are not sufficiently trapped, although a high light emission efficiency is still obtained, i.e., a host material that can achieve a high light emission efficiency can be used in the present invention without any particular limitation. In some embodiments, light emission occurs in the light-emitting material in the light-emitting layer of the device of the present invention. In some embodiments, the emitted light includes both fluorescence and delayed fluorescence. In some embodiments, the emitted light includes the emitted light from the host material. In some embodiments, the emitted light consists of the emitted light from the host material. In some embodiments, the emitted light includes the emitted light from the compound represented by formula (1) and the emitted light from the host material. In some embodiments, a TADF molecule and a host material are used. In some embodiments, TADF is an assist dopant, and has a lower excited singlet energy than the host material in the light-emitting layer and a higher excited singlet energy than the light-emitting material in the light-emitting layer.
 一般式(1)で表される化合物をアシストドーパントとして用いるとき、発光材料(好ましくは蛍光材料)として様々な化合物を採用することが可能である。そのような発光材料としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体、金属(Al,Zn)を有する誘導体等を用いることが可能である。これらの例示骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、これらの例示骨格どうしを組み合わせてもよい。
 以下において、一般式(1)で表される構造を有するアシストドーパントと組み合わせて用いることができる発光材料を例示する。
When the compound represented by the general formula (1) is used as an assist dopant, various compounds can be adopted as a light-emitting material (preferably a fluorescent material). As such light-emitting materials, anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives, terphenylene derivatives, fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives having metals (Al, Zn), and the like can be used. These exemplary skeletons may or may not have a substituent. These exemplary skeletons may also be combined with each other.
Examples of light-emitting materials that can be used in combination with the assist dopant having the structure represented by general formula (1) are given below.
 また、WO2015/022974号公報の段落0220~0239に記載の化合物も、一般式(1)で表される構造を有するアシストドーパントとともに用いる発光材料として、特に好ましく採用することができる。 The compounds described in paragraphs 0220 to 0239 of WO2015/022974 can also be particularly preferably used as light-emitting materials to be used together with an assist dopant having a structure represented by general formula (1).
 さらに好ましい発光材料として、以下の一般式(2)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (2).
 一般式(2)において、R、R~R16は、各々独立に水素原子、重水素原子または置換基を表す。Rはアクセプター性基を表すか、RとRが互いに結合してアクセプター性基を形成しているか、またはRとRが互いに結合してアクセプター性基を形成している。RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とR15、R15とR16は互いに結合して環状構造を形成していてもよい。XはOまたはNRを表し、Rは置換基を表す。X~Xのうち、XおよびXの少なくとも一方はOまたはNRであり、残りはOまたはNRであっても連結していなくてもよい。連結していないとき、両端はそれぞれ独立に水素原子、重水素原子または置換基を表す。一般式(2)中のC-R、C-R、C-R、C-R、C-R、C-R、C-R、C-R、C-R10、C-R11、C-R12、C-R13、C-R14、C-R15、C-R16は、Nに置換されていてもよい。 In the general formula (2), R 1 , R 3 to R 16 each independently represent a hydrogen atom, a deuterium atom or a substituent. R 2 represents an acceptor group, or R 1 and R 2 are bonded together to form an acceptor group, or R 2 and R 3 are bonded together to form an acceptor group. R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , and R 15 and R 16 may be bonded together to form a cyclic structure. X 1 represents O or NR, and R represents a substituent. Among X 2 to X 4 , at least one of X 3 and X 4 is O or NR, and the remaining may be O or NR or may not be linked. When not linked, both ends independently represent a hydrogen atom, a deuterium atom or a substituent. In the general formula (2), C-R 1 , C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 12 , C-R 13 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
 本発明の一態様では、XがOまたはNRであるとき、Rがアクセプター性基であるか、RとRが互いに結合してアクセプター性基を形成しているか、またはRとRが互いに結合してアクセプター性基を形成している。本発明の一態様では、XがOまたはNRであるとき、R10がアクセプター性基であるか、RとR10が互いに結合してアクセプター性基を形成しているか、またはR10とR11が互いに結合してアクセプター性基を形成している。本発明の一態様では、XがOまたはNRであるとき、R15がアクセプター性基であるか、R14とR15が互いに結合してアクセプター性基を形成しているか、またはR15とR16が互いに結合してアクセプター性基を形成している。本発明の一態様では、XがNRであり、Rが置換もしくは無置換のフェニル基であってRが結合している炭素原子と直接結合することによりカルバゾール環を形成しているとき、前記カルバゾール環の3位および6位の少なくとも一方がアクセプター性基で置換されている。本発明の一態様では、XがNRであり、Rが置換もしくは無置換のフェニル基であってRが結合している炭素原子と直接結合することによりカルバゾール環を形成しているとき、前記カルバゾール環の3位および6位の少なくとも一方がアクセプター性基で置換されている。本発明の一態様では、XがNRであり、Rが置換もしくは無置換のフェニル基であってR16が結合している炭素原子と直接結合することによりカルバゾール環を形成しているとき、前記カルバゾール環の3位および6位の少なくとも一方がアクセプター性基で置換されている。本発明の一態様では、XがNRであり、Rが置換もしくは無置換のフェニル基であってRが結合している炭素原子と直接結合することによりカルバゾール環を形成しているとき、前記カルバゾール環の3位がアクセプター性基で置換されている(ここで3位は前記フェニル基上に存在する)。本発明の一態様では、下記一般式(2a)で表される化合物である。
In one embodiment of the present invention, when X2 is O or NR, R7 is an acceptor group, R6 and R7 are bonded to each other to form an acceptor group, or R7 and R8 are bonded to each other to form an acceptor group. In one embodiment of the present invention, when X3 is O or NR, R10 is an acceptor group, R9 and R10 are bonded to each other to form an acceptor group, or R10 and R11 are bonded to each other to form an acceptor group. In one embodiment of the present invention, when X4 is O or NR, R15 is an acceptor group, R14 and R15 are bonded to each other to form an acceptor group, or R15 and R16 are bonded to each other to form an acceptor group. In one embodiment of the present invention, when X2 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding to the carbon atom to which R8 is bonded, at least one of the 3rd and 6th positions of the carbazole ring is substituted with an acceptor group. In one embodiment of the present invention, when X3 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding to the carbon atom to which R9 is bonded, at least one of the 3rd and 6th positions of the carbazole ring is substituted with an acceptor group. In one embodiment of the present invention, when X4 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding to the carbon atom to which R16 is bonded, at least one of the 3rd and 6th positions of the carbazole ring is substituted with an acceptor group. In one embodiment of the present invention, when X1 is NR, R is a substituted or unsubstituted phenyl group and forms a carbazole ring by directly bonding with the carbon atom to which R1 is bonded, the 3-position of the carbazole ring is substituted with an acceptor group (wherein the 3-position is on the phenyl group). In one embodiment of the present invention, the compound is represented by the following general formula (2a).
 一般式(2a)において、R、R、R~R11、R14~R16は、各々独立に水素原子、重水素原子または置換基を表す。Rはアクセプター性基を表すか、RとRが互いに結合してアクセプター性基を形成しているか、またはRとRが互いに結合してアクセプター性基を形成している。
 RとR、RとR、RとR10、R10とR11、R14とR15、R15とR16は互いに結合して環状構造を形成していてもよい。XはOまたはNRを表し、Rは置換基を表す。X~Xのうち、XおよびXの少なくとも一方はOまたはNRであり、残りはOまたはNRであっても連結していなくてもよい。連結していないとき、両端はそれぞれ独立に水素原子、重水素原子または置換基を表す。ArおよびArは、各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。一般式(2a)中のC-R、C-R、C-R、C-R、C-R、C-R、C-R10、C-R11、C-R14、C-R15、C-R16は、Nに置換されていてもよい。
In formula (2a), R 1 , R 3 , R 6 to R 11 , and R to R 16 each independently represent a hydrogen atom, a deuterium atom, or a substituent. R 2 represents an acceptor group, or R 1 and R 2 are bonded to each other to form an acceptor group, or R 2 and R 3 are bonded to each other to form an acceptor group.
R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , R 10 and R 11 , R 14 and R 15 , and R 15 and R 16 may be bonded to each other to form a cyclic structure. X 1 represents O or NR, and R represents a substituent. Among X 2 to X 4 , at least one of X 3 and X 4 is O or NR, and the remaining may be O or NR or may not be linked. When not linked, both ends each independently represent a hydrogen atom, a deuterium atom, or a substituent. Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. In general formula (2a), C-R 1 , C-R 3 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
 さらに好ましい発光材料として、以下の一般式(3)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (3).
 一般式(3)において、RおよびRは、各々独立に置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表し、R~R16は、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とR15、R15とR16、R16とRは互いに結合して環状構造を形成していてもよい。一般式(3)中のC-R、C-R、C-R、C-R、C-R、C-R、C-R、C-R10、C-R11、C-R12、C-R13、C-R14、C-R15、C-R16は、Nで置換されていてもよい。 In the general formula (3), R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and R 3 to R 16 each independently represent a hydrogen atom, a deuterium atom, or a substituent. R 1 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 2 , R 2 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , and R 16 and R 1 may be bonded to each other to form a cyclic structure. In general formula (3), C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 , C-R 9 , C-R 10 , C-R 11 , C-R 12 , C-R 13 , C-R 14 , C-R 15 and C-R 16 may be substituted with N.
 本発明の一態様では、RおよびRは、各々独立に他の環が縮合していてもよい置換もしくは無置換のフェニル基である。本発明の一態様では、RおよびR10は、各々独立に置換アミノ基である。本発明の一態様では、RとR、および、RとR10の少なくとも一方の組み合わせが互いに結合して環状構造を形成している。本発明の一態様では、前記環状構造がベンゾアザボリン環を含む。 In one embodiment of the present invention, R1 and R2 are each independently a substituted or unsubstituted phenyl group which may be condensed with another ring. In one embodiment of the present invention, R3 and R10 are each independently a substituted amino group. In one embodiment of the present invention, at least one combination of R1 and R3 , and R2 and R10 are bonded to each other to form a cyclic structure. In one embodiment of the present invention, the cyclic structure includes a benzoazaborine ring.
 さらに好ましい発光材料として、以下の一般式(4)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (4).
 一般式(4)において、ZおよびZは、各々独立に置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、R~Rは、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとRは互いに結合して環状構造を形成していてもよい。ただし、Z、Z、RとRが互いに結合して形成する環、RとRが互いに結合して形成する環、RとRが互いに結合して形成する環、およびRとRが互いに結合して形成する環の少なくとも1つは、置換もしくは無置換のベンゾフランのフラン環、置換もしくは無置換のベンゾチオフェンのチオフェン環、置換もしくは無置換のインドールのピロール環であり、かつ、R~Rの少なくとも1つが置換もしくは無置換のアリール基、またはアクセプター性基であるか、あるいは、ZとZの少なくとも1つが置換基としてアリール基またはアクセプター性基を有する環である。前記ベンゾフラン環、前記ベンゾチオフェン環、前記インドール環を構成するベンゼン環骨格構成炭素原子のうち置換可能な炭素原子は窒素原子で置換されていてもよい。一般式(4)中のC-R、C-R、C-R、C-R、C-R、C-R、C-R、C-R、C-Rは、Nに置換されていてもよい。 In the general formula (4), Z1 and Z2 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring, and R1 to R9 each independently represent a hydrogen atom, a deuterium atom, or a substituent. R1 and R2 , R2 and R3 , R3 and R4 , R4 and R5 , R5 and R6 , R7 and R8 , and R8 and R9 may be bonded to each other to form a cyclic structure. However, at least one of Z 1 , Z 2 , the ring formed by bonding R 1 and R 2 together, the ring formed by bonding R 2 and R 3 together, the ring formed by bonding R 4 and R 5 together, and the ring formed by bonding R 5 and R 6 together is a furan ring of substituted or unsubstituted benzofuran, a thiophene ring of substituted or unsubstituted benzothiophene, or a pyrrole ring of substituted or unsubstituted indole, and at least one of R 1 to R 9 is a substituted or unsubstituted aryl group or an acceptor group, or at least one of Z 1 and Z 2 is a ring having an aryl group or an acceptor group as a substituent. Among the carbon atoms constituting the benzene ring skeleton constituting the benzofuran ring, the benzothiophene ring, and the indole ring, a substitutable carbon atom may be substituted with a nitrogen atom. In general formula (4), C-R 1 , C-R 2 , C-R 3 , C-R 4 , C-R 5 , C-R 6 , C-R 7 , C-R 8 and C-R 9 may be substituted with N.
 本発明の一態様では、ZおよびZが、各々独立に置換もしくは無置換の非縮合ベンゼン環、置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、置換もしくは無置換のベンゼン環が縮合したピロール環である。本発明の一態様では、R~Rが、各々独立に置換もしくは無置換のアリール基、またはアクセプター性基であるか、あるいは、RとRが互いに結合して形成する環、RとRが互いに結合して形成する環、RとRが互いに結合して形成する環、およびRとRが互いに結合して形成する環からなる群より選択される1つ以上の環が、置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または、置換もしくは無置換のベンゼン環が縮合したピロール環である。本発明の一態様では、Rが置換もしくは無置換のアリール基、またはアクセプター性基である。本発明の一態様では、ベンゾフラン環、前記ベンゾチオフェン環および前記インドール環からなる群より選択される環を2個以上含む. In one embodiment of the present invention, Z 1 and Z 2 are each independently a substituted or unsubstituted non-fused benzene ring, a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or a pyrrole ring fused with a substituted or unsubstituted benzene ring. In one embodiment of the present invention, R 1 to R 9 are each independently a substituted or unsubstituted aryl group or an acceptor group, or one or more rings selected from the group consisting of a ring formed by bonding R 1 and R 2 together, a ring formed by bonding R 2 and R 3 together, a ring formed by bonding R 4 and R 5 together, and a ring formed by bonding R 5 and R 6 together are a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or a pyrrole ring fused with a substituted or unsubstituted benzene ring. In one embodiment of the present invention, R 8 is a substituted or unsubstituted aryl group or an acceptor group. In one embodiment of the present invention, the compound contains two or more rings selected from the group consisting of a benzofuran ring, a benzothiophene ring, and an indole ring.
 さらに好ましい発光材料として、下記構造αの炭素ー炭素結合aに置換もしくは無置換のベンゾフラン環を構成するフラン環、置換もしくは無置換のベンゾチオフェン環を構成するチオフェン環、または置換もしくは無置換のインドール環を構成するピロール環が縮合しているか、あるいは、炭素ー炭素結合bに置換もしくは無置換のジベンゾフラン環を構成するベンゼン環、置換もしくは無置換のジベンゾチオフェン環を構成するベンゼン環、置換もしくは無置換のカルバゾール環を構成するベンゼン環、または置換もしくは無置換のジベンゾジオキサン環を構成するベンゼン環が縮合した縮環構造A(構造中の水素原子は重水素原子または置換基で置換されていてもよい)を有する化合物を挙げることができる。
Further preferred light-emitting materials include compounds having a fused ring structure A (wherein a hydrogen atom in the structure may be substituted with a deuterium atom or a substituent) in which a carbon-carbon bond a in the following structure α is fused with a furan ring constituting a substituted or unsubstituted benzofuran ring, a thiophene ring constituting a substituted or unsubstituted benzothiophene ring, or a pyrrole ring constituting a substituted or unsubstituted indole ring, or a carbon-carbon bond b is fused with a benzene ring constituting a substituted or unsubstituted dibenzofuran ring, a benzene ring constituting a substituted or unsubstituted dibenzothiophene ring, a benzene ring constituting a substituted or unsubstituted carbazole ring, or a benzene ring constituting a substituted or unsubstituted dibenzodioxane ring.
 構造αにおいて、XおよびXは各々独立に置換もしくは無置換のアリール基または置換もしくは無置換のアリール基が結合した窒素原子、あるいは酸素原子を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、Rは水素原子、重水素原子または置換基を表し、ZとXは互いに結合して環状構造を形成していてもよい。
 縮環構造Aにおいて、bに縮合した構造とX、bに縮合した構造とZ、ZとXは互いに結合して環状構造を形成していてもよい。
In structure α, X1 and X2 each independently represent a substituted or unsubstituted aryl group, a nitrogen atom to which a substituted or unsubstituted aryl group is bonded, or an oxygen atom; Z represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring; R1 represents a hydrogen atom, a deuterium atom, or a substituent; and Z and X2 may be bonded to each other to form a cyclic structure.
In the fused ring structure A, the structure fused to b and X 1 , the structure fused to b and Z, and Z and X 2 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(5)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (5).
 一般式(5)において、Zは、置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、ZおよびZは各々独立に置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、Rは水素原子、重水素原子または置換基を表し、RおよびRは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。ZとR、RとZ、ZとZ、ZとRは互いに結合して環状構造を形成していてもよい。ただし、RとZ、ZとZ、ZとRの少なくとも1組は互いに結合して環状構造を形成している。 In the general formula (5), Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 2 and Z 3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring, R 1 represents a hydrogen atom, a deuterium atom, or a substituent, and R 2 and R 3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Z 1 and R 1 , R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 are bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(6)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (6).
 一般式(6)において、Xは酸素原子または硫黄原子を表し、ZおよびZは各々独立に置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR~Rは水素原子、重水素原子または置換基を表し、RおよびRは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、ZとZ、ZとR、RとR、RとR、RとRは互いに結合して環状構造を形成していてもよい。ただし、RとZ、ZとZ、ZとRの少なくとも1組は互いに結合して環状構造を形成している。 In the general formula (6), X3 represents an oxygen atom or a sulfur atom, Z2 and Z3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring, R1 and R4 to R7 each independently represent a hydrogen atom, a deuterium atom or a substituent, and R2 and R3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R2 and Z2 , Z2 and Z3 , Z3 and R3 , R4 and R5 , R5 and R6 , and R6 and R7 may be bonded to each other to form a cyclic structure. However, at least one pair of R2 and Z2 , Z2 and Z3 , and Z3 and R3 are bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(7)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (7).
 一般式(7)において、Xは酸素原子または硫黄原子を表し、ZおよびZは各々独立に置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR4a~R7aは水素原子、重水素原子または置換基を表し、RおよびRは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、ZとZ、ZとR、R4aとR5a、R5aとR6a、R6aとR7a、R7aとRは互いに結合して環状構造を形成していてもよい。ただし、RとZ、ZとZ、ZとRの少なくとも1組は互いに結合して環状構造を形成している。 In general formula (7), X4 represents an oxygen atom or a sulfur atom, Z2 and Z3 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring, R1 and R4a to R7a each independently represent a hydrogen atom, a deuterium atom or a substituent, and R2 and R3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R2 and Z2 , Z2 and Z3 , Z3 and R3 , R4a and R5a , R5a and R6a , R6a and R7a , and R7a and R1 may be bonded to each other to form a cyclic structure. However, at least one pair of R2 and Z2 , Z2 and Z3 , and Z3 and R3 are bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(8)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (8).
 一般式(8)において、Zは置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR~R14は各々独立に水素原子、重水素原子または置換基を表し、Rは置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。ZとR、RとR、RとR10、R10とR11、R11とR12、R12とR13、R13とR14、R14とZ、ZとRは互いに結合して環状構造を形成していてもよい。 In the general formula (8), Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 and R 8 to R 14 each independently represent a hydrogen atom, a deuterium atom, or a substituent, and R 3 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. Z 1 and R 1 , R 8 and R 9 , R 9 and R 10 , R 10 and R 11 , R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(9)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (9).
 一般式(9)において、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR15~R17は各々独立に水素原子、重水素原子または置換基を表し、Rは置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。ZとR、ZとR15、R15とR16、R16とR17、R17とZ、ZとRは互いに結合して環状構造を形成していてもよい。 In the general formula (9), Z 1 and Z 4 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 and R 15 to R 17 each independently represent a hydrogen atom, a deuterium atom, or a substituent, and R 3 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. Z 1 and R 1 , Z 4 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(10)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (10).
 一般式(10)において、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、Rは水素原子、重水素原子または置換基を表し、RおよびRは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。ZとR、RとZ、ZとZ、ZとRは互いに結合して環状構造を形成していてもよい。ただし、RとZ、ZとZ、ZとRの少なくとも1組は互いに結合して環状構造を形成している。 In the general formula (10), Z 1 and Z 5 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 3 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 represents a hydrogen atom, a deuterium atom, or a substituent, and R 2 and R 3 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. Z 1 and R 1 , R 2 and Z 5 , Z 5 and Z 3 , and Z 3 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 3 , and Z 3 and R 3 are bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(11)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (11).
 一般式(11)において、Zは置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR21~R27は各々独立に水素原子、重水素原子または置換基を表し、Rは置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、RとZ、ZとR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26、R26とR27は互いに結合して環状構造を形成していてもよい。 In the general formula (11), Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 and R 21 to R 27 each independently represent a hydrogen atom, a deuterium atom, or a substituent, and R 2 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 2 and Z 2 , Z 2 and R 21 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 24 and R 25 , R 25 and R 26 , and R 26 and R 27 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(12)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (12).
 一般式(12)において、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、RおよびR28~R30は各々独立に水素原子、重水素原子または置換基を表し、Rは置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、RとZ、ZとR28、R28とR29、R29とR30、R30とZは互いに結合して環状構造を形成していてもよい。 In the general formula (12), Z 1 and Z 6 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 and R 28 to R 30 each independently represent a hydrogen atom, a deuterium atom, or a substituent, and R 2 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 2 and Z 2 , Z 2 and R 28 , R 28 and R 29 , R 29 and R 30 , and R 30 and Z 6 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(13)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (13).
 一般式(13)において、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、Zは置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、Rは水素原子、重水素原子または置換基を表し、RおよびRは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、RとZ、ZとZ、ZとRは互いに結合して環状構造を形成していてもよい。ただし、RとZ、ZとZ、ZとRの少なくとも1組は互いに結合して環状構造を形成している。) In the general formula (13), Z 1 and Z 7 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, Z 2 represents a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heteroaromatic ring, R 1 represents a hydrogen atom, a deuterium atom, or a substituent, and R 2 and R 3 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 2 and Z 2 , Z 2 and Z 7 , and Z 7 and R 3 may be bonded to each other to form a cyclic structure. However, at least one pair of R 2 and Z 2 , Z 2 and Z 7 , and Z 7 and R 3 are bonded to each other to form a cyclic structure.)
 さらに好ましい発光材料として、以下の一般式(14)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (14).
 一般式(14)において、Zは置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR31~R44は各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、R31とR32、R32とR33、R33とR34、R34とR35、R35とR36、R36とR37、R37とR38、R38とR39、R39とR40、R40とR41、R41とR42、R42とR43、R43とR44は互いに結合して環状構造を形成していてもよい。) In general formula (14), Z 1 represents a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, and R 1 and R 31 to R 44 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , R 34 and R 35 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 38 and R 39 , R 39 and R 40 , R 40 and R 41 , R 41 and R 42 , R 42 and R 43 , and R 43 and R 44 may be bonded to each other to form a cyclic structure.)
 さらに好ましい発光材料として、以下の一般式(15)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (15).
 一般式(15)において、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR51~R60は各々独立に水素原子、重水素原子または置換基を表す。RとZ、R51とR52、R52とR53、R53とR54、R54とR55、R55とR56、R56とR57、R57とR58、R58とR59、R59とR60、R60とZは互いに結合して環状構造を形成していてもよい。) In the general formula (15), Z 1 and Z 8 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, and R 1 and R 51 to R 60 each independently represent a hydrogen atom, a deuterium atom, or a substituent. R 1 and Z 1 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 54 and R 55 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 58 and R 59 , R 59 and R 60 , and R 60 and Z 8 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(16)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (16).
 一般式(16)において、Z、ZおよびZは各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR61~R66は各々独立に水素原子、重水素原子または置換基を表す。RとZ、ZとR61、R61とR62、R62とR63、R63とR64、R64とR65、R65とR66、R66とZは互いに結合して環状構造を形成していてもよい。 In general formula (16), Z 1 , Z 8 and Z 9 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, and R 1 and R 61 to R 66 each independently represent a hydrogen atom, a deuterium atom or a substituent. R 1 and Z 1 , Z 9 and R 61 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 64 and R 65 , R 65 and R 66 , and R 66 and Z 8 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(17)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (17).
 一般式(17)において、Z、ZおよびZ10は各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR67~R69は各々独立に水素原子、重水素原子または置換基を表し、R70は置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、ZとR67、R67とR68、R68とR69、R69とZ10、Z10とR70は互いに結合して環状構造を形成していてもよい。 In general formula (17), Z 1 , Z 9 and Z 10 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, R 1 and R 67 to R 69 each independently represent a hydrogen atom, a deuterium atom or a substituent, and R 70 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , Z 9 and R 67 , R 67 and R 68 , R 68 and R 69 , R 69 and Z 10 , and Z 10 and R 70 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(18)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (18).
 一般式(18)において、Z、Z11およびZ12は各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR72~R74は各々独立に水素原子、重水素原子または置換基を表し、R71は置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、R71とZ11、Z11とR72、R72とR73、R73とZ74、R74とZ12は互いに結合して環状構造を形成していてもよい。 In general formula (18), Z 1 , Z 11 and Z 12 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, R 1 and R 72 to R 74 each independently represent a hydrogen atom, a deuterium atom or a substituent, and R 71 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 71 and Z 11 , Z 11 and R 72 , R 72 and R 73 , R 73 and Z 74 , and R 74 and Z 12 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(19)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (19).
 一般式(19)において、ZおよびZ11は各々独立に置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、または置換もしくは無置換のベンゼン環が縮合したN-置換ピロール環を表し、RおよびR76~R82は各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表し、R75は置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。RとZ、R75とZ11、Z11とR76、R76とR77、R77とR78、R78とR79、R79とR80、R80とR81、R81とR82は互いに結合して環状構造を形成していてもよい。 In the general formula (19), Z 1 and Z 11 each independently represent a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, or an N-substituted pyrrole ring fused with a substituted or unsubstituted benzene ring, R 1 and R 76 to R 82 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and R 75 represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 1 and Z 1 , R 75 and Z 11 , Z 11 and R 76 , R 76 and R 77 , R 77 and R 78 , R 78 and R 79 , R 79 and R 80 , R 80 and R 81 , and R 81 and R 82 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(20)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (20).
 一般式(20)において、Xは酸素原子、硫黄原子、あるいは、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基が結合した窒素原子を表し、R101~R130は各々独立に水素原子、重水素原子、または置換基を表し、R101とR102、R102とR103、R103とR104、R104とR105、R105とR106、R106とR107、R107とR108、R108とR109、R109とR110、R110とR111、R111とR112、R112とR113、R113とR114、R114とR115、R115とR116、R116とR117、R117とR118、R118とR119、R119とR120、R120とR121、R121とR122、R122とR123、R123とR124、R124とR125、R125とR126、R126とR127、R127とR128、R128とR129、R129とR130、R130とR101は互いに結合して環状構造を形成していてもよい。 In general formula (20), X5 represents an oxygen atom, a sulfur atom, or a nitrogen atom to which a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group is bonded; R101 to R130 each independently represent a hydrogen atom, a deuterium atom, or a substituent; R101 and R102 , R102 and R103 , R103 and R104 , R104 and R105 , R105 and R106 , R106 and R107 , R107 and R108 , R108 and R109 , R109 and R110 , R110 and R111 , R111 and R112 , R112 and R113 , R113 and R114 , R114 and R 115 , R 115 and R 116 , R 116 and R 117 , R 117 and R 118 , R 118 and R 119 , R 119 and R 120 , R 120 and R 121 , R 121 and R 122 , R 122 and R 123 , R 123 and R 124 , R 124 and R 125 , R 125 and R 126 , R 126 and R 127 , R 127 and R 128 , R 128 and R 129 , R 129 and R 130 , and R 130 and R 101 may be bonded to each other to form a cyclic structure.
 さらに好ましい発光材料として、以下の一般式(21)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (21).
 一般式(21)において、RおよびRは、各々独立に置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表し、ZおよびZは、各々独立に置換もしくは無置換の芳香環、または置換もしくは無置換の複素芳香環を表し、R~Rは、各々独立に水素原子、重水素原子または置換基を表す。ただし、R、R、ZおよびZの少なくとも1つは、置換もしくは無置換のベンゾフラン環、置換もしくは無置換のベンゾチオフェン環、置換もしくは無置換のインドール環を含む。RとZ、ZとR、RとR、RとR、RとZ、ZとR、RとR、RとR、RとR、RとR、RとRは互いに結合して環状構造を形成していてもよい。前記ベンゾフラン環、前記ベンゾチオフェン環、前記インドール環を構成するベンゼン環骨格構成炭素原子のうち置換可能な炭素原子は窒素原子で置換されていてもよい。一般式(21)中のC-R、C-R、C-R、C-R、C-R、C-R、C-Rは、Nに置換されていてもよい。 In general formula (21), R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, Z 1 and Z 2 each independently represent a substituted or unsubstituted aromatic ring or a substituted or unsubstituted heteroaromatic ring, and R 3 to R 9 each independently represent a hydrogen atom, a deuterium atom, or a substituent, provided that at least one of R 1 , R 2 , Z 1 , and Z 2 contains a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted benzothiophene ring, or a substituted or unsubstituted indole ring. R1 and Z1 , Z1 and R3 , R3 and R4 , R4 and R5 , R5 and Z2 , Z2 and R2 , R2 and R6 , R6 and R7 , R7 and R8 , R8 and R9 , and R9 and R1 may be bonded to each other to form a ring structure. Of the carbon atoms constituting the benzene ring skeleton constituting the benzofuran ring, the benzothiophene ring, and the indole ring, the substitutable carbon atoms may be substituted with a nitrogen atom. C- R3 , C- R4 , C- R5 , C- R6 , C- R7 , C- R8 , and C- R9 in the general formula (21) may be substituted with N.
 本発明の一態様では、RおよびRが、各々独立に置換もしくは無置換のアルキル基、置換もしくは無置換のフェニル基、または、置換もしくは無置換のベンゾフラン環と置換もしくは無置換のベンゾチオフェン環と置換もしくは無置換のインドール環からなる群より選択される1つ以上の環構造を含む基である。本発明の一態様では、ZおよびZが、各々独立に置換もしくは無置換の非縮合ベンゼン環、置換もしくは無置換のベンゼン環が縮合したフラン環、置換もしくは無置換のベンゼン環が縮合したチオフェン環、置換もしくは無置換のベンゼン環が縮合したピロール環、置換もしくは無置換のベンゾフラン環が縮合したベンゼン環、置換もしくは無置換のベンゾチオフェン環が縮合したベンゼン環、または、置換もしくは無置換のインドール環が縮合したベンゼン環である。本発明の一態様では、RとZが互いに結合して環状構造を形成している。本発明の一態様では、RとZが互いに結合してピロール環を形成している。 In one aspect of the present invention, R 1 and R 2 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted phenyl group, or a group containing one or more ring structures selected from the group consisting of a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted benzothiophene ring, and a substituted or unsubstituted indole ring. In one aspect of the present invention, Z 1 and Z 2 are each independently a substituted or unsubstituted non-fused benzene ring, a furan ring fused with a substituted or unsubstituted benzene ring, a thiophene ring fused with a substituted or unsubstituted benzene ring, a pyrrole ring fused with a substituted or unsubstituted benzene ring, a benzene ring fused with a substituted or unsubstituted benzofuran ring, a benzene ring fused with a substituted or unsubstituted benzothiophene ring, or a benzene ring fused with a substituted or unsubstituted indole ring. In one aspect of the present invention, R 1 and Z 1 are bonded to each other to form a cyclic structure. In one aspect of the present invention, R 1 and Z 1 are bonded to each other to form a pyrrole ring.
 さらに好ましい発光材料として、以下の一般式(22)で表される化合物も挙げることができる。
Further preferred light-emitting materials include compounds represented by the following general formula (22).
 一般式(22)において、XおよびXは、一方が窒素原子であり、他方がホウ素原子である。R~R26、A、Aは、各々独立に水素原子、重水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、R10とR11、R11とR12、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20、R20とR21、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26は、互いに結合して環状構造を形成していてもよい。ただし、Xが窒素原子であるとき、R17とR18は互いに結合して単結合となりピロール環を形成し、Xが窒素原子であるとき、R21とR22は互いに結合して単結合となりピロール環を形成する。ただし、Xが窒素原子であって、RとRおよびR21とR22が窒素原子を介して結合して6員環を形成し、R17とR18が互いに結合して単結合を形成しているとき、R~Rの少なくとも1つは置換もしくは無置換のアリール基であるか、RとR、RとR、RとR、RとR、RとRのいずれかが互いに結合して芳香環または複素芳香環を形成している。 In formula (22), one of X1 and X2 is a nitrogen atom and the other is a boron atom. R1 to R26 , A1 and A2 each independently represent a hydrogen atom, a deuterium atom or a substituent. R1 and R2 , R2 and R3 , R3 and R4 , R4 and R5 , R5 and R6 , R6 and R7 , R7 and R8 , R8 and R9, R9 and R10 , R10 and R11 , R11 and R12 , R13 and R14 , R14 and R15 , R15 and R16 , R16 and R17 , R17 and R18 , R18 and R19 , R19 and R20 , R20 and R21 , R21 and R22 , R22 and R23 , R23 and R24 , R24 and R25 , R25 and R 26 may be bonded to each other to form a cyclic structure. However, when X 1 is a nitrogen atom, R 17 and R 18 are bonded to each other via a single bond to form a pyrrole ring, and when X 2 is a nitrogen atom, R 21 and R 22 are bonded to each other via a single bond to form a pyrrole ring. However, when X 1 is a nitrogen atom, R 7 and R 8 and R 21 and R 22 are bonded to each other via a nitrogen atom to form a 6-membered ring, and R 17 and R 18 are bonded to each other to form a single bond, at least one of R 1 to R 6 is a substituted or unsubstituted aryl group, or any of R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , and R 5 and R 6 are bonded to each other to form an aromatic ring or a heteroaromatic ring.
 本発明の一態様では、RおよびRの少なくとも一方が置換基である。本発明の一態様では、RおよびRがともに置換基である。本発明の一態様では、RおよびRが表す置換基が、アルキル基およびアリール基からなる群より選択される1つの基または2つ以上を組み合わせた基である。本発明の一態様では、RおよびR12がともに置換基である。本発明の一態様では、下記一般式(1a)で表される。
In one embodiment of the present invention, at least one of R3 and R6 is a substituent. In one embodiment of the present invention, R3 and R6 are both substituents. In one embodiment of the present invention, the substituents represented by R3 and R6 are one group selected from the group consisting of an alkyl group and an aryl group, or a group consisting of a combination of two or more groups. In one embodiment of the present invention, R8 and R12 are both substituents. In one embodiment of the present invention, the compound is represented by the following general formula (1a).
 一般式(22a)において、Ar~Arは各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。R41およびR42は、各々独立に置換もしくは無置換のアルキル基を表す。m1およびm2は各々独立に0~5の整数を表し、n1およびn3は各々独立に0~4の整数を表し、n2およびn4は各々独立に0~3の整数を表す。A、Aは、各々独立に水素原子、重水素原子または置換基を表す。 In general formula (22a), Ar 1 to Ar 4 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 41 and R 42 each independently represent a substituted or unsubstituted alkyl group. m1 and m2 each independently represent an integer of 0 to 5, n1 and n3 each independently represent an integer of 0 to 4, and n2 and n4 each independently represent an integer of 0 to 3. A 1 and A 2 each independently represent a hydrogen atom, a deuterium atom, or a substituent.
 本発明の一態様では、AおよびAが、各々独立にハメットのσp値が0.2よりも大きい基である。本発明の一態様では、AおよびAがともにシアノ基である。本発明の一態様では、AおよびAがともにハロゲン原子である。本発明の一態様では、回転対称構造を有する。 In one embodiment of the present invention, A 1 and A 2 are each independently a group having a Hammett σp value of more than 0.2. In one embodiment of the present invention, A 1 and A 2 are both cyano groups. In one embodiment of the present invention, A 1 and A 2 are both halogen atoms. In one embodiment of the present invention, the compound has a rotationally symmetric structure.
 以下において、上記の縮環構造Aを有する化合物、一般式(5)~(22)のいずれかで表される化合物の好ましい具体例を挙げる。
Preferred specific examples of the compound having the above fused ring structure A and the compound represented by any one of general formulas (5) to (22) are given below.
 ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、0.1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、1重量%以上である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、50重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、20重量%以下である。ある実施形態では、ホスト材料を用いるとき、発光層に含まれる発光材料としての本発明の化合物の量は、10重量%以下である。
 ある実施形態では、発光層のホスト材料は、正孔輸送機能および電子輸送機能を有する有機化合物である。ある実施形態では、発光層のホスト材料は、放射光の波長が増加することを防止する有機化合物である。ある実施形態では、発光層のホスト材料は、高いガラス転移温度を有する有機化合物である。
In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 0.1% by weight or more. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 1% by weight or more. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 50% by weight or less. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 20% by weight or less. In some embodiments, when a host material is used, the amount of the compound of the present invention as a light-emitting material contained in the light-emitting layer is 10% by weight or less.
In some embodiments, the host material of the light-emitting layer is an organic compound that has hole transport and electron transport functions. In some embodiments, the host material of the light-emitting layer is an organic compound that prevents the wavelength of emitted light from increasing. In some embodiments, the host material of the light-emitting layer is an organic compound that has a high glass transition temperature.
 いくつかの実施形態では、ホスト材料は以下からなる群から選択される: 
 ある実施形態では、発光層は2種類以上の構造が異なるTADF分子を含む。例えば、励起一重項エネルギー準位がホスト材料、第1TADF分子、第2TADF分子の順に高い、これら3種の材料を含む発光層とすることができる。このとき、第1TADF分子と第2TADF分子は、ともに最低励起一重項エネルギー準位と77Kの最低励起三重項エネルギー準位の差ΔESTが0.3eV以下であることが好ましく、0.25eV以下であることがより好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.07eV以下であることがさらにより好ましく、0.05eV以下であることがさらにまた好ましく、0.03eV以下であることがさらになお好ましく、0.01eV以下であることが特に好ましい。発光層における第1TADF分子の濃度は、第2TADF分子の濃度よりも大きいことが好ましい。また、発光層におけるホスト材料の濃度は、第2TADF分子の濃度よりも大きいことが好ましい。発光層における第1TADF分子の濃度は、ホスト材料の濃度よりも大きくてもよいし、小さくてもよいし、同じであってもよい。ある実施形態では、発光層内の組成を、ホスト材料を10~70重量%、第1TADF分子を10~80重量%、第2TADF分子を0.1~30重量%としてもよい。ある実施形態では、発光層内の組成を、ホスト材料を20~45重量%、第1TADF分子を50~75重量%、第2TADF分子を5~20重量%としてもよい。ある実施形態では、第1TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第1TADF分子の濃度=A重量%)の光励起による発光量子収率φPL1(A)と、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の濃度=A重量%)の光励起による発光量子収率φPL2(A)が、φPL1(A)>φPL2(A)の関係式を満たす。ある実施形態では、第2TADF分子とホスト材料の共蒸着膜(この共蒸着膜における第2TADF分子の濃度=B重量%)の光励起による発光量子収率φPL2(B)と、第2TADF分子の単独膜の光励起による発光量子収率φPL2(100)が、φPL2(B)>φPL2(100)の関係式を満たす。ある実施形態では、発光層は3種類の構造が異なるTADF分子を含むことができる。本発明の化合物は、発光層に含まれる複数のTADF化合物のいずれであってもよい。
 ある実施形態では、発光層は、ホスト材料、アシストドーパント、および発光材料からからなる群より選択される材料で構成することができる。ある実施形態では、発光層は金属元素を含まない。ある実施形態では、発光層は炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子のみから構成される材料で構成することができる。あるいは、発光層は、炭素原子、水素原子、重水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。あるいは、発光層は、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみから構成される材料で構成することもできる。
 発光層が本発明の化合物以外のTADF材料を含むとき、そのTADF材料は公知の遅延蛍光材料であってよい。好ましい遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射しうるものが含まれる。また、ここでは、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射しうるものを好ましく採用することができる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用する。また、下記の遅延蛍光材料も好ましく用いることができる。
In some embodiments, the host material is selected from the group consisting of:
In some embodiments, the light-emitting layer comprises two or more kinds of TADF molecules with different structures.For example, the light-emitting layer may comprise three kinds of materials, the excited singlet energy level of which is higher in the order of the host material, the first TADF molecule, and the second TADF molecule.At this time, the difference ΔE ST between the lowest excited singlet energy level and the lowest excited triplet energy level at 77K of both the first TADF molecule and the second TADF molecule is preferably 0.3 eV or less, more preferably 0.25 eV or less, more preferably 0.2 eV or less, more preferably 0.15 eV or less, even more preferably 0.1 eV or less, even more preferably 0.07 eV or less, even more preferably 0.05 eV or less, even more preferably 0.03 eV or less, and especially preferably 0.01 eV or less.The concentration of the first TADF molecule in the light-emitting layer is preferably greater than the concentration of the second TADF molecule. Also, the concentration of the host material in the light-emitting layer is preferably greater than the concentration of the second TADF molecule. The concentration of the first TADF molecule in the light-emitting layer may be greater than, less than, or the same as the concentration of the host material. In some embodiments, the composition in the light-emitting layer may be 10 to 70% by weight of the host material, 10 to 80% by weight of the first TADF molecule, and 0.1 to 30% by weight of the second TADF molecule. In some embodiments, the composition in the light-emitting layer may be 20 to 45% by weight of the host material, 50 to 75% by weight of the first TADF molecule, and 5 to 20% by weight of the second TADF molecule. In some embodiments, the luminescence quantum yield φPL1(A) by photoexcitation of the co-deposited film of the first TADF molecule and the host material (concentration of the first TADF molecule in this co-deposited film = A weight %) and the luminescence quantum yield φPL2(A) by photoexcitation of the co-deposited film of the second TADF molecule and the host material (concentration of the second TADF molecule in this co-deposited film = A weight %) satisfy the relational expression φPL1(A)>φPL2(A). In some embodiments, the luminescence quantum yield φPL2(B) by photoexcitation of the co-deposited film of the second TADF molecule and the host material (concentration of the second TADF molecule in this co-deposited film = B weight %) and the luminescence quantum yield φPL2(100) by photoexcitation of the single film of the second TADF molecule satisfy the relational expression φPL2(B)>φPL2(100). In some embodiments, the light-emitting layer can contain three types of TADF molecules with different structures. The compound of the present invention can be any of the multiple TADF compounds contained in the light-emitting layer.
In some embodiments, the light-emitting layer can be made of a material selected from the group consisting of a host material, an assist dopant, and a light-emitting material. In some embodiments, the light-emitting layer does not contain a metal element. In some embodiments, the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms, and sulfur atoms. Alternatively, the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, and oxygen atoms. Alternatively, the light-emitting layer can be made of a material consisting of only atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, and oxygen atoms.
When the light-emitting layer contains a TADF material other than the compound of the present invention, the TADF material may be a known delayed fluorescent material. Preferred delayed fluorescent materials include those described in paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955, and paragraph 0008 of WO2013/081088. JP 2013-256490 A, paragraphs 0009 to 0046 and 0093 to 0134; JP 2013-116975 A, paragraphs 0008 to 0020 and 0038 to 0040; WO 2013/133359 A, paragraphs 0007 to 0032 and 0079 to 0084; WO 2013/161437 A, paragraph 0 No. 008 to 0054 and No. 0101 to 0121, paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352 A, paragraphs 0008 to 0048 and 0067 to 0076 of JP 2014-9224 A, paragraphs 0013 to 0025 of JP 2017-119663 A, paragraphs 0013 to 0026 of JP 2017-119664 A, Compounds included in the general formulas described in paragraphs 0012 to 0025 of JP 017-222623 A, paragraphs 0010 to 0050 of JP 2017-226838 A, paragraphs 0012 to 0043 of JP 2018-100411 A, and paragraphs 0016 to 0044 of WO 2018/047853 A, particularly exemplified compounds, which are capable of emitting delayed fluorescence, are included. In addition, the following publications are included herein: JP2013-253121A, WO2013/133359A, WO2014/034535A, WO2014/115743A, WO2014/122895A, WO2014/126200A, WO2014/136758A, WO2014/133121A, WO20 No. 14/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840, WO2015/002213, WO2015/016200, WO2015/019725, WO2015/072470, WO2015/108049, WO2015/080182, WO2015/072537, WO2015/080183, JP2015-129240A, WO2015/129714A, WO2015/129715A, WO2015/13350 The luminescent material described in WO2015/136880, WO2015/137244, WO2015/137202, WO2015/137136, WO2015/146541, and WO2015/159541, which can emit delayed fluorescence, can be preferably adopted. Note that the above publications described in this paragraph are hereby cited as part of this specification. In addition, the following delayed fluorescence material can also be preferably used.
 以下において、有機エレクトロルミネッセンス素子の各部材および発光層以外の各層について説明する。 Below, we will explain each component of the organic electroluminescence element and each layer other than the light-emitting layer.
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
Base material:
In some embodiments, the organic electroluminescent device of the present invention is supported by a substrate, which is not particularly limited and may be any material commonly used in organic electroluminescent devices, such as glass, transparent plastic, quartz, and silicon.
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウム・スズ(ITO)、SnOおよびZnOから選択される。いくつかの実施形態では、IDIXO(In-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
anode:
In some embodiments, the anode of the organic electroluminescent device is made of a metal, an alloy, a conductive compound, or a combination thereof. In some embodiments, the metal, alloy, or conductive compound has a high work function (4 eV or more). In some embodiments, the metal is Au. In some embodiments, the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 , and ZnO. In some embodiments, an amorphous material capable of forming a transparent conductive film, such as IDIXO ( In2O3 - ZnO ), is used. In some embodiments, the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering. In some embodiments, the film is patterned by a photolithographic method. In some embodiments, if the pattern does not need to be highly accurate (e.g., about 100 μm or more), the pattern may be formed using a mask with a shape suitable for evaporation or sputtering on the electrode material. In some embodiments, when a coating material, such as an organic conductive compound, can be applied, a wet film formation method, such as a printing method or a coating method, is used. In some embodiments, the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the anode has a thickness of 10 to 1,000 nm. In some embodiments, the anode has a thickness of 10 to 200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
cathode:
In some embodiments, the cathode is made of an electrode material such as a metal with a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, a conductive compound, or a combination thereof. In some embodiments, the electrode material is selected from sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium-aluminum mixtures, and rare earth elements. In some embodiments, a mixture of an electron injecting metal and a second metal is used, the second metal being a stable metal with a higher work function than the electron injecting metal. In some embodiments, the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures, and aluminum. In some embodiments, the mixture improves electron injecting properties and resistance to oxidation. In some embodiments, the cathode is fabricated by forming the electrode material as a thin film by evaporation or sputtering. In some embodiments, the cathode has a sheet resistance of a few hundred ohms or less per unit area. In some embodiments, the cathode has a thickness of 10 nm to 5 μm. In some embodiments, the cathode has a thickness of 50 to 200 nm. In some embodiments, either one of the anode and cathode of the organic electroluminescent device is transparent or semi-transparent to allow the emitted light to pass through. In some embodiments, a transparent or semi-transparent electroluminescent device enhances light radiance.
In some embodiments, the cathode is formed from a conductive, transparent material as described above for the anode, thereby forming a transparent or semi-transparent cathode, hi some embodiments, an element includes an anode and a cathode, both of which are transparent or semi-transparent.
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
 以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Injection layer:
An injection layer is a layer between an electrode and an organic layer. In some embodiments, the injection layer reduces driving voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be disposed between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. In some embodiments, an injection layer is present. In some embodiments, an injection layer is not present.
Preferred examples of compounds that can be used as the hole injection material are given below.
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Next, preferred examples of compounds that can be used as the electron injection material will be given.
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
Barrier layer:
A barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing outside the light-emitting layer. In some embodiments, an electron barrier layer is present between the light-emitting layer and the hole transport layer and prevents electrons from passing through the light-emitting layer to the hole transport layer. In some embodiments, a hole barrier layer is present between the light-emitting layer and the electron transport layer and prevents holes from passing through the light-emitting layer to the electron transport layer. In some embodiments, a barrier layer prevents excitons from diffusing outside the light-emitting layer. In some embodiments, the electron barrier layer and the hole barrier layer constitute an exciton barrier layer. As used herein, the term "electron barrier layer" or "exciton barrier layer" includes layers that have both the functions of an electron barrier layer and of an exciton barrier layer.
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
 以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
Hole blocking layer:
The hole blocking layer functions as an electron transport layer. In some embodiments, during electron transport, the hole blocking layer prevents holes from reaching the electron transport layer. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the light-emitting layer. The materials used for the hole blocking layer can be the same materials as those described above for the electron transport layer.
Preferred examples of compounds that can be used in the hole blocking layer are given below.
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
 以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
Electron Barrier Layer:
The electron blocking layer transports holes. In some embodiments, during hole transport, the electron blocking layer blocks electrons from reaching the hole transport layer. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the light-emitting layer. The materials used for the electron blocking layer can be the same materials as those described above for the hole transport layer.
Specific examples of preferred compounds that can be used as the electron blocking material are given below.
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
Exciton blocking layer:
The exciton blocking layer prevents excitons generated through the recombination of holes and electrons in the light-emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton blocking layer allows for effective confinement of excitons in the light-emitting layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, the exciton blocking layer is adjacent to the light-emitting layer on either the anode side or the cathode side and on both sides. In some embodiments, when the exciton blocking layer is present on the anode side, the layer may be present between the hole transport layer and the light-emitting layer and adjacent to the light-emitting layer. In some embodiments, when the exciton blocking layer is present on the cathode side, the layer may be present between the light-emitting layer and the cathode and adjacent to the light-emitting layer. In some embodiments, a hole injection layer, an electron blocking layer, or a similar layer is present between the anode and the exciton blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, an electron blocking layer, a hole blocking layer, or a similar layer is present between the cathode and the exciton blocking layer adjacent to the light-emitting layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and excited triplet energy, respectively, of the light-emitting material.
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Hole transport layer:
The hole transport layer comprises a hole transport material. In some embodiments, the hole transport layer is a single layer. In some embodiments, the hole transport layer has multiple layers.
In some embodiments, the hole transport material has one of the following properties: hole injection or transport property and electron blocking property. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, allylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (especially thiophene oligomers), or combinations thereof. In some embodiments, the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as hole transport materials are given below.
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Electron transport layer:
The electron transport layer comprises an electron transport material. In some embodiments, the electron transport layer is a single layer. In some embodiments, the electron transport layer has multiple layers.
In some embodiments, the electron transport material only needs to transport electrons injected from the cathode to the light-emitting layer. In some embodiments, the electron transport material also functions as a hole-blocking material. Examples of electron transport layers that can be used in the present invention include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxadiazole derivatives, azole derivatives, azine derivatives, or combinations thereof, or polymers thereof. In some embodiments, the electron transport material is a thiadiazole derivative or a quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as electron transport materials are given below.
 さらに、各有機層に添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Furthermore, examples of compounds that can be added to each organic layer are given below. For example, they can be added as stabilizing materials.
 有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示したが、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。 Specific examples of preferred materials that can be used in organic electroluminescence elements have been given, but the materials that can be used in the present invention should not be interpreted as being limited to the following exemplary compounds. In addition, even if a compound is given as an example of a material having a specific function, it can also be used as a material having other functions.
デバイス:
 いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
device:
In some embodiments, the light-emitting layer is incorporated into a device, including, but not limited to, an OLED bulb, an OLED lamp, a television display, a computer monitor, a mobile phone, and a tablet.
In some embodiments, an electronic device includes an OLED having an anode, a cathode, and at least one organic layer including an emissive layer between the anode and the cathode.
In some embodiments, the compositions described herein may be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices. In some embodiments, the compositions may be useful in facilitating charge or energy transfer within devices and/or as hole transport materials, such as organic light emitting diodes (OLEDs), organic integrated circuits (OICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field-quench devices (O-FQDs), light emitting fuel cells (LECs), or organic laser diodes (O-lasers).
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
Bulb or Lamp:
In some embodiments, the electronic device comprises an OLED comprising an anode, a cathode, and at least one organic layer comprising an emissive layer between the anode and the cathode.
In some embodiments, the device includes OLEDs of different colors. In some embodiments, the device includes an array including a combination of OLEDs. In some embodiments, the combination of OLEDs is a three-color combination (e.g., RGB). In some embodiments, the combination of OLEDs is a combination of colors that are not red, green, or blue (e.g., orange and yellow-green). In some embodiments, the combination of OLEDs is a two-color, four-color, or more-color combination.
In some embodiments, the device comprises:
a circuit board having a first side having a mounting surface and an opposing second side, the circuit board defining at least one opening;
at least one OLED on the mounting surface, the at least one OLED having a light-emitting configuration including an anode, a cathode, and at least one organic layer including a light-emitting layer between the anode and the cathode;
a housing for the circuit board;
and at least one connector disposed on an end of the housing, the housing and the connector defining a package suitable for attachment to a lighting fixture.
In some embodiments, the OLED light comprises a plurality of OLEDs mounted on a circuit board such that light is emitted in a plurality of directions. In some embodiments, a portion of the light emitted in a first direction is polarized and emitted in a second direction. In some embodiments, a reflector is used to polarize the light emitted in the first direction.
ディスプレイまたはスクリーン:
 いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
Display or Screen:
In some embodiments, the light-emitting layer of the present invention can be used in a screen or display. In some embodiments, the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, vapor deposition, or chemical vapor deposition (CVD). In some embodiments, the substrate is a photoplate structure useful in two-sided etching to provide pixels with unique aspect ratios. The screen (also called a mask) is used in the manufacturing process of an OLED display. The corresponding artwork pattern design allows for the placement of very steep narrow tie bars between pixels in the vertical direction, as well as large wide angled openings in the horizontal direction. This allows for the fine patterning of pixels required for high resolution displays while optimizing chemical vapor deposition onto the TFT backplane.
The internal patterning of the pixel allows for the construction of three-dimensional pixel openings of various aspect ratios in the horizontal and vertical directions. Additionally, the use of imaged "stripes" or halftone circles in the pixel area protects etching in certain areas until those particular patterns are undercut and removed from the substrate. At that point, all pixel areas are treated with similar etch rates, but the depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with different protection rates within the pixel, allowing for the localized deep etching required to create steep vertical bevels.
The preferred material for the deposition mask is Invar. Invar is a metal alloy that is cold rolled into long thin sheets at steel mills. Invar cannot be electrodeposited onto the spin mandrel as a nickel mask. A suitable and low-cost method for forming open areas in the deposition mask is by wet chemical etching.
In some embodiments, the screen or display pattern is a pixel matrix on a substrate. In some embodiments, the screen or display pattern is fabricated using lithography (e.g., photolithography and e-beam lithography). In some embodiments, the screen or display pattern is fabricated using wet chemical etching. In further embodiments, the screen or display pattern is fabricated using plasma etching.
デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
How the device is manufactured:
OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Usually, each cell panel on the mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating a planarizing film on the TFT, sequentially forming a pixel electrode, a light-emitting layer, a counter electrode and an encapsulation layer, and then cutting the cell panel from the mother panel.
OLED displays are generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Usually, each cell panel on the mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating a planarizing film on the TFT, sequentially forming a pixel electrode, a light-emitting layer, a counter electrode and an encapsulation layer, and then cutting the cell panel from the mother panel.
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
  マザーパネルのベース基材上に障壁層を形成する工程と、
  前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
  前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
  前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
In another aspect of the invention, there is provided a method for manufacturing an organic light emitting diode (OLED) display, the method comprising the steps of:
forming a barrier layer on a base substrate of a mother panel;
forming a plurality of display units on the barrier layer in the form of a cell panel;
forming an encapsulation layer over each of the display units of the cell panel;
and applying an organic film to the interface between the cell panels.
In some embodiments, the barrier layer is an inorganic film, for example made of SiNx, and the ends of the barrier layer are covered with an organic film made of polyimide or acrylic. In some embodiments, the organic film helps the mother panel to be cut softly into cell panels.
In some embodiments, the thin film transistor (TFT) layer has a light-emitting layer, a gate electrode, and source/drain electrodes. Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light-emitting unit formed on the planarization film, and the organic film applied to the interface is formed of the same material as the planarization film and is formed at the same time as the planarization film. In some embodiments, the light-emitting unit is connected to the TFT layer by a passivation layer, the planarization film therebetween, and an encapsulation layer that covers and protects the light-emitting unit. In some embodiments of the manufacturing method, the organic film is not connected to the display unit or the encapsulation layer.
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
Each of the organic film and the planarization film may comprise one of polyimide and acrylic. In some embodiments, the barrier layer may be an inorganic film. In some embodiments, the base substrate may be formed of polyimide. The method may further include attaching a carrier substrate formed of a glass material to one surface of the base substrate formed of polyimide prior to forming a barrier layer on the other surface of the base substrate, and separating the carrier substrate from the base substrate prior to cutting along the interface. In some embodiments, the OLED display is a flexible display.
In some embodiments, the passivation layer is an organic film disposed on the TFT layer for covering the TFT layer. In some embodiments, the planarization film is an organic film formed on the passivation layer. In some embodiments, the planarization film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarization film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer, such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edge of the barrier layer.
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
In some embodiments, the light-emitting layer comprises a pixel electrode, a counter electrode, and an organic light-emitting layer disposed between the pixel electrode and the counter electrode, hi some embodiments, the pixel electrode is coupled to a source/drain electrode of a TFT layer.
In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, a suitable voltage is formed between the pixel electrode and the counter electrode, which causes the organic light-emitting layer to emit light, thereby forming an image. Hereinafter, an image-forming unit having a TFT layer and a light-emitting unit is referred to as a display unit.
In some embodiments, the encapsulation layer that covers the display units and prevents the penetration of external moisture may be formed into a thin-film encapsulation structure in which organic films and inorganic films are alternately laminated. In some embodiments, the encapsulation layer has a thin-film encapsulation structure in which a plurality of thin films are laminated. In some embodiments, the organic film applied to the interface portion is disposed at an interval with each of the plurality of display units. In some embodiments, the organic film is formed in such a manner that a portion of the organic film directly contacts the base substrate, and the remaining portion of the organic film contacts the barrier layer while surrounding the end of the barrier layer.
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
In one embodiment, the OLED display is flexible and uses a flexible base substrate formed from polyimide, hi some embodiments, the base substrate is formed on a carrier substrate formed from a glass material, and the carrier substrate is then separated.
In some embodiments, a barrier layer is formed on a surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, the base substrate is formed on all surfaces of the mother panel, while the barrier layer is formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the grooves.
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。 In some embodiments, the method further includes a step of cutting along the interface, where a groove is formed in the barrier layer and at least a portion of the organic film is formed in the groove, and the groove does not penetrate the base substrate. In some embodiments, a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are disposed on the TFT layer to cover the TFT layer. At the same time that the planarization film, for example made of polyimide or acrylic, is formed, the groove of the interface is covered with an organic film, for example made of polyimide or acrylic. This prevents cracks from occurring when each cell panel is cut along the groove at the interface by having the organic film absorb the impact that occurs. That is, if all the barrier layers are completely exposed without the organic film, when each cell panel is cut along the groove at the interface, the impact that occurs will be transmitted to the barrier layer, thereby increasing the risk of cracks. However, in one embodiment, the groove at the interface between the barrier layers is covered with an organic film to absorb the impact that would otherwise be transmitted to the barrier layer, so that each cell panel can be cut softly and prevent cracks from occurring in the barrier layer. In one embodiment, the organic film and the planarization film covering the groove of the interface portion are spaced apart from each other. For example, if the organic film and the planarization film are connected to each other as one layer, there is a risk that external moisture may penetrate into the display unit through the planarization film and the remaining portion of the organic film, so the organic film and the planarization film are spaced apart from each other such that the organic film is spaced apart from the display unit.
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
In some embodiments, the display unit is formed by forming a light-emitting unit, and the encapsulation layer is disposed on the display unit to cover the display unit. Thus, after the mother panel is completely manufactured, the carrier substrate carrying the base substrate is separated from the base substrate. In some embodiments, when a laser beam is irradiated onto the carrier substrate, the carrier substrate is separated from the base substrate due to the difference in thermal expansion coefficient between the carrier substrate and the base substrate.
In some embodiments, the mother panel is cut into individual cell panels. In some embodiments, the mother panel is cut along the interface between the cell panels using a cutter. In some embodiments, the grooves of the interface along which the mother panel is cut are covered with an organic film, which absorbs shock during cutting. In some embodiments, the barrier layer is prevented from cracking during cutting.
In some embodiments, the methods reduce product defect rates and stabilize product quality.
Another aspect is an OLED display having a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic film applied to the edges of the barrier layer.
 以下に合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。また、HOMOとLUMOのエネルギーの測定は大気中光電子分光法(理研計器社製AC-3等)により行った。
 以下の合成例において、一般式(1)に含まれる化合物を合成した。
The characteristics of the present invention will be described in more detail below with reference to synthesis examples and examples. The materials, processing contents, processing procedures, etc. shown below can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below. The evaluation of the emission characteristics was performed using a source meter (Keithley: 2400 series), a semiconductor parameter analyzer (Agilent Technologies: E5273A), an optical power meter measuring device (Newport: 1930C), an optical spectrometer (Ocean Optics: USB2000), a spectroradiometer (Topcon: SR-3) and a streak camera (Hamamatsu Photonics C4334). The energy of HOMO and LUMO was measured by atmospheric photoelectron spectroscopy (Riken Keiki AC-3, etc.).
In the following synthesis examples, compounds within the scope of general formula (1) were synthesized.
(合成例)
(Synthesis Example)
中間体a
 窒素気流下、6-ブロモ-12H-[1]ベンゾチエノ[2,3-a]カルバゾール(2.00g,5.68mmol)、ビス(ピナコラト)ジボロン(2.16g,8.52mmol)、[1,1′-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(0.083g,0.11mmol)、酢酸カリウム(1.39g,14.2mmol)の混合物に、脱気した1,4-ジオキサン(50mL)を加え、110℃で15時間攪拌した。攪拌後、室温まで冷却し、反応溶液に2-クロロ-4,6-ジ(フェニル-2,3,4,5,6-d5)-1,3,5-トリアジン(1.89g,6.81mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.33g,0.28mmol)、炭酸カリウム(1.96g,14.2mmol)、脱気したテトラヒドロフラン(50mL)/水(25mL)を加え、75℃で24時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体a(0.356g,0.692mmol,収率12.2%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.76 (s, 1H), 8.48 (s, 1H), 8.22 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.54-7.49 (m, 1H), 7.46-7.41 (m, 1H), 7.37-7.33 (m, 1H), 7.24-7.20 (m, 1H)
ASAPマススペクトル分析: 理論値514.20, 観測値515.47.
Intermediate a
Under a nitrogen stream, degassed 1,4-dioxane (50 mL) was added to a mixture of 6-bromo-12H-[1]benzothieno[2,3-a]carbazole (2.00 g, 5.68 mmol), bis(pinacolato)diboron (2.16 g, 8.52 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.083 g, 0.11 mmol), and potassium acetate (1.39 g, 14.2 mmol), and the mixture was stirred at 110°C for 15 hours. After stirring, the mixture was cooled to room temperature, and 2-chloro-4,6-di(phenyl-2,3,4,5,6-d5)-1,3,5-triazine (1.89 g, 6.81 mmol), tetrakis(triphenylphosphine)palladium(0) (0.33 g, 0.28 mmol), potassium carbonate (1.96 g, 14.2 mmol), and degassed tetrahydrofuran (50 mL)/water (25 mL) were added to the reaction solution, followed by stirring at 75° C. for 24 hours. After completion of the reaction, the mixture was cooled to room temperature, and water was added for filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate a (0.356 g, 0.692 mmol, yield 12.2%).
1H NMR (400 MHz, CDCl3 ) δ 8.76 (s, 1H), 8.48 (s, 1H), 8.22 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.54-7.49 (m, 1H), 7.46-7.41 (m, 1H), 7.37-7.33 (m, 1H), 7.24-7.20 (m, 1H).
ASAP mass spectrum analysis: theoretical 514.20, observed 515.47.
中間体b
 窒素気流下、12H-[1]ベンゾチエノ[2,3-a]カルバゾール(7.50g,27.4mmol)、N-ブロモスクシンイミド(10.2g,57.6mmol)の混合物にジクロロメタン(200mL)を加え、室温下で1時間攪拌した。攪拌後、水を加えて抽出を行い、無水硫酸マグネシウムにより乾燥させた。この溶液を減圧濃縮し再沈殿することによって中間体b(10.8g,25.0mmol,粗収率91.1%)を得た。
ASAPマススペクトル分析: 理論値431.15, 観測値431.96
Intermediate b
Under a nitrogen stream, dichloromethane (200 mL) was added to a mixture of 12H-[1]benzothieno[2,3-a]carbazole (7.50 g, 27.4 mmol) and N-bromosuccinimide (10.2 g, 57.6 mmol), and the mixture was stirred at room temperature for 1 hour. After stirring, water was added to the mixture for extraction, and the mixture was dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure and reprecipitated to obtain intermediate b (10.8 g, 25.0 mmol, crude yield 91.1%).
ASAP Mass Spectral Analysis: Calculated 431.15, Observed 431.96
中間体c
 窒素気流下、中間体b(9.40g,21.8mmol)、フェニル-d5-ボロン酸(2.24g,17.6mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.13g,0.980mmol)、炭酸カリウム(8.13g,58.8mmol)の混合物に、脱気したテトラヒドロフラン(250mL)、水(125mL)の混合溶液を加え、75℃に昇温し15時間反応させた。反応終了後、室温まで冷却して抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体c(1.30g,3.00mmol,収率13.8%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 8.24-8.17 (m, 1H), 7.91-7.88 (m, 2H), 7.55 (dd, J = 8.6, 2.0 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.21-7.09 (m, 2H)
ASAPマススペクトル分析: 理論値433.38, 観測値435.14
Intermediate c
Under a nitrogen stream, a mixture of intermediate b (9.40 g, 21.8 mmol), phenyl-d5-boronic acid (2.24 g, 17.6 mmol), tetrakis(triphenylphosphine)palladium(0) (1.13 g, 0.980 mmol), and potassium carbonate (8.13 g, 58.8 mmol) was added with a degassed mixture of tetrahydrofuran (250 mL) and water (125 mL), and the mixture was heated to 75° C. and reacted for 15 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted. The resulting mixture was purified by silica gel column chromatography to obtain intermediate c (1.30 g, 3.00 mmol, yield 13.8%).
1H NMR (400 MHz, CDCl3 ) δ 8.37 (s, 1H), 8.24-8.17 (m, 1H), 7.91-7.88 (m, 2H), 7.55 (dd, J = 8.6, 2.0 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.21-7.09 (m, 2H).
ASAP Mass Spectral Analysis: Calculated 433.38, Observed 435.14
中間体d
 窒素気流下、中間体c(1.30g,3.00mmol)、ビス(ピナコラト)ジボロン(1.52g,6.00mmol)、[1,1‘-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(0.219g,0.300mmol)、酢酸カリウム(1.47g,15.0mmol)の混合物に、脱気した1,4-ジオキサン(30mL)を加え、110℃で15時間攪拌した。攪拌後、室温まで冷却し、反応溶液に2-クロロ-4,6-ジ(フェニル-2,3,4,5,6-d5)-1,3,5-トリアジン(1.08g,3.90mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(0.211g,0.300mmol)、炭酸カリウム(1.59g,15.0mmol)、脱気したテトラヒドロフラン(30mL)、水(15mL)を加え、75℃で24時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体d(0.444g,0.745mmol,収率24.6%)を得た。
1H NMR (400 MHz, CDCl3) δ 9.58 (s, 1H), 8.46 (dd, J = 8.7, 1.4 Hz, 1H), 8.56 (s, 1H), 8.18 (s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 6.4 Hz, 1H), 7.25-7.11 (m, 2H)
ASAPマススペクトル分析: 理論値595.80, 観測値596.38.
Intermediate d
Under a nitrogen stream, degassed 1,4-dioxane (30 mL) was added to a mixture of intermediate c (1.30 g, 3.00 mmol), bis(pinacolato)diboron (1.52 g, 6.00 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.219 g, 0.300 mmol), and potassium acetate (1.47 g, 15.0 mmol), and the mixture was stirred at 110°C for 15 hours. After stirring, the mixture was cooled to room temperature, and 2-chloro-4,6-di(phenyl-2,3,4,5,6-d5)-1,3,5-triazine (1.08 g, 3.90 mmol), dichlorobis(triphenylphosphine)palladium(II) (0.211 g, 0.300 mmol), potassium carbonate (1.59 g, 15.0 mmol), degassed tetrahydrofuran (30 mL), and water (15 mL) were added to the reaction solution, followed by stirring at 75° C. for 24 hours. After completion of the reaction, the mixture was cooled to room temperature, and water was added for filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate d (0.444 g, 0.745 mmol, yield 24.6%).
1H NMR (400 MHz, CDCl3 ) δ 9.58 (s, 1H), 8.46 (dd, J = 8.7, 1.4 Hz, 1H), 8.56 (s, 1H), 8.18 (s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.38 (t, J = 6.4 Hz, 1H), 7.25-7.11 (m, 2H).
ASAP mass spectrum analysis: theoretical 595.80, observed 596.38.
中間体e
 窒素気流下、2-クロロ-4-ヨードアニリン(30.0g,118mmol)、ビス(ピナコラト)ジボロン(45.1g,178mmol)、[1,1‘-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(8.66g,11.8mmol)、酢酸カリウム(58.1g,592mmol)の混合物に、脱気した1,4-ジオキサン(240mL)を加え、110℃で15時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体e(17.5g,69.1mmol,収率58.4%)を得た。
1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 1.4 Hz, 1H), 7.49 (dd, J = 8.2, 1.4 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 1.32 (s, 12H)
ASAPマススペクトル分析: 理論値253.10, 観測値254.09.
Intermediate e
Under a nitrogen stream, degassed 1,4-dioxane (240 mL) was added to a mixture of 2-chloro-4-iodoaniline (30.0 g, 118 mmol), bis(pinacolato)diboron (45.1 g, 178 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (8.66 g, 11.8 mmol), and potassium acetate (58.1 g, 592 mmol), and the mixture was stirred at 110°C for 15 hours. After the reaction was completed, the mixture was cooled to room temperature, and water was added for filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate e (17.5 g, 69.1 mmol, yield 58.4%).
1H NMR (400 MHz, CDCl3 ) δ 7.69 (d, J = 1.4 Hz, 1H), 7.49 (dd, J = 8.2, 1.4 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 1.32 (s, 12H).
ASAP mass spectrum analysis: theoretical 253.10, observed 254.09.
中間体f
 窒素気流下、中間体e(6.00g,23.7mmol)、2-クロロ-4,6-ジ(フェニル-2,3,4,5,6-d5)-1,3,5-トリアジン(6.57g,23.7mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(1.66g,2.37mmol)、炭酸ナトリウム(12.5g,118mmol)、脱気したトルエン(60mL)、水(30mL)を加え、110℃で15時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体f(1.87g,5.07mmol,収率21.4%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 1.8 Hz, 1H), 8.53 (dd, J = 8.7, 1.8 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 4.52 (s, 2H)
ASAPマススペクトル分析: 理論値368.16, 観測値369.24.
Intermediate f
Under a nitrogen stream, intermediate e (6.00 g, 23.7 mmol), 2-chloro-4,6-di(phenyl-2,3,4,5,6-d5)-1,3,5-triazine (6.57 g, 23.7 mmol), dichlorobis(triphenylphosphine)palladium(II) (1.66 g, 2.37 mmol), sodium carbonate (12.5 g, 118 mmol), degassed toluene (60 mL), and water (30 mL) were added, and the mixture was stirred at 110° C. for 15 hours. After the reaction was completed, the mixture was cooled to room temperature, and water was added to perform filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate f (1.87 g, 5.07 mmol, yield 21.4%).
1H NMR (400 MHz, CDCl3 ) δ 8.71 (d, J = 1.8 Hz, 1H), 8.53 (dd, J = 8.7, 1.8 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 4.52 (s, 2H).
ASAP mass spectrum analysis: theoretical 368.16, observed 369.24.
中間体g
 窒素気流下、中間体f(1.66g,4.50mmol)、4-ヨードジベンゾチオフェン(1.67g,5.40mmol)、酢酸パラジウム(II)(0.101g,0.450mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(0.364g,0.675mmol)、ナトリウムtert-ブトキシド(0.865g,9.00mmol)の混合物に、脱気したトルエン(150mL)を加え、80℃で1時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体g(0.648g,1.18mmol,収率26.1%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.85 (d, J = 2.1 Hz, 1H), 8.54 (dd, J = 8.7, 1.6 Hz, 1H), 8.22-8.20 (m, 1H), 8.07 (dd, J = 7.1, 1.6 Hz, 1H), 7.88-7.86 (m, 1H), 7.57-7.49 (m, 4H), 7.10 (d, J = 8.7 Hz, 1H), 6.64 (s, 1H)
ASAPマススペクトル分析: 理論値550.18, 観測値551.34.
Intermediate g
Under a nitrogen stream, degassed toluene (150 mL) was added to a mixture of intermediate f (1.66 g, 4.50 mmol), 4-iododibenzothiophene (1.67 g, 5.40 mmol), palladium (II) acetate (0.101 g, 0.450 mmol), bis[2-(diphenylphosphino)phenyl]ether (0.364 g, 0.675 mmol), and sodium tert-butoxide (0.865 g, 9.00 mmol), and the mixture was stirred at 80° C. for 1 hour. After the reaction was completed, the mixture was cooled to room temperature, and water was added to the mixture for filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate g (0.648 g, 1.18 mmol, yield 26.1%).
1H NMR (400 MHz, CDCl3 ) δ 8.85 (d, J = 2.1 Hz, 1H), 8.54 (dd, J = 8.7, 1.6 Hz, 1H), 8.22-8.20 (m, 1H), 8.07 (dd, J = 7.1, 1.6 Hz, 1H), 7.88-7.86 (m, 1H), 7.57-7.49 (m, 4H), 7.10 (d, J = 8.7 Hz, 1H), 6.64 (s, 1H).
ASAP mass spectrum analysis: theoretical 550.18, observed 551.34.
中間体h
 窒素気流下、中間体g(0.640g,4.50mmol)、酢酸パラジウム(II)(0.0521g,0.232mmol)、トリシクロヘキシルホスフィン(0.130g,0.465mmol)、炭酸セシウム(1.14g,3.48mmol)の混合物に、脱気したジメチルアセトアミド(30mL)を加え、150℃で3時間攪拌した。反応終了後、室温まで冷却し、水を加えてろ過及び抽出を行った。得られた混合物をシリカゲルカラムクロマトグラフィーにより精製し、中間体h(0.280g,0.544mmol,収率46.9%)を得た。
1H NMR (400 MHz, CDCl3) δ9.60 (s, 1H), 8.95 (dd, J = 8.6, 1.7 Hz, 1H), 8.51 (s, 1H), 8.38 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 7.3 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.96-7.93 (m, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.55-7.47 (m, 2H)
ASAPマススペクトル分析: 理論値514.20, 観測値515.52.
Intermediate h
Under a nitrogen stream, degassed dimethylacetamide (30 mL) was added to a mixture of intermediate g (0.640 g, 4.50 mmol), palladium (II) acetate (0.0521 g, 0.232 mmol), tricyclohexylphosphine (0.130 g, 0.465 mmol), and cesium carbonate (1.14 g, 3.48 mmol), and the mixture was stirred at 150° C. for 3 hours. After the reaction was completed, the mixture was cooled to room temperature, and water was added to perform filtration and extraction. The resulting mixture was purified by silica gel column chromatography to obtain intermediate h (0.280 g, 0.544 mmol, yield 46.9%).
1H NMR (400 MHz, CDCl3 ) δ 9.60 (s, 1H), 8.95 (dd, J = 8.6, 1.7 Hz, 1H), 8.51 (s, 1H), 8.38 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 7.3 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.96-7.93 (m, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.55-7.47 (m, 2H).
ASAP mass spectrum analysis: theoretical 514.20, observed 515.52.
中間体i
 窒素気流下、2-アミノ-3,5,6-トリフルオロ-1,4-ベンゼンジカルボニトリル(6.00g,30.4mmol)とテトラフルオロほう酸水溶液42重量%(6.36g,304mmol)のアセトニトリル溶液(250mL)を0℃で15分間攪拌した後、ブロモトリクロロメタン(12.1g,60.9mmol)、水(63mL)に溶解した亜硝酸ナトリウム(5.25g,76.1mmol)を加え、室温で15時間攪拌した。この混合物を室温に戻し、亜硫酸水素ナトリウム水溶液を加えて、ジクロロメタンにより抽出、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィーで精製し、中間体i(3.10g,11.9mmol,収率38.4%)を得た。
ASAPマススペクトル分析: 理論値 259.92, 観測値260.94.
Intermediate I
Under a nitrogen stream, 2-amino-3,5,6-trifluoro-1,4-benzenedicarbonitrile (6.00 g, 30.4 mmol) and 42 wt% aqueous tetrafluoroboric acid solution (6.36 g, 304 mmol) in acetonitrile (250 mL) were stirred at 0° C. for 15 minutes, and then bromotrichloromethane (12.1 g, 60.9 mmol) and sodium nitrite (5.25 g, 76.1 mmol) dissolved in water (63 mL) were added and stirred at room temperature for 15 hours. The mixture was returned to room temperature, an aqueous sodium hydrogen sulfite solution was added, extracted with dichloromethane, and dried with anhydrous magnesium sulfate. The mixture was concentrated under reduced pressure, and the resulting mixture was purified by silica gel column chromatography to obtain intermediate i (3.10 g, 11.9 mmol, yield 38.4%).
ASAP mass spectrum analysis: theoretical 259.92, observed 260.94.
中間体j
 窒素気流下、カルバゾール-1,2,3,4,5,6,7,8-d8(0.40g,2.3mmol)と炭酸カリウム(0.53g,3.8mmol)のジメチルホルムアミド溶液(20mL)に、中間体i(0.20g,0.77mmol)を加えて、室温で2時間攪拌した。この混合物を室温に戻し、水を加えクエンチし、析出した固体をろ過し、メタノール洗浄した。この得られた固体をシリカゲルカラムクロマトグラフィーで精製し、中間体j(0.43mg,0.59mmol,収率77%)を得た。
ASAPマススペクトル分析: 理論値725.27, 観測値726.73
Intermediate j
Under a nitrogen stream, intermediate i (0.20 g, 0.77 mmol) was added to a dimethylformamide solution (20 mL) of carbazole-1,2,3,4,5,6,7,8-d8 (0.40 g, 2.3 mmol) and potassium carbonate (0.53 g, 3.8 mmol), and the mixture was stirred at room temperature for 2 hours. The mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain intermediate j (0.43 mg, 0.59 mmol, yield 77%).
ASAP Mass Spectral Analysis: Calculated 725.27, Observed 726.73
化合物16
 窒素気流下、中間体a(0.27g,0.52mmol)と炭酸セシウム(0.16g,0.48mmol)のジメチルホルムアミド溶液(5mL)に、中間体j(0.29g,0.40mmol)を加えて、110℃で2時間攪拌した。この反応混合物を室温に戻し、水を加えクエンチし、析出した固体をろ過し、メタノール洗浄した。この得られた固体をシリカゲルカラムクロマトグラフィーで精製し、化合物16(0.42g,0.36mmol,収率90%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 8.08 (t, J = 7.7 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.58-7.54 (m, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.11-7.07 (m, 1H), 6.97-6.93 (m, 2H)
ASAPマススペクトル分析: 理論値1159.55, 観測値1160.13
Compound 16
Under a nitrogen stream, intermediate j (0.29 g, 0.40 mmol) was added to a dimethylformamide solution (5 mL) of intermediate a (0.27 g, 0.52 mmol) and cesium carbonate (0.16 g, 0.48 mmol), and the mixture was stirred at 110° C. for 2 hours. The reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain compound 16 (0.42 g, 0.36 mmol, yield 90%).
1H NMR (400 MHz, CDCl3 ) δ 8.46 (s, 1H), 8.08 (t, J = 7.7 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.58-7.54 (m, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.11-7.07 (m, 1H), 6.97-6.93 (m, 2H).
ASAP Mass Spectral Analysis: Calculated 1159.55, Observed 1160.13
化合物2608
 窒素気流下、中間体d(0.417g,0.750mmol)と炭酸セシウム(0.224g,0.689mmol)のジメチルホルムアミド溶液(20mL)に、中間体j(0.417g,0.570mmol)を加えて、110℃で2時間攪拌した。この反応混合物を室温に戻し、水を加えクエンチし、析出した固体をろ過し、メタノール洗浄した。この得られた固体をシリカゲルカラムクロマトグラフィーで精製し、化合物2608(0.560g,0.451mmol,収率78.6%)を得た。
1H NMR (400 MHz, CDCl3) δ 9.15 (s, 1H), 8.46 (d, J = 10.3 Hz, 1H), 8.01 (d, J = 6.2 Hz, 1H), 7.89 (s, 1H), 7.50 (t, J = 4.8 Hz, 1H), 7.27-7.12 (m, 3H)
ASAPマススペクトル分析: 理論値1241.65, 観測値1242.08
Compound 2608
Under a nitrogen stream, intermediate j (0.417 g, 0.570 mmol) was added to a dimethylformamide solution (20 mL) of intermediate d (0.417 g, 0.750 mmol) and cesium carbonate (0.224 g, 0.689 mmol), and the mixture was stirred at 110° C. for 2 hours. The reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain compound 2608 (0.560 g, 0.451 mmol, yield 78.6%).
1H NMR (400 MHz, CDCl3 ) δ 9.15 (s, 1H), 8.46 (d, J = 10.3 Hz, 1H), 8.01 (d, J = 6.2 Hz, 1H), 7.89 (s, 1H), 7.50 (t, J = 4.8 Hz, 1H), 7.27-7.12 (m, 3H).
ASAP Mass Spectral Analysis: Calculated 1241.65, Observed 1242.08
化合物880
 窒素気流下、中間体h(0.420g,0.816mmol)と炭酸セシウム(0.245g,0.753mmol)の脱気したジメチルホルムアミド溶液(20mL)に、中間体j(0.456g,0.627mmol)を加えて、110℃で2時間攪拌した。この反応混合物を室温に戻し、水を加えクエンチし、析出した固体をろ過し、メタノール洗浄した。この得られた固体をシリカゲルカラムクロマトグラフィーで精製し、化合物880(0.497g,0.428mmol,収率68.3%)を得た。
1H NMR (400 MHz, CDCl3) δ 9.20 (d, J = 0.9 Hz, 1H), 8.34 (dd, J = 8.7, 1.6 Hz, 2H), 8.18 (s, 2H), 8.08-8.06 (m, 1H), 7.65-7.63 (m, 2H), 7.06 (d, J = 9.2 Hz, 1H)
ASAPマススペクトル分析: 理論値1159.55, 観測値1160.79
Compound 880
Under a nitrogen stream, intermediate j (0.456 g, 0.627 mmol) was added to a degassed dimethylformamide solution (20 mL) of intermediate h (0.420 g, 0.816 mmol) and cesium carbonate (0.245 g, 0.753 mmol), and the mixture was stirred at 110° C. for 2 hours. The reaction mixture was returned to room temperature, quenched by adding water, and the precipitated solid was filtered and washed with methanol. The obtained solid was purified by silica gel column chromatography to obtain compound 880 (0.497 g, 0.428 mmol, yield 68.3%).
1H NMR (400 MHz, CDCl3 ) δ 9.20 (d, J = 0.9 Hz, 1H), 8.34 (dd, J = 8.7, 1.6 Hz, 2H), 8.18 (s, 2H), 8.08-8.06 (m, 1H), 7.65-7.63 (m, 2H), 7.06 (d, J = 9.2 Hz, 1H).
ASAP Mass Spectral Analysis: Calculated 1159.55, Observed 1160.79
(実施例1)有機エレクトロルミネッセンス素子の作製と評価
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-5Paで積層した。まず、ITO上にHAT-CNを10nmの厚さに形成し、その上にNPDを30nmの厚さに形成し、さらにその上にTrisPCzを10nmの厚さに形成し、その上にEBL1を5nmの厚さに形成した。次に、H1と化合物16を異なる蒸着源から共蒸着し、40nmの厚さの層を形成して発光層とした。発光層における化合物16の濃度は35質量%とした。次に、SF3-TRZを10nmの厚さに形成した後、LiqとSF3-TRZを異なる蒸着源から共蒸着し、30nmの厚さの層を形成した。この層におけるLiqとSF3-TRZの濃度はそれぞれ30質量%と70質量%である。さらにLiqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、実施例1の有機エレクトロルミネッセンス素子とした。
 化合物16の代わりに比較化合物1を用いて、同様の手順により比較例1の有機エレクトロルミネッセンス素子を作製した。
 各有機エレクトロルミネッセンス素子の15.4mA/cmにおける外部量子収率(EQE)を測定したところ、実施例1は7.48%であり、比較例1は4.35%であった。このことから、一般式(1)で表される化合物を用いることにより、高効率な有機発光素子を提供しうることが確認された。
(Example 1) Preparation and evaluation of organic electroluminescence element On a glass substrate on which an anode made of indium tin oxide (ITO) with a film thickness of 50 nm was formed, each thin film was laminated by vacuum deposition at a vacuum degree of 5.0×10 −5 Pa. First, HAT-CN was formed on ITO to a thickness of 10 nm, NPD was formed thereon to a thickness of 30 nm, TrisPCz was further formed thereon to a thickness of 10 nm, and EBL1 was formed thereon to a thickness of 5 nm. Next, H1 and compound 16 were co-deposited from different deposition sources to form a layer with a thickness of 40 nm to serve as an emission layer. The concentration of compound 16 in the emission layer was 35% by mass. Next, SF3-TRZ was formed to a thickness of 10 nm, and then Liq and SF3-TRZ were co-deposited from different deposition sources to form a layer with a thickness of 30 nm. The concentrations of Liq and SF3-TRZ in this layer were 30% by mass and 70% by mass, respectively. Liq was then formed to a thickness of 2 nm, and aluminum (Al) was then evaporated to a thickness of 100 nm to form a cathode, thereby completing the organic electroluminescence element of Example 1.
An organic electroluminescence device of Comparative Example 1 was prepared in the same manner as above, except that Comparative Compound 1 was used in place of Compound 16.
The external quantum yield (EQE) of each organic electroluminescence device at 15.4 mA/ cm2 was measured, and it was 7.48% for Example 1 and 4.35% for Comparative Example 1. From this, it was confirmed that by using the compound represented by the general formula (1), a highly efficient organic light-emitting device can be provided.
(実施例2)アシストドーパントとして用いた有機エレクトロルミネッセンス素子の作製と評価
 実施例1における発光層の代わりに、H1と化合物16とドーパントであるE1をそれぞれ異なる蒸着源から順に64.5重量%、35.0重量%、0.5重量%で蒸着させることにより40nmの厚さの発光層を形成した点だけを変更して、その他は実施例1と同じ手順により実施例2の有機エレクトロルミネッセンス素子を作製した。
 化合物16の代わりに比較化合物1を用いて、同様の手順により比較例2の有機エレクトロルミネッセンス素子を作製した。
 各有機エレクトロルミネッセンス素子の15.4mA/cmにおける外部量子収率(EQE)を測定したところ、実施例2は16.31%であり、比較例2は14.78%であった。このことから、一般式(1)で表される化合物をアシストドーパントとして用いることにより、高効率な有機発光素子を提供しうることが確認された。
Example 2 Preparation and Evaluation of Organic Electroluminescence Device Using Compound 16 as an Assist Dopant An organic electroluminescence device of Example 2 was prepared by the same procedure as in Example 1, except that instead of the emitting layer in Example 1, H1, Compound 16, and the dopant E1 were evaporated from different evaporation sources in the amounts of 64.5 wt %, 35.0 wt %, and 0.5 wt %, respectively, to form an emitting layer having a thickness of 40 nm.
An organic electroluminescence device of Comparative Example 2 was prepared in the same manner as above, except that Comparative Compound 1 was used in place of Compound 16.
The external quantum yield (EQE) of each organic electroluminescence device at 15.4 mA/ cm2 was measured, and it was 16.31% for Example 2 and 14.78% for Comparative Example 2. From this, it was confirmed that a highly efficient organic light-emitting device can be provided by using the compound represented by general formula (1) as an assist dopant.
(実施例3)2種類のホスト材料を用いた有機エレクトロルミネッセンス素子の作製と評価
 実施例1における発光層の代わりに、H1、H2、化合物16およびE1をそれぞれ異なる蒸着源から順に44.5重量%、20.0重量%、35.0重量%、0.5重量%で蒸着させることにより40nmの厚さの発光層を形成した点だけを変更して、その他は実施例1と同じ手順により実施例3の有機エレクトロルミネッセンス素子を作製した。
 15.4mA/cmにおける外部量子収率(EQE)を測定したところ14.93%であり、2種類のホスト材料を用いた場合も良好な発光特性を示すことが確認された。
Example 3 Preparation and Evaluation of Organic Electroluminescence Device Using Two Types of Host Materials An organic electroluminescence device of Example 3 was prepared by the same procedure as in Example 1, except that instead of the emitting layer in Example 1, H1, H2, compound 16 and E1 were evaporated from different evaporation sources in the amounts of 44.5 wt %, 20.0 wt %, 35.0 wt % and 0.5 wt %, respectively, to form an emitting layer having a thickness of 40 nm.
The external quantum yield (EQE) at 15.4 mA/cm 2 was measured to be 14.93%, confirming that good luminescence characteristics were exhibited even when two types of host materials were used.
 一般式(1)で表される化合物を用いることにより、発光特性が良好な有機発光素子を提供できる。このため、本発明は産業上の利用可能性が高い。 By using the compound represented by general formula (1), an organic light-emitting device with good light-emitting properties can be provided. Therefore, the present invention has a high industrial applicability.

Claims (23)

  1.  下記一般式(1)で表される化合物。
    [一般式(1)において、Xは、酸素原子、硫黄原子、または
    を表し、*は結合位置を表す。R~RおよびZは、各々独立に重水素原子または置換基を表す。R~Rは各々独立に水素原子、重水素原子または置換基を表す。R~Rの少なくとも1個は、置換もしくは無置換のアリール基、またはアクセプター性基である。ただし、Rがアクセプター性基でないとき、RおよびR~Rの少なくとも1個は置換もしくは無置換の2,4,6-トリアジニル基である。n1およびn3は、各々独立に0~4のいずれかの整数を表し、n2は0~2のいずれかの整数を表し、pは0~3のいずれかの整数を表し、qは1~4のいずれかの整数を表す。n1が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、n2が2であるとき、2個のRは同一でも異なっていてもよく、n3が2以上の整数であるとき、2個以上のRは同一でも異なっていてもよく、pが2以上の整数であるとき、2個以上のZは同一でも異なっていてもよく、qが2以上の整数であるとき、2個以上の括弧内の構造は同一でも異なっていてもよい。]
    A compound represented by the following general formula (1):
    [In the general formula (1), X is an oxygen atom, a sulfur atom, or
    where * represents a bonding position. R 1 to R 3 and Z each independently represent a deuterium atom or a substituent. R 4 to R 8 each independently represent a hydrogen atom, a deuterium atom or a substituent. At least one of R 1 to R 8 is a substituted or unsubstituted aryl group, or an acceptor group. However, when R 2 is not an acceptor group, at least one of R 1 and R 3 to R 8 is a substituted or unsubstituted 2,4,6-triazinyl group. n1 and n3 each independently represent an integer of 0 to 4, n2 represents an integer of 0 to 2, p represents an integer of 0 to 3, and q represents an integer of 1 to 4. When n1 is an integer of 2 or more, two or more R 1s may be the same or different, when n2 is 2, two or more R 2s may be the same or different, when n3 is an integer of 2 or more, two or more R 3s may be the same or different, when p is an integer of 2 or more, two or more Zs may be the same or different, and when q is an integer of 2 or more, two or more structures in parentheses may be the same or different.
  2.  R~Rの少なくとも1個がアクセプター性基である、請求項1に記載の化合物。 The compound according to claim 1, wherein at least one of R 1 to R 3 is an acceptor group.
  3.  Rがアクセプター性基である、請求項2に記載の化合物。 The compound according to claim 2, wherein R2 is an acceptor group.
  4.  前記アクセプター性基が、下記一般式(b)で表される、請求項1に記載の化合物。
    [一般式(b)において、X~Xは、各々独立にNまたはC(R)を表す。ただし、X~Xの少なくとも1個はNである。Rは水素原子、重水素原子または置換基を表す。ArおよびArは、各々独立に置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基を表す。]
    The compound according to claim 1 , wherein the acceptor group is represented by the following general formula (b):
    [In the general formula (b), X 1 to X 3 each independently represent N or C(R), provided that at least one of X 1 to X 3 is N. R represents a hydrogen atom, a deuterium atom, or a substituent. Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.]
  5.  X~XがNである、請求項4に記載の化合物。 The compound according to claim 4, wherein X 1 to X 3 are N.
  6.  Zが、置換もしくは無置換のジアリールアミノ基(ただし2個のアリール基は互いに結合していてもよい)、または置換もしくは無置換のアリール基である、請求項1に記載の化合物。 The compound according to claim 1, wherein Z is a substituted or unsubstituted diarylamino group (wherein the two aryl groups may be bonded to each other), or a substituted or unsubstituted aryl group.
  7.  Zが、置換もしくは無置換のカルバゾール-9-イル基である、請求項6に記載の化合物。 The compound according to claim 6, wherein Z is a substituted or unsubstituted carbazol-9-yl group.
  8.  Xが酸素原子または硫黄原子である、請求項1に記載の化合物。 The compound according to claim 1, wherein X is an oxygen atom or a sulfur atom.
  9.  qが1である、請求項1に記載の化合物。 The compound of claim 1, wherein q is 1.
  10.  n1+n2+n3が1以上である、請求項1に記載の化合物。 The compound according to claim 1, wherein n1 + n2 + n3 is 1 or more.
  11.  重水素原子を少なくとも1つ有する、請求項1に記載の化合物。 The compound according to claim 1, having at least one deuterium atom.
  12.  請求項1~11のいずれか1項に記載の化合物からなる発光材料。 A light-emitting material comprising the compound according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の化合物からなる遅延蛍光体。 A delayed fluorescent material comprising the compound according to any one of claims 1 to 11.
  14.  請求項1~11のいずれか1項に記載の化合物を含む膜。 A film containing the compound according to any one of claims 1 to 11.
  15.  請求項1~11のいずれか1項に記載の化合物を含む有機半導体素子。 An organic semiconductor device comprising the compound according to any one of claims 1 to 11.
  16.  請求項1~11のいずれか1項に記載の化合物を含む有機発光素子。 An organic light-emitting element comprising the compound according to any one of claims 1 to 11.
  17.  前記素子が前記化合物を含む層を有しており、前記層がホスト材料も含む、請求項16に記載の有機発光素子。 The organic light-emitting device of claim 16, wherein the device has a layer that includes the compound, the layer also including a host material.
  18.  前記化合物を含む層が、前記化合物および前記ホスト材料の他に遅延蛍光材料も含み、前記遅延蛍光材料の最低励起一重項エネルギーが前記ホスト材料より低く、前記化合物よりも高い、請求項17に記載の有機発光素子。 The organic light-emitting device according to claim 17, wherein the layer containing the compound also contains a delayed fluorescent material in addition to the compound and the host material, and the minimum excited singlet energy of the delayed fluorescent material is lower than that of the host material and higher than that of the compound.
  19.  前記素子が前記化合物を含む層を有しており、前記層が前記化合物とは異なる構造を有する発光材料も含む、請求項17に記載の有機発光素子。 The organic light-emitting device of claim 17, wherein the device has a layer containing the compound, and the layer also contains a light-emitting material having a structure different from that of the compound.
  20.  前記素子に含まれる材料のうち、前記化合物からの発光量が最大である、請求項17に記載の有機発光素子。 The organic light-emitting device according to claim 17, wherein the compound emits the greatest amount of light among the materials contained in the device.
  21.  前記発光材料からの発光量が前記化合物からの発光量よりも多い、請求項19に記載の有機発光素子。 The organic light-emitting device according to claim 19, wherein the amount of light emitted from the light-emitting material is greater than the amount of light emitted from the compound.
  22.  有機エレクトロルミネッセンス素子である、請求項16に記載の有機発光素子。 The organic light-emitting element according to claim 16, which is an organic electroluminescence element.
  23.  遅延蛍光を放射する、請求項16に記載の有機発光素子。 The organic light-emitting element according to claim 16, which emits delayed fluorescence.
PCT/JP2023/039973 2022-11-15 2023-11-07 Compound, light-emitting material, and light-emitting element WO2024106261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182960 2022-11-15
JP2022182960 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106261A1 true WO2024106261A1 (en) 2024-05-23

Family

ID=91084613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039973 WO2024106261A1 (en) 2022-11-15 2023-11-07 Compound, light-emitting material, and light-emitting element

Country Status (1)

Country Link
WO (1) WO2024106261A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208698A1 (en) * 2013-06-26 2014-12-31 出光興産株式会社 Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP2017119664A (en) * 2015-12-28 2017-07-06 株式会社Kyulux Compound, light-emitting material, and organic light-emitting device
WO2019190235A1 (en) * 2018-03-28 2019-10-03 주식회사 엘지화학 Compound and organic light-emitting device comprising same
WO2020022378A1 (en) * 2018-07-27 2020-01-30 出光興産株式会社 Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US20200207778A1 (en) * 2018-12-27 2020-07-02 Lg Display Co., Ltd. Delayed fluorescent compound, and organic light emitting diode and organic light emitting display device including the same
JP2020525438A (en) * 2017-06-23 2020-08-27 株式会社Kyulux Composition used for organic light emitting diode
JP2022008106A (en) * 2020-05-22 2022-01-13 株式会社Kyulux Compound, light-emitting material, and light-emitting element
WO2022131344A1 (en) * 2020-12-17 2022-06-23 出光興産株式会社 Organic electroluminescence element and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208698A1 (en) * 2013-06-26 2014-12-31 出光興産株式会社 Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
JP2017119664A (en) * 2015-12-28 2017-07-06 株式会社Kyulux Compound, light-emitting material, and organic light-emitting device
JP2020525438A (en) * 2017-06-23 2020-08-27 株式会社Kyulux Composition used for organic light emitting diode
WO2019190235A1 (en) * 2018-03-28 2019-10-03 주식회사 엘지화학 Compound and organic light-emitting device comprising same
WO2020022378A1 (en) * 2018-07-27 2020-01-30 出光興産株式会社 Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US20200207778A1 (en) * 2018-12-27 2020-07-02 Lg Display Co., Ltd. Delayed fluorescent compound, and organic light emitting diode and organic light emitting display device including the same
JP2022008106A (en) * 2020-05-22 2022-01-13 株式会社Kyulux Compound, light-emitting material, and light-emitting element
WO2022131344A1 (en) * 2020-12-17 2022-06-23 出光興産株式会社 Organic electroluminescence element and electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI TSUJIMOTO, DONG-GWANG HA, GEORGIOS MARKOPOULOS, HYUN SIK CHAE, MARC A. BALDO, TIMOTHY M. SWAGER: "Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 139, no. 13, 5 April 2017 (2017-04-05), pages 4894 - 4900, XP055687893, ISSN: 0002-7863, DOI: 10.1021/jacs.7b00873 *

Similar Documents

Publication Publication Date Title
WO2022249506A1 (en) Compound, light-emitting material, and light-emitting element
WO2022025248A1 (en) Compound, light-emitting material, and light-emitting element
WO2021235549A1 (en) Compound, light-emitting material, and light-emitting element
WO2023140130A1 (en) Compound, light-emitting material and organic light-emitting device
JP2023097788A (en) Compound, light-emitting material and light-emitting device
WO2024106261A1 (en) Compound, light-emitting material, and light-emitting element
WO2023042814A1 (en) Compound, light-emitting material and light-emitting element
WO2022168956A1 (en) Compound, light-emitting material, and organic light-emitting element
JP7222159B2 (en) Compounds, luminescent materials and organic light-emitting devices
WO2023166883A1 (en) Compound, light-emitting material and light-emitting element
WO2022254965A1 (en) Compound, light-emitting material, and light-emitting element
WO2023276918A1 (en) Compound, electronic barrier material, and organic semiconductor element and compound
WO2023090154A1 (en) Compound, light-emitting material, and light-emitting element
WO2024111223A1 (en) Compound, light-emitting material and light-emitting element
WO2023090288A1 (en) Compound, light-emitting material and light-emitting element
WO2023140374A1 (en) Compound, light-emitting material and light-emitting element
JP2023002881A (en) Compound, light-emitting material, and organic light-emitting element
JP2023002879A (en) Compound, light-emitting material, and organic light-emitting element
JP2023056802A (en) Compound, light-emitting material and organic light-emitting device
JP2023092715A (en) Compounds, luminous materials, and luminous elements
JP2023002882A (en) Compound, light-emitting material, and organic light-emitting element
JP2023036162A (en) Compound, luminescent material, and organic light-emitting element
JP2023133164A (en) Compound, light-emitting material, and light-emitting element
JP2023032402A (en) Compound, luminescent material, and organic light-emitting element
JP2023046437A (en) Compound, luminescent material, and organic light-emitting element