WO2024106040A1 - Elevator remote inspection system and elevator remote inspection method - Google Patents

Elevator remote inspection system and elevator remote inspection method Download PDF

Info

Publication number
WO2024106040A1
WO2024106040A1 PCT/JP2023/035879 JP2023035879W WO2024106040A1 WO 2024106040 A1 WO2024106040 A1 WO 2024106040A1 JP 2023035879 W JP2023035879 W JP 2023035879W WO 2024106040 A1 WO2024106040 A1 WO 2024106040A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
car
signal
elevator
time
Prior art date
Application number
PCT/JP2023/035879
Other languages
French (fr)
Japanese (ja)
Inventor
英典 山▲崎▼
ヴァン マイン グエン
Original Assignee
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Publication of WO2024106040A1 publication Critical patent/WO2024106040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • This disclosure relates to a remote elevator inspection system and a remote elevator inspection method for performing remote inspection of elevators.
  • the present disclosure has been made to solve the above-mentioned problems, and its purpose is to provide an elevator remote inspection system and elevator remote inspection method that can perform remote inspection as easily as possible for various elevators with different communication specifications and signal specifications.
  • the elevator remote inspection system is a system for remotely inspecting elevators.
  • the elevator remote inspection system includes an instruction unit, an acquisition unit, a control unit, and an output unit.
  • the instruction unit performs a transmission process for transmitting a hall call signal that generates an elevator hall call to the elevator equipment group.
  • the acquisition unit acquires, as a judgment signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group.
  • the control unit generates a hall call signal that is transmitted by the transmission process, and performs a judgment process for determining an inspection item for the remote inspection based on the judgment signal acquired by the acquisition unit as a result of the transmission process.
  • the output unit outputs the judgment result of the inspection item.
  • the transmission process includes a first transmission process for transmitting a second hall call signal for generating a second hall call in a downward direction at a second floor above the first floor after a predetermined time has elapsed since the elevator car arrives at the first floor based on the transmission of a first hall call signal for generating a first hall call in an upward direction at the first floor, and a second transmission process for transmitting the first hall call signal after a predetermined time has elapsed since the car arrives at the second floor based on the transmission of the second hall call signal.
  • the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a position range of the car in which the car door can be opened and closed, or a non-first state that is not the first state.
  • the control unit calculates the position of the car and the travel time of the car in a travel section in which the car travels in each of a plurality of travel states of the car, using information including the first signal.
  • the plurality of travel states include an accelerating travel state in which the car travels while accelerating, a constant speed travel state in which the car travels at a constant speed, and a decelerating travel state in which the car travels while decelerating.
  • the inspection items include a plurality of travel states.
  • the control unit determines that the driving state corresponding to the driving time is a normal state when the driving time corresponding to each of the plurality of driving states is within a reference range determined based on a predetermined reference time, and determines that the driving state corresponding to the driving time is a modulated state when the driving time is outside the reference range.
  • the remote elevator inspection method is a method for remotely inspecting an elevator.
  • the remote elevator inspection method includes a step of performing a transmission process of transmitting a hall call signal that generates a hall call for the elevator to an equipment group of the elevator, a step of acquiring a signal input/output by parallel transmission between the equipment group of the elevator and a control panel that controls the equipment group of the elevator as a judgment signal, a step of generating a hall call signal that is transmitted by the transmission process, and a step of performing a judgment process of judging an inspection item of the remote inspection based on the judgment signal acquired by the step of acquiring a result of the transmission process, and a step of outputting the judgment result of the inspection item.
  • the transmission process includes a first transmission process of transmitting a second hall call signal that generates a second hall call in the downward direction at a second floor above the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal that generates a first hall call in the upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after a predetermined time has elapsed since the arrival of the car at the second floor based on the transmission of the second hall call signal.
  • the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a position range of the car in which the car door can be opened and closed, or a non-first state that is not the first state.
  • the step of performing the determination process includes a step of calculating the position of the car and the running time of the car in a running section in which the car runs in each of a plurality of running states of the car, using information including the first signal.
  • the plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating.
  • the inspection items include a plurality of running states.
  • the step of performing the determination process further includes a step of determining that the running state corresponding to the running time is a normal state when the running time corresponding to each of the plurality of running states is within a reference range determined based on a predetermined reference time, and determining that the running state corresponding to the running time is a modulated state when the running time is outside the reference range.
  • remote inspection can be performed as simply as possible for various elevators with different communication specifications and signal specifications.
  • multi-brand maintenance can be achieved in remote inspection. This allows maintenance companies to reduce the frequency of maintenance inspections at the maintenance site and increase the number of elevators that can be maintained. Building owners can freely select a maintenance company and enter into a maintenance contract that allows remote inspection.
  • FIG. 1 is a diagram showing an example of the overall configuration of an elevator system and a remote inspection system.
  • FIG. 1 is a diagram showing an example of connecting a conventional remote inspection system to an elevator system.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of an elevator system.
  • FIG. 1 is a diagram showing a schematic structure of an elevator.
  • FIG. 2 is a diagram showing an example of an elevator hall.
  • FIG. 2 is a diagram showing an example of the inside of an elevator car.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of an elevator system according to a modified example. 2 is a diagram for explaining a hardware configuration of the remote inspection system and signals used in the remote inspection system.
  • FIG. FIG. 13 is a diagram for explaining the relationship between car travel and signals during diagnostic operation.
  • FIG. 1 is a diagram illustrating an example of a functional block diagram of a remote inspection system.
  • FIG. 2 is a diagram showing an example of a display screen of the remote inspection system.
  • 13 is a flowchart of a remote inspection process and a terminal setting process.
  • FIG. 13 is a diagram illustrating an example of a reference time DB.
  • 13 is a flowchart of a reference time update process.
  • 13 is a flowchart of a reference time acquisition process.
  • 4 is a timing chart for explaining a running state. 4 is a timing chart for explaining a running state.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is a diagram for explaining a diagnostic operation.
  • FIG. 11 is
  • 11 is a diagram for explaining a diagnostic operation.
  • 4 is a flowchart of a driving diagnosis process.
  • 13 is a flowchart of a traveling occurrence process.
  • 13 is an example of a hall call signal generation table.
  • 13 is a flowchart of a car information measurement process.
  • 4 is an example of a traveling state table.
  • 13 is a flowchart of a determination process.
  • 13 is a flowchart of a multi-car process.
  • FIG. 1 is a diagram showing an example of the overall configuration of an elevator system 200 and a remote inspection system 1.
  • an elevator If an elevator is installed in a building, the building owner must enter into a maintenance contract with an elevator maintenance company. Maintenance staff from the maintenance company will perform maintenance inspections and regular inspections of the elevator based on the maintenance contract. When entering into a maintenance contract, the building owner can also include remote inspection or remote monitoring as an option.
  • Remote monitoring refers to a maintenance company's monitoring center (information center) etc. constantly monitoring the elevator for any abnormalities or malfunctions using communication lines etc.
  • Remote inspection refers to, in addition to remote monitoring, a maintenance company's monitoring center etc. inspecting the areas required for normal elevator operation to see if the elevator's operating status and the operating status of each piece of equipment are normal, using communication lines etc.
  • Remote inspections include three types of elevator inspections: performance inspections, inspections of each piece of equipment, and inspections of usage status.
  • Performance inspections involve inspections of the car's start-up state, accelerating running state, constant speed running state, decelerating running state, and landing state.
  • Equipment inspections involve inspections of the machine room or control panel temperature, the state of the control equipment, the state of the destination floor button in the car, the state of the intercom, the state of the doors opening and closing, the state of the landing button, the state of the door switch, and whether there are any abnormalities in the electromagnetic brakes.
  • Usage inspections involve inspections of the car's travel distance, travel time or number of starts, and the number of times the doors are opened and closed.
  • the remote inspection system 1 of this embodiment is a system for remotely inspecting elevators that is configured to meet these needs. It will be described in detail below.
  • the remote inspection system 1 includes a remote inspection device 100, a management server 300, and a terminal 400.
  • An elevator system 200 and the remote inspection device 100 are installed in a building 2.
  • the remote inspection device 100 is connected to the elevator system 200 and performs remote inspection of the elevators.
  • the remote inspection device 100 is configured to include, for example, a PLC (Programmable Logic Controller).
  • the management server 300 is installed, for example, in an information center (monitoring center) of a maintenance company.
  • the terminal 400 may be installed in the information center of the maintenance company, or in any other location.
  • the terminal 400 and the remote inspection device 100 can be connected to the management server 300 via a communication line.
  • the management server 300 manages various data such as customer information for each building that has an elevator maintenance contract, building information, information on the elevators installed in the building, and remote inspection results.
  • the management server 300 is a device that manages the remote inspection device 100, and transmits commands to the remote inspection device 100 to perform remote inspections, and obtains the inspection results of remote inspections performed by the remote inspection device 100.
  • the terminal 400 is, for example, a PC (Personal Computer), a smartphone, or a tablet.
  • the terminal 400 includes a display unit 410 that displays various information, and an input unit 420 that can input operations from a user who uses the terminal 400.
  • the terminal 400 is used by a maintenance worker of a maintenance company.
  • the "user" who uses the terminal 400 refers to a maintenance worker of the maintenance company, but is not limited to this, and may include any person who may use the terminal 400.
  • the user may be an employee other than the maintenance worker of the maintenance company, or may be a person who manages the building 2.
  • the terminal 400 can perform a remote inspection of the remote inspection device 100 via the management server 300 by the maintenance worker's operation from the input unit 420.
  • the terminal 400 can display the inspection results of the remote inspection performed by the remote inspection device 100 on the display unit 410.
  • the elevator system 200 includes a control panel 210 and an elevator equipment group 220.
  • the elevator equipment group 220 is made up of various equipment including elevators and elevator hall devices.
  • the control panel 210 controls the various equipment in the elevator equipment group 220.
  • the control panel 210 inputs and outputs signals to and from the elevator equipment group 220 via multiple signal lines.
  • the signals transmitted and received between the elevator equipment group 220 and the control panel 210 include those transmitted and received by parallel transmission (parallel communication) and those transmitted and received by serial transmission (serial communication).
  • the former (parallel transmission) is, for example, a signal obtained directly from various switches or various sensors of the elevator equipment group 220.
  • a switch contact signal (for example, a predetermined voltage is detected when the switch is ON) is assumed, but it may also be, for example, a pulse signal obtained from a rotary encoder.
  • serial transmission is a signal sent and received by serial communication between the control panel 210 and a control board provided in a device installed on the elevator landing side or car side.
  • a scenario can be envisioned in which communication is established between elevator management software (program) running on the control panel 210 and software (program) running on the control board on the car side, and data (internal signals) such as the car's position and running direction are sent and received by serial communication.
  • a portion of the signal line that transmits and receives signals by parallel transmission is branched and connected to a terminal provided on the remote inspection device 100. This makes it possible for a portion of the signals transmitted and received by parallel transmission between the control panel 210 and the elevator equipment group 220 to be input and output on the remote inspection device 100 side.
  • control panel 210 of the elevator system 200 is configured to be connectable to various maintenance devices for the elevator.
  • a connector 261 is provided on a control board provided in the control panel 210.
  • the various types of elevator maintenance devices include, for example, a maintenance computer, a remote monitoring device, a remote inspection device, etc., that are used as dedicated devices for elevator system 200. These maintenance devices are developed and used by the manufacturer of elevator system 200 or a maintenance company affiliated with the manufacturer to correspond to each model of elevator. For this reason, these maintenance devices cannot be connected to elevators made by a different manufacturer.
  • a maintenance company affiliated with a manufacturer is, for example, a subsidiary or associated company of the manufacturer, and will be referred to as a "manufacturer-affiliated maintenance company" below.
  • the remote inspection device 100 of this embodiment is configured to be connectable to elevator system 200 regardless of the manufacturer of elevator system 200.
  • the types of signals suitable for use with the remote inspection device 100 are quite limited (DZ signal, LB signal, GS signal, DS signal, hall call signal, etc., described below).
  • the maintenance device can acquire internal signals held by the elevator management software by establishing communication between the software running on the maintenance device and the elevator management software running on the control panel 210.
  • These internal signals include signals transmitted by parallel transmission (such as switch contact signals) and signals transmitted by serial transmission (such as various commands) input and output between the control panel 210 and the elevator equipment group 220, as well as signals generated from these signals.
  • control panel 210 calculates the car's position, speed, running direction, and state (accelerating running state, constant speed running state, decelerating running state), etc., based on a signal obtained from a rotary encoder that measures the rotational position of the hoist (motor) that drives the elevator. This allows the control panel 210 to hold this information as internal signals in the software.
  • a maintenance device connected to the control panel 210 via serial communication can obtain not only contact signals input and output via parallel transmission, but also internal software signals input and output via serial transmission.
  • the maintenance device can send various commands, such as commands to pause the elevator or commands to wait at a specific floor, set various operation options, and change the settings of various parameters.
  • the maintenance computer is a computer (terminal device) that can be used for on-site elevator maintenance and inspection.
  • terminal device By starting up various maintenance software that runs on the maintenance computer, it is possible to check the elevator's various internal signals, give various commands to the elevator, change settings, rewrite software, etc.
  • the remote monitoring device and remote inspection device are used in remote locations via a network.
  • the remote monitoring device is a device that can remotely acquire and display the above internal signals via a network.
  • the remote inspection device is a device that can remotely acquire and display the above internal signals via a network and can issue operation commands to the elevator for remote inspection.
  • FIG. 2 is a diagram showing an example in which a conventional remote inspection system is connected to an elevator system 200, 200a.
  • elevator system 200 is installed in building A, and elevator system 200a is installed in building B.
  • Elevator system 200 is an elevator system manufactured by company X, and the elevator model is model M. Elevators from each company come in multiple models depending on the purpose, era, etc.
  • Elevator system 200a is an elevator system manufactured by company Y, and the elevator model is model N.
  • Only a remote inspection device 500 (conventional type) manufactured by Company X can be connected to the elevator system 200 manufactured by Company X via the connector 261.
  • the remote inspection device 500 can be connected to a management server managed by Company X via a network.
  • Company X is both an elevator manufacturer and an elevator maintenance company (a manufacturer-affiliated maintenance company).
  • Company X's server is installed in Company X's information center.
  • Company X's management server By connecting a terminal to Company X's management server, it becomes possible to remotely inspect the elevator system 200 by operating the terminal.
  • the remote inspection device 500a can be connected to a management server managed by Company Y via a network.
  • Company Y is both the elevator manufacturer and the elevator maintenance company (a manufacturer-affiliated maintenance company).
  • Company Y's server is installed in Company Y's information center.
  • Company Y's management server By connecting a terminal to Company Y's management server, it becomes possible to remotely inspect elevator system 200a by operating the terminal.
  • Company X's remote inspection device 500 can communicate with the control panel 210 to acquire various internal signals generated by the management software of the control panel 210, and can send various commands to the control panel 210 for the elevator. For example, by operating the terminal, it is possible to send a command to make the car travel between two floors, and as a result, it is possible to acquire information such as the travel time and speed between the two floors. The same is true for Company Y's remote inspection device 500a.
  • Such remote inspection devices may be prepared by each elevator manufacturer, but they can usually only be used by the elevator manufacturer or a maintenance company affiliated with that manufacturer. Also, if the model is old, a compatible remote inspection device may not exist.
  • manufacturer-affiliated maintenance company (manufacturer) X can use the remote inspection device 500 manufactured by X, but cannot use the remote inspection device 500a manufactured by Y.
  • manufacturer-affiliated maintenance company (manufacturer) Y can use the remote inspection device 500a manufactured by Y, but cannot use the remote inspection device 500 manufactured by X.
  • independent maintenance companies In addition to elevator maintenance companies affiliated with manufacturers, there are also maintenance companies that are not affiliated with any manufacturer (called “independent maintenance companies”). Independent maintenance companies cannot use the remote inspection device 500 manufactured by Company X or the remote inspection device 500a manufactured by Company Y.
  • the remote inspection device 100 in this embodiment is therefore configured as a remote inspection device that can be used regardless of manufacturer or model. As mentioned above, since communication specifications and signal specifications are not standardized across manufacturers and models, it is difficult to build a remote inspection device 100 that communicates via serial transmission.
  • the remote inspection device 100 connects to the elevator system 200 by parallel transmission (capturing switch contact signals, etc.).
  • signal specifications are not standardized between manufacturers, the types of signals that can be commonly used are limited.
  • some signals are not suitable for use due to hardware constraints (in terms of ease of installation and installation costs). For this reason, in order to realize the remote inspection device 100, it is necessary to thoroughly consider what signals to use and what method to use to determine the inspection items for remote inspection. The signals used in this embodiment and the method of determining the inspection items will be described later using FIG. 7 and subsequent figures.
  • the remote inspection device 100 in this embodiment can be connected to both an elevator system 200 made by company X installed in building A and an elevator system 200a made by company Y installed in building B.
  • the remote inspection device 100 installed in building A and the remote inspection device 100 installed in building B connect to the management server 300 via a network.
  • the terminal 400 it becomes possible to remotely inspect both the elevator system 200 in building A and the elevator system 200a in building B.
  • elevator systems 200 and 200a can be configured to be connected by a single remote inspection device 100.
  • building owners can freely select a maintenance company to conduct remote inspections, regardless of the type of elevator they have installed, whether it is a manufacturer-affiliated or independent maintenance company.
  • the management server 300 is not limited to being configured from one server device, but may be configured from multiple server devices.
  • a server device may be installed for each region to respond to access requests from each region.
  • the server devices in each region may be configured to communicate with each other and share each other's information (customer information, elevator information, etc.).
  • a main server device may be provided that manages the servers in each region, and the main server device may manage the information for each region.
  • regions of one country are not limited to regions of one country, but may include regions of multiple countries.
  • a server device may be placed in Japan and configured to share information with a server device placed outside Japan.
  • a main server device may be placed in one of the countries, and the server devices placed in each country may refer to the information stored in the main server device.
  • Server devices installed in each country may be configured to have a language code for each country or region they manage. For example, a server device that manages buildings in Japan is set to have the language code "Japanese.” A server device that manages buildings in China is set to have the language code "Chinese.” A server device that manages buildings in an English-speaking country is set to have the language code "English.”
  • the server device has language data corresponding to each language code. For example, when accessed from a terminal in Japan, information is displayed on the terminal in Japanese. When accessed from a terminal in China, information is displayed on the terminal in Chinese. Information may also be managed by language.
  • the management server 300 may be composed of a group of servers such as a communication server (Web server), a data server, and an application server that are connected to the remote inspection device 100 and the terminal 400.
  • the remote inspection system 1 can be used in countries around the world.
  • elevator system 200 control panel 210 and elevator equipment group 220
  • remote inspection device 100 are installed in building A in a first country (e.g., the United States)
  • elevator system 200a control panel 210a and elevator equipment group 220a
  • remote inspection device 100 are installed in building B in a second country (e.g., Japan) different from the first country.
  • the management server 300 is installed in an information center in the second country.
  • the management server 300 installed in the second country can be connected via a network to the remote inspection device 100 installed in the first country and the remote inspection device 100 installed in the second country.
  • the management server 300 can send a command to execute a remote inspection to the remote inspection device 100 installed in the first country or the second country, and can receive the judgment results of each inspection item of the remote inspection from the remote inspection device 100 that has received the command to execute the remote inspection.
  • the terminal 400 may be installed in the first country or in the second country.
  • the management server 300 installed in the second country may be accessed from the terminal 400 installed in the second country, and remote inspection may be performed by the remote inspection device 100 installed in the first country or the second country.
  • the management server 300 installed in the second country may be accessed from the terminal 400 installed in the first country, and remote inspection may be performed by the remote inspection device 100 installed in the first country or the second country.
  • the remote inspection device 100 installed in the first country establishes a network connection using the communication line network of the first country (such as an LTE line network).
  • the remote inspection device 100 installed in the second country establishes a network connection using the communication line network of the second country.
  • the management server 300 installed in the second country connects to the remote inspection device 100 installed in the first country or the second country via the communication line of the second country.
  • the management server 300 in the second country can manage the remote inspection device 100 that performs remote inspection of the elevator system 200 operating in the first country. This allows the management server 300 to manage the remote inspection device 100 across countries, regardless of in which country the elevator system 200 and remote inspection device 100 are installed.
  • the remote inspection device 100 is not limited to determining each inspection item of the remote inspection, and the management server 300 may determine each inspection item of the remote inspection.
  • the remote inspection device 100 transmits signal data for determination acquired from the elevator system 200 to the management server 300.
  • the management server 300 may determine each inspection item based on the signal data.
  • the management server 300 may be installed in each country, and configured to manage the remote inspection device 100 for each country.
  • Elevator System 200 3 is a diagram showing an example of a hardware configuration of elevator system 200. In this embodiment, it is assumed that building 2 in which elevator system 200 is installed has five floors. It is also assumed that one elevator (this elevator will be referred to as "No. 1 elevator") is installed in building 2.
  • the control panel 210 includes a car control unit 212.
  • the car control unit 212 is a control board that controls the elevator equipment group 220.
  • the elevator equipment group 220 includes hall devices 230 installed at the halls of each floor from the first floor (1F) to the fifth floor (5F), various sensors and various switches (such as a slow-up switch and a slow-down switch, which will be described later) used in the elevator system 200, and the first car hoist 250 and car device 240.
  • the hoist 250 is a motor that drives the elevator car to raise and lower it.
  • the car device 240 is various devices installed in the car, including a destination floor button for registering destination floors.
  • the hall device 230 is various devices installed at the halls of each floor, including a hall button for registering hall calls. Details of these will be explained using Figure 4 and subsequent figures.
  • the individual car control units 212 are connected to the landing devices 230 on each floor, various sensors, various switches, etc., via a control cable 21 that bundles multiple signal lines.
  • the individual car control units 212 are connected to the No. 1 hoisting machine 250 and car device 240, etc., via a control cable 22 that bundles multiple signal lines.
  • Each machine control unit 212 is equipped with a processor, memory, and a communication interface.
  • the processor is a CPU (Central Processing Unit).
  • the memory is, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). These are connected to each other via a bus so that they can communicate with each other.
  • the ROM stores the management software program for controlling the elevator equipment group 220.
  • the CPU loads the program stored in the ROM into the RAM and executes it to control the elevator equipment group 220.
  • the RAM serves as a working area when the CPU executes the program, and temporarily stores the program and data used when executing the program.
  • the individual car control units 212 are configured to be able to communicate with the elevator equipment group 220, such as the hall device 230, the hoist 250, and the car device 240, or with the various maintenance devices shown in Figures 1 and 2, by serial or parallel communication via the communication interface.
  • the elevator equipment group 220 such as the hall device 230, the hoist 250, and the car device 240, or with the various maintenance devices shown in Figures 1 and 2, by serial or parallel communication via the communication interface.
  • FIG. 4 is a diagram showing a schematic diagram of an elevator structure.
  • the elevator car 10 is installed in a hoistway 8 provided in a building 2.
  • the car 10 moves up and down in the hoistway 8 to move between multiple floors.
  • the car 10 can stop at each floor from the first floor (1F) to the fifth floor (5F).
  • the machine room 5 is provided directly above the elevator shaft 8.
  • the machine room 5 contains a hoist 250, a control panel 210, and a remote inspection device 100.
  • the car device 240 is provided in the car 10.
  • the elevator is a traction type elevator.
  • a traction type elevator is one type of rope type elevator. This elevator is equipped with a car 10, a counterweight (balancing weight) 12, a rope 11, a hoist 250, and a deflector pulley 13. A rope (main rope) 11 is hung between the hoist 250 and the deflector pulley 13. The car 10 and counterweight 12 are suspended from both ends of the rope 11.
  • the elevator can run the car 10 installed in the hoistway 8 in an upward direction (also called the "UP direction”) or a downward direction (also called the "DN direction").
  • UP direction also called the "UP direction”
  • DN direction a downward direction
  • the car 10 has a running direction that is either the UP direction, the DN direction, or no direction.
  • the running direction of the car 10 is the UP direction.
  • the car 10 runs in the DN direction or stops (stopped in a state where it is scheduled to run in the DN direction) to respond to a running command to a floor below the car 10
  • the running direction of the car 10 is the DN direction.
  • the car direction of the car 10 is defined as "no direction”. Note that when the car 10 is stopped at the lowest floor, the car direction is the UP direction, and when the car 10 is stopped at the top floor, the car direction may be the DN direction.
  • the car 10 becomes able to run when the electromagnetic brake (not shown, also simply referred to as the "brake") of the hoist 250 is released.
  • the car 10 enters a braking state (stationary state) when the brake of the hoist 250 is activated.
  • the brake of the hoist 250 is configured to be able to brake by pressing the brake shoe against the brake drum with the force of a spring. Supplying power to the brake coil causes the brake shoe to move away from the brake drum, thereby releasing the brake. If the supply of power to the brake coil is cut off, the electromagnetic brake enters a braking state and the car 10 cannot run.
  • Elevators are designed so that the weight of the counterweight 12 balances with the weight of the car 10, including passengers, when the car 10 is loaded with 50% of its maximum load capacity. For example, when there are no passengers, the counterweight 12 is heavier than the car 10. For this reason, if the brake is simply released, the car 10 will travel in the UP direction. On the other hand, when the car 10 is full, the car 10 will be heavier than the counterweight 12. For this reason, if the brake is simply released, the car 10 will travel in the DN direction.
  • a shock absorber (buffer) 14 is installed in the pit 6, which is the bottom of the elevator shaft 8.
  • the shock absorber 14 is a device that absorbs the shock of the car 10 falling if an abnormality occurs.
  • the individual car control units 212 are connected to the car device 240 via a control cable 22 ( Figure 3). Multiple signal lines are bundled within the control cable 22 for communication between the individual car control units 212 and the car device 240.
  • the platform control unit 212 is connected to the landing device 230, various sensors, and various switches installed on each floor via a control cable 21 ( Figure 3) that runs along the wall of the elevator shaft 8.
  • the control cable 21 is composed of multiple signal lines for communication between the platform control unit 212 and the landing device 230 or various switches, etc. If there is no machine room 5, the hoist 250 and control panel 210, etc. are installed inside the elevator shaft 8 (on the wall or in the pit 6, etc.).
  • the elevator is not limited to a traction type elevator in which the car 10 and counterweight 12 are balanced as described above.
  • it may be a drum type elevator in which the car 10 is raised and lowered by winding the rope 11 around a drum without using a counterweight 12.
  • a drum type elevator is one form of a rope type elevator. It may also be a hydraulic elevator in which oil is sent to a hydraulic jack by an electric pump, and the car 10 is raised and lowered by the operation of the hydraulic jack.
  • the position of the car 10 is controlled by controlling the amount of oil sent to the hydraulic jack.
  • the properties of the oil change depending on the season or temperature, which can easily lead to differences in the running characteristics of the car 10. For example, compared to the high temperatures of summer, the oil thickens in winter, so it takes longer to start up.
  • hydraulic elevators which control the amount of oil (hydraulic pressure)
  • the car 10 when the car 10 is stopped on a certain floor, the car will gradually sink over time, and the floor surface of the car 10 may gradually drop relative to the floor surface of the landing (leaving the door zone while stopped).
  • FIG. 5A is a diagram showing an example of an elevator landing.
  • FIG. 5A shows a view of the elevator landing from the front.
  • a platform call in the UP direction is also called an “UP call” or “UP platform call”
  • a platform call in the DN direction is also called a “DN call” or “DN platform call”
  • a destination floor call in car 10 is also called a “car call.”
  • the buttons for registering each of these calls are called “call buttons.”
  • the call buttons include car call buttons (also called “destination floor buttons”) provided inside the car 10, and platform call buttons (also called “platform buttons”) provided at the platforms.
  • Platform call buttons include upward platform call buttons (also called “UP call buttons” or “UP platform call buttons”) provided at the platforms, and downward platform call buttons (also called “DN call buttons” or “DN platform call buttons”) provided at the platforms.
  • each floor is equipped with a landing device 230.
  • the landing device 230 includes a landing operating panel 70.
  • the first floor landing will be used as an example for explanation.
  • the first floor landing is equipped with a door 61 and a landing operating panel 70.
  • the hall operating panel 70 is equipped with an UP hall call button 81 and a DN hall call button 82.
  • an UP hall call button 81 is pressed, an UP hall call on the first floor is registered.
  • the hall operating panel 70 is equipped with an indicator 71.
  • the indicator 71 displays the direction in which the car 10 is traveling and the floor on which the car 10 is located (car position). In the example shown in the figure, it shows that the car 10 is traveling or stopped in the UP direction on the second floor.
  • Figure 5B is a diagram showing an example of the inside of an elevator car.
  • Figure 5B shows a view of the inside of the car 10 looking toward the exit.
  • the car device 240 includes a car operation panel 50.
  • the car 10 is provided with a door 60 and the car operation panel 50.
  • the car operation panel 50 is provided with a door open button 52 for opening the door, a door close button 53 for closing the door, and a car call button for registering destination floors (car calls) from the 1st to 5th floors.
  • the car call buttons include a 1st floor car call button 31 for registering a car call to the 1st floor, a 2nd floor car call button 32 for registering a car call to the 2nd floor, a 3rd floor car call button 33 for registering a car call to the 3rd floor, a 4th floor car call button 34 for registering a car call to the 4th floor, and a 5th floor car call button 35 for registering a car call to the 5th floor.
  • the car operation panel 50 is also provided with an indicator 51 that displays the running direction and car position of the car 10.
  • a call signal corresponding to the pressed hall call is sent to the control panel 210 (each car control unit 212).
  • the control panel 210 registers the hall call.
  • the control panel 210 then assigns a car 10 to the registered hall call, and causes the car 10 to respond to the registered hall call.
  • the control panel 210 registers the UP platform call on the first floor.
  • the control panel 210 determines the allocation of the car 10 to the UP platform call on the first floor.
  • the car 10 responds to the UP platform call on the first floor, travels to the first floor, then stops and opens the door.
  • a call signal corresponding to the pressed car call is sent to the control panel 210.
  • the control panel 210 registers the car call.
  • the control panel 210 causes the car 10 to respond to the registered car call.
  • a call signal corresponding to a car call to the second floor is sent to the control panel 210.
  • the control panel 210 registers the car call to the second floor.
  • the car 10 responds to the car call to the second floor, travels to the second floor, then stops and opens the door.
  • the doors open means that both the car 10 side door 60 and the hall side door 61 open in unison, and hereafter this will also be expressed as “the doors open.”
  • the doors close means that both the car 10 side door 60 and the hall side door 61 close in unison, and hereafter this will also be expressed as “the doors close.”
  • the remote inspection device 100 uses the determination signals to determine each item of the remote inspection.
  • the determination signals include a first signal to a fourth signal.
  • Each determination signal has either an ON state or an OFF state.
  • a DZ signal as one aspect of the first signal an LB signal as one aspect of the second signal, a GS signal as one aspect of the third signal, and a DS signal as one aspect of the fourth signal are exemplified.
  • the landing device 230 provided on each floor includes a landing door switch (also called an "interlock switch") not shown.
  • the landing door switch is ON when the landing side door 61 is closed, and is OFF when the landing side door 61 is open.
  • the landing door switch is OFF (door not closed), for safety reasons, it is controlled by the control panel 210 to prevent the car 10 from traveling.
  • the DS signal when the landing door 61 is closed and the landing door switch is in the ON state (the landing door switch is pressed and the contact is in the ON state), the DS signal is in the ON state, and when the landing door 61 is not closed and the landing door switch is in the OFF state, the DS signal is in the OFF state and is sent to the control panel 210.
  • the car device 240 also includes a car door switch (also called a "gate switch”), not shown.
  • the car door switch is ON when the door 60 on the car 10 side is closed, and is OFF when the door 60 on the car 10 side is open.
  • the car door switch is OFF (door not closed), for safety reasons, it is controlled by the control panel 210 so that the car 10 cannot run.
  • the GS signal when the car 10 door 60 is closed and the car door switch is ON (the car door switch is pressed and the contact is ON), the GS signal is ON, and when the car 10 door 60 is not closed and the car door switch is OFF, the GS signal is OFF and is sent to the control panel 210.
  • the car 10 door 60 opens and closes in conjunction with the hall door 61.
  • the car device 240 also includes a door zone detection device (also called a "floor landing device"), not shown.
  • the door zone refers to the position range of the car 10 where the door 60 of the elevator car 10 can be opened and closed.
  • the door zone detection device is installed in the car 10, and when the car 10 is located within the position range where the door can be opened (within the door zone) on each floor, the door zone detection device detects the DZ signal as being in the ON state, and when the car 10 is not located within the door zone, the door zone detection device detects the DZ signal as being in the OFF state and sends it to the control panel 210.
  • the door zone detection device installed in the car 10 includes a magnetic proximity sensor.
  • a door zone detection plate is installed at the landing position of each floor in the elevator shaft 8.
  • the DZ signal is configured to be ON when the magnetic proximity sensor of the door zone detection device detects the door zone detection plate.
  • the DZ signal is configured to be ON when the floor position of the car 10 is within 150 mm above or below the floor position of each floor landing.
  • the control panel 210 controls the car so that the door cannot be opened.
  • the door zone detection device may be installed on the elevator shaft 8 side, and the door zone detection plate may be installed on the car 10 side.
  • the LB signal becomes ON.
  • the elevator brake is activated (the brake is not released) by stopping the supply of power to the brake coil of the hoisting machine 250, the LB signal becomes OFF.
  • a slow-up switch (not shown) and a slow-down switch (not shown) are installed on the wall of the elevator shaft 8.
  • the slow-up switch is provided to prevent the car 10 from colliding with the top of the elevator shaft 8.
  • the slow-up switch is configured to turn ON by contacting a specified member attached to the car 10 when the car 10 traveling UP reaches a specified position between the 5th floor (the top floor) and the 4th floor.
  • the SUL signal When the slow-up switch is ON, the SUL signal is ON, and when the slow-up switch is OFF, the SUL signal is OFF.
  • the control panel 210 controls the car 10 to decelerate for safety reasons.
  • the slow-down switch is a switch that is installed to prevent the car 10 from colliding with the bottom of the elevator shaft 8 (or entering the pit 6).
  • the slow-up switch is configured to be turned ON by contacting a specified member attached to the car 10 when the car 10 traveling in DN reaches a specified position between the first floor (the lowest floor) and the second floor.
  • the SDL signal When the slowdown switch is ON, the SDL signal is ON, and when the slowdown switch is OFF, the SDL signal is OFF.
  • the control panel 210 controls the car 10 to slow down for safety reasons.
  • slow-up switch and slow-down switch may be installed on the car 10 side, and these switches may be configured to be turned on by contact with a specified member installed on the elevator shaft 8 side.
  • elevator No. 1 is always assigned and responds to the hall call.
  • Locomotive No. 1 For example, if a DN call is registered at a platform on the second floor, Locomotive No. 1 will be assigned to this DN call on the second floor. Locomotive No. 1, traveling in the DN direction, will respond to this DN call on the second floor, stop at the second floor, and then open its doors.
  • FIG. 6 is a diagram showing an example of the hardware configuration of elevator system 200b relating to a modified example.
  • elevator system 200b includes two elevators, "Unit 1" and "Unit 2."
  • Elevator equipment group 220b includes hall devices 230 installed at the halls of each floor from the first to the fifth floors, a hoist 250 and a car device 240 included in Unit 1, various sensors and switches, etc., of Unit 1, a hoist 250 and a car device 240 included in Unit 2, and various sensors and switches, etc., of Unit 2.
  • the control panel 210b comprises a group control unit 211 and two car control units 212.
  • the group control unit 211 is a control board that manages multiple elevators.
  • the car control unit 212 is a control board that controls the operation of the corresponding elevator.
  • the group control unit 211 and the two car control units 212 communicate with each other and exchange various data related to the elevators.
  • the group management control unit 211 collectively controls the hall devices 230 on each floor.
  • the group management control unit 211 is connected to the hall devices 230 installed at the halls on each floor from the 1st to the 5th floors via a control cable 21.
  • the individual car control unit 212 is connected to the hoisting machine 250, the car device 240, and various sensors and switches of each car via control cables 22 and 23.
  • the hall device 230 on each floor includes a hall operating panel 70 equipped with a hall call button.
  • the hall operating panel 70 does not include an indicator 71.
  • one hall operating panel 70 is installed on each floor, and indicators 71 are installed for each elevator (two indicators).
  • the group management control unit 211 is connected to the hall devices 230 (hall call buttons) installed on each floor via a control cable 21 that runs along the wall of the elevator 8.
  • Each car control unit 212 is connected to the hoist 250 and car device 240 of the car corresponding to each car control unit 212 via a control cable 22.
  • the car device 240 includes a car operation panel 50 equipped with a destination floor button, a car door switch, and a door zone detection device.
  • the individual platform control units 212 are connected to the various sensors and switches of the vehicle corresponding to each platform control unit 212 via control cables 23 that run along the walls of the elevator shaft 8.
  • the various sensors and switches include a slow-up switch, a slow-down switch, a landing door switch for each floor, and an indicator 71 for each floor, which are installed for each platform.
  • the group management control unit 211 registers a hall call corresponding to the hall call button.
  • the group management control unit 211 assigns one of the multiple cars 10 (car No. 1, car No. 2) to the registered hall call.
  • the individual car control unit 212 corresponding to the assigned car 10 causes the assigned car to respond to the registered hall call.
  • the 1st floor UP platform call signal turns ON.
  • the group management control unit 211 receives the 1st floor UP platform call signal that is ON, and registers a 1st floor UP platform call.
  • the group management control unit 211 assigns either car 10 No. 1 or No. 2 to the 1st floor UP platform call.
  • the group management control unit 211 assigns car 10 of car No. 1.
  • the group management control unit 211 sends a command to the individual car control unit 212 of car No. 1 to respond to the 1st floor UP hall call.
  • the individual car control unit 212 of car No. 1 causes car 10 of car No. 1 to run and respond to the 1st floor UP hall call. After running to the 1st floor, car 10 stops at the 1st floor and opens the door.
  • the control panel 210b may not include the group management control unit 211, but may include only two individual car control units 212. In this case, the functions of the group management control unit 211 may be provided in the individual car control unit 212 of the first unit.
  • the individual car control unit 212 of the first unit controls the hall device 230 via the control cable 21, and is directly connected to and communicates with the individual car control unit 212 of the second unit.
  • the elevator system 200 (200a, 200b) can set forced stop floors and waiting floors.
  • a forced stop floor if the car 10 passes a forced stop floor, the car 10 always stops at the forced stop floor and opens the doors.
  • the hotel lobby is on the second floor, and the second floor is set as a forced stop floor.
  • the car 10 travels from the first floor to the fifth floor, the car 10 always stops at the second floor along the way and opens the doors.
  • car 10 will travel to the set waiting floor after responding to all hall and car calls (this state is referred to as "available"). For example, assume that the first floor (main floor) is set as the waiting floor. When car 10 responds to the final call on the fifth floor and becomes available, it will travel from the fifth floor to the first floor and then wait on the first floor (waiting floor).
  • a waiting floor it is also possible to set whether or not to wait with the doors open and the number of waiting cars.
  • one or two cars 10 can be made to wait at a waiting floor. In this case, they can be made to wait at the waiting floor with the doors open or closed.
  • the car 10 closes the doors a predetermined time (for example, one minute or three minutes) after arriving at the waiting floor and opening the doors.
  • a waiting floor for which the door-open waiting setting has been set is also referred to as a "door-open waiting floor.”
  • the elevator system 200b may also perform a distributed standby operation. For example, if there are two elevators managed by the control panel 210b, the two cars 10 that have become available are placed on standby in a distributed manner so that they do not stop on the same floor or on a nearby floor. For example, if two cars 10 that have become available are both stopped on the first floor (main floor), one car is made to run to a higher floor (e.g., the third floor) and then placed on standby with its doors closed.
  • a higher floor e.g., the third floor
  • the car 10 may run or the doors may open due to the setting of a forced stop floor, a waiting floor, or distributed waiting operation.
  • Fig. 7 is a diagram for explaining the hardware configuration of the remote inspection system 1 and signals used in the remote inspection system 1.
  • elevator system 200 includes control panel 210 and elevator equipment group 220.
  • Elevator equipment group 220 includes hall devices 230 on the first to fifth floors.
  • Control panel 210 and elevator equipment group 220 are connected by multiple signal lines, allowing multiple signals to be transmitted and received.
  • These multiple signals include the above-mentioned DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, DN signal, UP platform call signal on the 1st floor, and DN platform call signal on the 5th floor. All of the signals exemplified here are transmitted and received by parallel transmission.
  • the DZ signal is a signal that is detected by the door zone detection device.
  • the DZ signal is ON, and when it is outside the door zone, the DZ signal is OFF.
  • the LB signal is a signal that goes ON when the brake is released by supplying power to the brake coil of the hoist 250.
  • the LB signal goes OFF.
  • the GS signal is a signal that is detected by the car door switch.
  • the GS signal is ON, and when the car door 60 is open, the GS signal is OFF.
  • the DS signal is a signal that is detected by the landing door switch.
  • the DS signal is ON, and when the landing door 61 is open, the DS signal is OFF.
  • the SUL signal is a signal that is detected by the slow-up switch.
  • the SUL signal is in the ON state, and when the slow-up switch is in the OFF state, the SUL signal is in the OFF state.
  • the SDL signal is a signal that is detected by the slow-down switch.
  • the SDL signal is in the ON state, and when the slow-down switch is in the OFF state, the SDL signal is in the OFF state.
  • the UP signal When the running direction of the car 10 is the UP direction, the UP signal is ON, and when the running direction of the car 10 is other than the UP direction, the UP signal is OFF.
  • the running direction of the car 10 is the DN direction
  • the DN signal is ON, and when the running direction of the car 10 is other than the DN direction, the DN signal is OFF.
  • the UP platform call signal on the first floor is a signal that is turned ON when the UP platform call button 81 on the platform device 230 on the first floor is pressed.
  • the contact is turned ON, and when the UP platform call button 81 is released from the pressed state, the contact is turned OFF.
  • the DN hall call signal for the fifth floor is a signal that is turned ON when the DN hall call button 82 of the hall device 230 for the fifth floor is pressed.
  • the contact is turned ON, and when the pressed state of the DN hall call button 82 is released, the contact is turned OFF.
  • hall call signals output from hall call buttons and car call signals output from car call buttons are also input to the control panel 210.
  • the remote inspection device 100 includes a control device 110, an input IF (interface) 130, an output IF (interface) 140, and a communication IF (interface) 120.
  • the input IF 130 is a board for inputting some of the signals input/output by parallel transmission between the control panel 210 and the elevator equipment group 220 as judgment signals.
  • the signal lines of the DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, and DN signal input to the control panel 210 are branched, and each of the branched signal lines is connected to a terminal provided on the input IF 130.
  • Each signal input to the input IF 130 is further transmitted to the control device 110.
  • the output IF 140 is a board for outputting signals to the elevator equipment group 220.
  • the control device 110 can output a 1st floor UP hall call signal and a 5th floor DN hall call signal to the output IF 140.
  • the output IF 140 receives a 1st floor UP hall call signal from the control device 110, it outputs the received 1st floor UP hall call signal to the elevator equipment group 220, and when the output IF 140 receives a 5th floor DN hall call signal from the control device 110, it outputs the received 5th floor DN hall call signal to the elevator equipment group 220.
  • the first floor hall device 230 is equipped with a first floor UP hall call button 81.
  • a signal line is provided between the first floor hall device 230 and the control panel 210 for transmitting a first floor UP hall call signal.
  • the fifth floor hall device 230 is equipped with a fifth floor DN hall call button 82.
  • a signal line is provided between the fifth floor hall device 230 and the control panel 210 for transmitting a fifth floor DN hall call signal.
  • the hall call signal is transmitted from the hall device 230 to the control panel 210 by serial transmission, so it is not possible to branch off a parallel transmission line from the control panel 210 side to input and output the hall call signal to the remote inspection device 100.
  • the 1st floor UP platform call button 81 When the 1st floor UP platform call button 81 is pressed, the contacts are shorted and a signal that is in the ON state is input to the 1st floor platform device 230. As a result, the 1st floor platform device 230 transmits a 1st floor UP platform call signal in the ON state to the control panel 210 (serial transmission). A signal line that transmits the 1st floor UP platform call signal is connected to a terminal of the output IF 140, and this signal line is connected to the platform device 230.
  • the 1st floor UP platform call button 81 is modified so that the contacts are shorted when the 1st floor UP platform call signal in the ON state is output from the output IF 140.
  • the 1st floor UP platform call signal in the ON state is transmitted from the 1st floor platform device 230 to the control panel 210.
  • the 1st floor UP platform call signal in the ON state is transmitted from the 1st floor platform device 230 to the control panel 210.
  • the 5th floor DN hall call button 82 When the 5th floor DN hall call button 82 is pressed, the contacts are shorted and a signal that is in the ON state is input to the 5th floor hall device 230. As a result, the 5th floor hall device 230 transmits a 5th floor DN hall call signal in the ON state to the control panel 210 (serial transmission). A signal line that transmits the 5th floor DN hall call signal is connected to a terminal of the output IF 140, and this signal line is connected to the hall device 230.
  • the contacts of the 5th floor DN hall call button 82 are modified so that when the 5th floor DN hall call signal in the ON state is output from the output IF 140, the 5th floor hall call button 82 is shorted.
  • the 5th floor hall device 230 transmits a 5th floor DN hall call signal in the ON state to the control panel 210.
  • a 5th floor DN hall call signal in the ON state from the output IF 140, it is possible to create a pseudo state in which the 5th floor DN hall call button 82 is pressed.
  • the remote inspection device 100 in order to perform remote inspection, the remote inspection device 100 generates a pseudo hall call, and the car 10 is made to run using this call is referred to as "diagnostic operation.”
  • the remote inspection device 100 generates a pseudo 1st floor UP hall call and a 5th floor DN hall call as described above. By combining these two hall calls, it is possible to perform diagnostic operation in which the car 10 runs between the lowest floor (1st floor) and the top floor (5th floor).
  • Signals are sent and received between the elevator equipment group 220 and the input IF 130 and output IF 140 via parallel transmission. Signals are also sent and received between the input IF 130, output IF 140, and the control device 110 via parallel transmission.
  • the signals input from each signal line connecting the elevator equipment group 220 and the input IF 130 vary in voltage, etc. depending on the manufacturer (for example, 24V, 48V, 100V), so the signals are standardized at the input IF 130 and input to the control device 110.
  • a temperature sensor 15 is installed in the machine room 5.
  • the control device 110 is configured to be able to acquire the detection results of the temperature sensor 15. This allows the control device 110 to detect the temperature of the machine room 5.
  • the temperature sensor 15 is not limited to being installed in the machine room, but may be installed at any position within the elevator hoistway 8, around the hoistway 8, or around the elevator.
  • the control device 110 is configured to be able to acquire the voltage of the intercom 16 attached to the car 10. Using this information, it is possible to determine whether the temperature of the machine room 5, etc., or the state of the intercom is normal or not.
  • the control device 110 is a PLC that includes at least a processor (CPU) 111 and a memory 112.
  • the memory is, for example, a ROM and a RAM. These are connected to each other via a bus so that they can communicate with each other.
  • the ROM stores a program for controlling the control device 110.
  • the CPU loads the program saved in the ROM into the RAM, executes it, and controls the control device 110.
  • the RAM serves as a working area when the CPU executes a program, and temporarily stores programs and data used when executing the programs.
  • the control device 110 is configured to be able to communicate with the input IF 130, the output IF 140, and the communication IF 120.
  • the communication IF 120 is a board for communicating with the management server 300 via a network.
  • the terminal 400 includes a display unit 410 and an input unit 420.
  • the display unit 410 is, for example, a display.
  • the input unit 420 is, for example, a keyboard, a mouse, or a touch panel display integrated with the display unit 410.
  • the management server 300 issues a command for remote inspection to the control device 110 via the communication IF 120, and obtains the results of the remote inspection from the control device 110.
  • the terminal 400 and the management server 300 also have a processor (CPU) and memory (ROM, RAM).
  • the control device 110 generates a pseudo 1st floor UP hall call by sending a 1st floor UP hall call signal to the hall device 230 on the 1st floor via the output IF 140.
  • the control device 110 generates a pseudo 5th floor DN hall call by sending a 5th floor DN hall call signal to the hall device 230 on the 5th floor via the output IF 140. This allows the car 10 to run between the 1st and 5th floors and perform the above-mentioned diagnostic operation.
  • the control device 110 acquires the DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, and DN signal input/output to/from the control panel 210 via the input IF 130.
  • the control device 110 also acquires the detection result of the temperature sensor 15 and the voltage of the intercom 16 as signals.
  • the control device 110 judges each item of the remote inspection based on these signals, and transmits the judgment results to the management server 300 via the communication IF 120. The judgment results can be confirmed on the terminal 400.
  • each signal input from elevator system 200 may differ depending on the elevator manufacturer or elevator model. For example, when acquiring signals corresponding to the DZ signal, LB signal, GS signal, and DS signal, the ON and OFF states may be reversed. For example, with regard to the LB signal, it is conceivable that the signal will be ON when the brakes are applied (when the brakes are not released) and that the signal will be ON when the brakes are released.
  • the memory 112 of the control device 110 stores a conversion map corresponding to each manufacturer or model.
  • the conversion map converts each signal so that the signal specifications are standardized (for example, conversion that inverts the ON/OFF of the DZ signal, LB signal, GS signal, and DS signal).
  • the SUL signal, SDL signal, UP signal, and DN signal are not essential signals, and it is not a problem if these signals cannot be obtained (details will be described later).
  • the signal of a rotary encoder of the hoist 250 may be captured and the UP signal and DN signal may be generated based on this, or the UP signal and DN signal may be generated based on a DZ signal (details will be described later).
  • the rotary encoder signal or the DZ signal may be converted into the UP signal and DN signal using the conversion map.
  • control panel 210 and the maintenance device manufactured by Company X are configured to be connected via serial communication via the connector 261 provided on the control panel 210.
  • (Diagnostic operation) 8 is a diagram for explaining the relationship between the running of the car 10 and signals during diagnostic operation.
  • a pseudo 1st floor UP hall call and a 5th floor DN hall call are generated, and diagnostic operation can be performed in which the car 10 runs between the lowest floor (1st floor) and the top floor (5th floor). This makes it possible to measure, for example, the running time from the 1st floor to the 5th floor.
  • Diagnostic operation is performed when car 10 is not excluded from the cars to be assigned, that is, when car 10 is able to respond to hall calls from elevator passengers. For this reason, even if car 10 is called to the first floor by diagnostic operation and then tried to run to the fifth floor, there is a possibility that it will run to a floor other than the first floor due to a hall call from a passenger, and during diagnostic operation, it may stop at a floor between the first and fifth floors due to a car call from a passenger. For this reason, diagnostic operation is performed, for example, once a month, late at night when there are no elevator passengers.
  • the judgment of the inspection items in the remote inspection includes judgment by "driving diagnosis” and judgment by “constant diagnosis.” Performing diagnostic operation and diagnosing the remote inspection items based on the diagnostic operation is called “driving diagnosis.” In the driving diagnosis, the judgment is made using the judgment signal acquired when the car 10 runs in response to the hall call signal transmitted by the instruction unit 155 (described later) of the remote inspection device 100.
  • continuous diagnosis a judgment is made using the acquired judgment signal regardless of whether or not a hall call signal has been sent by the instruction unit 155 of the remote inspection device 100.
  • car 10 is stopped on the first floor.
  • car 10 is stopped on the lowest floor (first floor), so the SUL signal is OFF and the SDL signal is ON.
  • the brake of the hoist 250 is operating, so the LB signal is OFF.
  • the car 10 is located within the position range (within the door zone) where the door can be opened on the first floor, so the DZ signal is ON.
  • the door 60 on the car 10 side is closed, so the GS signal is ON.
  • the door 61 on the landing side is closed, so the DS signal is ON.
  • the remote inspection device 100 outputs the DN hall call signal for the 5th floor to the hall device 230 on the 5th floor in the ON state in order to perform diagnostic operation. This simulates the pressed state of the DN hall call button 82 on the hall device 230 on the 5th floor.
  • a DN hall call for the fifth floor is registered, and at time t1, car 10 starts traveling toward the fifth floor.
  • the brake of the hoist 250 is released, and the LB signal changes from OFF to ON.
  • the DZ signal changes from ON to OFF.
  • the SDL signal changes from ON to OFF.
  • the car 10 is now in an accelerating traveling state and is traveling in the UP direction.
  • car 10 enters a constant speed running state (a state in which the speed of car 10 reaches the rated speed and car 10 runs while maintaining the rated speed), and at time t2, the position of car 10 reaches the second floor.
  • the position of car 10 enters the door zone of the second floor, and the DZ signal changes from OFF to ON.
  • the DZ signal changes from ON to OFF.
  • car 10 At time t3, car 10 is on the fourth floor, enters the door zone of the fourth floor, and the DZ signal changes from OFF to ON. When car 10 leaves the door zone of the fourth floor, the DZ signal changes from ON to OFF. After that, at time t4, car 10 changes to a decelerating running state in order to stop on the fifth floor.
  • car 10 stops on the fifth floor (the top floor).
  • the slow-up switch changes from OFF to ON, causing the SUL signal to change from OFF to ON.
  • the DZ signal changes from OFF to ON.
  • the brake of hoisting machine 250 operates (the release state is released), and the LB signal changes from ON to OFF.
  • the GS signal and the DS signal change from the ON state to the OFF state.
  • the car 10 enters a closed door state.
  • the GS signal and the DS signal change from the OFF state to the ON state.
  • the remote inspection device 100 when the car 10 is stopped on the first floor and the remote inspection device 100 outputs the DN hall call signal for the fifth floor to the elevator system 200 in the ON state, the car 10 can be made to run from the first floor to the fifth floor. At that time, the remote inspection device 100 can acquire various changing elevator signals and perform remote inspection based on these signals.
  • the remote inspection device 100 To stop the car 10 at the first floor, the remote inspection device 100 simply outputs the first floor UP hall call signal to the elevator system 200 in the ON state. This causes the car 10 to travel toward the first floor.
  • the remote inspection device 100 when the car 10 is stopped on the fifth floor, if the remote inspection device 100 outputs an ON state to the elevator system 200 an UP hall call signal for the first floor, the car 10 can be made to run from the fifth floor to the first floor. At that time, the remote inspection device 100 can acquire various changing elevator signals and perform remote inspection based on these signals.
  • the diagnostic operation is not limited to being performed by generating a UP hall call for the lowest floor and a DN hall call for the top floor, but may be performed by a hall call for any two floors.
  • the service isolation setting is configured so that the elevator does not provide service to the top floor (fifth floor) (it cannot stop at the top floor).
  • a UP hall call for the first floor and a DN hall call for the fourth floor may be generated to perform the diagnostic operation.
  • the signals (DZ signal, LB signal, DS signal, GS signal) used to judge the conditions for operating the elevator safety circuit are used as the judgment signals for remote inspection. Also, from the viewpoint of ease of installation (construction), hall calls, rather than car calls, are used as output signals for operation diagnosis (diagnostic operation) for remote inspection. The reason for this is explained below.
  • the elevator is equipped with a safety circuit that stops the operation of the elevator when the hardware or software detects a specified abnormality.
  • the safety circuit is configured to cut off the supply of power to the hoist 250 and the brake coil of the electromagnetic brake of the hoist 250 when any one of multiple contacts in the safety circuit is opened. This causes the driving force of the hoist 250 to be lost, and the electromagnetic brake to enter a braking state, stopping the car 10.
  • the elevator system 200 is equipped with a speed governor (not shown), an emergency stop device (not shown), a shock absorber 14, etc. as safety devices.
  • the speed governor is a device installed on the car 10 and physically detects the speed of the car 10.
  • the emergency stop device is a device installed on the car 10 and physically brakes the car 10 when the speed governor detects an abnormal speed.
  • the shock absorber 14 is installed in the pit 6 and is a device that absorbs the impact when the car 10 falls.
  • the hardware detects that the car 10 is traveling at an abnormal speed
  • the software issues a command to stop the car 10
  • the hardware or software activates a safety circuit.
  • the safety circuit is activated, the power supplied to the elevator is cut off, and the operation of the car 10 is halted.
  • the car 10 can be physically stopped by an emergency stop device or buffer 14.
  • the safety circuit When the safety circuit is activated, the power supply to the brake coil of the electromagnetic brake of the hoisting machine 250 is cut off (LB signal is OFF), which causes the electromagnetic brake to enter a braking state and stops the car 10.
  • the elevator is controlled so that the car 10 will not move when the hall door 61 is open (the hall door switch (DS signal) is OFF) or the car door 60 is open (the car door switch (GS signal) is OFF).
  • the elevator is controlled so that the door does not open. For example, if the car 10 is outside the door zone (the DZ signal is OFF) and the door is open (the DS signal or the GS signal is OFF), the safety circuit is activated and the car 10 stops.
  • elevators from each manufacturer typically output a DS signal (landing door switch ON/OFF), a GS signal (car door switch ON/OFF), a LB signal (electromagnetic brake release/braking), a DZ signal (door zone detection/non-detection), or a similar signal as a contact signal. These signals are used to determine the conditions for activating the elevator safety circuit.
  • the DS signal, GS signal, LB signal, DZ signal, or similar signals commonly used by all elevator companies are used to determine the inspection items for remote inspection.
  • Other signals may or may not be acquired as parallel transmission signals, depending on the manufacturer or elevator model. When such signals are used, remote inspection items may or may not be determined depending on the elevator.
  • the DZ signal can be used to calculate the travel time between floors or the car position. For example, assume that car 10 is currently stopped at the lowest floor (first floor). When car 10 starts moving, the DZ signal changes from ON to OFF, and when the car position reaches the second floor, the DZ signal changes from OFF to ON.
  • the time from when the DZ signal changes from ON to OFF to when it changes from OFF to ON can be calculated as the travel time of the car 10 from the first floor to the second floor.
  • the car position can be changed from the first floor to the second floor at the timing when the DZ signal changes from OFF to ON. In this way, it is possible to calculate the travel time between floors and the floor position at the timing when the DZ signal changes.
  • the car position is set to the first floor (lowest floor), and if the SUL signal is ON, the car position is set to the fifth floor (top floor). Also, if the DZ signal changes from OFF to ON, the car position is increased by one floor if the UP signal is ON, and decreased by one floor if the DN signal is ON.
  • the SDL signal, SUL signal, UP signal, and DN signal are not necessarily required signals.
  • a 1st floor UP call is generated by diagnostic operation late at night when there are no elevator passengers.
  • the car 10 can respond to the 1st floor UP call and set the floor where it has stopped to "1st floor.”
  • a 5th floor DN call is generated.
  • the car 10 can respond to the 5th floor DN call and set the floor where it has stopped to "5th floor.”
  • the car position is set to 1st floor and the car direction is set to UP.
  • the car position is set to 1st floor and the car direction is set to UP.
  • the door zone detection device is equipped with multiple sensors, and multiple door zone detection plates are installed corresponding to each of the multiple sensors.
  • the detection timing of the multiple sensors differs depending on the position of the car 10. If the timing at which each sensor changes to the ON state (or the OFF state) differs when the car direction is the UP direction and when it is the DN direction, the car direction can be identified by using the timing at which each sensor changes state.
  • the signal line output from the rotary encoder to the control panel 210 is branched and configured to be able to input a signal to the remote inspection device 100.
  • the car direction can be determined based on whether the A-phase or B-phase pulse is output first. For example, the car direction can be set to the UP direction when the B-phase pulse is output 1/4 of a cycle behind the A-phase pulse, and the car direction can be set to the DN direction when the A-phase pulse is output 1/4 of a cycle behind the B-phase pulse.
  • the cage position and cage speed of the cage 10 It is possible to calculate the distance traveled by the cage 10 (cage position) from the number of pulses detected from the rotary encoder. It is also possible to calculate the cage speed from the number of pulses detected per unit time. In this way, it is possible to know whether the cage 10 is in a stopped state, an accelerating state, a constant speed state, or a decelerating state, and it is also easy to determine whether the cage position and cage speed are appropriate.
  • the remote inspection device 100 when performing diagnostic operation in which the car 10 is running, is configured to output a pseudo-top floor DN hall call and a bottom floor UP hall call. This makes it possible to run the car 10 between the bottom floor and the top floor.
  • the remote inspection device 100 may be configured to output pseudo car calls to the top floor and car calls to the bottom floor, rather than hall calls.
  • the remote inspection device 100 is configured to output hall calls, rather than car calls.
  • the contacts of the hall call button of the hall device 230 installed at the hall are modified so that a signal input shorts out the contacts.
  • the signal line (signal cable) for transmitting the hall call signal can be run from the remote inspection device 100 installed in the machine room 5 along the wall of the hoistway 8 and connected to the hall call buttons of the hall devices 230 on the top and bottom floors embedded in the wall of the hoistway 8.
  • the system is modified so that the contacts of the car call button of the car device 240 installed in the car 10 are shorted by signal input.
  • the signal line for transmitting the car call signal must be connected from the remote inspection device 100 installed in the machine room 5 to the car call button of the car device 240 installed inside the car 10.
  • signals transmitted by parallel transmission are used to determine the inspection items for remote inspection, rather than signals transmitted by serial transmission, the communication specifications of which vary depending on the manufacturer and model.
  • signals that are commonly used regardless of manufacturer and model, and that are suitable for use from the standpoint of ease of installation (construction) and installation costs are used to determine the inspection items for remote inspection.
  • the hall call signal and the DS signal, GS signal, LB signal, DZ signal, or similar signals used to determine the conditions for activating the elevator safety circuit are used to determine the inspection items for remote inspection.
  • a major issue in this embodiment is how to carry out remote inspection in a situation where signals suitable for use with the remote inspection device 100 are greatly limited.
  • remote inspection when using a signal transmitted serially (for example, the remote inspection device 500 manufactured by Company X that communicates serially with the control panel 210 shown in FIG. 2), remote inspection can be easily performed as follows.
  • Elevators have their own speed patterns for each model and rated speed.
  • the speed pattern indicates the relationship between elapsed time and car speed when traveling from the starting floor to the destination floor.
  • the car 10 is in an accelerating state when it starts traveling from the starting floor, then in a constant speed state, and in a decelerating state just before arriving at the destination floor.
  • the control panel 210 can calculate and store the actual measured value of the speed pattern from the starting floor to the destination floor based on the pulse signal obtained from the rotary encoder of the hoist 250. Therefore, by comparing the actual measured value of the speed pattern with the elevator's unique speed pattern (prepared value), it is possible to determine whether the elevator's start state, accelerating state, constant speed state, and decelerating state are normal or not.
  • the remote inspection device 500 is connected to the control panel 210 by serial communication, it can access the internal signals held by the control panel 210, so that remote inspection can be easily realized by this method.
  • the remote inspection device 100 uses a "DZ signal" (a signal that identifies whether or not the car is within the door zone) as a signal to identify the position due to restrictions on signals suitable for use in remote inspection. From the DZ signal, it is not possible to determine whether the car 10 is accelerating, traveling at a constant speed, or decelerating. For this reason, in order to perform remote inspection using limited signals, it is necessary to devise a method of determination. In other words, when implementing remote inspection using a remote inspection device 500 capable of serial communication, there is no motivation to combine signals such as the DS signal, GS signal, LB signal, and DZ signal to determine the inspection items for remote inspection, and such an idea would not even occur to one.
  • DZ signal a signal that identifies whether or not the car is within the door zone
  • control panel 210 controls one elevator (cage 10) (see FIG. 3), and as shown in FIG. 1 and FIG. 7, one remote inspection device 100 is connected to the elevator system 200.
  • a remote inspection device 100 may be installed in each of the multiple elevators (cage 10).
  • one remote inspection device 100 may be installed for multiple elevators.
  • part of the signal lines included in the control cables 22, 23 connecting the individual car control unit 212 that controls the first elevator and the elevator equipment group 220b (car device 240, etc.) of the first elevator may be branched so that a judgment signal such as the DZ signal of the first elevator is input to the remote inspection device 100 (input IF 130) connected to the first elevator.
  • a portion of the signal lines included in the control cables 22, 23 connecting the individual car control unit 212 that controls the second elevator and the elevator equipment group 220b (such as the car device 240) of the second elevator can be branched so that a judgment signal such as the DZ signal of the second elevator is input to the remote inspection device 100 (input IF 130) connected to the second elevator.
  • each remote inspection device 100 acquires a judgment signal of the elevator car 10 (the target car that the control unit 152 judges) connected to the remote inspection device 100, and judges the remote inspection items for the target car.
  • Multiple remote inspection devices 100 connected to multiple elevators may be configured to be connected to one management server 300 and one terminal 400.
  • no hall call signal is sent to the hall device 230.
  • each remote inspection device 100 (output IF 140) is connected to the hall device 230 by a signal line.
  • the hall device 230 may be configured so that the contacts of the hall call button can be short-circuited by the signal output from any of the remote inspection devices 100.
  • both a signal line branched from a portion of the signal line included in the control cables 22, 23 connecting the individual car control unit 212 that controls the first elevator and the elevator equipment group 220b of the first elevator, and a signal line branched from a portion of the signal line included in the control cables 22, 23 that connect the individual car control unit 212 that controls the second elevator and the elevator equipment group 220b of the second elevator, are configured to be input to one remote inspection device 100.
  • the remote inspection device 100 judges the remote inspection items for each elevator and transmits the judgment results for each elevator to the management server 300.
  • Fig. 9 is a diagram showing an example of a functional block diagram of the remote inspection system 1.
  • the remote inspection system 1 includes an acquisition unit 151, a control unit 152, an output unit 153, a reception unit 154, and an instruction unit 155, and stores a data group 156.
  • the reception unit 154 receives operations by a maintenance worker (a user who operates the terminal 400) from the input unit 420 of the terminal 400.
  • a maintenance worker a user who operates the terminal 400
  • the maintenance worker can set the date and time for performing a driving diagnosis, manually execute a driving diagnosis, and the like, by operating the input unit 420 on the display screen of the display unit 410 of the terminal 400 (see FIG. 10 described below).
  • the control unit 152 can access the data group 156.
  • the data group 156 includes setting data 422, a reference time database (also referred to as "DB") 423, operation history 424, and judgment results 425.
  • the control unit 152 reads or updates the setting data 422, the reference time DB 423, the operation history 424, and the judgment results 425.
  • the setting data 422 is data that stores various information related to remote inspection.
  • the setting data 422 records information about the building 2 and elevators related to the remote inspection.
  • the control unit 152 records the date and time in the setting data 422.
  • the reference time DB 423 is a database that records the reference time (for example, the reference time KA for the start-up time described below) that the control unit 152 uses to judge each inspection item of the remote inspection. Details will be described later with reference to Figures 12 and 13.
  • the operation history 424 is historical data of the signals of the elevator system 200 acquired by the remote inspection system 1.
  • the judgment results 425 are data that store the judgment results of each inspection item of the remote inspection.
  • the control unit 152 generates a hall call signal to generate an elevator hall call in order to perform an operation diagnosis based on the date and time of the operation diagnosis recorded in the setting data 422 or an instruction to execute the operation diagnosis by a maintenance worker (manually).
  • the instruction unit 155 transmits the hall call signal generated by the control unit 152 to the elevator equipment group 220 of the elevator system 200. By responding to this hall call, the elevator system 200 executes a diagnostic operation.
  • the acquisition unit 151 acquires judgment signals (DZ signal, LB signal, GS signal, DS signal, etc.) from the elevator equipment group 220 of the elevator system 200.
  • the acquisition unit 151 acquires not only judgment signals during the above-mentioned operation diagnosis, but also signals from the elevator equipment group 220 at all times.
  • the control unit 152 determines the inspection items for the remote inspection based on the determination signals acquired by the acquisition unit 151 (performs a determination process) and generates a determination result.
  • the inspection items for the remote inspection include the start-up state, accelerating state, constant speed state, decelerating state, landing state, destination floor button state, hall button state, door open/close state, and brake state (presence or absence of an abnormality in the electromagnetic brakes) of the car 10.
  • the control unit 152 records the acquired determination signals in the operation history 424, and records the determination results of the inspection items for the remote inspection in the determination result 425.
  • the output unit 153 outputs information such as the judgment results of the inspection items of the remote inspection to be displayed on the display unit 410 of the terminal 400. This allows the maintenance personnel to check the judgment results of the remote inspection on the display unit 410 of the terminal 400.
  • the remote inspection system 1 is configured with the remote inspection device 100, the management server 300, and the terminal 400.
  • the remote inspection system 1 may be configured without including the management server 300 and the terminal 400, or may be configured as an integrated device.
  • the remote inspection system 1 may be configured with only the remote inspection device 100, or may be configured with the remote inspection device 100 and the management server 300.
  • the remote inspection device 100 is configured to be configured with the control device 110, the input IF 130, the output IF 140, and the communication IF 120.
  • the functions of the input IF 130, the output IF 140, and the communication IF 120 may be integrated, and all functions may be realized in the control device 110.
  • the processes executed by each of the acquisition unit 151, the control unit 152, the output unit 153, the reception unit 154, and the instruction unit 155 may be processes executed by the processor 111 of the control device 110, or may be processes executed by any processor of the board provided in the remote inspection device 100.
  • the acquisition unit 151 may be processes executed by the processor of the input IF 130.
  • the instruction unit 155 may be processes executed by the processor of the output IF 140.
  • the output unit 153 and the reception unit 154 may be processes executed by any processor of the communication IF 120, the management server 300, and the terminal 400.
  • the remote inspection device 100 may be configured to include the acquisition unit 151, the control unit 152, the output unit 153, the reception unit 154, and the instruction unit 155, or the remote inspection device 100 may be configured to include the acquisition unit 151 and the instruction unit 155, and the management server 300 may be configured to include the control unit 152, the output unit 153, and the reception unit 154.
  • the data group 156 may be stored in the memory 112 of the control device 110, or a portion of it may be stored in the memory of the management server 300.
  • FIG. 10 is a diagram showing an example of the display screen 421 of the remote inspection system 1.
  • the display screen 421 is displayed on the display unit 410 of the terminal 400.
  • the display screen 421 displays remote inspection setting information, the judgment results of each item of the remote inspection, setting buttons, etc.
  • the top of the display screen 421 shows that the property name of Building 2 is "ABC Building.” Below that, the status of the driving diagnosis-related judgments is displayed. In this example, the results of the diagnostic driving between the first and fifth floors, as shown in Figure 8, are shown by driving direction.
  • the "UP direction” column shows the results when traveling from the 1st to 5th floors in the UP direction.
  • "Travel time” is the time required to travel from the 1st to 5th floors.
  • “Start-up time” is the time required for the car 10 to start up when starting travel from the 1st floor (until passing the door zone).
  • the time required to travel from the 1st to 2nd floors including accelerating travel state
  • the time required to travel from the 2nd to 3rd floors constant speed travel state
  • the time required to travel from the 3rd to 4th floors Constant speed travel state
  • the time required to travel from the 4th to 5th floors including decelerating travel state
  • the "measured time” is the time actually measured during diagnostic operation.
  • the “reference time” is the reference time for judging whether the measured time is normal or not.
  • the “judgment condition” is a condition determined based on the reference time, and if the measured time is within the numerical range of the judgment condition, it is judged to be in a "normal state.” On the other hand, if the measured time is outside the numerical range of the judgment condition, it is judged to be in a "modulated state.”
  • a “modulated state” refers to a state that does not correspond to a normal state.
  • a modulated state is a state that includes a state that does not go so far as to be an abnormal state, but that indicates a sign of a failure or abnormal state of some equipment in the elevator system 200. By determining whether or not it is a “modulated state,” it is possible to capture a sign of failure (a state prior to failure).
  • a circle is displayed if the judgment result is a "normal state”
  • a triangle is displayed if it is a "modulated state.”
  • the "Start-up time" on display screen 421 shows that the reference time is KA, the measured time is TA, the judgment conditions are KAL to KAH, and the judgment result is a normal state. This means that the condition KAL ⁇ TA ⁇ KAH is met, and therefore the normal state is obtained as the judgment result for the start-up time.
  • the results of the determination based on the operation diagnosis are shown.
  • the start-up state, running state, car call button state, and hall call button state are determined to be in a "normal state”
  • the door open/close state is determined to be in a "modulated state.”
  • the results of the determination based on the continuous diagnosis are shown.
  • the brake state and floor landing state are determined to be in a "normal state.”
  • various buttons that can be clicked using the input unit 420 are arranged.
  • “Driving diagnosis settings” it is possible to set the date and time for performing driving diagnosis.
  • 23rd, 23:59 is input using the input unit 420.
  • the "Set” button is clicked, a driving diagnosis will be performed at 23:59 on the 23rd of every month. This setting information is recorded in the setting data 422.
  • the "Reference time” column is set to the time measured during the operation diagnosis performed when the remote inspection system 1 is installed in the building 2 as the reference time.
  • the "Save reference time” button is clicked, the time measured during the most recently performed operation diagnosis is updated as the reference time, and the judgment conditions are updated based on the updated reference time.
  • the measurement time of the startup time in the most recent driving diagnosis is measured as "TA”, and the reference time is "KU”.
  • the "Save Reference Time” button is clicked, the reference time is updated to "TA”, and the judgment conditions KAL and KAH are updated based on the updated reference time.
  • FIG. 11 is a flowchart of the remote inspection processing and the terminal setting processing.
  • the remote inspection system 1 executes the remote inspection processing.
  • the remote inspection processing is a processing for determining the inspection items of the remote inspection based on a determination signal.
  • the remote inspection processing may be started periodically (for example, every 100 msec).
  • step may be simply referred to as "S".
  • the terminal setting process is executed.
  • the terminal 400 determines in S151 whether or not the "Manual Driving Diagnosis" button has been clicked. If the "Manual Driving Diagnosis" button has been clicked (YES in S151), the terminal 400 sets a request for manual driving diagnosis (S152) and proceeds to S153. In this case, a request for manual driving diagnosis is sent to the remote inspection device 100. If the "Manual Driving Diagnosis" button has not been clicked (NO in S151), the terminal 400 proceeds to S153.
  • the terminal 400 determines whether the "Save Reference Time” button has been clicked. If the "Save Reference Time” button has been clicked (YES in S153), the terminal 400 sets a request to save the reference time (S154) and proceeds to S155. In this case, a request to save the reference time is sent to the remote inspection device 100. If the "Save Reference Time” button has not been clicked (NO in S153), the terminal 400 proceeds to S155.
  • the terminal 400 determines whether the "Set” button has been clicked. If the "Set” button has been clicked (YES in S155), the terminal 400 makes a request to set the driving diagnosis setting time (S156) and ends the terminal setting process. In this case, the driving diagnosis setting time is sent to the remote inspection device 100. If the "Set” button has not been clicked (NO in S155), the terminal 400 ends the terminal setting process.
  • the control unit 152 of the remote inspection system 1 executes a reference time acquisition process (see FIG. 14 described later) in S100.
  • the reference time acquisition process the reference time to be used in determining the inspection items of the remote inspection is acquired from the reference time DB 423 and set.
  • the control unit 152 determines whether or not a "manual driving diagnosis” request has been made, or whether or not the current time has reached the driving diagnosis setting time.
  • a request for "manual driving diagnosis” is set (S152).
  • the driving diagnosis setting time is the time that has been set based on the request to set the driving diagnosis setting time (S156).
  • control unit 152 advances the process to S102. On the other hand, if the control unit 152 determines that none of the above conditions are met (NO in S101), the control unit 152 advances the process to S104.
  • the control unit 152 executes a driving diagnosis process in S102.
  • the driving diagnosis process is a process for transmitting a hall call signal when performing a driving diagnosis and for executing a judgment process based on the hall call signal.
  • a hall call signal is generated. For example, as explained using FIG. 8, a 1st floor UP hall call signal and a 5th floor DN hall call signal are generated to cause the car 10 to run from the 1st floor to the 5th floor and from the 5th floor to the 1st floor.
  • the instruction unit 155 outputs the hall call signal generated by the control unit 152 to the elevator system 200. This causes the car 10 to run in response to the hall call. Then, a judgment process is performed based on the running result. The details of the operation diagnosis process will be described later.
  • the acquisition unit 151 acquires a determination signal (DZ signal, LB signal, GS signal, DS signal, etc.) from the elevator system 200.
  • the control unit 152 continues to acquire the determination signal from the elevator system 200 until the end condition is met (YES in S105).
  • the termination condition may be met when the car 10 travels back and forth between the first and fifth floors, or the termination condition may be met every time the car 10 completes a specified operation (e.g., door opening/closing, brake release/application, completion of landing), or the termination condition may be met periodically (e.g., every few minutes).
  • a specified operation e.g., door opening/closing, brake release/application, completion of landing
  • the termination condition may be met periodically (e.g., every few minutes).
  • control unit 152 determines that the termination condition is met (YES in S105), it executes a judgment process (S106). In the judgment process, it judges the inspection items of the remote inspection.
  • the inspection items include the start-up state, accelerating state, constant speed state, decelerating state, landing state, destination floor button state, hall button state, door open/close state, and brake state, and judges one or more of the following items.
  • control unit 152 records the acquired determination signal in the operation history 424, and records the determination result obtained in the determination process in the determination result 425.
  • the output unit 153 outputs the judgment result obtained in the judgment process. For example, the output unit 153 outputs (transmits) the judgment result to the management server 300 via the network.
  • the terminal 400 can obtain the judgment result by accessing the management server 300 via the network. This makes it possible to check the judgment result on the display unit 410 of the terminal 400, as shown in FIG. 10.
  • control unit 152 executes a reference time update process and ends the remote inspection process. This process updates the reference time for mode B in the reference time DB 423, as will be described in detail later with reference to FIG. 13.
  • Switching the reference time 12 is a diagram showing an example of the reference time DB 423.
  • references time DB 423 values such as "running time” and "start-up time” are set, as in FIG. 10.
  • One of modes A to D can be set in advance as the mode for reading out the reference time DB 423.
  • mode A is set. Therefore, time KU is read as the "running time” in the UP direction in the reference time DB 423, and time KA is read as the "start-up time,” and these are displayed on the display screen 421 in FIG. 10.
  • mode A is set when you want to use a fixed value as the reference time every time.
  • the reference time set in the mode A item of the reference time DB 423 is used every time.
  • these reference times are set to those measured when the remote inspection device 100 was installed in building 2.
  • the "Save reference time” button is clicked on the display screen 421, the reference time is replaced with the time measured during the most recent operation diagnosis (diagnostic operation).
  • Mode B is set when you want to use the previous value as the reference time.
  • the reference time set in the Mode B item of the reference time DB 423 is used.
  • the reference time set in the Mode B item is updated every time a driving diagnosis (diagnostic driving) is performed.
  • diagnostic operation is performed once a month at 23:59 on the 23rd.
  • the reference time is time KA1 and the measured time is time TX for the startup time in the UP direction
  • the reference time for mode B in the reference time DB423 is updated from time KA1 to time TX.
  • time TX is used as the reference time for the startup time in the UP direction.
  • Mode C is set when it is desired to change the reference time according to the temperature of the machine room 5.
  • the temperature of the machine room 5 is measured by the temperature sensor 15.
  • the reference time set in the Mode C item is a value measured by classifying the temperature of the machine room 5 into cases where it is less than K1°C (up to K1°C), K1°C or higher and less than K2°C (K1°C or higher), K2°C or higher and less than K3°C (K2°C or higher), and K3°C or higher (K2°C or higher).
  • the reference time can be changed in increments of 5°C or 10°C.
  • This reference time may be set based on the results of diagnostic operation. For example, if the temperature in the machine room 5 is equal to or higher than K1°C and lower than K2°C when diagnostic operation is performed to measure the reference time, the reference time is recorded in the item equal to or higher than K1°C and lower than K2°C (K1°C or higher) in the reference time DB 423. Diagnostic operation may be performed multiple times and the average value set as the reference time.
  • the reference time set in the mode C item of the reference time DB 423 is used according to the current temperature of the machine room 5. For example, if the temperature of the machine room 5 during diagnostic operation is less than K1°C (up to K1°C), the reference time set in the item below K1°C (for example, "KA2" for the start time in the UP direction) is used.
  • the temperature measured by the temperature sensor 15 is not limited to the temperature of the machine room 5.
  • the temperature sensor 15 may be installed at any position within the elevator hoistway 8, around the hoistway 8, or around the elevator.
  • Mode D is set when you want to change the reference time according to the season.
  • the reference time set in the Mode D item is a value measured for each season, classified as spring, summer, fall, or winter. For example, if the diagnostic operation to measure the reference time was performed in summer, the reference time is recorded in the summer item.
  • the reference time set in the mode D item of the reference time DB 423 is used according to the season. For example, if the season during diagnostic operation is spring, the reference time set in the spring item (for example, "KU126" for the start time in the UP direction) is used.
  • Modes B to D are modes prepared for hydraulic elevators.
  • the oil characteristics change depending on the season and temperature, which can easily cause differences in the running characteristics of the car 10. For example, compared to the high temperatures of summer, the oil thickens in winter, so it takes longer to start up and running times are more likely to vary. For this reason, the reference time is switched depending on the season or temperature, which changes the oil characteristics. Also, the reason why the value from the previous diagnosis (the value from last month) is used in mode B is because it uses a reference time where the temperature environment or equipment environment is close to that of the most recent diagnosis.
  • the reference time recorded in the reference time DB 423 also includes the "time outside the door zone (also written as "DZ”).” This is the time measured from when the car 10 stops at a certain floor (the LB signal changes from ON to OFF) to when it leaves the door zone while stopped (the DZ signal changes from ON to OFF). For example, in the item for mode A in the reference time DB 423, the time KX is set as the "time outside the DZ.”
  • the reference time recorded in the reference time DB 423 also includes the door-opening times for the first to fifth floors.
  • the door-opening times in the reference time DB 423 are measured from when the car 10 stops at a certain floor and the GS signal and DS signal change from ON to OFF until they change from OFF to ON (door-opening time).
  • time KY1 is set as the door-opening time for the first floor.
  • time KY5 is set as the door-opening time for the fifth floor.
  • FIG. 13 is a flowchart of the reference time update process.
  • the reference time update process is executed in S109 (after the determination process has been executed) of the remote inspection process shown in FIG. 11.
  • the reference time update process is also executed when a request to save the reference time is made (S154).
  • control unit 152 determines that there is a "save reference time” request (YES in S251), it updates the reference time DB 423 (S252) and proceeds to S253. If the control unit 152 determines that there is no "save reference time” request (NO in S251), it proceeds to S253.
  • the reference times for modes A to D are updated. For example, in the UP direction running time, if the season of the operation diagnosis performed immediately before the "Save Reference Time” button was clicked was summer, the machine room temperature was K3°C or higher, and the measured time was "TUX", then "KU” in mode A, “KU1” in mode B, “KU5" in “K3°C or higher” in mode C, and “KU7” in “summer” in mode D are each changed to "TUX". This allows the measured time in the operation diagnosis to be updated as the reference time when the operation diagnosis is performed.
  • the control unit 152 updates each reference time for mode B in the reference time DB 423 (running time, start time, elapsed time between floors, time outside the DZ, door open time) (S254) and ends the reference time update process. If the reference time update process is not called in S109 (NO in S253), the control unit 152 ends the reference time update process as it is.
  • FIG. 14 is a flowchart of the reference time acquisition process.
  • the reference time acquisition process is executed in S100 of the remote inspection process shown in FIG. 11. If mode A is set (YES in S201), the control unit 152 acquires the reference time for mode A (S202) and proceeds to S209. For example, "KU" for mode A is acquired for the UP direction travel time.
  • control unit 152 acquires the reference time for mode B (S204) and proceeds to S209. For example, for the UP direction running time, "KU1" for mode B is acquired.
  • mode B is not set (NO in S203) but mode C is set (YES in S205)
  • the control unit 152 acquires the reference time for mode C that matches the current machine room temperature (S206) and proceeds to S209. For example, if the current machine room temperature is K3°C or higher, "KU5" from "K3°C ⁇ " in mode C is acquired for the UP direction running time.
  • mode C is not set (NO in S205) but mode D is set (YES in S207)
  • the control unit 152 acquires the reference time of mode C that matches the current season (S208) and proceeds to S209. For example, if the current season is summer, "KU7" for "summer” in mode C is acquired for the UP direction running time.
  • control unit 152 proceeds to S209. In S209, the control unit 152 sets the acquired reference time as the reference time to be used, and ends the reference time setting process.
  • the control unit 152 can update the measurement times calculated (measured) during operation diagnosis as the reference times (running time, start time, elapsed time between floors, time outside the DZ, door open time) in the reference time DB 423.
  • the control unit 152 can update the start time TA measured during operation diagnosis as the reference time KA (for the UP direction) for the start time in the reference time DB 423.
  • the inspection items for remote inspection can be determined using values that correspond to the operating state of the elevator at the site.
  • the reference times (running time, start-up time, elapsed time between floors, time outside the DZ, door open time) recorded in the reference time DB 423 include multiple values measured for each season (spring, summer, fall, winter values).
  • the control unit 152 selects one of the multiple values depending on the current season to determine the inspection item.
  • the reference times for start-up times recorded in the reference time DB 423 include multiple values measured for each season (KA6 to KA9 (in the case of the UP direction) in mode D).
  • the control unit 152 selects KA7 to determine the start-up time. In this way, highly accurate determination results can be obtained not only for rope elevators but also for hydraulic elevators, whose oil properties change depending on the season.
  • the reference times (running time, start time, elapsed time between floors, time outside the DZ, door open time) recorded in the reference time DB 423 include multiple values for each temperature range measured by the temperature sensor 15 (values of up to K1°C, K2°C-, K3°C-, K4°C-).
  • the control unit 152 selects one of the multiple values according to the current temperature measured by the temperature sensor 15 to determine the inspection item.
  • the reference time for the start time (reference time KA) recorded in the reference time DB 423 includes multiple values for each temperature range measured by the temperature sensor 15 (KA2-KA5 (in the case of the UP direction) in mode C).
  • the control unit 152 selects KA5 to determine the start time when the current temperature measured by the temperature sensor 15 is K4°C or higher. In this way, highly accurate determination results can be obtained not only for rope elevators but also for hydraulic elevators in which the properties of the oil change depending on the temperature.
  • the instruction unit 155 periodically transmits a hall call signal. Specifically, as shown in S101 to S102, a hall call is generated and output each time the operation diagnosis set time, which is once a month, is reached.
  • the control unit 152 changes the reference times (running time, start time, elapsed time between floors, time to be outside the DZ, and door open time) in the reference time DB 423 to the measured times calculated during the operation diagnosis (S109). For example, after performing an operation diagnosis, the control unit 152 changes the reference time KA of the start time in the reference time DB 423 to the measured time TA of the start time calculated during the operation diagnosis.
  • the reception unit 154 receives the operation of the maintenance worker (user) (clicking the "Manual Driving Diagnosis” button, clicking the "Save Reference Time” button, etc.).
  • the control unit 152 generates a hall call signal when the "Manual Driving Diagnosis” button is clicked (S151, S101).
  • the instruction unit 155 transmits the generated hall call signal.
  • the control unit 152 changes the reference times (running time, start time, elapsed time between floors, time to be outside the DZ, door open time) in the reference time DB 423 to the measured times calculated during the driving diagnosis (S252).
  • the control unit 152 changes the reference time KA of the start time in the reference time DB 423 to the measured time TA of the start time calculated during the driving diagnosis (in the case of the UP direction).
  • highly accurate judgment results can be obtained by manually changing the values to match the latest elevator operating conditions at the site.
  • it can also be adapted to changes in equipment conditions due to aging of the equipment or adjustments to valves in hydraulic elevators.
  • the inspection items of the remote inspection include the start state, running state (accelerating running state, constant speed running state, decelerating running state), landing state, destination floor button state, hall button state, door open/close state, and brake state of the car 10.
  • the judgment process a judgment is made on one or more of the above inspection items.
  • the judgment process is described assuming that the driving condition is judged as an inspection item for remote inspection. The judgment of the driving condition is described below with reference to Figures 15 to 27.
  • the plurality of running states include an acceleration running state in which the car 10 runs while accelerating, a constant speed running state in which the car 10 runs at a constant speed, and a deceleration running state in which the car 10 runs while decelerating.
  • the inspection items of the remote inspection include these plurality of running states.
  • the transmission process includes a first transmission process and a second transmission process.
  • the first transmission process is a process in which, based on the transmission of a UP hall call signal for the first floor (in this embodiment, the first floor), a 5th floor DN hall call signal is transmitted to generate a hall call for the second floor (in this embodiment, the fifth floor) in the DN direction after the waiting time TW (30 seconds in this embodiment) has elapsed since the car 10 arrived at the first floor (the first floor).
  • the second transmission process is a process of transmitting a UP hall call signal for the first floor (first floor) after the waiting time TW (30 seconds) has elapsed since the car 10 arrived at the second floor (fifth floor) based on the transmission of a DN hall call signal for the second floor (fifth floor).
  • the first floor is the lowest floor at which the car 10 can stop (the lowest floor at which it can stop), which is the first floor.
  • the second floor is the highest floor at which the car 10 can stop (the highest floor at which it can stop), which is the fifth floor.
  • the first floor is not stoppable because the service is set to be disconnected or it is a floor at which it is physically not stoppable
  • the first floor is set to the second floor
  • the fifth floor is not stoppable
  • the second floor is set to the fourth floor. Note that this is not limited to the above, and any floor may be set to the first floor, and any floor above the first floor may be set to the second floor.
  • the contacts of the UP hall call button 81 on the first floor are modified to short-circuit when a pseudo UP hall call signal for the first floor is sent from the output IF 140 to the hall device 230 on the first floor (see Figure 7).
  • the contacts of the DN hall call button 82 on the second floor are modified to short-circuit when a pseudo DN hall call signal for the second floor is sent from the output IF 140 to the hall device 230 on the second floor.
  • the control unit 152 generates a hall call signal to be transmitted by a transmission process.
  • the instruction unit 155 performs a transmission process to transmit the generated hall call signal.
  • the operation of the car 10 based on the hall call signal transmitted by this transmission process is called “diagnostic operation.”
  • the determination process performed by the control unit 152 based on the determination signal acquired by the acquisition unit 151 as a result of the above transmission process is called “driving diagnosis.”
  • Figures 15 and 16 are timing charts for explaining the running state.
  • Figure 15 explains a case where the car 10 runs from the first floor to the fifth floor in response to a fifth floor DN hall call generated by the remote inspection device 100 (a fifth floor DN hall call signal transmitted by the instruction unit 155).
  • car 10 is stopped on the first floor. At this time, car 10 is located within the door zone on the first floor (DZ signal is ON), and the speed of car 10 is 0 (car 10 is stopped).
  • the remote inspection device 100 generates a DN hall call for the 5th floor.
  • the car 10 starts running to respond to the DN hall call for the 5th floor.
  • the position of the car 10 is outside the door zone for the 1st floor, and the DZ signal changes from the ON state to the OFF state.
  • the cage 10 When the cage 10 starts to move, the cage 10 enters an accelerating state. At time t2, when the speed of the cage 10 reaches the rated speed, the cage 10 changes from an accelerating state to a constant speed state. At time t3, which is a time TU12 that has passed since time t1, the cage 10 is located within the door zone on the second floor, and the DZ signal changes from the OFF state to the ON state. Furthermore, at time t4, the cage 10 is located outside the door zone on the second floor, and the DZ signal changes from the ON state to the OFF state.
  • car 10 changes from a constant speed traveling state to a decelerating traveling state in order to stop on the fifth floor.
  • time t10 which is a time TU45 that has passed since time t7
  • car 10 is located within the door zone of the fifth floor, and the DZ signal changes from OFF to ON.
  • Car 10 stops on the fifth floor, and the car speed becomes 0 (stopped state).
  • time t11 the speed of car 10 is 0, and the DZ signal is ON.
  • the remote inspection device 100 generates a 1st floor UP platform call (the instruction unit 155 transmits a 1st floor UP platform call).
  • the car 10 starts running to respond to the 1st floor UP platform call.
  • the position of the car 10 is outside the door zone of the 5th floor, and the DZ signal changes from the ON state to the OFF state.
  • the cage 10 When the cage 10 starts to move, the cage 10 enters an accelerating state. At time t2, when the speed of the cage 10 reaches the rated speed, the cage 10 changes from an accelerating state to a constant speed state. At time t3, which is a time TD54 that has passed since time t1, the cage 10 is located within the door zone of the fourth floor, and the DZ signal changes from the OFF state to the ON state. Furthermore, at time t4, the cage 10 is located outside the door zone of the fourth floor, and the DZ signal changes from the ON state to the OFF state.
  • car 10 changes from a constant speed traveling state to a decelerating traveling state in order to stop on the first floor.
  • time t10 which is a time TD21 that has passed since time t7
  • car 10 is located within the door zone on the first floor, and the DZ signal changes from OFF to ON.
  • Car 10 stops on the first floor, and the car speed becomes 0 (stopped state).
  • time t11 the speed of car 10 is 0, and the DZ signal is ON.
  • Figures 17 to 20 are diagrams for explaining the diagnostic operation.
  • the diagnostic operation includes diagnostic operation A and diagnostic operation B.
  • Diagnostic operation A is a round-trip operation in which the car 10 runs from the 5th floor to the 1st floor and then runs from the 1st floor to the 5th floor by sequentially transmitting a 5th floor DN hall call signal, a 1st floor UP hall call signal, and a 5th floor DN hall call signal.
  • Diagnostic operation B is a round-trip operation in which the car 10 runs from the 1st floor to the 5th floor and then runs from the 5th floor to the 1st floor by sequentially transmitting a 1st floor UP hall call signal, a 5th floor DN hall call signal, and a 1st floor UP hall call signal.
  • Diagnostic operation A will be explained using Figures 17 and 18.
  • the first transmission process is performed, followed by the second transmission process.
  • the car 10 is stopped at the second floor.
  • the remote inspection device 100 generates a first floor UP hall call 91.
  • the car 10 is traveling in the DN direction toward the first floor to respond to the first floor UP hall call 91.
  • car 10 arrives at the first floor.
  • the remote inspection device 100 generates a 5th floor DN hall call 92. Note that if car 10 is located on the first floor, the 5th floor DN hall call 92 should be generated without generating a 1st floor UP hall call 91.
  • car 10 is traveling in the UP direction toward the 5th floor to respond to the 5th floor DN hall call 92.
  • car 10 responds to the 5th floor DN hall call 92 and arrives at the 5th floor.
  • the remote inspection device 100 generates a 1st floor UP hall call 91 at time t7, 30 seconds after time t6.
  • the car 10 is traveling in the DN direction toward the 1st floor to respond to the 1st floor UP hall call 91.
  • the car 10 stops at the 1st floor.
  • car 10 travels back and forth between the bottom floor (first floor) and the top floor (fifth floor) between times t4 and t9.
  • diagnostic operation B will be explained using Figures 19 and 20.
  • the second transmission process is performed, followed by the first transmission process.
  • the car 10 is stopped at the fourth floor.
  • the remote inspection device 100 generates a fifth floor DN hall call 92.
  • the car 10 is traveling in the UP direction toward the fifth floor to respond to the fifth floor DN hall call 92.
  • car 10 arrives at the fifth floor.
  • the remote inspection device 100 generates a first floor UP platform call 91. Note that if car 10 is located on the fifth floor, the first floor UP platform call 91 should be generated without generating a fifth floor DN platform call 92.
  • car 10 is traveling in the DN direction toward the first floor to respond to a call 91 at the first floor UP hall.
  • car 10 arrives at the first floor.
  • the remote inspection device 100 generates a 5th floor DN hall call 92 at time t7, 30 seconds after time t6.
  • the car 10 is traveling in the UP direction toward the 5th floor to respond to the 5th floor DN hall call 92.
  • the car 10 arrives at the 5th floor.
  • car 10 travels back and forth between the bottom floor (first floor) and the top floor (fifth floor) between times t4 and t9.
  • Figure 21 is a flowchart of the driving diagnosis process.
  • the driving diagnosis process is executed in S102 of the remote driving process.
  • the driving diagnosis process is executed when the "Manual Driving Diagnosis" button is clicked on the display screen 421 shown in Figure 10 or when the set driving diagnosis time (for example, 11:59 p.m. on the 23rd of each month) is reached.
  • the control unit 152 executes a driving generation process in S301. As described below, in the driving generation process, the control unit 152 generates a plurality of hall call signals. The instruction unit 155 executes a transmission process to sequentially transmit the generated hall call signals, thereby executing the diagnostic driving. The control unit 152 calculates the cage position, driving time, driving state, etc. of the cage 10 based on the judgment signal acquired by the acquisition unit 151 during the diagnostic driving by the transmission process.
  • control unit 152 determines whether there were no stops at any intermediate floors (2nd to 4th floors) between the top floor (1st floor) and the bottom floor (5th floor), excluding the forced stop floor. If the control unit 152 determines that there were no stops at any intermediate floors, excluding the forced stop floor (YES in S302), the process proceeds to S303. If the control unit 152 does not determine that there were no stops at any intermediate floors, excluding the forced stop floor (NO in S302), the process proceeds to S305.
  • the control unit 152 executes a determination process in S303. As described below, in the driving occurrence process, the control unit 152 determines whether the driving state (each of the accelerating driving state, the constant speed driving state, and the decelerating driving state) is a normal state or a modulated state.
  • the driving state each of the accelerating driving state, the constant speed driving state, and the decelerating driving state
  • control unit 152 determines whether or not all of the accelerating driving state, the constant speed driving state, and the decelerating driving state have been determined. If the control unit 152 determines that all of the states have been determined (YES in S304), it ends the driving diagnosis process.
  • control unit 152 determines that all states have been determined (NO in S304). If the control unit 152 has not determined that all states have been determined (NO in S304), the process proceeds to S305. In S305, the control unit 152 executes a process to cancel the determination. In the process of canceling the determination, if there is a determination of a driving state that has already been performed, this determination is cancelled.
  • control unit 152 determines whether the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process. If the control unit 152 determines that the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process (YES in S306), the control unit 152 advances the process to S307. If the control unit 152 does not determine that the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process (NO in S306), the control unit 152 advances the process to S308.
  • control unit 152 sets the determination of the driving state (accelerating driving state, constant speed driving state, decelerating driving state) to the effect that it is impossible to determine, and ends the driving diagnosis processing.
  • control unit 152 executes a waiting process (3 minutes) and returns the processing to S301. As a result, the driving occurrence process and the determination process are performed again after the 3-minute waiting time has elapsed.
  • the control unit 152 performs a cancellation process to cancel the judgment of the judgment process. What is canceled here is the judgment of the judgment process executed based on the transmission process of the hall call signal executed in the travel generation process.
  • the instruction unit 155 When a cancellation process is performed, the instruction unit 155 performs the transmission process of the hall call signal again in the running generation process after a specific time (3 minutes) has elapsed since the cancellation process.
  • the control unit 152 performs the judgment process again based on the transmission process that was performed again. Note that, if only one of the running directions, the UP direction or the DN direction, stops at an intermediate floor, the process may be repeated only for the running direction that stopped at the intermediate floor.
  • the reason for this cancellation process is that if the car stops at an intermediate floor, it is not possible to determine whether the travel time between the first and fifth floors is appropriate in the travel status determination process. Also, when determining the state of the car call button and the state of the hall call button, it is not possible to determine whether car 10 stopped between the first and fifth floors due to a car call button or hall call button pressed by a passenger, or due to a malfunction of the car call button or hall call button. Therefore, after the cancellation process is performed, the travel occurrence process and determination process are performed again to check again.
  • car 10 responds to another hall call registered by the user, it may not be possible to determine all running conditions (YES in S304). In such cases, the system performs a cancellation process and then executes the running generation process and determination process again.
  • the control unit 152 will not perform cancellation processing even if the car 10 stops at the forced stop floor. This is because the car 10 always stops at a forced stop floor, and stopping at a forced stop floor is unrelated to the determination of whether or not the car is in a modulated state. For this reason, when determining the running time from the first to fifth floors, a reference time or the like can be set in advance, including stopping at a forced stop floor (a running time is set on the assumption that the car will stop at a forced stop floor). Alternatively, the determination processing can be performed excluding the running time between the floors before and after the forced stop floor.
  • control unit 152 sets that judgment by the judgment process is impossible. Note that if the diagnostic operation cannot be started for 30 minutes or more, it may also be set that judgment by the judgment process is impossible.
  • Diagnostic runs are performed late at night, when there are no passengers. If there happen to be passengers during this time, they may make a car or hall call, which may cause the train to stop at an intermediate floor. In this case, the travel time between the first to fifth floors cannot be measured correctly, so a cancellation process can be performed and the train judged again. In these circumstances, the possibility of passengers making a car or hall call 10 times in a row, causing the train to stop at an intermediate floor, is close to zero. However, if the train stops at an intermediate floor 10 times in a row, this may be due to some kind of malfunction.
  • the maintenance staff can confirm this on the terminal 400.
  • a malfunction may have occurred in which a hall call button or car call button at an intermediate floor is pressed in, and ON signals may be constantly being sent from these buttons. For this reason, the maintenance staff will go to the site to check the situation. If the malfunction is resolved as a result of the check, a manual operation diagnosis can be performed by clicking the "Manual operation diagnosis" button (see Figure 10) on the display screen 421.
  • FIG. 22 is a flowchart of the driving generation process.
  • the control unit 152 When the driving diagnosis process starts, in S401, the control unit 152 generates the hall call signal to be generated and sets the waiting time TW based on the hall call signal generation table.
  • FIG. 23 is an example of a platform call signal generation table.
  • the platform call signal generation table specifies multiple platform call signals to be generated based on the current cage position of cage 10, and the waiting time TW for transmitting the next platform call signal.
  • the instruction unit 155 first performs a first transmission process to run the car 10 to the first floor in response to a hall call, and then to the second floor. However, if the car 10 is on the first floor from the beginning, there is no need to run it to the first floor. In this way, responding to a hall call on a floor closer to the current car position minimizes the operation of the car 10 required for diagnostic operation (the power cost required for operation diagnosis is lower).
  • the instruction unit 155 when the car 10 is at an intermediate floor, the instruction unit 155 performs the second transmission process.
  • the intermediate floor is the third floor, which is two floors away from both the first and fifth floors.
  • the car 10 is made to perform diagnostic operation B shown in Figures 19 and 20.
  • the instruction unit 155 transmits a top floor (fifth floor) DN hall call signal.
  • the instruction unit 155 transmits a bottom floor (first floor) UP hall call signal after a waiting time TW (30 seconds) from arrival.
  • the instruction unit 155 transmits a top floor DN hall call signal after a waiting time TW (30 seconds) from arrival. This causes the car 10 to shuttle between the bottom floor and the top floor.
  • the reason for waiting 30 seconds after arrival before issuing a hall call is to confirm that no calls other than the hall call generated for the operation diagnosis are occurring.
  • the operation diagnosis is performed under the assumption that no passengers are using the elevator. If there are no passengers, car 10 should be available within 30 seconds of arrival after opening and closing the doors in response to the hall call generated for the operation diagnosis. In this case, car 10 should continue to stop at the arrival floor unless the next hall call occurs.
  • the next hall call is generated after the waiting time TW (30 seconds) from arrival.
  • a cancellation process of the judgment S305 is executed.
  • "arriving" at a certain floor refers to the timing when the car enters the door zone at that floor (the timing when the DZ signal changes from OFF to ON). In this embodiment, the judgment is made using the DZ signal, but if the judgment is also made using the LB signal, "arriving" at a certain floor may refer to the timing when the DZ signal changes from OFF to ON and the LB signal changes from ON to OFF (i.e., the timing when the car 10 is braked by the brakes).
  • cage 10 is made to perform diagnostic operation A shown in Figures 17 and 18.
  • instruction unit 155 transmits a lowest floor UP hall call signal.
  • instruction unit 155 transmits a top floor DN hall call signal after waiting time TW (30 seconds) from arrival.
  • instruction unit 155 transmits a lowest floor UP hall call signal after waiting time TW (30 seconds) from arrival.
  • TW waiting time
  • the instruction unit 155 transmits a lowest floor UP hall call signal.
  • the instruction unit 155 transmits a top floor DN hall call signal after a waiting time TW (30 seconds) from arrival.
  • cage 10 performs the operations of diagnostic operation A shown in Figures 17 and 18 from time t4 onwards.
  • instruction unit 155 transmits a top floor DN hall call signal.
  • instruction unit 155 transmits a bottom floor UP hall call signal, TW (30 seconds), after a waiting time TW (30 seconds) from arrival.
  • the control unit 152 determines whether or not there is a waiting floor set among the floors where the vehicle can stop (1st to 5th floors). If the control unit 152 determines that there is a waiting floor set (YES in S402), in S403, it sets all waiting times TW to 0 seconds and proceeds to S404. If the control unit 152 does not determine that there is a waiting floor set (NO in S402), it proceeds to S404.
  • the control unit 152 sets the waiting time TW to 0 seconds when a waiting floor is set. For example, if the waiting floor is set to the second floor, the car 10 that has become available will start traveling to the waiting floor, the second floor, within 30 seconds of arriving at the first or fifth floor through diagnostic operation. This will result in an erroneous judgment, for example, because it will be impossible to distinguish this from a call generated due to a malfunction. In this embodiment, in order to prevent such an erroneous judgment, the waiting time TW is set to 0 seconds when a waiting floor is set.
  • the instruction unit 155 performs processing to transmit the next platform call signal.
  • the "next platform call signal” refers to the platform call signal to be transmitted next. For example, in FIG. 23, if the current car position is above an intermediate floor and below the top floor, the signals are transmitted in the following order: the top floor DN platform call signal, the bottom floor UP platform call signal, and the top floor DN platform call signal.
  • the first top floor DN platform call signal is transmitted, if the first top floor DN platform call signal has already been transmitted, the second bottom floor UP platform call signal is transmitted, and if the second bottom floor UP platform call signal has also been transmitted, the third top floor DN platform call signal is transmitted.
  • control unit 152 executes the cage information measurement process described below. Through the cage information measurement process, the control unit 152 calculates the cage position, running time, running state, etc. of the cage 10 based on the judgment signal acquired by the acquisition unit 151 during diagnostic operation by the transmission process.
  • control unit 152 determines whether or not the car 10 has arrived at the floor where the hall call is generated. If the control unit 152 determines that the car 10 has arrived at the floor where the hall call is generated (YES in S406), the process proceeds to S407. If the control unit 152 does not determine that the car 10 has arrived at the floor where the hall call is generated (NO in S406), the process returns to S406. This causes the car 10 to wait until it arrives at the floor where the hall call is generated.
  • the control unit 152 determines whether or not all platform call signals have been transmitted. All platform call signals refer to all signals that were scheduled for transmission in the platform call signal generation table shown in FIG. 23. If the control unit 152 determines that all platform call signals have been transmitted (YES in S407), it ends the driving diagnosis processing. If the control unit 152 does not determine that all platform call signals have been transmitted (NO in S407), it advances the processing to S408.
  • the control unit 152 determines whether the waiting time TW has elapsed. If the control unit 152 determines that the waiting time TW (30 seconds) has elapsed (YES in S408), it returns the process to S404. If the control unit 152 does not determine that the waiting time TW has elapsed (NO in S408), it returns the process to S408. This causes the vehicle to wait until the waiting time TW has elapsed. This means that the next hall call signal will be transmitted 30 seconds after arrival at the hall call generating floor. The processes of S404 to S408 are repeated until there are no more hall call signals to transmit.
  • FIG. 24 is a flowchart of the cage information measurement process.
  • the control unit 152 determines in S501 whether the SDL signal is ON or not.
  • the processes in S501 to S510 are performed when the cage 10 travels from the lowest floor (first floor) to the highest floor (fifth floor).
  • control unit 152 determines that the SDL signal is ON (YES in S501), it advances the process to S502. If the SDL signal is ON, it can determine that the car position is on the lowest floor (first floor). As described above, it is possible to determine whether the car position is on the lowest floor or not without using the SDL signal.
  • control unit 152 determines that the SDL signal is ON (NO in S501)
  • the process proceeds to S511.
  • the control unit 152 sets the floor position i of the car 10 to the lowest floor.
  • control unit 152 determines whether the DZ signal has changed from an ON state to an OFF state. If the control unit 152 determines that the DZ signal has changed from an ON state to an OFF state (YES in S503), the process proceeds to S504. In this case, the car 10 is in a traveling state.
  • control unit 152 If the control unit 152 does not determine that the DZ signal has changed from the ON state to the OFF state (NO in S503), the process returns to S503. This causes the control unit 152 to wait until the DZ signal changes from the ON state to the OFF state.
  • the control unit 152 starts the timer in S504. This starts measuring the travel time from the first floor when the DZ signal changes from the ON state to the OFF state. Note that if the LB signal is also used, the measurement of the travel time from the first floor may also start when the LB signal changes from the OFF state to the ON state (the brake is released).
  • control unit 152 determines whether the running direction is the UP direction. Whether the running direction is the UP direction may be determined based on the UP signal, or may be determined by another method described above without using the UP signal.
  • control unit 152 determines that the running direction is the UP direction (YES in S505), it advances the process to S506. If the control unit 152 does not determine that the running direction is the UP direction (NO in S505), it ends the car information measurement process. If the running direction is not the UP direction, there is a possibility that a response is being made to a different hall call. In this case, driving diagnosis cannot be performed, so the car information measurement process is ended.
  • the control unit 152 sets a stop flag at floor position i. This makes it possible to determine whether or not the vehicle has stopped between the first and fifth floors (an intermediate floor) (S302). Note that if the travel time becomes longer than the reference time by a predetermined time or more, it may be determined that the vehicle has stopped at an intermediate floor.
  • the control unit 152 determines whether the DZ signal has changed from an OFF state to an ON state. If the control unit 152 determines that the DZ signal has changed from an OFF state to an ON state (YES in S507), the process proceeds to S508. If the control unit 152 does not determine that the DZ signal has changed from an OFF state to an ON state (NO in S507), the process returns to S505. This causes the control unit 152 to wait until the DZ signal changes to an ON state.
  • the control unit 152 sets the running time and running state for floor positions i to i+1. For example, if the first floor is set as the floor position, this corresponds to the situation from time t1 to time t3 in FIG. 15.
  • the running time TU12 for floor positions 1 to 2 and the corresponding running state are set from the timing when the DZ signal changes from ON to OFF (t1 in FIG. 15) to the timing when the DZ signal changes from OFF to ON (t3 in FIG. 15).
  • the control unit 152 increments the floor position i by one.
  • the control unit 152 determines whether or not the floor position i is the top floor. If the control unit 152 determines that the floor position i is the top floor (YES in S510), it ends the car information measurement process. If the control unit 152 does not determine that the floor position i is the top floor (NO in S510), it returns the process to S505.
  • the floor position is updated every time the DZ signal changes from OFF to ON, and the running time and running state are set each time.
  • the second floor is set as the floor position, this corresponds to the situation from time t3 to time t5 in FIG. 15.
  • the running time TU23 for floor position 2-3 and the corresponding running state are set.
  • the floor position is updated, and running time TU34 for floor position 3-4, running time TU45 for floor position 4-5 and the corresponding running state are set.
  • the driving state is determined based on a driving state table.
  • Figure 25 is an example of a driving state table.
  • the driving state table defines the relationship between the driving section and the driving state.
  • the driving time table in Figure 25 is an example of a driving time table when the number of stops is four or more. In this embodiment, stops are possible from the first floor to the fifth floor, so the number of stops is four or more.
  • the running direction of the cage 10 When the running direction of the cage 10 is the UP direction, the following occurs.
  • the running section of the cage 10 When the running section of the cage 10 is "lowest floor (1st floor) to lowest floor + 1 (2nd floor)", the running state of the cage 10 is an accelerating running state.
  • the running section of the cage 10 When the running section of the cage 10 is "top floor - 1 (4th floor) to top floor (5th floor)", the running state of the cage 10 is a decelerating running state.
  • the running section of the cage 10 is other than the above (2nd floor to 3rd floor, 3rd floor to 4th floor), the running state of the cage 10 is a constant speed running state.
  • the running state in the running section from the 1st to 2nd floors (time t1 to time t3) is set to an "accelerating running state".
  • the running state in the running section from the 2nd to 3rd floors (time t3 to time t5) is set to a "constant speed running state”.
  • the running state in the running section from the 3rd to 4th floors (time t5 to time t7) is set to a "constant speed running state”.
  • the running state in the running section from the 4th to 5th floors (time t7 to time t10) is set to a "decelerating running state”.
  • the driving state is judged based on the relationship between the driving state and the driving time in the driving section set above. For example, if the driving time in the driving section from the first floor to the second floor is not valid, the "accelerated driving state" is judged to be a modulated state.
  • the travel section from the 1st to 2nd floors includes both an accelerating travel state and a constant speed travel state.
  • the constant speed travel state is determined using the travel sections from the 2nd to 3rd floors and the 3rd to 4th floors. For this reason, only the accelerating travel state is determined in the travel section from the 1st to 2nd floors.
  • this is not limited to this, and it is also possible to determine the accelerating travel state and the constant speed travel state in the travel section from the 1st to 2nd floors.
  • the travel section from the 4th to 5th floors includes both a constant speed travel state and a decelerating travel state, but in this travel section, only the decelerating travel state is determined.
  • the processes in S511 to S520 are those performed when the car 10 travels from the top floor (fifth floor) to the bottom floor (first floor) (example in FIG. 16).
  • the control unit 152 determines whether the SUL signal is ON or not.
  • control unit 152 determines that the SUL signal is ON (YES in S511), it advances the process to S512. If the SUL signal is ON, it can be determined that the car position is on the lowest floor (first floor). As described above, it is possible to determine whether the car position is on the lowest floor or not without using the SUL signal. If the control unit 152 does not determine that the SUL signal is ON (NO in S511), it ends the car information measurement process.
  • the control unit 152 sets the floor position i of the car 10 to the top floor (fifth floor).
  • the control unit 152 determines whether the DZ signal has changed from the ON state to the OFF state. If the control unit 152 determines that the DZ signal has changed from the ON state to the OFF state (YES in S513), the process proceeds to S514. If the control unit 152 does not determine that the DZ signal has changed from the ON state to the OFF state (NO in S513), the process returns to S513. This causes the control unit to wait until the DZ signal changes from the ON state to the OFF state.
  • the control unit 152 starts the timer in S514. This starts measuring the travel time from the fifth floor when the DZ signal changes from the ON state to the OFF state. Note that if the LB signal is also used, the measurement of the travel time from the fifth floor may also start when the LB signal changes from the OFF state to the ON state (the brake is released).
  • the control unit 152 determines whether the driving direction is the DN direction. Whether the driving direction is the DN direction may be determined based on the DN signal, or may be determined by another method described above without using the DN signal. If the control unit 152 determines that the driving direction is the DN direction (YES in S515), the process proceeds to S516.
  • control unit 152 does not determine that the running direction is the DN direction (NO in S515), it ends the car information measurement process. If the running direction is not the DN direction, it may be responding to a different hall call. In this case, the diagnostic data cannot be obtained normally, so the process ends.
  • control unit 152 sets a stop flag at floor position i. This makes it possible to determine whether a stop occurred between the 5th floor and the 1st floor (an intermediate floor) (S302).
  • the control unit 152 determines whether the DZ signal has changed from an OFF state to an ON state. If the control unit 152 determines that the DZ signal has changed from an OFF state to an ON state (YES in S517), the process proceeds to S518. If the control unit 152 does not determine that the DZ signal has changed from an OFF state to an ON state (NO in S517), the process returns to S515. This causes the control unit to wait until the DZ signal changes to an ON state.
  • the control unit 152 sets the running time and running state for floor positions i to i-1. In S519, the control unit 152 decrements floor position i by one. In S520, the control unit 152 determines whether floor position i is the lowest floor. If the control unit 152 determines that floor position i is the lowest floor (YES in S520), it ends the car information measurement process. If the control unit 152 does not determine that floor position i is the lowest floor (NO in S520), it returns the process to S515.
  • the processing of S517 to S520 above is the same as the processing of S507 to S510.
  • the running time TD54 in the running section from the 5th floor to the 4th floor (time t1 to time t3) is calculated, and the running state is set to "accelerating running state”.
  • the running time TD43 in the running section from the 4th floor to the 3rd floor (time t3 to time t5) is calculated, and the running state is set to "constant speed running state”.
  • the running time TD32 in the running section from the 3rd floor to the 2nd floor (time t5 to time t7) is calculated, and the running state is set to "constant speed running state”.
  • the running time TD21 in the running section from the 2nd floor to the 1st floor (time t7 to time t10) is calculated, and the running state is set to "decelerating running state”.
  • the car position is specified by the floor position as described above.
  • the car position (floor position) is updated every time the DZ signal changes from OFF to ON. For this reason, the timing at which the floor position is updated differs between the UP direction and the DN direction.
  • the car position is defined as the second floor from the time the car enters the door zone on the second floor until just before the car enters the door zone on the third floor.
  • the car position is defined as the second floor from the time the car enters the door zone on the second floor until just before the car enters the door zone on the first floor.
  • this is not limited to this, and the division between floors may be set arbitrarily.
  • the car position may be defined as the second floor from the midpoint between the door zone on the first floor and the door zone on the second floor to the midpoint between the door zone on the second floor and the door zone on the third floor. This midpoint may be calculated based on the travel time.
  • the car position may be set based on the distance from the landing position on the lowest floor, rather than the floor position. For example, if the distance between each floor is 3 m, the car position when stopped on the first floor is 0 m, the car position when stopped on the second floor is 3 m, and the car position when stopped on the fifth floor is 12 m (3 m x 4).
  • the control unit 152 uses information including the DZ signal to calculate the position of the cage 10 and the running time of the cage 10 in the running section in which the cage 10 runs in each of the multiple running states (accelerating running state, constant speed running state, decelerating running state). Then, the running state is determined based on this.
  • Information including the DZ signal includes, in addition to the DZ, a hall call signal, etc. Alternatively, it may also include the SUL signal, the SDL signal, the UP signal, and the DN signal, but as described above, the running state can be determined without using these signals.
  • the stop flag at floor position i is set using the DZ signal in S506 and S516, but this is not limited to this, and the stop flag at floor position i may be set when the LB signal is OFF (braking state) at floor position i other than the top floor and the bottom floor.
  • FIG. 26 is a flowchart of the determination process.
  • the vehicle is determined to be in an accelerating state, a constant speed state, or a decelerating state.
  • the control unit 152 determines whether or not reference time x 90% of driving time ⁇ measured driving time ⁇ reference time x 110% of driving time is true for all driving sections corresponding to the accelerating driving state. If the control unit 152 determines that this condition is true (YES in S601), the process proceeds to S602. If the control unit 152 does not determine that this condition is true (NO in S601), the process proceeds to S603. In S602, the control unit 152 determines that the accelerating driving state is normal. In S603, the control unit 152 determines that the accelerating driving state is a modulated state.
  • the time TU12 in the UP direction (time t1 to time t3 in Figure 15, 1st floor to 2nd floor) and the time TD54 in the DN direction (time t1 to time t3 in Figure 16, 5th floor to 4th floor) correspond to the above-mentioned "measurement time of the travel time.”
  • a predetermined reference time KU12 is selected as the reference time for the accelerating driving state in the UP direction.
  • the reference time recorded in the reference time DB423 is a value obtained by actually measuring the driving time in advance.
  • the reference time KU121 is selected as the reference time for the accelerating driving state. In this way, the reference time used in determining the driving state is a value obtained from a value obtained by actually measuring the driving time in advance.
  • the reference range is set as a range between the reference time x 90% and the reference time x 110%.
  • the reference range (KU12L to KU12H) is set as KU12 x 90% ⁇ TU12 ⁇ KU12 x 110% (KU12L ⁇ TU12 ⁇ KU12H).
  • the speed of the cage 10 must be no greater than 125% of the rated speed.
  • the running time is required to be 80% or more (1/1.25) of the standard running time.
  • a 20% error in running time is permitted, but in this embodiment, a stricter error of up to 10% is permitted. This ensures the validity of the running time.
  • the judgment process it is determined whether the measured time TU12 in the UP direction is within a reference range (KU12L to KU12H). Similarly, it is determined whether the time TD54 in the DN direction is within a reference range determined based on the reference time obtained from the reference time DB423. If both time TU12 and time TD54 are within the reference range, it is determined that the accelerating driving state is normal, and if either one is outside the reference range, it is determined that the accelerating driving state is modulated.
  • the control unit 152 determines whether or not reference time x 90% of driving time ⁇ measured driving time ⁇ reference time x 110% of driving time is true for all driving sections corresponding to the constant speed driving state. If the control unit 152 determines that this condition is true (YES in S604), the process proceeds to S605. If the control unit 152 does not determine that this condition is true (NO in S604), the process proceeds to S606. In S605, the control unit 152 determines that the constant speed driving state is normal. In S606, the control unit 152 determines that the constant speed driving state is a modulated state.
  • times TU23 and TU34 in the UP direction (Fig. 15) and times TD43 and TD32 in the DN direction (Fig. 16) correspond to the "measurement time of the driving time.” If any of these are within the reference range, the constant speed driving state is determined to be normal, and if any one of them is outside the reference range, the constant speed driving state is determined to be a modulated state.
  • the control unit 152 determines whether or not reference time x 90% of driving time ⁇ measured driving time ⁇ reference time x 110% of driving time is true for all driving sections corresponding to the decelerating driving state. If the control unit 152 determines that this condition is met (YES in S607), the process proceeds to S608. If the control unit 152 does not determine that this condition is met (NO in S607), the process proceeds to S609. In S608, the control unit 152 determines that the decelerating driving state is a normal state, and ends the determination process. In S609, the control unit 152 determines that the decelerating driving state is a modulated state, and ends the determination process.
  • time TU45 in the UP direction (Fig. 15) and time TD21 in the DN direction (Fig. 16) correspond to the "measurement time of the driving time.” If any of these are within the reference range, the deceleration driving state is determined to be normal, and if either one is outside the reference range, the deceleration driving state is determined to be a modulated state.
  • each of the multiple driving states accelerating driving state, constant speed driving state, decelerating driving state
  • the control unit 152 determines that the driving state corresponding to the driving time is a normal state, whereas if the driving time is outside the reference range, the control unit 152 determines that the driving state corresponding to the driving time is a modulated state.
  • FIG. 27 is a flowchart of the multi-car process.
  • the multi-car process may be executed in place of the processes S101 to S106 in the remote inspection process of Figure 11.
  • the command unit 155 does not perform the transmission process that transmits the generated hall call signal, and the control unit 152 does not perform the judgment process based on the transmission process. In other words, if there are multiple cars, the driving diagnosis is not performed. Even if the command unit 155 transmits a hall call signal, it is not known which car 10 will be assigned to the hall call. For example, since a situation in which car No. 1 is always assigned to a hall call is anticipated, it is not possible to freely operate all of the cars 10 through the transmission process.
  • the determination signal at this time is acquired to determine the running state.
  • a remote inspection device 100 is installed in each of a plurality of elevators (cars 10) (a remote inspection device 100 is installed for each elevator). Multi-car processing is performed for each remote inspection device 100 corresponding to each elevator.
  • the control unit 152 determines in S701 whether a predetermined period (for example, one month) has elapsed since the previous operation diagnosis setting time. If the control unit 152 determines that the predetermined period has elapsed (YES in S701), the process proceeds to S705. If the control unit 152 does not determine that the predetermined period has elapsed (NO in S701), the process proceeds to S702.
  • a predetermined period for example, one month
  • the acquisition unit 151 acquires a determination signal for the target car that the control unit 152 is to determine.
  • the target car is the elevator car 10 connected to the remote inspection device 100.
  • the control unit 152 determines whether or not the target car has made an UP run from the lowest floor (first floor) to the top floor (fifth floor) and a DN run from the top floor to the bottom floor (this is referred to as a "round trip run"). If the control unit 152 determines that a round trip run of the target car has occurred (YES in S703), the process proceeds to S704.
  • control unit 152 If the control unit 152 does not determine that the target cage has traveled back and forth (NO in S703), it returns the process to S701. As a result, the determination signal continues to be acquired until the target cage travels back and forth within the specified period.
  • the control unit 152 executes a judgment process for the target car and ends the multi-car processing. Note that in the judgment process, if multiple sets of data from round-trip travel are acquired within a specified period, the judgment process may be performed using the data from the most recent round-trip travel. On the other hand, in S705, the control unit 152 determines that each travel state of the target car is a modulated state (the accelerating travel state, the constant speed travel state, and the decelerating travel state are all modulated states), and ends the multi-car processing.
  • a modulated state the accelerating travel state, the constant speed travel state, and the decelerating travel state are all modulated states
  • the control unit 152 executes a judgment process based on the judgment signal acquired from the acquisition unit 151 during round-trip travel when a target cage that is the object of judgment makes a round-trip run from the lowest floor to the top floor and from the top floor to the lowest floor. Then, when the target cage does not make a round-trip run within a specified period of time, the control unit 152 judges that each of the multiple running states of the target cage (any of an accelerating running state, a constant speed running state, and a decelerating running state) is in a modulated state.
  • the management server 300 acquires the judgment results of each cage 10 from the remote inspection device 100 that corresponds to the elevator.
  • multi-car processing can be performed for each of the multiple cars 10. For example, when performing multi-car processing for the first car, a determination signal for the first car is acquired in S702, and a determination is made in S703 as to whether or not the first car has made a round trip.
  • the reference time for "running time (elapsed time)" can be switched depending on the mode, season, etc., and the running state can be determined based on the switched "running time (elapsed time)".
  • a value for "running time (elapsed time)" can be used depending on the temperature or season at which the characteristics of the oil in the hydraulic elevator change.
  • the control unit 152 calculates the position of the cage 10 and the running time of the cage 10 in the running section in which the cage 10 runs in each of the multiple running states.
  • the control unit 152 determines that the running state corresponding to the running time is in a normal state, whereas when the running time is outside the reference range, the control unit 152 determines that the running state corresponding to the running time is in a modulated state.
  • the signals (DZ signal, LB signal, DS signal, GS signal) used to judge the conditions for activating the elevator safety circuit are used as the judgment signals for remote inspection.
  • hall calls are used instead of car calls as output signals for operation diagnosis (diagnostic operation) for remote inspection.
  • remote inspection can be performed as simply as possible for various elevators with different communication specifications and signal specifications.
  • multi-brand maintenance can be realized in remote inspection. This allows maintenance companies to reduce the frequency of maintenance inspections at the maintenance site and increase the number of elevators that can be maintained. Building owners can freely select a maintenance company and enter into a maintenance contract that allows remote inspection.
  • the reference time is a value calculated from the actual running time measured in advance. In this way, the running state can be determined using a value that corresponds to the operating state of the elevator at the site.
  • the reference range is the range between 90% and 110% of the reference time. In this way, by allowing a stricter margin of error (10%) than the margin of error (20%) permitted in statutory periodic inspections, the validity of the driving condition can be guaranteed.
  • the instruction unit 155 When the cage 10 is closer to the fifth floor than the first floor, the instruction unit 155 performs the second transmission process. When the cage 10 is closer to the first floor than the fifth floor, the instruction unit 155 performs the first transmission process. By doing this, it is possible to reduce the power costs required for operation diagnosis.
  • the control unit 152 performs a cancellation process to cancel the judgment of the judgment process based on the transmission process.
  • the instruction unit 155 performs the transmission process again after a specific time (3 minutes) has elapsed since the cancellation process.
  • the control unit 152 performs the judgment process again based on the transmission process that was performed again. In this way, it is possible to exclude a situation in which the car 10 has stopped due to a car call button or hall call button being pressed by chance by a passenger, and to detect a situation in which the car 10 has stopped due to a malfunction of a call button, etc.
  • the control unit 152 sets a status indicating that the determination process is impossible. In this way, it is possible to detect a situation in which some kind of malfunction, such as a malfunction of the call button, has occurred.
  • the control panel 210 controls the car 10 to always stop at the forced stop floor when the car 10 passes the forced stop floor.
  • the control unit 152 does not perform a cancellation process even if the car 10 stops at the forced stop floor. In this way, it is possible to prevent erroneous detection of a malfunction due to stopping at a forced stop floor and to detect calls, etc., that occur due to a malfunction.
  • the car 10 can stop at multiple floors. If a waiting floor is set, the control panel 210 controls the car 10 to run to the waiting floor and then wait at the waiting floor when the car 10 is available. If a waiting floor is set, the control unit 152 sets the waiting time TW to 0 seconds. This prevents erroneous detection of a malfunction due to running to a waiting floor and makes it possible to detect calls, etc., that occur due to a malfunction.
  • the control unit 152 performs the judgment process based on the judgment signal acquired from the acquisition unit 151 during round-trip travel when the target car to be judged travels from the first floor to the fifth floor and from the fifth floor to the first floor, without performing the judgment process based on the transmission process.
  • the control unit 152 performs the judgment process based on the judgment signal acquired from the acquisition unit 151 during round-trip travel when the target car to be judged travels from the first floor to the fifth floor and from the fifth floor to the first floor, without performing the judgment process based on the transmission process.
  • multiple cars 10 cannot be freely traveled by transmitting a hall call signal, but the travel state can be judged by making the car travel in a round-trip manner using the above method.
  • the management server 300 can send a command to execute remote inspection to the remote inspection device 100 and can receive a determination result from the remote inspection device 100.
  • the elevator system 200 (elevator equipment group 220 and control panel 210) and the remote inspection device 100 are installed in a first country (e.g., the United States), and the management server 300 is installed in a second country (e.g., Japan) different from the first country.
  • the management server 300 in the second country can manage the remote inspection device 100 that performs remote inspection of the elevator system 200 operating in the first country.
  • the management server 300 can manage the remote inspection device 100 across countries, regardless of in which country the elevator system 200 and the remote inspection device 100 are installed.
  • the reference time for "running time (elapsed time)" can be switched depending on the mode, season, etc., and the running state can be determined based on the switched "running time (elapsed time).” For example, when mode C or mode D is set, a value for "running time (elapsed time)" can be used depending on the temperature or season at which the characteristics of the oil in the hydraulic elevator change. This makes it possible to configure the system as shown in configurations (A) to (E) above, and achieves the effects shown in configurations (A) to (E).
  • An elevator remote inspection system for remotely inspecting an elevator, an instruction unit that performs a transmission process of transmitting a hall call signal to a device group of the elevator to generate a hall call for the elevator; an acquisition unit that acquires, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group; a control unit that generates the hall call signal to be transmitted by the transmission process, and performs a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquisition unit as a result of the transmission process; An output unit that outputs a determination result of the inspection item, the transmission process includes a first transmission process of transmitting a second hall call signal for generating a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal for generating a first hall call in an upward direction at the first floor,
  • the instruction unit is When the car is located closer to the second floor than to the first floor, the second transmission process is performed; An elevator remote inspection system as described in any one of Supplementary Note 1 to Supplementary Note 3, wherein the first transmission processing is performed when the car is located closer to the first floor than to the second floor.
  • the control unit when the car traveling between the first floor and the second floor based on the transmission process stops at a floor between the first floor and the second floor, performs a cancellation process to cancel the determination of the determination process based on the transmission process,
  • the instruction unit performs the transmission process again after a specific time has elapsed since the cancellation process;
  • the elevator remote inspection system according to any one of claims 1 to 4, wherein the control unit performs the determination process again based on the transmission process that has been performed again.
  • the control unit sets a value indicating that a judgment by the judgment process is impossible if the judgment by the judgment process is canceled by the cancellation process a predetermined number of times in succession.
  • the car can stop at a plurality of floors; When a waiting floor is set, the control panel controls the car to travel to the waiting floor and then wait at the waiting floor when the car is available; 8.
  • Appendix 9 An elevator remote inspection system as described in any of Appendix 1 to Appendix 8, wherein when there are multiple cars controlled by the control panel, the control unit does not perform the judgment process based on the transmission process, but when the target car to be judged makes a round trip run from the first floor to the second floor and from the second floor to the first floor, it executes the judgment process based on the judgment signal during the round trip run acquired from the acquisition unit.
  • Appendix 10 The elevator remote inspection system described in Appendix 9, wherein, when there are multiple cars controlled by the control panel, when the target car does not perform the reciprocating running within a specified period of time, the control unit determines that each of the multiple running states of the target car is in the modulated state.
  • a remote inspection device including the instruction unit, the acquisition unit, the control unit, and the output unit; Further comprising a management server that can be connected to the remote inspection device via a network and manages the remote inspection device, the management server is capable of transmitting an instruction to execute the remote inspection to the remote inspection device and receiving the determination result from the remote inspection device; the elevator equipment group, the control panel, and the remote inspection device are installed in a first country; 11.
  • the elevator remote inspection system according to any one of claims 1 to 10, wherein the management server is installed in a second country different from the first country.
  • An elevator remote inspection method for performing remote inspection of an elevator comprising: performing a transmission process for transmitting a hall call signal to a device group of the elevator, the hall call signal being used to generate a hall call for the elevator; acquiring, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group; generating the hall call signal to be transmitted by the transmission process, and performing a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquiring step as a result of the transmission process; and outputting a determination result of the inspection item.
  • the transmission process includes a first transmission process of transmitting a second hall call signal to generate a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal to generate a first hall call in an upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after the predetermined time has elapsed since the arrival of the elevator car at the second floor based on the transmission of the second hall call signal
  • the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a positional range of the car in which a door of the car can be opened or closed, or a non-first state which is not the first state
  • the step of performing the determination process includes a step of calculating, using information including the first signal, a position of the car and a running time of the car in a running section in which the car runs in each of a

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

In the present invention, a plurality of traveling states include: an acceleration traveling state in which a car (10) travels while accelerating; a fixed speed traveling state in which the car (10) travels at a fixed speed; and a deceleration traveling state in which the car (10) travels while decelerating. An inspection item includes the plurality of traveling states. In each of the plurality of traveling states, a control unit (152) determines that the traveling state corresponding to a travel time is a normal state if the travel time corresponding to each of the plurality of traveling states is within a reference range determined based on a predetermined reference time. Meanwhile, the control unit determines that the traveling state corresponding to the travel time is a modulated state if the travel time is outside the reference range.

Description

エレベータ遠隔点検システムおよびエレベータ遠隔点検方法Elevator remote inspection system and elevator remote inspection method
 本開示は、エレベータの遠隔点検を行うエレベータ遠隔点検システムおよびエレベータ遠隔点検方法に関する。 This disclosure relates to a remote elevator inspection system and a remote elevator inspection method for performing remote inspection of elevators.
 近年、エレベータの保守業務において、通信回線を利用してエレベータの遠隔点検を行うエレベータ遠隔点検システムのニーズが高まっている。このような遠隔点検を行うものとして、たとえば、特開2022-019900号公報(特許文献1)に開示された遠隔監視支援装置が挙げられる。この遠隔監視支援装置は、エレベータの制御基板から取得した信号の出力状態に基づいて、エレベータの動作状態が通常動作状態であるか否かを判断する。 In recent years, there has been an increasing need for remote elevator inspection systems that use communication lines to remotely inspect elevators in elevator maintenance work. One example of a system that performs such remote inspections is the remote monitoring support device disclosed in JP 2022-019900 A (Patent Document 1). This remote monitoring support device determines whether the elevator is in a normal operating state based on the output state of a signal obtained from the elevator's control board.
 遠隔点検の実施により、保守現場での点検作業が軽減されるため、保守業務が大幅に効率化する。加えて、遠隔点検を実施した場合、法定の定期点検作業の実施周期を長くできるといった法律上の規定(たとえば、日本の国土交通省が定める建築保全業務共通仕様書)も存在し、これによりさらに保守業務を効率化することができる。  Implementing remote inspections reduces the amount of inspection work at the maintenance site, greatly improving the efficiency of maintenance work. In addition, there are legal provisions (for example, the Common Specifications for Building Maintenance Work established by Japan's Ministry of Land, Infrastructure, Transport and Tourism) that allow the implementation of remote inspections to extend the implementation cycle of statutory regular inspection work, which can further improve the efficiency of maintenance work.
 特に、多種多様なメーカーのエレベータが設置されているグローバル市場において、保守会社は、エレベータのメーカーおよび機種を問わず保守対応を行う(保守をマルチブランド化する)必要がある。一方、保守契約を締結するビルのオーナー側では、設置されているエレベータのメーカーを問わず、自由に保守会社を選択して遠隔点検可能な保守契約を結びたいというニーズが高い。 In particular, in a global market where elevators from a wide variety of manufacturers are installed, maintenance companies need to provide maintenance services regardless of the elevator manufacturer or model (multi-brand maintenance). On the other hand, building owners who enter into maintenance contracts have a strong need to be able to freely select a maintenance company and enter into maintenance contracts that allow remote inspections, regardless of the manufacturer of the elevators installed.
 こういった事情から、エレベータのメーカーおよび機種を問わず、エレベータシステムから取得した信号に基づいて遠隔点検を行うことができるエレベータ遠隔点検システムのニーズが高まっている。 Due to these circumstances, there is a growing need for a remote elevator inspection system that can perform remote inspections based on signals obtained from the elevator system, regardless of the elevator manufacturer or model.
特開2022-019900号公報JP 2022-019900 A
 ところが、エレベータ業界においては、メーカーおよび機種ごとの通信仕様および信号仕様が共通化されていない。また、これらの仕様も一般に開示されていない。このため、異なるメーカー間で共通のエレベータ遠隔点検システムを利用できないのが通常である。 However, in the elevator industry, communication and signal specifications for each manufacturer and model are not standardized. Furthermore, these specifications are not publicly disclosed. For this reason, it is usually not possible for different manufacturers to use a common elevator remote inspection system.
 通信仕様および信号仕様の異なる様々なエレベータに対応したエレベータ遠隔点検システムを開発しようとした場合、たとえば、スイッチの接点信号を取り込むなど、パラレル伝送によりやりとりされる信号を取得するといった工夫が必要となる。加えて、メーカー間で信号仕様が共通化されていないため、共通して利用可能な信号の種類も大きく制限される。 When developing a remote elevator inspection system that is compatible with various elevators with different communication and signal specifications, it is necessary to devise ways to obtain signals exchanged through parallel transmission, such as by capturing switch contact signals. In addition, because signal specifications are not standardized between manufacturers, the types of signals that can be commonly used are greatly limited.
 さらには、信号が共通して利用可能であったとしても、エレベータ遠隔点検システムをビルに据え付ける際の据付コストあるいは据付困難性といったハードウェア上の制約から、利用に適さない信号もある。このため、こうしたエレベータ遠隔点検システムを実現するためには、どのような信号を用いてどのような方法によって遠隔点検の点検項目を判断するのか、十分に検討する必要がある。 Furthermore, even if signals are commonly available, some signals may not be suitable for use due to hardware constraints such as the installation cost or difficulty of installing an elevator remote inspection system in a building. Therefore, in order to realize such an elevator remote inspection system, careful consideration must be given to what signals to use and what methods to use to determine the inspection items for remote inspection.
 本開示は、上述の課題を解決するためになされたものであって、その目的は、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができるエレベータ遠隔点検システムおよびエレベータ遠隔点検方法を提供することである。 The present disclosure has been made to solve the above-mentioned problems, and its purpose is to provide an elevator remote inspection system and elevator remote inspection method that can perform remote inspection as easily as possible for various elevators with different communication specifications and signal specifications.
 本開示に係るエレベータ遠隔点検システムは、エレベータの遠隔点検を行うシステムである。エレベータ遠隔点検システムは、指示部と、取得部と、制御部と、出力部とを備える。指示部は、エレベータの機器群に対して、エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う。取得部は、エレベータの機器群とエレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する。制御部は、送信処理によって送信される乗場呼び信号を生成するとともに、送信処理の結果として取得部によって取得された判定用信号に基づき遠隔点検の点検項目を判定する判定処理を行う。出力部は、点検項目の判定結果を出力する。送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づくエレベータのかごの第1階床への到着から所定時間経過後に、第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、第2乗場呼び信号の送信に基づくかごの第2階床への到着から所定時間経過後に、第1乗場呼び信号を送信する第2送信処理とを含む。判定用信号は、かごの扉を開閉可能なかごの位置範囲を示すドアゾーン内にかごが位置する第1状態と、第1状態ではない非第1状態とのいずれかであることを示す第1信号を含む。制御部は、第1信号を含む情報を用いて、かごの位置と、かごの複数の走行状態の各々で走行する走行区間におけるかごの走行時間とを算出する。複数の走行状態は、かごが加速しながら走行する加速走行状態と、かごが一定速度で走行する定速走行状態と、かごが減速しながら走行する減速走行状態とを含む。点検項目は、複数の走行状態を含む。制御部は、複数の走行状態の各々において、複数の走行状態の各々に対応する走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、走行時間に対応する走行状態が正常状態であると判定する一方、走行時間が基準範囲外である場合に、走行時間に対応する走行状態が変調状態であると判定する。 The elevator remote inspection system according to the present disclosure is a system for remotely inspecting elevators. The elevator remote inspection system includes an instruction unit, an acquisition unit, a control unit, and an output unit. The instruction unit performs a transmission process for transmitting a hall call signal that generates an elevator hall call to the elevator equipment group. The acquisition unit acquires, as a judgment signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group. The control unit generates a hall call signal that is transmitted by the transmission process, and performs a judgment process for determining an inspection item for the remote inspection based on the judgment signal acquired by the acquisition unit as a result of the transmission process. The output unit outputs the judgment result of the inspection item. The transmission process includes a first transmission process for transmitting a second hall call signal for generating a second hall call in a downward direction at a second floor above the first floor after a predetermined time has elapsed since the elevator car arrives at the first floor based on the transmission of a first hall call signal for generating a first hall call in an upward direction at the first floor, and a second transmission process for transmitting the first hall call signal after a predetermined time has elapsed since the car arrives at the second floor based on the transmission of the second hall call signal. The determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a position range of the car in which the car door can be opened and closed, or a non-first state that is not the first state. The control unit calculates the position of the car and the travel time of the car in a travel section in which the car travels in each of a plurality of travel states of the car, using information including the first signal. The plurality of travel states include an accelerating travel state in which the car travels while accelerating, a constant speed travel state in which the car travels at a constant speed, and a decelerating travel state in which the car travels while decelerating. The inspection items include a plurality of travel states. The control unit determines that the driving state corresponding to the driving time is a normal state when the driving time corresponding to each of the plurality of driving states is within a reference range determined based on a predetermined reference time, and determines that the driving state corresponding to the driving time is a modulated state when the driving time is outside the reference range.
 本開示に係るエレベータ遠隔点検方法は、エレベータの遠隔点検を行う方法である。エレベータ遠隔点検方法は、エレベータの機器群に対して、エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、エレベータの機器群とエレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、送信処理によって送信される乗場呼び信号を生成するとともに、送信処理の結果として取得するステップによって取得された判定用信号に基づき遠隔点検の点検項目を判定する判定処理を行うステップと、点検項目の判定結果を出力するステップとを備える。送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づくエレベータのかごの第1階床への到着から所定時間経過後に、第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、第2乗場呼び信号の送信に基づくかごの第2階床への到着から所定時間経過後に、第1乗場呼び信号を送信する第2送信処理とを含む。判定用信号は、かごの扉を開閉可能なかごの位置範囲を示すドアゾーン内にかごが位置する第1状態と、第1状態ではない非第1状態とのいずれかであることを示す第1信号を含む。判定処理を行うステップは、第1信号を含む情報を用いて、かごの位置と、かごの複数の走行状態の各々で走行する走行区間におけるかごの走行時間とを算出するステップを含む。複数の走行状態は、かごが加速しながら走行する加速走行状態と、かごが一定速度で走行する定速走行状態と、かごが減速しながら走行する減速走行状態とを含む。点検項目は、複数の走行状態を含む。判定処理を行うステップは、複数の走行状態の各々において、複数の走行状態の各々に対応する走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、走行時間に対応する走行状態が正常状態であると判定する一方、走行時間が基準範囲外である場合に、走行時間に対応する走行状態が変調状態であると判定するステップをさらに含む。 The remote elevator inspection method according to the present disclosure is a method for remotely inspecting an elevator. The remote elevator inspection method includes a step of performing a transmission process of transmitting a hall call signal that generates a hall call for the elevator to an equipment group of the elevator, a step of acquiring a signal input/output by parallel transmission between the equipment group of the elevator and a control panel that controls the equipment group of the elevator as a judgment signal, a step of generating a hall call signal that is transmitted by the transmission process, and a step of performing a judgment process of judging an inspection item of the remote inspection based on the judgment signal acquired by the step of acquiring a result of the transmission process, and a step of outputting the judgment result of the inspection item. The transmission process includes a first transmission process of transmitting a second hall call signal that generates a second hall call in the downward direction at a second floor above the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal that generates a first hall call in the upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after a predetermined time has elapsed since the arrival of the car at the second floor based on the transmission of the second hall call signal. The determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a position range of the car in which the car door can be opened and closed, or a non-first state that is not the first state. The step of performing the determination process includes a step of calculating the position of the car and the running time of the car in a running section in which the car runs in each of a plurality of running states of the car, using information including the first signal. The plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating. The inspection items include a plurality of running states. The step of performing the determination process further includes a step of determining that the running state corresponding to the running time is a normal state when the running time corresponding to each of the plurality of running states is within a reference range determined based on a predetermined reference time, and determining that the running state corresponding to the running time is a modulated state when the running time is outside the reference range.
 本開示によれば、遠隔点検の利用に適した第1信号に基づき走行状態の判定を行うことで、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができる。すなわち、遠隔点検において保守のマルチブランド化を実現することができる。これにより、保守会社は、保守現場での保守点検頻度を減らすことができるとともに、保守対応可能なエレベータの台数を増やすことができる。ビルのオーナーは、自由に保守会社を選択して遠隔点検可能な保守契約を締結することができる。 According to the present disclosure, by determining the running state based on a first signal suitable for use in remote inspection, remote inspection can be performed as simply as possible for various elevators with different communication specifications and signal specifications. In other words, multi-brand maintenance can be achieved in remote inspection. This allows maintenance companies to reduce the frequency of maintenance inspections at the maintenance site and increase the number of elevators that can be maintained. Building owners can freely select a maintenance company and enter into a maintenance contract that allows remote inspection.
エレベータシステムおよび遠隔点検システムの全体構成の一例を示す図である。1 is a diagram showing an example of the overall configuration of an elevator system and a remote inspection system. エレベータシステムに従来型の遠隔点検システムを接続した例を示す図である。FIG. 1 is a diagram showing an example of connecting a conventional remote inspection system to an elevator system. エレベータシステムのハードウェア構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a hardware configuration of an elevator system. エレベータの構造を概略的に示す図である。FIG. 1 is a diagram showing a schematic structure of an elevator. エレベータの乗場の一例を示す図である。FIG. 2 is a diagram showing an example of an elevator hall. エレベータのかご内の一例を示す図である。FIG. 2 is a diagram showing an example of the inside of an elevator car. 変形例に係るエレベータシステムのハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of an elevator system according to a modified example. 遠隔点検システムのハードウェア構成および遠隔点検システムで使用される信号を説明するための図である。2 is a diagram for explaining a hardware configuration of the remote inspection system and signals used in the remote inspection system. FIG. 診断用運転におけるかごの走行と信号との関係を説明するための図である。FIG. 13 is a diagram for explaining the relationship between car travel and signals during diagnostic operation. 遠隔点検システムの機能ブロック図の一例を示す図である。FIG. 1 is a diagram illustrating an example of a functional block diagram of a remote inspection system. 遠隔点検システムの表示画面の一例を示す図である。FIG. 2 is a diagram showing an example of a display screen of the remote inspection system. 遠隔点検処理および端末設定処理のフローチャートである。13 is a flowchart of a remote inspection process and a terminal setting process. 基準時間DBの一例を示す図である。FIG. 13 is a diagram illustrating an example of a reference time DB. 基準時間更新処理のフローチャートである。13 is a flowchart of a reference time update process. 基準時間取得処理のフローチャートである。13 is a flowchart of a reference time acquisition process. 走行状態を説明するためのタイミングチャートである。4 is a timing chart for explaining a running state. 走行状態を説明するためのタイミングチャートである。4 is a timing chart for explaining a running state. 診断用運転を説明するための図である。FIG. 11 is a diagram for explaining a diagnostic operation. 診断用運転を説明するための図である。FIG. 11 is a diagram for explaining a diagnostic operation. 診断用運転を説明するための図である。FIG. 11 is a diagram for explaining a diagnostic operation. 診断用運転を説明するための図である。FIG. 11 is a diagram for explaining a diagnostic operation. 運転診断時処理のフローチャートである。4 is a flowchart of a driving diagnosis process. 走行発生処理のフローチャートである。13 is a flowchart of a traveling occurrence process. 乗場呼び信号生成テーブルの一例である。13 is an example of a hall call signal generation table. かご情報計測処理のフローチャートである。13 is a flowchart of a car information measurement process. 走行状態テーブルの一例である。4 is an example of a traveling state table. 判定処理のフローチャートである。13 is a flowchart of a determination process. マルチカー処理のフローチャートである。13 is a flowchart of a multi-car process.
 以下、図面を参照しつつ、実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Below, an embodiment will be described with reference to the drawings. In the following description, identical parts are given the same reference numerals. Their names and functions are also the same. Therefore, detailed descriptions thereof will not be repeated.
 [エレベータシステム200およびエレベータ遠隔点検システム1の構成]
 以下、エレベータシステム200およびエレベータ遠隔点検システム(以下、単に「遠隔点検システム」とも称する)1の構成について説明する。図1は、エレベータシステム200および遠隔点検システム1の全体構成の一例を示す図である。
[Configuration of elevator system 200 and elevator remote inspection system 1]
Hereinafter, there will be described configurations of an elevator system 200 and an elevator remote inspection system (hereinafter, also simply referred to as a "remote inspection system") 1. FIG. 1 is a diagram showing an example of the overall configuration of an elevator system 200 and a remote inspection system 1.
 ビルにエレベータが設置されている場合、ビルのオーナーは、エレベータの保守会社との間で保守契約を締結する必要がある。保守会社の保守員は、保守契約に基づきエレベータの保守点検および定期検査を行う。ビルのオーナーは、保守契約の際に、オプションとして遠隔点検あるいは遠隔監視も含めて契約をすることができる。 If an elevator is installed in a building, the building owner must enter into a maintenance contract with an elevator maintenance company. Maintenance staff from the maintenance company will perform maintenance inspections and regular inspections of the elevator based on the maintenance contract. When entering into a maintenance contract, the building owner can also include remote inspection or remote monitoring as an option.
 遠隔監視は、保守会社の監視センター(情報センター)等が、通信回線等を利用してエレベータの異常や不具合の有無を常時監視することをいう。遠隔点検は、遠隔監視に加え、保守会社の監視センター等が、正常なエレベータ運転のために必要とされる箇所を対象に、通信回線等を利用してエレベータの運行状態や各機器の動作状況が正常であるか否かを点検することをいう。 Remote monitoring refers to a maintenance company's monitoring center (information center) etc. constantly monitoring the elevator for any abnormalities or malfunctions using communication lines etc. Remote inspection refers to, in addition to remote monitoring, a maintenance company's monitoring center etc. inspecting the areas required for normal elevator operation to see if the elevator's operating status and the operating status of each piece of equipment are normal, using communication lines etc.
 遠隔点検には、エレベータの、性能点検、各機器の点検、利用状態の点検の3種類の点検がある。性能点検において、かごの、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態の各点検項目の点検が行われる。各機器の点検において、機械室または制御盤の温度、制御機器の状態、かご内の行先階釦の状態、インターホンの状態、戸開閉状態、乗場釦の状態、ドアスイッチの状態、電磁ブレーキの異常の有無の各点検項目の点検が行われる。利用状態の点検において、かごの走行距離、走行時間または起動回数、ドアの開閉回数の各点検項目の点検が行われる。 Remote inspections include three types of elevator inspections: performance inspections, inspections of each piece of equipment, and inspections of usage status. Performance inspections involve inspections of the car's start-up state, accelerating running state, constant speed running state, decelerating running state, and landing state. Equipment inspections involve inspections of the machine room or control panel temperature, the state of the control equipment, the state of the destination floor button in the car, the state of the intercom, the state of the doors opening and closing, the state of the landing button, the state of the door switch, and whether there are any abnormalities in the electromagnetic brakes. Usage inspections involve inspections of the car's travel distance, travel time or number of starts, and the number of times the doors are opened and closed.
 このような遠隔点検の実施により、保守現場での点検作業が軽減されるため、保守業務が大幅に効率化する。加えて、遠隔点検を実施した場合、法定の定期点検作業の実施周期を長くできるといった法律上の規定も存在し、これによりさらに保守業務を効率化することができる。たとえば、日本国内においては、上記で列挙した遠隔点検を実施することで、法律で義務付けられた定期点検の実施周期を1ヶ月に1回から3ヶ月に1回に減らすことができる(国土交通省による建築保全業務共通仕様書に規定)。 Implementing such remote inspections reduces the amount of inspection work at the maintenance site, greatly improving the efficiency of maintenance work. In addition, there are legal provisions that allow the implementation of remote inspections to extend the implementation cycle of statutory regular inspections, further improving the efficiency of maintenance work. For example, in Japan, implementing the remote inspections listed above can reduce the implementation cycle of legally required regular inspections from once a month to once every three months (as stipulated in the Common Specifications for Building Maintenance Work by the Ministry of Land, Infrastructure, Transport and Tourism).
 さらに、後述するように、グローバル市場における保守のマルチブランド化を推進したいという保守会社のニーズ、および、自由に保守会社を選択して遠隔点検可能な保守契約を結びたいというビルのオーナーのニーズが高まっている。本実施の形態に係る遠隔点検システム1は、このようなニーズに答えるべく構成された、エレベータの遠隔点検を行うシステムである。以下、詳細に説明する。 Furthermore, as described below, there is an increasing need for maintenance companies to promote multi-branding of maintenance in the global market, and for building owners to freely select a maintenance company and enter into a maintenance contract that allows remote inspection. The remote inspection system 1 of this embodiment is a system for remotely inspecting elevators that is configured to meet these needs. It will be described in detail below.
 図1に示すように、遠隔点検システム1は、遠隔点検装置100と、管理サーバ300と、端末400とを備える。エレベータシステム200および遠隔点検装置100は、ビル2内に設置されている。遠隔点検装置100は、エレベータシステム200と接続し、エレベータの遠隔点検を行う。遠隔点検装置100は、たとえば、PLC(Programmable Logic Controller)を含んで構成される。 As shown in FIG. 1, the remote inspection system 1 includes a remote inspection device 100, a management server 300, and a terminal 400. An elevator system 200 and the remote inspection device 100 are installed in a building 2. The remote inspection device 100 is connected to the elevator system 200 and performs remote inspection of the elevators. The remote inspection device 100 is configured to include, for example, a PLC (Programmable Logic Controller).
 管理サーバ300は、たとえば、保守会社の情報センター(監視センター)に設置されている。端末400は、保守会社の情報センターに設置されてもよいし、任意の場所に設置されてもよい。端末400および遠隔点検装置100は、通信回線を介して管理サーバ300に接続可能である。 The management server 300 is installed, for example, in an information center (monitoring center) of a maintenance company. The terminal 400 may be installed in the information center of the maintenance company, or in any other location. The terminal 400 and the remote inspection device 100 can be connected to the management server 300 via a communication line.
 管理サーバ300は、エレベータの保守契約を締結した各ビルの顧客情報、ビル情報、当該ビルに設置されたエレベータの情報、遠隔点検結果等の各種データを管理する。管理サーバ300は、遠隔点検装置100を管理する装置であって、遠隔点検装置100に対して遠隔点検の実行指令を送信するとともに、遠隔点検装置100が実行した遠隔点検の点検結果を取得する。 The management server 300 manages various data such as customer information for each building that has an elevator maintenance contract, building information, information on the elevators installed in the building, and remote inspection results. The management server 300 is a device that manages the remote inspection device 100, and transmits commands to the remote inspection device 100 to perform remote inspections, and obtains the inspection results of remote inspections performed by the remote inspection device 100.
 端末400は、たとえば、PC(Personal Computer)、スマートフォンまたはタブレットである。端末400は、各種情報を表示する表示部410と、端末400を使用するユーザからの操作を入力可能な入力部420と備える。本実施の形態において、端末400は、保守会社の保守員が使用する。つまり、端末400を使用する「ユーザ」とは、保守会社の保守員を指すが、これに限らず、端末400を使用する可能性のある者であればどのような者をユーザに含んでもよい。たとえば、ユーザは、保守会社の保守員以外の従業員であってもよいし、ビル2を管理する者であってもよい。端末400は、入力部420からの保守員の操作により、管理サーバ300を介して遠隔点検装置100に対して遠隔点検を実行させることができる。また、端末400は、遠隔点検装置100が実行した遠隔点検の点検結果を表示部410に表示させることができる。 The terminal 400 is, for example, a PC (Personal Computer), a smartphone, or a tablet. The terminal 400 includes a display unit 410 that displays various information, and an input unit 420 that can input operations from a user who uses the terminal 400. In this embodiment, the terminal 400 is used by a maintenance worker of a maintenance company. In other words, the "user" who uses the terminal 400 refers to a maintenance worker of the maintenance company, but is not limited to this, and may include any person who may use the terminal 400. For example, the user may be an employee other than the maintenance worker of the maintenance company, or may be a person who manages the building 2. The terminal 400 can perform a remote inspection of the remote inspection device 100 via the management server 300 by the maintenance worker's operation from the input unit 420. In addition, the terminal 400 can display the inspection results of the remote inspection performed by the remote inspection device 100 on the display unit 410.
 エレベータシステム200は、制御盤210とエレベータ機器群220とを備える。エレベータ機器群220は、エレベータおよびエレベータの乗場装置等を含む各種機器により構成される。制御盤210は、エレベータ機器群220の各種機器を制御する。 The elevator system 200 includes a control panel 210 and an elevator equipment group 220. The elevator equipment group 220 is made up of various equipment including elevators and elevator hall devices. The control panel 210 controls the various equipment in the elevator equipment group 220.
 制御盤210は、複数の信号線を介してエレベータ機器群220との間で信号を入出力する。エレベータ機器群220と制御盤210との間で送受信される信号には、パラレル伝送(パラレル通信)により送受信されるものと、シリアル伝送(シリアル通信)により送受信されるものを含む。 The control panel 210 inputs and outputs signals to and from the elevator equipment group 220 via multiple signal lines. The signals transmitted and received between the elevator equipment group 220 and the control panel 210 include those transmitted and received by parallel transmission (parallel communication) and those transmitted and received by serial transmission (serial communication).
 前者(パラレル伝送)は、たとえば、エレベータ機器群220の各種スイッチあるいは各種センサから直接取得される信号である。本実施の形態においては、スイッチの接点信号(たとえば、スイッチON状態で所定の電圧が検出)を想定しているが、たとえば、ロータリエンコーダから取得されるパルス信号のようなものであってもよい。 The former (parallel transmission) is, for example, a signal obtained directly from various switches or various sensors of the elevator equipment group 220. In this embodiment, a switch contact signal (for example, a predetermined voltage is detected when the switch is ON) is assumed, but it may also be, for example, a pulse signal obtained from a rotary encoder.
 後者(シリアル伝送)は、エレベータの乗場側またはかご側に設置された装置に備えられた制御基板と、制御盤210とがシリアル通信により送受信する信号である。たとえば、制御盤210において起動するエレベータの管理ソフトウェア(プログラム)と、かご側の制御基板において起動するソフトウェア(プログラム)との間で通信を確立させ、シリアル通信によりかごの位置、走行方向等のデータ(内部信号)を送受信するような場面が想定される。 The latter (serial transmission) is a signal sent and received by serial communication between the control panel 210 and a control board provided in a device installed on the elevator landing side or car side. For example, a scenario can be envisioned in which communication is established between elevator management software (program) running on the control panel 210 and software (program) running on the control board on the car side, and data (internal signals) such as the car's position and running direction are sent and received by serial communication.
 本実施の形態において、制御盤210とエレベータ機器群220とを接続する信号線のうち、パラレル伝送により信号を送受信する信号線の一部を分岐させて、遠隔点検装置100が備える端子に接続している。これにより、制御盤210とエレベータ機器群220との間でパラレル伝送により送受信する信号の一部が、遠隔点検装置100側で入出力可能となる。 In this embodiment, among the signal lines connecting the control panel 210 and the elevator equipment group 220, a portion of the signal line that transmits and receives signals by parallel transmission is branched and connected to a terminal provided on the remote inspection device 100. This makes it possible for a portion of the signals transmitted and received by parallel transmission between the control panel 210 and the elevator equipment group 220 to be input and output on the remote inspection device 100 side.
 一方、エレベータシステム200の制御盤210は、エレベータの各種保守装置と接続可能に構成されている。制御盤210に備えられた制御基板には、コネクタ261が設けられている。保守装置に接続されたケーブルのコネクタ262を制御盤210のコネクタ261に接続することで、保守装置と制御盤210との間でシリアル通信(シリアル伝送)による通信接続が可能になる。 Meanwhile, the control panel 210 of the elevator system 200 is configured to be connectable to various maintenance devices for the elevator. A connector 261 is provided on a control board provided in the control panel 210. By connecting the connector 262 of the cable connected to the maintenance device to the connector 261 of the control panel 210, a communication connection by serial communication (serial transmission) is possible between the maintenance device and the control panel 210.
 エレベータの各種保守装置は、たとえば、エレベータシステム200の専用装置として使用されるメンテナンスコンピュータ、遠隔監視装置、遠隔点検装置等である。これらの保守装置は、エレベータシステム200のメーカーあるいはメーカーの系列の保守会社がエレベータの各機種に対応させて開発し、使用する装置である。このため、これらの保守装置は、メーカーが異なるエレベータとは接続することができない。ここで、メーカーの系列の保守会社とは、たとえば、メーカーの子会社あるいは関連会社であり、以下、「メーカー系保守会社」と称する。 The various types of elevator maintenance devices include, for example, a maintenance computer, a remote monitoring device, a remote inspection device, etc., that are used as dedicated devices for elevator system 200. These maintenance devices are developed and used by the manufacturer of elevator system 200 or a maintenance company affiliated with the manufacturer to correspond to each model of elevator. For this reason, these maintenance devices cannot be connected to elevators made by a different manufacturer. Here, a maintenance company affiliated with a manufacturer is, for example, a subsidiary or associated company of the manufacturer, and will be referred to as a "manufacturer-affiliated maintenance company" below.
 一方で、本実施の形態の遠隔点検装置100は、エレベータシステム200のメーカーを問わずエレベータシステム200と接続可能に構成される。ただし、後述するように、遠隔点検装置100での利用に適した信号の種類は、かなり制限される(後述のDZ信号、LB信号、GS信号、DS信号、乗場呼び信号等)。 On the other hand, the remote inspection device 100 of this embodiment is configured to be connectable to elevator system 200 regardless of the manufacturer of elevator system 200. However, as described below, the types of signals suitable for use with the remote inspection device 100 are quite limited (DZ signal, LB signal, GS signal, DS signal, hall call signal, etc., described below).
 上記保守装置は、当該保守装置において起動するソフトウェアと制御盤210において起動するエレベータの管理ソフトウェアとが通信を確立することで、エレベータの管理ソフトウェアが保持する内部信号を取得可能である。 The maintenance device can acquire internal signals held by the elevator management software by establishing communication between the software running on the maintenance device and the elevator management software running on the control panel 210.
 これらの内部信号は、制御盤210とエレベータ機器群220との間で入出力されるパラレル伝送による信号(スイッチの接点信号等)、シリアル伝送による信号(各種指令等)、および、これらの信号から生成される信号を含む。 These internal signals include signals transmitted by parallel transmission (such as switch contact signals) and signals transmitted by serial transmission (such as various commands) input and output between the control panel 210 and the elevator equipment group 220, as well as signals generated from these signals.
 たとえば、制御盤210は、エレベータを駆動する巻上機(モータ)の回転位置を計測するロータリエンコーダから取得した信号に基づき、かごの位置、速度、走行方向、状態(加速走行状態、定速走行状態、減速走行状態)等を算出する。これにより、制御盤210は、ソフトウェア上の内部信号として、これらの情報を保持することが可能となる。 For example, the control panel 210 calculates the car's position, speed, running direction, and state (accelerating running state, constant speed running state, decelerating running state), etc., based on a signal obtained from a rotary encoder that measures the rotational position of the hoist (motor) that drives the elevator. This allows the control panel 210 to hold this information as internal signals in the software.
 つまり、制御盤210とシリアル通信により接続した保守装置は、パラレル伝送により入出力される接点信号のみならず、シリアル伝送により入出力されるソフトウェアの内部信号をも取得可能となる。また、保守装置は、制御盤210との通信により、たとえば、エレベータに対する休止指令、特定の階床への待機指令等の各種指令の送信、各種動作オプションの設定、各種パラメータの設定変更等が可能である。 In other words, a maintenance device connected to the control panel 210 via serial communication can obtain not only contact signals input and output via parallel transmission, but also internal software signals input and output via serial transmission. In addition, by communicating with the control panel 210, the maintenance device can send various commands, such as commands to pause the elevator or commands to wait at a specific floor, set various operation options, and change the settings of various parameters.
 シリアル通信により接続可能な保守装置のうち、メンテナンスコンピュータは、現場でのエレベータの保守点検に使用可能なコンピュータ(端末装置)である。メンテナンスコンピュータ上で動作する各種メンテナンスソフトウェアを起動し、エレベータの各種内部信号の確認、エレベータに対する各種指令、設定変更、ソフトウェアの書き換え等が可能である。 Among the maintenance devices that can be connected via serial communication, the maintenance computer is a computer (terminal device) that can be used for on-site elevator maintenance and inspection. By starting up various maintenance software that runs on the maintenance computer, it is possible to check the elevator's various internal signals, give various commands to the elevator, change settings, rewrite software, etc.
 メンテナンスコンピュータは現場で使用可能である一方、遠隔監視装置および遠隔点検装置はネットワークを介して遠隔地にて使用する。シリアル通信により接続可能な保守装置のうち遠隔監視装置は、ネットワークを介して遠隔で上記内部信号を取得および表示可能な装置である。シリアル通信により接続可能な保守装置のうち遠隔点検装置は、ネットワークを介して遠隔で上記内部信号を取得および表示するとともに、エレベータに対して遠隔点検のための動作指令を行うことが可能な装置である。 While the maintenance computer can be used on-site, the remote monitoring device and remote inspection device are used in remote locations via a network. Of the maintenance devices that can be connected via serial communication, the remote monitoring device is a device that can remotely acquire and display the above internal signals via a network. Of the maintenance devices that can be connected via serial communication, the remote inspection device is a device that can remotely acquire and display the above internal signals via a network and can issue operation commands to the elevator for remote inspection.
 (従来型の遠隔点検システムとの比較)
 以下、シリアル通信により接続可能な遠隔点検装置(従来型の遠隔点検装置)と、本実施の形態における遠隔点検装置100との違いについて説明する。図2は、エレベータシステム200,200aに従来型の遠隔点検システムを接続した例を示す図である。
(Compared to conventional remote inspection systems)
Hereinafter, a difference between a remote inspection device connectable by serial communication (a conventional remote inspection device) and the remote inspection device 100 of this embodiment will be described. Fig. 2 is a diagram showing an example in which a conventional remote inspection system is connected to an elevator system 200, 200a.
 図2の例において、エレベータシステム200はビルAに設置されており、エレベータシステム200aはビルBに設置されているものとする。エレベータシステム200は、X社製のエレベータシステムであり、エレベータの機種は機種Mであるとする。各社のエレベータには、用途、年代等に応じて複数の機種が存在する。エレベータシステム200aは、Y社製のエレベータシステムであり、エレベータの機種は機種Nであるとする。 In the example of FIG. 2, elevator system 200 is installed in building A, and elevator system 200a is installed in building B. Elevator system 200 is an elevator system manufactured by company X, and the elevator model is model M. Elevators from each company come in multiple models depending on the purpose, era, etc. Elevator system 200a is an elevator system manufactured by company Y, and the elevator model is model N.
 X社製のエレベータシステム200には、コネクタ261を介してX社製の遠隔点検装置500(従来型)のみが接続可能である。遠隔点検装置500は、ネットワークを介してX社が管理する管理サーバと接続可能である。なお、本例では、X社は、エレベータのメーカーでもあり、エレベータの保守会社(メーカー系保守会社)でもあるものとする。 Only a remote inspection device 500 (conventional type) manufactured by Company X can be connected to the elevator system 200 manufactured by Company X via the connector 261. The remote inspection device 500 can be connected to a management server managed by Company X via a network. In this example, Company X is both an elevator manufacturer and an elevator maintenance company (a manufacturer-affiliated maintenance company).
 たとえば、X社のサーバは、X社の情報センター内に設置されている。X社の管理サーバに端末を通信接続させることで、端末の操作によりエレベータシステム200の遠隔点検が可能となる。 For example, Company X's server is installed in Company X's information center. By connecting a terminal to Company X's management server, it becomes possible to remotely inspect the elevator system 200 by operating the terminal.
 Y社製のエレベータシステム200aには、コネクタ261を介してY社製の遠隔点検装置500a(従来型)のみが接続可能である。遠隔点検装置500aは、ネットワークを介してY社が管理する管理サーバと接続可能である。なお、本例では、Y社は、エレベータのメーカーでもあり、エレベータの保守会社(メーカー系保守会社)でもあるものとする。 Only a remote inspection device 500a (conventional type) manufactured by Company Y can be connected to the elevator system 200a manufactured by Company Y via the connector 261. The remote inspection device 500a can be connected to a management server managed by Company Y via a network. In this example, Company Y is both the elevator manufacturer and the elevator maintenance company (a manufacturer-affiliated maintenance company).
 たとえば、Y社のサーバは、Y社の情報センター内に設置されている。Y社の管理サーバに端末を通信接続させることで、端末の操作によりエレベータシステム200aの遠隔点検が可能となる。 For example, Company Y's server is installed in Company Y's information center. By connecting a terminal to Company Y's management server, it becomes possible to remotely inspect elevator system 200a by operating the terminal.
 このように構成した場合、上述のように、X社の遠隔点検装置500は、制御盤210と通信接続することで、制御盤210の管理ソフトウェアが生成する各種内部信号を取得できるとともに、エレベータに対する各種指令を制御盤210に対して送信することができる。たとえば、端末操作により、2つの階床間をかごに走行させる指令を送信し、その結果として、2つの階床間の走行時間、速度情報等を取得することが可能である。Y社の遠隔点検装置500aについても同様である。 When configured in this way, as described above, Company X's remote inspection device 500 can communicate with the control panel 210 to acquire various internal signals generated by the management software of the control panel 210, and can send various commands to the control panel 210 for the elevator. For example, by operating the terminal, it is possible to send a command to make the car travel between two floors, and as a result, it is possible to acquire information such as the travel time and speed between the two floors. The same is true for Company Y's remote inspection device 500a.
 しかしながら、このように構成した場合、X社製のエレベータシステム200に対しては、機種Mに対応したX社製の遠隔点検装置500を使用する必要があるし、Y社製のエレベータシステム200aに対しては、機種Nに対応したY社製の遠隔点検装置500aを使用する必要がある。このように、シリアル通信による遠隔点検装置を設置しようとした場合、各エレベータのメーカーごとに遠隔点検装置を用意する必要がある上に、メーカーが同じであったとしても、機種に対応した遠隔点検装置を用意する必要がある。 However, with this configuration, it is necessary to use a remote inspection device 500 made by company X that corresponds to model M for an elevator system 200 made by company X, and it is necessary to use a remote inspection device 500a made by company Y that corresponds to model N for an elevator system 200a made by company Y. In this way, when trying to install remote inspection devices using serial communication, not only is it necessary to prepare a remote inspection device for each elevator manufacturer, but even if the manufacturer is the same, it is necessary to prepare a remote inspection device that corresponds to the model.
 このような遠隔点検装置は、エレベータのメーカーごとに用意されている場合があるが、通常、設置されているエレベータのメーカーあるいはメーカー系保守会社しか使用できない。また、機種が古い場合は、対応する遠隔点検装置が存在しない場合がある。 Such remote inspection devices may be prepared by each elevator manufacturer, but they can usually only be used by the elevator manufacturer or a maintenance company affiliated with that manufacturer. Also, if the model is old, a compatible remote inspection device may not exist.
 図2の例で言えば、メーカー系保守会社(メーカー)X社は、X社製の遠隔点検装置500を使用できるが、Y社製の遠隔点検装置500aを使用できない。一方、メーカー系保守会社(メーカー)Y社は、Y社製の遠隔点検装置500aを使用できるが、X社製の遠隔点検装置500を使用できない。 In the example of Figure 2, manufacturer-affiliated maintenance company (manufacturer) X can use the remote inspection device 500 manufactured by X, but cannot use the remote inspection device 500a manufactured by Y. On the other hand, manufacturer-affiliated maintenance company (manufacturer) Y can use the remote inspection device 500a manufactured by Y, but cannot use the remote inspection device 500 manufactured by X.
 これは、メーカーおよび機種間で通信仕様および信号仕様が共通化されておらず、また、これらの仕様も公開されていないためである。仮に、このような通信仕様、信号仕様あるいはアドレスマップが開示されているならば、制御盤210との通信を確立させることで、基本的にどのような内部信号、内部フラグあるいは設定パラメータも外部装置から取得可能である。 This is because communication and signal specifications are not standardized between manufacturers and models, and these specifications are not made public. If such communication specifications, signal specifications, or address maps were disclosed, then by establishing communication with the control board 210, it would basically be possible to obtain any internal signal, internal flag, or setting parameter from an external device.
 また、エレベータの保守会社には、メーカー系保守会社以外にも、どのメーカーとも関連のない保守会社(「独立系保守会社」と称する)がある。独立系保守会社は、X社製の遠隔点検装置500もY社製の遠隔点検装置500aも使用できない。 In addition to elevator maintenance companies affiliated with manufacturers, there are also maintenance companies that are not affiliated with any manufacturer (called "independent maintenance companies"). Independent maintenance companies cannot use the remote inspection device 500 manufactured by Company X or the remote inspection device 500a manufactured by Company Y.
 図2の例において、ビルAのオーナーは、メーカー系保守会社Xと保守契約を締結した場合は、遠隔点検装置500による遠隔点検を行うことができるが、メーカー系保守会社Yまたは独立系保守会社と保守契約を締結した場合は、遠隔点検装置500による遠隔点検を行うことができない。 In the example of Figure 2, if the owner of building A enters into a maintenance contract with manufacturer-affiliated maintenance company X, he or she can perform remote inspection using the remote inspection device 500. However, if the owner enters into a maintenance contract with manufacturer-affiliated maintenance company Y or an independent maintenance company, he or she cannot perform remote inspection using the remote inspection device 500.
 一方、ビルBのオーナーは、メーカー系保守会社Yと保守契約を締結した場合は、遠隔点検装置500aによる遠隔点検を行うことができるが、メーカー系保守会社Xまたは独立系保守会社と保守契約を締結した場合は、遠隔点検装置500aによる遠隔点検を行うことができない。仮に、同一ビル内にX社製およびY社製のエレベータが併設されている場合、全てのエレベータの遠隔点検を行うためには、メーカー系保守会社X,Yの双方と保守契約を締結する必要がある。 On the other hand, if the owner of building B enters into a maintenance contract with manufacturer-affiliated maintenance company Y, he or she can perform remote inspection using the remote inspection device 500a, but if the owner enters into a maintenance contract with manufacturer-affiliated maintenance company X or an independent maintenance company, he or she cannot perform remote inspection using the remote inspection device 500a. If elevators manufactured by company X and company Y are installed in the same building, it is necessary to enter into maintenance contracts with both manufacturer-affiliated maintenance companies X and Y in order to perform remote inspection of all the elevators.
 このように、遠隔点検も含めて保守契約を行いたいビルのオーナーにとっては、従来型の遠隔点検装置を導入した場合、保守契約の選択の幅が狭くなってしまう。こうした事情から、近年、日本国内においては、メーカーおよび機種を問わず適用可能な遠隔点検装置のニーズが高まっている。特に、多種多様なメーカーのエレベータが設置されているグローバル市場において、保守会社は、エレベータのメーカーおよび機種を問わず保守対応(保守のマルチブランド化)を行う必要がある。 As such, for building owners who want to enter into a maintenance contract that includes remote inspection, the range of maintenance contract options is limited when traditional remote inspection equipment is introduced. For these reasons, there has been a growing need in Japan in recent years for remote inspection equipment that can be used regardless of manufacturer or model. In particular, in the global market where elevators from a wide variety of manufacturers are installed, maintenance companies need to provide maintenance services regardless of elevator manufacturer or model (multi-brand maintenance).
 そこで、本実施の形態における遠隔点検装置100は、メーカーおよび機種を問わず対応可能な遠隔点検装置として構成した。上述のように、通信仕様および信号仕様がメーカーおよび機種間で共通化されていないため、シリアル伝送による通信を行う遠隔点検装置100を構築することは難しい。 The remote inspection device 100 in this embodiment is therefore configured as a remote inspection device that can be used regardless of manufacturer or model. As mentioned above, since communication specifications and signal specifications are not standardized across manufacturers and models, it is difficult to build a remote inspection device 100 that communicates via serial transmission.
 このため、図1を用いて説明したように、遠隔点検装置100は、パラレル伝送(スイッチの接点信号の取り込み等)によりエレベータシステム200と接続する。また、信号仕様がメーカー間で共通化されていないため、共通して利用可能な信号の種類が制限される。さらに、共通して利用可能な信号であったとしても、ハードウェア上の制約(据付容易性、据付コストの観点)から利用に適さない信号もある。このため、遠隔点検装置100を実現するためには、どのような信号を用いてどのような方法によって遠隔点検の点検項目を判断するのか、十分に検討する必要がある。本実施の形態において使用する信号および点検項目の判定方法については、図7以降の図を用いて後述する。 For this reason, as explained using FIG. 1, the remote inspection device 100 connects to the elevator system 200 by parallel transmission (capturing switch contact signals, etc.). In addition, because signal specifications are not standardized between manufacturers, the types of signals that can be commonly used are limited. Furthermore, even if a signal is commonly usable, some signals are not suitable for use due to hardware constraints (in terms of ease of installation and installation costs). For this reason, in order to realize the remote inspection device 100, it is necessary to thoroughly consider what signals to use and what method to use to determine the inspection items for remote inspection. The signals used in this embodiment and the method of determining the inspection items will be described later using FIG. 7 and subsequent figures.
 図2の説明に戻り、本実施の形態における遠隔点検装置100は、ビルA内に設置されたX社製のエレベータシステム200およびビルB内に設置されたY社製のエレベータシステム200aのいずれにも接続可能である。ビルA内に設置された遠隔点検装置100およびビルB内に設置された遠隔点検装置100は、ネットワークを介して管理サーバ300と接続する。端末400を用いれば、ビルA内のエレベータシステム200およびビルB内のエレベータシステム200aのいずれの遠隔点検も可能となる。 Returning to the explanation of FIG. 2, the remote inspection device 100 in this embodiment can be connected to both an elevator system 200 made by company X installed in building A and an elevator system 200a made by company Y installed in building B. The remote inspection device 100 installed in building A and the remote inspection device 100 installed in building B connect to the management server 300 via a network. Using the terminal 400, it becomes possible to remotely inspect both the elevator system 200 in building A and the elevator system 200a in building B.
 なお、1つのビル内にX社製のエレベータシステム200およびY社製のエレベータシステム200aが併設されている場合には、エレベータシステム200,200aを1つの遠隔点検装置100で接続するように構成すればよい。 In addition, if an elevator system 200 manufactured by company X and an elevator system 200a manufactured by company Y are installed in the same building, the elevator systems 200 and 200a can be configured to be connected by a single remote inspection device 100.
 以上のように構成した場合、ビルのオーナーは、どのようなエレベータを設置した場合であっても、メーカー系保守会社であるか独立系保守会社であるかを問わず、自由に保守会社を選択して、遠隔点検を行う保守契約を締結することができる。 When configured as described above, building owners can freely select a maintenance company to conduct remote inspections, regardless of the type of elevator they have installed, whether it is a manufacturer-affiliated or independent maintenance company.
 なお、管理サーバ300は、1つのサーバ装置によって構成されるものに限らず、複数のサーバ装置によって構成されるものであってもよい。たとえば、地域ごとにサーバ装置を設置して各地域からのアクセス要求に応じるものであってもよい。この場合、各地域のサーバ装置が互いに通信し、互いの情報(顧客情報、エレベータ情報等)を共有可能に構成するものであってもよい。あるいは、各地域のサーバを管理するメインサーバ装置を備え、メインサーバ装置が各地域の情報を管理するものであってもよい。 The management server 300 is not limited to being configured from one server device, but may be configured from multiple server devices. For example, a server device may be installed for each region to respond to access requests from each region. In this case, the server devices in each region may be configured to communicate with each other and share each other's information (customer information, elevator information, etc.). Alternatively, a main server device may be provided that manages the servers in each region, and the main server device may manage the information for each region.
 上記各地域は、1つの国の各地域に限らず、複数の国の地域を含むものであってもよい。たとえば、日本国内にサーバ装置を置いて、日本国外に設置されたサーバ装置と情報を共有するように構成してもよい。また、いずれかの国にメインサーバ装置を設置し、各国に設置されたサーバ装置からメインサーバ装置に記憶された情報を参照させるようにしてもよい。 The above-mentioned regions are not limited to regions of one country, but may include regions of multiple countries. For example, a server device may be placed in Japan and configured to share information with a server device placed outside Japan. Also, a main server device may be placed in one of the countries, and the server devices placed in each country may refer to the information stored in the main server device.
 各国において設置されたサーバ装置は、管理する国または地域ごとに、言語コードを有するように構成してもよい。たとえば、日本国内の建物を管理するサーバ装置には、言語コードとして「日本語」が設定される。中国国内の建物を管理するサーバ装置には、言語コードとして「中国語」が設定される。英語圏の国の建物を管理するサーバ装置には、言語コードとして「英語」が設定される。 Server devices installed in each country may be configured to have a language code for each country or region they manage. For example, a server device that manages buildings in Japan is set to have the language code "Japanese." A server device that manages buildings in China is set to have the language code "Chinese." A server device that manages buildings in an English-speaking country is set to have the language code "English."
 サーバ装置は、各言語コードに対応した言語データを有する。たとえば、日本国内の端末からアクセスがあった場合は、これらの端末上には日本語で情報が表示される。中国国内の端末からアクセスがあった場合は、これらの端末上には中国語で情報が表示される。また、言語ごとに情報を管理するようにしてもよい。管理サーバ300は、遠隔点検装置100および端末400と接続する通信サーバ(Webサーバ)、データサーバ、アプリケーションサーバ等のサーバ群によって構成されるものであってもよい。 The server device has language data corresponding to each language code. For example, when accessed from a terminal in Japan, information is displayed on the terminal in Japanese. When accessed from a terminal in China, information is displayed on the terminal in Chinese. Information may also be managed by language. The management server 300 may be composed of a group of servers such as a communication server (Web server), a data server, and an application server that are connected to the remote inspection device 100 and the terminal 400.
 このように構成した場合、世界各国において遠隔点検システム1を利用可能となる。例えば、図2の例において、第1国(たとえば、アメリカ)のビルAにエレベータシステム200(制御盤210およびエレベータ機器群220)と遠隔点検装置100とが設置されており、第1国とは異なる第2国(たとえば、日本)のビルBにエレベータシステム200a(制御盤210aおよびエレベータ機器群220a)および遠隔点検装置100が設置されているとする。 When configured in this manner, the remote inspection system 1 can be used in countries around the world. For example, in the example of FIG. 2, elevator system 200 (control panel 210 and elevator equipment group 220) and remote inspection device 100 are installed in building A in a first country (e.g., the United States), and elevator system 200a (control panel 210a and elevator equipment group 220a) and remote inspection device 100 are installed in building B in a second country (e.g., Japan) different from the first country.
 管理サーバ300は、第2国の情報センターに設置されているとする。第2国に設置された管理サーバ300は、ネットワークを介して第1国に設置された遠隔点検装置100および第2国に設置された遠隔点検装置100と接続可能である。管理サーバ300は、第1国または第2国に設置された遠隔点検装置100に対して遠隔点検の実行指令を送信可能であるとともに、実行指令を受信した遠隔点検装置100から、遠隔点検の各点検項目の判定結果を受信可能である。 The management server 300 is installed in an information center in the second country. The management server 300 installed in the second country can be connected via a network to the remote inspection device 100 installed in the first country and the remote inspection device 100 installed in the second country. The management server 300 can send a command to execute a remote inspection to the remote inspection device 100 installed in the first country or the second country, and can receive the judgment results of each inspection item of the remote inspection from the remote inspection device 100 that has received the command to execute the remote inspection.
 端末400は、第1国に設置されていてもよいし、第2国に設置されていてもよい。たとえば、第2国に設置された端末400から第2国に設置された管理サーバ300にアクセスして、第1国または第2国に設置された遠隔点検装置100による遠隔点検を実行してもよい。第1国に設置された端末400から第2国に設置された管理サーバ300にアクセスして、第1国または第2国に設置された遠隔点検装置100による遠隔点検を実行してもよい。 The terminal 400 may be installed in the first country or in the second country. For example, the management server 300 installed in the second country may be accessed from the terminal 400 installed in the second country, and remote inspection may be performed by the remote inspection device 100 installed in the first country or the second country. The management server 300 installed in the second country may be accessed from the terminal 400 installed in the first country, and remote inspection may be performed by the remote inspection device 100 installed in the first country or the second country.
 第1国に設置された遠隔点検装置100は、第1国の通信回線網(LTE回線網など)を利用してネットワーク接続を行う。第2国に設置された遠隔点検装置100は、第2国の通信回線網を利用してネットワーク接続を行う。第2国に設置された管理サーバ300は、第2国の通信回線を介して、第1国または第2国に設置された遠隔点検装置100に接続する。 The remote inspection device 100 installed in the first country establishes a network connection using the communication line network of the first country (such as an LTE line network). The remote inspection device 100 installed in the second country establishes a network connection using the communication line network of the second country. The management server 300 installed in the second country connects to the remote inspection device 100 installed in the first country or the second country via the communication line of the second country.
 以上のように構成することで、第1国で稼働するエレベータシステム200の遠隔点検を行う遠隔点検装置100の管理を第2国の管理サーバ300にて行うことができる。これにより、いずれの国にエレベータシステム200および遠隔点検装置100が設置されているかを問わず、国を跨いで管理サーバ300により遠隔点検装置100の管理を行うことができる。 By configuring as described above, the management server 300 in the second country can manage the remote inspection device 100 that performs remote inspection of the elevator system 200 operating in the first country. This allows the management server 300 to manage the remote inspection device 100 across countries, regardless of in which country the elevator system 200 and remote inspection device 100 are installed.
 なお、遠隔点検装置100が遠隔点検の各点検項目の判定をするものに限らず、管理サーバ300が遠隔点検の各点検項目の判定をするようにしてもよい。この場合、遠隔点検装置100は、エレベータシステム200から取得した判定用の信号データを管理サーバ300に送信する。管理サーバ300は、当該信号データに基づき各点検項目の判定を行うようにすればよい。もちろん、管理サーバ300を国ごとに設置し、国ごとに遠隔点検装置100を管理するように構成してもよい。 Note that the remote inspection device 100 is not limited to determining each inspection item of the remote inspection, and the management server 300 may determine each inspection item of the remote inspection. In this case, the remote inspection device 100 transmits signal data for determination acquired from the elevator system 200 to the management server 300. The management server 300 may determine each inspection item based on the signal data. Of course, the management server 300 may be installed in each country, and configured to manage the remote inspection device 100 for each country.
 (エレベータシステム200の詳細な構成)
 図3は、エレベータシステム200のハードウェア構成の一例を示す図である。本実施の形態において、エレベータシステム200が設置されたビル2は5階建てであるとする。また、ビル2内にはエレベータが1台(本エレベータを「1号機」と称する)設置されているものとする。
(Detailed Configuration of Elevator System 200)
3 is a diagram showing an example of a hardware configuration of elevator system 200. In this embodiment, it is assumed that building 2 in which elevator system 200 is installed has five floors. It is also assumed that one elevator (this elevator will be referred to as "No. 1 elevator") is installed in building 2.
 制御盤210は、各台制御部(car control unit)212を備える。各台制御部212は、エレベータ機器群220を制御する制御基板である。エレベータ機器群220は、1階(1F)から5階(5F)までの各階の乗場に設置された乗場装置230と、エレベータシステム200において使用される各種センサおよび各種スイッチ類(たとえば、後述するスローアップスイッチ、スローダウンスイッチ等)と、1号機の巻上機250およびかご装置240とを備える。 The control panel 210 includes a car control unit 212. The car control unit 212 is a control board that controls the elevator equipment group 220. The elevator equipment group 220 includes hall devices 230 installed at the halls of each floor from the first floor (1F) to the fifth floor (5F), various sensors and various switches (such as a slow-up switch and a slow-down switch, which will be described later) used in the elevator system 200, and the first car hoist 250 and car device 240.
 巻上機250は、エレベータのかごを昇降させるために駆動するモータである。かご装置240は、かごに設置された各種機器であって、行先階を登録する行先階釦を含む。乗場装置230は、各階の乗場に設置された各種機器であって、乗場呼びを登録する乗場釦を含む。これらの詳細については、図4以降の図を用いて説明する。 The hoist 250 is a motor that drives the elevator car to raise and lower it. The car device 240 is various devices installed in the car, including a destination floor button for registering destination floors. The hall device 230 is various devices installed at the halls of each floor, including a hall button for registering hall calls. Details of these will be explained using Figure 4 and subsequent figures.
 各台制御部212は、複数の信号線を束ねた制御ケーブル21を介して各階の乗場装置230、各種センサおよび各種スイッチ類等と接続されている。また、各台制御部212は、複数の信号線を束ねた制御ケーブル22を介して1号機の巻上機250およびかご装置240等と接続されている。 The individual car control units 212 are connected to the landing devices 230 on each floor, various sensors, various switches, etc., via a control cable 21 that bundles multiple signal lines. In addition, the individual car control units 212 are connected to the No. 1 hoisting machine 250 and car device 240, etc., via a control cable 22 that bundles multiple signal lines.
 各台制御部212は、プロセッサとメモリと通信インターフェイスとを備える。プロセッサは、CPU(Central Processing Unit)である。メモリは、たとえば、ROM(Read Only Memory)およびRAM(Random Access Memory)である。これらは、バスを介して相互に通信可能に接続されている。 Each machine control unit 212 is equipped with a processor, memory, and a communication interface. The processor is a CPU (Central Processing Unit). The memory is, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). These are connected to each other via a bus so that they can communicate with each other.
 ROMは、エレベータ機器群220を制御するための管理ソフトウェアのプログラムを格納する。CPUは、ROMに保存されているプログラムをRAMに読み込んで実行し、エレベータ機器群220を制御する。RAMは、CPUがプログラムを実行する際の作業領域となるものであり、プログラムやプログラムを実行する際のデータ等を一時的に記憶する。 The ROM stores the management software program for controlling the elevator equipment group 220. The CPU loads the program stored in the ROM into the RAM and executes it to control the elevator equipment group 220. The RAM serves as a working area when the CPU executes the program, and temporarily stores the program and data used when executing the program.
 各台制御部212は、通信インターフェイスを介して、シリアル通信またはパラレル通信により乗場装置230、巻上機250、かご装置240等のエレベータ機器群220あるいは図1,図2で示した各種保守装置と通信可能に構成されている。 The individual car control units 212 are configured to be able to communicate with the elevator equipment group 220, such as the hall device 230, the hoist 250, and the car device 240, or with the various maintenance devices shown in Figures 1 and 2, by serial or parallel communication via the communication interface.
 図4は、エレベータの構造を概略的に示す図である。エレベータのかご10は、ビル2内に設けられた昇降路8内に設置されている。かご10は、昇降路8内を昇降して複数の階床間を移動する。本実施の形態では、かご10は、1階(1F)~5階(5F)までの各階に停止可能である。 FIG. 4 is a diagram showing a schematic diagram of an elevator structure. The elevator car 10 is installed in a hoistway 8 provided in a building 2. The car 10 moves up and down in the hoistway 8 to move between multiple floors. In this embodiment, the car 10 can stop at each floor from the first floor (1F) to the fifth floor (5F).
 昇降路8の直上には、機械室5が設けられている。機械室5には、巻上機250と、制御盤210と、遠隔点検装置100とが設けられている。かご装置240は、かご10に設けられている。 The machine room 5 is provided directly above the elevator shaft 8. The machine room 5 contains a hoist 250, a control panel 210, and a remote inspection device 100. The car device 240 is provided in the car 10.
 本実施の形態において、エレベータは、トラクション式エレベータである。トラクション式エレベータは、ロープ式エレベータの一態様である。本エレベータは、かご10、カウンターウェイト(釣り合い重り)12、ロープ11、巻上機250およびそらせ車13を備える。巻上機250およびそらせ車13にはロープ(主ロープ)11が掛けられている。ロープ11の両端には、かご10およびカウンターウェイト12が吊り下げられた状態になっている。 In this embodiment, the elevator is a traction type elevator. A traction type elevator is one type of rope type elevator. This elevator is equipped with a car 10, a counterweight (balancing weight) 12, a rope 11, a hoist 250, and a deflector pulley 13. A rope (main rope) 11 is hung between the hoist 250 and the deflector pulley 13. The car 10 and counterweight 12 are suspended from both ends of the rope 11.
 エレベータは、巻上機250を駆動させることで、昇降路8内に設置されたかご10を上方向(「UP方向」とも称する)または下方向(「DN方向」とも称する)に走行させることができる。 By driving the hoist 250, the elevator can run the car 10 installed in the hoistway 8 in an upward direction (also called the "UP direction") or a downward direction (also called the "DN direction").
 かご10は、UP方向、DN方向および無方向のいずれかの走行方向を持つ。かご10の上方の階床への走行指令に答えるために、かご10がUP方向に走行または停止(UP方向に走行予定である状態で停止)している場合、かご10の走行方向はUP方向となる。かご10の下方の階床への走行指令に答えるために、かご10がDN方向に走行または停止(DN方向に走行予定である状態で停止)している場合、かご10の走行方向はDN方向となる。かご10の走行方向がUP方向およびDN方向のいずれでもない場合、かご10のかご方向を「無方向」と定義する。なお、かご10が最下階で停止している場合は、かご方向がUP方向となり、かご10が最上階で停止している場合は、かご方向がDN方向となるようにしてもよい。 The car 10 has a running direction that is either the UP direction, the DN direction, or no direction. When the car 10 runs in the UP direction or stops (stopped in a state where it is scheduled to run in the UP direction) to respond to a running command to a floor above the car 10, the running direction of the car 10 is the UP direction. When the car 10 runs in the DN direction or stops (stopped in a state where it is scheduled to run in the DN direction) to respond to a running command to a floor below the car 10, the running direction of the car 10 is the DN direction. When the running direction of the car 10 is neither the UP direction nor the DN direction, the car direction of the car 10 is defined as "no direction". Note that when the car 10 is stopped at the lowest floor, the car direction is the UP direction, and when the car 10 is stopped at the top floor, the car direction may be the DN direction.
 かご10は、巻上機250の電磁ブレーキ(図示なし、単に「ブレーキ」とも称する)が開放されると走行可能となる。かご10は、巻上機250のブレーキが動作すると制動状態(静止状態)となる。巻上機250のブレーキは、ばねの力でブレーキシューをブレーキドラムに押し付けて制動可能に構成される。ブレーキコイルに電力を供給することで、ブレーキシューをブレーキドラムから離れさせ、これによりブレーキが開放される。ブレーキコイルに対する電力の供給を遮断すれば、電磁ブレーキが制動状態となり、かご10は走行できなくなる。 The car 10 becomes able to run when the electromagnetic brake (not shown, also simply referred to as the "brake") of the hoist 250 is released. The car 10 enters a braking state (stationary state) when the brake of the hoist 250 is activated. The brake of the hoist 250 is configured to be able to brake by pressing the brake shoe against the brake drum with the force of a spring. Supplying power to the brake coil causes the brake shoe to move away from the brake drum, thereby releasing the brake. If the supply of power to the brake coil is cut off, the electromagnetic brake enters a braking state and the car 10 cannot run.
 エレベータは、かご10の最大積載重量の50%を積載した状態で、カウンターウェイト12の重さと、乗客を含むかご10の重さが釣り合うように設計されている。たとえば、乗客のいない状態では、かご10よりもカウンターウェイト12の方が重い状態となる。このため、単純にブレーキを開放した場合、かご10はUP方向に走行することになる。一方、かご10内が満員状態であれば、カウンターウェイト12よりもかご10の方が重い状態となる。このため、単純にブレーキを開放した場合、かご10はDN方向に走行することになる。 Elevators are designed so that the weight of the counterweight 12 balances with the weight of the car 10, including passengers, when the car 10 is loaded with 50% of its maximum load capacity. For example, when there are no passengers, the counterweight 12 is heavier than the car 10. For this reason, if the brake is simply released, the car 10 will travel in the UP direction. On the other hand, when the car 10 is full, the car 10 will be heavier than the counterweight 12. For this reason, if the brake is simply released, the car 10 will travel in the DN direction.
 昇降路8の底部であるピット6には、緩衝器(バッファ)14が設置されている。緩衝器14は、異常の発生によりかご10が落下したような場合に、落下時の衝撃を吸収する装置である。 A shock absorber (buffer) 14 is installed in the pit 6, which is the bottom of the elevator shaft 8. The shock absorber 14 is a device that absorbs the shock of the car 10 falling if an abnormality occurs.
 各台制御部212は、制御ケーブル22(図3)を介してかご装置240と接続される。制御ケーブル22内には、各台制御部212とかご装置240とが通信するための複数の信号線が束ねられている。 The individual car control units 212 are connected to the car device 240 via a control cable 22 (Figure 3). Multiple signal lines are bundled within the control cable 22 for communication between the individual car control units 212 and the car device 240.
 各台制御部212は、昇降路8の壁面を這わせた制御ケーブル21(図3)を介して各階に設置された乗場装置230、各種センサおよび各種スイッチと接続する。制御ケーブル21は、各台制御部212と、乗場装置230または各種スイッチ等とが通信するための複数の信号線で構成されている。なお、機械室5がない場合、巻上機250および制御盤210等は、昇降路8内(壁面またはピット6内等)に設置される。 The platform control unit 212 is connected to the landing device 230, various sensors, and various switches installed on each floor via a control cable 21 (Figure 3) that runs along the wall of the elevator shaft 8. The control cable 21 is composed of multiple signal lines for communication between the platform control unit 212 and the landing device 230 or various switches, etc. If there is no machine room 5, the hoist 250 and control panel 210, etc. are installed inside the elevator shaft 8 (on the wall or in the pit 6, etc.).
 なお、エレベータは、上記のような、かご10とカウンターウェイト12を釣り合わせるトラクション式エレベータに限らない。たとえば、カウンターウェイト12を用いず、ロープ11をドラムに巻き付けてかご10を昇降させる巻胴式エレベータであってもよい。巻胴式エレベータは、ロープ式エレベータの一態様である。また、電動ポンプで油圧ジャッキに油を送り、油圧ジャッキの動作によりかご10を昇降させる油圧式エレベータであってもよい。 The elevator is not limited to a traction type elevator in which the car 10 and counterweight 12 are balanced as described above. For example, it may be a drum type elevator in which the car 10 is raised and lowered by winding the rope 11 around a drum without using a counterweight 12. A drum type elevator is one form of a rope type elevator. It may also be a hydraulic elevator in which oil is sent to a hydraulic jack by an electric pump, and the car 10 is raised and lowered by the operation of the hydraulic jack.
 油圧式エレベータの場合、油圧ジャッキに送られる油量の制御により、かご10の位置が制御される。油圧式エレベータの場合、季節または温度によって油の特性が変わるため、かご10の走行特性に違いが生じやすい。たとえば、夏場の気温が高いときと比べて、冬場は油が固くなるため、起動に時間がかかる。また、油量(油圧)を制御する油圧式エレベータの場合、モータの回転量を制御するロープ式エレベータに比べて、階床間の走行時間にばらつきが出やすい。さらには、ある階床にかご10が停止している場合に、時間の経過とともにかごが少しずつ沈んでいき、乗場の床面に対してかご10の床面が徐々に下がっていく(停止中にドアゾーンを外れる)ことがある。 In the case of hydraulic elevators, the position of the car 10 is controlled by controlling the amount of oil sent to the hydraulic jack. In hydraulic elevators, the properties of the oil change depending on the season or temperature, which can easily lead to differences in the running characteristics of the car 10. For example, compared to the high temperatures of summer, the oil thickens in winter, so it takes longer to start up. Also, in the case of hydraulic elevators, which control the amount of oil (hydraulic pressure), there is a greater tendency for the running time between floors to vary compared to rope elevators, which control the amount of motor rotation. Furthermore, when the car 10 is stopped on a certain floor, the car will gradually sink over time, and the floor surface of the car 10 may gradually drop relative to the floor surface of the landing (leaving the door zone while stopped).
 図5Aは、エレベータの乗場の一例を示す図である。図5Aには、エレベータの乗場を正面から見た図が示されている。 FIG. 5A is a diagram showing an example of an elevator landing. FIG. 5A shows a view of the elevator landing from the front.
 ここで、本実施の形態では、UP方向(上方向)の乗場呼びを「UP呼び」または「UP乗場呼び」、DN方向(下方向)の乗場呼びを「DN呼び」または「DN乗場呼び」、かご10内での行先階呼びを「かご呼び」とも称する。これらの各呼びを登録するための釦を「呼び釦」と称する。 In this embodiment, a platform call in the UP direction (upward) is also called an "UP call" or "UP platform call," a platform call in the DN direction (downward) is also called a "DN call" or "DN platform call," and a destination floor call in car 10 is also called a "car call." The buttons for registering each of these calls are called "call buttons."
 呼び釦は、かご10内に設けられたかご呼び釦(「行先階釦」とも称する)と、乗場に設けられた乗場呼び釦(「乗場釦」とも称する)を含む。乗場呼び釦(乗場釦)は、乗場に設けられた上方向の乗場呼び釦(「UP呼び釦」または「UP乗場呼び釦」とも称する)と、乗場に設けられた下方向の乗場呼び釦(「DN呼び釦」または「DN乗場呼び釦」とも称する)とを含む。 The call buttons include car call buttons (also called "destination floor buttons") provided inside the car 10, and platform call buttons (also called "platform buttons") provided at the platforms. Platform call buttons (platform buttons) include upward platform call buttons (also called "UP call buttons" or "UP platform call buttons") provided at the platforms, and downward platform call buttons (also called "DN call buttons" or "DN platform call buttons") provided at the platforms.
 上述のように、各階には、乗場装置230が備えられている。乗場装置230は、乗場操作盤70を含む。ここでは、1階の乗場を例に挙げて説明する。1階の乗場には、扉61と、乗場操作盤70とが備えられている。 As described above, each floor is equipped with a landing device 230. The landing device 230 includes a landing operating panel 70. Here, the first floor landing will be used as an example for explanation. The first floor landing is equipped with a door 61 and a landing operating panel 70.
 乗場操作盤70には、UP乗場呼び釦81と、DN乗場呼び釦82とが備えられている。たとえば、UP乗場呼び釦81を押すと、1階でのUP乗場呼びが登録される。 The hall operating panel 70 is equipped with an UP hall call button 81 and a DN hall call button 82. For example, when the UP hall call button 81 is pressed, an UP hall call on the first floor is registered.
 乗場操作盤70には、インジケータ71が備えられている。インジケータ71には、かご10の走行方向と、かご10がどの階床にいるか(かご位置)が表示される。図の例では、かご10が2階をUP方向に走行または停止していることが示されている。 The hall operating panel 70 is equipped with an indicator 71. The indicator 71 displays the direction in which the car 10 is traveling and the floor on which the car 10 is located (car position). In the example shown in the figure, it shows that the car 10 is traveling or stopped in the UP direction on the second floor.
 次に、かご10内について説明する。図5Bは、エレベータのかご内の一例を示す図である。図5Bには、かご10内の出口方向を見た図が示されている。かご装置240は、かご操作盤50を含む。かご10には、扉60と、かご操作盤50とが設けられている。かご操作盤50には、扉を開くための戸開釦52と、扉を閉じるための戸閉釦53と、1階~5階までの行先階(かご呼び)を登録するためのかご呼び釦が設けられている。 Next, the inside of the car 10 will be described. Figure 5B is a diagram showing an example of the inside of an elevator car. Figure 5B shows a view of the inside of the car 10 looking toward the exit. The car device 240 includes a car operation panel 50. The car 10 is provided with a door 60 and the car operation panel 50. The car operation panel 50 is provided with a door open button 52 for opening the door, a door close button 53 for closing the door, and a car call button for registering destination floors (car calls) from the 1st to 5th floors.
 かご呼び釦は、1階へのかご呼びを登録する1階かご呼び釦31と、2階へのかご呼びを登録する2階かご呼び釦32と、3階へのかご呼びを登録する3階かご呼び釦33と、4階へのかご呼びを登録する4階かご呼び釦34と、5階へのかご呼びを登録する5階かご呼び釦35とを含む。また、かご操作盤50には、かご10の走行方向とかご位置が表示されるインジケータ51が備えられている。 The car call buttons include a 1st floor car call button 31 for registering a car call to the 1st floor, a 2nd floor car call button 32 for registering a car call to the 2nd floor, a 3rd floor car call button 33 for registering a car call to the 3rd floor, a 4th floor car call button 34 for registering a car call to the 4th floor, and a 5th floor car call button 35 for registering a car call to the 5th floor. The car operation panel 50 is also provided with an indicator 51 that displays the running direction and car position of the car 10.
 乗場呼び釦が押された場合は、制御盤210(各台制御部212)に対して、押された乗場呼びに対応する呼び信号が送信される。制御盤210は、当該乗場呼びを登録する。そして、制御盤210は、登録された乗場呼びに対してかご10を割当てるとともに、制御盤210は、登録された乗場呼びにかご10を応答させる。 When a hall call button is pressed, a call signal corresponding to the pressed hall call is sent to the control panel 210 (each car control unit 212). The control panel 210 registers the hall call. The control panel 210 then assigns a car 10 to the registered hall call, and causes the car 10 to respond to the registered hall call.
 たとえば、1階のUP乗場呼び釦81が押されると、1階でのUP乗場呼びに対応する信号が送信され、制御盤210は、1階でのUP乗場呼びを登録する。制御盤210は、1階でのUP乗場呼びに対してかご10の割当を決定する。かご10は、1階でのUP乗場呼びに応答し、1階まで走行した後に停止および戸開する。 For example, when the UP platform call button 81 on the first floor is pressed, a signal corresponding to the UP platform call on the first floor is transmitted, and the control panel 210 registers the UP platform call on the first floor. The control panel 210 determines the allocation of the car 10 to the UP platform call on the first floor. The car 10 responds to the UP platform call on the first floor, travels to the first floor, then stops and opens the door.
 かご呼び釦が押された場合は、制御盤210に対して、押されたかご呼びに対応する呼び信号が送信される。制御盤210は、当該かご呼びを登録する。制御盤210は、登録されたかご呼びにかご10を応答させる。 When a car call button is pressed, a call signal corresponding to the pressed car call is sent to the control panel 210. The control panel 210 registers the car call. The control panel 210 causes the car 10 to respond to the registered car call.
 たとえば、2階かご呼び釦32が押された場合は、制御盤210に対して、2階へのかご呼びに対応する呼び信号が送信される。制御盤210は、2階へのかご呼びを登録する。かご10は、2階へのかご呼びに応答し、2階まで走行した後に停止および戸開する。 For example, when the second floor car call button 32 is pressed, a call signal corresponding to a car call to the second floor is sent to the control panel 210. The control panel 210 registers the car call to the second floor. The car 10 responds to the car call to the second floor, travels to the second floor, then stops and opens the door.
 ここで、「扉が開く」とは、かご10側の扉60および乗場側の扉61の双方が連動して開くことを意味し、以下「戸開する」とも表現する。同様に、「扉が閉まる」とは、かご10側の扉60および乗場側の扉61の双方が連動して閉まることを意味し、以下「戸閉する」とも表現する。 Here, "the doors open" means that both the car 10 side door 60 and the hall side door 61 open in unison, and hereafter this will also be expressed as "the doors open." Similarly, "the doors close" means that both the car 10 side door 60 and the hall side door 61 close in unison, and hereafter this will also be expressed as "the doors close."
 (制御盤210への入出力信号)
 ここで、エレベータ機器群220を制御する制御盤210とエレベータ機器群220との間でパラレル伝送により入出力される信号のうち、遠隔点検装置100が取得する信号を「判定用信号」と称する。遠隔点検装置100は、判定用信号を用いて遠隔点検の各項目を判断する。判定用信号は、第1信号~第4信号を含む。各判定用信号は、ON状態とOFF状態とのいずれかの状態を有する。本実施の形態では、第1信号の一態様としてのDZ信号、第2信号の一態様としてのLB信号、第3信号の一態様としてのGS信号、第4信号の一態様としてのDS信号をそれぞれ例示する。
(Input/output signals to the control panel 210)
Here, among the signals input/output by parallel transmission between the control panel 210 that controls the elevator equipment group 220 and the elevator equipment group 220, the signals acquired by the remote inspection device 100 are referred to as "determination signals." The remote inspection device 100 uses the determination signals to determine each item of the remote inspection. The determination signals include a first signal to a fourth signal. Each determination signal has either an ON state or an OFF state. In this embodiment, a DZ signal as one aspect of the first signal, an LB signal as one aspect of the second signal, a GS signal as one aspect of the third signal, and a DS signal as one aspect of the fourth signal are exemplified.
 各階に設けられた乗場装置230は、図示しない乗場ドアスイッチ(「インターロックスイッチ」とも称する)を含む。乗場ドアスイッチは、乗場側の扉61が戸閉状態である場合にON状態となり、乗場側の扉61が戸開状態である場合にOFF状態となる。乗場ドアスイッチがOFF状態(戸閉していない状態)である場合、安全のため、かご10が走行できないように制御盤210によって制御される。 The landing device 230 provided on each floor includes a landing door switch (also called an "interlock switch") not shown. The landing door switch is ON when the landing side door 61 is closed, and is OFF when the landing side door 61 is open. When the landing door switch is OFF (door not closed), for safety reasons, it is controlled by the control panel 210 to prevent the car 10 from traveling.
 本実施の形態においては、乗場の扉61が閉じて乗場ドアスイッチがON状態である(乗場ドアスイッチが押されて接点がON状態となっている)ときにDS信号がON状態となり、乗場の扉61が閉じておらず乗場ドアスイッチがOFF状態であるときにDS信号がOFF状態となって、制御盤210に送信される。 In this embodiment, when the landing door 61 is closed and the landing door switch is in the ON state (the landing door switch is pressed and the contact is in the ON state), the DS signal is in the ON state, and when the landing door 61 is not closed and the landing door switch is in the OFF state, the DS signal is in the OFF state and is sent to the control panel 210.
 また、かご装置240は、図示しないかごドアスイッチ(「ゲートスイッチ」とも称する)を含む。かごドアスイッチは、かご10側の扉60が戸閉状態となった場合にON状態となり、かご10側の扉60が戸開状態である場合にOFF状態となる。かごドアスイッチがOFF状態(戸閉していない状態)では、安全のため、かご10が走行できないように制御盤210によって制御される。 The car device 240 also includes a car door switch (also called a "gate switch"), not shown. The car door switch is ON when the door 60 on the car 10 side is closed, and is OFF when the door 60 on the car 10 side is open. When the car door switch is OFF (door not closed), for safety reasons, it is controlled by the control panel 210 so that the car 10 cannot run.
 本実施の形態においては、かご10の扉60が閉じてかごドアスイッチがON状態である(かごドアスイッチが押されて接点がON状態となっている)ときにGS信号がON状態となり、かご10の扉60が閉じておらずかごドアスイッチがOFF状態であるときにGS信号がOFF状態となって、制御盤210に送信される。かご10の扉60は、乗場の扉61に連動して開閉する。 In this embodiment, when the car 10 door 60 is closed and the car door switch is ON (the car door switch is pressed and the contact is ON), the GS signal is ON, and when the car 10 door 60 is not closed and the car door switch is OFF, the GS signal is OFF and is sent to the control panel 210. The car 10 door 60 opens and closes in conjunction with the hall door 61.
 また、かご装置240は、図示しないドアゾーン検出装置(「着床装置」とも称する)を含む。ここで、ドアゾーンは、エレベータのかご10の扉60を開閉可能なかご10の位置範囲を示す。ドアゾーン検出装置は、かご10に設置されており、各階において、戸開可能な位置範囲内(ドアゾーン内)にかご10が位置する場合にドアゾーン検出装置はDZ信号をON状態として検出し、ドアゾーン内にかご10が位置しない場合にDZ信号をOFF状態として検出し、制御盤210に送信される。 The car device 240 also includes a door zone detection device (also called a "floor landing device"), not shown. Here, the door zone refers to the position range of the car 10 where the door 60 of the elevator car 10 can be opened and closed. The door zone detection device is installed in the car 10, and when the car 10 is located within the position range where the door can be opened (within the door zone) on each floor, the door zone detection device detects the DZ signal as being in the ON state, and when the car 10 is not located within the door zone, the door zone detection device detects the DZ signal as being in the OFF state and sends it to the control panel 210.
 たとえば、かご10に設置されたドアゾーン検出装置は、磁気近接センサを備える。一方、昇降路8内の各階の着床位置には、ドアゾーン検出用のプレートが設置されている。たとえば、ドアゾーン検出装置の磁気近接センサが、ドアゾーン検出用のプレートを検出している状態において、DZ信号がONとなるように構成される。たとえば、かご10の床位置が各階乗場の床位置に対して上下それぞれ150mm以内である場合に、DZ信号がONとなるように構成される。 For example, the door zone detection device installed in the car 10 includes a magnetic proximity sensor. Meanwhile, a door zone detection plate is installed at the landing position of each floor in the elevator shaft 8. For example, the DZ signal is configured to be ON when the magnetic proximity sensor of the door zone detection device detects the door zone detection plate. For example, the DZ signal is configured to be ON when the floor position of the car 10 is within 150 mm above or below the floor position of each floor landing.
 かご10がドアゾーン外にいる状態(DZ信号がOFF状態)では、安全のため、戸開できないように制御盤210によって制御される。なお、ドアゾーン検出装置が昇降路8側に設置され、ドアゾーン検出用のプレートがかご10側に設置されるように構成してもよい。 When the car 10 is outside the door zone (the DZ signal is OFF), for safety reasons, the control panel 210 controls the car so that the door cannot be opened. Note that the door zone detection device may be installed on the elevator shaft 8 side, and the door zone detection plate may be installed on the car 10 side.
 また、巻上機250のブレーキコイルに電力が供給されることでエレベータのブレーキが開放されたときに、LB信号がON状態になる。巻上機250のブレーキコイルへの電力の供給が停止することでエレベータのブレーキが動作した(ブレーキが開放されていない)ときに、LB信号がOFF状態になる。 In addition, when the elevator brake is released by supplying power to the brake coil of the hoisting machine 250, the LB signal becomes ON. When the elevator brake is activated (the brake is not released) by stopping the supply of power to the brake coil of the hoisting machine 250, the LB signal becomes OFF.
 また、昇降路8の壁面には、スローアップスイッチ(図示なし)およびスローダウンスイッチ(図示なし)が設置されている。スローアップスイッチは、かご10が昇降路8の頂部に衝突しないように設けられたスイッチである。スローアップスイッチは、UP走行するかご10の位置が5階(最上階)と4階との間の所定の位置になったときに、かご10に取り付けられた所定の部材との接触によりON状態となるように構成されている。 In addition, a slow-up switch (not shown) and a slow-down switch (not shown) are installed on the wall of the elevator shaft 8. The slow-up switch is provided to prevent the car 10 from colliding with the top of the elevator shaft 8. The slow-up switch is configured to turn ON by contacting a specified member attached to the car 10 when the car 10 traveling UP reaches a specified position between the 5th floor (the top floor) and the 4th floor.
 スローアップスイッチがON状態である場合にSUL信号がON状態となり、スローアップスイッチがOFF状態である場合にSUL信号がOFF状態となる。最上階にかご10が近接してスローアップスイッチがON状態となったときに、かご10が規定の速度以上の速度で走行している場合は、安全のため、かご10を減速するように制御盤210によって制御される。 When the slow-up switch is ON, the SUL signal is ON, and when the slow-up switch is OFF, the SUL signal is OFF. When the car 10 approaches the top floor and the slow-up switch is ON, if the car 10 is traveling at a speed above the specified speed, the control panel 210 controls the car 10 to decelerate for safety reasons.
 スローダウンスイッチは、かご10が昇降路8の底部に衝突(あるいはピット6内に侵入)しないように設けられたスイッチである。スローアップスイッチは、DN走行するかご10の位置が1階(最下階)と2階との間の所定の位置になったときに、かご10に取り付けられた所定の部材との接触によりON状態となるように構成されている。 The slow-down switch is a switch that is installed to prevent the car 10 from colliding with the bottom of the elevator shaft 8 (or entering the pit 6). The slow-up switch is configured to be turned ON by contacting a specified member attached to the car 10 when the car 10 traveling in DN reaches a specified position between the first floor (the lowest floor) and the second floor.
 スローダウンスイッチがON状態である場合にSDL信号がON状態となり、スローダウンスイッチがOFF状態である場合にSDL信号がOFF状態となる。最下階にかご10が近接してスローダウンスイッチがON状態となったときに、かご10が規定の速度以上の速度で走行している場合は、安全のため、かご10を減速するように制御盤210によって制御される。 When the slowdown switch is ON, the SDL signal is ON, and when the slowdown switch is OFF, the SDL signal is OFF. When the car 10 approaches the lowest floor and the slowdown switch is ON, if the car 10 is traveling at a speed above the specified speed, the control panel 210 controls the car 10 to slow down for safety reasons.
 なお、スローアップスイッチおよびスローダウンスイッチをかご10側に設置し、昇降路8側に設置された所定の部材との接触によりこれらのスイッチがON状態となるように構成してもよい。 In addition, the slow-up switch and slow-down switch may be installed on the car 10 side, and these switches may be configured to be turned on by contact with a specified member installed on the elevator shaft 8 side.
 本実施の形態においては、ビル2内には、エレベータが1台(図3の1号機のかご10)のみ設置されている。したがって、乗場呼びが登録された場合は、必ず、1号機が割当てられ、当該乗場呼びに対して1号機が応答することになる。 In this embodiment, only one elevator (car 10 of elevator No. 1 in FIG. 3) is installed in building 2. Therefore, when a hall call is registered, elevator No. 1 is always assigned and responds to the hall call.
 たとえば、2階の乗場でDN乗場呼びが登録された場合、この2階でのDN乗場呼びに対して1号機が割当てられる。DN方向に走行している1号機は、この2階でのDN乗場呼びに応答して2階で停止した後に戸開する。 For example, if a DN call is registered at a platform on the second floor, Locomotive No. 1 will be assigned to this DN call on the second floor. Locomotive No. 1, traveling in the DN direction, will respond to this DN call on the second floor, stop at the second floor, and then open its doors.
 以上の構成は、ビル2内において1台のエレベータのみが制御される構成(シングルカーの構成)であるが、以下、ビル2内において複数台のエレベータが制御される設置される構成(マルチカーの構成)についても説明する。図6は、変形例に係るエレベータシステム200bのハードウェア構成の一例を示す図である。 The above configuration is a configuration in which only one elevator is controlled in building 2 (single-car configuration), but below we will also explain a configuration in which multiple elevators are controlled in building 2 (multi-car configuration). Figure 6 is a diagram showing an example of the hardware configuration of elevator system 200b relating to a modified example.
 本変形例において、エレベータシステム200bは、「1号機」および「2号機」の2台のエレベータを備えるものとする。エレベータ機器群220bは、1階から5階までの各階の乗場に設置された乗場装置230と、1号機が備える巻上機250およびかご装置240と、1号機の各種センサおよび各種スイッチ等と、2号機が備える巻上機250およびかご装置240と、2号機の各種センサおよび各種スイッチ等とを備える。 In this modified example, elevator system 200b includes two elevators, "Unit 1" and "Unit 2." Elevator equipment group 220b includes hall devices 230 installed at the halls of each floor from the first to the fifth floors, a hoist 250 and a car device 240 included in Unit 1, various sensors and switches, etc., of Unit 1, a hoist 250 and a car device 240 included in Unit 2, and various sensors and switches, etc., of Unit 2.
 制御盤210bは、群管理制御部(group control unit)211と2つの各台制御部(car control unit)212とを備える。群管理制御部211は、複数台のエレベータを管理する制御基板である。各台制御部212は、対応するエレベータの運転を制御する制御基板である。群管理制御部211と2つの各台制御部212とは、互いに通信し、エレベータに関する各種データをやり取りする。 The control panel 210b comprises a group control unit 211 and two car control units 212. The group control unit 211 is a control board that manages multiple elevators. The car control unit 212 is a control board that controls the operation of the corresponding elevator. The group control unit 211 and the two car control units 212 communicate with each other and exchange various data related to the elevators.
 群管理制御部211は、各階の乗場装置230を一括して制御する。群管理制御部211は、制御ケーブル21を介して、1階から5階までの各階の乗場に設置された乗場装置230と接続されている。各台制御部212は、制御ケーブル22,23を介して、巻上機250およびかご装置240と、各号機の各種センサおよび各種スイッチ等とに接続されている。 The group management control unit 211 collectively controls the hall devices 230 on each floor. The group management control unit 211 is connected to the hall devices 230 installed at the halls on each floor from the 1st to the 5th floors via a control cable 21. The individual car control unit 212 is connected to the hoisting machine 250, the car device 240, and various sensors and switches of each car via control cables 22 and 23.
 図6で示す変形例において、各階の乗場装置230は、乗場呼び釦が設けられた乗場操作盤70を含む。ただし、本変形例では、乗場操作盤70にインジケータ71は含まないものとする。本変形例では、各階において、乗場操作盤70が1つ設置され、インジケータ71がエレベータの台数分(2つ)設置されているものとする。 In the modified example shown in FIG. 6, the hall device 230 on each floor includes a hall operating panel 70 equipped with a hall call button. However, in this modified example, the hall operating panel 70 does not include an indicator 71. In this modified example, one hall operating panel 70 is installed on each floor, and indicators 71 are installed for each elevator (two indicators).
 群管理制御部211は、昇降路8の壁面を這わせた制御ケーブル21を介して各階に設置された乗場装置230(乗場呼び釦)と接続する。各台制御部212は、制御ケーブル22を介して、各台制御部212に対応する号機の巻上機250およびかご装置240と接続する。かご装置240は、行先階釦が設けられたかご操作盤50と、かごドアスイッチと、ドアゾーン検出装置とを含む。 The group management control unit 211 is connected to the hall devices 230 (hall call buttons) installed on each floor via a control cable 21 that runs along the wall of the elevator 8. Each car control unit 212 is connected to the hoist 250 and car device 240 of the car corresponding to each car control unit 212 via a control cable 22. The car device 240 includes a car operation panel 50 equipped with a destination floor button, a car door switch, and a door zone detection device.
 各台制御部212は、昇降路8の壁面を這わせた制御ケーブル23を介して、各台制御部212に対応する号機の各種センサおよび各種スイッチ等と接続する。各種センサおよび各種スイッチ等は、号機ごとに設置された、スローアップスイッチと、スローダウンスイッチと、各階の乗場ドアスイッチと、各階のインジケータ71とを含む。 The individual platform control units 212 are connected to the various sensors and switches of the vehicle corresponding to each platform control unit 212 via control cables 23 that run along the walls of the elevator shaft 8. The various sensors and switches include a slow-up switch, a slow-down switch, a landing door switch for each floor, and an indicator 71 for each floor, which are installed for each platform.
 本例において、乗場呼び釦が押されたとき、群管理制御部211は、乗場呼び釦に対応する乗場呼びを登録する。そして、群管理制御部211は、登録された乗場呼びに対して、複数のかご10(1号機、2号機)のうちのいずれかのかご10を割当てる。割当てられたかご10(割当かご)に対応する各台制御部212は、登録された乗場呼びに割当かごを応答させる。 In this example, when a hall call button is pressed, the group management control unit 211 registers a hall call corresponding to the hall call button. The group management control unit 211 then assigns one of the multiple cars 10 (car No. 1, car No. 2) to the registered hall call. The individual car control unit 212 corresponding to the assigned car 10 (assigned car) causes the assigned car to respond to the registered hall call.
 たとえば、1階のUP乗場呼び釦81が押されると、1階UP乗場呼び信号がON状態となる。群管理制御部211は、ON状態である1階UP乗場呼び信号を受信し、1階UP乗場呼びを登録する。群管理制御部211は、1階UP乗場呼びに対して、1号機および2号機のいずれかのかご10を割当てる。 For example, when the 1st floor UP platform call button 81 is pressed, the 1st floor UP platform call signal turns ON. The group management control unit 211 receives the 1st floor UP platform call signal that is ON, and registers a 1st floor UP platform call. The group management control unit 211 assigns either car 10 No. 1 or No. 2 to the 1st floor UP platform call.
 たとえば、群管理制御部211が1号機のかご10を割当てたとする。この場合、群管理制御部211は、1号機の各台制御部212に対して1階UP乗場呼びに応答するよう指令を送信する。1号機の各台制御部212は、1号機のかご10を走行させて1階UP乗場呼びに応答させる。かご10は、1階まで走行した後に1階で停止および戸開する。 For example, suppose that the group management control unit 211 assigns car 10 of car No. 1. In this case, the group management control unit 211 sends a command to the individual car control unit 212 of car No. 1 to respond to the 1st floor UP hall call. The individual car control unit 212 of car No. 1 causes car 10 of car No. 1 to run and respond to the 1st floor UP hall call. After running to the 1st floor, car 10 stops at the 1st floor and opens the door.
 なお、制御盤210bは、群管理制御部211を備えず、2つの各台制御部212のみを備えるものであってもよい。この場合、群管理制御部211の機能は、1号機の各台制御部212が備えるようにすればよい。1号機の各台制御部212は、制御ケーブル21を介して乗場装置230を制御するとともに、2号機の各台制御部212と直接通信接続する。 The control panel 210b may not include the group management control unit 211, but may include only two individual car control units 212. In this case, the functions of the group management control unit 211 may be provided in the individual car control unit 212 of the first unit. The individual car control unit 212 of the first unit controls the hall device 230 via the control cable 21, and is directly connected to and communicates with the individual car control unit 212 of the second unit.
 (強制停止および待機動作)
 また、エレベータシステム200(200a,200b)は、強制停止階および待機階の設定が可能である。強制停止階の設定がされている場合、かご10が強制停止階を通りがかった場合、かご10は必ず強制停止階で停止して戸開する。たとえば、ホテルのロビーが2階である場合に、2階が強制停止階として設定されるような場面が想定される。かご10が1階から5階へ走行する場合、必ず、かご10は途中の2階で停止して戸開する。
(Forced stop and standby operation)
Furthermore, the elevator system 200 (200a, 200b) can set forced stop floors and waiting floors. When a forced stop floor is set, if the car 10 passes a forced stop floor, the car 10 always stops at the forced stop floor and opens the doors. For example, a situation is assumed in which the hotel lobby is on the second floor, and the second floor is set as a forced stop floor. When the car 10 travels from the first floor to the fifth floor, the car 10 always stops at the second floor along the way and opens the doors.
 待機階の設定がされている場合、かご10は、全ての乗場呼びおよびかご呼びに応答し終わった(この状態を「利用可能」と称する)後に、設定されている待機階へ走行する。たとえば、待機階として1階(メインフロア)が設定されているとする。かご10は、5階の最終呼びに応答し終わって利用可能となった場合、5階から1階に向けて走行した後に1階(待機階)で待機する。 If a waiting floor has been set, car 10 will travel to the set waiting floor after responding to all hall and car calls (this state is referred to as "available"). For example, assume that the first floor (main floor) is set as the waiting floor. When car 10 responds to the final call on the fifth floor and becomes available, it will travel from the fifth floor to the first floor and then wait on the first floor (waiting floor).
 待機階の設定の際、戸開待機の有無および待機台数も設定可能である。たとえば、図6の例のように、制御盤210bが管理するエレベータが2台ある場合、1台または2台のかご10を待機階に待機させることができる。その際、戸開した状態または戸閉した状態にして待機階で待機させることができる。戸開待機する場合、かご10は、待機階に到着して戸開した後、所定時間(たとえば、1分、あるいは3分)経過後に戸閉する。戸開待機設定がされた待機階を「戸開待機階」とも称する。 When setting a waiting floor, it is also possible to set whether or not to wait with the doors open and the number of waiting cars. For example, as in the example of Figure 6, when there are two elevators managed by the control panel 210b, one or two cars 10 can be made to wait at a waiting floor. In this case, they can be made to wait at the waiting floor with the doors open or closed. When waiting with the doors open, the car 10 closes the doors a predetermined time (for example, one minute or three minutes) after arriving at the waiting floor and opening the doors. A waiting floor for which the door-open waiting setting has been set is also referred to as a "door-open waiting floor."
 また、エレベータシステム200bは、分散待機動作を行ってもよい。たとえば、制御盤210bが管理するエレベータが2台ある場合、利用可能となった2台のかご10が同一階床または近い階床で停止しないように、2台のかご10を分散して待機させる。たとえば、利用可能となった2台のかご10がいずれも1階(メインフロア)で停止している場合、1台を上方階(たとえば、3階)に走行させた後に戸閉待機させる。 The elevator system 200b may also perform a distributed standby operation. For example, if there are two elevators managed by the control panel 210b, the two cars 10 that have become available are placed on standby in a distributed manner so that they do not stop on the same floor or on a nearby floor. For example, if two cars 10 that have become available are both stopped on the first floor (main floor), one car is made to run to a higher floor (e.g., the third floor) and then placed on standby with its doors closed.
 このように、乗場呼びまたはかご呼びが存在しない場合であっても、強制停止階の設定、待機階の設定あるいは分散待機動作によって、かご10が走行あるいは戸開することがある。 In this way, even if there is no hall call or car call, the car 10 may run or the doors may open due to the setting of a forced stop floor, a waiting floor, or distributed waiting operation.
 (遠隔点検システム1の詳細な構成および使用される信号)
 以下、図3に示したエレベータシステム200(かご台数が1台)を前提として説明する。図7は、遠隔点検システム1のハードウェア構成および遠隔点検システム1で使用される信号を説明するための図である。
(Detailed configuration of remote inspection system 1 and signals used)
The following description will be given on the assumption that the elevator system 200 (having one car) shown in Fig. 3 is used. Fig. 7 is a diagram for explaining the hardware configuration of the remote inspection system 1 and signals used in the remote inspection system 1.
 上述のように、エレベータシステム200は、制御盤210とエレベータ機器群220とを備える。エレベータ機器群220は、1階~5階の乗場装置230を含む。制御盤210とエレベータ機器群220とは、複数の信号線で接続されており、これにより、複数の信号を送受信可能である。 As described above, elevator system 200 includes control panel 210 and elevator equipment group 220. Elevator equipment group 220 includes hall devices 230 on the first to fifth floors. Control panel 210 and elevator equipment group 220 are connected by multiple signal lines, allowing multiple signals to be transmitted and received.
 これら複数の信号は、上述の、DZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号、DN信号、1階のUP乗場呼び信号、および、5階のDN乗場呼び信号を含む。ここで例示した信号は、いずれもパラレル伝送により送受信される。 These multiple signals include the above-mentioned DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, DN signal, UP platform call signal on the 1st floor, and DN platform call signal on the 5th floor. All of the signals exemplified here are transmitted and received by parallel transmission.
 DZ信号は、上述のように、ドアゾーン検出装置によって検出される信号である。かご10が各階において戸開可能な位置範囲内(ドアゾーン内)に位置するときにDZ信号がON状態となり、ドアゾーン外に位置するときにDZ信号がOFF状態となる。 As described above, the DZ signal is a signal that is detected by the door zone detection device. When the car 10 is located within the range of positions where the door can be opened on each floor (within the door zone), the DZ signal is ON, and when it is outside the door zone, the DZ signal is OFF.
 LB信号は、上述のように、巻上機250のブレーキコイルに電力が供給されることでブレーキが開放されたときに、ON状態になる信号である。巻上機250のブレーキコイルへの電力の供給が停止することでブレーキが動作したときに、LB信号がOFF状態になる。 As described above, the LB signal is a signal that goes ON when the brake is released by supplying power to the brake coil of the hoist 250. When the supply of power to the brake coil of the hoist 250 is stopped and the brake is activated, the LB signal goes OFF.
 GS信号は、上述のように、かごドアスイッチによって検出される信号である。かご側の扉60が戸閉状態である場合にGS信号がON状態となり、かご側の扉60が戸開状態となった場合にGS信号がOFF状態となる。 As described above, the GS signal is a signal that is detected by the car door switch. When the car door 60 is closed, the GS signal is ON, and when the car door 60 is open, the GS signal is OFF.
 DS信号は、上述のように、乗場ドアスイッチによって検出される信号である。乗場側の扉61が戸閉状態である場合にDS信号がON状態となり、乗場側の扉61が戸開状態である場合にDS信号OFF状態となる。 As described above, the DS signal is a signal that is detected by the landing door switch. When the landing door 61 is closed, the DS signal is ON, and when the landing door 61 is open, the DS signal is OFF.
 SUL信号は、上述のように、スローアップスイッチによって検出される信号である。スローアップスイッチがON状態である場合にSUL信号がON状態となり、スローアップスイッチがOFF状態である場合にSUL信号がOFF状態となる。 As described above, the SUL signal is a signal that is detected by the slow-up switch. When the slow-up switch is in the ON state, the SUL signal is in the ON state, and when the slow-up switch is in the OFF state, the SUL signal is in the OFF state.
 SDL信号は、上述のように、スローダウンスイッチによって検出される信号である。スローダウンスイッチがON状態である場合にSDL信号がON状態となり、スローダウンスイッチがOFF状態である場合にSDL信号がOFF状態となる。 As described above, the SDL signal is a signal that is detected by the slow-down switch. When the slow-down switch is in the ON state, the SDL signal is in the ON state, and when the slow-down switch is in the OFF state, the SDL signal is in the OFF state.
 かご10の走行方向がUP方向であるときにUP信号がON状態となり、かご10の走行方向がUP方向以外であるときにUP信号がOFF状態となる。かご10の走行方向がDN方向であるときにDN信号がON状態となり、かご10の走行方向がDN方向以外であるときにDN信号がOFF状態となる。 When the running direction of the car 10 is the UP direction, the UP signal is ON, and when the running direction of the car 10 is other than the UP direction, the UP signal is OFF. When the running direction of the car 10 is the DN direction, the DN signal is ON, and when the running direction of the car 10 is other than the DN direction, the DN signal is OFF.
 1階のUP乗場呼び信号は、1階の乗場装置230のUP乗場呼び釦81が押下状態であるときにON状態となる信号である。UP乗場呼び釦81の押下状態で接点がON状態となり、UP乗場呼び釦81の押下状態が解除されると接点がOFF状態となる。 The UP platform call signal on the first floor is a signal that is turned ON when the UP platform call button 81 on the platform device 230 on the first floor is pressed. When the UP platform call button 81 is pressed, the contact is turned ON, and when the UP platform call button 81 is released from the pressed state, the contact is turned OFF.
 5階のDN乗場呼び信号は、5階の乗場装置230のDN乗場呼び釦82が押下状態であるきにON状態となる信号である。DN乗場呼び釦82の押下状態で接点がON状態となり、DN乗場呼び釦82の押下状態が解除されると接点がOFF状態となる。 The DN hall call signal for the fifth floor is a signal that is turned ON when the DN hall call button 82 of the hall device 230 for the fifth floor is pressed. When the DN hall call button 82 is pressed, the contact is turned ON, and when the pressed state of the DN hall call button 82 is released, the contact is turned OFF.
 なお、図示しないが、その他の乗場呼び釦から出力される乗場呼び信号およびかご呼び釦から出力されるかご呼び信号も制御盤210に入力される。 Although not shown, other hall call signals output from hall call buttons and car call signals output from car call buttons are also input to the control panel 210.
 遠隔点検装置100は、制御装置110と、入力IF(インターフェイス)130と、出力IF(インターフェイス)140と、通信IF(インターフェイス)120とを備える。 The remote inspection device 100 includes a control device 110, an input IF (interface) 130, an output IF (interface) 140, and a communication IF (interface) 120.
 入力IF130は、制御盤210とエレベータ機器群220との間でパラレル伝送により入出力される信号の一部を判定用信号として入力するための基板である。制御盤210に入力されるDZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号およびDN信号のそれぞれの信号線を分岐させ、分岐したそれぞれの信号線は入力IF130が備える端子に接続されている。入力IF130に入力された各信号は、さらに、制御装置110に送信される。 The input IF 130 is a board for inputting some of the signals input/output by parallel transmission between the control panel 210 and the elevator equipment group 220 as judgment signals. The signal lines of the DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, and DN signal input to the control panel 210 are branched, and each of the branched signal lines is connected to a terminal provided on the input IF 130. Each signal input to the input IF 130 is further transmitted to the control device 110.
 出力IF140は、エレベータ機器群220に対して信号を出力するための基板である。制御装置110は、出力IF140に対して、1階のUP乗場呼び信号および5階のDN乗場呼び信号を出力することができる。出力IF140は、1階のUP乗場呼び信号を制御装置110から受けると、その受けた1階UP乗場呼び信号をエレベータ機器群220に対して出力し、5階のDN乗場呼び信号を制御装置110から受けると、その受けた5階DN乗場呼び信号をエレベータ機器群220に対して出力する。 The output IF 140 is a board for outputting signals to the elevator equipment group 220. The control device 110 can output a 1st floor UP hall call signal and a 5th floor DN hall call signal to the output IF 140. When the output IF 140 receives a 1st floor UP hall call signal from the control device 110, it outputs the received 1st floor UP hall call signal to the elevator equipment group 220, and when the output IF 140 receives a 5th floor DN hall call signal from the control device 110, it outputs the received 5th floor DN hall call signal to the elevator equipment group 220.
 1階の乗場装置230には、1階のUP乗場呼び釦81が備えられている。1階の乗場装置230と制御盤210との間には、1階UP乗場呼び信号を送信するための信号線が設けられている。5階の乗場装置230には、5階のDN乗場呼び釦82が備えられている。5階の乗場装置230と制御盤210との間には、5階DN乗場呼び信号を送信するための信号線が設けられている。なお、本実施の形態において、乗場呼び信号はシリアル伝送により乗場装置230から制御盤210に送信されるため、制御盤210側からパラレル伝送線を分岐させて遠隔点検装置100に乗場呼び信号を入出力させることができないものとする。 The first floor hall device 230 is equipped with a first floor UP hall call button 81. A signal line is provided between the first floor hall device 230 and the control panel 210 for transmitting a first floor UP hall call signal. The fifth floor hall device 230 is equipped with a fifth floor DN hall call button 82. A signal line is provided between the fifth floor hall device 230 and the control panel 210 for transmitting a fifth floor DN hall call signal. In this embodiment, the hall call signal is transmitted from the hall device 230 to the control panel 210 by serial transmission, so it is not possible to branch off a parallel transmission line from the control panel 210 side to input and output the hall call signal to the remote inspection device 100.
 1階のUP乗場呼び釦81が押されると、接点が短絡してON状態となった信号が1階の乗場装置230に入力される。これにより、1階の乗場装置230は、制御盤210に対してON状態の1階UP乗場呼び信号を送信(シリアル伝送)する。出力IF140の端子には1階UP乗場呼び信号を送信する信号線が接続され、本信号線は乗場装置230と接続されている。そして、出力IF140からON状態となった1階UP乗場呼び信号が出力された場合、1階のUP乗場呼び釦81の接点が短絡するように改造されている。これにより、1階の乗場装置230から制御盤210に対してON状態の1階UP乗場呼び信号が送信される。つまり、出力IF140からON状態の1階UP乗場呼び信号を送信することで、擬似的に、1階のUP乗場呼び釦81が押された状態を作ることができる。 When the 1st floor UP platform call button 81 is pressed, the contacts are shorted and a signal that is in the ON state is input to the 1st floor platform device 230. As a result, the 1st floor platform device 230 transmits a 1st floor UP platform call signal in the ON state to the control panel 210 (serial transmission). A signal line that transmits the 1st floor UP platform call signal is connected to a terminal of the output IF 140, and this signal line is connected to the platform device 230. The 1st floor UP platform call button 81 is modified so that the contacts are shorted when the 1st floor UP platform call signal in the ON state is output from the output IF 140. As a result, the 1st floor UP platform call signal in the ON state is transmitted from the 1st floor platform device 230 to the control panel 210. In other words, by transmitting a 1st floor UP platform call signal in the ON state from the output IF 140, it is possible to create a pseudo state in which the 1st floor UP platform call button 81 is pressed.
 5階のDN乗場呼び釦82が押されると、接点が短絡してON状態となった信号が5階の乗場装置230に入力される。これにより、5階の乗場装置230は、制御盤210に対してON状態の5階DN乗場呼び信号を送信(シリアル伝送)する。出力IF140の端子には5階DN乗場呼び信号を送信する信号線が接続され、本信号線は乗場装置230と接続されている。そして、出力IF140からON状態となった5階DN乗場呼び信号が出力された場合、5階のDN乗場呼び釦82の接点が短絡するように改造されている。これにより、5階の乗場装置230から制御盤210に対してON状態の5階DN乗場呼び信号が送信される。つまり、出力IF140からON状態の5階DN乗場呼び信号を送信することで、擬似的に、5階のDN乗場呼び釦82が押された状態を作ることができる。 When the 5th floor DN hall call button 82 is pressed, the contacts are shorted and a signal that is in the ON state is input to the 5th floor hall device 230. As a result, the 5th floor hall device 230 transmits a 5th floor DN hall call signal in the ON state to the control panel 210 (serial transmission). A signal line that transmits the 5th floor DN hall call signal is connected to a terminal of the output IF 140, and this signal line is connected to the hall device 230. The contacts of the 5th floor DN hall call button 82 are modified so that when the 5th floor DN hall call signal in the ON state is output from the output IF 140, the 5th floor hall call button 82 is shorted. As a result, the 5th floor hall device 230 transmits a 5th floor DN hall call signal in the ON state to the control panel 210. In other words, by transmitting a 5th floor DN hall call signal in the ON state from the output IF 140, it is possible to create a pseudo state in which the 5th floor DN hall call button 82 is pressed.
 本実施の形態において、遠隔点検を行うために、擬似的な乗場呼びを遠隔点検装置100が生成し、これによりかご10を走行させることを「診断用運転」と称する。本例では、遠隔点検装置100は、上記のように擬似的な1階UP乗場呼びおよび5階DN乗場呼びを生成する。この2つの乗場呼びを組み合わせることで、かご10に最下階(1階)と最上階(5階)との間を走行させる診断用運転を実施させることができる。 In this embodiment, in order to perform remote inspection, the remote inspection device 100 generates a pseudo hall call, and the car 10 is made to run using this call is referred to as "diagnostic operation." In this example, the remote inspection device 100 generates a pseudo 1st floor UP hall call and a 5th floor DN hall call as described above. By combining these two hall calls, it is possible to perform diagnostic operation in which the car 10 runs between the lowest floor (1st floor) and the top floor (5th floor).
 エレベータ機器群220と、入力IF130および出力IF140とは、パラレル伝送により信号が送受信される。入力IF130および出力IF140と、制御装置110ともパラレル伝送により信号が送受信される。エレベータ機器群220と入力IF130とを繋ぐ各信号線から入力される信号は、メーカーごとに電圧等にばらつきがある(たとえば、24V、48V、100V)ので、入力IF130で共通化して制御装置110に信号を入力する。 Signals are sent and received between the elevator equipment group 220 and the input IF 130 and output IF 140 via parallel transmission. Signals are also sent and received between the input IF 130, output IF 140, and the control device 110 via parallel transmission. The signals input from each signal line connecting the elevator equipment group 220 and the input IF 130 vary in voltage, etc. depending on the manufacturer (for example, 24V, 48V, 100V), so the signals are standardized at the input IF 130 and input to the control device 110.
 また、本実施の形態においては、機械室5に温度センサ15が設置されている。制御装置110は、温度センサ15の検知結果を取得可能に構成されている。これにより、制御装置110は、機械室5の温度を検知することができる。温度センサ15は、機械室に限らず、エレベータの昇降路8内の任意の位置、昇降路8周辺またはエレベータの周辺に設置してもよい。また、本実施の形態においては、制御装置110は、かご10に取り付けられたインターホン16の電圧を取得可能に構成されている。これらの情報を用いて、機械室5等の温度あるいはインターホンの状態が正常か否かを判定することが可能である。 In addition, in this embodiment, a temperature sensor 15 is installed in the machine room 5. The control device 110 is configured to be able to acquire the detection results of the temperature sensor 15. This allows the control device 110 to detect the temperature of the machine room 5. The temperature sensor 15 is not limited to being installed in the machine room, but may be installed at any position within the elevator hoistway 8, around the hoistway 8, or around the elevator. In this embodiment, the control device 110 is configured to be able to acquire the voltage of the intercom 16 attached to the car 10. Using this information, it is possible to determine whether the temperature of the machine room 5, etc., or the state of the intercom is normal or not.
 制御装置110は、少なくともプロセッサ(CPU)111とメモリ112とを備えるPLCである。メモリは、たとえば、ROMおよびRAMである。これらは、バスを介して相互に通信可能に接続されている。ROMは、制御装置110を制御するためのプログラムを格納する。CPUは、ROMに保存されているプログラムをRAMに読み込んで実行し、制御装置110を制御する。RAMは、CPUがプログラムを実行する際の作業領域となるものであり、プログラムやプログラムを実行する際のデータ等を一時的に記憶する。制御装置110は、入力IF130、出力IF140および通信IF120と通信可能に構成されている。通信IF120は、ネットワークを介して管理サーバ300と通信するための基板である。 The control device 110 is a PLC that includes at least a processor (CPU) 111 and a memory 112. The memory is, for example, a ROM and a RAM. These are connected to each other via a bus so that they can communicate with each other. The ROM stores a program for controlling the control device 110. The CPU loads the program saved in the ROM into the RAM, executes it, and controls the control device 110. The RAM serves as a working area when the CPU executes a program, and temporarily stores programs and data used when executing the programs. The control device 110 is configured to be able to communicate with the input IF 130, the output IF 140, and the communication IF 120. The communication IF 120 is a board for communicating with the management server 300 via a network.
 上述のように、端末400は、表示部410と入力部420とを備える。表示部410は、たとえば、ディスプレイである。入力部420は、たとえば、キーボード、マウス、または、表示部410と一体化されたタッチパネルディスプレイである。 As described above, the terminal 400 includes a display unit 410 and an input unit 420. The display unit 410 is, for example, a display. The input unit 420 is, for example, a keyboard, a mouse, or a touch panel display integrated with the display unit 410.
 管理サーバ300は、通信IF120を介して、制御装置110に対する遠隔点検の指令を行うとともに、制御装置110から遠隔点検の結果を取得する。端末400および管理サーバ300も、制御装置110と同様に、プロセッサ(CPU)およびメモリ(ROM、RAM)を備える。 The management server 300 issues a command for remote inspection to the control device 110 via the communication IF 120, and obtains the results of the remote inspection from the control device 110. Like the control device 110, the terminal 400 and the management server 300 also have a processor (CPU) and memory (ROM, RAM).
 制御装置110は、出力IF140を介して、1階の乗場装置230に対して1階UP乗場呼び信号を送信することで、擬似的に1階UP乗場呼びを発生させる。制御装置110は、出力IF140を介して、5階の乗場装置230に対して5階DN乗場呼び信号を送信することで、擬似的に5階DN乗場呼びを発生させる。これにより、かご10に1階と5階との間を走行させて、上述の診断用運転を実施させることができる。 The control device 110 generates a pseudo 1st floor UP hall call by sending a 1st floor UP hall call signal to the hall device 230 on the 1st floor via the output IF 140. The control device 110 generates a pseudo 5th floor DN hall call by sending a 5th floor DN hall call signal to the hall device 230 on the 5th floor via the output IF 140. This allows the car 10 to run between the 1st and 5th floors and perform the above-mentioned diagnostic operation.
 制御装置110は、制御盤210に入出力されるDZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号およびDN信号を、入力IF130を介して取得する。また、制御装置110は、温度センサ15の検知結果およびインターホン16の電圧を信号として取得する。制御装置110は、これらの信号に基づき、遠隔点検の各項目を判定し、判定結果を通信IF120を介して管理サーバ300に送信する。判定結果は、端末400上で確認可能である。 The control device 110 acquires the DZ signal, LB signal, GS signal, DS signal, SUL signal, SDL signal, UP signal, and DN signal input/output to/from the control panel 210 via the input IF 130. The control device 110 also acquires the detection result of the temperature sensor 15 and the voltage of the intercom 16 as signals. The control device 110 judges each item of the remote inspection based on these signals, and transmits the judgment results to the management server 300 via the communication IF 120. The judgment results can be confirmed on the terminal 400.
 ここで、エレベータシステム200から入力される各信号は、エレベータのメーカーあるいはエレベータの機種によって、仕様が異なる場合がある。たとえば、DZ信号、LB信号、GS信号、DS信号に相当する信号を取得する場合、ON状態とOFF状態とが逆になって入力されることがある。たとえば、LB信号に関して、ブレーキがかかった状態(ブレーキが開放されていない状態)で信号がONになる場合と、ブレーキが開放された状態で信号がONになる場合とが想定される。 The specifications of each signal input from elevator system 200 may differ depending on the elevator manufacturer or elevator model. For example, when acquiring signals corresponding to the DZ signal, LB signal, GS signal, and DS signal, the ON and OFF states may be reversed. For example, with regard to the LB signal, it is conceivable that the signal will be ON when the brakes are applied (when the brakes are not released) and that the signal will be ON when the brakes are released.
 本実施の形態では、制御装置110のメモリ112は、各メーカーあるいは各機種に対応した変換マップを記憶している。変換マップにより、信号の仕様が共通化されるように、各信号が変換される(たとえば、DZ信号、LB信号、GS信号、DS信号のON/OFFを反転させる変換)。また、SUL信号、SDL信号、UP信号およびDN信号は必須の信号ではなく、これらの信号が取得できなくても差し支えない(詳細は後述する)。 In this embodiment, the memory 112 of the control device 110 stores a conversion map corresponding to each manufacturer or model. The conversion map converts each signal so that the signal specifications are standardized (for example, conversion that inverts the ON/OFF of the DZ signal, LB signal, GS signal, and DS signal). In addition, the SUL signal, SDL signal, UP signal, and DN signal are not essential signals, and it is not a problem if these signals cannot be obtained (details will be described later).
 たとえば、巻上機250のロータリエンコーダの信号を取り込み、これに基づきUP信号およびDN信号を生成してもよいし、DZ信号に基づきUP信号およびDN信号を生成してもよい(詳細は後述する)。この場合、上記変換マップを使用して、ロータリエンコーダの信号またはDZ信号を、UP信号およびDN信号に変換するようにすればよい。 For example, the signal of a rotary encoder of the hoist 250 may be captured and the UP signal and DN signal may be generated based on this, or the UP signal and DN signal may be generated based on a DZ signal (details will be described later). In this case, the rotary encoder signal or the DZ signal may be converted into the UP signal and DN signal using the conversion map.
 なお、図2を用いて説明したように、制御盤210に設けられたコネクタ261を介して、制御盤210とX社製の保守装置とがシリアル通信による通信接続を行うことができるように構成されている。 As described with reference to FIG. 2, the control panel 210 and the maintenance device manufactured by Company X are configured to be connected via serial communication via the connector 261 provided on the control panel 210.
 (診断用運転)
 図8は、診断用運転におけるかご10の走行と信号との関係を説明するための図である。上述のように、本実施の形態では、擬似的な1階UP乗場呼びおよび5階DN乗場呼びを生成し、かご10に最下階(1階)と最上階(5階)との間を走行させる診断用運転を実施可能である。これにより、たとえば、1階から5階までの走行時間等を計測可能である。
(Diagnostic operation)
8 is a diagram for explaining the relationship between the running of the car 10 and signals during diagnostic operation. As described above, in this embodiment, a pseudo 1st floor UP hall call and a 5th floor DN hall call are generated, and diagnostic operation can be performed in which the car 10 runs between the lowest floor (1st floor) and the top floor (5th floor). This makes it possible to measure, for example, the running time from the 1st floor to the 5th floor.
 診断用運転は、かご10が割当て対象かごから除外されない状態、すなわち、エレベータの利用客からの乗場呼びにかご10が応答可能な状態で実施する。このため、診断用運転によってかご10を1階に呼んだ後に5階に走行させようとしても、利用客の乗場呼びによって、1階とは異なる階に走行してしまう可能性もあるし、診断用運転中に、利用客のかご呼びによって、1階と5階の間の階に停止することもある。このため、診断用運転は、たとえば、月に1回、エレベータの利用客がいない深夜時間等に実施される。 Diagnostic operation is performed when car 10 is not excluded from the cars to be assigned, that is, when car 10 is able to respond to hall calls from elevator passengers. For this reason, even if car 10 is called to the first floor by diagnostic operation and then tried to run to the fifth floor, there is a possibility that it will run to a floor other than the first floor due to a hall call from a passenger, and during diagnostic operation, it may stop at a floor between the first and fifth floors due to a car call from a passenger. For this reason, diagnostic operation is performed, for example, once a month, late at night when there are no elevator passengers.
 遠隔点検の点検項目の判定は、「運転診断」による判定と、「常時診断」による判定とを含む。診断用運転を行い、当該診断用運転に基づき遠隔点検項目の診断を行うことを「運転診断」と称する。運転診断では、遠隔点検装置100の指示部155(後述する)によって送信された乗場呼び信号に応答してかご10が走行した際に取得した判定用信号を用いて判定を行う。  The judgment of the inspection items in the remote inspection includes judgment by "driving diagnosis" and judgment by "constant diagnosis." Performing diagnostic operation and diagnosing the remote inspection items based on the diagnostic operation is called "driving diagnosis." In the driving diagnosis, the judgment is made using the judgment signal acquired when the car 10 runs in response to the hall call signal transmitted by the instruction unit 155 (described later) of the remote inspection device 100.
 一方、診断用運転に限らず、エレベータの利用客の操作等によりかご10が動作するたびに遠隔点検項目の診断を行うことを「常時診断」と称する。常時診断では、遠隔点検装置100の指示部155によって乗場呼び信号が送信されたか否かを問わず取得した判定用信号を用いて判定を行う。 On the other hand, diagnosis of remote inspection items every time the car 10 is operated by an elevator passenger or the like, regardless of whether or not it is a diagnostic operation, is called "continuous diagnosis." In continuous diagnosis, a judgment is made using the acquired judgment signal regardless of whether or not a hall call signal has been sent by the instruction unit 155 of the remote inspection device 100.
 本例では、時刻t0において、かご10が1階で停止しているものとする。このとき、かご10が最下階(1階)で停止しているため、SUL信号はOFF状態であり、SDL信号はON状態である。巻上機250のブレーキが動作しているため、LB信号はOFF状態である。かご10の位置は、1階において戸開可能な位置範囲(ドアゾーン内)にいるので、DZ信号はON状態である。かご10側の扉60が戸閉状態であるため、GS信号はON状態である。乗場側の扉61が戸閉状態であるため、DS信号はON状態である。 In this example, it is assumed that at time t0, car 10 is stopped on the first floor. At this time, car 10 is stopped on the lowest floor (first floor), so the SUL signal is OFF and the SDL signal is ON. The brake of the hoist 250 is operating, so the LB signal is OFF. The car 10 is located within the position range (within the door zone) where the door can be opened on the first floor, so the DZ signal is ON. The door 60 on the car 10 side is closed, so the GS signal is ON. The door 61 on the landing side is closed, so the DS signal is ON.
 ここで、遠隔点検装置100は、診断用運転を行うため、5階の乗場装置230に対して、5階のDN乗場呼び信号をON状態にして出力したとする。これにより、5階の乗場装置230のDN乗場呼び釦82の押下状態が模擬的に生成される。 Here, the remote inspection device 100 outputs the DN hall call signal for the 5th floor to the hall device 230 on the 5th floor in the ON state in order to perform diagnostic operation. This simulates the pressed state of the DN hall call button 82 on the hall device 230 on the 5th floor.
 これにより、5階DN乗場呼びが登録され、時刻t1において、かご10が5階に向けて走行を開始する。このとき、巻上機250のブレーキが開放され、LB信号はOFF状態からON状態に変化する。かご10の位置が1階のドアゾーンから外れるため、DZ信号はON状態からOFF状態に変化する。さらに、スローダウンスイッチがON状態からOFF状態に変化するため、SDL信号はON状態からOFF状態に変化する。かご10は、加速走行状態となりUP方向に走行している。 As a result, a DN hall call for the fifth floor is registered, and at time t1, car 10 starts traveling toward the fifth floor. At this time, the brake of the hoist 250 is released, and the LB signal changes from OFF to ON. Because the position of car 10 is no longer in the first floor door zone, the DZ signal changes from ON to OFF. Furthermore, because the slow-down switch changes from ON to OFF, the SDL signal changes from ON to OFF. The car 10 is now in an accelerating traveling state and is traveling in the UP direction.
 その後、かご10は、定速走行状態(かご10の速度が定格速度に達し、定格速度を維持してかご10が走行している状態)となり、時刻t2において、かご10の位置が2階になったとする。このとき、かご10の位置が2階のドアゾーン内に入り、DZ信号はOFF状態からON状態に変化する。さらに、かご10の位置が2階のドアゾーンを外れると、DZ信号はON状態からOFF状態に変化する。 After that, car 10 enters a constant speed running state (a state in which the speed of car 10 reaches the rated speed and car 10 runs while maintaining the rated speed), and at time t2, the position of car 10 reaches the second floor. At this time, the position of car 10 enters the door zone of the second floor, and the DZ signal changes from OFF to ON. Furthermore, when the position of car 10 leaves the door zone of the second floor, the DZ signal changes from ON to OFF.
 時刻t3においては、かご10の位置が4階になり、かご10の位置が4階のドアゾーン内に入り、DZ信号はOFF状態からON状態に変化している。かご10の位置が4階のドアゾーンを外れると、DZ信号はON状態からOFF状態に変化する。その後、時刻t4において、かご10は、5階に停止するために減速走行状態に変化している。 At time t3, car 10 is on the fourth floor, enters the door zone of the fourth floor, and the DZ signal changes from OFF to ON. When car 10 leaves the door zone of the fourth floor, the DZ signal changes from ON to OFF. After that, at time t4, car 10 changes to a decelerating running state in order to stop on the fifth floor.
 時刻t5において、かご10が5階(最上階)に停止したとする。スローアップスイッチがOFF状態からON状態に変化することで、SUL信号はOFF状態からON状態に変化している。かご10の位置が5階のドアゾーン内に入ることで、DZ信号はOFF状態からON状態に変化している。巻上機250のブレーキが動作し(開放状態が解除され)、LB信号はON状態からOFF状態に変化している。 At time t5, car 10 stops on the fifth floor (the top floor). The slow-up switch changes from OFF to ON, causing the SUL signal to change from OFF to ON. As car 10 enters the door zone on the fifth floor, the DZ signal changes from OFF to ON. The brake of hoisting machine 250 operates (the release state is released), and the LB signal changes from ON to OFF.
 時刻t6において、かご10が戸開状態(かご10側の扉60および乗場側の扉61が戸開状態)になると、GS信号およびDS信号はON状態からOFF状態に変化する。所定時間が経過すると、かご10が戸閉状態となる。これにより、GS信号およびDS信号はOFF状態からON状態に変化する。 At time t6, when the car 10 enters an open door state (the car 10 side door 60 and the hall side door 61 are open), the GS signal and the DS signal change from the ON state to the OFF state. After a predetermined time has elapsed, the car 10 enters a closed door state. As a result, the GS signal and the DS signal change from the OFF state to the ON state.
 このように、かご10が1階で停止している状態で、遠隔点検装置100がエレベータシステム200に対して5階のDN乗場呼び信号をON状態にして出力した場合、かご10を1階から5階まで走行させることができる。その際、変化するエレベータの各種信号を遠隔点検装置100に取得し、これらの信号に基づき遠隔点検を行うことができる。 In this way, when the car 10 is stopped on the first floor and the remote inspection device 100 outputs the DN hall call signal for the fifth floor to the elevator system 200 in the ON state, the car 10 can be made to run from the first floor to the fifth floor. At that time, the remote inspection device 100 can acquire various changing elevator signals and perform remote inspection based on these signals.
 かご10を1階で停止させるためには、遠隔点検装置100がエレベータシステム200に対して1階のUP乗場呼び信号をON状態にして出力すればよい。これにより、かご10は1階に向けて走行する。 To stop the car 10 at the first floor, the remote inspection device 100 simply outputs the first floor UP hall call signal to the elevator system 200 in the ON state. This causes the car 10 to travel toward the first floor.
 また、かご10が5階で停止している状態で、遠隔点検装置100がエレベータシステム200に対して1階のUP乗場呼び信号をON状態にして出力した場合、かご10を5階から1階まで走行させることができる。その際、変化するエレベータの各種信号を遠隔点検装置100に取得し、これらの信号に基づき遠隔点検を行うことができる。 In addition, when the car 10 is stopped on the fifth floor, if the remote inspection device 100 outputs an ON state to the elevator system 200 an UP hall call signal for the first floor, the car 10 can be made to run from the fifth floor to the first floor. At that time, the remote inspection device 100 can acquire various changing elevator signals and perform remote inspection based on these signals.
 なお、診断用運転は、最下階のUP乗場呼びおよび最上階のDN乗場呼びを生成させて実施するものに限らず、任意の2階床の乗場呼びにより実施するものであってもよい。たとえば、最上階(5階)に対するエレベータのサービスが行われない(最上階に停止できない)ようにサービス切り離し設定が行われているとする。この場合、1階のUP乗場呼びおよび4階のDN乗場呼びを生成させて診断用運転を実施してもよい。ただし、この場合、図7に示した例において、5階の乗場装置230ではなく、4階の乗場装置230に対して4階DN乗場呼び信号が出力させるように改造する必要がある。 The diagnostic operation is not limited to being performed by generating a UP hall call for the lowest floor and a DN hall call for the top floor, but may be performed by a hall call for any two floors. For example, assume that the service isolation setting is configured so that the elevator does not provide service to the top floor (fifth floor) (it cannot stop at the top floor). In this case, a UP hall call for the first floor and a DN hall call for the fourth floor may be generated to perform the diagnostic operation. However, in this case, in the example shown in FIG. 7, it is necessary to modify the system so that the 4th floor DN hall call signal is output to the hall device 230 for the fourth floor, rather than to the hall device 230 for the fifth floor.
 (遠隔点検に適した信号について)
 本実施の形態においては、エレベータの安全回路を作動させるための条件判定に使用される信号(DZ信号、LB信号、DS信号、GS信号)を遠隔点検の判定用信号として使用している。また、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検の運転診断(診断用運転)用の出力信号として使用している。以下、その理由を説明する。
(Signals suitable for remote inspection)
In this embodiment, the signals (DZ signal, LB signal, DS signal, GS signal) used to judge the conditions for operating the elevator safety circuit are used as the judgment signals for remote inspection. Also, from the viewpoint of ease of installation (construction), hall calls, rather than car calls, are used as output signals for operation diagnosis (diagnostic operation) for remote inspection. The reason for this is explained below.
 エレベータは、ハードウェアまたはソフトウェアが所定の異常を検出したときにエレベータの動作を停止させる安全回路を備える。たとえば、安全回路が備える複数の接点のうちいずれか1つが開放されたときに、巻上機250および巻上機250の電磁ブレーキのブレーキコイルへの電力の供給が遮断されるように構成される。これにより、巻上機250の駆動力が失われるとともに、電磁ブレーキが制動状態となってかご10が停止する。 The elevator is equipped with a safety circuit that stops the operation of the elevator when the hardware or software detects a specified abnormality. For example, the safety circuit is configured to cut off the supply of power to the hoist 250 and the brake coil of the electromagnetic brake of the hoist 250 when any one of multiple contacts in the safety circuit is opened. This causes the driving force of the hoist 250 to be lost, and the electromagnetic brake to enter a braking state, stopping the car 10.
 エレベータシステム200には、安全装置として、調速機(図示なし)、非常止め装置(図示なし)、緩衝器14等が備えられている。調速機は、かご10に設置され、かご10の速度を物理的に検出する装置である。非常止め装置は、かご10に設置され、調速機が異常な速度を検出したときに、物理的にかご10にブレーキをかける装置である。緩衝器14は、ピット6内に設置され、かご10の落下時の衝撃を吸収する装置である。 The elevator system 200 is equipped with a speed governor (not shown), an emergency stop device (not shown), a shock absorber 14, etc. as safety devices. The speed governor is a device installed on the car 10 and physically detects the speed of the car 10. The emergency stop device is a device installed on the car 10 and physically brakes the car 10 when the speed governor detects an abnormal speed. The shock absorber 14 is installed in the pit 6 and is a device that absorbs the impact when the car 10 falls.
 たとえば、異常な速度でのかご10の走行がハードウェア(調速機)またはソフトウェア(内部信号)で検出された場合、ソフトウェアによるかご10の停止指令を行うとともに、ハードウェアまたはソフトウェアにより安全回路を作動させる。安全回路が作動することで、エレベータに対して供給される電力が停止してかご10の動作が停止する。さらには、非常止め装置または緩衝器14により物理的にかご10を停止させることができる。 For example, if the hardware (governor) or software (internal signal) detects that the car 10 is traveling at an abnormal speed, the software issues a command to stop the car 10, and the hardware or software activates a safety circuit. When the safety circuit is activated, the power supplied to the elevator is cut off, and the operation of the car 10 is halted. Furthermore, the car 10 can be physically stopped by an emergency stop device or buffer 14.
 安全回路が作動した場合、巻上機250の電磁ブレーキのブレーキコイルに対する電力の供給が遮断され(LB信号がOFF状態)、これにより、電磁ブレーキが制動状態となってかご10は停止する。 When the safety circuit is activated, the power supply to the brake coil of the electromagnetic brake of the hoisting machine 250 is cut off (LB signal is OFF), which causes the electromagnetic brake to enter a braking state and stops the car 10.
 あるいは、スローダウンスイッチの下部またはスローアップスイッチの上部に設置されたリミットスイッチ(ファイナルリミットスイッチ)がON状態となることで、昇降路の頂部または底部への衝突を防止するために、安全回路が作動してかご10が停止する。 Alternatively, when a limit switch (final limit switch) installed below the slow-down switch or above the slow-up switch is turned on, a safety circuit is activated and the car 10 is stopped to prevent collision with the top or bottom of the elevator shaft.
 また、戸開した状態でかご10が走行した場合、利用客が乗場側から昇降路8内に転落、あるいは、乗場側の出入口とかご10に人が挟まれる危険性がある。このため、乗場側の扉61が開いた状態(乗場ドアスイッチ(DS信号)がOFF状態)あるいはかご側の扉60が開いた状態(かごドアスイッチ(GS信号)がOFF状態)ではかご10が走行しないようエレベータが制御される。 In addition, if the car 10 were to move with the door open, there is a risk that a passenger could fall from the hall into the elevator shaft 8, or that a person could be caught between the hall entrance and the car 10. For this reason, the elevator is controlled so that the car 10 will not move when the hall door 61 is open (the hall door switch (DS signal) is OFF) or the car door 60 is open (the car door switch (GS signal) is OFF).
 また、かご10がドアゾーン外(DZ信号がOFF)である状態では、戸開しないようにエレベータが制御される。たとえば、かご10がドアゾーン外(DZ信号がOFF)かつ戸開状態(DS信号またはGS信号がOFF状態)である場合には、安全回路が作動してかご10が停止する。 In addition, when the car 10 is outside the door zone (the DZ signal is OFF), the elevator is controlled so that the door does not open. For example, if the car 10 is outside the door zone (the DZ signal is OFF) and the door is open (the DS signal or the GS signal is OFF), the safety circuit is activated and the car 10 stops.
 以上説明したエレベータの安全装置、安全回路は、建築基準法等の法規制によって上述のような動作を行う。このため、各メーカーのエレベータは、DS信号(乗場ドアスイッチのON/OFF)、GS信号(かごドアスイッチのON/OFF)、LB信号(電磁ブレーキの開放/制動)、DZ信号(ドアゾーンの検出/非検出)または、それに類する信号を接点信号として出力していることが通常である。これらの信号は、エレベータの安全回路を作動させるための条件判定に使用される信号である。 The elevator safety devices and safety circuits described above operate as described above in accordance with legal regulations such as the Building Standards Act. For this reason, elevators from each manufacturer typically output a DS signal (landing door switch ON/OFF), a GS signal (car door switch ON/OFF), a LB signal (electromagnetic brake release/braking), a DZ signal (door zone detection/non-detection), or a similar signal as a contact signal. These signals are used to determine the conditions for activating the elevator safety circuit.
 このため、本実施の形態では、各社共通で使用されているDS信号、GS信号、LB信号、DZ信号またはそれに類する信号を、遠隔点検の点検項目の判定に使用している。その他の信号は、メーカーまたはエレベータの機種によっては、パラレル伝送の信号として取得できる場合と取得できない場合とがある。このような信号を用いた場合、エレベータによっては遠隔点検の項目を判定できる場合と判定できない場合とが生じてしまう。 For this reason, in this embodiment, the DS signal, GS signal, LB signal, DZ signal, or similar signals commonly used by all elevator companies are used to determine the inspection items for remote inspection. Other signals may or may not be acquired as parallel transmission signals, depending on the manufacturer or elevator model. When such signals are used, remote inspection items may or may not be determined depending on the elevator.
 DZ信号は、階床間の移動時間またはかご位置の算出に用いることが可能である。たとえば、現在、かご10が最下階(1階)で停止しているとする。かご10が走行を開始するとDZ信号がON状態からOFF状態に変化し、かご位置が2階に達すると、DZ信号がOFF状態からON状態に変化する。 The DZ signal can be used to calculate the travel time between floors or the car position. For example, assume that car 10 is currently stopped at the lowest floor (first floor). When car 10 starts moving, the DZ signal changes from ON to OFF, and when the car position reaches the second floor, the DZ signal changes from OFF to ON.
 このため、かご10が1階で停止している場合、DZ信号がON状態からOFF状態に変化してからOFF状態からON状態に変化するまでの時間を、1階から2階までのかご10の走行時間であると算出することができる。また、DZ信号がOFF状態からON状態になったタイミングで、かご位置を1階から2階に変化させればよい。このように、DZ信号の変化タイミングで、階床間の移動時間および階床位置を算出することが可能である。 For this reason, when the car 10 is stopped on the first floor, the time from when the DZ signal changes from ON to OFF to when it changes from OFF to ON can be calculated as the travel time of the car 10 from the first floor to the second floor. Furthermore, the car position can be changed from the first floor to the second floor at the timing when the DZ signal changes from OFF to ON. In this way, it is possible to calculate the travel time between floors and the floor position at the timing when the DZ signal changes.
 その際、SDL信号がON状態である場合にかご位置=1階(最下階)として設定し、SUL信号がON状態である場合にかご位置=5階(最上階)として設定すればよい。また、DZ信号がOFF状態からON状態に変化した場合、UP信号がON状態であればかご位置を1階床分増加させ、DN信号がON状態であればかご位置を1階床分減少させればよい。 In that case, if the SDL signal is ON, the car position is set to the first floor (lowest floor), and if the SUL signal is ON, the car position is set to the fifth floor (top floor). Also, if the DZ signal changes from OFF to ON, the car position is increased by one floor if the UP signal is ON, and decreased by one floor if the DN signal is ON.
 ただし、遠隔点検において、SDL信号、SUL信号、UP信号、DN信号は必ずしも必須の信号というわけではない。たとえば、深夜、エレベータの利用客が全くいない状態において、診断用運転により、1階UP乗場呼びを発生させるとする。かご10が1階UP乗場呼びに応答して、停止した階を「1階」と設定することもできる。または、5階DN乗場呼びを発生させる。かご10が5階DN乗場呼びに応答して、停止した階を「5階」と設定することもできる。 However, in remote inspection, the SDL signal, SUL signal, UP signal, and DN signal are not necessarily required signals. For example, suppose that a 1st floor UP call is generated by diagnostic operation late at night when there are no elevator passengers. The car 10 can respond to the 1st floor UP call and set the floor where it has stopped to "1st floor." Or, a 5th floor DN call is generated. The car 10 can respond to the 5th floor DN call and set the floor where it has stopped to "5th floor."
 また、深夜の診断用運転において、1階UP乗場呼び、5階DN乗場呼び、1階UP乗場呼びを発生させる場合、最初の1階UP乗場呼びに応答した状態において、かご位置=1階、かご方向=UP方向と設定する。次に、5階DN乗場呼びによって走行している状態において、DZ信号がON状態に変化するたびにかご位置の階床を1増やす。5階DN乗場呼びに応答した状態において、かご位置=5階、かご方向=DN方向と設定する。次に、1階UP乗場呼びによって走行している状態において、DZ信号がON状態に変化するたびにかご位置の階床を1減らす。1階UP乗場呼びに応答した状態において、かご位置=1階、かご方向=UP方向と設定する。このように構成した場合、SDL信号、SUL信号、UP信号、DN信号を取り込まなくても、かご位置と走行方向とを把握可能である。 In addition, in late-night diagnostic operation, when a 1st floor UP call, a 5th floor DN call, and a 1st floor UP call are generated, when the first 1st floor UP call is responded to, the car position is set to 1st floor and the car direction is set to UP. Next, when traveling due to a 5th floor DN call, the floor of the car position is increased by 1 each time the DZ signal changes to ON. When the 5th floor DN call is responded to, the car position is set to 5th floor and the car direction is set to DN. Next, when traveling due to a 1st floor UP call, the floor of the car position is decreased by 1 each time the DZ signal changes to ON. When the 1st floor UP call is responded to, the car position is set to 1st floor and the car direction is set to UP. When configured in this way, it is possible to grasp the car position and traveling direction without taking in the SDL signal, SUL signal, UP signal, and DN signal.
 また、UP信号およびDN信号が取得できない場合に、ドアゾーン検出装置の検出結果を使用することも可能である。たとえば、ドアゾーン検出装置が複数のセンサを備え、複数のセンサのそれぞれに対応して複数のドアゾーン検出用のプレートが設置されているものとする。複数のセンサは、かご10の位置によって検出タイミングが異なる。かご方向がUP方向である場合とDN方向である場合とで、各センサがON状態に変化するタイミング(またはOFF状態に変化するタイミング)が異なる場合、各センサの状態変化タイミングを利用してかご方向を特定すればよい。 It is also possible to use the detection results of the door zone detection device when the UP signal and DN signal cannot be obtained. For example, the door zone detection device is equipped with multiple sensors, and multiple door zone detection plates are installed corresponding to each of the multiple sensors. The detection timing of the multiple sensors differs depending on the position of the car 10. If the timing at which each sensor changes to the ON state (or the OFF state) differs when the car direction is the UP direction and when it is the DN direction, the car direction can be identified by using the timing at which each sensor changes state.
 また、UP信号およびDN信号が取得できない場合に、巻上機250のロータリエンコーダのパルス情報を使用することも可能である。この場合、ロータリエンコーダから制御盤210に出力される信号線を分岐させて、遠隔点検装置100に信号入力可能なように構成する。この場合、A相およびB相のいずれのパルスが先に出力されるかによって、かご方向を判断することができる。たとえば、A相のパルスに1/4周期遅れてB相のパルスが出力される場合にかご方向をUP方向に設定し、B相のパルスに1/4周期遅れてA相のパルスが出力される場合にかご方向をDN方向に設定するようにしてもよい。 It is also possible to use pulse information from the rotary encoder of the hoist 250 when the UP and DN signals cannot be obtained. In this case, the signal line output from the rotary encoder to the control panel 210 is branched and configured to be able to input a signal to the remote inspection device 100. In this case, the car direction can be determined based on whether the A-phase or B-phase pulse is output first. For example, the car direction can be set to the UP direction when the B-phase pulse is output 1/4 of a cycle behind the A-phase pulse, and the car direction can be set to the DN direction when the A-phase pulse is output 1/4 of a cycle behind the B-phase pulse.
 なお、ロータリエンコーダからの出力情報を用いた場合、かご10のかご位置、かご速度も算出することが可能となる。ロータリエンコーダから検出されたパルス数からかご10が移動した距離(かご位置)を算出することが可能である。また、単位時間あたりに検出されたパルス数によってかご速度を算出することも可能である。このようにした場合、かご10が、停止状態、加速走行状態、定速走行状態、減速走行状態のいずれであるかを把握することができるし、かご位置およびかご速度が適切であるかを判断することも容易になる。 When the output information from the rotary encoder is used, it is also possible to calculate the cage position and cage speed of the cage 10. It is possible to calculate the distance traveled by the cage 10 (cage position) from the number of pulses detected from the rotary encoder. It is also possible to calculate the cage speed from the number of pulses detected per unit time. In this way, it is possible to know whether the cage 10 is in a stopped state, an accelerating state, a constant speed state, or a decelerating state, and it is also easy to determine whether the cage position and cage speed are appropriate.
 しかしながら、ロータリエンコーダから出力されるパルス数とかご位置との関係は、エレベータの定格速度、エレベータの機種、エレベータのメーカー、ロータリエンコーダの種類等によってまちまちである。このため、現場ごとにパルス数とかご位置との関係を実測する必要が生じ、遠隔点検システム1の工事設計および据付作業が複雑になってしまう。このため、据付容易性および据付コストの点を鑑みれば、上述のように、エレベータの位置情報の把握にはDZ信号を用いることが望ましい。 However, the relationship between the number of pulses output from the rotary encoder and the car position varies depending on the rated speed of the elevator, the elevator model, the elevator manufacturer, the type of rotary encoder, etc. This makes it necessary to actually measure the relationship between the number of pulses and the car position for each site, which complicates the construction design and installation work of the remote inspection system 1. For this reason, in terms of ease of installation and installation costs, it is desirable to use a DZ signal to grasp elevator position information, as described above.
 また、本実施の形態においては、かご10を走行させる診断用運転を行う場合、遠隔点検装置100は、最上階DN乗場呼びおよび最下階UP乗場呼びを擬似的に出力するように構成している。これにより、最下階と最上階との間でかご10を走行させることが可能となる。 In addition, in this embodiment, when performing diagnostic operation in which the car 10 is running, the remote inspection device 100 is configured to output a pseudo-top floor DN hall call and a bottom floor UP hall call. This makes it possible to run the car 10 between the bottom floor and the top floor.
 このように最下階と最上階との間でかご10を走行させたい場合、遠隔点検装置100は、乗場呼びではなく、最上階へのかご呼びおよび最下階へのかご呼びを擬似的に出力するように構成してもよい。しかしながら、本実施の形態においては、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検装置100から出力させるようにしている。 When it is desired to run the car 10 between the bottom floor and the top floor in this manner, the remote inspection device 100 may be configured to output pseudo car calls to the top floor and car calls to the bottom floor, rather than hall calls. However, in this embodiment, from the standpoint of ease of installation (construction), the remote inspection device 100 is configured to output hall calls, rather than car calls.
 上述のように、乗場呼びを擬似的に生成させるためには、信号入力により乗場に設置された乗場装置230の乗場呼び釦の接点が短絡するように改造する。乗場呼び信号を送信するための信号線(信号ケーブル)は、機械室5に設置された遠隔点検装置100から、昇降路8の壁面を這わせて、昇降路8の壁面に埋め込まれた最上階および最下階の乗場装置230の乗場呼び釦に接続すればよい。このように昇降路8の壁面を這わせて信号線を設置する場合、途中に障害物がないため、比較的設置が容易である。 As described above, in order to generate a pseudo-hall call, the contacts of the hall call button of the hall device 230 installed at the hall are modified so that a signal input shorts out the contacts. The signal line (signal cable) for transmitting the hall call signal can be run from the remote inspection device 100 installed in the machine room 5 along the wall of the hoistway 8 and connected to the hall call buttons of the hall devices 230 on the top and bottom floors embedded in the wall of the hoistway 8. When running the signal line along the wall of the hoistway 8 in this way, installation is relatively easy as there are no obstacles in the way.
 一方、かご呼びを擬似的に生成させるためには、信号入力によりかご10に設置されかご装置240のかご呼び釦の接点が短絡するように改造する。そのためには、かご呼び信号を送信するための信号線は、機械室5に設置された遠隔点検装置100から、かご10の内部に設置されたかご装置240のかご呼び釦に接続する必要がある。 On the other hand, to generate a pseudo car call, the system is modified so that the contacts of the car call button of the car device 240 installed in the car 10 are shorted by signal input. To do this, the signal line for transmitting the car call signal must be connected from the remote inspection device 100 installed in the machine room 5 to the car call button of the car device 240 installed inside the car 10.
 この場合、かご10内部に信号線を入れる必要があるため、機械室5とかご10とを繋いでいる制御ケーブル22内の信号線のうちの空き線を利用する必要がある。ところが、どの線が空き線であるか確認する必要があるし、空き線がない可能性もある。また、機械室5側とかご10側とで制御ケーブル22の信号線が一致しているか確認する必要もあり、設置が容易ではない。このような事情から、本実施の形態においては、診断用運転において、乗場呼びを擬似的に生成させるようにしており、かご呼びは擬似的に生成させていない。 In this case, since it is necessary to place a signal line inside the car 10, it is necessary to use an available line among the signal lines in the control cable 22 connecting the machine room 5 and the car 10. However, it is necessary to check which lines are available, and there is a possibility that there are no available lines. It is also necessary to check whether the signal lines of the control cable 22 on the machine room 5 side and the car 10 side match, which is not easy to install. For these reasons, in this embodiment, hall calls are generated artificially during diagnostic operation, but car calls are not generated artificially.
 以上説明したように、本実施の形態では、メーカーおよび機種ごとに通信仕様が異なるシリアル伝送による信号を用いず、パラレル伝送による信号を遠隔点検の点検項目の判定に使用している。特に、本実施の形態では、メーカーおよび機種を問わず共通で用いられる信号であって、据付容易性(施工性)および据付コストの観点から利用に適した信号を遠隔点検の点検項目の判定に使用している。 As explained above, in this embodiment, signals transmitted by parallel transmission are used to determine the inspection items for remote inspection, rather than signals transmitted by serial transmission, the communication specifications of which vary depending on the manufacturer and model. In particular, in this embodiment, signals that are commonly used regardless of manufacturer and model, and that are suitable for use from the standpoint of ease of installation (construction) and installation costs, are used to determine the inspection items for remote inspection.
 具体的には、乗場呼び信号、および、エレベータの安全回路を作動させるための条件判定に使用されるDS信号、GS信号、LB信号、DZ信号またはそれに類する信号を遠隔点検の点検項目の判定に使用している。このように、遠隔点検装置100での利用に適した信号が大きく制限される状況下において、いかにして遠隔点検を実施するかが、本実施の形態における大きな課題となっている。 Specifically, the hall call signal and the DS signal, GS signal, LB signal, DZ signal, or similar signals used to determine the conditions for activating the elevator safety circuit are used to determine the inspection items for remote inspection. Thus, a major issue in this embodiment is how to carry out remote inspection in a situation where signals suitable for use with the remote inspection device 100 are greatly limited.
 たとえば、シリアル伝送による信号を用いた場合(たとえば、図2に示した制御盤210とのシリアル通信を行うX社製の遠隔点検装置500)、次のように容易に遠隔点検を実施することができる。 For example, when using a signal transmitted serially (for example, the remote inspection device 500 manufactured by Company X that communicates serially with the control panel 210 shown in FIG. 2), remote inspection can be easily performed as follows.
 エレベータは、機種および定格速度ごとにエレベータ固有の速度パターンを有する。速度パターンは、走行開始階から目的階へ走行する場合に、経過時間とかご速度との関係を示すものである。かご10は、走行開始階から走行を開始した時に加速走行状態となり、次に、定速走行状態となり、目的階への到着直前に減速走行状態となる。制御盤210は、巻上機250のロータリエンコーダから取得したパルス信号を元に、走行開始階から目的階までの速度パターンの実測値を算出および保持可能である。このため、速度パターンの実測値とエレベータ固有の速度パターン(予め用意された値)とを比較することで、エレベータの起動状態、加速走行状態、定速走行状態、減速走行状態のそれぞれが、正常であるか否かを判定することができる。図2に示したように、制御盤210とシリアル通信により接続する遠隔点検装置500であれば、制御盤210の保持する内部信号にアクセス可能であるので、このような方法で容易に遠隔点検を実現可能となる。 Elevators have their own speed patterns for each model and rated speed. The speed pattern indicates the relationship between elapsed time and car speed when traveling from the starting floor to the destination floor. The car 10 is in an accelerating state when it starts traveling from the starting floor, then in a constant speed state, and in a decelerating state just before arriving at the destination floor. The control panel 210 can calculate and store the actual measured value of the speed pattern from the starting floor to the destination floor based on the pulse signal obtained from the rotary encoder of the hoist 250. Therefore, by comparing the actual measured value of the speed pattern with the elevator's unique speed pattern (prepared value), it is possible to determine whether the elevator's start state, accelerating state, constant speed state, and decelerating state are normal or not. As shown in FIG. 2, if the remote inspection device 500 is connected to the control panel 210 by serial communication, it can access the internal signals held by the control panel 210, so that remote inspection can be easily realized by this method.
 一方、本実施の形態においては、遠隔点検装置100は、遠隔点検での利用に適した信号の制約から、位置を特定する信号として「DZ信号」(ドアゾーン内であるか否かを特定する信号)を使用する。DZ信号からでは、かご10が、加速走行状態であるのか、定速走行状態であるのか、減速走行状態であるのか判別がつかない。このため、限られた信号を用いて遠隔点検を行うためには、判定方法に工夫が必要である。言い換えれば、シリアル通信が可能な遠隔点検装置500による遠隔点検を実現する場合には、DS信号、GS信号、LB信号、DZ信号のような信号を組み合わせて遠隔点検の点検項目を判定しようとする動機付けがないし、そのような発想にも思い至らない。 In contrast, in this embodiment, the remote inspection device 100 uses a "DZ signal" (a signal that identifies whether or not the car is within the door zone) as a signal to identify the position due to restrictions on signals suitable for use in remote inspection. From the DZ signal, it is not possible to determine whether the car 10 is accelerating, traveling at a constant speed, or decelerating. For this reason, in order to perform remote inspection using limited signals, it is necessary to devise a method of determination. In other words, when implementing remote inspection using a remote inspection device 500 capable of serial communication, there is no motivation to combine signals such as the DS signal, GS signal, LB signal, and DZ signal to determine the inspection items for remote inspection, and such an idea would not even occur to one.
 本実施の形態においては、制御盤210が1台のエレベータ(かご10)を制御すること(図3参照)を前提として、図1、図7に示したように、エレベータシステム200に対して、1つの遠隔点検装置100が接続されるように構成されている。これに対して、図6に示したように、制御盤210bが複数台のエレベータ(かご10)を制御する場合(マルチカーの構成)は、複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置するように構成すればよい。あるいは、複数台のエレベータに対して1つの遠隔点検装置100を設置するように構成してもよい。 In this embodiment, it is assumed that the control panel 210 controls one elevator (cage 10) (see FIG. 3), and as shown in FIG. 1 and FIG. 7, one remote inspection device 100 is connected to the elevator system 200. In contrast, as shown in FIG. 6, when the control panel 210b controls multiple elevators (cage 10) (multi-car configuration), a remote inspection device 100 may be installed in each of the multiple elevators (cage 10). Alternatively, one remote inspection device 100 may be installed for multiple elevators.
 複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置する場合は、次のように構成すればよい。たとえば、図6に示す構成において、1号機を制御する各台制御部212と1号機のエレベータ機器群220b(かご装置240等)とを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させて、1号機のDZ信号等の判定用信号が1号機に接続される遠隔点検装置100(入力IF130)に入力されるように構成すればよい。 When installing a remote inspection device 100 in each of multiple elevators (cars 10), the following configuration may be used. For example, in the configuration shown in FIG. 6, part of the signal lines included in the control cables 22, 23 connecting the individual car control unit 212 that controls the first elevator and the elevator equipment group 220b (car device 240, etc.) of the first elevator may be branched so that a judgment signal such as the DZ signal of the first elevator is input to the remote inspection device 100 (input IF 130) connected to the first elevator.
 同様に、2号機を制御する各台制御部212と2号機のエレベータ機器群220b(かご装置240等)とを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させて、2号機のDZ信号等の判定用信号が2号機に接続される遠隔点検装置100(入力IF130)に入力されるように構成すればよい。この場合、各遠隔点検装置100は、当該遠隔点検装置100に接続されたエレベータのかご10(制御部152が判定対象とする対象かご)の判定用信号を取得し、対象かごに対して遠隔点検項目の判定を行う。 Similarly, a portion of the signal lines included in the control cables 22, 23 connecting the individual car control unit 212 that controls the second elevator and the elevator equipment group 220b (such as the car device 240) of the second elevator can be branched so that a judgment signal such as the DZ signal of the second elevator is input to the remote inspection device 100 (input IF 130) connected to the second elevator. In this case, each remote inspection device 100 acquires a judgment signal of the elevator car 10 (the target car that the control unit 152 judges) connected to the remote inspection device 100, and judges the remote inspection items for the target car.
 複数台のエレベータに接続される複数の遠隔点検装置100は、1台の管理サーバ300および1台の端末400に接続されるように構成すればよい。なお、マルチカーの場合は、乗場装置230に対して乗場呼び信号を送信しない。仮に、マルチカーの場合であって、乗場装置230に対して乗場呼び信号を送信する場合は、各遠隔点検装置100(出力IF140)と乗場装置230とを信号線で接続する。そして、いずれの遠隔点検装置100からの信号出力によっても、乗場呼び釦の接点が短絡可能となるように、乗場装置230を構成すればよい。 Multiple remote inspection devices 100 connected to multiple elevators may be configured to be connected to one management server 300 and one terminal 400. In the case of a multi-car system, no hall call signal is sent to the hall device 230. If a multi-car system is used and a hall call signal is sent to the hall device 230, each remote inspection device 100 (output IF 140) is connected to the hall device 230 by a signal line. The hall device 230 may be configured so that the contacts of the hall call button can be short-circuited by the signal output from any of the remote inspection devices 100.
 複数台のエレベータ(かご10)に対して1つの遠隔点検装置100を設置する場合は、次のように構成すればよい。図6に示す構成において、1号機を制御する各台制御部212と1号機のエレベータ機器群220bとを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させた信号線、および、2号機を制御する各台制御部212と2号機のエレベータ機器群220bとを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させた信号線のいずれもが、1つの遠隔点検装置100に入力されるように構成すればよい。この場合、遠隔点検装置100は、号機ごとに遠隔点検項目の判定を行い、各号機の判定結果を管理サーバ300に送信すればよい。 When one remote inspection device 100 is installed for multiple elevators (cars 10), the following configuration may be used. In the configuration shown in FIG. 6, both a signal line branched from a portion of the signal line included in the control cables 22, 23 connecting the individual car control unit 212 that controls the first elevator and the elevator equipment group 220b of the first elevator, and a signal line branched from a portion of the signal line included in the control cables 22, 23 that connect the individual car control unit 212 that controls the second elevator and the elevator equipment group 220b of the second elevator, are configured to be input to one remote inspection device 100. In this case, the remote inspection device 100 judges the remote inspection items for each elevator and transmits the judgment results for each elevator to the management server 300.
 (遠隔点検システム1が実行する処理)
 以下、遠隔点検システム1が実行する処理について具体的に説明する。図9は、遠隔点検システム1の機能ブロック図の一例を示す図である。遠隔点検システム1は、取得部151と、制御部152と、出力部153と、受付部154と、指示部155とを備えるとともに、データ群156を記憶する。
(Processing Executed by Remote Inspection System 1)
The following is a specific description of the processing executed by the remote inspection system 1. Fig. 9 is a diagram showing an example of a functional block diagram of the remote inspection system 1. The remote inspection system 1 includes an acquisition unit 151, a control unit 152, an output unit 153, a reception unit 154, and an instruction unit 155, and stores a data group 156.
 受付部154は、端末400の入力部420から、保守員(端末400を操作するユーザ)の操作を受け付ける。たとえば、保守員は、端末400の表示部410の表示画面において、入力部420の操作により、運転診断を実施する日時の設定、手動による運転診断の実行等をすることができる(後述の図10参照)。 The reception unit 154 receives operations by a maintenance worker (a user who operates the terminal 400) from the input unit 420 of the terminal 400. For example, the maintenance worker can set the date and time for performing a driving diagnosis, manually execute a driving diagnosis, and the like, by operating the input unit 420 on the display screen of the display unit 410 of the terminal 400 (see FIG. 10 described below).
 制御部152は、データ群156にアクセス可能である。データ群156は、設定データ422と、基準時間データベース(「DB」とも称する)423と、運行履歴424と、判定結果425とを含む。制御部152は、設定データ422、基準時間DB423、運行履歴424および判定結果425の読み込みまたは更新を行う。 The control unit 152 can access the data group 156. The data group 156 includes setting data 422, a reference time database (also referred to as "DB") 423, operation history 424, and judgment results 425. The control unit 152 reads or updates the setting data 422, the reference time DB 423, the operation history 424, and the judgment results 425.
 設定データ422は、遠隔点検に関する各種情報が記憶されたデータである。たとえば、設定データ422は、遠隔点検に関するビル2およびエレベータの情報等を記録する。入力部420の操作により診断用運転を実施する日時の設定が行われた場合は、制御部152は、当該日時を設定データ422に記録する。 The setting data 422 is data that stores various information related to remote inspection. For example, the setting data 422 records information about the building 2 and elevators related to the remote inspection. When the date and time for performing diagnostic operation is set by operating the input unit 420, the control unit 152 records the date and time in the setting data 422.
 基準時間DB423は、制御部152が遠隔点検の各点検項目の判定に用いる基準時間(たとえば、後述する起動時間の基準時間KA)を記録するデータベースである。詳しくは、図12、図13を用いて後述する。運行履歴424は、遠隔点検システム1が取得したエレベータシステム200の信号の履歴データである。判定結果425は、遠隔点検の各点検項目の判定結果が格納されたデータである。 The reference time DB 423 is a database that records the reference time (for example, the reference time KA for the start-up time described below) that the control unit 152 uses to judge each inspection item of the remote inspection. Details will be described later with reference to Figures 12 and 13. The operation history 424 is historical data of the signals of the elevator system 200 acquired by the remote inspection system 1. The judgment results 425 are data that store the judgment results of each inspection item of the remote inspection.
 制御部152は、設定データ422に記録された運転診断の実施日時または保守員の操作(手動)による運転診断の実行指令に基づき、運転診断を実施するために、エレベータの乗場呼びを発生させる乗場呼び信号を生成する。 The control unit 152 generates a hall call signal to generate an elevator hall call in order to perform an operation diagnosis based on the date and time of the operation diagnosis recorded in the setting data 422 or an instruction to execute the operation diagnosis by a maintenance worker (manually).
 指示部155は、エレベータシステム200のエレベータ機器群220に対して、制御部152が生成した乗場呼び信号を送信する。この乗場呼びに応答することで、エレベータシステム200は、診断用運転を実行する。 The instruction unit 155 transmits the hall call signal generated by the control unit 152 to the elevator equipment group 220 of the elevator system 200. By responding to this hall call, the elevator system 200 executes a diagnostic operation.
 取得部151は、エレベータシステム200のエレベータ機器群220から判定用信号(DZ信号、LB信号、GS信号、DS信号等)を取得する。取得部151は、上記運転診断時の判定用信号のみならず、常に信号をエレベータ機器群220から取得している。 The acquisition unit 151 acquires judgment signals (DZ signal, LB signal, GS signal, DS signal, etc.) from the elevator equipment group 220 of the elevator system 200. The acquisition unit 151 acquires not only judgment signals during the above-mentioned operation diagnosis, but also signals from the elevator equipment group 220 at all times.
 制御部152は、取得部151が取得した判定用信号に基づき遠隔点検の点検項目を判定し(判定処理を行い)、判定結果を生成する。遠隔点検の点検項目は、かご10の、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態、行先階釦の状態、乗場釦の状態、戸開閉状態、ブレーキ状態(電磁ブレーキの異常の有無)を含む。制御部152は、取得した判定用信号を運行履歴424に記録するとともに、遠隔点検の点検項目の判定結果を判定結果425に記録する。 The control unit 152 determines the inspection items for the remote inspection based on the determination signals acquired by the acquisition unit 151 (performs a determination process) and generates a determination result. The inspection items for the remote inspection include the start-up state, accelerating state, constant speed state, decelerating state, landing state, destination floor button state, hall button state, door open/close state, and brake state (presence or absence of an abnormality in the electromagnetic brakes) of the car 10. The control unit 152 records the acquired determination signals in the operation history 424, and records the determination results of the inspection items for the remote inspection in the determination result 425.
 出力部153は、端末400の表示部410に表示させるために、遠隔点検の点検項目の判定結果等の情報を出力する。これにより、保守員は、端末400の表示部410にて遠隔点検の判定結果等を確認することができる。 The output unit 153 outputs information such as the judgment results of the inspection items of the remote inspection to be displayed on the display unit 410 of the terminal 400. This allows the maintenance personnel to check the judgment results of the remote inspection on the display unit 410 of the terminal 400.
 本実施の形態において、遠隔点検システム1は、遠隔点検装置100と、管理サーバ300と、端末400とによって構成されるものとした。しかし、これに限らず、遠隔点検システム1は、管理サーバ300および端末400を含まずに構成してもよいし、これらを一体化した装置として構成してもよい。たとえば、遠隔点検システム1は、遠隔点検装置100のみによって構成されるものとしてもよいし、遠隔点検装置100と管理サーバ300とによって構成されるものとしてもよい。また、遠隔点検装置100は、制御装置110、入力IF130、出力IF140および通信IF120とによって構成されるように構成した。しかし、これに限らず、入力IF130、出力IF140および通信IF120の機能が一体化されて、制御装置110において全ての機能が実現されるように構成してもよい。 In this embodiment, the remote inspection system 1 is configured with the remote inspection device 100, the management server 300, and the terminal 400. However, this is not limited to the above, and the remote inspection system 1 may be configured without including the management server 300 and the terminal 400, or may be configured as an integrated device. For example, the remote inspection system 1 may be configured with only the remote inspection device 100, or may be configured with the remote inspection device 100 and the management server 300. Furthermore, the remote inspection device 100 is configured to be configured with the control device 110, the input IF 130, the output IF 140, and the communication IF 120. However, this is not limited to the above, and the functions of the input IF 130, the output IF 140, and the communication IF 120 may be integrated, and all functions may be realized in the control device 110.
 取得部151、制御部152、出力部153、受付部154および指示部155の各部によって実行される処理は、制御装置110のプロセッサ111によって実行される処理であってもよいし、遠隔点検装置100が備える基板のいずれかのプロセッサによって実行されるものであってもよい。たとえば、取得部151は、入力IF130のプロセッサによって実行される処理であってもよい。指示部155は、出力IF140のプロセッサによって実行される処理であってもよい。出力部153および受付部154は、通信IF120、管理サーバ300および端末400のいずれかのプロセッサによって実行される処理であってもよい。遠隔点検装置100が、取得部151、制御部152、出力部153、受付部154および指示部155を備えるよう構成してもよいし、遠隔点検装置100が、取得部151および指示部155を備え、管理サーバ300が、制御部152、出力部153、受付部154を備えるように構成してもよい。データ群156は、制御装置110のメモリ112に記憶されるものであってもよいし、その一部が管理サーバ300のメモリに記憶されるものであってもよい。 The processes executed by each of the acquisition unit 151, the control unit 152, the output unit 153, the reception unit 154, and the instruction unit 155 may be processes executed by the processor 111 of the control device 110, or may be processes executed by any processor of the board provided in the remote inspection device 100. For example, the acquisition unit 151 may be processes executed by the processor of the input IF 130. The instruction unit 155 may be processes executed by the processor of the output IF 140. The output unit 153 and the reception unit 154 may be processes executed by any processor of the communication IF 120, the management server 300, and the terminal 400. The remote inspection device 100 may be configured to include the acquisition unit 151, the control unit 152, the output unit 153, the reception unit 154, and the instruction unit 155, or the remote inspection device 100 may be configured to include the acquisition unit 151 and the instruction unit 155, and the management server 300 may be configured to include the control unit 152, the output unit 153, and the reception unit 154. The data group 156 may be stored in the memory 112 of the control device 110, or a portion of it may be stored in the memory of the management server 300.
 図10は、遠隔点検システム1の表示画面421の一例を示す図である。表示画面421は、端末400の表示部410に表示される。表示画面421には、遠隔点検の設定情報、遠隔点検の各項目の判定結果、設定釦等が表示される。 FIG. 10 is a diagram showing an example of the display screen 421 of the remote inspection system 1. The display screen 421 is displayed on the display unit 410 of the terminal 400. The display screen 421 displays remote inspection setting information, the judgment results of each item of the remote inspection, setting buttons, etc.
 表示画面421の最上部には、ビル2の物件名称が「ABCビル」であることが示されている。その下には、運転診断関連の判定状況が表示されている。本例では、図8に示したような、1階と5階との間の診断用運転を行った結果が走行方向別に示されている。 The top of the display screen 421 shows that the property name of Building 2 is "ABC Building." Below that, the status of the driving diagnosis-related judgments is displayed. In this example, the results of the diagnostic driving between the first and fifth floors, as shown in Figure 8, are shown by driving direction.
 「UP方向」の欄は、UP方向で1階から5階まで走行したときの結果である。「走行時間」は、1階から5階への走行に要した時間である。「起動時間」は、1階から走行を開始する際にかご10の起動に要した(ドアゾーンを抜けるまでの)時間である。その他、1階から5階に走行する際に、1階から2階までの走行(加速走行状態を含む)に要した時間、2階から3階までの走行(定速走行状態)に要した時間、3階から4階までの走行(定速走行状態)に要した時間、4階から5階までの走行(減速走行状態を含む)に要した時間がそれぞれ示されている。「DN方向」の欄に関しても同様である。 The "UP direction" column shows the results when traveling from the 1st to 5th floors in the UP direction. "Travel time" is the time required to travel from the 1st to 5th floors. "Start-up time" is the time required for the car 10 to start up when starting travel from the 1st floor (until passing the door zone). In addition, when traveling from the 1st to 5th floors, the time required to travel from the 1st to 2nd floors (including accelerating travel state), the time required to travel from the 2nd to 3rd floors (constant speed travel state), the time required to travel from the 3rd to 4th floors (constant speed travel state), and the time required to travel from the 4th to 5th floors (including decelerating travel state) are shown. The same is true for the "DN direction" column.
 ここで、「計測時間」は、診断用運転時に実際に計測された時間である。「基準時間」は、計測時間が正常であるか否かを判定するための基準となる時間である。「判定条件」は、基準時間に基づき定められた条件であって、計測時間が判定条件の数値範囲内である場合に、「正常状態」であるとの判断がなされる。一方、計測時間が判定条件の数値範囲外である場合、「変調状態」であると判断される。 Here, the "measured time" is the time actually measured during diagnostic operation. The "reference time" is the reference time for judging whether the measured time is normal or not. The "judgment condition" is a condition determined based on the reference time, and if the measured time is within the numerical range of the judgment condition, it is judged to be in a "normal state." On the other hand, if the measured time is outside the numerical range of the judgment condition, it is judged to be in a "modulated state."
 本実施において、「変調状態」とは、正常状態に該当しない状態を示す。変調状態は、異常状態とまでは言えないが、エレベータシステム200の何らかの機器の故障または異常状態の予兆を示すような状態を含んだ状態である。「変調状態」であるか否かが判断されることで、故障の予兆(故障に至る前の状態)を捉えることができる。「判定」の欄には、判定結果が「正常状態」である場合に丸印が表示され、「変調状態」である場合に三角印が表示される。 In this embodiment, a "modulated state" refers to a state that does not correspond to a normal state. A modulated state is a state that includes a state that does not go so far as to be an abnormal state, but that indicates a sign of a failure or abnormal state of some equipment in the elevator system 200. By determining whether or not it is a "modulated state," it is possible to capture a sign of failure (a state prior to failure). In the "Judgment" column, a circle is displayed if the judgment result is a "normal state," and a triangle is displayed if it is a "modulated state."
 たとえば、表示画面421の「起動時間」において、基準時間がKAであり、計測時間がTAであり、判定条件がKAL~KAHであり、判定結果が正常状態であることが示されている。これは、KAL≦TA≦KAHの条件が満たされたために、起動時間の判定結果として正常状態が得られたことを意味する。 For example, the "Start-up time" on display screen 421 shows that the reference time is KA, the measured time is TA, the judgment conditions are KAL to KAH, and the judgment result is a normal state. This means that the condition KAL≦TA≦KAH is met, and therefore the normal state is obtained as the judgment result for the start-up time.
 さらにその下部には、運転診断に基づく判定結果が示されている。本例において、起動状態、走行状態、かご呼び釦状態、乗場呼び釦状態が「正常状態」であると判定され、戸開閉状態が「変調状態」であると判定されている。その下部には、常時診断による判定結果が示されている。本例において、ブレーキ状態、着床状態が「正常状態」であると判定されている。 Further below that, the results of the determination based on the operation diagnosis are shown. In this example, the start-up state, running state, car call button state, and hall call button state are determined to be in a "normal state," and the door open/close state is determined to be in a "modulated state." Below that, the results of the determination based on the continuous diagnosis are shown. In this example, the brake state and floor landing state are determined to be in a "normal state."
 表示画面421の最下部には、入力部420によりクリック可能な各種釦が配置されている。「運転診断設定」において、運転診断を実行する日時の設定が可能である。本例では、「運転診断設定」において、入力部420により23日23時59分が入力されている。「設定」釦がクリックされると、毎月23日の23時59分に運転診断が実行される。本設定情報は、設定データ422に記録される。 At the bottom of the display screen 421, various buttons that can be clicked using the input unit 420 are arranged. In "Driving diagnosis settings", it is possible to set the date and time for performing driving diagnosis. In this example, in "Driving diagnosis settings", 23rd, 23:59 is input using the input unit 420. When the "Set" button is clicked, a driving diagnosis will be performed at 23:59 on the 23rd of every month. This setting information is recorded in the setting data 422.
 また、月に1回の運転診断の自動実行とは別に、「手動運転診断」釦をクリックすることで、即座に運転診断を実行することができる。運転診断が実行されると、実行結果に基づき「計測時間」の表示が更新されるとともに、判定結果として「正常状態」または「変調状態」が示される。 In addition to the monthly automatic driving diagnosis, you can also run a driving diagnosis immediately by clicking the "Manual Driving Diagnosis" button. When a driving diagnosis is run, the "Measurement Time" display is updated based on the results of the run, and the result is shown as "Normal State" or "Modulation State."
 「基準時間」の欄には、原則としては、遠隔点検システム1がビル2に据え付けられたときに運転診断を実施し、その際の計測時間が基準時間として設定されている。ただし、「基準時間保存」釦をクリックすると、直近に実行した運転診断における計測時間が基準時間として更新され、更新された基準時間に基づいて判定条件が更新される。 In principle, the "Reference time" column is set to the time measured during the operation diagnosis performed when the remote inspection system 1 is installed in the building 2 as the reference time. However, when the "Save reference time" button is clicked, the time measured during the most recently performed operation diagnosis is updated as the reference time, and the judgment conditions are updated based on the updated reference time.
 たとえば、図10の例において、直近の運転診断における起動時間の計測時間は「TA」として計測されており、基準時間は「KU」である。この状態で、「基準時間保存」釦をクリックすると、基準時間が「TA」に更新され、更新された基準時間に基づいて判定条件KAL,KAHが更新される。 For example, in the example of Figure 10, the measurement time of the startup time in the most recent driving diagnosis is measured as "TA", and the reference time is "KU". In this state, when the "Save Reference Time" button is clicked, the reference time is updated to "TA", and the judgment conditions KAL and KAH are updated based on the updated reference time.
 以下、フローチャートに基づき、遠隔点検システム1が実行する処理について説明する。図11は、遠隔点検処理および端末設定処理のフローチャートである。遠隔点検システム1は、遠隔点検処理を実行する。遠隔点検処理は、判定用信号に基づき遠隔点検の点検項目を判定する処理である。遠隔点検処理は、周期的(たとえば、100msecごと)に起動するようにすればよい。以下、「ステップ」を単に「S」とも称する。 The processing executed by the remote inspection system 1 will be described below with reference to a flowchart. FIG. 11 is a flowchart of the remote inspection processing and the terminal setting processing. The remote inspection system 1 executes the remote inspection processing. The remote inspection processing is a processing for determining the inspection items of the remote inspection based on a determination signal. The remote inspection processing may be started periodically (for example, every 100 msec). Hereinafter, "step" may be simply referred to as "S".
 一方、端末400の表示画面421において、操作釦がクリックされたときに、端末設定処理が実行される。端末設定処理が開始すると、端末400は、S151において、「手動運転診断」釦がクリックされたか否かを判定する。端末400は、「手動運転診断」釦がクリックされた場合(S151でYES)、手動運転診断の要求設定を行い(S152)、S153に処理を進める。この場合、遠隔点検装置100に対して、手動運転診断の要求が送信される。端末400は、「手動運転診断」釦がクリックされていない場合(S151でNO)、そのままS153に処理を進める。 On the other hand, when an operation button is clicked on the display screen 421 of the terminal 400, the terminal setting process is executed. When the terminal setting process starts, the terminal 400 determines in S151 whether or not the "Manual Driving Diagnosis" button has been clicked. If the "Manual Driving Diagnosis" button has been clicked (YES in S151), the terminal 400 sets a request for manual driving diagnosis (S152) and proceeds to S153. In this case, a request for manual driving diagnosis is sent to the remote inspection device 100. If the "Manual Driving Diagnosis" button has not been clicked (NO in S151), the terminal 400 proceeds to S153.
 端末400は、S153において、「基準時間保存」釦がクリックされたか否かを判定する。端末400は、「基準時間保存」釦がクリックされた場合(S153でYES)、基準時間保存の要求設定を行い(S154)、S155に処理を進める。この場合、遠隔点検装置100に対して、基準時間保存の要求が送信される。端末400は、「基準時間保存」釦がクリックされていない場合(S153でNO)、そのままS155に処理を進める。 In S153, the terminal 400 determines whether the "Save Reference Time" button has been clicked. If the "Save Reference Time" button has been clicked (YES in S153), the terminal 400 sets a request to save the reference time (S154) and proceeds to S155. In this case, a request to save the reference time is sent to the remote inspection device 100. If the "Save Reference Time" button has not been clicked (NO in S153), the terminal 400 proceeds to S155.
 端末400は、S155において、「設定」釦がクリックされたか否かを判定する。端末400は、「設定」釦がクリックされた場合(S155でYES)、運転診断設定時刻の設定要求を行い(S156)、端末設定処理を終了する。この場合、遠隔点検装置100に対して、運転診断設定時刻が送信される。端末400は、「設定」釦がクリックされていない場合(S155でNO)、そのまま端末設定処理を終了する。 In S155, the terminal 400 determines whether the "Set" button has been clicked. If the "Set" button has been clicked (YES in S155), the terminal 400 makes a request to set the driving diagnosis setting time (S156) and ends the terminal setting process. In this case, the driving diagnosis setting time is sent to the remote inspection device 100. If the "Set" button has not been clicked (NO in S155), the terminal 400 ends the terminal setting process.
 一方、遠隔点検処理が開始すると、遠隔点検システム1の制御部152は、S100において、基準時間取得処理(後述の図14参照)を実行する。基準時間取得処理において、遠隔点検の点検項目の判定において使用する基準時間を基準時間DB423から取得して設定する。 On the other hand, when the remote inspection process starts, the control unit 152 of the remote inspection system 1 executes a reference time acquisition process (see FIG. 14 described later) in S100. In the reference time acquisition process, the reference time to be used in determining the inspection items of the remote inspection is acquired from the reference time DB 423 and set.
 制御部152は、S101において、「手動運転診断」要求があったか否か、または、現在の時刻が運転診断設定時刻になったか否かを判定する。「手動運転診断」釦がクリックされた場合、「手動運転診断」の要求が設定される(S152)。運転診断設定時刻は、運転診断設定時刻の設定要求(S156)に基づき設定された時刻である。 In S101, the control unit 152 determines whether or not a "manual driving diagnosis" request has been made, or whether or not the current time has reached the driving diagnosis setting time. When the "manual driving diagnosis" button is clicked, a request for "manual driving diagnosis" is set (S152). The driving diagnosis setting time is the time that has been set based on the request to set the driving diagnosis setting time (S156).
 制御部152は、上記いずれかの条件が成立した場合(S101でYES)は、S102に処理を進める。一方で、制御部152は、上記いずれかの条件も成立しなかったと判定した場合(S101でNO)は、S104に処理を進める。 If any of the above conditions are met (YES in S101), the control unit 152 advances the process to S102. On the other hand, if the control unit 152 determines that none of the above conditions are met (NO in S101), the control unit 152 advances the process to S104.
 制御部152は、S102において、運転診断時処理を実行する。運転診断時処理は、運転診断を行う際の乗場呼び信号の送信および当該乗場呼び信号に基づく判定処理を実行する処理である。運転診断時処理において、乗場呼び信号が生成される。たとえば、図8を用いて説明したように、かご10を1階から5階へ走行および5階から1階へ走行させるための、1階UP乗場呼び信号および5階DN乗場呼び信号が生成される。 The control unit 152 executes a driving diagnosis process in S102. The driving diagnosis process is a process for transmitting a hall call signal when performing a driving diagnosis and for executing a judgment process based on the hall call signal. In the driving diagnosis process, a hall call signal is generated. For example, as explained using FIG. 8, a 1st floor UP hall call signal and a 5th floor DN hall call signal are generated to cause the car 10 to run from the 1st floor to the 5th floor and from the 5th floor to the 1st floor.
 そして、指示部155は、制御部152によって生成された乗場呼び信号をエレベータシステム200に対して出力する。これにより、かご10が乗場呼びに応答して走行することになる。そして、この走行結果に基づき判定処理を行う。運転診断時処理の詳細については後述する。 Then, the instruction unit 155 outputs the hall call signal generated by the control unit 152 to the elevator system 200. This causes the car 10 to run in response to the hall call. Then, a judgment process is performed based on the running result. The details of the operation diagnosis process will be described later.
 取得部151は、S104において、エレベータシステム200から判定用信号(DZ信号、LB信号、GS信号、DS信号等)を取得する。制御部152は、終了条件が成立する(S105でYES)まで、エレベータシステム200から判定用信号を取得し続ける。 In S104, the acquisition unit 151 acquires a determination signal (DZ signal, LB signal, GS signal, DS signal, etc.) from the elevator system 200. The control unit 152 continues to acquire the determination signal from the elevator system 200 until the end condition is met (YES in S105).
 たとえば、かご10が1階と5階との間を往復したタイミングで、終了条件が成立するようにしてもよいし、かご10が所定の動作を完了(たとえば、戸開閉、ブレーキの開放/制動、着床の完了)するたびに終了条件が成立するようにしてもよいし、周期的(たとえば、数分ごと)に終了条件が成立するようにしてもよい。 For example, the termination condition may be met when the car 10 travels back and forth between the first and fifth floors, or the termination condition may be met every time the car 10 completes a specified operation (e.g., door opening/closing, brake release/application, completion of landing), or the termination condition may be met periodically (e.g., every few minutes).
 制御部152は、終了条件成立が成立したと判定した場合(S105でYES)は、判定処理(S106)を実行する。判定処理において、遠隔点検の点検項目の判定を行う。点検項目として、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態、行先階釦の状態、乗場釦の状態、戸開閉状態、ブレーキ状態を含む項目うちのいずれかまたは複数の項目の判断を行う。 If the control unit 152 determines that the termination condition is met (YES in S105), it executes a judgment process (S106). In the judgment process, it judges the inspection items of the remote inspection. The inspection items include the start-up state, accelerating state, constant speed state, decelerating state, landing state, destination floor button state, hall button state, door open/close state, and brake state, and judges one or more of the following items.
 制御部152は、S107において、取得した判定用信号を運行履歴424に記録するとともに、判定処理において得られた判定結果を判定結果425に記録する。 In S107, the control unit 152 records the acquired determination signal in the operation history 424, and records the determination result obtained in the determination process in the determination result 425.
 出力部153は、S108において、判定処理において得られた判定結果を出力する。たとえば、出力部153は、ネットワークを介して、管理サーバ300に対して判定結果を出力(送信)する。端末400は、ネットワークを介して管理サーバ300にアクセスすることで、判定結果を取得できる。これにより、図10に示したように、端末400の表示部410において判定結果を確認することができる。 In S108, the output unit 153 outputs the judgment result obtained in the judgment process. For example, the output unit 153 outputs (transmits) the judgment result to the management server 300 via the network. The terminal 400 can obtain the judgment result by accessing the management server 300 via the network. This makes it possible to check the judgment result on the display unit 410 of the terminal 400, as shown in FIG. 10.
 制御部152は、S109において、基準時間更新処理を実行し、遠隔点検処理を終了する。詳しくは、後述の図13を用いて説明するが、本処理により、基準時間DB423におけるモードBの基準時間を更新する。 In S109, the control unit 152 executes a reference time update process and ends the remote inspection process. This process updates the reference time for mode B in the reference time DB 423, as will be described in detail later with reference to FIG. 13.
 (基準時間の切り替え)
 図12は、基準時間DB423の一例を示す図である。図10に示した「基準時間」は、基準時間DB423に記録された基準時間から読み出された値である。
(Switching the reference time)
12 is a diagram showing an example of the reference time DB 423. The "reference time" shown in FIG.
 基準時間DB423には、図10と同様に、「走行時間」、「起動時間」等の値が設定されている。基準時間DB423を読み出す際のモードとして、モードA~Dのいずれかを事前に設定可能である。図示しないが、端末400での保守員の操作によりモードA~Dのいずれかに設定変更可能に構成すればよい。 In the reference time DB 423, values such as "running time" and "start-up time" are set, as in FIG. 10. One of modes A to D can be set in advance as the mode for reading out the reference time DB 423. Although not shown, it is possible to configure the terminal 400 so that the setting can be changed to one of modes A to D by a maintenance technician's operation.
 図10の例では、モードAが設定されている。このため、基準時間DB423におけるUP方向の「走行時間」として時間KU、「起動時間」として時間KAが読み出されて、図10の表示画面421に表示されている。 In the example of FIG. 10, mode A is set. Therefore, time KU is read as the "running time" in the UP direction in the reference time DB 423, and time KA is read as the "start-up time," and these are displayed on the display screen 421 in FIG. 10.
 ここで、モードAは、基準時間として毎回固定値を使用したい場合に設定される。モードAが設定されている場合、基準時間DB423のモードAの項目に設定された基準時間が毎回使用される。これらの基準時間は、原則として、遠隔点検装置100がビル2に据え付けられたときに測定されたものが設定されている。ただし、表示画面421において「基準時間保存」釦がクリックされた場合には、基準時間は直近の運転診断(診断用運転)時の計測時間に置き換えられる。 Here, mode A is set when you want to use a fixed value as the reference time every time. When mode A is set, the reference time set in the mode A item of the reference time DB 423 is used every time. In principle, these reference times are set to those measured when the remote inspection device 100 was installed in building 2. However, if the "Save reference time" button is clicked on the display screen 421, the reference time is replaced with the time measured during the most recent operation diagnosis (diagnostic operation).
 モードBは、基準時間として前回の値を使用したい場合に設定される。モードBが設定されている場合、基準時間DB423のモードBの項目に設定された基準時間が使用される。モードBの項目に設定された基準時間は、運転診断(診断用運転)が行われるたびに更新される。 Mode B is set when you want to use the previous value as the reference time. When Mode B is set, the reference time set in the Mode B item of the reference time DB 423 is used. The reference time set in the Mode B item is updated every time a driving diagnosis (diagnostic driving) is performed.
 図10の例においては、月に1回、23日の23時59分に診断用運転が行われる。たとえば、1月23日23時59分の診断用運転で、UP方向の起動時間において、基準時間が時間KA1、計測時間が時間TXであった場合、基準時間DB423のモードBの基準時間が時間KA1から時間TXに更新される。これにより、次回(翌月)の2月23日23時59分の診断用運転において、UP方向の起動時間の基準時間として時間TXが用いられる。 In the example of FIG. 10, diagnostic operation is performed once a month at 23:59 on the 23rd. For example, in the diagnostic operation at 23:59 on January 23rd, if the reference time is time KA1 and the measured time is time TX for the startup time in the UP direction, the reference time for mode B in the reference time DB423 is updated from time KA1 to time TX. As a result, in the next diagnostic operation (next month) at 23:59 on February 23rd, time TX is used as the reference time for the startup time in the UP direction.
 モードCは、機械室5の温度に応じて基準時間を変更したい場合に設定される。機械室5の温度は、温度センサ15によって測定される。モードCの項目に設定された基準時間は、機械室5の温度が、K1℃未満(~K1℃)である場合と、K1℃以上かつK2℃未満(K1℃~)である場合と、K2℃以上かつK3℃未満(K2℃~)である場合と、K3℃以上(K2℃~)である場合とに分類して計測された値である。たとえば、5℃刻みあるいは10℃刻みで基準時間を変更すればよい。 Mode C is set when it is desired to change the reference time according to the temperature of the machine room 5. The temperature of the machine room 5 is measured by the temperature sensor 15. The reference time set in the Mode C item is a value measured by classifying the temperature of the machine room 5 into cases where it is less than K1°C (up to K1°C), K1°C or higher and less than K2°C (K1°C or higher), K2°C or higher and less than K3°C (K2°C or higher), and K3°C or higher (K2°C or higher). For example, the reference time can be changed in increments of 5°C or 10°C.
 この基準時間は、診断用運転の結果に基づき設定すればよい。たとえば、基準時間の測定のために診断用運転が行われたときの機械室5の温度がK1℃以上かつK2℃未満であった場合、基準時間DB423のK1℃以上かつK2℃未満(K1℃~)の項目に基準時間を記録する。複数回診断用運転を行ってその平均値を基準時間として設定してもよい。 This reference time may be set based on the results of diagnostic operation. For example, if the temperature in the machine room 5 is equal to or higher than K1°C and lower than K2°C when diagnostic operation is performed to measure the reference time, the reference time is recorded in the item equal to or higher than K1°C and lower than K2°C (K1°C or higher) in the reference time DB 423. Diagnostic operation may be performed multiple times and the average value set as the reference time.
 モードCが設定されている場合、基準時間DB423のモードCの項目に設定された基準時間が現在の機械室5の温度に応じて使用される。たとえば、診断用運転時の機械室5の温度がK1℃未満(~K1℃)であった場合、K1℃未満の項目に設定された基準時間(たとえば、UP方向の起動時間において「KA2」)が使用される。 When mode C is set, the reference time set in the mode C item of the reference time DB 423 is used according to the current temperature of the machine room 5. For example, if the temperature of the machine room 5 during diagnostic operation is less than K1°C (up to K1°C), the reference time set in the item below K1°C (for example, "KA2" for the start time in the UP direction) is used.
 なお、温度センサ15によって測定される温度は、機械室5の温度に限らない。温度センサ15は、エレベータの昇降路8内の任意の位置、昇降路8周辺またはエレベータの周辺に設置してもよい。 The temperature measured by the temperature sensor 15 is not limited to the temperature of the machine room 5. The temperature sensor 15 may be installed at any position within the elevator hoistway 8, around the hoistway 8, or around the elevator.
 モードDは、季節に応じて基準時間を変更したい場合に設定される。モードDの項目に設定された基準時間は、季節が、春、夏、秋、冬に分類して計測された値である。たとえば、基準時間の測定のために診断用運転が行われたのが夏であった場合、夏の項目に基準時間が記録される。 Mode D is set when you want to change the reference time according to the season. The reference time set in the Mode D item is a value measured for each season, classified as spring, summer, fall, or winter. For example, if the diagnostic operation to measure the reference time was performed in summer, the reference time is recorded in the summer item.
 モードDが設定されている場合、基準時間DB423のモードDの項目に設定された基準時間が季節に応じて使用される。たとえば、診断用運転時の季節が春であった場合、春の項目に設定された基準時間(たとえば、UP方向の起動時間において「KU126」)が使用される。 When mode D is set, the reference time set in the mode D item of the reference time DB 423 is used according to the season. For example, if the season during diagnostic operation is spring, the reference time set in the spring item (for example, "KU126" for the start time in the UP direction) is used.
 モードB~Dは、油圧式エレベータ用に用意したモードである。油圧式エレベータの場合、季節や温度によって油の特性が変わるため、かご10の走行特性に違いが生じやすい。たとえば、夏場の気温が高いときと比べて、冬場は油が固くなるため、起動に時間がかかり、走行時間にもばらつきが出やすいためである。このため、油の特性が変わる、季節または温度で基準時間を切り替えるようにしている。また、モードBにおいて前回診断時の値(先月の値)を用いるのは、直近の診断時と温度環境または機器環境が近い基準時間を用いるためである。 Modes B to D are modes prepared for hydraulic elevators. In hydraulic elevators, the oil characteristics change depending on the season and temperature, which can easily cause differences in the running characteristics of the car 10. For example, compared to the high temperatures of summer, the oil thickens in winter, so it takes longer to start up and running times are more likely to vary. For this reason, the reference time is switched depending on the season or temperature, which changes the oil characteristics. Also, the reason why the value from the previous diagnosis (the value from last month) is used in mode B is because it uses a reference time where the temperature environment or equipment environment is close to that of the most recent diagnosis.
 また、基準時間DB423に記録されている基準時間には、「ドアゾーン(「DZ」とも表記する)外となる時間」が含まれる。これは、かご10がある階に停止(LB信号がON状態からOFF状態に変化)してから、停止状態においてドアゾーンから外れる(DZ信号がON状態からOFF状態に変化する)までの時間を計測したものである。たとえば、基準時間DB423のモードAの項目には、「DZ外となる時間」として時間KXが設定されている。 The reference time recorded in the reference time DB 423 also includes the "time outside the door zone (also written as "DZ")." This is the time measured from when the car 10 stops at a certain floor (the LB signal changes from ON to OFF) to when it leaves the door zone while stopped (the DZ signal changes from ON to OFF). For example, in the item for mode A in the reference time DB 423, the time KX is set as the "time outside the DZ."
 油圧エレベータにおいては、かご10がある階床に停止している場合に、時間の経過とともにかごが少しずつ沈んでいき(乗場の床面に対してかごの床面が徐々に下がっていき)、これによりドアゾーンから外れてしまうことがある。そして、この時間は、油の特性により、季節または温度に応じて異なるため、それぞれにおいて、基準時間を変更可能に構成している。 In a hydraulic elevator, when the car 10 is stopped at a certain floor, the car gradually sinks over time (the car's floor surface gradually drops relative to the landing floor surface), which can cause the car to fall out of the door zone. This time varies depending on the season and temperature due to the characteristics of the oil, so the reference time is configured to be changeable for each of these.
 また、基準時間DB423に記録されている基準時間には、1階~5階の戸開時間が含まれる。基準時間DB423における戸開時間は、かご10がある階に停止して、GS信号およびDS信号が、ON状態からOFF状態に変化してから、OFF状態からON状態に変化するまでの時間(戸開時間)を計測したものである。たとえば、基準時間DB423のモードAの項目には、1階の戸開時間として時間KY1が設定されている。基準時間DB423のモードAの項目には、5階の戸開時間として時間KY5が設定されている。 The reference time recorded in the reference time DB 423 also includes the door-opening times for the first to fifth floors. The door-opening times in the reference time DB 423 are measured from when the car 10 stops at a certain floor and the GS signal and DS signal change from ON to OFF until they change from OFF to ON (door-opening time). For example, in the item for mode A in the reference time DB 423, time KY1 is set as the door-opening time for the first floor. In the item for mode A in the reference time DB 423, time KY5 is set as the door-opening time for the fifth floor.
 図13は、基準時間更新処理のフローチャートである。基準時間更新処理は、図11に示した遠隔点検処理のS109(判定処理が実行された後)において実行される処理である。また、基準時間更新処理は、基準時間保存要求があった場合(S154)にも実行される。 FIG. 13 is a flowchart of the reference time update process. The reference time update process is executed in S109 (after the determination process has been executed) of the remote inspection process shown in FIG. 11. The reference time update process is also executed when a request to save the reference time is made (S154).
 基準時間更新処理が開始すると、制御部152は、「基準時間保存」要求があると判定した場合(S251でYES)は、基準時間DB423を更新し(S252)、S253に処理を進める。制御部152は、「基準時間保存」要求がない判定した場合(S251でNO)は、そのままS253に処理を進める。 When the reference time update process starts, if the control unit 152 determines that there is a "save reference time" request (YES in S251), it updates the reference time DB 423 (S252) and proceeds to S253. If the control unit 152 determines that there is no "save reference time" request (NO in S251), it proceeds to S253.
 S252(「基準時間保存」釦がクリックされている場合)において、モードA~Dの各基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を更新する。たとえば、UP方向走行時間において、「基準時間保存」釦がクリックされる直前に実行された運転診断時の季節が夏であり機械室温度がK3℃以上であり、計測時間が「TUX」であった場合、モードAの「KU」、モードBの「KU1」、モードCの「K3℃~」の「KU5」、モードDの「夏」の「KU7」をそれぞれ「TUX」に変更する。これにより、運転診断を実行した場合に、当該運転診断における計測時間を基準時間として更新することができる。 In S252 (when the "Save Reference Time" button is clicked), the reference times for modes A to D (running time, start time, time elapsed between floors, time outside the DZ, door open time) are updated. For example, in the UP direction running time, if the season of the operation diagnosis performed immediately before the "Save Reference Time" button was clicked was summer, the machine room temperature was K3°C or higher, and the measured time was "TUX", then "KU" in mode A, "KU1" in mode B, "KU5" in "K3°C or higher" in mode C, and "KU7" in "summer" in mode D are each changed to "TUX". This allows the measured time in the operation diagnosis to be updated as the reference time when the operation diagnosis is performed.
 制御部152は、遠隔点検処理における判定処理の後のS109において基準時間更新処理が呼び出された場合(S253でYES)は、基準時間DB423のモードBの各基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を更新し(S254)、基準時間更新処理を終了する。制御部152は、S109において基準時間更新処理が呼び出された場合ではない場合(S253でNO)は、そのまま基準時間更新処理を終了する。 If the reference time update process is called in S109 after the determination process in the remote inspection process (YES in S253), the control unit 152 updates each reference time for mode B in the reference time DB 423 (running time, start time, elapsed time between floors, time outside the DZ, door open time) (S254) and ends the reference time update process. If the reference time update process is not called in S109 (NO in S253), the control unit 152 ends the reference time update process as it is.
 S254において、たとえば、UP方向走行時間において、運転診断時の計測時間が「TUY」であった場合、モードBの「KU1」を「TUY」に変更する。これにより、運転診断が実行されるたびに測定時間がモードBの基準時間に変更される。このため、モードBが設定されている場合、基準時間として前回(先月)の運転診断が実行されたときの計測時間が使用されることになる。 In S254, for example, if the measured time during driving diagnosis for the UP direction driving time is "TUY", "KU1" in mode B is changed to "TUY". This changes the measured time to the reference time of mode B every time a driving diagnosis is performed. Therefore, when mode B is set, the measured time when the previous (last month) driving diagnosis was performed is used as the reference time.
 図14は、基準時間取得処理のフローチャートである。基準時間取得処理は、図11に示した遠隔点検処理のS100において実行される処理である。制御部152は、モードAが設定されている場合(S201でYES)、モードAの基準時間を取得し(S202)、S209に処理を進める。たとえば、UP方向走行時間において、モードAの「KU」が取得される。 FIG. 14 is a flowchart of the reference time acquisition process. The reference time acquisition process is executed in S100 of the remote inspection process shown in FIG. 11. If mode A is set (YES in S201), the control unit 152 acquires the reference time for mode A (S202) and proceeds to S209. For example, "KU" for mode A is acquired for the UP direction travel time.
 制御部152は、モードAが設定されていない場合(S201でNO)であって、モードBが設定されている場合(S203でYES)、モードBの基準時間を取得し(S204)、S209に処理を進める。たとえば、UP方向走行時間において、モードBの「KU1」が取得される。 If mode A is not set (NO in S201) and mode B is set (YES in S203), the control unit 152 acquires the reference time for mode B (S204) and proceeds to S209. For example, for the UP direction running time, "KU1" for mode B is acquired.
 制御部152は、モードBが設定されていない場合(S203でNO)であって、モードCが設定されている場合(S205でYES)、現在の機械室温度に適合するモードCの基準時間を取得し(S206)、S209に処理を進める。たとえば、現在の機械室温度がK3℃以上である場合、UP方向走行時間において、モードCの「K3℃~」の「KU5」が取得される。 If mode B is not set (NO in S203) but mode C is set (YES in S205), the control unit 152 acquires the reference time for mode C that matches the current machine room temperature (S206) and proceeds to S209. For example, if the current machine room temperature is K3°C or higher, "KU5" from "K3°C~" in mode C is acquired for the UP direction running time.
 制御部152は、モードCが設定されていない場合(S205でNO)であって、モードDが設定されている場合(S207でYES)、現在の季節に一致するモードCの基準時間を取得し(S208)、S209に処理を進める。たとえば、現在の季節が夏である場合、UP方向走行時間において、モードCの「夏」の「KU7」が取得される。 If mode C is not set (NO in S205) but mode D is set (YES in S207), the control unit 152 acquires the reference time of mode C that matches the current season (S208) and proceeds to S209. For example, if the current season is summer, "KU7" for "summer" in mode C is acquired for the UP direction running time.
 制御部152は、モードDが設定されていない場合(S207でNO)、S209に処理を進める。制御部152は、S209において、取得した基準時間を、使用する基準時間として設定して、基準時間設定処理を終了する。 If mode D is not set (NO in S207), the control unit 152 proceeds to S209. In S209, the control unit 152 sets the acquired reference time as the reference time to be used, and ends the reference time setting process.
 基準時間の切り替えに関し、本実施の形態における構成および効果を以下にまとめる。 The configuration and effects of this embodiment regarding switching the reference time are summarized below.
 (A) 制御部152は、運転診断の際に算出(計測)された計測時間を基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)として更新可能である。たとえば、制御部152は、運転診断の際に計測された起動時間TAを、基準時間DB423の起動時間の基準時間KA(UP方向の場合)として更新可能である。このようにすることで、現場でのエレベータの動作状態に即した値を用いて遠隔点検の点検項目の判定を行うことができる。 (A) The control unit 152 can update the measurement times calculated (measured) during operation diagnosis as the reference times (running time, start time, elapsed time between floors, time outside the DZ, door open time) in the reference time DB 423. For example, the control unit 152 can update the start time TA measured during operation diagnosis as the reference time KA (for the UP direction) for the start time in the reference time DB 423. In this way, the inspection items for remote inspection can be determined using values that correspond to the operating state of the elevator at the site.
 (B) 基準時間DB423に記録された基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)は、季節ごとに計測された複数の値(春、夏、秋、冬の値)を含む。制御部152は、現在の季節に応じて複数の値のいずれかを選択して点検項目を判定する。たとえば、基準時間DB423に記録された起動時間の基準時間は、季節ごとに計測された複数の値(モードDのKA6~KA9(UP方向の場合))を含む。制御部152は、現在の季節が夏である場合にKA7を選択して起動時間を判定する。このようにすることで、ロープ式エレベータのみならず、季節によって油の特性が変化する油圧エレベータも含めて、精度の高い判定結果を得ることができる。 (B) The reference times (running time, start-up time, elapsed time between floors, time outside the DZ, door open time) recorded in the reference time DB 423 include multiple values measured for each season (spring, summer, fall, winter values). The control unit 152 selects one of the multiple values depending on the current season to determine the inspection item. For example, the reference times for start-up times recorded in the reference time DB 423 include multiple values measured for each season (KA6 to KA9 (in the case of the UP direction) in mode D). When the current season is summer, the control unit 152 selects KA7 to determine the start-up time. In this way, highly accurate determination results can be obtained not only for rope elevators but also for hydraulic elevators, whose oil properties change depending on the season.
 (C) 基準時間DB423に記録された基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)は、温度センサ15によって計測された温度範囲ごとの複数の値(~K1℃、K2℃~、K3℃~、K4℃~の値)を含む。制御部152は、温度センサ15によって計測された現在の温度に応じて複数の値のいずれかを選択して点検項目を判定する。たとえば、基準時間DB423に記録された起動時間の基準時間(基準時間KA)は、温度センサ15によって計測された温度範囲ごとの複数の値(モードCのKA2~KA5(UP方向の場合))を含む。制御部152は、温度センサ15によって計測された現在の温度がK4℃以上である場合にKA5を選択して起動時間を判定する。このようにすることで、ロープ式エレベータのみならず、温度によって油の特性が変化する油圧エレベータも含めて、精度の高い判定結果を得ることができる。 (C) The reference times (running time, start time, elapsed time between floors, time outside the DZ, door open time) recorded in the reference time DB 423 include multiple values for each temperature range measured by the temperature sensor 15 (values of up to K1°C, K2°C-, K3°C-, K4°C-). The control unit 152 selects one of the multiple values according to the current temperature measured by the temperature sensor 15 to determine the inspection item. For example, the reference time for the start time (reference time KA) recorded in the reference time DB 423 includes multiple values for each temperature range measured by the temperature sensor 15 (KA2-KA5 (in the case of the UP direction) in mode C). The control unit 152 selects KA5 to determine the start time when the current temperature measured by the temperature sensor 15 is K4°C or higher. In this way, highly accurate determination results can be obtained not only for rope elevators but also for hydraulic elevators in which the properties of the oil change depending on the temperature.
 (D) 指示部155は、定期的に乗場呼び信号を送信する。具体的には、S101~S102に示したように、月に1度の運転診断設定時刻になるたびに、乗場呼びを生成して出力する。制御部152は、運転診断を行った後に、基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を運転診断の際に算出された計測時間に変更する(S109)。たとえば、制御部152は、運転診断を行った後に、基準時間DB423の起動時間の基準時間KAを、運転診断の際に算出された起動時間の計測時間TAに変更する。このように、現場での最新のエレベータの動作状態に即した値を用いて、精度の高い判定結果を得ることが出来る。たとえば、機器の経年劣化あるいは油圧エレベータにおけるバルブの調整等に応じて機器の状態が変化するような場合にも、これに対応させることができる。 (D) The instruction unit 155 periodically transmits a hall call signal. Specifically, as shown in S101 to S102, a hall call is generated and output each time the operation diagnosis set time, which is once a month, is reached. After performing an operation diagnosis, the control unit 152 changes the reference times (running time, start time, elapsed time between floors, time to be outside the DZ, and door open time) in the reference time DB 423 to the measured times calculated during the operation diagnosis (S109). For example, after performing an operation diagnosis, the control unit 152 changes the reference time KA of the start time in the reference time DB 423 to the measured time TA of the start time calculated during the operation diagnosis. In this way, a highly accurate judgment result can be obtained using a value that corresponds to the latest operating state of the elevator at the site. For example, it is possible to respond to cases where the state of the equipment changes due to aging of the equipment or adjustment of the valves in a hydraulic elevator.
 (E) 受付部154は、保守員(ユーザ)の操作(「手動運転診断」釦のクリック、「基準時間保存」釦のクリック等)を受付ける。制御部152は、「手動運転診断」釦がクリックされたとき(S151、S101)に、乗場呼び信号を生成する。指示部155は、生成された乗場呼び信号を送信する。制御部152は、「基準時間保存」釦がクリックされたとき(S153)に、基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を運転診断の際に算出された計測時間に変更する(S252)。たとえば、制御部152は、「基準時間保存」釦がクリックされたときに、基準時間DB423の起動時間の基準時間KAを運転診断の際に算出された起動時間の計測時間TAに変更する(UP方向の場合)。このように、現場での最新のエレベータの動作状態に即した値に手動で変更させることで、精度の高い判定結果を得ることが出来る。たとえば、機器の経年劣化あるいは油圧エレベータにおけるバルブの調整等に応じて機器の状態が変化するような場合にも、これに対応させることができる。 (E) The reception unit 154 receives the operation of the maintenance worker (user) (clicking the "Manual Driving Diagnosis" button, clicking the "Save Reference Time" button, etc.). The control unit 152 generates a hall call signal when the "Manual Driving Diagnosis" button is clicked (S151, S101). The instruction unit 155 transmits the generated hall call signal. When the "Save Reference Time" button is clicked (S153), the control unit 152 changes the reference times (running time, start time, elapsed time between floors, time to be outside the DZ, door open time) in the reference time DB 423 to the measured times calculated during the driving diagnosis (S252). For example, when the "Save Reference Time" button is clicked, the control unit 152 changes the reference time KA of the start time in the reference time DB 423 to the measured time TA of the start time calculated during the driving diagnosis (in the case of the UP direction). In this way, highly accurate judgment results can be obtained by manually changing the values to match the latest elevator operating conditions at the site. For example, it can also be adapted to changes in equipment conditions due to aging of the equipment or adjustments to valves in hydraulic elevators.
 [遠隔点検の点検項目の判定]
 次に、本実施の形態において実行される遠隔点検の点検項目の判定について説明する。遠隔点検の点検項目の判定は、後述する運転診断時処理等で実行される判定処理において行われる。遠隔点検の点検項目は、かご10の、起動状態、走行状態(加速走行状態、定速走行状態、減速走行状態)、着床状態、行先階釦の状態、乗場釦の状態、戸開閉状態、ブレーキ状態を含む。
[Judgment of remote inspection items]
Next, the judgment of the inspection items of the remote inspection executed in this embodiment will be described. The judgment of the inspection items of the remote inspection is performed in a judgment process executed in the driving diagnosis process described later. The inspection items of the remote inspection include the start state, running state (accelerating running state, constant speed running state, decelerating running state), landing state, destination floor button state, hall button state, door open/close state, and brake state of the car 10.
 判定処理において、上記点検項目うちのいずれかまたは複数の項目の判断が行われる。本実施の形態においては、判定処理において、遠隔点検の点検項目として走行状態の判定が行われるものとして説明する。以下、図15~図27を用いて走行状態の判定について説明する。 In the judgment process, a judgment is made on one or more of the above inspection items. In this embodiment, the judgment process is described assuming that the driving condition is judged as an inspection item for remote inspection. The judgment of the driving condition is described below with reference to Figures 15 to 27.
 (走行状態の判定)
 走行状態には、複数の走行状態がある。複数の走行状態は、かご10が加速しながら走行する加速走行状態と、かご10が一定速度で走行する定速走行状態と、かご10が減速しながら走行する減速走行状態とを含む。遠隔点検の点検項目には、これらの複数の走行状態が含まれる。
(Determination of driving state)
There are a plurality of running states. The plurality of running states include an acceleration running state in which the car 10 runs while accelerating, a constant speed running state in which the car 10 runs at a constant speed, and a deceleration running state in which the car 10 runs while decelerating. The inspection items of the remote inspection include these plurality of running states.
 以下、指示部155が乗場呼び信号を送信する処理を「送信処理」と称する。送信処理は、第1送信処理と、第2送信処理とを含む。第1送信処理は、第1階床(本実施の形態において、1階)のUP乗場呼び信号の送信に基づいて、かご10が第1階床(1階)に到着してから待時間TW(本実施の形態において、30秒)の経過後に、DN方向の第2階床(本実施の形態において、5階)の乗場呼びを発生させる5階DN乗場呼び信号を送信する処理である。 Hereinafter, the process in which the instruction unit 155 transmits a hall call signal is referred to as the "transmission process." The transmission process includes a first transmission process and a second transmission process. The first transmission process is a process in which, based on the transmission of a UP hall call signal for the first floor (in this embodiment, the first floor), a 5th floor DN hall call signal is transmitted to generate a hall call for the second floor (in this embodiment, the fifth floor) in the DN direction after the waiting time TW (30 seconds in this embodiment) has elapsed since the car 10 arrived at the first floor (the first floor).
 第2送信処理は、第2階床(5階)のDN乗場呼び信号の送信に基づいて、かご10が第2階床(5階)に到着してから待時間TW(30秒)経過後に、第1階床(1階)のUP乗場呼び信号を送信する処理である。 The second transmission process is a process of transmitting a UP hall call signal for the first floor (first floor) after the waiting time TW (30 seconds) has elapsed since the car 10 arrived at the second floor (fifth floor) based on the transmission of a DN hall call signal for the second floor (fifth floor).
 本実施の形態においては、第1階床は、かご10が停止可能な階床のうちの最も下の階(停止可能な最下階)=1階である。第2階床は、かご10が停止可能な階床のうちの最も上の階(停止可能な最上階)=5階である。たとえば、サービス切り放し設定がされている階床あるいは物理的に停止できない階床であるために、1階が停止不能であれば第1階床が2階に設定され、5階が停止不能であれば第2階床が4階に設定される。なお、これに限らず、任意の階床を第1階床として設定し、第1階床より上にある任意の階床を第2階床として設定してもよい。 In this embodiment, the first floor is the lowest floor at which the car 10 can stop (the lowest floor at which it can stop), which is the first floor. The second floor is the highest floor at which the car 10 can stop (the highest floor at which it can stop), which is the fifth floor. For example, if the first floor is not stoppable because the service is set to be disconnected or it is a floor at which it is physically not stoppable, the first floor is set to the second floor, and if the fifth floor is not stoppable, the second floor is set to the fourth floor. Note that this is not limited to the above, and any floor may be set to the first floor, and any floor above the first floor may be set to the second floor.
 この場合、第1階床の乗場装置230に対して出力IF140から擬似的に第1階床のUP乗場呼び信号が送信された際に、第1階床のUP乗場呼び釦81の接点が短絡するように改造する(図7参照)。第2階床の乗場装置230に対して出力IF140から擬似的に第2階床のDN乗場呼び信号が送信された際に、第2階床のDN乗場呼び釦82の接点が短絡するように改造する。 In this case, the contacts of the UP hall call button 81 on the first floor are modified to short-circuit when a pseudo UP hall call signal for the first floor is sent from the output IF 140 to the hall device 230 on the first floor (see Figure 7). The contacts of the DN hall call button 82 on the second floor are modified to short-circuit when a pseudo DN hall call signal for the second floor is sent from the output IF 140 to the hall device 230 on the second floor.
 制御部152は、送信処理によって送信される乗場呼び信号を生成する。指示部155は、生成された乗場呼び信号を送信する送信処理を行う。本実施の形態では、この送信処理によって送信された乗場呼び信号に基づくかご10の運転を「診断用運転」と呼んでいる。また、制御部152が、上記送信処理の結果として取得部151によって取得された判定用信号に基づき判定処理を行うことを「運転診断」と呼んでいる。 The control unit 152 generates a hall call signal to be transmitted by a transmission process. The instruction unit 155 performs a transmission process to transmit the generated hall call signal. In this embodiment, the operation of the car 10 based on the hall call signal transmitted by this transmission process is called "diagnostic operation." In addition, the determination process performed by the control unit 152 based on the determination signal acquired by the acquisition unit 151 as a result of the above transmission process is called "driving diagnosis."
 図15、図16は、走行状態を説明するためのタイミングチャートである。図15では、遠隔点検装置100が発生させる5階DN乗場呼び(指示部155が送信する5階DN乗場呼び信号)により、かご10が1階から5階に走行するケースについて説明する。 Figures 15 and 16 are timing charts for explaining the running state. Figure 15 explains a case where the car 10 runs from the first floor to the fifth floor in response to a fifth floor DN hall call generated by the remote inspection device 100 (a fifth floor DN hall call signal transmitted by the instruction unit 155).
 時刻t0において、かご10は、1階に停止している。このとき、かご10の位置は1階のドアゾーン内にあり(DZ信号がON状態)、かご10の速度は0である(かご10は停止状態)。 At time t0, car 10 is stopped on the first floor. At this time, car 10 is located within the door zone on the first floor (DZ signal is ON), and the speed of car 10 is 0 (car 10 is stopped).
 ここで、遠隔点検装置100は、5階DN乗場呼びを発生させたとする。かご10は、5階DN乗場呼びに応答するために、走行を開始する。これにより、時刻t1において、かご10の位置は1階のドアゾーン外となり、DZ信号がON状態からOFF状態に変化する。 Here, let us assume that the remote inspection device 100 generates a DN hall call for the 5th floor. The car 10 starts running to respond to the DN hall call for the 5th floor. As a result, at time t1, the position of the car 10 is outside the door zone for the 1st floor, and the DZ signal changes from the ON state to the OFF state.
 かご10が走行を開始すると、かご10は加速走行状態となる。時刻t2において、かご10の速度が定格速度に到達すると、かご10は、加速走行状態から定速走行状態に変化する。時刻t1から時間TU12が経過した時刻t3において、かご10の位置は2階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。さらに、時刻t4において、かご10の位置は2階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 When the cage 10 starts to move, the cage 10 enters an accelerating state. At time t2, when the speed of the cage 10 reaches the rated speed, the cage 10 changes from an accelerating state to a constant speed state. At time t3, which is a time TU12 that has passed since time t1, the cage 10 is located within the door zone on the second floor, and the DZ signal changes from the OFF state to the ON state. Furthermore, at time t4, the cage 10 is located outside the door zone on the second floor, and the DZ signal changes from the ON state to the OFF state.
 時刻t3から時間TU23が経過した時刻t5において、かご10の位置は3階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t6において、かご10の位置は3階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 At time t5, when time TU23 has elapsed since time t3, the position of the car 10 is within the door zone of the third floor, and the DZ signal changes from OFF to ON. At time t6, the position of the car 10 is outside the door zone of the third floor, and the DZ signal changes from ON to OFF.
 時刻t5から時間TU34が経過した時刻t7において、かご10の位置は4階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t8において、かご10の位置は4階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 At time t7, when time TU34 has elapsed since time t5, the position of the cage 10 is within the door zone of the fourth floor, and the DZ signal changes from OFF to ON. At time t8, the position of the cage 10 is outside the door zone of the fourth floor, and the DZ signal changes from ON to OFF.
 時刻t9において、5階に停止するために、かご10は定速走行状態から減速走行状態に変化する。時刻t7から時間TU45が経過した時刻t10において、かご10の位置は5階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。かご10は、5階に停止し、かご速度は0となる(停止状態となる)。時刻t11において、かご10の速度は0であり、DZ信号はON状態である。 At time t9, car 10 changes from a constant speed traveling state to a decelerating traveling state in order to stop on the fifth floor. At time t10, which is a time TU45 that has passed since time t7, car 10 is located within the door zone of the fifth floor, and the DZ signal changes from OFF to ON. Car 10 stops on the fifth floor, and the car speed becomes 0 (stopped state). At time t11, the speed of car 10 is 0, and the DZ signal is ON.
 次に、図16では、1階UP乗場呼びにより、かご10が5階から1階に走行するケースについて説明する。時刻t0において、かご10は、5階に停止している。このとき、かご10の位置は5階のドアゾーン内にあり(DZ信号がON状態)、かご10の速度は0である(かご10は停止状態)。 Next, in Figure 16, we will explain the case where car 10 travels from the 5th floor to the 1st floor in response to a call from the 1st floor UP hall. At time t0, car 10 is stopped on the 5th floor. At this time, the position of car 10 is within the door zone of the 5th floor (DZ signal is ON), and the speed of car 10 is 0 (car 10 is stopped).
 ここで、遠隔点検装置100が1階UP乗場呼びを発生(指示部155が1階UP乗場呼びを送信)させたとする。かご10は、1階UP乗場呼びに応答するために、走行を開始する。これにより、時刻t1において、かご10の位置は5階のドアゾーン外となり、DZ信号がON状態からOFF状態に変化する。 Now, let us assume that the remote inspection device 100 generates a 1st floor UP platform call (the instruction unit 155 transmits a 1st floor UP platform call). The car 10 starts running to respond to the 1st floor UP platform call. As a result, at time t1, the position of the car 10 is outside the door zone of the 5th floor, and the DZ signal changes from the ON state to the OFF state.
 かご10が走行を開始すると、かご10は加速走行状態となる。時刻t2において、かご10の速度が定格速度に到達すると、かご10は、加速走行状態から定速走行状態に変化する。時刻t1から時間TD54が経過した時刻t3において、かご10の位置は4階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。さらに、時刻t4において、かご10の位置は4階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 When the cage 10 starts to move, the cage 10 enters an accelerating state. At time t2, when the speed of the cage 10 reaches the rated speed, the cage 10 changes from an accelerating state to a constant speed state. At time t3, which is a time TD54 that has passed since time t1, the cage 10 is located within the door zone of the fourth floor, and the DZ signal changes from the OFF state to the ON state. Furthermore, at time t4, the cage 10 is located outside the door zone of the fourth floor, and the DZ signal changes from the ON state to the OFF state.
 時刻t3から時間TD43が経過した時刻t5において、かご10の位置は3階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t6において、かご10の位置は3階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 At time t5, when time TD43 has elapsed since time t3, the position of car 10 is within the door zone of the third floor, and the DZ signal changes from OFF to ON. At time t6, the position of car 10 is outside the door zone of the third floor, and the DZ signal changes from ON to OFF.
 時刻t5から時間TD32が経過した時刻t7において、かご10の位置は2階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t8において、かご10の位置は2階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。 At time t7, when time TD32 has elapsed since time t5, the position of the car 10 is within the door zone of the second floor, and the DZ signal changes from OFF to ON. At time t8, the position of the car 10 is outside the door zone of the second floor, and the DZ signal changes from ON to OFF.
 時刻t9において、1階に停止するために、かご10は定速走行状態から減速走行状態に変化する。時刻t7から時間TD21が経過した時刻t10において、かご10の位置は1階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。かご10は、1階に停止し、かご速度は0となる(停止状態となる)。時刻t11において、かご10の速度は0であり、DZ信号はON状態である。 At time t9, car 10 changes from a constant speed traveling state to a decelerating traveling state in order to stop on the first floor. At time t10, which is a time TD21 that has passed since time t7, car 10 is located within the door zone on the first floor, and the DZ signal changes from OFF to ON. Car 10 stops on the first floor, and the car speed becomes 0 (stopped state). At time t11, the speed of car 10 is 0, and the DZ signal is ON.
 次に、乗場呼び信号と診断用運転との関係について説明する。図17~20は、診断用運転を説明するための図である。診断用運転は、診断用運転Aと診断用運転Bとを含む。診断用運転Aは、5階DN乗場呼び信号、1階UP乗場呼び信号、5階DN乗場呼び信号を順に送信することで、かご10を5階から1階に走行させた後に1階から5階に走行させる往復運転である。診断用運転Bは、1階UP乗場呼び信号、5階DN乗場呼び信号、1階UP乗場呼び信号を順に送信することで、かご10を1階から5階に走行させた後に5階から1階に走行させる往復運転である。 Next, the relationship between the hall call signal and the diagnostic operation will be described. Figures 17 to 20 are diagrams for explaining the diagnostic operation. The diagnostic operation includes diagnostic operation A and diagnostic operation B. Diagnostic operation A is a round-trip operation in which the car 10 runs from the 5th floor to the 1st floor and then runs from the 1st floor to the 5th floor by sequentially transmitting a 5th floor DN hall call signal, a 1st floor UP hall call signal, and a 5th floor DN hall call signal. Diagnostic operation B is a round-trip operation in which the car 10 runs from the 1st floor to the 5th floor and then runs from the 5th floor to the 1st floor by sequentially transmitting a 1st floor UP hall call signal, a 5th floor DN hall call signal, and a 1st floor UP hall call signal.
 図17、図18を用いて、診断用運転Aを説明する。診断用運転Aにおいて、第1送信処理が行われた後に、第2送信処理が行わる。図17に示すように、時刻t0において、かご10は、2階に停止している。時刻t1において、遠隔点検装置100は、1階UP乗場呼び91を発生させる。時刻t2において、かご10は、1階UP乗場呼び91に応答するため、1階に向けてDN方向に走行している。 Diagnostic operation A will be explained using Figures 17 and 18. In diagnostic operation A, the first transmission process is performed, followed by the second transmission process. As shown in Figure 17, at time t0, the car 10 is stopped at the second floor. At time t1, the remote inspection device 100 generates a first floor UP hall call 91. At time t2, the car 10 is traveling in the DN direction toward the first floor to respond to the first floor UP hall call 91.
 時刻t3において、かご10は、1階に到着する。遠隔点検装置100は、時刻t3から30秒経過した時刻t4において、5階DN乗場呼び92を発生させる。なお、かご10のかご位置が1階である場合は、1階UP乗場呼び91を発生させることなく、5階DN乗場呼び92を発生させればよい。 At time t3, car 10 arrives at the first floor. At time t4, 30 seconds after time t3, the remote inspection device 100 generates a 5th floor DN hall call 92. Note that if car 10 is located on the first floor, the 5th floor DN hall call 92 should be generated without generating a 1st floor UP hall call 91.
 図18に示すように、時刻t5において、かご10は、5階DN乗場呼び92に応答するため、5階に向けてUP方向に走行している。時刻t6において、かご10は、5階DN乗場呼び92に応答し、5階で到着する。 As shown in FIG. 18, at time t5, car 10 is traveling in the UP direction toward the 5th floor to respond to the 5th floor DN hall call 92. At time t6, car 10 responds to the 5th floor DN hall call 92 and arrives at the 5th floor.
 遠隔点検装置100は、時刻t6から30秒経過した時刻t7において、1階UP乗場呼び91を発生させる。時刻t8において、かご10は、1階UP乗場呼び91に応答するため、1階に向けてDN方向に走行している。時刻t9において、かご10は、1階で停止する。 The remote inspection device 100 generates a 1st floor UP hall call 91 at time t7, 30 seconds after time t6. At time t8, the car 10 is traveling in the DN direction toward the 1st floor to respond to the 1st floor UP hall call 91. At time t9, the car 10 stops at the 1st floor.
 以上のような手順により、かご10は、時刻t4~t9で、最下階(1階)と最上階(5階)との間を往復運転する。 By following the above procedure, car 10 travels back and forth between the bottom floor (first floor) and the top floor (fifth floor) between times t4 and t9.
 次に、図19、図20を用いて、診断用運転Bを説明する。診断用運転Bにおいて、第2送信処理が行われた後に、第1送信処理が行われる。図19に示すように、時刻t0において、かご10は、4階に停止している。時刻t1において、遠隔点検装置100は、5階DN乗場呼び92を発生させる。時刻t2において、かご10は、5階DN乗場呼び92に応答するため、5階に向けてUP方向に走行している。 Next, diagnostic operation B will be explained using Figures 19 and 20. In diagnostic operation B, the second transmission process is performed, followed by the first transmission process. As shown in Figure 19, at time t0, the car 10 is stopped at the fourth floor. At time t1, the remote inspection device 100 generates a fifth floor DN hall call 92. At time t2, the car 10 is traveling in the UP direction toward the fifth floor to respond to the fifth floor DN hall call 92.
 時刻t3において、かご10は、5階に到着する。遠隔点検装置100は、時刻t3から30秒経過した時刻t4において、1階UP乗場呼び91を発生させる。なお、かご10のかご位置が5階である場合は、5階DN乗場呼び92を発生させることなく、1階UP乗場呼び91を発生させればよい。 At time t3, car 10 arrives at the fifth floor. At time t4, 30 seconds after time t3, the remote inspection device 100 generates a first floor UP platform call 91. Note that if car 10 is located on the fifth floor, the first floor UP platform call 91 should be generated without generating a fifth floor DN platform call 92.
 図20に示すように、時刻t5において、かご10は、1階UP乗場呼び91に応答するため、1階に向けてDN方向に走行している。時刻t6において、かご10は、1階に到着する。 As shown in FIG. 20, at time t5, car 10 is traveling in the DN direction toward the first floor to respond to a call 91 at the first floor UP hall. At time t6, car 10 arrives at the first floor.
 遠隔点検装置100は、時刻t6から30秒経過した時刻t7において、5階DN乗場呼び92を発生させる。時刻t8において、かご10は、5階DN乗場呼び92に応答するため、5階に向けてUP方向に走行している。時刻t9において、かご10は、5階に到着する。 The remote inspection device 100 generates a 5th floor DN hall call 92 at time t7, 30 seconds after time t6. At time t8, the car 10 is traveling in the UP direction toward the 5th floor to respond to the 5th floor DN hall call 92. At time t9, the car 10 arrives at the 5th floor.
 以上のような手順により、かご10は、時刻t4~t9で、最下階(1階)と最上階(5階)との間を往復運転する。 By following the above procedure, car 10 travels back and forth between the bottom floor (first floor) and the top floor (fifth floor) between times t4 and t9.
 以下、フローチャートを用いて走行状態の判定方法について説明する。図21は、運転診断時処理のフローチャートである。図11に示したように、運転診断時処理は、遠隔運転処理のS102において実行される。つまり、図10に示した表示画面421において、「手動運転診断」釦がクリックされたか、設定された運転診断設定時刻(たとえば、毎月23日の23時59分)になった場合に、運転診断時処理が実行される。 Below, a method for determining the driving state will be explained using a flowchart. Figure 21 is a flowchart of the driving diagnosis process. As shown in Figure 11, the driving diagnosis process is executed in S102 of the remote driving process. In other words, the driving diagnosis process is executed when the "Manual Driving Diagnosis" button is clicked on the display screen 421 shown in Figure 10 or when the set driving diagnosis time (for example, 11:59 p.m. on the 23rd of each month) is reached.
 運転診断時処理が開始すると、制御部152は、S301において、走行発生処理を実行する。後述するように、走行発生処理において、制御部152は、複数の乗場呼び信号を生成させる。指示部155は、生成された乗場呼び信号を順次送信する送信処理を行い、これにより診断用運転が実行される。制御部152は、送信処理による診断用運転時に取得部151によって取得された判定用信号に基づき、かご10のかご位置、走行時間、走行状態等を算出する。 When the driving diagnosis process starts, the control unit 152 executes a driving generation process in S301. As described below, in the driving generation process, the control unit 152 generates a plurality of hall call signals. The instruction unit 155 executes a transmission process to sequentially transmit the generated hall call signals, thereby executing the diagnostic driving. The control unit 152 calculates the cage position, driving time, driving state, etc. of the cage 10 based on the judgment signal acquired by the acquisition unit 151 during the diagnostic driving by the transmission process.
 制御部152は、S302において、強制停止階を除き、最上階(1階)と最下階(5階)との間の途中階(2階~4階)の停止がなかったか否かを判定する。制御部152は、強制停止階を除き、途中階の停止がなかったと判定した場合(S302でYES)、処理をS303に進める。制御部152は、強制停止階を除き、途中階の停止がなかったと判定しなかった場合(S302でNO)、処理をS305に進める。 In S302, the control unit 152 determines whether there were no stops at any intermediate floors (2nd to 4th floors) between the top floor (1st floor) and the bottom floor (5th floor), excluding the forced stop floor. If the control unit 152 determines that there were no stops at any intermediate floors, excluding the forced stop floor (YES in S302), the process proceeds to S303. If the control unit 152 does not determine that there were no stops at any intermediate floors, excluding the forced stop floor (NO in S302), the process proceeds to S305.
 制御部152は、S303において、判定処理を実行する。後述するように、走行発生処理において、制御部152は、走行状態(加速走行状態、定速走行状態、減速走行状態の各々)が、正常状態または変調状態であるか否かを判定する。 The control unit 152 executes a determination process in S303. As described below, in the driving occurrence process, the control unit 152 determines whether the driving state (each of the accelerating driving state, the constant speed driving state, and the decelerating driving state) is a normal state or a modulated state.
 制御部152は、S304において、加速走行状態、定速走行状態、減速走行状態の全ての状態を判定済みであるか否かを判定する。制御部152は、全ての状態を判定済みであると判定した場合(S304でYES)、運転診断時処理を終了する。 In S304, the control unit 152 determines whether or not all of the accelerating driving state, the constant speed driving state, and the decelerating driving state have been determined. If the control unit 152 determines that all of the states have been determined (YES in S304), it ends the driving diagnosis process.
 一方、制御部152は、全ての状態を判定済みであると判定しなかった場合(S304でNO)、処理をS305に進める。制御部152は、S305において、判定のキャンセル処理を実行する。判定のキャンセル処理において、既に行った走行状態の判定がある場合は、これを取り消す。 On the other hand, if the control unit 152 has not determined that all states have been determined (NO in S304), the process proceeds to S305. In S305, the control unit 152 executes a process to cancel the determination. In the process of canceling the determination, if there is a determination of a driving state that has already been performed, this determination is cancelled.
 制御部152は、S306において、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたか否かを判定する。制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたと判定した場合(S306でYES)、処理をS307に進める。制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたと判断されなかった場合(S306でNO)、処理をS308に進める。 In S306, the control unit 152 determines whether the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process. If the control unit 152 determines that the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process (YES in S306), the control unit 152 advances the process to S307. If the control unit 152 does not determine that the judgment of the judgment process has been canceled 10 consecutive times by the cancellation process (NO in S306), the control unit 152 advances the process to S308.
 制御部152は、S307において、走行状態(加速走行状態、定速走行状態、減速走行状態)の判定が判定不能である旨を設定し、運転診断時処理を終了する。制御部152は、S308において、待ち処理(3分)を実行し、処理をS301に戻す。これにより、3分の待ち時間経過後に走行発生処理と判定処理が再度行われる。 In S307, the control unit 152 sets the determination of the driving state (accelerating driving state, constant speed driving state, decelerating driving state) to the effect that it is impossible to determine, and ends the driving diagnosis processing. In S308, the control unit 152 executes a waiting process (3 minutes) and returns the processing to S301. As a result, the driving occurrence process and the determination process are performed again after the 3-minute waiting time has elapsed.
 以上説明したように、制御部152は、送信処理に基づき1階と5階との間を走行しているかご10が1階と5階との間の階床で停止した場合、判定処理の判定をキャンセルするキャンセル処理を行う。ここでキャンセルされるのは、走行発生処理において実行される乗場呼び信号の送信処理に基づいて実行される判定処理の判定である。 As described above, when the car 10 traveling between the first and fifth floors based on the transmission process stops at a floor between the first and fifth floors, the control unit 152 performs a cancellation process to cancel the judgment of the judgment process. What is canceled here is the judgment of the judgment process executed based on the transmission process of the hall call signal executed in the travel generation process.
 キャンセル処理が行われた場合、指示部155は、キャンセル処理から特定時間(3分)の経過後に、走行発生処理において乗場呼び信号の送信処理を再度行う。制御部152は、再度行われた送信処理に基づき判定処理を再度行う。なお、UP方向またはDN方向の片方の走行方向のみ途中階に停止した場合は、途中階に停止した走行方向のみについて再度やり直してもよい。 When a cancellation process is performed, the instruction unit 155 performs the transmission process of the hall call signal again in the running generation process after a specific time (3 minutes) has elapsed since the cancellation process. The control unit 152 performs the judgment process again based on the transmission process that was performed again. Note that, if only one of the running directions, the UP direction or the DN direction, stops at an intermediate floor, the process may be repeated only for the running direction that stopped at the intermediate floor.
 このようにキャンセル処理を行うのは、途中階に停止してしまった場合、走行状態の判定処理において、1階と5階との間の走行時間が妥当であるかどうか判定が行えないからである。また、かご呼び釦の状態の判定および乗場呼び釦の状態の判定を行うような場合には、1階と5階との間で利用客によって押されたかご呼び釦あるいは乗場呼び釦によってかご10が停止したのか、かご呼び釦あるいは乗場呼び釦の不具合によってかご10が停止したのか判別がつかないため、キャンセル処理を行った上で再度走行発生処理および判定処理により再確認するようにしている。 The reason for this cancellation process is that if the car stops at an intermediate floor, it is not possible to determine whether the travel time between the first and fifth floors is appropriate in the travel status determination process. Also, when determining the state of the car call button and the state of the hall call button, it is not possible to determine whether car 10 stopped between the first and fifth floors due to a car call button or hall call button pressed by a passenger, or due to a malfunction of the car call button or hall call button. Therefore, after the cancellation process is performed, the travel occurrence process and determination process are performed again to check again.
 また、利用客が登録した他の乗場呼びにかご10が応答してしまったような場合には、全ての走行状態の判定が行えないことがある(S304でYES)。このような場合にも、キャンセル処理を行った上で再度走行発生処理および判定処理を実行するようにしている。 Also, if car 10 responds to another hall call registered by the user, it may not be possible to determine all running conditions (YES in S304). In such cases, the system performs a cancellation process and then executes the running generation process and determination process again.
 ただし、制御部152は、1階と5階との間の階床が強制停止階に設定されている場合、強制停止階にかご10が停止してもキャンセル処理を行わない。かご10は、強制停止階に必ず停止し、強制停止階への停止は変調状態か否かの判定とは無関係であるためである。このため、1階から5階までの走行時間の判定においては、強制停止階への停止も含めて事前に基準時間等を設定するようにすればよい(強制停止階に停止することを前提とした走行時間を設定する)。あるいは、強制停止階前後の階床間の走行時間を除外して判定処理を行うようにしてもよい。 However, if a floor between the first and fifth floors is set as a forced stop floor, the control unit 152 will not perform cancellation processing even if the car 10 stops at the forced stop floor. This is because the car 10 always stops at a forced stop floor, and stopping at a forced stop floor is unrelated to the determination of whether or not the car is in a modulated state. For this reason, when determining the running time from the first to fifth floors, a reference time or the like can be set in advance, including stopping at a forced stop floor (a running time is set on the assumption that the car will stop at a forced stop floor). Alternatively, the determination processing can be performed excluding the running time between the floors before and after the forced stop floor.
 制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされた場合、判定処理による判定が不能である旨を設定する。なお、診断用運転が30分以上開始できないような場合にも、判定処理による判定が不能である旨を設定すればよい。 If the judgment of the judgment process is canceled by the cancellation process ten times in a row, the control unit 152 sets that judgment by the judgment process is impossible. Note that if the diagnostic operation cannot be started for 30 minutes or more, it may also be set that judgment by the judgment process is impossible.
 診断用運転は、利用者がいない深夜等に実行される。この時間帯にたまたま利用者がいた場合、利用者によってかご呼びまたは乗場呼びが作られて、途中階に停止する可能性がある。この場合は、1階~5階の各階床間の走行時間が正しく計測できないので、キャンセル処理を行って再度判定を行えばよい。このような状況下では、10回連続で利用者によってかご呼びまたは乗場呼びが作られて、途中階に停止する可能性は限りなくゼロに近い。しかし、10回連続で途中階に停止した場合は、何らかの不具合が生じている可能性がある。 Diagnostic runs are performed late at night, when there are no passengers. If there happen to be passengers during this time, they may make a car or hall call, which may cause the train to stop at an intermediate floor. In this case, the travel time between the first to fifth floors cannot be measured correctly, so a cancellation process can be performed and the train judged again. In these circumstances, the possibility of passengers making a car or hall call 10 times in a row, causing the train to stop at an intermediate floor, is close to zero. However, if the train stops at an intermediate floor 10 times in a row, this may be due to some kind of malfunction.
 判定処理による判定が不能である旨が設定された場合、保守員は端末400上でその旨を確認することができる。この場合、たとえば、途中階の乗場呼び釦またはかご呼び釦が押し込まれる不具合が発生して、常時これらの釦からのON信号が送信されている可能性がある。このため、保守員は現場に出向いてその状況を確認する。確認した結果、不具合が解消された場合は、表示画面421の「手動運転診断」釦(図10参照)をクリックして手動による運転診断を行えばよい。 If it is set that the judgment process cannot make a judgment, the maintenance staff can confirm this on the terminal 400. In this case, for example, a malfunction may have occurred in which a hall call button or car call button at an intermediate floor is pressed in, and ON signals may be constantly being sent from these buttons. For this reason, the maintenance staff will go to the site to check the situation. If the malfunction is resolved as a result of the check, a manual operation diagnosis can be performed by clicking the "Manual operation diagnosis" button (see Figure 10) on the display screen 421.
 図22は、走行発生処理のフローチャートである。運転診断時処理が開始すると、制御部152は、S401において、乗場呼び信号生成テーブルに基づき、発生させる乗場呼び信号の生成および待時間TWの設定をする。 FIG. 22 is a flowchart of the driving generation process. When the driving diagnosis process starts, in S401, the control unit 152 generates the hall call signal to be generated and sets the waiting time TW based on the hall call signal generation table.
 図23は、乗場呼び信号生成テーブルの一例である。乗場呼び信号生成テーブルには、現在のかご10のかご位置に基づき、発生させるべき複数の乗場呼び信号、および、次の乗場呼び信号を送信する際の待時間TWが規定されている。 FIG. 23 is an example of a platform call signal generation table. The platform call signal generation table specifies multiple platform call signals to be generated based on the current cage position of cage 10, and the waiting time TW for transmitting the next platform call signal.
 本実施の形態において、指示部155は、かご10が第1階床(最下階=1階)よりも第2階床(最上階=5階)に近い位置にいる場合は、まず、かご10を乗場呼びにより第2階床に走行させた後に第1階床に走行させる第2送信処理を行う。ただし、かご10が最初から第2階床にいる場合は、第2階床に走行させる必要はない。 In this embodiment, when the car 10 is located closer to the second floor (top floor = 5th floor) than to the first floor (lowest floor = 1st floor), the instruction unit 155 first performs a second transmission process in which the car 10 runs to the second floor in response to a hall call, and then runs to the first floor. However, if the car 10 is located on the second floor from the beginning, there is no need to run it to the second floor.
 指示部155は、かご10が第2階床(最上階=5階)よりも第1階床(最下階=1階)に近い位置にいる場合は、まず、かご10を乗場呼びにより第1階床に走行させた後に第2階床に走行させる第1送信処理を行う。ただし、かご10が最初から第1階床にいる場合は、第1階床に走行させる必要はない。このように、現在のかご位置に近い階床の乗場呼びに応答させた方が、診断用運転に必要なかご10の動作が必要最低限になる(運転診断に必要な電力コストが低くなる)。 If the car 10 is closer to the first floor (lowest floor = 1st floor) than to the second floor (top floor = 5th floor), the instruction unit 155 first performs a first transmission process to run the car 10 to the first floor in response to a hall call, and then to the second floor. However, if the car 10 is on the first floor from the beginning, there is no need to run it to the first floor. In this way, responding to a hall call on a floor closer to the current car position minimizes the operation of the car 10 required for diagnostic operation (the power cost required for operation diagnosis is lower).
 本実施の形態では、かご10が中間階にいるときは、指示部155は、第2送信処理を行うものとする。ここで、「中間階」とは、第1階床(最下階=1階)と第2階床(最上階=5階)との間のちょうど中間に位置する階床を指す。本例では、1階からも5階からもそれぞれ2階床離れた3階が中間階となる。 In this embodiment, when the car 10 is at an intermediate floor, the instruction unit 155 performs the second transmission process. Here, the "intermediate floor" refers to a floor located exactly halfway between the first floor (lowest floor = 1st floor) and the second floor (top floor = 5th floor). In this example, the intermediate floor is the third floor, which is two floors away from both the first and fifth floors.
 具体的には、かご位置が、中間階以上であって最上階以外である場合は、かご10に、図19、図20で示した診断用運転Bの動作を行わせる。まず、指示部155は、最上階(5階)DN乗場呼び信号を送信する。かご10が最上階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最下階(1階)UP乗場呼び信号を送信する。かご10が最下階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最上階DN乗場呼び信号を送信する。これにより、かご10は、最下階と最上階の間を往復する。 Specifically, if the car position is an intermediate floor or higher but not the top floor, the car 10 is made to perform diagnostic operation B shown in Figures 19 and 20. First, the instruction unit 155 transmits a top floor (fifth floor) DN hall call signal. When the car 10 arrives at the top floor, the instruction unit 155 transmits a bottom floor (first floor) UP hall call signal after a waiting time TW (30 seconds) from arrival. When the car 10 arrives at the bottom floor, the instruction unit 155 transmits a top floor DN hall call signal after a waiting time TW (30 seconds) from arrival. This causes the car 10 to shuttle between the bottom floor and the top floor.
 到着から30秒待ってから乗場呼びを発生させるのは、運転診断用に発生させた乗場呼び以外の呼びが発生していないことを確認するためである。運転診断は、利用客がエレベータを利用していない前提で実施される。利用客がいない場合、かご10は、運転診断用に発生させた乗場呼びに応答して、戸開および戸閉した後、到着から30秒以内に利用可能になるはずである。この場合、次の乗場呼びが発生しない限り、かご10は到着階で停止し続けるはずである。 The reason for waiting 30 seconds after arrival before issuing a hall call is to confirm that no calls other than the hall call generated for the operation diagnosis are occurring. The operation diagnosis is performed under the assumption that no passengers are using the elevator. If there are no passengers, car 10 should be available within 30 seconds of arrival after opening and closing the doors in response to the hall call generated for the operation diagnosis. In this case, car 10 should continue to stop at the arrival floor unless the next hall call occurs.
 逆に言えば、到着から30秒経過する前に、かご10が走行を開始した場合、利用者による呼びの登録または不具合によりいずれかの階床で呼びの登録が発生している可能性がある。このような状況を検知するために、本実施の形態においては、到着から待時間TW(30秒)後に次の乗場呼びを発生させるようにしている。本実施の形態において、到着から30秒より前にかご10が動き出した場合は、判定のキャンセル処理(S305)が実行されるように構成される。 In other words, if the car 10 starts moving before 30 seconds have elapsed since arrival, there is a possibility that a call has been registered at one of the floors due to a user's call or a malfunction. In order to detect such a situation, in this embodiment, the next hall call is generated after the waiting time TW (30 seconds) from arrival. In this embodiment, if the car 10 starts moving before 30 seconds from arrival, a cancellation process of the judgment (S305) is executed.
 本実施の形態において、ある階床に「到着」したとは、その階床においてドアゾーン内に入ったタイミング(DZ信号がOFF状態からON状態に変化したタイミング)を指すものとする。本実施の形態においては、DZ信号を用いた判断を行っているが、LB信号も用いて判断を行う場合は、ある階床に「到着」したとは、DZ信号がOFF状態からON状態に変化し、かつ、LB信号がON状態からOFF状態に変化したタイミング(つまり、ブレーキによりかご10が制動されたタイミング)を指すようにしてもよい。 In this embodiment, "arriving" at a certain floor refers to the timing when the car enters the door zone at that floor (the timing when the DZ signal changes from OFF to ON). In this embodiment, the judgment is made using the DZ signal, but if the judgment is also made using the LB signal, "arriving" at a certain floor may refer to the timing when the DZ signal changes from OFF to ON and the LB signal changes from ON to OFF (i.e., the timing when the car 10 is braked by the brakes).
 かご位置が、中間階より下であって最下階以外である場合は、かご10に、図17、図18で示した診断用運転Aの動作を行わせる。まず、指示部155は、最下階UP乗場呼び信号を送信する。かご10が最下階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最上階DN乗場呼び信号を送信する。かご10が最上階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最下階UP乗場呼び信号を送信する。これにより、かご10は、最下階と最上階の間を往復する。 If the cage position is below the intermediate floor and not on the lowest floor, cage 10 is made to perform diagnostic operation A shown in Figures 17 and 18. First, instruction unit 155 transmits a lowest floor UP hall call signal. When cage 10 arrives at the lowest floor, instruction unit 155 transmits a top floor DN hall call signal after waiting time TW (30 seconds) from arrival. When cage 10 arrives at the top floor, instruction unit 155 transmits a lowest floor UP hall call signal after waiting time TW (30 seconds) from arrival. As a result, cage 10 travels back and forth between the lowest floor and the top floor.
 かご位置が、最上階である場合、図19、図20で示した診断用運転Bの動作のうち、時刻t4以降の動作を行う。まず、指示部155は、最下階UP乗場呼び信号を送信する。かご10が最下階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最上階DN乗場呼び信号を送信する。 If the car is located on the top floor, the operations from time t4 onwards are carried out among the operations of diagnostic operation B shown in Figures 19 and 20. First, the instruction unit 155 transmits a lowest floor UP hall call signal. When the car 10 arrives at the lowest floor, the instruction unit 155 transmits a top floor DN hall call signal after a waiting time TW (30 seconds) from arrival.
 かご位置が、最下階である場合は、かご10は、図17、図18で示した診断用運転Aの動作のうち、時刻t4以降の動作を行う。まず、指示部155は、最上階DN乗場呼び信号を送信する。かご10が最上階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最下階UP乗場呼び信号、TW(30秒)を送信する。 If the cage is located on the bottom floor, cage 10 performs the operations of diagnostic operation A shown in Figures 17 and 18 from time t4 onwards. First, instruction unit 155 transmits a top floor DN hall call signal. When cage 10 arrives at the top floor, instruction unit 155 transmits a bottom floor UP hall call signal, TW (30 seconds), after a waiting time TW (30 seconds) from arrival.
 図22の説明に戻る。制御部152は、S402において、停止可能な階床(1階~5階)のうち、待機階設定があるか否かを判定する。制御部152は、待機階設定があると判定した場合(S402でYES)、S403において、全ての待時間TWを0秒に設定し、処理をS404に進める。制御部152は、待機階設定があると判定しなかった場合(S402でNO)、処理をS404に進める。 Returning to the explanation of FIG. 22, in S402, the control unit 152 determines whether or not there is a waiting floor set among the floors where the vehicle can stop (1st to 5th floors). If the control unit 152 determines that there is a waiting floor set (YES in S402), in S403, it sets all waiting times TW to 0 seconds and proceeds to S404. If the control unit 152 does not determine that there is a waiting floor set (NO in S402), it proceeds to S404.
 このように、制御部152は、待機階が設定されている場合は、待時間TWを0秒に設定するようにしている。たとえば、待機階が2階に設定されている場合、診断用運転により1階または5階に到着後、30秒が経過しないうちに、利用可能となったかご10が待機階である2階に走行を開始してしまう。これにより、たとえば、不具合により発生した呼びと区別がつかなくなってしまうため、誤判定が生じてしまう。本実施の形態においては、このような誤判定を防止するために、待機階が設定されている場合は、待時間TWを0秒に設定している。 In this way, the control unit 152 sets the waiting time TW to 0 seconds when a waiting floor is set. For example, if the waiting floor is set to the second floor, the car 10 that has become available will start traveling to the waiting floor, the second floor, within 30 seconds of arriving at the first or fifth floor through diagnostic operation. This will result in an erroneous judgment, for example, because it will be impossible to distinguish this from a call generated due to a malfunction. In this embodiment, in order to prevent such an erroneous judgment, the waiting time TW is set to 0 seconds when a waiting floor is set.
 指示部155は、S404において、次の乗場呼び信号の送信処理を行う。「次の乗場呼び信号」とは、次に送信すべき乗場呼び信号を指す。たとえば、図23において、現在のかご位置が中間階以上かつ最上階以下である場合、最上階DN乗場呼び信号、最下階UP乗場呼び信号、最上階DN乗場呼び信号の順で信号が送信される。S404において、いずれの乗場呼び信号も未送信であれば、1つ目の最上階DN乗場呼び信号が送信され、1つ目の最上階DN乗場呼び信号が送信済みである場合は、2つ目の最下階UP乗場呼び信号が送信され、2つ目の最下階UP乗場呼び信号も送信済みである場合は、3つ目の最上階DN乗場呼び信号が送信される。 In S404, the instruction unit 155 performs processing to transmit the next platform call signal. The "next platform call signal" refers to the platform call signal to be transmitted next. For example, in FIG. 23, if the current car position is above an intermediate floor and below the top floor, the signals are transmitted in the following order: the top floor DN platform call signal, the bottom floor UP platform call signal, and the top floor DN platform call signal. In S404, if none of the platform call signals have been transmitted, the first top floor DN platform call signal is transmitted, if the first top floor DN platform call signal has already been transmitted, the second bottom floor UP platform call signal is transmitted, and if the second bottom floor UP platform call signal has also been transmitted, the third top floor DN platform call signal is transmitted.
 制御部152は、S405において、後述するかご情報計測処理を実行する。かご情報計測処理により、制御部152は、送信処理による診断用運転時に取得部151によって取得された判定用信号に基づき、かご10のかご位置、走行時間、走行状態等を算出する。 In S405, the control unit 152 executes the cage information measurement process described below. Through the cage information measurement process, the control unit 152 calculates the cage position, running time, running state, etc. of the cage 10 based on the judgment signal acquired by the acquisition unit 151 during diagnostic operation by the transmission process.
 制御部152は、S406において、かご10が乗場呼び発生階に到着したか否かを判定する。制御部152は、かご10が乗場呼び発生階に到着したと判定した場合(S406でYES)、処理をS407に進める。制御部152は、かご10が乗場呼び発生階に到着したと判定しなかった場合(S406でNO)、処理をS406に戻す。これにより、かご10が乗場呼び発生階に到着するまで待機する。 In S406, the control unit 152 determines whether or not the car 10 has arrived at the floor where the hall call is generated. If the control unit 152 determines that the car 10 has arrived at the floor where the hall call is generated (YES in S406), the process proceeds to S407. If the control unit 152 does not determine that the car 10 has arrived at the floor where the hall call is generated (NO in S406), the process returns to S406. This causes the car 10 to wait until it arrives at the floor where the hall call is generated.
 制御部152は、S407において、全ての乗場呼び信号を送信したか否かを判定する。全ての乗場呼び信号とは、図23に示した乗場呼び信号生成テーブルにおいて送信が予定されていた全ての信号を指す。制御部152は、全ての乗場呼び信号を送信したと判定した場合(S407でYES)、運転診断時処理を終了する。制御部152は、全ての乗場呼び信号を送信したと判定しなかった場合(S407でNO)、処理をS408に進める。 In S407, the control unit 152 determines whether or not all platform call signals have been transmitted. All platform call signals refer to all signals that were scheduled for transmission in the platform call signal generation table shown in FIG. 23. If the control unit 152 determines that all platform call signals have been transmitted (YES in S407), it ends the driving diagnosis processing. If the control unit 152 does not determine that all platform call signals have been transmitted (NO in S407), it advances the processing to S408.
 制御部152は、S408において、待時間TWが経過したか否かを判定する。制御部152は、待時間TW(30秒)が経過したと判定した場合(S408でYES)、処理にS404に戻す。制御部152は、待時間TWが経過したと判定しなかった場合(S408でNO)、処理をS408に戻す。これにより、待時間TWが経過するまで待機する。これにより、乗場呼び発生階への到着後30秒待ってから、次の乗場呼び信号が送信されることになる。S404~S408の処理は、送信すべき乗場呼び信号がなくなるまで繰り返される。 In S408, the control unit 152 determines whether the waiting time TW has elapsed. If the control unit 152 determines that the waiting time TW (30 seconds) has elapsed (YES in S408), it returns the process to S404. If the control unit 152 does not determine that the waiting time TW has elapsed (NO in S408), it returns the process to S408. This causes the vehicle to wait until the waiting time TW has elapsed. This means that the next hall call signal will be transmitted 30 seconds after arrival at the hall call generating floor. The processes of S404 to S408 are repeated until there are no more hall call signals to transmit.
 図24は、かご情報計測処理のフローチャートである。かご情報計測処理が開始すると、制御部152は、S501において、SDL信号がON状態であるか否かを判定する。S501~S510の処理は、最下階(1階)から最上階(5階)までかご10が走行する場合の処理である。 FIG. 24 is a flowchart of the cage information measurement process. When the cage information measurement process starts, the control unit 152 determines in S501 whether the SDL signal is ON or not. The processes in S501 to S510 are performed when the cage 10 travels from the lowest floor (first floor) to the highest floor (fifth floor).
 制御部152は、SDL信号がON状態であると判定した場合(S501でYES)、処理をS502に進める。SDL信号がON状態である場合、かご位置が最下階(1階)であると判定できる。なお、上述のように、SDL信号を用いなくても、かご位置が最下階であるか否かの判定をすることは可能である。 If the control unit 152 determines that the SDL signal is ON (YES in S501), it advances the process to S502. If the SDL signal is ON, it can determine that the car position is on the lowest floor (first floor). As described above, it is possible to determine whether the car position is on the lowest floor or not without using the SDL signal.
 制御部152は、SDL信号がON状態であると判定しなかった場合(S501でNO)、処理をS511に進める。制御部152は、S502において、かご10の階床位置i=最下階と設定する。 If the control unit 152 does not determine that the SDL signal is ON (NO in S501), the process proceeds to S511. In S502, the control unit 152 sets the floor position i of the car 10 to the lowest floor.
 制御部152は、S503において、DZ信号がON状態からOFF状態に変化したか否かを判定する。制御部152は、DZ信号がON状態からOFF状態に変化したと判定した場合(S503でYES)、処理をS504に進める。この場合、かご10は、走行状態にある。 In S503, the control unit 152 determines whether the DZ signal has changed from an ON state to an OFF state. If the control unit 152 determines that the DZ signal has changed from an ON state to an OFF state (YES in S503), the process proceeds to S504. In this case, the car 10 is in a traveling state.
 制御部152は、DZ信号がON状態からOFF状態に変化したと判定しなかった場合(S503でNO)、処理をS503に戻す。これにより、DZ信号がON状態からOFF状態に変化するまで待機する。 If the control unit 152 does not determine that the DZ signal has changed from the ON state to the OFF state (NO in S503), the process returns to S503. This causes the control unit 152 to wait until the DZ signal changes from the ON state to the OFF state.
 制御部152は、S504において、タイマーを開始する。これにより、DZ信号がON状態からOFF状態に変化したタイミングで、1階からの走行時間の計測を開始する。なお、LB信号も使用する場合は、LB信号がOFF状態からON状態に変化した(ブレーキを開放した)タイミングで、1階からの走行時間の計測を開始してもよい。 The control unit 152 starts the timer in S504. This starts measuring the travel time from the first floor when the DZ signal changes from the ON state to the OFF state. Note that if the LB signal is also used, the measurement of the travel time from the first floor may also start when the LB signal changes from the OFF state to the ON state (the brake is released).
 制御部152は、S505において、走行方向はUP方向であるか否かを判定する。UP方向であるか否かは、UP信号に基づき判定してもよいし、UP信号を用いず、上述した別の方法により判定してもよい。 In S505, the control unit 152 determines whether the running direction is the UP direction. Whether the running direction is the UP direction may be determined based on the UP signal, or may be determined by another method described above without using the UP signal.
 制御部152は、走行方向はUP方向であると判定した場合(S505でYES)、処理をS506に進める。制御部152は、走行方向はUP方向であると判定しなかった場合(S505でNO)、かご情報計測処理を終了する。走行方向がUP方向でない場合、別の乗場呼びに応答している可能性がある。この場合、運転診断が行えないため、かご情報計測処理を終了するようにしている。 If the control unit 152 determines that the running direction is the UP direction (YES in S505), it advances the process to S506. If the control unit 152 does not determine that the running direction is the UP direction (NO in S505), it ends the car information measurement process. If the running direction is not the UP direction, there is a possibility that a response is being made to a different hall call. In this case, driving diagnosis cannot be performed, so the car information measurement process is ended.
 制御部152は、S506において、DZ信号が所定時間(たとえば、5秒)以上ON状態を継続した場合、階床位置iでの停止フラグを設定する。これにより、1階と5階との間(途中階)で停止があったか否かを判断することができる(S302)。なお、走行時間が基準時間よりも所定時間以上長くなった場合に、途中階での停止があったと判断してもよい。 In S506, if the DZ signal continues to be ON for a predetermined time (e.g., 5 seconds) or more, the control unit 152 sets a stop flag at floor position i. This makes it possible to determine whether or not the vehicle has stopped between the first and fifth floors (an intermediate floor) (S302). Note that if the travel time becomes longer than the reference time by a predetermined time or more, it may be determined that the vehicle has stopped at an intermediate floor.
 制御部152は、S507において、DZ信号がOFF状態からON状態に変化したか否かを判定する。制御部152は、DZ信号がOFF状態からON状態に変化したと判定した場合(S507でYES)、処理をS508に進める。制御部152は、DZ信号がOFF状態からON状態に変化したと判定しなかった場合(S507でNO)、処理をS505に戻す。これにより、DZ信号がON状態に変化するまで待機する。 In S507, the control unit 152 determines whether the DZ signal has changed from an OFF state to an ON state. If the control unit 152 determines that the DZ signal has changed from an OFF state to an ON state (YES in S507), the process proceeds to S508. If the control unit 152 does not determine that the DZ signal has changed from an OFF state to an ON state (NO in S507), the process returns to S505. This causes the control unit 152 to wait until the DZ signal changes to an ON state.
 制御部152は、S508において、階床位置i~i+1の走行時間、走行状態を設定する。たとえば、階床位置として1階が設定されていた場合、図15における時刻t1~時刻t3の状況がこれに相当する。DZ信号がON状態からOFF状態に変化したタイミング(図15のt1)からDZ信号がOFF状態からON状態に変化したタイミング(図15のt3)で、階床位置1階~2階の走行時間TU12およびこれに対応する走行状態(後述する)が設定される。 In S508, the control unit 152 sets the running time and running state for floor positions i to i+1. For example, if the first floor is set as the floor position, this corresponds to the situation from time t1 to time t3 in FIG. 15. The running time TU12 for floor positions 1 to 2 and the corresponding running state (described later) are set from the timing when the DZ signal changes from ON to OFF (t1 in FIG. 15) to the timing when the DZ signal changes from OFF to ON (t3 in FIG. 15).
 制御部152は、S509において、階床位置iを1つ増やす。制御部152は、S510において、階床位置iは最上階であるか否かを判定する。制御部152は、階床位置iは最上階であると判定した場合(S510でYES)、かご情報計測処理を終了する。制御部152は、階床位置iは最上階であると判定しなかった場合(S510でNO)、処理をS505に戻す。 In S509, the control unit 152 increments the floor position i by one. In S510, the control unit 152 determines whether or not the floor position i is the top floor. If the control unit 152 determines that the floor position i is the top floor (YES in S510), it ends the car information measurement process. If the control unit 152 does not determine that the floor position i is the top floor (NO in S510), it returns the process to S505.
 これにより、最下階(i=1)から最上階(i=5)について、DZ信号がOFF状態からON状態に変化するたびに、階床位置が更新されて、その都度、走行時間および走行状態が設定される。 As a result, for the lowest floor (i=1) to the highest floor (i=5), the floor position is updated every time the DZ signal changes from OFF to ON, and the running time and running state are set each time.
 たとえば、階床位置として2階が設定されていた場合、図15における時刻t3~時刻t5の状況がこれに相当する。DZ信号がOFF状態からON状態に変化したタイミング(図15のt3)から、次にDZ信号がOFF状態からON状態に変化したタイミング(図15のt5)で、階床位置2階~3階の走行時間TU23およびこれに対応する走行状態が設定される。同様にして、DZ信号がOFF状態からON状態に変化するたびに、階床位置が更新されて、階床位置3階~4階の走行時間TU34、階床位置4階~5階の走行時間TU45およびこれに対応する走行状態が設定される。 For example, if the second floor is set as the floor position, this corresponds to the situation from time t3 to time t5 in FIG. 15. From the timing when the DZ signal changes from OFF to ON (t3 in FIG. 15) to the timing when the DZ signal next changes from OFF to ON (t5 in FIG. 15), the running time TU23 for floor position 2-3 and the corresponding running state are set. Similarly, each time the DZ signal changes from OFF to ON, the floor position is updated, and running time TU34 for floor position 3-4, running time TU45 for floor position 4-5 and the corresponding running state are set.
 走行状態は、走行状態テーブルに基づき決定される。図25は、走行状態テーブルの一例である。走行状態テーブルには、走行区間と走行状態との関係が定義されている。図25の走行時間テーブルは、停止数が4停止以上の場合の走行時間テーブルの例である。本実施の形態では、1階から5階まで停止可能であるため、停止数が4停止以上である。 The driving state is determined based on a driving state table. Figure 25 is an example of a driving state table. The driving state table defines the relationship between the driving section and the driving state. The driving time table in Figure 25 is an example of a driving time table when the number of stops is four or more. In this embodiment, stops are possible from the first floor to the fifth floor, so the number of stops is four or more.
 かご10の走行方向がUP方向である場合、次のようになる。かご10の走行区間が「最下階(1階)~最下階+1(2階)」である場合、かご10の走行状態は、加速走行状態である。かご10の走行区間が「最上階-1(4階)~最上階(5階)」である場合、かご10の走行状態は、減速走行状態である。かご10の走行区間が上記以外(2階~3階、3階~4階)である場合、かご10の走行状態は、定速走行状態である。 When the running direction of the cage 10 is the UP direction, the following occurs. When the running section of the cage 10 is "lowest floor (1st floor) to lowest floor + 1 (2nd floor)", the running state of the cage 10 is an accelerating running state. When the running section of the cage 10 is "top floor - 1 (4th floor) to top floor (5th floor)", the running state of the cage 10 is a decelerating running state. When the running section of the cage 10 is other than the above (2nd floor to 3rd floor, 3rd floor to 4th floor), the running state of the cage 10 is a constant speed running state.
 図15の例で言えば、1階~2階(時刻t1~時刻t3)の走行区間における走行状態は「加速走行状態」と設定される。2階~3階(時刻t3~時刻t5)の走行区間における走行状態は「定速走行状態」と設定される。3階~4階(時刻t5~時刻t7)の走行区間における走行状態は「定速走行状態」と設定される。4階~5階(時刻t7~時刻t10)の走行区間における走行状態は「減速走行状態」と設定される。 In the example of Figure 15, the running state in the running section from the 1st to 2nd floors (time t1 to time t3) is set to an "accelerating running state". The running state in the running section from the 2nd to 3rd floors (time t3 to time t5) is set to a "constant speed running state". The running state in the running section from the 3rd to 4th floors (time t5 to time t7) is set to a "constant speed running state". The running state in the running section from the 4th to 5th floors (time t7 to time t10) is set to a "decelerating running state".
 上記で設定された走行区間における走行状態と走行時間との関係に基づき、走行状態の判定が行われる。たとえば、1階~2階の走行区間における走行時間が妥当ではない場合、「加速走行状態」は変調状態であると判定される。 The driving state is judged based on the relationship between the driving state and the driving time in the driving section set above. For example, if the driving time in the driving section from the first floor to the second floor is not valid, the "accelerated driving state" is judged to be a modulated state.
 なお、図15において、1階~2階の走行区間においては、加速走行状態と定速走行状態とを含む。本実施の形態においては、2階~3階、3階~4階の走行区間を用いて定速走行状態の判定を行う。このため、1階~2階の走行区間においては、加速走行状態の判定のみを行っている。なお、これに限らず、1階~2階の走行区間において、加速走行状態および定速走行状態の判定を行うようにしてもよい。同様に、4階~5階の走行区間においては、定速走行状態と減速走行状態とを含むが、本走行区間においては、減速走行状態の判定のみを行っている。 In FIG. 15, the travel section from the 1st to 2nd floors includes both an accelerating travel state and a constant speed travel state. In this embodiment, the constant speed travel state is determined using the travel sections from the 2nd to 3rd floors and the 3rd to 4th floors. For this reason, only the accelerating travel state is determined in the travel section from the 1st to 2nd floors. However, this is not limited to this, and it is also possible to determine the accelerating travel state and the constant speed travel state in the travel section from the 1st to 2nd floors. Similarly, the travel section from the 4th to 5th floors includes both a constant speed travel state and a decelerating travel state, but in this travel section, only the decelerating travel state is determined.
 図25に戻り、かご10の走行方向がDN方向である場合、次のようになる。かご10の走行区間が「最上階(5階)~最上階-1(4階)」である場合、かご10の走行状態は、加速走行状態である。かご10の走行区間が「最下階+1(2階)~最下階(1階)」である場合、かご10の走行状態は、減速走行状態である。かご10の走行区間が上記以外(4階~3階、3階~2階)である場合、かご10の走行状態は、定速走行状態である。これらの対応関係は、S511以降の処理において用いられる。 Returning to FIG. 25, when the running direction of the car 10 is the DN direction, the following occurs. When the running section of the car 10 is "top floor (5th floor) to top floor -1 (4th floor)", the running state of the car 10 is an accelerating running state. When the running section of the car 10 is "bottom floor +1 (2nd floor) to bottom floor (1st floor)", the running state of the car 10 is a decelerating running state. When the running section of the car 10 is other than the above (4th floor to 3rd floor, 3rd floor to 2nd floor), the running state of the car 10 is a constant speed running state. These correspondences are used in the processing from S511 onwards.
 図24に戻り、S511~S520の処理は、最上階(5階)から最下階(1階)までかご10が走行する場合の処理である(図16の例)。制御部152は、S511において、SUL信号がON状態であるか否かを判定する。 Returning to FIG. 24, the processes in S511 to S520 are those performed when the car 10 travels from the top floor (fifth floor) to the bottom floor (first floor) (example in FIG. 16). In S511, the control unit 152 determines whether the SUL signal is ON or not.
 制御部152は、SUL信号がON状態であると判定した場合(S511でYES)、処理をS512に進める。SUL信号がON状態である場合、かご位置が最下階(1階)であると判定できる。なお、上述のように、SUL信号を用いなくても、かご位置が最下階であるか否かの判定をすることは可能である。制御部152は、SUL信号がON状態であると判定しなかった場合(S511でNO)、かご情報計測処理を終了する。 If the control unit 152 determines that the SUL signal is ON (YES in S511), it advances the process to S512. If the SUL signal is ON, it can be determined that the car position is on the lowest floor (first floor). As described above, it is possible to determine whether the car position is on the lowest floor or not without using the SUL signal. If the control unit 152 does not determine that the SUL signal is ON (NO in S511), it ends the car information measurement process.
 制御部152は、S512において、かご10の階床位置iを最上階(5階)に設定する。制御部152は、S513において、DZ信号がON状態からOFF状態に変化したか否かを判定する。制御部152は、DZ信号がON状態からOFF状態に変化したと判定した場合(S513でYES)、処理をS514に進める。制御部152は、DZ信号がON状態からOFF状態に変化したと判定しなかった場合(S513でNO)、処理をS513に戻す。これにより、DZ信号がON状態からOFF状態に変化するまで待機する。 In S512, the control unit 152 sets the floor position i of the car 10 to the top floor (fifth floor). In S513, the control unit 152 determines whether the DZ signal has changed from the ON state to the OFF state. If the control unit 152 determines that the DZ signal has changed from the ON state to the OFF state (YES in S513), the process proceeds to S514. If the control unit 152 does not determine that the DZ signal has changed from the ON state to the OFF state (NO in S513), the process returns to S513. This causes the control unit to wait until the DZ signal changes from the ON state to the OFF state.
 制御部152は、S514において、タイマーを開始する。これにより、DZ信号がON状態からOFF状態に変化したタイミングで、5階からの走行時間の計測を開始する。なお、LB信号も使用する場合は、LB信号がOFF状態からON状態に変化した(ブレーキを開放した)タイミングで、5階からの走行時間の計測を開始してもよい。 The control unit 152 starts the timer in S514. This starts measuring the travel time from the fifth floor when the DZ signal changes from the ON state to the OFF state. Note that if the LB signal is also used, the measurement of the travel time from the fifth floor may also start when the LB signal changes from the OFF state to the ON state (the brake is released).
 制御部152は、S515において、走行方向はDN方向であるか否かを判定する。DN方向であるか否かは、DN信号に基づき判定してもよいし、DN信号を用いず、上述した別の方法により判定してもよい。制御部152は、走行方向はDN方向であると判定した場合(S515でYES)、処理をS516に進める。 In S515, the control unit 152 determines whether the driving direction is the DN direction. Whether the driving direction is the DN direction may be determined based on the DN signal, or may be determined by another method described above without using the DN signal. If the control unit 152 determines that the driving direction is the DN direction (YES in S515), the process proceeds to S516.
 制御部152は、走行方向はDN方向であると判定しなかった場合(S515でNO)、かご情報計測処理を終了する。走行方向がDN方向でない場合、別の乗場呼びに応答している可能性がある。この場合、診断用のデータが正常に取得できないため、処理を終了する。 If the control unit 152 does not determine that the running direction is the DN direction (NO in S515), it ends the car information measurement process. If the running direction is not the DN direction, it may be responding to a different hall call. In this case, the diagnostic data cannot be obtained normally, so the process ends.
 制御部152は、S516において、DZ信号が所定時間以上ON状態を継続した場合、階床位置iでの停止フラグを設定する。これにより、5階と1階との間(途中階)で停止があったか否かを判断することができる(S302)。 In S516, if the DZ signal continues to be ON for a predetermined time or more, the control unit 152 sets a stop flag at floor position i. This makes it possible to determine whether a stop occurred between the 5th floor and the 1st floor (an intermediate floor) (S302).
 制御部152は、S517において、DZ信号がOFF状態からON状態に変化したか否かを判定する。制御部152は、DZ信号がOFF状態からON状態に変化したと判定した場合(S517でYES)、処理をS518に進める。制御部152は、DZ信号がOFF状態からON状態に変化したと判定しなかった場合(S517でNO)、処理をS515に戻す。これにより、DZ信号がON状態に変化するまで待機する。 In S517, the control unit 152 determines whether the DZ signal has changed from an OFF state to an ON state. If the control unit 152 determines that the DZ signal has changed from an OFF state to an ON state (YES in S517), the process proceeds to S518. If the control unit 152 does not determine that the DZ signal has changed from an OFF state to an ON state (NO in S517), the process returns to S515. This causes the control unit to wait until the DZ signal changes to an ON state.
 制御部152は、S518において、階床位置i~i-1の走行時間、走行状態を設定する。制御部152は、S519において、階床位置iを1つ減らす。制御部152は、S520において、階床位置iは最下階であるか否かを判定する。制御部152は、階床位置iは最下階であると判定した場合(S520でYES)、かご情報計測処理を終了する。制御部152は、階床位置iは最下階であると判定しなかった場合(S520でNO)、処理をS515に戻す。 In S518, the control unit 152 sets the running time and running state for floor positions i to i-1. In S519, the control unit 152 decrements floor position i by one. In S520, the control unit 152 determines whether floor position i is the lowest floor. If the control unit 152 determines that floor position i is the lowest floor (YES in S520), it ends the car information measurement process. If the control unit 152 does not determine that floor position i is the lowest floor (NO in S520), it returns the process to S515.
 上記S517~S520の処理は、S507~S510の処理と同様である。図16の例で言えば、5階~4階(時刻t1~時刻t3)の走行区間における走行時間TD54が算出され、走行状態は「加速走行状態」と設定される。4階~3階(時刻t3~時刻t5)の走行区間における走行時間TD43が算出され、走行状態は「定速走行状態」と設定される。3階~2階(時刻t5~時刻t7)の走行区間における走行時間TD32が算出され、走行状態は「定速走行状態」と設定される。2階~1階(時刻t7~時刻t10)の走行区間における走行時間TD21が算出され、走行状態は「減速走行状態」と設定される。 The processing of S517 to S520 above is the same as the processing of S507 to S510. In the example of FIG. 16, the running time TD54 in the running section from the 5th floor to the 4th floor (time t1 to time t3) is calculated, and the running state is set to "accelerating running state". The running time TD43 in the running section from the 4th floor to the 3rd floor (time t3 to time t5) is calculated, and the running state is set to "constant speed running state". The running time TD32 in the running section from the 3rd floor to the 2nd floor (time t5 to time t7) is calculated, and the running state is set to "constant speed running state". The running time TD21 in the running section from the 2nd floor to the 1st floor (time t7 to time t10) is calculated, and the running state is set to "decelerating running state".
 本実施の形態においては、かご位置は、上記のように階床位置によって特定される。かご位置(階床位置)は、DZ信号がOFF状態からON状態に変化するたびに更新される。このため、UP方向とDN方向とでは階床位置が更新されるタイミングが異なることになる。たとえば、UP方向においては、2階のドアゾーンに入ってから3階のドアゾーンに入る直前までが、かご位置=2階と規定される。その一方、DN方向においては、2階のドアゾーンに入ってから1階のドアゾーンに入る直前までが、かご位置=2階と規定される。なお、これに限らず、階床と階床の区切りは任意に設定してもよい。たとえば、1階のドアゾーンと2階のドアゾーンとの中間位置から、2階のドアゾーンと3階のドアゾーンとの中間位置までを、かご位置=2階と規定してもよい。この中間位置は、走行時間に基づき算出してもよい。 In this embodiment, the car position is specified by the floor position as described above. The car position (floor position) is updated every time the DZ signal changes from OFF to ON. For this reason, the timing at which the floor position is updated differs between the UP direction and the DN direction. For example, in the UP direction, the car position is defined as the second floor from the time the car enters the door zone on the second floor until just before the car enters the door zone on the third floor. On the other hand, in the DN direction, the car position is defined as the second floor from the time the car enters the door zone on the second floor until just before the car enters the door zone on the first floor. However, this is not limited to this, and the division between floors may be set arbitrarily. For example, the car position may be defined as the second floor from the midpoint between the door zone on the first floor and the door zone on the second floor to the midpoint between the door zone on the second floor and the door zone on the third floor. This midpoint may be calculated based on the travel time.
 また、かご位置は、階床位置ではなく、最下階の着床位置からの距離により設定してもよい。たとえば、各階床間の距離が3mである場合、1階で停止している場合のかご位置は0m、2階で停止している場合のかご位置は3m、5階で停止している場合のかご位置は12m(3m×4)となる。 Also, the car position may be set based on the distance from the landing position on the lowest floor, rather than the floor position. For example, if the distance between each floor is 3 m, the car position when stopped on the first floor is 0 m, the car position when stopped on the second floor is 3 m, and the car position when stopped on the fifth floor is 12 m (3 m x 4).
 以上説明したように、制御部152は、DZ信号を含む情報を用いて、かご10の位置と、かご10の複数の走行状態(加速走行状態、定速走行状態、減速走行状態)の各々で走行する走行区間におけるかご10の走行時間とを算出している。そして、これらに基づき、走行状態を判断する。「DZ信号を含む情報」とは、DZ以外には、乗場呼び信号等が含まれる。あるいは、他にも、SUL信号、SDL信号、UP信号、DN信号も含み得るが、上述のようにこれらの信号を使用しなくても走行状態を判断することができる。なお、本実施の形態においては、S506,S516において、DZ信号を用いて階床位置iでの停止フラグを設定するようにしたが、これに限らず、最上階および最下階以外の階床位置iにおいて、LB信号がOFF状態(ブレーキの制動状態)である場合に、階床位置iでの停止フラグを設定するようにしてもよい。 As described above, the control unit 152 uses information including the DZ signal to calculate the position of the cage 10 and the running time of the cage 10 in the running section in which the cage 10 runs in each of the multiple running states (accelerating running state, constant speed running state, decelerating running state). Then, the running state is determined based on this. "Information including the DZ signal" includes, in addition to the DZ, a hall call signal, etc. Alternatively, it may also include the SUL signal, the SDL signal, the UP signal, and the DN signal, but as described above, the running state can be determined without using these signals. In this embodiment, the stop flag at floor position i is set using the DZ signal in S506 and S516, but this is not limited to this, and the stop flag at floor position i may be set when the LB signal is OFF (braking state) at floor position i other than the top floor and the bottom floor.
 図26は、判定処理のフローチャートである。ここでは、加速走行状態、定速走行状態、減速走行状態のそれぞれの判定が行われる。 FIG. 26 is a flowchart of the determination process. Here, the vehicle is determined to be in an accelerating state, a constant speed state, or a decelerating state.
 判定処理が開始すると、制御部152は、S601において、加速走行状態に対応する全ての走行区間で、走行時間の基準時間×90%≦走行時間の計測時間≦走行時間の基準時間×110%であるか否かを判定する。制御部152は、本条件が成立すると判定した場合(S601でYES)、処理をS602に進める。制御部152は、本条件が成立すると判定しなかった場合(S601でNO)、処理をS603に進める。制御部152は、S602において、加速走行状態が正常状態であると判定する。制御部152は、S603において、加速走行状態が変調状態であると判定する。 When the determination process starts, in S601, the control unit 152 determines whether or not reference time x 90% of driving time ≦ measured driving time ≦ reference time x 110% of driving time is true for all driving sections corresponding to the accelerating driving state. If the control unit 152 determines that this condition is true (YES in S601), the process proceeds to S602. If the control unit 152 does not determine that this condition is true (NO in S601), the process proceeds to S603. In S602, the control unit 152 determines that the accelerating driving state is normal. In S603, the control unit 152 determines that the accelerating driving state is a modulated state.
 図15、図16、図25に例示したように、UP方向における時間TU12(図15の時刻t1~時刻t3、1階~2階)と、DN方向における時間TD54(図16の時刻t1~時刻t3、5階~4階)とが上記「走行時間の計測時間」に該当する。 As shown in Figures 15, 16, and 25, the time TU12 in the UP direction (time t1 to time t3 in Figure 15, 1st floor to 2nd floor) and the time TD54 in the DN direction (time t1 to time t3 in Figure 16, 5th floor to 4th floor) correspond to the above-mentioned "measurement time of the travel time."
 また、図12の基準時間DB423に示すように、たとえば、モードAが設定されている場合、UP方向において、加速走行状態の基準時間として、予め定められた基準時間KU12が選択される。基準時間DB423に記録された基準時間は、走行時間を予め実測した値である。モードBが設定されている場合は、加速走行状態の基準時間として、基準時間KU121が選択される。このように、走行状態の判定において用いられる基準時間は、走行時間を予め実測した値から求められた値である。 Also, as shown in the reference time DB423 in FIG. 12, for example, when mode A is set, a predetermined reference time KU12 is selected as the reference time for the accelerating driving state in the UP direction. The reference time recorded in the reference time DB423 is a value obtained by actually measuring the driving time in advance. When mode B is set, the reference time KU121 is selected as the reference time for the accelerating driving state. In this way, the reference time used in determining the driving state is a value obtained from a value obtained by actually measuring the driving time in advance.
 走行状態の判定において、基準範囲は、基準時間×90%以上かつ基準時間×110%以下の範囲として設定される。上記例では、基準範囲(KU12L~KU12H)は、KU12×90%≦TU12≦KU12×110%(KU12L≦TU12≦KU12H)と定めされる。これらの値は、図10の表示画面421にも表示される。 When determining the driving condition, the reference range is set as a range between the reference time x 90% and the reference time x 110%. In the above example, the reference range (KU12L to KU12H) is set as KU12 x 90% ≤ TU12 ≤ KU12 x 110% (KU12L ≤ TU12 ≤ KU12H). These values are also displayed on the display screen 421 in Figure 10.
 ここで、法定の定期検査において、かご10の速度は、定格速度の125%以下の速度で走行すべきことが規定されている。言い換えると、走行時間は、標準走行時間の80%以上(1/1.25)であることが求められる。定期検査においては、走行時間において20%の誤差を許容しているが、本実施の形態においては、それより厳しい10%の誤差までを許容するようにしている。これにより、走行時間の妥当性を担保している。 Here, in legal periodic inspections, it is stipulated that the speed of the cage 10 must be no greater than 125% of the rated speed. In other words, the running time is required to be 80% or more (1/1.25) of the standard running time. In periodic inspections, a 20% error in running time is permitted, but in this embodiment, a stricter error of up to 10% is permitted. This ensures the validity of the running time.
 そして、判定処理において、計測したUP方向における時間TU12が基準範囲(KU12L~KU12H)内であるか否かが判断される。同様に、DN方向における時間TD54も、基準時間DB423から取得された基準時間に基づき定められた基準範囲内であるか否かが判断される。時間TU12および時間TD54のいずれもが基準範囲内であるときは、加速走行状態が正常状態であると判定され、いずれか一方でも基準範囲外であるときは、加速走行状態が変調状態であると判定される。 Then, in the judgment process, it is determined whether the measured time TU12 in the UP direction is within a reference range (KU12L to KU12H). Similarly, it is determined whether the time TD54 in the DN direction is within a reference range determined based on the reference time obtained from the reference time DB423. If both time TU12 and time TD54 are within the reference range, it is determined that the accelerating driving state is normal, and if either one is outside the reference range, it is determined that the accelerating driving state is modulated.
 制御部152は、S604において、定速走行状態に対応する全ての走行区間で、走行時間の基準時間×90%≦走行時間の計測時間≦走行時間の基準時間×110%であるか否かを判定する。制御部152は、本条件が成立すると判定した場合(S604でYES)、処理をS605に進める。制御部152は、本条件が成立すると判定しなかった場合(S604でNO)、処理をS606に進める。制御部152は、S605において、定速走行状態が正常状態であると判定する。制御部152は、S606において、定速走行状態が変調状態であると判定する。 In S604, the control unit 152 determines whether or not reference time x 90% of driving time ≦ measured driving time ≦ reference time x 110% of driving time is true for all driving sections corresponding to the constant speed driving state. If the control unit 152 determines that this condition is true (YES in S604), the process proceeds to S605. If the control unit 152 does not determine that this condition is true (NO in S604), the process proceeds to S606. In S605, the control unit 152 determines that the constant speed driving state is normal. In S606, the control unit 152 determines that the constant speed driving state is a modulated state.
 上記同様、図15、図16、図25に例示したように、UP方向における時間TU23、時間TU34(図15)と、DN方向における時間TD43、時間TD32(図16)とが「走行時間の計測時間」に該当する。これらのいずれもが基準範囲内であるときは、定速走行状態が正常状態であると判定され、いずれか一方でも基準範囲外であるときは、定速走行状態が変調状態であると判定される。 As above, as shown in Figs. 15, 16, and 25, times TU23 and TU34 in the UP direction (Fig. 15) and times TD43 and TD32 in the DN direction (Fig. 16) correspond to the "measurement time of the driving time." If any of these are within the reference range, the constant speed driving state is determined to be normal, and if any one of them is outside the reference range, the constant speed driving state is determined to be a modulated state.
 制御部152は、S607において、減速走行状態に対応する全ての走行区間で、走行時間の基準時間×90%≦走行時間の計測時間≦走行時間の基準時間×110%であるか否かを判定する。制御部152は、本条件が成立すると判定した場合(S607でYES)、処理をS608に進める。制御部152は、本条件が成立すると判定しなかった場合(S607でNO)、処理をS609に進める。制御部152は、S608において、減速走行状態が正常状態であると判定し、判定処理を終了する。制御部152は、S609において、減速走行状態が変調状態であると判定し、判定処理を終了する。 In S607, the control unit 152 determines whether or not reference time x 90% of driving time ≦ measured driving time ≦ reference time x 110% of driving time is true for all driving sections corresponding to the decelerating driving state. If the control unit 152 determines that this condition is met (YES in S607), the process proceeds to S608. If the control unit 152 does not determine that this condition is met (NO in S607), the process proceeds to S609. In S608, the control unit 152 determines that the decelerating driving state is a normal state, and ends the determination process. In S609, the control unit 152 determines that the decelerating driving state is a modulated state, and ends the determination process.
 上記同様、図15、図16、図25に例示したように、UP方向における時間TU45(図15)と、DN方向における時間TD21(図16)とが「走行時間の計測時間」に該当する。これらのいずれもが基準範囲内であるときは、減速走行状態が正常状態であると判定され、いずれか一方でも基準範囲外であるときは、減速走行状態が変調状態であると判定される。 As above, as shown in Figs. 15, 16, and 25, time TU45 in the UP direction (Fig. 15) and time TD21 in the DN direction (Fig. 16) correspond to the "measurement time of the driving time." If any of these are within the reference range, the deceleration driving state is determined to be normal, and if either one is outside the reference range, the deceleration driving state is determined to be a modulated state.
 以上説明したように、制御部152は、複数の走行状態(加速走行状態、定速走行状態、減速走行状態)の各々において、複数の走行状態の各々に対応する走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、走行時間に対応する走行状態が正常状態であると判定する一方、走行時間が基準範囲外である場合に、走行時間に対応する走行状態が変調状態であると判定する。 As described above, in each of the multiple driving states (accelerating driving state, constant speed driving state, decelerating driving state), if the driving time corresponding to each of the multiple driving states is within a reference range determined based on a predetermined reference time, the control unit 152 determines that the driving state corresponding to the driving time is a normal state, whereas if the driving time is outside the reference range, the control unit 152 determines that the driving state corresponding to the driving time is a modulated state.
 次に、変形例として、制御盤210により制御されるかご10が複数台ある場合(マルチカー)の走行状態の判定について説明する。図27は、マルチカー処理のフローチャートである。マルチカー処理は、図11の遠隔点検処理において、S101~S106の処理に代えて実行するようにしてもよい。 Next, as a modified example, a method for determining the running state when there are multiple cars 10 controlled by the control panel 210 (multi-car) will be described. Figure 27 is a flowchart of the multi-car process. The multi-car process may be executed in place of the processes S101 to S106 in the remote inspection process of Figure 11.
 制御盤210により制御されるかご10が複数台ある場合、生成された乗場呼び信号を送信する指示部155の送信処理および送信処理に基づく制御部152の判定処理を行わない。つまり、マルチカーである場合は、運転診断を実施しない。指示部155が乗場呼び信号を送信したとしても、乗場呼びに対してどのかご10が割当てられるかが分からない。たとえば、乗場呼びに対して常に1号機が割当てられるような状況も想定されるため、送信処理によって全てのかご10を自由に動作させることができない。 If there are multiple cars 10 controlled by the control panel 210, the command unit 155 does not perform the transmission process that transmits the generated hall call signal, and the control unit 152 does not perform the judgment process based on the transmission process. In other words, if there are multiple cars, the driving diagnosis is not performed. Even if the command unit 155 transmits a hall call signal, it is not known which car 10 will be assigned to the hall call. For example, since a situation in which car No. 1 is always assigned to a hall call is anticipated, it is not possible to freely operate all of the cars 10 through the transmission process.
 このため、本変形例においては、利用者が発生させた乗場呼びおよびかご呼びによって、たまたま、最下階(1階)から最上階(5階)まで走行した場合に、このときの判定用信号を取得して走行状態の判定を行うことにしている。 For this reason, in this modified example, if the train happens to travel from the lowest floor (first floor) to the highest floor (fifth floor) due to a hall call or car call generated by a user, the determination signal at this time is acquired to determine the running state.
 本変形例においては、複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置するように構成する(エレベータの号機ごとに遠隔点検装置100が設置される)。マルチカー処理は、各エレベータに対応した遠隔点検装置100ごとに実施される。マルチカー処理が開始すると、制御部152は、S701において、前回の運転診断設定時刻から所定期間(たとえば、1ヶ月)が経過したか否かを判定する。制御部152は、所定期間が経過したと判定した場合(S701でYES)、処理をS705に進める。制御部152は、所定期間が経過したと判定しなかった場合(S701でNO)、処理をS702に進める。 In this modified example, a remote inspection device 100 is installed in each of a plurality of elevators (cars 10) (a remote inspection device 100 is installed for each elevator). Multi-car processing is performed for each remote inspection device 100 corresponding to each elevator. When multi-car processing starts, the control unit 152 determines in S701 whether a predetermined period (for example, one month) has elapsed since the previous operation diagnosis setting time. If the control unit 152 determines that the predetermined period has elapsed (YES in S701), the process proceeds to S705. If the control unit 152 does not determine that the predetermined period has elapsed (NO in S701), the process proceeds to S702.
 取得部151は、S702において、制御部152が判定対象とする対象かごの判定用信号を取得する。対象かごは、遠隔点検装置100に接続されたエレベータのかご10である。制御部152は、S703において、対象かごの、最下階(1階)から最上階(5階)までのUP走行および最上階から最下階までのDN走行(これを、「往復走行」と称する)が発生したか否かを判定する。制御部152は、対象かごの往復走行が発生したと判定した場合(S703でYES)、処理をS704に進める。 In S702, the acquisition unit 151 acquires a determination signal for the target car that the control unit 152 is to determine. The target car is the elevator car 10 connected to the remote inspection device 100. In S703, the control unit 152 determines whether or not the target car has made an UP run from the lowest floor (first floor) to the top floor (fifth floor) and a DN run from the top floor to the bottom floor (this is referred to as a "round trip run"). If the control unit 152 determines that a round trip run of the target car has occurred (YES in S703), the process proceeds to S704.
 制御部152は、対象かごの往復走行が発生したと判定しなかった場合(S703でNO)、処理をS701に戻す。これにより、所定期間内において、対象かごの往復走行が発生するまで、判定用信号が取得され続ける。 If the control unit 152 does not determine that the target cage has traveled back and forth (NO in S703), it returns the process to S701. As a result, the determination signal continues to be acquired until the target cage travels back and forth within the specified period.
 制御部152は、S704において、対象かごに対する判定処理を実行し、マルチカー処理を終了する。なお、判定処理において、所定期間内に往復走行時のデータが複数セット取得された場合、最新の往復走行時のデータを用いて判定処理を行うようにしてもよい。一方、制御部152は、S705において、対象かごの各走行状態が変調状態である(加速走行状態、定速走行状態、減速走行状態のいずれもが変調状態である)と判定し、マルチカー処理を終了する。 In S704, the control unit 152 executes a judgment process for the target car and ends the multi-car processing. Note that in the judgment process, if multiple sets of data from round-trip travel are acquired within a specified period, the judgment process may be performed using the data from the most recent round-trip travel. On the other hand, in S705, the control unit 152 determines that each travel state of the target car is a modulated state (the accelerating travel state, the constant speed travel state, and the decelerating travel state are all modulated states), and ends the multi-car processing.
 このように、本実施の形態では、制御盤210により制御されるかご10が複数台ある場合、制御部152が判定対象とする対象かごにおいて、最下階から最上階まで走行、および、最上階から最下階まで走行する往復走行が行われた場合に、取得部151から取得された往復走行時の判定用信号に基づき判定処理を実行している。そして、制御部152は、対象かごにおいて所定期間内に往復走行が行われなかったときは、対象かごの複数の走行状態の各々(加速走行状態、定速走行状態、減速走行状態のいずれも)が変調状態であると判定する。管理サーバ300は、エレベータに対応した遠隔点検装置100から各かご10の判定結果を取得する。 In this embodiment, when there are multiple cages 10 controlled by the control panel 210, the control unit 152 executes a judgment process based on the judgment signal acquired from the acquisition unit 151 during round-trip travel when a target cage that is the object of judgment makes a round-trip run from the lowest floor to the top floor and from the top floor to the lowest floor. Then, when the target cage does not make a round-trip run within a specified period of time, the control unit 152 judges that each of the multiple running states of the target cage (any of an accelerating running state, a constant speed running state, and a decelerating running state) is in a modulated state. The management server 300 acquires the judgment results of each cage 10 from the remote inspection device 100 that corresponds to the elevator.
 なお、複数台のエレベータ(かご10)に対して1つの遠隔点検装置100を設置する場合は、複数のかご10の各々に対してマルチカー処理を実行すればよい。たとえば、第1かごのマルチ-カー処理を行う場合、S702において、第1かごの判定用信号を取得し、S703において、第1かごの往復走行が発生したか否かを判定するようにすればよい。 When one remote inspection device 100 is installed for multiple elevators (cars 10), multi-car processing can be performed for each of the multiple cars 10. For example, when performing multi-car processing for the first car, a determination signal for the first car is acquired in S702, and a determination is made in S703 as to whether or not the first car has made a round trip.
 また、上述の図12~図14を用いて説明したように、モードおよび季節等に応じて「走行時間(経過時間)」の基準時間を切り替え、切り替えた「走行時間(経過時間)」に基づき走行状態を判定することができる。たとえば、モードCまたはモードDが設定されている場合、油圧エレベータの油の特性が変わる温度または季節に応じた、「走行時間(経過時間)」の値を使うことができる。これにより、上述の構成(A)~(E)で示したように構成可能であるとともに、構成(A)~(E)で示した効果が奏される。 Furthermore, as explained above with reference to Figures 12 to 14, the reference time for "running time (elapsed time)" can be switched depending on the mode, season, etc., and the running state can be determined based on the switched "running time (elapsed time)". For example, when mode C or mode D is set, a value for "running time (elapsed time)" can be used depending on the temperature or season at which the characteristics of the oil in the hydraulic elevator change. This makes it possible to configure as shown in configurations (A) to (E) above, and achieves the effects shown in configurations (A) to (E).
 走行状態の判定に関し、本実施の形態における構成および効果を以下にまとめる。 The configuration and effects of this embodiment regarding determining the driving state are summarized below.
 (1) 制御部152は、DZ信号を含む情報を用いて、かご10の位置と、かご10の複数の走行状態の各々で走行する走行区間におけるかご10の走行時間とを算出する。制御部152は、複数の走行状態の各々において、複数の走行状態の各々に対応する走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、走行時間に対応する走行状態が正常状態であると判定する一方、走行時間が基準範囲外である場合に、走行時間に対応する走行状態が変調状態であると判定する。 (1) Using information including the DZ signal, the control unit 152 calculates the position of the cage 10 and the running time of the cage 10 in the running section in which the cage 10 runs in each of the multiple running states. In each of the multiple running states, when the running time corresponding to each of the multiple running states is within a reference range determined based on a predetermined reference time, the control unit 152 determines that the running state corresponding to the running time is in a normal state, whereas when the running time is outside the reference range, the control unit 152 determines that the running state corresponding to the running time is in a modulated state.
 本実施の形態においては、エレベータの安全回路を作動させるための条件判定に使用される信号(DZ信号、LB信号、DS信号、GS信号)を遠隔点検の判定用信号として使用している。また、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検の運転診断(診断用運転)用の出力信号として使用している。遠隔点検の利用に適したDZ信号、乗場呼び信号に基づき走行状態の判定を行うことで、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができる。すなわち、遠隔点検において保守のマルチブランド化を実現することができる。これにより、保守会社は、保守現場での保守点検頻度を減らすことができるとともに、保守対応可能なエレベータの台数を増やすことができる。ビルのオーナーは、自由に保守会社を選択して遠隔点検可能な保守契約を締結することができる。 In this embodiment, the signals (DZ signal, LB signal, DS signal, GS signal) used to judge the conditions for activating the elevator safety circuit are used as the judgment signals for remote inspection. Also, from the viewpoint of ease of installation (constructibility), hall calls are used instead of car calls as output signals for operation diagnosis (diagnostic operation) for remote inspection. By judging the running state based on the DZ signal and hall call signal suitable for remote inspection, remote inspection can be performed as simply as possible for various elevators with different communication specifications and signal specifications. In other words, multi-brand maintenance can be realized in remote inspection. This allows maintenance companies to reduce the frequency of maintenance inspections at the maintenance site and increase the number of elevators that can be maintained. Building owners can freely select a maintenance company and enter into a maintenance contract that allows remote inspection.
 (2) 基準時間は、走行時間を予め実測した値から求められた値である。このようにすることで、現場でのエレベータの動作状態に即した値を用いて走行状態の判定を行うことができる。 (2) The reference time is a value calculated from the actual running time measured in advance. In this way, the running state can be determined using a value that corresponds to the operating state of the elevator at the site.
 (3) 基準範囲は、基準時間×90%以上かつ基準時間×110%以下の範囲である。このように、法定の定期検査において許容される誤差(20%)より厳しい誤差(10%)までを許容することで、走行状態の妥当性を担保できる。 (3) The reference range is the range between 90% and 110% of the reference time. In this way, by allowing a stricter margin of error (10%) than the margin of error (20%) permitted in statutory periodic inspections, the validity of the driving condition can be guaranteed.
 (4) 指示部155は、かご10が1階よりも5階に近い位置にいる場合は、第2送信処理を行う。指示部155は、かご10が5階よりも1階に近い位置にいる場合は、第1送信処理を行う。このようにすることで、運転診断に必要な電力コストを抑えることができる。 (4) When the cage 10 is closer to the fifth floor than the first floor, the instruction unit 155 performs the second transmission process. When the cage 10 is closer to the first floor than the fifth floor, the instruction unit 155 performs the first transmission process. By doing this, it is possible to reduce the power costs required for operation diagnosis.
 (5) 制御部152は、送信処理に基づき1階と5階との間を走行しているかご10が1階と5階との間の階床で停止した場合、送信処理に基づく判定処理の判定をキャンセルするキャンセル処理を行う。指示部155は、キャンセル処理が行われた場合、キャンセル処理から特定時間(3分)の経過後に、送信処理を再度行う。制御部152は、再度行われた送信処理に基づき判定処理を再度行う。このようにすることで、たまたま利用客によって押されたかご呼び釦あるいは乗場呼び釦によってかご10が停止したような状況を除外し、呼び釦の不具合等によってかご10が停止したような状況を検出することができる。 (5) When the car 10 traveling between the first and fifth floors stops on a floor between the first and fifth floors based on the transmission process, the control unit 152 performs a cancellation process to cancel the judgment of the judgment process based on the transmission process. When the cancellation process is performed, the instruction unit 155 performs the transmission process again after a specific time (3 minutes) has elapsed since the cancellation process. The control unit 152 performs the judgment process again based on the transmission process that was performed again. In this way, it is possible to exclude a situation in which the car 10 has stopped due to a car call button or hall call button being pressed by chance by a passenger, and to detect a situation in which the car 10 has stopped due to a malfunction of a call button, etc.
 (6) 制御部152は、判定処理の判定がキャンセル処理によって所定回数連続でキャンセルされた場合、判定処理による判定が不能である旨を設定する。このようにすることで、呼び釦の不具合などの何らかの不具合が生じている状況を検出することができる。 (6) If the determination of the determination process is cancelled by the cancellation process a predetermined number of times in succession, the control unit 152 sets a status indicating that the determination process is impossible. In this way, it is possible to detect a situation in which some kind of malfunction, such as a malfunction of the call button, has occurred.
 (7) 制御盤210は、強制停止階が設定されている場合、かご10が強制停止階を通りかかったときに必ず強制停止階でかご10が停止するように制御する。制御部152は、1階と5階との間の階床が強制停止階に設定されている場合、強制停止階にかご10が停止してもキャンセル処理を行わない。このようにすることで、強制停止階への停止による不具合の誤検出を防止し、不具合により発生した呼び等を検出することができる。 (7) When a forced stop floor is set, the control panel 210 controls the car 10 to always stop at the forced stop floor when the car 10 passes the forced stop floor. When a floor between the first and fifth floors is set as a forced stop floor, the control unit 152 does not perform a cancellation process even if the car 10 stops at the forced stop floor. In this way, it is possible to prevent erroneous detection of a malfunction due to stopping at a forced stop floor and to detect calls, etc., that occur due to a malfunction.
 (8) かご10は、複数の階床に停止可能である。制御盤210は、待機階の設定がされている場合、かご10が利用可能であるときに、かご10を待機階に走行させた後に待機階で待機させるよう制御する。制御部152は、待機階が設定されている場合は、待時間TWを0秒に設定する。このようにすることで、待機階への走行による不具合の誤検出を防止し、不具合により発生した呼び等を検出することができる。 (8) The car 10 can stop at multiple floors. If a waiting floor is set, the control panel 210 controls the car 10 to run to the waiting floor and then wait at the waiting floor when the car 10 is available. If a waiting floor is set, the control unit 152 sets the waiting time TW to 0 seconds. This prevents erroneous detection of a malfunction due to running to a waiting floor and makes it possible to detect calls, etc., that occur due to a malfunction.
 (9) 制御部152は、制御盤210により制御されるかご10が複数台ある場合(マルチカー)、送信処理に基づく判定処理を行うことなく、判定対象とする対象かごにおいて、1階から5階まで走行、および、5階から1階まで走行する往復走行が行われた場合に、取得部151から取得された往復走行時の判定用信号に基づき判定処理を実行する。マルチカーの場合、乗場呼び信号の送信により自由に複数台のかご10を走行させることができないが、上記方法で往復走行をさせることで、走行状態の判定を行うことができる。 (9) When there are multiple cars 10 controlled by the control panel 210 (multi-car), the control unit 152 performs the judgment process based on the judgment signal acquired from the acquisition unit 151 during round-trip travel when the target car to be judged travels from the first floor to the fifth floor and from the fifth floor to the first floor, without performing the judgment process based on the transmission process. In the case of a multi-car, multiple cars 10 cannot be freely traveled by transmitting a hall call signal, but the travel state can be judged by making the car travel in a round-trip manner using the above method.
 (10) 制御部152は、制御盤210により制御されるかご10が複数台ある場合、判定対象とする対象かごにおいて所定期間内に往復走行が行われなかったときは、対象かごの複数の走行状態の各々が変調状態であると判定する。このようにすることで、マルチカーの場合に走行状態が判定できない状況を検出することができる。 (10) When there are multiple cages 10 controlled by the control panel 210, if the cage to be judged does not make a round trip within a specified period, the control unit 152 judges that each of the multiple running states of the cage to be judged is in a modulated state. In this way, it is possible to detect a situation in which the running state cannot be judged in the case of multiple cars.
 (11) 管理サーバ300は、遠隔点検装置100に対して遠隔点検の実行指令を送信可能であるとともに、遠隔点検装置100から判定結果を受信可能である。エレベータシステム200(エレベータ機器群220と制御盤210)と遠隔点検装置100とが第1国(たとえば、アメリカ)に設置され、管理サーバ300が第1国とは異なる第2国(たとえば、日本)に設置される。このようにすることで、第1国で稼働するエレベータシステム200の遠隔点検を行う遠隔点検装置100の管理を第2国の管理サーバ300にて行うことができる。これにより、いずれの国にエレベータシステム200および遠隔点検装置100が設置されているかを問わず、国を跨いで管理サーバ300により遠隔点検装置100の管理を行うことができる。 (11) The management server 300 can send a command to execute remote inspection to the remote inspection device 100 and can receive a determination result from the remote inspection device 100. The elevator system 200 (elevator equipment group 220 and control panel 210) and the remote inspection device 100 are installed in a first country (e.g., the United States), and the management server 300 is installed in a second country (e.g., Japan) different from the first country. In this manner, the management server 300 in the second country can manage the remote inspection device 100 that performs remote inspection of the elevator system 200 operating in the first country. As a result, the management server 300 can manage the remote inspection device 100 across countries, regardless of in which country the elevator system 200 and the remote inspection device 100 are installed.
 (12) 上述の図12~図14を用いて説明したように、モードおよび季節等に応じて「走行時間(経過時間)」の基準時間を切り替え、切り替えた「走行時間(経過時間)」に基づき走行状態を判定することができる。たとえば、モードCまたはモードDが設定されている場合、油圧エレベータの油の特性が変わる温度または季節に応じた、「走行時間(経過時間)」の値を使うことができる。これにより、上述の構成(A)~(E)で示したように構成可能であるとともに、構成(A)~(E)で示した効果が奏される。 (12) As explained above with reference to Figures 12 to 14, the reference time for "running time (elapsed time)" can be switched depending on the mode, season, etc., and the running state can be determined based on the switched "running time (elapsed time)." For example, when mode C or mode D is set, a value for "running time (elapsed time)" can be used depending on the temperature or season at which the characteristics of the oil in the hydraulic elevator change. This makes it possible to configure the system as shown in configurations (A) to (E) above, and achieves the effects shown in configurations (A) to (E).
 [付記]
 上述した実施形態は、以下の付記の具体例である。
[Additional Notes]
The above-described embodiment is a specific example of the following additional notes.
 (付記1)
 エレベータの遠隔点検を行うエレベータ遠隔点検システムであって、
 前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う指示部と、
 前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する取得部と、
 前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得部によって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行う制御部と、
 前記点検項目の判定結果を出力する出力部とを備え、
 前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づく前記エレベータのかごの前記第1階床への到着から所定時間経過後に、前記第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、前記第2乗場呼び信号の送信に基づく前記かごの前記第2階床への到着から前記所定時間経過後に、前記第1乗場呼び信号を送信する第2送信処理とを含み、
 前記判定用信号は、前記かごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
 前記制御部は、前記第1信号を含む情報を用いて、前記かごの位置と、前記かごの複数の走行状態の各々で走行する走行区間における前記かごの走行時間とを算出し、
 前記複数の走行状態は、前記かごが加速しながら走行する加速走行状態と、前記かごが一定速度で走行する定速走行状態と、前記かごが減速しながら走行する減速走行状態とを含み、
 前記点検項目は、前記複数の走行状態を含み、
 前記制御部は、前記複数の走行状態の各々において、前記複数の走行状態の各々に対応する前記走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、前記走行時間に対応する走行状態が正常状態であると判定する一方、前記走行時間が前記基準範囲外である場合に、前記走行時間に対応する走行状態が変調状態であると判定する、エレベータ遠隔点検システム。
(Appendix 1)
An elevator remote inspection system for remotely inspecting an elevator,
an instruction unit that performs a transmission process of transmitting a hall call signal to a device group of the elevator to generate a hall call for the elevator;
an acquisition unit that acquires, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group;
a control unit that generates the hall call signal to be transmitted by the transmission process, and performs a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquisition unit as a result of the transmission process;
An output unit that outputs a determination result of the inspection item,
the transmission process includes a first transmission process of transmitting a second hall call signal for generating a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal for generating a first hall call in an upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after the predetermined time has elapsed since the arrival of the elevator car at the second floor based on the transmission of the second hall call signal,
the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a positional range of the car in which a door of the car can be opened or closed, or a non-first state which is not the first state,
The control unit calculates a position of the car and a running time of the car in a running section in which the car runs in each of a plurality of running states, using information including the first signal;
the plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating,
The inspection items include the plurality of driving conditions,
the control unit determines that the running state corresponding to the running time is a normal state when the running time corresponding to each of the plurality of running states is within a reference range determined based on a predetermined reference time, and determines that the running state corresponding to the running time is a modulated state when the running time is outside the reference range.
 (付記2)
 前記基準時間は、前記走行時間を予め実測した値から求められた値である、付記1に記載のエレベータ遠隔点検システム。
(Appendix 2)
The elevator remote inspection system according to claim 1, wherein the reference time is a value calculated from a value obtained by measuring the running time in advance.
 (付記3)
 前記基準範囲は、前記基準時間×90%以上かつ前記基準時間×110%以下の範囲である、付記1または付記2に記載のエレベータ遠隔点検システム。
(Appendix 3)
The elevator remote inspection system according to claim 1 or 2, wherein the reference range is a range between the reference time x 90% and the reference time x 110%.
 (付記4)
 前記指示部は、
  前記かごが前記第1階床よりも前記第2階床に近い位置にいる場合は、前記第2送信処理を行い、
  前記かごが前記第2階床よりも前記第1階床に近い位置にいる場合は、前記第1送信処理を行う、付記1~付記3のいずれかに記載のエレベータ遠隔点検システム。
(Appendix 4)
The instruction unit is
When the car is located closer to the second floor than to the first floor, the second transmission process is performed;
An elevator remote inspection system as described in any one of Supplementary Note 1 to Supplementary Note 3, wherein the first transmission processing is performed when the car is located closer to the first floor than to the second floor.
 (付記5)
 前記制御部は、前記送信処理に基づき前記第1階床と前記第2階床との間を走行している前記かごが前記第1階床と前記第2階床との間の階床で停止した場合、前記送信処理に基づく前記判定処理の判定をキャンセルするキャンセル処理を行い、
 前記指示部は、前記キャンセル処理が行われた場合、前記キャンセル処理から特定時間の経過後に、前記送信処理を再度行い、
 前記制御部は、再度行われた前記送信処理に基づき前記判定処理を再度行う、付記1~付記4のいずれかに記載のエレベータ遠隔点検システム。
(Appendix 5)
the control unit, when the car traveling between the first floor and the second floor based on the transmission process stops at a floor between the first floor and the second floor, performs a cancellation process to cancel the determination of the determination process based on the transmission process,
When the cancellation process is performed, the instruction unit performs the transmission process again after a specific time has elapsed since the cancellation process;
The elevator remote inspection system according to any one of claims 1 to 4, wherein the control unit performs the determination process again based on the transmission process that has been performed again.
 (付記6)
 前記制御部は、前記判定処理の判定が前記キャンセル処理によって所定回数連続でキャンセルされた場合、前記判定処理による判定が不能である旨を設定する、付記5に記載のエレベータ遠隔点検システム。
(Appendix 6)
The control unit sets a value indicating that a judgment by the judgment process is impossible if the judgment by the judgment process is canceled by the cancellation process a predetermined number of times in succession.
 (付記7)
 前記制御盤は、強制停止階が設定されている場合、前記かごが前記強制停止階を通りかかったときに必ず前記強制停止階で前記かごが停止するように制御し、
 前記制御部は、前記第1階床と前記第2階床との間の階床が前記強制停止階に設定されている場合、前記強制停止階に前記かごが停止しても前記キャンセル処理を行わない、付記5または付記6に記載のエレベータ遠隔点検システム。
(Appendix 7)
The control panel controls the car to always stop at the mandatory stop floor when the car passes through the mandatory stop floor when a mandatory stop floor is set,
The elevator remote inspection system described in Appendix 5 or Appendix 6, wherein the control unit does not perform the cancellation process when a floor between the first floor and the second floor is set as the mandatory stop floor, even if the car stops at the mandatory stop floor.
 (付記8)
 前記かごは、複数の階床に停止可能であり、
 前記制御盤は、待機階の設定がされている場合、前記かごが利用可能であるときに、前記かごを前記待機階に走行させた後に前記待機階で待機させるよう制御し、
 前記制御部は、前記待機階が設定されている場合は、前記所定時間を0秒に設定する、付記1~付記7のいずれかに記載のエレベータ遠隔点検システム。
(Appendix 8)
The car can stop at a plurality of floors;
When a waiting floor is set, the control panel controls the car to travel to the waiting floor and then wait at the waiting floor when the car is available;
8. The elevator remote inspection system according to claim 1, wherein the control unit sets the predetermined time to 0 seconds when the waiting floor is set.
 (付記9)
 前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記送信処理に基づく前記判定処理を行うことなく、判定対象とする対象かごにおいて、前記第1階床から前記第2階床まで走行、および、前記第2階床から前記第1階床まで走行する往復走行が行われた場合に、前記取得部から取得された前記往復走行時の前記判定用信号に基づき前記判定処理を実行する、付記1~付記8のいずれかに記載のエレベータ遠隔点検システム。
(Appendix 9)
An elevator remote inspection system as described in any of Appendix 1 to Appendix 8, wherein when there are multiple cars controlled by the control panel, the control unit does not perform the judgment process based on the transmission process, but when the target car to be judged makes a round trip run from the first floor to the second floor and from the second floor to the first floor, it executes the judgment process based on the judgment signal during the round trip run acquired from the acquisition unit.
 (付記10)
 前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記対象かごにおいて所定期間内に前記往復走行が行われなかったときは、前記対象かごの前記複数の走行状態の各々が前記変調状態であると判定する、付記9に記載のエレベータ遠隔点検システム。
(Appendix 10)
The elevator remote inspection system described in Appendix 9, wherein, when there are multiple cars controlled by the control panel, when the target car does not perform the reciprocating running within a specified period of time, the control unit determines that each of the multiple running states of the target car is in the modulated state.
 (付記11)
 前記指示部と前記取得部と前記制御部と前記出力部とを含む遠隔点検装置と、
 前記遠隔点検装置とネットワークを介して接続可能であって前記遠隔点検装置を管理する管理サーバとをさらに備え、
 前記管理サーバは、前記遠隔点検装置に対して前記遠隔点検の実行指令を送信可能であるとともに、前記遠隔点検装置から前記判定結果を受信可能であり、
 前記エレベータの機器群と前記制御盤と前記遠隔点検装置とが第1国に設置されており、
 前記管理サーバが前記第1国とは異なる第2国に設置されている、付記1~付記10のいずれかに記載のエレベータ遠隔点検システム。
(Appendix 11)
A remote inspection device including the instruction unit, the acquisition unit, the control unit, and the output unit;
Further comprising a management server that can be connected to the remote inspection device via a network and manages the remote inspection device,
the management server is capable of transmitting an instruction to execute the remote inspection to the remote inspection device and receiving the determination result from the remote inspection device;
the elevator equipment group, the control panel, and the remote inspection device are installed in a first country;
11. The elevator remote inspection system according to any one of claims 1 to 10, wherein the management server is installed in a second country different from the first country.
 (付記12)
 エレベータの遠隔点検を行うエレベータ遠隔点検方法であって、
 前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、
 前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、
 前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得するステップによって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行うステップと、
 前記点検項目の判定結果を出力するステップとを備え、
 前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づく前記エレベータのかごの前記第1階床への到着から所定時間経過後に、前記第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、前記第2乗場呼び信号の送信に基づく前記かごの前記第2階床への到着から前記所定時間経過後に、前記第1乗場呼び信号を送信する第2送信処理とを含み、
 前記判定用信号は、前記かごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
 前記判定処理を行うステップは、前記第1信号を含む情報を用いて、前記かごの位置と、前記かごの複数の走行状態の各々で走行する走行区間における前記かごの走行時間とを算出するステップを含み、
 前記複数の走行状態は、前記かごが加速しながら走行する加速走行状態と、前記かごが一定速度で走行する定速走行状態と、前記かごが減速しながら走行する減速走行状態とを含み、
 前記点検項目は、前記複数の走行状態を含み、
 前記判定処理を行うステップは、前記複数の走行状態の各々において、前記複数の走行状態の各々に対応する前記走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、前記走行時間に対応する走行状態が正常状態であると判定する一方、前記走行時間が前記基準範囲外である場合に、前記走行時間に対応する走行状態が変調状態であると判定するステップをさらに含む、エレベータ遠隔点検方法。
(Appendix 12)
An elevator remote inspection method for performing remote inspection of an elevator, comprising:
performing a transmission process for transmitting a hall call signal to a device group of the elevator, the hall call signal being used to generate a hall call for the elevator;
acquiring, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group;
generating the hall call signal to be transmitted by the transmission process, and performing a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquiring step as a result of the transmission process;
and outputting a determination result of the inspection item.
the transmission process includes a first transmission process of transmitting a second hall call signal to generate a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal to generate a first hall call in an upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after the predetermined time has elapsed since the arrival of the elevator car at the second floor based on the transmission of the second hall call signal,
the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a positional range of the car in which a door of the car can be opened or closed, or a non-first state which is not the first state,
The step of performing the determination process includes a step of calculating, using information including the first signal, a position of the car and a running time of the car in a running section in which the car runs in each of a plurality of running states,
the plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating,
The inspection items include the plurality of driving conditions,
The step of performing the determination process further includes a step of determining that, in each of the plurality of running states, the running state corresponding to the running time is in a normal state when the running time corresponding to each of the plurality of running states is within a reference range determined based on a predetermined reference time, and determining that the running state corresponding to the running time is in a modulated state when the running time is outside the reference range.
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative and are not limited to the above. The scope of the present invention is defined by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
 1 遠隔点検システム、2 ビル、5 機械室、6 ピット、8 昇降路、10 かご、11 ロープ、12 カウンターウェイト、13 そらせ車、14 緩衝器、15 温度センサ、16 インターホン、21~23 制御ケーブル、31 1階かご呼び釦、32 2階かご呼び釦、33 3階かご呼び釦、34 4階かご呼び釦、35 5階かご呼び釦、50 かご操作盤、51 インジケータ、52 戸開釦、53 戸閉釦、60,61 扉、70 乗場操作盤、71 インジケータ、81 UP乗場呼び釦、82 DN乗場呼び釦、91 UP乗場呼び、92 DN乗場呼び、100 遠隔点検装置、110 制御装置、111 プロセッサ、112 メモリ、120 通信IF、130 入力IF、140 出力IF、151 取得部、152 制御部、153 出力部、154 受付部、155 指示部、156 データ群、200,200a,200b エレベータシステム、210,210a,210b 制御盤、211 群管理制御部、212 各台制御部、220,220a,210b エレベータ機器群、230 乗場装置、240 かご装置、250 巻上機、261,262 コネクタ、300 管理サーバ、400 端末、410 表示部、420 入力部、421 表示画面、422 設定データ、423 基準時間DB、424 運行履歴、425 判定結果、500 X社製遠隔点検装置、500a Y社製遠隔点検装置。 1. Remote inspection system, 2. Building, 5. Machine room, 6. Pit, 8. Hoistway, 10. Cage, 11. Rope, 12. Counterweight, 13. Deflector, 14. Buffer, 15. Temperature sensor, 16. Intercom, 21-23. Control cable, 31. 1st floor car call button, 32. 2nd floor car call button, 33. 3rd floor car call button, 34. 4th floor car call button, 3 5 5th floor car call button, 50 car operation panel, 51 indicator, 52 door open button, 53 door close button, 60, 61 door, 70 platform operation panel, 71 indicator, 81 UP platform call button, 82 DN platform call button, 91 UP platform call, 92 DN platform call, 100 remote inspection device, 110 control device, 111 processor, 112 memory, 120 Communication IF, 130 Input IF, 140 Output IF, 151 Acquisition section, 152 Control section, 153 Output section, 154 Reception section, 155 Instruction section, 156 Data group, 200, 200a, 200b Elevator system, 210, 210a, 210b Control panel, 211 Group management control section, 212 Individual unit control section, 220, 220a, 210b Elevator Equipment group, 230, landing device, 240, cage device, 250, hoist, 261, 262, connector, 300, management server, 400, terminal, 410, display unit, 420, input unit, 421, display screen, 422, setting data, 423, reference time DB, 424, operation history, 425, judgment result, 500, remote inspection device manufactured by X company, 500a, remote inspection device manufactured by Y company.

Claims (12)

  1.  エレベータの遠隔点検を行うエレベータ遠隔点検システムであって、
     前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う指示部と、
     前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する取得部と、
     前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得部によって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行う制御部と、
     前記点検項目の判定結果を出力する出力部とを備え、
     前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づく前記エレベータのかごの前記第1階床への到着から所定時間経過後に、前記第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、前記第2乗場呼び信号の送信に基づく前記かごの前記第2階床への到着から前記所定時間経過後に、前記第1乗場呼び信号を送信する第2送信処理とを含み、
     前記判定用信号は、前記かごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
     前記制御部は、前記第1信号を含む情報を用いて、前記かごの位置と、前記かごの複数の走行状態の各々で走行する走行区間における前記かごの走行時間とを算出し、
     前記複数の走行状態は、前記かごが加速しながら走行する加速走行状態と、前記かごが一定速度で走行する定速走行状態と、前記かごが減速しながら走行する減速走行状態とを含み、
     前記点検項目は、前記複数の走行状態を含み、
     前記制御部は、前記複数の走行状態の各々において、前記複数の走行状態の各々に対応する前記走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、前記走行時間に対応する走行状態が正常状態であると判定する一方、前記走行時間が前記基準範囲外である場合に、前記走行時間に対応する走行状態が変調状態であると判定する、エレベータ遠隔点検システム。
    An elevator remote inspection system for remotely inspecting an elevator,
    an instruction unit that performs a transmission process of transmitting a hall call signal to a device group of the elevator, the hall call signal being used to generate a hall call for the elevator;
    an acquisition unit that acquires, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group;
    a control unit that generates the hall call signal to be transmitted by the transmission process, and performs a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquisition unit as a result of the transmission process;
    An output unit that outputs a determination result of the inspection item,
    the transmission process includes a first transmission process of transmitting a second hall call signal for generating a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal for generating a first hall call in an upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after the predetermined time has elapsed since the arrival of the elevator car at the second floor based on the transmission of the second hall call signal,
    the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a positional range of the car in which a door of the car can be opened or closed, or a non-first state which is not the first state,
    The control unit calculates a position of the car and a running time of the car in a running section in which the car runs in each of a plurality of running states, using information including the first signal;
    the plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating,
    The inspection items include the plurality of driving conditions,
    the control unit determines that, in each of the plurality of running states, the running time corresponding to the respective one of the plurality of running states is within a reference range determined based on a predetermined reference time, the running state corresponding to the running time is in a normal state, whereas, in the case where the running time is outside the reference range, the control unit determines that the running state corresponding to the running time is in a modulated state.
  2.  前記基準時間は、前記走行時間を予め実測した値から求められた値である、請求項1に記載のエレベータ遠隔点検システム。 The elevator remote inspection system according to claim 1, wherein the reference time is a value calculated from a previously measured value of the running time.
  3.  前記基準範囲は、前記基準時間×90%以上かつ前記基準時間×110%以下の範囲である、請求項1または請求項2に記載のエレベータ遠隔点検システム。 The elevator remote inspection system according to claim 1 or claim 2, wherein the reference range is a range between the reference time x 90% and the reference time x 110%.
  4.  前記指示部は、
      前記かごが前記第1階床よりも前記第2階床に近い位置にいる場合は、前記第2送信処理を行い、
      前記かごが前記第2階床よりも前記第1階床に近い位置にいる場合は、前記第1送信処理を行う、請求項1に記載のエレベータ遠隔点検システム。
    The instruction unit is
    When the car is located closer to the second floor than to the first floor, the second transmission process is performed;
    2. The elevator remote inspection system according to claim 1, wherein the first transmission process is performed when the car is located closer to the first floor than to the second floor.
  5.  前記制御部は、前記送信処理に基づき前記第1階床と前記第2階床との間を走行している前記かごが前記第1階床と前記第2階床との間の階床で停止した場合、前記送信処理に基づく前記判定処理の判定をキャンセルするキャンセル処理を行い、
     前記指示部は、前記キャンセル処理が行われた場合、前記キャンセル処理から特定時間の経過後に、前記送信処理を再度行い、
     前記制御部は、再度行われた前記送信処理に基づき前記判定処理を再度行う、請求項1に記載のエレベータ遠隔点検システム。
    the control unit, when the car traveling between the first floor and the second floor based on the transmission process stops at a floor between the first floor and the second floor, performs a cancellation process to cancel the determination of the determination process based on the transmission process,
    When the cancellation process is performed, the instruction unit performs the transmission process again after a specific time has elapsed since the cancellation process;
    The elevator remote inspection system according to claim 1 , wherein the control unit performs the determination process again based on the transmission process that has been performed again.
  6.  前記制御部は、前記判定処理の判定が前記キャンセル処理によって所定回数連続でキャンセルされた場合、前記判定処理による判定が不能である旨を設定する、請求項5に記載のエレベータ遠隔点検システム。 The elevator remote inspection system according to claim 5, wherein the control unit sets a state in which a determination by the determination process is impossible if the determination by the determination process is canceled by the cancellation process a predetermined number of times in succession.
  7.  前記制御盤は、強制停止階が設定されている場合、前記かごが前記強制停止階を通りかかったときに必ず前記強制停止階で前記かごが停止するように制御し、
     前記制御部は、前記第1階床と前記第2階床との間の階床が前記強制停止階に設定されている場合、前記強制停止階に前記かごが停止しても前記キャンセル処理を行わない、請求項5に記載のエレベータ遠隔点検システム。
    The control panel controls the car to always stop at the mandatory stop floor when the car passes through the mandatory stop floor when a mandatory stop floor is set,
    6. The elevator remote inspection system of claim 5, wherein the control unit does not perform the cancellation process when a floor between the first floor and the second floor is set as the mandatory stop floor, even if the car stops at the mandatory stop floor.
  8.  前記かごは、複数の階床に停止可能であり、
     前記制御盤は、待機階の設定がされている場合、前記かごが利用可能であるときに、前記かごを前記待機階に走行させた後に前記待機階で待機させるよう制御し、
     前記制御部は、前記待機階が設定されている場合は、前記所定時間を0秒に設定する、請求項1に記載のエレベータ遠隔点検システム。
    The car can stop at a plurality of floors;
    When a waiting floor is set, the control panel controls the car to travel to the waiting floor and then wait at the waiting floor when the car is available;
    2. The elevator remote inspection system according to claim 1, wherein the control unit sets the predetermined time to 0 seconds when the waiting floor is set.
  9.  前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記送信処理に基づく前記判定処理を行うことなく、判定対象とする対象かごにおいて、前記第1階床から前記第2階床まで走行、および、前記第2階床から前記第1階床まで走行する往復走行が行われた場合に、前記取得部から取得された前記往復走行時の前記判定用信号に基づき前記判定処理を実行する、請求項1に記載のエレベータ遠隔点検システム。 The elevator remote inspection system according to claim 1, wherein, when there are multiple cars controlled by the control panel, the control unit executes the determination process based on the determination signal acquired from the acquisition unit during the round-trip travel when the target car to be determined travels from the first floor to the second floor and from the second floor to the first floor without performing the determination process based on the transmission process.
  10.  前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記対象かごにおいて所定期間内に前記往復走行が行われなかったときは、前記対象かごの前記複数の走行状態の各々が前記変調状態であると判定する、請求項9に記載のエレベータ遠隔点検システム。 The elevator remote inspection system according to claim 9, wherein, when there are multiple cars controlled by the control panel, if the target car does not perform the reciprocating run within a predetermined period, the control unit determines that each of the multiple running states of the target car is in the modulated state.
  11.  前記指示部と前記取得部と前記制御部と前記出力部とを含む遠隔点検装置と、
     前記遠隔点検装置とネットワークを介して接続可能であって前記遠隔点検装置を管理する管理サーバとをさらに備え、
     前記管理サーバは、前記遠隔点検装置に対して前記遠隔点検の実行指令を送信可能であるとともに、前記遠隔点検装置から前記判定結果を受信可能であり、
     前記エレベータの機器群と前記制御盤と前記遠隔点検装置とが第1国に設置されており、
     前記管理サーバが前記第1国とは異なる第2国に設置されている、請求項1に記載のエレベータ遠隔点検システム。
    A remote inspection device including the instruction unit, the acquisition unit, the control unit, and the output unit;
    Further comprising a management server that can be connected to the remote inspection device via a network and manages the remote inspection device,
    the management server is capable of transmitting an instruction to execute the remote inspection to the remote inspection device and receiving the determination result from the remote inspection device;
    the elevator equipment group, the control panel, and the remote inspection device are installed in a first country;
    The elevator remote inspection system according to claim 1 , wherein the management server is installed in a second country different from the first country.
  12.  エレベータの遠隔点検を行うエレベータ遠隔点検方法であって、
     前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、
     前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、
     前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得するステップによって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行うステップと、
     前記点検項目の判定結果を出力するステップとを備え、
     前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号の送信に基づく前記エレベータのかごの前記第1階床への到着から所定時間経過後に、前記第1階床よりも上の第2階床における下方向の第2乗場呼びを発生させる第2乗場呼び信号を送信する第1送信処理と、前記第2乗場呼び信号の送信に基づく前記かごの前記第2階床への到着から前記所定時間経過後に、前記第1乗場呼び信号を送信する第2送信処理とを含み、
     前記判定用信号は、前記かごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
     前記判定処理を行うステップは、前記第1信号を含む情報を用いて、前記かごの位置と、前記かごの複数の走行状態の各々で走行する走行区間における前記かごの走行時間とを算出するステップを含み、
     前記複数の走行状態は、前記かごが加速しながら走行する加速走行状態と、前記かごが一定速度で走行する定速走行状態と、前記かごが減速しながら走行する減速走行状態とを含み、
     前記点検項目は、前記複数の走行状態を含み、
     前記判定処理を行うステップは、前記複数の走行状態の各々において、前記複数の走行状態の各々に対応する前記走行時間が、予め定められた基準時間に基づき決定された基準範囲内である場合に、前記走行時間に対応する走行状態が正常状態であると判定する一方、前記走行時間が前記基準範囲外である場合に、前記走行時間に対応する走行状態が変調状態であると判定するステップをさらに含む、エレベータ遠隔点検方法。
    An elevator remote inspection method for performing remote inspection of an elevator,
    performing a transmission process for transmitting a hall call signal to a device group of the elevator, the hall call signal being used to generate a hall call for the elevator;
    acquiring, as a determination signal, a signal input/output by parallel transmission between the elevator equipment group and a control panel that controls the elevator equipment group;
    generating the hall call signal to be transmitted by the transmission process, and performing a determination process to determine an inspection item of the remote inspection based on the determination signal acquired by the acquiring step as a result of the transmission process;
    and outputting a determination result of the inspection item.
    the transmission process includes a first transmission process of transmitting a second hall call signal to generate a second hall call in a downward direction at a second floor higher than the first floor after a predetermined time has elapsed since the arrival of the elevator car at the first floor based on the transmission of a first hall call signal to generate a first hall call in an upward direction at the first floor, and a second transmission process of transmitting the first hall call signal after the predetermined time has elapsed since the arrival of the elevator car at the second floor based on the transmission of the second hall call signal,
    the determination signal includes a first signal indicating either a first state in which the car is located within a door zone indicating a positional range of the car in which a door of the car can be opened or closed, or a non-first state which is not the first state,
    The step of performing the determination process includes a step of calculating, using information including the first signal, a position of the car and a running time of the car in a running section in which the car runs in each of a plurality of running states,
    the plurality of running states include an acceleration running state in which the car runs while accelerating, a constant speed running state in which the car runs at a constant speed, and a deceleration running state in which the car runs while decelerating,
    The inspection items include the plurality of driving conditions,
    The step of performing the determination process further includes a step of determining that, in each of the plurality of running states, the running state corresponding to the running time is in a normal state when the running time corresponding to each of the plurality of running states is within a reference range determined based on a predetermined reference time, and determining that the running state corresponding to the running time is in a modulated state when the running time is outside the reference range.
PCT/JP2023/035879 2022-11-17 2023-10-02 Elevator remote inspection system and elevator remote inspection method WO2024106040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022184150A JP7361871B1 (en) 2022-11-17 2022-11-17 Elevator remote inspection system and elevator remote inspection method
JP2022-184150 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106040A1 true WO2024106040A1 (en) 2024-05-23

Family

ID=88328326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035879 WO2024106040A1 (en) 2022-11-17 2023-10-02 Elevator remote inspection system and elevator remote inspection method

Country Status (2)

Country Link
JP (1) JP7361871B1 (en)
WO (1) WO2024106040A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203744A (en) * 1997-01-17 1998-08-04 Mitsubishi Denki Bill Techno Service Kk Failure estimating device of elevator
JP2009040585A (en) * 2007-08-10 2009-02-26 Toshiba Elevator Co Ltd Elevator abnormality diagnostic system
JP2021172498A (en) * 2020-04-27 2021-11-01 株式会社日立ビルシステム Elevator maintenance work support method and elevator maintenance work support system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203744A (en) * 1997-01-17 1998-08-04 Mitsubishi Denki Bill Techno Service Kk Failure estimating device of elevator
JP2009040585A (en) * 2007-08-10 2009-02-26 Toshiba Elevator Co Ltd Elevator abnormality diagnostic system
JP2021172498A (en) * 2020-04-27 2021-11-01 株式会社日立ビルシステム Elevator maintenance work support method and elevator maintenance work support system

Also Published As

Publication number Publication date
JP2024073117A (en) 2024-05-29
JP7361871B1 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
AU2012384009B2 (en) Position and load measurement system for an elevator
CA2585326C (en) Method of setting the storey associations of a plurality of operating units of a lift installation
FI118466B (en) A condition monitoring system
JP2014528393A (en) Elevator equipment for messaging for maintenance automation
CN111483898B (en) Elevator car and door motion monitoring
CN110921449B (en) Sensor-based shutdown detection for elevator systems
EP3599203A1 (en) Elevator safety system
JP6279182B1 (en) Multi-car elevator safety control device and safety control method
JP2014172714A (en) Elevator system
WO2024106040A1 (en) Elevator remote inspection system and elevator remote inspection method
WO2024106042A1 (en) Elevator remote inspection system and elevator remote inspection method
WO2024106044A1 (en) Elevator remote inspection system and elevator remote inspection method
WO2024106039A1 (en) Elevator remote inspection system and elevator remote inspection method
JP7475418B1 (en) Elevator remote inspection system and elevator remote inspection method
WO2024106041A1 (en) Elevator remote inspection system and elevator remote inspection method
JP7475417B1 (en) Elevator remote inspection system and elevator remote inspection method
WO2024106038A1 (en) Elevator remote inspection system and elevator remote inspection method
JP2016023083A (en) Network type elevator system
KR20130027328A (en) Elevator door system and control method thereof
KR200417932Y1 (en) Elevator control system using by wireless communication
JP2023023657A (en) Control panel of elevator and control method of elevator