WO2024105985A1 - Gas sensor chip, gas sensing system, and production method for gas sensor chip - Google Patents

Gas sensor chip, gas sensing system, and production method for gas sensor chip Download PDF

Info

Publication number
WO2024105985A1
WO2024105985A1 PCT/JP2023/032889 JP2023032889W WO2024105985A1 WO 2024105985 A1 WO2024105985 A1 WO 2024105985A1 JP 2023032889 W JP2023032889 W JP 2023032889W WO 2024105985 A1 WO2024105985 A1 WO 2024105985A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor chip
layer
gas sensor
fet
Prior art date
Application number
PCT/JP2023/032889
Other languages
French (fr)
Japanese (ja)
Inventor
佳孝 笹子
博幸 内山
渊 卜
崇泰 乗松
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024105985A1 publication Critical patent/WO2024105985A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a gas sensor chip, a gas sensing system, and a method for manufacturing a gas sensor chip.
  • Patent Document 1 describes a gas sensor technology consisting of a gas molecule detection section and an array of amplifier circuits.
  • Non-Patent Document 1 also describes a hydrogen sensor, which is one type of gas sensor.
  • a hydrogen sensor which is one type of gas sensor.
  • sensors such as FET type, capacitor type, and diode type are classified as work function type sensors.
  • Patent Document 1 neither Patent Document 1 nor Non-Patent Document 1 describes a technique for producing the above-mentioned multiple types of gas sensor elements at low cost, making it difficult to realize low-cost sensing of multiple types of gases present in the atmosphere.
  • a gas sensor chip may be used that includes a semiconductor substrate and a plurality of gas detection material layers each formed at a different position on the semiconductor substrate, the gas detection material layer having a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, the catalytic metal layer being configured to be exposed to the atmosphere, and the plurality of gas detection material layers having different combinations of material type, film thickness, and crystal grain size of the metal oxide layer and material type, film thickness, and crystal grain size of the catalytic metal layer.
  • a gas sensing system may be used that includes a gas sensor chip, a heater unit that heats the gas sensor chip, and a control unit that controls the gas sensor chip and the heater unit
  • the gas sensor chip includes a semiconductor substrate and a plurality of gas detection material layers each formed at a different position on the semiconductor substrate
  • the gas detection material layer includes a metal oxide layer and a catalyst metal layer formed on the metal oxide layer
  • the catalyst metal layer is configured to be exposed to the atmosphere
  • the plurality of gas detection material layers have different combinations of material type, film thickness, and crystal grain size of the metal oxide layer and material type, film thickness, and crystal grain size of the catalyst metal layer
  • the control unit controls the heater unit so that the gas sensor chip is at a predetermined temperature, and detects gas in the atmosphere based on information obtained using the plurality of gas detection material layers.
  • a manufacturing method for a gas sensor chip includes the steps of forming an impurity layer on a semiconductor substrate, forming a first gas detection material layer including a catalytic metal layer on the semiconductor substrate, and forming a second gas detection material layer including a catalytic metal layer on a position on the semiconductor substrate different from that of the first gas detection material layer, wherein the first gas detection material layer and the second gas detection material layer are different from each other in at least one of the type of material constituting the gas detection material layer, the film thickness, and the crystal grain size.
  • the present invention makes it possible to realize low-cost sensing of multiple types of gases present in the atmosphere. Problems, configurations, and effects other than those described above will become clear from the description of the embodiments below.
  • FIG. 1 is a diagram illustrating an example of a gas sensing system according to a first embodiment.
  • 1 is a diagram illustrating an example of a hardware configuration of a gas sensing system according to a first embodiment.
  • 1 is a plan view of a gas sensor chip according to a first embodiment;
  • FIG. 2 is a diagram illustrating an example of a cross section of a sensor FET (SFET).
  • FIG. 2 is a diagram illustrating an example of a cross section of a reference FET (RFET).
  • FIG. 2 is a diagram showing an example of a material used for the gas sensing material layer of a sensor FET and a reference FET.
  • FIG. 1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a FET type sensor.
  • FIG. 1 is a diagram showing the characteristics of gate voltage versus drain current in an NFET-type sensor FET.
  • FIG. 1 is a diagram showing gate voltage vs. drain current characteristics of an NFET-type reference FET.
  • FIG. 13 is a diagram showing an example of the relationship between gas concentration and gate threshold voltage shift in a sensor FET.
  • FIG. 2 shows an example of how two types of sensor FETs respond to a fixed concentration of several gases.
  • 1 is a diagram for explaining that the concentrations of M types of gases can be estimated using N mutually different sensor FETs.
  • FIG. 1 is a diagram showing the characteristics of gate voltage versus drain current in an NFET-type sensor FET.
  • FIG. 1 is a diagram showing gate voltage vs. drain current characteristics of an NFET-type reference FET.
  • FIG. 13
  • FIG. 5 is a diagram showing an example of a comparison result of the size and cost of the gas sensor per type of gas between the gas sensor according to the first embodiment and a conventional gas sensor;
  • FIG. FIG. 1 is a diagram showing a first example of an FET type gas sensor array using a selection transistor.
  • FIG. 13 is a diagram showing a second example of an FET type gas sensor array using a selection transistor.
  • FIG. 13 is a diagram showing a third example of an FET type gas sensor array using a selection transistor.
  • FIG. 1 is a diagram showing an example of a FET-type gas sensor array using a TSV.
  • FIG. 1 is a diagram showing an example of a FET type gas sensor array using an interposer.
  • FIG. 1 is a diagram showing the characteristics of gate voltage versus drain current in a PFET-type sensor FET.
  • FIG. 1 shows the gate voltage vs. drain current characteristics of a PFET-type reference FET.
  • FIG. 1 is a diagram showing a first example of a device for determining a gas concentration by combining an NFET type sensor FET and a PFET type sensor FET.
  • FIG. 13 is a diagram showing a second example of a device for determining a gas concentration by combining an NFET type sensor FET and a PFET type sensor FET.
  • FIG. 2 is a diagram illustrating an example of a cross section of a sensor capacitor.
  • FIG. 2 is a diagram illustrating an example of a cross section of a reference capacitor.
  • FIGS. 1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a capacitor-type sensor.
  • FIG. 4 is a diagram showing an example of a characteristic curve of the capacitance of a sensor capacitor versus a gate voltage.
  • FIG. 13 is a diagram showing an example of a characteristic curve of the capacitance of a reference capacitor versus a gate voltage.
  • FIG. 2 is a diagram illustrating an example of a cross section of a sensor diode.
  • FIG. 2 is a diagram illustrating an example of a cross section of a reference diode.
  • 1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a diode-type sensor.
  • FIG. 4 is a diagram showing an example of a current-to-voltage characteristic curve of a sensor diode.
  • FIG. 2 is a diagram showing an example of a current vs. voltage characteristic curve of a reference diode.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment.
  • 5 is a flowchart showing an example of a method for manufacturing the gas sensor chip according to the first embodiment.
  • 11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip.
  • 11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip.
  • 11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip.
  • 11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip.
  • 11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip.
  • 13 is a flowchart showing a first modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip.
  • 13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip.
  • FIG. 1 is a diagram showing an example of a gas sensing system in which a plurality of gas sensor chips are used at different temperatures.
  • hatching may be omitted even in cross-sectional views to make the drawings easier to read. Hatching may also be added even in plan views to make the drawings easier to read.
  • Configuration of the gas sensing system according to the first embodiment 1A is a diagram showing an example of a gas sensing system according to embodiment 1.
  • the gas sensing system 1000 includes a gas sensor chip 1001 and a circuit unit 1100.
  • the gas sensor chip 1001 has a FET type sensor, which is a type of work function sensor, i.e., a sensor FET array 1001SA including multiple sensor FETs (hereinafter also referred to as SFETs) 1001S, and one or more reference FETs (hereinafter also referred to as RFETs) 1001R. Furthermore, the gas sensor chip 1001 has a thermometer section 1001T and a heater section 1001H.
  • the "reference FET” is an example of the "first FET” in the present invention.
  • the sensor FET1001S is one of the work function type sensors equipped with a catalytic metal gate, whose gate threshold voltage changes according to the concentration of various types of gases contained in the atmosphere (for details on the structure, effects, etc. of work function type sensors, see Non-Patent Document 1).
  • the gate threshold voltage is the gate voltage at which a certain current flows between the drain and source of the FET when a certain voltage is applied between the drain and source.
  • a catalytic metal gate FET type gas sensor is used as the gas sensor element.
  • the reference FET 1001R is an FET element whose gate threshold voltage does not depend on the concentration of gas in the atmosphere.
  • the reference FET 1001R is formed on the same gas sensor chip 1001 as the sensor FET array 1001SA.
  • the gate threshold voltage of the sensor FET 1001S With the gate threshold voltage of the reference FET 1001R, more accurate gas sensing is possible, taking into account the fluctuation in FET characteristics due to temperature changes in the gas sensor chip 1001.
  • the reference FET 1001R may not be necessary if high accuracy is not required for gas sensing.
  • multiple reference FETs 1001R may be formed on one gas sensor chip 1001, and the average or median value of the gate threshold voltages of the multiple reference FETs 1001R may be referenced.
  • the thermometer section 1001T is a device, element, or component capable of measuring the temperature of the gas sensor chip 1001.
  • the thermometer section 1001T includes a diode element, as an example.
  • the diode element has a characteristic in which the relationship between the applied voltage and the current depends on the ambient temperature. By utilizing this characteristic, the ambient temperature can be determined by detecting the current of the diode element.
  • the heater section 1001H is a device, element, or member capable of heating and raising the temperature of the gas sensor chip 1001.
  • the heater section 1001H includes a heater wire (electric heating wire) as an example.
  • the temperature of the gas sensor chip 1001 can be controlled by controlling the current flowing through the heater wire to adjust the amount of heat generated.
  • the circuit section 1100 is electrically connected to the gas sensor chip 1001.
  • the circuit section 1100 has a gas concentration estimation section 1002, a control section 1003, a current detection section 1004, power sources 1005 to 1008, a parameter storage section 1009, and an I/O (Input/Output) section 1010.
  • the gas concentration estimation unit 1002 estimates the gas concentrations of multiple types of gases based on the information obtained from the gas sensor chip 1001.
  • the current detection unit 1004 detects the current of the various elements contained in the gas sensor chip 1001.
  • the power supplies 1005-1008 apply voltage to various elements or components (sites) on the gas sensor chip 1001 to supply power. It is assumed that the power supplies 1005-1008 will be used differently depending on the destination of the power supply, but they do not have to be used differently.
  • the control unit 1003 is electrically connected to the power supplies 1005-1008, current detection unit 1004, gas concentration estimation unit 1002, parameter storage unit 1009, and I/O unit 1010, and controls and communicates with each of these units.
  • the parameter storage unit 1009 stores various parameters necessary for the control or calculations performed by the control unit 1003.
  • the I/O unit inputs and outputs information and power between the control unit 1003 and the outside of the gas sensing system 1000.
  • the heater section 1001H can heat the gas sensor chip 1001 and increase its temperature by applying a voltage from the power sources 1005-1008 to the heater wire that constitutes the heater section 1001H, causing a current to flow.
  • the control section 1003 controls the power sources 1005-1008 so that a constant voltage is applied to the diode element that constitutes the thermometer section 1001T.
  • the current detection section 1004 detects the current flowing through the diode element that constitutes the thermometer section 1001T under conditions where the voltage applied to the diode element is constant, and outputs the detected current value to the control section 1003.
  • the parameter storage section 1009 stores parameters that define the relationship between the current flowing through the diode element and the temperature at that time.
  • the control section 1003 refers to the parameters and determines the temperature of the gas sensor chip 1001 based on the detected current value.
  • the control unit 1003 controls the power supplies 1005 to 1008 to adjust the voltage applied to the heater unit 1001H so that the temperature of the gas sensor chip 1001 is maintained at the target temperature.
  • the gas concentration estimation unit 1002 acquires physical quantities related to the voltage-current characteristics of the sensor FET array 1001SA and the reference FET 1001R according to the type or concentration of gas, and estimates the concentrations of various gases based on the acquired physical quantities. Details of the process of estimating the concentrations of various gases by the gas concentration estimation unit 1002 will be described later. Note that the "physical quantities" are an example of "information" in the present invention.
  • FIG. 1B is a diagram showing an example of the hardware configuration of the gas sensing system according to the first embodiment.
  • a control unit 1003, a gas concentration estimation unit 1002, a current detection unit 1004, and a parameter storage unit 1009 are represented as functional blocks. These functional blocks are configured in a semiconductor device 1020, for example, as shown in FIG. 1B.
  • the semiconductor device 1020 includes a processor, such as a CPU (Central Processing Unit), an MPU (Micro Processor Unit), or an MCU (Micro Controller Unit), and a memory, and the processor executes a predetermined program stored in the memory, causing the semiconductor device 1020 to function as each of the above functional blocks.
  • a processor such as a CPU (Central Processing Unit), an MPU (Micro Processor Unit), or an MCU (Micro Controller Unit)
  • the processor executes a predetermined program stored in the memory, causing the semiconductor device 1020 to function as each of the above functional blocks.
  • FIG. 2 is a plan view of the gas sensor chip according to the first embodiment.
  • the gas sensor chip 1001 is formed with, for example, ten sensor FETs 1001S (with gates indicated as Gate 1 to 10) and one reference FET 1001R (with gate indicated as Gate 11).
  • the sensor FET 1001S and the reference FET 1001R each have a gate, drain, source, and well, similar to well-known FETs.
  • the sensor FET 1001S is a catalytic metal gate FET type gas sensor element.
  • the sensor FET1001S has a gas detection material consisting of a metal oxide layer and a catalytic metal layer mounted on the gate, and each sensor FET1001S differs from the others in either the material, film thickness, structure, or crystal grain size of the metal oxide layer, or the material, film thickness, structure, or crystal grain size of the catalytic metal layer.
  • Different configurations of the gas detection material layer result in different selectivity and sensitivity to gas. Therefore, by using multiple sensor FET1001S each equipped with gas detection materials of different configurations and measuring their gate threshold voltages, it becomes possible to measure the component pattern of gas in an atmosphere containing multiple gas species.
  • the reference FET 1001R is a FET that does not react to the type or concentration of gas in the atmosphere.
  • the reference FET 1001R is configured, for example, so that the gate that reacts to gas is not exposed to the atmosphere.
  • the reference FET 1001R has a configuration that is basically the same as the sensor FET 1001S, except that the gate is not exposed to the atmosphere.
  • the gas sensor chip 1001 further includes a heater section 1001H and a thermometer section 1001T.
  • the heater section 1001H is made of a heater wire, which is a wiring made of a metal such as aluminum, tungsten, or platinum.
  • the heater wire can raise the temperature of the gas sensor chip 1001 above the ambient temperature by Joule heat generated by passing a current between both ends of the heater wire when power is supplied from the power sources 1005 to 1008.
  • the heater wire constituting the heater section 1001H can raise the temperature of the gas sensor chip 1001 by 100°C or more above the ambient temperature.
  • the temperature of the gas sensor chip 1001 can be estimated by measuring the resistance between both ends of the heater wire.
  • the thermometer section 1001T is made of a diode element.
  • the temperature of the gas sensor chip 1001 can be estimated from the current value that flows when a constant voltage is applied to this diode element.
  • the electrical characteristics of the sensor FET and reference FET can be stably maintained as expected.
  • the current detection unit 1004 shown in FIG. 1A measures the current flowing through the sensor FET 1001S, the reference FET 1001R, the heater wire constituting the heater unit 1001H, and the diode element constituting the thermometer unit 1001T, as described below.
  • the parameter storage unit 1009 shown in FIG. 1A stores, for example, the voltage conditions to be applied to the sensor FET 1001S, the reference FET 1001R, the heater wire of the heater unit 1001H, and the diode element of the thermometer unit 1001T.
  • each electrode of each element is connected to a corresponding electrode pad.
  • This configuration is an example to make the configuration of the gas sensor chip 1001 easier to understand. Therefore, for example, the wiring of multiple electrodes may be shared, and the number of electrode pads may be reduced to save space.
  • FIG. 3A is a schematic diagram showing an example of a cross section of a sensor FET (SFET).
  • the main parts of the sensor FET 1001S are formed from a semiconductor substrate 1, a well 2, a source layer 3, a drain layer 4, a gate insulating film layer 5, a metal oxide layer 6 serving as a detection material, and a catalyst metal layer 7.
  • the source layer and drain layer are also called the source diffusion layer and the drain diffusion layer.
  • the metal oxide layer 6 and the catalyst metal layer 7 are covered with an interlayer insulating film ILD, and an opening is formed in the interlayer insulating film ILD so that the surface of the catalyst metal layer 7 is exposed to an atmosphere containing the gas to be detected.
  • the semiconductor substrate 1 may be made of, for example, silicon or silicon carbide (SiC).
  • the metal oxide layer 6 may be made of, for example, titanium oxide, yttria-stabilized zirconia (YSZ), or the like.
  • the catalyst metal layer 7 may be made of, for example, precious metals such as platinum, palladium, iridium, or nickel.
  • the gas sensor chip 1001 is equipped with a plurality of sensor FETs 1001S.
  • the gas detection material layers of these sensor FETs 1001S are not all the same, and include layers with different configurations.
  • the gas detection material layers in the plurality of sensor FETs 1001S include layers with different configurations, for example, at least one of the material type, film thickness, and crystal grain size of the metal oxide layer 6 and the material type, film thickness, and crystal grain size of the catalyst metal layer 7.
  • FIG. 3B is a schematic diagram showing an example of a cross section of a reference FET (RFET).
  • the main parts of the reference FET 1001R are formed from a semiconductor substrate 1, a well 12, a source layer 13, a drain layer 14, a gate insulating film layer 15, a metal oxide layer 16 serving as a detection material, and a catalyst metal layer 17.
  • the surface of the catalyst metal layer 17 is covered with an interlayer insulating film ILD, and is isolated from the atmosphere containing the gas to be detected.
  • the metal oxide layer 16 and the catalyst metal layer 17 can be made of the same material as that used for any of the sensor FETs 1001S.
  • Wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12, the source layers 3 and 13, the drain layers 4 and 14, the catalyst metal layers 7 and 17, the diode element constituting the thermometer section 1001T, and the heater wire constituting the heater section 1001H, and can be powered from the power sources 1005 to 1008 shown in FIG. 1.
  • the sensor FET 1001S and the reference FET 1001R can both be N-type FETs or P-type FETs.
  • the gas sensor chip 1001 includes multiple sensor FETs 1001S, and all of them can be N-type FETs or P-type FETs. Also, some of the sensor FETs 1001S can be formed from N-type FETs, and the remaining sensor FETs 1001S can be formed from P-type FETs.
  • only one reference FET 1001R is mounted on the gas sensor chip 1001, it can be formed from an N-type FET or a P-type FET.
  • multiple reference FETs 1001R are formed on the gas sensor chip 1001, the combination pattern of N-type FETs and P-type FETs is the same as that of the sensor FET 1001S.
  • FIG. 4 shows an example of materials used for the gas detection material layers of the sensor FET and the reference FET.
  • FIG. 4 shows an example in which the gas detection material layers of the ten sensor FETs 1001S (with gates indicated as Gate1 to Gate10 in FIG. 2) have different types of materials for either the metal oxide layer 6 or the catalyst metal layer 7.
  • the ten sensor FETs 1001S can have different sensitivities to the detection target gas.
  • the metal oxide layers 6 can be formed to have different thicknesses or crystal grain sizes, or the catalyst metal layers 7 can be formed to have different thicknesses or crystal grain sizes, so that the sensitivities to the detection target gas can be made different from each other.
  • the gas detection material layer of the reference FET 1001R (with gates indicated as Gate11 in FIG. 2) can be made the same as that of any of the sensor FETs 1001S, so that the gates can be formed at the same time, and therefore an increase in the number of steps involved in the manufacture of the gas sensor chip can be prevented.
  • FIG. 5 shows an example of the operation when detecting the concentration of a gas to be detected in a gas sensor chip using a FET type sensor.
  • a current is passed through the heater wire constituting the heater section 1001H (Heater), and the gas sensor chip 1001 is heated to a predetermined temperature, for example, 100° C., by Joule heat generated by the resistance RHL of the heater wire.
  • a predetermined temperature for example, 100° C.
  • the power supplies 1005 to 1008 apply 0 V to the wells 2 and 12 and source layers 3 and 13 of the sensor FET 1001S and reference FET 1001R, and a drain voltage VD to the drain layers 4 and 14.
  • the power supplies 1005 to 1008 also apply a variable voltage VGR to the gate of the reference FET 1001R, and a variable voltage VGS to the gate of the sensor FET 1001S.
  • the current detection unit 1004 measures the current flowing through the drain terminals of the sensor FET 1001S and the reference FET 1001R.
  • the control unit 1003 controls VGS and VGR so that both match a constant current Ic. The difference between VGR and VGS at this time is taken as VGRS and is defined as in Equation 1.
  • VGRS(0) which is the VGRS when the concentration of the gas to be detected in the atmosphere is 0
  • VGRS(X) which is the VGRS when the concentration of the gas to be detected is X
  • FIG. 6A is a diagram showing the gate voltage vs. drain current characteristics of an NFET-type sensor FET.
  • FIG. 6B is a diagram showing the gate voltage vs. drain current characteristics of an NFET-type reference FET.
  • the gate voltage is also called the gate potential.
  • the catalyst metal layer 7, which is a gas detection material layer is exposed, so the work function of the catalyst metal layer 7 changes depending on the detection target gas, and the gate voltage-drain current characteristics differ when the detection target gas concentration is 0 and when the detection target gas concentration is X.
  • the characteristic curve showing the relationship between the gate voltage and the drain current moves in parallel in the voltage direction.
  • the voltage VGS which is the gate voltage when the current Ic, which is the threshold current, flows, changes from VGS(0), which is the VGS when the detection target gas concentration is 0, to VGS(X), which is the VGS when the detection target gas concentration is X.
  • the catalyst metal layer 17 is covered with the interlayer insulating film ILD, so the gate voltage-drain current characteristics do not change even if the gas concentration changes.
  • the current that flows when a voltage VGR is applied to the gate remains constant at Ic.
  • ⁇ Vg(X) in Equation 2 corresponds to the amount of change in the gate threshold voltage of the sensor FET 1001S with respect to the gas concentration X.
  • Equation 1 by using VGRS, which is the difference between the gate voltages of the sensor FET 1001S and the reference FET 1001R, the influence of noise caused by fluctuations in VGR and VGS due to temperature fluctuations, etc. can be suppressed by setting the drain current ID flowing through the drain terminal mentioned above to an appropriate value.
  • VGS(0) when the target gas concentration in the detection atmosphere is 0 and VGS(X) when the target gas concentration is X is taken as ⁇ Vg(X), and is defined as the following equation 3.
  • the ⁇ Vg(X) defined in this way can be used as the gate threshold voltage shift (amount of change) of the sensor FET 1001S according to the gas concentration X of the gas to be detected.
  • FIG. 5 shows an example in which the current is measured at the drain terminal, it is of course also possible to measure ⁇ Vg by measuring the current at the source terminal side, as described later.
  • FIG. 7 is a diagram showing an example of the relationship between the gas concentration and the gate threshold voltage shift in the sensor FET.
  • the value at which the gate threshold voltage shift ⁇ Vg(X) is saturated in an environment where the gas concentration X is sufficiently high is set to ⁇ Vgmax.
  • FIG. 7 shows an example of the relationship between ⁇ Vg and the gas concentration X when the FET-type gas sensor is held in an atmosphere of the gas concentration X for a sufficiently long time and reaches an equilibrium state.
  • ⁇ Vgmax may be a positive value or a negative value depending on the gas type.
  • the gas concentration X0 at which ⁇ Vg(X) is 50% of ⁇ Vgmax changes by changing the type of material, film thickness, and crystal grain size of the metal oxide layer 6, and the type of material, film thickness, or crystal grain size of the catalyst metal layer 7.
  • the gate material dependency of the gas concentration X0 changes by changing the type of gas to be detected. That is, the gate threshold voltage of the sensor FET changes depending on the type or concentration of the gas, and also changes when the type of material, film thickness, or crystal grain size of at least one of the metal oxide layer 6 and the catalyst metal layer 7 constituting the gate material changes.
  • FIG. 8A is a diagram showing an example of how two types of sensor FETs respond to a certain concentration of several gases.
  • hydrogen, hydrogen sulfide, ammonia, carbon monoxide, nitric oxide, and oxygen are used as examples of gas types.
  • FIG. 8A also shows data for various gases plotted in a two-dimensional space consisting of ⁇ Vg for two types of sensor FETs 1001S (here, examples are those with gates Gate1 and Gate5).
  • data on various gases are plotted and differentiated in a space of dimensions according to the number of sensor FETs 1001S. That is, when N sensor FETs with different gas detection materials at the gates are mounted on the gas sensor chip 1001, data on various gases are plotted and differentiated in an N-dimensional space consisting of N ⁇ Vg.
  • N sensor FETs with different gas detection materials at the gates are mounted on the gas sensor chip 1001
  • data on various gases are plotted and differentiated in an N-dimensional space consisting of N ⁇ Vg.
  • N ⁇ Vg N-dimensional space consisting of N ⁇ Vg.
  • 10 sensor FETs 1001S with gates made of 10 different gas detection materials are mounted on the gas sensor chip 1001, so data on various gases are plotted and differentiated in a 10-dimensional space consisting of 10 ⁇ Vg.
  • Figure 8A illustrates the response to a single gas, but the measurement results for an atmosphere containing M types of gas species are plotted as different points in an N-dimensional space consisting of N ⁇ Vg according to the concentration of each of the gas species contained, if M ⁇ N.
  • N ⁇ M the measurement results for atmospheres with different gas species and their respective concentrations will inevitably be plotted at the same point.
  • FIG. 8B is a diagram for explaining that the concentration of M types of gases can be estimated using N different sensor FETs.
  • a plurality of sensor FETs 1001S equipped with N different gas detection material layers are used to measure the component pattern of an atmosphere containing M types of gases. If M ⁇ N, as shown in FIG. 8B, the concentrations of M types of gases X_Gas1 to X_GasM can also be estimated based on the measured values ⁇ Vg_Gate1 to ⁇ Vg_GateN of the threshold voltage shifts of the N sensor FETs obtained from the N sensor FETs.
  • Each of ⁇ Vg_Gate1 to ⁇ Vg_GateN is a function of the concentrations of M types of gases X_Gas1 to X_GasM. Strictly speaking, when M ⁇ N, the number of equations (N: ⁇ Vg_Gate1 to ⁇ Vg_GateN) is greater than the number of variables (M: X_Gas1 to X_GasM), so there are cases where the values of the variables (X_Gas1 to X_GasM) cannot be determined.
  • a method can be applied in which X_Gas1 to X_GasM are estimated so that the error between the actual measured values of ⁇ Vg_Gate1 to ⁇ Vg_GateN and the calculated values of the threshold voltage shifts ⁇ Vg_Gate1_Calc to ⁇ Vg_GateN_Calc obtained from the gas concentrations X_Gas1 to X_GasM is minimized.
  • the error can be calculated, for example, by using the sum of the squares of the differences between the measured and calculated values of N threshold voltage shifts, that is, the following formula 4.
  • ⁇ Vg_Sum ( ⁇ Vg_Gate1- ⁇ Vg_Gate1_Calc) 2 + ( ⁇ Vg_Gate2- ⁇ Vg_Gate2_Calc) 2 + ( ⁇ Vg_Gate3- ⁇ Vg_Gate3_Calc) 2 + ... ( ⁇ Vg_GateN- ⁇ Vg_GateN_Calc) 2 ... (Equation 4)
  • the gas concentration estimation unit 1002 estimates the concentrations of various gases by performing processing based on the above-mentioned principles, based on the information obtained from the gas sensor chip 1001.
  • the gas sensor chip according to the first embodiment includes a semiconductor substrate and a plurality of gas detection material layers formed on the semiconductor substrate.
  • the plurality of gas detection material layers each include a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, and the catalytic metal layer is configured to be exposed to the atmosphere.
  • the plurality of gas detection material layers are different from each other in combinations of the type of material, film thickness, and polycrystalline grain size of the metal oxide layer and the type of material, film thickness, and polycrystalline grain size of the catalytic metal layer. That is, the plurality of gas detection material layers are different from each other in at least one of the type of material constituting the gas detection material layer, the film thickness, and the polycrystalline grain size.
  • each work function sensor included in the sensor array can be made to have different selectivity for multiple gas species contained in the atmosphere, making it possible to detect the concentrations of multiple types of gas with a single gas sensor chip and identify the type of odor based on the detected gas component pattern.
  • the gas sensor chip In the gas sensor chip according to the first embodiment, multiple types of work function sensors, each with different characteristics for the type or concentration of gas and each with a simple structure similar to a MOSFET, are formed on a single semiconductor substrate. As a result, a chip capable of sensing multiple types of gas can be manufactured at low cost. In other words, there is no need to incur high costs in preparing multiple types of gas sensors individually or to manufacture chips with costly structures. As a result, atmospheric gas sensing can be realized at low cost. Furthermore, because the work function sensor has a simple structure, stable operation can be expected and it is highly reliable.
  • FIG. 9 is a diagram showing an example of the results of comparing the size and cost of the gas sensor per type of gas between the gas sensor according to the first embodiment and a conventional gas sensor.
  • the gas sensing system includes a gas sensor chip, a heater section for heating the gas sensor chip, and a control section for controlling the gas sensor chip and the heater section.
  • the gas sensor chip includes a semiconductor substrate and a plurality of gas detection material layers formed at different positions on the semiconductor substrate.
  • the gas detection material layer includes a metal oxide layer and a catalyst metal layer formed on the metal oxide layer, and is configured so that the catalyst metal layer is exposed to the atmosphere.
  • the plurality of gas detection material layers are different from each other in combinations of the type of material, film thickness, and crystal grain size of the metal oxide layer, and the type of material, film thickness, and crystal grain size of the catalyst metal layer.
  • the control section controls the heater section so that the gas sensor chip is at a predetermined temperature, and detects gas in the atmosphere based on information obtained using the plurality of gas detection material layers.
  • Such a gas sensing system can achieve the same effects as the gas sensor chip described above, and can, for example, achieve atmospheric gas sensing at low cost.
  • ⁇ Modification of the First Embodiment> 2 to 8 show examples in which electrode pads for supplying power to the source terminals, drain terminals, well terminals, and gate terminals of a plurality of sensor FETs and a reference FET are formed on a gas sensor chip.
  • PFETs P-type FETs
  • NFETs N-type FETs
  • electrode pad connected to the source terminal or drain terminal and supplied with power from a power source is an example of the "power supply terminal" in the present invention.
  • the elements mounted on the gas sensor chip can include a selection transistor for selecting from these FETs the FET whose gate threshold voltage is to be measured.
  • the selection transistor By using the selection transistor, it becomes possible to select and operate the terminals of multiple sensor FETs using a small number of electrode terminals.
  • the selected sensor FET By controlling the on/off switching of the selection transistor, the selected sensor FET can be switched at high speed to collect information on the shift in the gate threshold voltage of each sensor FET, and the concentration of multiple gas species in the atmosphere can be measured.
  • FIG. 10 is a diagram showing a first example of a FET-type gas sensor array using a selection transistor.
  • all the sensor FETs 1001S are formed of NFETs, the sensor FETs 1001S share a well terminal and a source terminal, the gate terminal is independent for each sensor FET 1001S, and the drain terminal is shared via a selection FET 1001L.
  • a selection FET is used as the selection transistor. Note that the "selection FET” is an example of the "second FET" in the present invention.
  • the well terminal, source terminal, drain terminal, and gate terminal are connected to the circuit section 1100 in FIG. 1.
  • To measure the gate threshold voltage of each sensor FET it is necessary to measure the drain current or source current for each sensor FET.
  • the drain terminal is shared without going through a selection FET, the sensor FET is placed in parallel between the drain terminal and the source current, making it impossible to distinguish which sensor FET the measured drain current (or source current) has flowed through. In other words, the gate threshold voltage cannot be measured. Therefore, a selection FET is placed so that only one of the multiple sensor FETs can be connected to the drain terminal.
  • selection FETs 1001L are used for eight sensor FETs 1001S.
  • Each sensor FET 1001S is connected to the drain terminal via a selection FET series circuit in which three selection FETs are connected in series.
  • all three selection FETs connected to the top sensor FET 1001S are formed of NFETs
  • all three selection FETs connected to the bottom sensor FET 1001S are formed of PFETs.
  • the three selection FETs 1001L connected include both NFETs and PFETs.
  • the gates of the eight selection FETs 1001L in the first row from the left are connected to each other, the gates of the eight selection FETs 1001L in the second row from the left are connected to each other, and the gates of the eight selection FETs 1001L in the third row from the left are also connected to each other.
  • a voltage corresponding to one of two values, High or Low, is applied to the gate of the selection FET 1001L in each column.
  • An NFET is ON when the gate is High (H) and OFF when the gate is Low (L).
  • a PFET is OFF when the gate is High (H) and ON when the gate is Low (L).
  • HHH, LHH, HLH, LLH, HHL, LHL, HLL, and LLL are eight patterns of High and Low applied to the three gates of the selection FET series circuit: HHH, LHH, HLH, LLH, HHL, LHL, HLL, and LLL. Depending on each of these eight patterns, one of the eight sensor FETs is connected to the drain terminal.
  • the drain terminals of eight (2 ⁇ 3) sensor FETs can be shared.
  • the number of sensor FETs that can share the drain terminal increases, and generally, by connecting N selection FETs in series, the drain terminals of 2 N sensor FETs can be shared.
  • N selection FETs the number of electrode pads increases by the number of gate terminals of the selection FETs, but the drain terminals of 2 N sensor FETs can be shared and reduced to one. Therefore, when a selection FET is used, the number of required electrode pads can be reduced by (2 N -1-N) compared to when a selection FET is not used. Therefore, when 3 ⁇ N, the number of electrode pads can be reduced by using a selection FET, and the effect of reducing the number of electrode pads becomes more pronounced as N increases.
  • the sensor FET 1001S is configured as an NFET, but if the sensor FET 1001S is configured as a PFET, N series selection FETs can be used in the same way. In that case, the same effect can be obtained as when the sensor FET 1001S is configured as an NFET.
  • the selection FET 1001L is formed using both an NFET and a PFET, but the present invention is not limited to this configuration.
  • FIG. 11 is a diagram showing a second example of a FET-type gas sensor array using selection transistors.
  • all the selection FETs can be formed of NFETs of the same conductivity type as the sensor FETs.
  • the voltage patterns applied to the six gates, in order from the left gate, are HLHLHL, LHHLHL, HLLHHL, LHLHHL, HLHLLH, LHHLLH, HLLHLH, and LHLHLH, and there are eight patterns of H/L patterns: HLHLHL, LHHLHL, HLLHHL, LHLHLH, and LHLHLH.
  • one of the eight sensor FETs 1001S corresponding to the sensor FET 1001S is connected to the drain terminal.
  • the drain terminals of eight (2 ⁇ 3) sensor FETs 1001S can be shared.
  • Increasing the number of selection FETs connected in series increases the number of sensor FETs 1001S that can share the drain terminal.
  • the drain terminals of 2 N sensor FETs 1001S can be shared.
  • N selection FETs 1001L in series the number of electrode pads increases by 2N gate terminals of the selection FETs 1001L.
  • the drain terminals of 2 N sensor FETs 1001S can be shared and reduced to one, the number of required electrode pads is reduced by (2 N -1-2N) compared to the case where the selection FET 1001L is not used.
  • the number of electrode pads can be reduced by using the selection FET 1001L, and the effect of reducing the number of electrode pads becomes more noticeable as N increases.
  • the circuit configuration shown in Fig. 11 has a smaller effect of reducing the number of electrode pads, i.e., the effect of reducing the area of the gas sensor chip, than the circuit configuration shown in Fig. 10.
  • the circuit of the selection FET 1001L can be composed of only NFETs, which has the advantage of simplifying the circuit layout and reducing the number of steps in manufacturing the gas sensor chip.
  • the sensor FET 1001S and the selection FET 1001L are configured as NFETs, but even if the sensor FET 1001S and the selection FET 1001L are configured as PFETs, N selection FETs can be connected in series and used in the same way. The effect is also the same as when the sensor FET 1001S and the selection FET 1001L are configured as NFETs.
  • FIG. 12 is a diagram showing a third example of a FET-type gas sensor array using a selection transistor.
  • multiple sensor FETs 1001S are arranged in a one-dimensional direction, but as shown in FIG. 12, the sensor FETs 1001S can also be arranged two-dimensionally.
  • eight independent drain terminals, two shared gates for multiple selection FETs 1001L, and an array of 16 sensor FETs 1001S are shown.
  • Both the sensor FETs 1001S and the selection FETs 1001L are composed of NFETs. Since there are eight independent drain terminals, eight sensor FETs 1001S can be selected simultaneously. By setting one of the two shared gates in the selection FET 1001L to High and the other to Low, eight sensor FETs 1001S can be selected and the gate threshold voltage can be measured.
  • the sensor FET 1001S and the selection FET 1001L are configured with NFETs, but an array of sensor FETs 1001S can also be formed when the sensor FET 1001S and the selection FET 1001L are configured with PFETs.
  • the effect of this configuration is similar to that of the sensor FET 1001S and the selection FET 1001L configured with NFETs.
  • FETs are used as selection transistors, but other types of transistors, such as bipolar transistors, may also be used.
  • FIG. 13 is a diagram showing an example of a FET-type gas sensor array using TSVs.
  • the upper side shows a front view of the main part of a gas sensor chip 1001 on which the gas sensor array of this embodiment is formed, and the lower side shows a cross-sectional view of the gas sensor chip 1001.
  • an array of sensor FETs 1001S is formed using a selection FET 1001L, but as shown in FIG. 13, it is also possible to supply power to the source terminals, drain terminals, well terminals, and gate terminals of multiple sensor FETs 1001S using through electrodes (Through-Silicon Vias: TSVs) to the semiconductor substrate 1.
  • TSVs Three-Silicon Vias
  • a sensor FET 1001S made of an NFET and a sensor FET 1001S made of a PFET are formed in a gas sensor chip 1001. Furthermore, in the sensor FET 1001S made of an NFET, two types of thicknesses are used as the thickness of the silicon oxide film (SiO 2 film) that becomes the gate insulating film. Similarly, in the sensor FET made of a PFET, two types of thicknesses are used as the thickness of the silicon oxide film (SiO 2 film) that becomes the gate insulating film. In the example of FIG. 13, 10 nm and 20 nm are used as these two types of thicknesses.
  • the "silicon oxide film” is an example of the “impurity layer” in the present invention.
  • SiO 2 may be written as “SiO2" in order to improve visibility in the figure.
  • FIG. 14 is a diagram showing an example of a FET-type gas sensor array using an interposer.
  • the upper side shows a front view of the main part of a gas sensor chip 1001 on which the gas sensor array of this embodiment is formed, and the lower side shows a cross-sectional view of the gas sensor chip 1001.
  • an interposer can also be used to supply power to the source terminals, drain terminals, well terminals, and gate terminals of multiple sensor FETs 1001S.
  • a sensor FET 1001S made of an NFET and a sensor FET 1001S made of a PFET are formed on a gas sensor chip 1001. Furthermore, the sensor FET 1001S made of an NFET also uses two types of thickness for the silicon oxide film ( SiO2 film) that serves as the gate insulating film. The sensor FET 1001S made of a PFET also uses two types of thickness for the silicon oxide film ( SiO2 film) that serves as the gate insulating film. Of course, it is also possible to use three or more types of thickness for the gate insulating film.
  • FIG. 15A is a diagram showing the characteristics of the gate voltage versus drain current in a PFET-type sensor FET.
  • FIG. 15B is a diagram showing the characteristics of the gate voltage versus drain current in a PFET-type reference FET. Note that the characteristics of the gate voltage versus drain current in an NFET-type sensor FET are as shown in FIG. 6.
  • the catalytic metal layer 7, which is a gas detection material layer, is exposed, so the work function of the catalytic metal layer 7 changes depending on the gas to be detected, and the gate voltage-drain current characteristics differ when the gas concentration to be detected is 0 and when the gas concentration to be detected is X.
  • the characteristic curve representing the relationship between the gate voltage and the drain current moves parallel to the voltage direction.
  • the voltage VGS which is the gate voltage when the current Ic, which is the threshold current, flows, changes from VGS(0), which is the VGS when the gas concentration to be detected is 0, to VGS(X), which is the VGS when the gas concentration to be detected is X.
  • VGS(0) which is the VGS when the gas concentration to be detected is 0
  • VGS(X) which is the VGS when the gas concentration to be detected is X.
  • the catalytic metal layer 17 is covered with the interlayer insulating film ILD, so the gate voltage-drain current characteristics do not change even if the gas concentration changes.
  • the current flowing when the voltage VGR is applied to the gate remains constant at Ic.
  • ⁇ Vg(X) in Equation 2 corresponds to the gate threshold voltage shift (amount of change) of the sensor FET 1001S relative to the gas concentration X.
  • the characteristic curve of drain current versus gate voltage still shifts parallel to the voltage direction, but when the current is measured while keeping the gate voltage constant, the increase or decrease in drain current in response to the same gas is opposite for NFET and PFET.
  • NFET when the gate threshold voltage shifts to the negative side, the absolute value of the drain current at a constant gate voltage increases, and when the gate threshold voltage shifts to the positive side, the absolute value of the drain current at a constant gate voltage decreases.
  • FIG. 16 is a diagram showing a first example of a device that determines a gas concentration by combining an NFET-type sensor FET and a PFET-type sensor FET.
  • 1 V and 0 V are applied to the terminals at both ends of the device.
  • 1 V is applied to the well so that no forward bias is applied between the source-drain layer and the well, and 0 V is applied to the well of the NFET.
  • a voltage VG_NFET is applied to the gate of the NFET so that a current Ic, which is the determination current, flows when the gas concentration is 1 ppm.
  • a voltage VG_PFET is applied to the gate of the PFET so that a current Ic, which is the determination current, flows when the gas concentration is 10 ppm.
  • FIG. 17 is a diagram showing a second example of a device that determines a gas concentration by combining an NFET-type sensor FET and a PFET-type sensor FET.
  • 1 V and 0 V are applied to the terminals at both ends of the device.
  • 1 V is applied to the well so that no forward bias is applied between the source-drain layer and the well, and 0 V is applied to the well of the NFET.
  • a voltage VG_NFET is applied to the gate of the NFET so that a current Ic, which is the determination current, flows when the gas concentration is 10 ppm.
  • a voltage VG_PFET is applied to the gate of the PFET so that a current Ic, which is the determination current, flows when the gas concentration is 1 ppm.
  • a capacitor type sensor> 1 to 17 a FET sensor, which is one of the work function sensors, is used, but a capacitor sensor, which is the same work function sensor, can be used instead of the FET sensor. That is, a sensor capacitor (SCAP) and a reference capacitor (RCAP) can be used instead of the sensor FET and the reference FET.
  • SCAP sensor capacitor
  • RCAP reference capacitor
  • FIG. 18A is a schematic diagram showing an example of a cross section of a sensor capacitor.
  • the sensor capacitor 1201S is formed from a semiconductor substrate 1, a well 2, a gate insulating film 5, a metal oxide layer 106 serving as a detection material, and a catalyst metal layer 107.
  • the surface of the catalyst metal layer 107 of the sensor capacitor 1201S is exposed to an atmosphere containing the gas to be detected, and a part of the catalyst metal layer 107 is covered with an interlayer insulating film ILD for the purpose of fixing and protecting the catalyst metal layer 107.
  • silicon or silicon carbide (SiC) can be used for the semiconductor substrate 1.
  • FIG. 18B is a schematic diagram showing an example of a cross section of a reference capacitor.
  • the reference capacitor 1201R is formed from a semiconductor substrate 1, a well 12, a gate insulating film layer 15, a metal oxide layer 116 serving as a detection material, and a catalyst metal layer 117.
  • the surface of the catalyst metal layer 117 of the reference capacitor 1201R is covered with an interlayer insulating film ILD, and is isolated from the atmosphere containing the gas to be detected.
  • wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12 and the catalyst metal layers 107 and 117, and can be powered by the power sources 1005 to 1008 in Figure 1.
  • the sensor capacitor 1201S and the reference capacitor 1201R are described as both using N-type wells 2 and 12, but P-type wells can also be used.
  • a source-drain layer is not required, compared to when a FET-type sensor is used, and this simplifies the structure of the gas sensor chip 1001.
  • it becomes necessary to measure the capacitance using an AC voltage which is not necessary when a FET-type sensor is used.
  • FIG. 19 is a diagram showing an example of the operation when detecting the concentration of a target gas in a gas sensor chip using a capacitor-type sensor.
  • a current is passed through the heater wire constituting the heater section 1001H, and the sensor capacitor 1201S and reference capacitor 1201R are heated to a predetermined temperature, for example, about 100°C, by Joule heat generated in the resistance RHL of the heater wire.
  • 0V is applied to wells 2 and 12 of the sensor capacitor 1201S and reference capacitor 1201R.
  • a variable voltage VGR is applied to the gate of the reference capacitor 1201R by power supplies 1005 to 1008, and a variable voltage VGS is applied to the gate of the sensor capacitor 1201S by power supplies 1005 to 1008.
  • an AC voltage of amplitude Vsig is applied to the terminals of wells 2 and 12 by power supplies 1005 to 1008.
  • the capacitance C (SCAP) of the sensor capacitor 1201S and the capacitance C (RCAP) of the reference capacitor 1201R can be detected by measuring the AC current flowing through the gate terminals of the sensor capacitor 1201S and the reference capacitor 1201R using the current detection unit 1004.
  • the control unit 1003 controls the variable voltages VGS and VGR so that both voltages match a constant capacitance C0.
  • the difference VGRS between VGR and VGS at this time is the same as Equation 1.
  • FIG. 20A is a diagram showing an example of a characteristic curve of the capacitance vs. gate voltage of a sensor capacitor.
  • FIG. 20B is a diagram showing an example of a characteristic curve of the capacitance vs. gate voltage of a reference capacitor.
  • the catalyst metal layer 107 is exposed, so the work function of the catalyst metal layer 7 changes depending on the gas to be detected, and the characteristic curve of the capacitance vs. gate voltage moves parallel to the voltage direction when the concentration of the gas to be detected is 0 and when it is X.
  • the gate voltage at which the capacitance becomes C0 changes from VGS(0) to VGS(X).
  • the reference capacitor 1201R has the catalytic metal layer 117 covered with the interlayer insulating film ILD, so that the capacitance vs. gate voltage characteristic does not change even if the concentration of the gas to be detected changes, and the capacitance value when the voltage VGR is applied to the gate remains constant at C0.
  • the gas sensor chip 1001 using the sensor capacitor 1201S and the reference capacitor 1201R can detect the gas concentration based on the shift in the gate threshold voltage, similar to the case of using the sensor FET 1001S and the reference FET 1001R.
  • the sensitivity and selectivity to gas can be changed.
  • the component pattern of an atmosphere containing multiple gas species can be measured.
  • a diode type sensor> 1 to 17 a FET sensor is used as the work function sensor, but a diode sensor may be used as the same work function sensor instead of the FET sensor. That is, a sensor diode (SDIODE) and a reference diode (RDIODE) may be used instead of the sensor FET and the reference FET.
  • SDIODE sensor diode
  • RDIODE reference diode
  • FIG. 21A is a schematic diagram showing an example of a cross section of a sensor diode.
  • the sensor diode 1301S is formed from a semiconductor substrate 1, a well 2, a metal oxide layer 106 serving as a detection material, and a catalyst metal layer 107.
  • the surface of the catalyst metal layer 107 of the sensor diode 1301S is exposed to an atmosphere containing the gas to be detected, and a part of the catalyst metal layer 107 is covered with an interlayer dielectric film ILD for the purpose of fixing and protecting the catalyst metal layer 107.
  • silicon or silicon carbide (SiC) can be used for the semiconductor substrate 1.
  • FIG. 21B is a schematic diagram showing an example of a cross section of a reference diode.
  • the reference diode 1301R is formed from a semiconductor substrate 1, a well 12, a metal oxide layer 116 serving as a sensing material, and a catalyst metal layer 117.
  • the surface of the catalyst metal layer 117 of the reference diode 1301R is covered with an interlayer dielectric film ILD, and is isolated from the atmosphere containing the gas to be sensed.
  • wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12 and the catalyst metal layers 107 and 117, and can be powered by the power sources 1005 to 1008 in Figure 1.
  • the sensor diode 1301S and the reference diode 1301R are described as both using N-type wells as wells 2 and 12, but P-type wells can also be used.
  • the configuration using a diode-type sensor in the gas sensor chip 1001 has a simpler structure than when a FET-type sensor is used. In addition, there is no need for the AC voltage that is required when a capacitor-type sensor is used.
  • FIG. 22 is a diagram showing an example of the operation when detecting the concentration of a gas to be detected in a gas sensor chip using a diode-type sensor.
  • a current is passed through the heater wire constituting the heater section 1001H, and the sensor diode 1301S and the reference diode 1301R are heated to a predetermined temperature, for example, 100° C., by Joule heat generated in the resistance RHL of the heater wire.
  • the power supplies 1005-1008 apply 0 V to the wells 2 and 12 of the sensor diode 1301S and the reference diode 1301R.
  • the power supplies 1005-1008 also apply a variable voltage VGR to the gate of the reference diode 1301R, and a variable voltage VGS to the gate of the sensor diode 1301S.
  • the current detection section 1004 measures the current flowing through the gate terminals of the sensor diode 1301S and the reference diode 1301R.
  • the control section 1003 controls VGS and VGR so that the currents of both diodes match a constant IC.
  • the difference VGRS between VGR and VGS at this time is the same as Equation 1.
  • FIG. 23A is a diagram showing an example of a current-voltage characteristic curve of a sensor diode.
  • FIG. 23B is a diagram showing an example of a current-voltage characteristic curve of a reference diode. Since the catalytic metal layer 107 is exposed in the sensor diode, the work function of the catalytic metal layer 7 changes depending on the gas to be detected, and the curve showing the current-gate voltage characteristic when the concentration of the gas to be detected is 0 and when it is X moves parallel to the voltage direction. As a result, the gate voltage at which the current becomes Ic changes from VGS(0) to VGS(X).
  • the catalytic metal layer 117 of the reference diode is covered with the interlayer dielectric film ILD, the current-gate voltage characteristics do not change even if the concentration of the gas to be detected changes, and the capacitance value when a voltage VGR is applied to the gate remains constant at C0.
  • the gas concentration can be detected from the shift in the gate threshold voltage.
  • the sensitivity and selectivity to gases can be changed.
  • ⁇ Method of manufacturing gas sensor chip> 24A to 24F are diagrams for explaining an example of a method for manufacturing the gas sensor chip according to embodiment 1.
  • Fig. 25 is a flowchart showing an example of a method for manufacturing the gas sensor chip according to embodiment 1.
  • the method for manufacturing the gas sensor chip 1001 according to embodiment 1 is a method for fabricating a plurality of types of FETs having different gas detection material layers on a semiconductor substrate.
  • multiple types of FETs refer to FETs used as sensor FETs and reference FETs.
  • the number of types of FETs fabricated will be the same as the number of types of sensor FETs.
  • the type of gas detection material layer of the reference FET does not overlap with the type of gas detection material layer of the sensor FET, the number of types of FETs fabricated will be the same as the number of types of sensor FETs + the number of types of reference FETs.
  • step S1 a well 2, a source layer 3, and a drain layer 4 are formed in a semiconductor substrate 1, and a gate insulating film 5 is formed thereon.
  • the semiconductor substrate 1 is, for example, a silicon substrate.
  • the gate insulating film 5 is, for example, an impurity layer and a SiO2 film.
  • the base of the FET is fabricated. Note that a conventionally known method can be used in this step S1.
  • a resist is applied onto the semiconductor substrate 1 on which the base was prepared in step S1.
  • the resist can be, for example, two layers, a lower layer resist and an upper layer resist, so that an undercut is formed when developed.
  • a lift-off process using a resist mask can be used to apply the resist in order to fabricate multiple sensor FETs with different gas detection material layers.
  • step S3 an exposure process and a development process are used to form openings 40 on the semiconductor substrate 1 coated with resist in the areas (not necessarily in one place) where the catalytic metal layers of some of the sensor FETs will be formed.
  • step S4 a metal oxide layer and a catalyst metal layer are formed on the semiconductor substrate 1 as a gas detection material layer. This step S4 is repeated for the number of types of FETs to be fabricated, as described below.
  • step S4 is performed the Nth time (N ⁇ 1), MOX(N) and CATAL(N) are used as the metal oxide layer and the catalyst metal layer.
  • MOX(N) and CATAL(N) are used as the metal oxide layer and the catalyst metal layer.
  • FIG. 24A a metal oxide layer MOX1 and a catalyst metal layer CATAL1 are formed (FIG. 24A).
  • step S4 is performed the second time, a metal oxide layer MOX2 and a catalyst metal layer CATAL2 are formed (FIG. 24C).
  • the first "metal oxide layer MOX1 and catalyst metal layer CATAL1" from the left in FIG. 24C is an example of the “first gas detection material layer” in the present invention.
  • the second from the left in FIG. 24C, “metal oxide layer MOX2 and catalyst metal layer CATAL2,” is an example of the “second gas sensing material layer” in the present invention.
  • step S5 the applied resist is removed.
  • a metal oxide layer MOX1 and a catalyst metal layer CATAL1 are also formed on top of the upper resist by the process of step S4, but the metal oxide layer MOX1 and catalyst metal layer CATAL1 on top of the upper resist are also removed by removing the resist in step S5 ( Figure 24B).
  • a laminated film of the metal oxide layer MOX1 and catalyst metal layer CATAL1 is formed on the channel portion of some of the sensor FETs via the gate insulating film 5.
  • step S6 a process is performed to determine whether all planned FETs have been produced. In other words, a process is performed to determine whether the number of types of FETs produced has reached the planned number. If it is determined in this step that all planned FETs have been produced, the process proceeds to step 7. On the other hand, if it is determined in this step that all planned FETs have not been produced, the process returns to step S2, and steps S2 to S5 are repeated until the number of types of FETs produced reaches the planned number.
  • step S2 For example, in the second execution of step S2, a resist is applied onto the semiconductor substrate 1, and an exposure process and a development process are performed. Then, in the second execution of step S3, an opening 40 is formed in an area where the catalyst metal layer of a part of the FET is to be formed, other than the area where the laminated film of the metal oxide layer MOX1 and the catalyst metal layer CATAL1 has already been formed (FIG. 24B). Next, in the second execution of step S4, a metal oxide layer MOX2 and a catalyst metal layer CATAL2 are formed (FIG. 24C).
  • the metal oxide layer MOX2 is made to differ from MOX1 in any of the material, film thickness, and crystal grain size, or the catalyst metal layer CATAL2 is made to differ from CATAL1 in any of the material, film thickness, and crystal grain size.
  • a metal oxide layer MOX2 and a catalyst metal layer CATAL2 are also formed on top of the upper resist layer, but by performing step S5 a second time, the resist is removed and the metal oxide layer MOX2 and catalyst metal layer CATAL2 on top of the upper resist layer are also removed.
  • a silicon oxide film and a silicon nitride film that will become the interlayer insulating film are formed in step S7 ( Figure 24E).
  • a process is performed by a known method to form contact holes in the interlayer insulating film made of the silicon oxide film and the silicon nitride film to supply power to the source, drain, well, and gate.
  • a metal film such as aluminum or tungsten that will become the wiring is formed, and the wiring is formed by known lithography and dry etching techniques.
  • the "silicon nitride film” is an example of an "impurity layer" in the present invention.
  • step S8 an opening 50 is formed in the catalytic metal layer for the sensor FET in the interlayer insulating film, i.e., in the upper part of the gas detection material layer. This exposes the catalytic metal layer of the sensor FET to the atmosphere, completing the sensor chip ( Figure 24F).
  • Figure 24F when fabricating a reference FET, in step S8 shown in Figure 24F, when forming the opening 50 in the interlayer insulating film above the catalytic metal layer for the sensor FET, no opening is formed in the interlayer insulating film above the catalytic metal layer for the reference FET, and the interlayer insulating film is left.
  • the manufacturing method of the gas sensor chip according to the embodiment of the present invention includes the steps of forming an impurity layer on a semiconductor substrate, forming a first gas sensing material layer including a catalytic metal layer on the semiconductor substrate, and forming a second gas sensing material layer including a catalytic metal layer on a position on the semiconductor substrate different from that of the first gas sensing material layer.
  • the first gas sensing material layer and the second gas sensing material layer are different from each other in at least one of the type of material constituting the gas sensing material layer, the film thickness, and the crystal grain size.
  • a gas sensor chip in which multiple types of work function type sensors are mounted on a single semiconductor substrate can be manufactured using a manufacturing method similar to that used for manufacturing a simple MOSFET, and the gas sensor chip can be manufactured at low cost. As a result, atmospheric gas sensing can be achieved at low cost.
  • a gas detection material layer consisting of a metal oxide layer and a catalytic metal layer is formed for each sensor FET in a continuous manner.
  • a method for manufacturing a gas sensor chip a method is also conceivable in which a metal oxide layer or catalytic metal layer common to multiple sensor FETs is formed at once. That is, the process of forming multiple gas detection material layers, for example, the process of forming a first gas detection material layer and the process of forming a second gas detection material layer, may be divided into multiple film formation processes using a mask.
  • the gas detection material layer includes, for example, one or more metal oxide layers and one or more catalytic metal layers, or includes one or more catalytic metal layers without including a metal oxide layer.
  • ⁇ Modification 1 of the manufacturing method of the gas sensor chip> 26A to 26D are diagrams for explaining the modified example 1 of the method for manufacturing the gas sensor chip, and Fig. 27 is a flow chart showing the modified example 1 of the method for manufacturing the gas sensor chip.
  • step S11 similar to step S1 above, a well 2, a source layer 3, and a drain layer 4 are formed in a semiconductor substrate 1, and a gate insulating film 5 is formed thereon to create a base.
  • step S12 a resist is applied to the semiconductor substrate 1 on which the base has been prepared.
  • step S13 a process is performed in which openings are formed in the semiconductor substrate 1 coated with resist at positions corresponding to some combinations of FETs to be fabricated.
  • the openings may be formed in positions corresponding to some combinations of all FETs to be fabricated, including FETs for which openings have previously been formed, or they may be positions corresponding to combinations of FETs for which openings have never previously been formed.
  • a metal oxide layer MOX(N) is formed on the semiconductor substrate 1 with the openings formed therein.
  • N represents the number of times step S14 is performed; if it is performed the first time, a metal oxide layer MOX1 is formed, and if it is performed the second time, a metal oxide layer MOX2 is formed.
  • FIG. 26A shows an example in which openings are formed in the areas corresponding to the first to fourth FETs from the left on a semiconductor substrate 1 coated with resist, and a metal oxide layer MOX1 is formed on top of the openings.
  • step S15 a process for removing the resist is performed.
  • the metal oxide layer formed on the resist is removed together with the resist.
  • step S16 it is determined whether or not another metal oxide layer is to be formed. If it is determined that another metal oxide layer is to be formed, the process returns to step S12. If it is determined that another metal oxide layer is not to be formed, the process proceeds to step S17. In other words, steps S12 to S15 are repeated until all of the metal oxide layers to be formed have been formed.
  • FIG. 26B shows an example of a state in which the resist is removed (step S15) and resist is applied (step S12) to the semiconductor substrate 1 shown in FIG. 26A, openings are formed in the areas corresponding to the first, second and fifth and sixth FETs from the left (step S13), and a metal oxide layer MOX2 is formed on top of the openings (step S15).
  • metal oxide layers MOX1 and MOX2 are laminated and formed in the portions of semiconductor substrate 1 corresponding to the first and second FETs from the left, metal oxide layer MOX1 is formed in the portions corresponding to the third and fourth FETs from the left, and metal oxide layer MOX2 is formed in the portions corresponding to the fifth and sixth FETs from the left.
  • FIG. 26C shows an example of a state in which the resist is removed (step S15) and resist is applied (step S12) to the semiconductor substrate 1 shown in FIG. 26B, openings are formed in the portions corresponding to the first, third, fifth, and seventh FETs from the left (step S13), and a metal oxide layer MOX3 is formed on top of the openings (step S15).
  • metal oxide layers MOX1, MOX2, and MOX3 are formed in a laminated manner in the portion corresponding to the first FET from the left.
  • Metal oxide layers MOX1 and MOX2 are formed in a laminated manner in the portion corresponding to the second FET from the left.
  • Metal oxide layers MOX1 and MOX3 are formed in a laminated manner in the portion corresponding to the third FET from the left.
  • Metal oxide layer MOX1 is formed in the portion corresponding to the fourth FET from the left.
  • Metal oxide layers MOX2 and MOX3 are formed in a laminated manner in the portion corresponding to the fifth FET from the left.
  • Metal oxide layer MOX2 is formed in the portion corresponding to the sixth FET from the left.
  • Metal oxide layer MOX3 is formed in the portion corresponding to the seventh FET from the left.
  • No metal oxide layer is formed in the portion corresponding to the eighth FET from the left.
  • step S17 a resist is applied to the semiconductor substrate 1.
  • step S18 a process is carried out to form openings in the semiconductor substrate 1 on which the resist has been applied, in areas corresponding to all of the FETs to be fabricated.
  • step S19 a process is performed to form a catalyst metal layer CATAL1, which will become a gate, on the semiconductor substrate 1 with the opening formed therein.
  • the first gas sensing material layer from the left in FIG. 26D i.e., the "metal oxide layers MOX1" to "MOX3" and the “catalyst metal layer CATAL1" are an example of the "first gas sensing material layer” in the present invention.
  • the eighth gas sensing material layer from the left in FIG. 26D i.e., the "catalyst metal layer CATAL1
  • step S20 a process of removing the resist is performed.
  • the catalyst metal layer CATAL1 formed on the resist is removed together with the resist.
  • step S21 a silicon oxide film and a silicon nitride film that will become an interlayer insulating film are formed.
  • step S22 openings are formed in the semiconductor substrate 1 at positions corresponding to all FETs planned to be fabricated.
  • a gas chip sensor having multiple types of sensor FETs formed therein can be manufactured.
  • the metal oxide layer MOX3 is deposited on some FETs and the metal oxide layer MOX3 is not deposited on the remaining FETs, thereby increasing the number of types of sensor FETs with different gas detection material layers.
  • the interlayer insulating film above the gate portion of the reference FET is left without forming an opening.
  • the catalytic metal layer is the same for all FETs (CATAL 1). However, it is also possible to form a catalytic metal layer of a plurality of different types.
  • the modified example 2 of the manufacturing method of the gas sensor chip will be described below.
  • Figures 28A to 28D are diagrams for explaining modified example 2 of the manufacturing method of a gas sensor chip.
  • a process is performed to form a metal oxide layer MOX1 for some combinations of FETs to be manufactured ( Figure 28A).
  • a process is performed to form a metal oxide layer MOX2 for some of the other combinations ( Figure 28B).
  • the metal oxide layer MOX2 is formed on some FETs, and the metal oxide layer MOX2 is not formed on the remaining FETs. This makes it possible to increase the variety of sensor FETs that have different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the metal oxide layer MOX2 was formed, becomes different by forming the metal oxide layer MOX2.
  • the catalyst metal layer CATAL1 is formed on one FET and the catalyst metal layer CATAL2 is formed on the remaining FET.
  • This makes it possible to increase the types of sensor FETs with different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the formation of the catalyst metal layers CATAL1 and CATAL2, becomes different when the catalyst metal layers CATAL1 and CATAL2 are formed.
  • ⁇ Modification 3 of the manufacturing method of the gas sensor chip> In the modified examples 1 and 2 of the manufacturing method of the gas sensor chip, a process of laminating metal oxide layers on one another is included, but the catalyst metal layer is made of a single layer of CATAL1 or a single layer of CATAL2, and a process of laminating catalyst metal layers on one another is not included. However, in addition to the process of laminating metal oxide layers on one another, a process of laminating catalyst metal layers on one another can be included to increase the types of gas detection materials of the sensor FET. The following describes modified example 3 of the manufacturing method of the gas sensor chip. In order to simplify the description, the process of applying and removing the resist and the process of forming the opening are omitted.
  • Figures 29A to 29D are diagrams for explaining modified example 3 of the manufacturing method of a gas sensor chip.
  • a process is performed to form a metal oxide layer MOX1 for some combinations of FETs to be manufactured ( Figure 29A).
  • a process is also performed to form a metal oxide layer MOX2 for some of the other combinations ( Figure 29B).
  • a process is performed to form a catalyst metal layer CATAL1 that will become the gates of some of the FETs ( Figure 29C).
  • a process is performed to form a catalyst metal layer CATAL2 that will become the gates of all FETs, including the FETs on which CATAL1 has been formed ( Figure 29D).
  • the metal oxide layer is already a metal oxide film at the time of deposition, but it is also possible to deposit the metal layer as a metal layer at the time of deposition and then oxidize the metal layer in a subsequent process to form a metal oxide layer.
  • Figures 30A to 30F are diagrams for explaining modified example 4 of the manufacturing method of a gas sensor chip.
  • a process is performed on some combinations of FETs to be manufactured, which will form a metal layer M1 that will become a metal oxide layer MOX1 in a later oxidation process ( Figure 30A).
  • a process is performed on some of the other combinations to form a metal layer M2 that will become a metal oxide layer MOX2 in a later oxidation process ( Figure 30B).
  • a process is performed on some of the still other combinations to form a metal layer M3 that will become a metal oxide layer MOX3 in a later oxidation process ( Figure 30C). Then, a process is performed to form a catalyst metal layer CATAL1 that will become the gate of all the FETs ( Figure 30D).
  • the semiconductor substrate 1 in the form shown in FIG. 30D is subjected to a process for removing the resist (FIG. 30E). After that, by annealing in air at a temperature of about 400° C., the metal layers M1, M2, and M3 become metal oxide layers MOX1, MOX2, and MOX3, respectively (FIG. 30F). When the metal layers M1, M2, and M3 are oxidized, volume expansion occurs. By appropriately selecting the type and thickness of the metal layers M1, M2, and M3 and the catalyst metal layer CATAL1, the expanded MOX1, MOX2, and MOX3 can penetrate into the grain boundaries of the top catalyst metal layer CATAL1, forming a nanostructure of the catalyst metal layer CATAL1.
  • the nanostructure of the catalyst metal layer CATAL1 is an effective structure for improving the sensitivity of gas sensors.
  • YSZ yttria stabilized zirconia
  • the composition formula of YSZ can be written as (ZrO 2 ) 1-Z (Y 2 O 3 ) Z.
  • the film formation of ZrO 2 and the film formation of Y 2 O 3 are alternately performed in N film formations, and the film thickness (number of moles per unit area) of the film formed in these N film formations is also all different.
  • 2N sensor FETs can be made with different YSZ compositions Z, i.e., different gas detection materials. Since the sensitivity and selectivity of the sensor change depending on the difference in the gas detection material, it becomes possible to detect multiple gases.
  • CeO2 and Gd2O3 can also be mixed crystals, and the composition formula can be written as ( CeO2 ) 1-Z ( Gd2O3 ) Z .
  • CeO2 and Gd2O3 are alternately formed in N film formations, and the film thicknesses (number of moles per unit area) of the films formed in these N film formations are all different.
  • 2N sensor FETs can be made with different compositions Z of ( CeO2 ) 1-Z ( Gd2O3 ) Z , i.e. , different gas detection materials. The sensitivity and selectivity of the sensor change depending on the gas detection material, making it possible to detect multiple gases.
  • BaCe 1-Z Y Z O 3 , BaZr 1-Z Y Z O 3 , SrCe 1-Z Y Z O 3 , SrZr 1-Z Y Z O 3 , etc. are mixed crystals.
  • BaCe 1-Z Y Z O 3 for example, BaCeO 3 and BaYO 3- ⁇ are alternately formed in N film formations, and the film thickness (moles per unit area) of the film formed in these N film formations is also changed.
  • 2 N sensor FETs can be made so that the composition Z of BaCe 1-Z Y Z O 3 , that is, the gas detection material, is different from each other. Since the sensitivity and selectivity of the sensor change depending on the gas detection material, it is possible to detect multiple gases. The same is true for BaZr 1-Z Y Z O 3 , SrCe 1-Z Y Z O 3 and SrZr 1-Z Y Z O 3 .
  • the metal oxide layer or the metal layer to be the metal oxide layer and the catalytic metal layer are formed separately.
  • the metal oxide layer can also function as the gate of an FET by doping it with catalytic metals such as platinum, palladium, iridium, rhodium, and ruthenium.
  • catalytic metals can function as the catalytic metal layer if the resistance of the metal oxide layer can be reduced to a level where it can function as a gate by imparting electrical conductivity to the metal oxide layer.
  • the catalytic metal layer can include a metal oxide layer.
  • the metal layers M1, M2, and M3, which will become metal oxides in subsequent processes can also be doped with catalytic metals such as platinum, palladium, iridium, rhodium, and ruthenium.
  • the metal layers M1, M2, and M3 become metal oxide layers MOX1, MOX2, and MOX3, each of which contains a doped catalytic metal.
  • These catalytic metals can function as catalytic metal layers if the resistance of the metal oxide layer can be reduced to a level where it can function as a gate by making the metal oxide layer electrically conductive.
  • the catalytic metal layer can contain a metal oxide layer.
  • the types of gas sensing material layers can be increased by up to two times each time a material layer is deposited. Reflecting the fact that a catalyst metal layer is required for every sensor FET, 2N types of gas sensing material layers can be formed by N+1 material depositions. Therefore, when a large number of types of sensor FETs are required on the gas sensor chip, the first to sixth variations of the manufacturing method of the gas sensor chip can exponentially reduce the number of manufacturing steps of the gas sensor chip. For example, in the manufacturing method of the gas sensor chip described with reference to Figs. 24A to 24F, 1024 lithography steps are required to separately produce 1024 types of gas sensing materials, whereas the first to sixth variations of the manufacturing method of the gas sensor chip require only 11 lithography steps.
  • ⁇ Sensing system using the gas sensor according to the first embodiment> 8B when the number N of types of detection materials of the sensor FET mounted on the gas sensor chip is compared with the number M of types of gas components contained in the atmosphere, and M ⁇ N, for example, by minimizing ⁇ Vg_Sum in (Equation 4), X_Gas1 to X_GasM can be estimated. On the other hand, when N ⁇ M, X_Gas1 to X_GasM cannot be estimated.
  • the sensitivity and selectivity of the sensor FET to the gas to be detected can be changed, so that the same sensor FET can be considered as a new sensor FET with different properties by changing the temperature.
  • N sensors on the same gas sensor chip are used, if measurements are performed at two temperatures T1 and T2, information equivalent to that obtained by measuring with 2N different sensor FETs can be obtained. Therefore, even if N ⁇ M, if M ⁇ 2N, X_Gas1 to X_GasM can be estimated by minimizing ⁇ Vg_Sum(T1, T2), defined by the following equation 5, for the shift in 2N gate threshold voltages.
  • ⁇ Vg_Sum(T1, T2) ⁇ Vg_Gate1(T1)- ⁇ Vg_Gate1_Calc(T1) ⁇ 2 + ⁇ Vg_Gate2(T1)- ⁇ Vg_Gate2_Calc(T1) ⁇ 2 + ... ⁇ Vg_GateN(T1)- ⁇ Vg_GateN_Calc(T1) ⁇ 2 + ⁇ Vg_Gate1(T2)- ⁇ Vg_Gate1_Calc(T2) ⁇ 2 + ⁇ Vg_Gate2(T2)- ⁇ Vg_Gate2_Calc(T2) ⁇ 2 + ... ⁇ Vg_GateN(T2)- ⁇ Vg_GateN_Calc(T2) ⁇ 2 ... (Equation 5)
  • Equation 5 is an example of measurements at two different temperatures, but this equation can be generalized.
  • P gas sensor chips each equipped with N sensor FETs with different gas detection material layers, are prepared and each gas sensor chip is used at different temperatures T1 to TP to measure the gas components in the atmosphere, X_Gas1 to X_GasM can be estimated if M ⁇ N ⁇ P.
  • FIG. 31 is a diagram showing an example of a gas sensing system in which multiple gas sensor chips are used at different temperatures.
  • the gas sensing system 2000 shown in FIG. 31 includes multiple gas sensor chips 2001 and a system control unit 2003 that controls them.
  • the gas sensor chip 2001 is equipped with multiple sensor FETs with different gas detection material layers.
  • Each gas sensor chip 2001 is equipped with a heater unit (Heater), such as a heater wire, that can independently heat the gas sensor chip 2001. That is, the gas sensing system 2000 includes multiple gas sensor chips 2001 and multiple heater units.
  • the gas sensor chip 2001 also includes a thermometer unit (Thermometer), such as a diode, that can measure temperature.
  • the system control unit 2003 is a systemized version of the circuit unit 1100 in FIG. 1 that can control multiple gas sensors.
  • the system control unit 2003 like the control unit 1003 in FIG. 1, includes a gas concentration estimation unit 2002, a current detection unit 2004, a power source 2005, and a parameter storage unit 2009.
  • ⁇ Effects of a gas sensing system using multiple gas sensor chips at different temperatures> 31 it is possible to measure the gas components in the atmosphere at multiple temperatures, three temperatures T1 to T3° C. in the example of FIG. 31, so that X_Gas1 to X_GasM can be estimated if M ⁇ N ⁇ NC, where NC is the number of gas sensor chips.
  • the temperatures T1, T2, and T3 can be, for example, 100° C., 200° C., and 300° C.
  • the present invention is not limited to the above-described embodiment, and includes various modified examples.
  • the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to those having all of the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • This application discloses an inexpensive gas sensor chip in which a plurality of gas sensor elements with different sensitivities and selectivities are integrated on a semiconductor substrate, and the amount of each of a plurality of gas species contained in an atmosphere can be measured.
  • a gas detection material layer having at least one of different material types, film thicknesses, and crystal grain sizes is formed on an impurity layer on a semiconductor substrate, thereby forming a plurality (N) of work function type sensors (e.g., sensor FETs) with different gas sensitivities and selectivities.
  • the amount of each gas component of 1 to M (M ⁇ N) types of gas species can be measured, and it becomes possible to distinguish between atmospheres with different gas species and concentrations of each gas species, for example.
  • An example of a gas sensor according to an embodiment of the present application is formed on a semiconductor substrate, and a gas detection material layer is mounted on the gate, the gas detection material layer being composed of at least one metal oxide layer having different material types, film thicknesses, or polycrystalline grain sizes, and at least one catalytic metal layer having different material types, film thicknesses, or polycrystalline grain sizes.
  • the metal oxide layer and the catalytic metal layer have a plurality of catalytic metal gate FET type sensor elements in which the catalytic metal layer is formed on the upper layer of the metal oxide layer and exposed to the atmosphere.
  • the catalytic metal gate FET type sensors can be formed as either N-type or P-type, or may be formed using both N-type and P-type.
  • a catalytic metal gate FET type sensor circuit can be formed by combining a plurality of catalytic metal gate FET type sensors in the array.
  • a selection transistor for accessing a specific sensor from an array consisting of a plurality of catalytic metal gate FET type sensors can be formed separately from the catalytic metal gate FET type sensor using a normal gate material that does not react with gas.
  • the catalytic metal layer and metal oxide layer of the gate layer may be the same as any of the plurality of catalytic metal gate FET type sensors, and one or more reference FETs may be mounted, the gate of which is covered with a protective film and not exposed to the atmosphere.
  • a heater wire for heating and controlling the temperature of the catalytic metal gate FET sensor element, and a diode element that serves as a thermometer for estimating the temperature of the catalytic metal gate FET sensor element can also be mounted on the semiconductor substrate.
  • Power can be supplied to the catalytic metal gate FET sensor element, the reference FET, the heater wire, the diode, etc. from an external power source via wire bonds, or TSV technology can be used to supply power by forming a hole penetrating the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

According to the present invention, sensing of a plurality of types of gases existing in an atmosphere is achieved with low cost. This gas sensor chip comprises a semiconductor substrate, and a plurality of gas detection material layers that are each formed at different positions on the semiconductor substrate. Each of the gas detection material layers has a metal oxide layer, and a catalytic metal layer formed above the metal oxide layer, and is configured so that the catalytic metal layer is exposed to the atmosphere. The plurality of gas detection material layers have mutually differing combinations of type, film thickness, and crystal grain size of the material of the metal oxide layer and type, film thickness, and crystal grain size of the material of the catalytic metal layer.

Description

ガスセンサチップ、ガスセンシングシステム、およびガスセンサチップの製造方法Gas sensor chip, gas sensing system, and method for manufacturing the gas sensor chip
 本発明は、ガスセンサチップ、ガスセンシングシステム、およびガスセンサチップの製造方法に関する。 The present invention relates to a gas sensor chip, a gas sensing system, and a method for manufacturing a gas sensor chip.
 脱炭素社会の実現に向けて、化石燃料の代わりに水素やカーボンニュートラルなバイオ燃料を用いて発電する技術が注目を集めている。世界中の人々の環境への意識の高まりから、大気中に含まれる汚染物質成分への関心も高まっている。ウェルビーイングへの関心も強くなり、人々は、例えば、呼気センシングにより健康状態をモニタリングしたり、快適な環境で生活したりすることを望むようになってきている。その結果、水素などの1種類のガスのセンシングへのニーズの高まりに加えて、複数種類のガスが含まれる雰囲気でそれぞれのガス成分の濃度を独立に検出したり、複数種類のガス成分の組合せパタンを分離区別したりするニーズが高まってきている。 In order to realize a decarbonized society, technologies that use hydrogen and carbon-neutral biofuels instead of fossil fuels to generate electricity are attracting attention. As people around the world become more environmentally conscious, there is also growing interest in pollutant components in the air. Interest in well-being is also growing, and people are beginning to want to monitor their health status, for example by breath sensing, and live in comfortable environments. As a result, in addition to the growing need to sense a single type of gas, such as hydrogen, there is also a growing need to independently detect the concentration of each gas component in an atmosphere containing multiple types of gases, and to separate and distinguish combination patterns of multiple types of gas components.
 一方、特許文献1には、ガス分子検出部とアンプ回路のアレイからなるガスセンサの技術が記載されている。 On the other hand, Patent Document 1 describes a gas sensor technology consisting of a gas molecule detection section and an array of amplifier circuits.
 また、非特許文献1には、ガスセンサの1つである水素センサについて記載されている。水素センサには、検出原理が異なるいつかのセンサがある。これらのうちFET型、キャパシタ型、ダイオード型といったセンサは、仕事関数型センサに分類される。 Non-Patent Document 1 also describes a hydrogen sensor, which is one type of gas sensor. There are several types of hydrogen sensors that have different detection principles. Among these, sensors such as FET type, capacitor type, and diode type are classified as work function type sensors.
国際公開第2017/104130号International Publication No. 2017/104130
 ところで、雰囲気中に存在するガスの種類あるいはガスごとの成分パタンを検出するためには、ガスの種類あるいはガスの濃度に対する特性が異なる複数種類のガスセンサ素子が必要になる。一般的に、このような複数種類のガスセンサ素子を個々に作製したり、あるいは、個々に入手したりしようとすると、コストが高くなる。 In order to detect the types of gases present in the atmosphere or the component patterns of each gas, multiple types of gas sensor elements with different characteristics for different types of gas or gas concentrations are required. Generally, producing such multiple types of gas sensor elements individually or obtaining them individually results in high costs.
 しかしながら、特許文献1および非特許文献1には、上記の複数種類のガスセンサ素子を低コストに作製する技術については記載がなく、雰囲気中に存在する複数種類のガスのセンシングを低コストで実現させることは困難である。 However, neither Patent Document 1 nor Non-Patent Document 1 describes a technique for producing the above-mentioned multiple types of gas sensor elements at low cost, making it difficult to realize low-cost sensing of multiple types of gases present in the atmosphere.
 上記事情により、雰囲気中に存在する複数種類のガスのセンシングを低コストで実現させることができる技術が望まれている。 Due to the above circumstances, there is a demand for technology that can realize low-cost sensing of multiple types of gases present in the atmosphere.
 前記課題を解決するための手段として、特許請求の範囲に記載の技術を用いる。一例を挙げるならば、半導体基板と、それぞれが前記半導体基板上の異なる位置に形成される複数のガス検知材料層と、を備え、前記ガス検知材料層は、金属酸化物層と前記金属酸化物層の上側に形成される触媒金属層とを有し、前記触媒金属層が雰囲気に露出するように構成され、前記複数のガス検知材料層は、前記金属酸化物層の材料の種類、膜厚、結晶粒径、前記触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なる、ガスセンサチップを用いればよい。 As a means for solving the above problem, the technology described in the claims is used. As an example, a gas sensor chip may be used that includes a semiconductor substrate and a plurality of gas detection material layers each formed at a different position on the semiconductor substrate, the gas detection material layer having a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, the catalytic metal layer being configured to be exposed to the atmosphere, and the plurality of gas detection material layers having different combinations of material type, film thickness, and crystal grain size of the metal oxide layer and material type, film thickness, and crystal grain size of the catalytic metal layer.
 また、他の一例を挙げるならば、ガスセンサチップと、前記ガスセンサチップを加熱昇温するヒータ部と、前記ガスセンサチップと前記ヒータ部とを制御する制御部と、を備え、前記ガスセンサチップは、半導体基板と、それぞれが前記半導体基板上の異なる位置に形成される複数のガス検知材料層と、を備え、前記ガス検知材料層は、金属酸化物層と前記金属酸化物層の上側に形成される触媒金属層とを有し、前記触媒金属層が雰囲気に露出するように構成され、前記複数のガス検知材料層は、前記金属酸化物層の材料の種類、膜厚、結晶粒径、前記触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なっており、前記制御部は、前記ガスセンサチップが所定の温度となるように前記ヒータ部を制御し、前記複数のガス検知材料層を用いて得られる情報に基づいて、雰囲気中のガスを検知する、ガスセンシングシステムを用いればよい。 As another example, a gas sensing system may be used that includes a gas sensor chip, a heater unit that heats the gas sensor chip, and a control unit that controls the gas sensor chip and the heater unit, the gas sensor chip includes a semiconductor substrate and a plurality of gas detection material layers each formed at a different position on the semiconductor substrate, the gas detection material layer includes a metal oxide layer and a catalyst metal layer formed on the metal oxide layer, and the catalyst metal layer is configured to be exposed to the atmosphere, the plurality of gas detection material layers have different combinations of material type, film thickness, and crystal grain size of the metal oxide layer and material type, film thickness, and crystal grain size of the catalyst metal layer, the control unit controls the heater unit so that the gas sensor chip is at a predetermined temperature, and detects gas in the atmosphere based on information obtained using the plurality of gas detection material layers.
 また、他の一例を挙げるならば、半導体基板上に、不純物層を形成する工程と、前記半導体基板上に、触媒金属層を含む第1のガス検知材料層を形成する工程と、前記半導体基板上の、前記第1のガス検知材料層とは異なる位置に、触媒金属層を含む第2のガス検知材料層を形成する工程と、を含み、前記第1のガス検知材料層と前記第2のガス検知材料層とは、ガス検知材料層を構成する材料の種類、膜厚、および結晶粒径のうち少なくとも1つが互いに異なる、ガスセンサチップの製造方法を用いればよい。 As another example, a manufacturing method for a gas sensor chip may be used that includes the steps of forming an impurity layer on a semiconductor substrate, forming a first gas detection material layer including a catalytic metal layer on the semiconductor substrate, and forming a second gas detection material layer including a catalytic metal layer on a position on the semiconductor substrate different from that of the first gas detection material layer, wherein the first gas detection material layer and the second gas detection material layer are different from each other in at least one of the type of material constituting the gas detection material layer, the film thickness, and the crystal grain size.
 本発明によれば、雰囲気中に存在する複数種類のガスのセンシングを低コストで実現させることができる。上記した以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。 The present invention makes it possible to realize low-cost sensing of multiple types of gases present in the atmosphere. Problems, configurations, and effects other than those described above will become clear from the description of the embodiments below.
実施の形態1に係るガスセンシングシステムの一例を示す図である。1 is a diagram illustrating an example of a gas sensing system according to a first embodiment. 実施の形態1に係るガスセンシングシステムのハードウェア構成の一例を示す図である。1 is a diagram illustrating an example of a hardware configuration of a gas sensing system according to a first embodiment. 実施の形態1に係るガスセンサチップの平面図である。1 is a plan view of a gas sensor chip according to a first embodiment; センサFET(SFET)の断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a sensor FET (SFET). 参照FET(RFET)の断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a reference FET (RFET). センサFETと参照FETのガス検知材料層に用いる材料の一例を示す図である。FIG. 2 is a diagram showing an example of a material used for the gas sensing material layer of a sensor FET and a reference FET. FET型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a FET type sensor. NFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性を示す図である。FIG. 1 is a diagram showing the characteristics of gate voltage versus drain current in an NFET-type sensor FET. NFET型の参照FETにおけるゲート電圧対ドレイン電流の特性を示す図である。FIG. 1 is a diagram showing gate voltage vs. drain current characteristics of an NFET-type reference FET. センサFETにおけるガス濃度とゲートしきい値電圧シフトとの関係の一例を示す図である。FIG. 13 is a diagram showing an example of the relationship between gas concentration and gate threshold voltage shift in a sensor FET. 一定濃度のいくつかのガスに対して2種類のセンサFETがどのように応答するかの一例を示す図である。FIG. 2 shows an example of how two types of sensor FETs respond to a fixed concentration of several gases. 互いに異なるN個のセンサFETを用いてM種類のガス濃度を推定することができることを説明するための図である。1 is a diagram for explaining that the concentrations of M types of gases can be estimated using N mutually different sensor FETs. FIG. 実施の形態1に係るガスセンサと従来型のガスセンサとの間でガス1種類当たりに対するガスセンサのサイズおよびコストを比較した結果の例を示す図である。5 is a diagram showing an example of a comparison result of the size and cost of the gas sensor per type of gas between the gas sensor according to the first embodiment and a conventional gas sensor; FIG. 選択トランジスタを用いたFET型ガスセンサアレイの第1例を示す図である。FIG. 1 is a diagram showing a first example of an FET type gas sensor array using a selection transistor. 選択トランジスタを用いたFET型ガスセンサアレイの第2例を示す図である。FIG. 13 is a diagram showing a second example of an FET type gas sensor array using a selection transistor. 選択トランジスタを用いたFET型ガスセンサアレイの第3例を示す図である。FIG. 13 is a diagram showing a third example of an FET type gas sensor array using a selection transistor. TSVを用いたFET型ガスセンサアレイの一例を示す図である。FIG. 1 is a diagram showing an example of a FET-type gas sensor array using a TSV. インターポーザを用いたFET型ガスセンサアレイの一例を示す図である。FIG. 1 is a diagram showing an example of a FET type gas sensor array using an interposer. PFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性を示す図である。FIG. 1 is a diagram showing the characteristics of gate voltage versus drain current in a PFET-type sensor FET. PFET型の参照FETにおけるゲート電圧対ドレイン電流の特性を示す図である。FIG. 1 shows the gate voltage vs. drain current characteristics of a PFET-type reference FET. NFET型センサFETとPFET型センサFETとを組み合わせてガス濃度を判定するデバイスの第1例を示す図である。FIG. 1 is a diagram showing a first example of a device for determining a gas concentration by combining an NFET type sensor FET and a PFET type sensor FET. NFET型センサFETとPFET型センサFETとを組み合わせてガス濃度を判定するデバイスの第2例を示す図である。FIG. 13 is a diagram showing a second example of a device for determining a gas concentration by combining an NFET type sensor FET and a PFET type sensor FET. センサキャパシタの断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a sensor capacitor. 参照キャパシタの断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a reference capacitor. キャパシタ型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a capacitor-type sensor. センサキャパシタの静電容量対ゲート電圧の特性曲線の一例を示す図である。FIG. 4 is a diagram showing an example of a characteristic curve of the capacitance of a sensor capacitor versus a gate voltage. 参照キャパシタの静電容量対ゲート電圧の特性曲線の一例を示す図である。FIG. 13 is a diagram showing an example of a characteristic curve of the capacitance of a reference capacitor versus a gate voltage. センサダイオードの断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a sensor diode. 参照ダイオードの断面の一例を模式的に示す図である。FIG. 2 is a diagram illustrating an example of a cross section of a reference diode. ダイオード型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。1A to 1C are diagrams showing an example of an operation for detecting the concentration of a detection target gas in a gas sensor chip using a diode-type sensor. センサダイオードの電流対電圧の特性曲線の一例を示す図である。FIG. 4 is a diagram showing an example of a current-to-voltage characteristic curve of a sensor diode. 参照ダイオードの電流対電圧の特性曲線の一例を示す図である。FIG. 2 is a diagram showing an example of a current vs. voltage characteristic curve of a reference diode. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。5A to 5C are diagrams for explaining an example of a manufacturing method for the gas sensor chip according to the first embodiment. 実施の形態1に係るガスセンサチップの製造方法の一例を示すフローチャートである。5 is a flowchart showing an example of a method for manufacturing the gas sensor chip according to the first embodiment. ガスセンサチップの製造方法の変形例1を説明するための図である。11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例1を説明するための図である。11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例1を説明するための図である。11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例1を説明するための図である。11A to 11C are diagrams for explaining a first modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例1を示すフローチャートである。13 is a flowchart showing a first modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例2を説明するための図である。13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例2を説明するための図である。13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例2を説明するための図である。13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例2を説明するための図である。13A to 13C are diagrams for explaining a second modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例3を説明するための図である。13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例3を説明するための図である。13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例3を説明するための図である。13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例3を説明するための図である。13A to 13C are diagrams for explaining a third modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. ガスセンサチップの製造方法の変形例4を説明するための図である。13A to 13C are diagrams for explaining a fourth modified example of the method for manufacturing the gas sensor chip. 複数のガスセンサチップをそれぞれ異なる温度で使用するガスセンシングシステムの例を示す図である。FIG. 1 is a diagram showing an example of a gas sensing system in which a plurality of gas sensor chips are used at different temperatures.
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材(部位)あるいは機能ブロックには同一または関連する符号を付し、その繰り返しの説明は省略する。また、複数の類似の部材(部位)あるいは機能ブロックが存在する場合には、総称の符号に記号を追加し個別または特定の部材等を示す場合がある。また、以下の実施の形態では、特に必要な場合を除き同一または同様な部分の説明を原則として繰り返さない。 Below, the embodiments are described in detail with reference to the drawings. In all the drawings used to explain the embodiments, components (parts) or functional blocks having the same function are given the same or related reference numerals, and repeated explanations are omitted. Furthermore, when there are multiple similar components (parts) or functional blocks, a symbol may be added to the generic reference numeral to indicate individual or specific components, etc. Furthermore, in the following embodiments, as a general rule, explanations of the same or similar parts will not be repeated unless specifically necessary.
 実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。 In the drawings used in the embodiments, hatching may be omitted even in cross-sectional views to make the drawings easier to read. Hatching may also be added even in plan views to make the drawings easier to read.
 断面図および平面図において、各部位の大きさは実デバイスと対応するものではなく、図面を分かりやすくするため、特定の部位を相対的に大きく表示する場合がある。また、断面図と平面図が対応する場合においても、図面を分かりやすくするため、特定の部位を相対的に大きく表示する場合がある。 In cross-sectional and plan views, the size of each part does not correspond to the actual device, and certain parts may be shown relatively large to make the drawings easier to understand. Even when cross-sectional and plan views correspond, certain parts may be shown relatively large to make the drawings easier to understand.
<実施の形態1に係るガスセンシングシステムの構成>
 図1Aは、実施の形態1に係るガスセンシングシステムの一例を示す図である。図1Aに示すように、ガスセンシングシステム1000は、ガスセンサチップ1001と、回路部1100と、を備えている。
Configuration of the gas sensing system according to the first embodiment
1A is a diagram showing an example of a gas sensing system according to embodiment 1. As shown in FIG 1A, the gas sensing system 1000 includes a gas sensor chip 1001 and a circuit unit 1100.
 ガスセンサチップ1001は、仕事関数型センサの一つであるFET型センサ、すなわち、複数のセンサFET(以下、SFETともいう)1001Sを含むセンサFETアレイ1001SAと、1つまたは複数の参照FET(以下、RFETともいう)1001Rとを有している。さらに、ガスセンサチップ1001は、温度計部(Thermometer)1001Tと、ヒータ部(Heater)1001Hとを有している。なお、「参照FET」は、本願発明における「第1のFET」の一例である。 The gas sensor chip 1001 has a FET type sensor, which is a type of work function sensor, i.e., a sensor FET array 1001SA including multiple sensor FETs (hereinafter also referred to as SFETs) 1001S, and one or more reference FETs (hereinafter also referred to as RFETs) 1001R. Furthermore, the gas sensor chip 1001 has a thermometer section 1001T and a heater section 1001H. The "reference FET" is an example of the "first FET" in the present invention.
 センサFET1001Sは、雰囲気中に含まれる様々な種類のガスの濃度に応じてゲートしきい値電圧が変化する、触媒金属ゲートを備えた仕事関数型センサ(仕事関数型センサの構成、効果等の詳細については、非特許文献1を参照されたい)の一つである。ゲートしきい値電圧とは、FETのドレイン(Drain)-ソース(Source)間に所定の電圧を印加した状態で、ドレイン-ソース間にある一定の電流が流れるようなゲート(Gate)電圧のことをいう。本実施例では、このガスセンサ素子として、触媒金属ゲートFET型ガスセンサが用いられている。 The sensor FET1001S is one of the work function type sensors equipped with a catalytic metal gate, whose gate threshold voltage changes according to the concentration of various types of gases contained in the atmosphere (for details on the structure, effects, etc. of work function type sensors, see Non-Patent Document 1). The gate threshold voltage is the gate voltage at which a certain current flows between the drain and source of the FET when a certain voltage is applied between the drain and source. In this embodiment, a catalytic metal gate FET type gas sensor is used as the gas sensor element.
 参照FET1001Rは、雰囲気中のガスの濃度にゲートしきい値電圧が依存しないFET素子である。参照FET1001Rは、センサFETアレイ1001SAと同一のガスセンサチップ1001上に形成されている。センサFET1001Sのゲートしきい値電圧を、参照FET1001Rのゲートしきい値電圧と比較することで、ガスセンサチップ1001の温度変化によるFETの特性変動を考慮した、より精度の高いガスセンシングが可能になる。なお、参照FET1001Rは、ガスセンシングに高い精度を求めない場合にはなくてもよい。逆に、ガスセンシングに高い精度を求める場合には、1つのガスセンサチップ1001に対して複数個の参照FET1001Rを形成させ、複数個の参照FET1001Rのゲートしきい値電圧の平均値、中央値などの値を参照するようにしてもよい。 The reference FET 1001R is an FET element whose gate threshold voltage does not depend on the concentration of gas in the atmosphere. The reference FET 1001R is formed on the same gas sensor chip 1001 as the sensor FET array 1001SA. By comparing the gate threshold voltage of the sensor FET 1001S with the gate threshold voltage of the reference FET 1001R, more accurate gas sensing is possible, taking into account the fluctuation in FET characteristics due to temperature changes in the gas sensor chip 1001. Note that the reference FET 1001R may not be necessary if high accuracy is not required for gas sensing. Conversely, if high accuracy is required for gas sensing, multiple reference FETs 1001R may be formed on one gas sensor chip 1001, and the average or median value of the gate threshold voltages of the multiple reference FETs 1001R may be referenced.
 温度計部1001Tは、ガスセンサチップ1001の温度を計測することが可能なデバイス、素子、あるいは部材である。本実施例では、温度計部1001Tは、一例として、ダイオード素子を含んでいる。ダイオード素子は、印加電圧と電流との関係が環境温度に依存する特性を有している。この特性を利用して、ダイオード素子の電流を検出することにより、環境温度を特定することができる。 The thermometer section 1001T is a device, element, or component capable of measuring the temperature of the gas sensor chip 1001. In this embodiment, the thermometer section 1001T includes a diode element, as an example. The diode element has a characteristic in which the relationship between the applied voltage and the current depends on the ambient temperature. By utilizing this characteristic, the ambient temperature can be determined by detecting the current of the diode element.
 ヒータ部1001Hは、ガスセンサチップ1001を加熱し昇温させることが可能なデバイス、素子、あるいは部材である。本実施例では、ヒータ部1001Hは、一例として、ヒータ線(電熱線)を含んでいる。ヒータ線に流す電流を制御して発熱量を調整することにより、ガスセンサチップ1001の温度を制御することができる。 The heater section 1001H is a device, element, or member capable of heating and raising the temperature of the gas sensor chip 1001. In this embodiment, the heater section 1001H includes a heater wire (electric heating wire) as an example. The temperature of the gas sensor chip 1001 can be controlled by controlling the current flowing through the heater wire to adjust the amount of heat generated.
 回路部1100は、ガスセンサチップ1001と電気的に接続されている。回路部1100は、ガス濃度推定部1002と、制御部1003と、電流検出部1004と、電源1005~1008と、パラメータ記憶部1009と、I/O(Input/Output)部1010とを有している。 The circuit section 1100 is electrically connected to the gas sensor chip 1001. The circuit section 1100 has a gas concentration estimation section 1002, a control section 1003, a current detection section 1004, power sources 1005 to 1008, a parameter storage section 1009, and an I/O (Input/Output) section 1010.
 ガス濃度推定部1002は、ガスセンサチップ1001から得られる情報に基づいて、複数種類のガスについてのガス濃度を推定する。 The gas concentration estimation unit 1002 estimates the gas concentrations of multiple types of gases based on the information obtained from the gas sensor chip 1001.
 電流検出部1004は、ガスセンサチップ1001が有する種々の素子の電流を検出する。 The current detection unit 1004 detects the current of the various elements contained in the gas sensor chip 1001.
 電源1005~1008は、ガスセンサチップ1001上の各種の素子あるいは部材(部位)に電圧を印加して電力を供給する。電源1005~1008は、それぞれ、電力の供給先に応じて使い分けられることを想定しているが、使い分けられなくてもよい。制御部1003は、電源1005~1008、電流検出部1004、ガス濃度推定部1002、パラメータ記憶部1009、およびI/O部1010と電気的に接続されており、これら各部を制御したり、これら各部と通信したりする。パラメータ記憶部1009は、制御部1003が行う制御あるいは演算等に必要な各種パラメータを記憶している。I/O部は、制御部1003とガスセンシングシステム1000の外部との間で情報と電力の入出力を行う。 The power supplies 1005-1008 apply voltage to various elements or components (sites) on the gas sensor chip 1001 to supply power. It is assumed that the power supplies 1005-1008 will be used differently depending on the destination of the power supply, but they do not have to be used differently. The control unit 1003 is electrically connected to the power supplies 1005-1008, current detection unit 1004, gas concentration estimation unit 1002, parameter storage unit 1009, and I/O unit 1010, and controls and communicates with each of these units. The parameter storage unit 1009 stores various parameters necessary for the control or calculations performed by the control unit 1003. The I/O unit inputs and outputs information and power between the control unit 1003 and the outside of the gas sensing system 1000.
 ヒータ部1001Hは、ヒータ部1001Hを構成するヒータ線に、電源1005~1008から電圧が印加されて電流が流れることにより、ガスセンサチップ1001を加熱し温度を上昇させることができる。制御部1003は、温度計部1001Tを構成するダイオード素子に一定の電圧が印加されるように、電源1005~1008を制御する。また、電流検出部1004は、温度計部1001Tを構成するダイオード素子への印加電圧が一定となる条件下で、そのダイオード素子に流れる電流を検出し、検出電流値を制御部1003に出力する。パラメータ記憶部1009には、ダイオード素子に流れる電流とそのときの温度との関係を規定するパラメータが記憶されている。制御部1003は、そのパラメータを参照し、検出電流値に基づいて、ガスセンサチップ1001の温度を特定する。制御部1003は、ガスセンサチップ1001の温度が目標温度で保持されるように、ヒータ部1001Hへの印加電圧を調整すべく、電源1005~1008を制御する。 The heater section 1001H can heat the gas sensor chip 1001 and increase its temperature by applying a voltage from the power sources 1005-1008 to the heater wire that constitutes the heater section 1001H, causing a current to flow. The control section 1003 controls the power sources 1005-1008 so that a constant voltage is applied to the diode element that constitutes the thermometer section 1001T. The current detection section 1004 detects the current flowing through the diode element that constitutes the thermometer section 1001T under conditions where the voltage applied to the diode element is constant, and outputs the detected current value to the control section 1003. The parameter storage section 1009 stores parameters that define the relationship between the current flowing through the diode element and the temperature at that time. The control section 1003 refers to the parameters and determines the temperature of the gas sensor chip 1001 based on the detected current value. The control unit 1003 controls the power supplies 1005 to 1008 to adjust the voltage applied to the heater unit 1001H so that the temperature of the gas sensor chip 1001 is maintained at the target temperature.
 ガス濃度推定部1002は、センサFETアレイ1001SAおよび参照FET1001Rのガスの種類あるいは濃度に応じた電圧対電流特性に係る物理量を取得し、取得された物理量に基づいて、各種ガスの濃度を推定する。ガス濃度推定部1002による各種ガスの濃度を推定する処理の詳細については、後述する。なお、「物理量」は、本願発明における「情報」の一例である。 The gas concentration estimation unit 1002 acquires physical quantities related to the voltage-current characteristics of the sensor FET array 1001SA and the reference FET 1001R according to the type or concentration of gas, and estimates the concentrations of various gases based on the acquired physical quantities. Details of the process of estimating the concentrations of various gases by the gas concentration estimation unit 1002 will be described later. Note that the "physical quantities" are an example of "information" in the present invention.
 図1Bは、実施の形態1に係るガスセンシングシステムのハードウェア構成の一例を示す図である。図1Aでは、制御部1003、ガス濃度推定部1002、電流検出部1004、およびパラメータ記憶部1009は、機能ブロックとして表されている。これらの機能ブロックは、例えば、図1Bに示すように、半導体デバイス1020で構成される。半導体デバイス1020は、例えば、CPU(Central Processing Unit)、MPU(Micro Processor Unit)、MCU(Micro Controller Unit)などのプロセッサとメモリとを含み、プロセッサが、メモリに記憶されている所定のプログラムを実行することにより、半導体デバイス1020は、上記の各機能ブロックとして機能する。 FIG. 1B is a diagram showing an example of the hardware configuration of the gas sensing system according to the first embodiment. In FIG. 1A, a control unit 1003, a gas concentration estimation unit 1002, a current detection unit 1004, and a parameter storage unit 1009 are represented as functional blocks. These functional blocks are configured in a semiconductor device 1020, for example, as shown in FIG. 1B. The semiconductor device 1020 includes a processor, such as a CPU (Central Processing Unit), an MPU (Micro Processor Unit), or an MCU (Micro Controller Unit), and a memory, and the processor executes a predetermined program stored in the memory, causing the semiconductor device 1020 to function as each of the above functional blocks.
 図2は、実施の形態1に係るガスセンサチップの平面図である。図2に示すように、ガスセンサチップ1001には、例えば、10個のセンサFET1001S(ゲートがGate1~10で示されたもの)と、1個の参照FET1001R(ゲートがGate11で示されたもの)が形成されている。センサFET1001Sおよび参照FET1001Rは、良く知られているFETと同様に、それぞれ、ゲート(Gate)、ドレイン(Drain)、ソース(Source)、ウェル(Well)を有している。センサFET1001Sは、触媒金属ゲートFET型のガスセンサ素子である。 FIG. 2 is a plan view of the gas sensor chip according to the first embodiment. As shown in FIG. 2, the gas sensor chip 1001 is formed with, for example, ten sensor FETs 1001S (with gates indicated as Gate 1 to 10) and one reference FET 1001R (with gate indicated as Gate 11). The sensor FET 1001S and the reference FET 1001R each have a gate, drain, source, and well, similar to well-known FETs. The sensor FET 1001S is a catalytic metal gate FET type gas sensor element.
 センサFET1001Sは、金属酸化物層と触媒金属層からなるガス検知材料をゲート(Gate)に搭載しており、それぞれのセンサFET1001Sは、金属酸化物層の材料、膜厚、構造、結晶粒径、触媒金属層の材料、膜厚、構造、結晶粒径、のいずれかが互いに異なっている。ガス検知材料層の構成が異なるとガスに対する選択性や感度が異なる。そのため、それぞれが構成の異なるガス検知材料を搭載する複数のセンサFET1001Sを用いて、それらのゲートしきい値電圧を計測することで、複数のガス種を含む雰囲気中のガスの成分パタンを計測することが可能となる。 The sensor FET1001S has a gas detection material consisting of a metal oxide layer and a catalytic metal layer mounted on the gate, and each sensor FET1001S differs from the others in either the material, film thickness, structure, or crystal grain size of the metal oxide layer, or the material, film thickness, structure, or crystal grain size of the catalytic metal layer. Different configurations of the gas detection material layer result in different selectivity and sensitivity to gas. Therefore, by using multiple sensor FET1001S each equipped with gas detection materials of different configurations and measuring their gate threshold voltages, it becomes possible to measure the component pattern of gas in an atmosphere containing multiple gas species.
 参照FET1001Rは、雰囲気中のガスの種類あるいは濃度に反応しないFETである。参照FET1001Rは、例えば、ガスに反応するゲートが雰囲気に露出しないように構成されている。参照FET1001Rは、ゲートが雰囲気に露出しないという点以外は、基本的にセンサFET1001Sと同様の構成を有している。 The reference FET 1001R is a FET that does not react to the type or concentration of gas in the atmosphere. The reference FET 1001R is configured, for example, so that the gate that reacts to gas is not exposed to the atmosphere. The reference FET 1001R has a configuration that is basically the same as the sensor FET 1001S, except that the gate is not exposed to the atmosphere.
 ガスセンサチップ1001には、さらに、ヒータ部1001Hと温度計部1001Tが形成されている。ヒータ部1001Hは、ヒータ線により構成されており、ヒータ線は、例えば、アルミニウム、タングステン、白金などの金属からなる配線である。ヒータ線は、電源1005~1008からの給電により両端間に電流を流すことで生じるジュール熱によって、ガスセンサチップ1001を環境温度よりも昇温することができる。例えば、ヒータ部1001Hを構成するヒータ線は、ガスセンサチップ1001を環境温度から100℃以上昇温することができる。また、ヒータ線の両端間の抵抗を測定することでガスセンサチップ1001の温度を推定することができる。温度計部1001Tは、ダイオード(Diode)素子により構成されている。ガスセンサチップ1001の温度は、前述の通り、このダイオード素子に一定の電圧を印加して流れる電流値から推定することができる。ガスセンサチップ1001を所定の温度で保温することにより、センサFETおよび参照FETの電気的特性を想定通りに安定して維持させることができる。 The gas sensor chip 1001 further includes a heater section 1001H and a thermometer section 1001T. The heater section 1001H is made of a heater wire, which is a wiring made of a metal such as aluminum, tungsten, or platinum. The heater wire can raise the temperature of the gas sensor chip 1001 above the ambient temperature by Joule heat generated by passing a current between both ends of the heater wire when power is supplied from the power sources 1005 to 1008. For example, the heater wire constituting the heater section 1001H can raise the temperature of the gas sensor chip 1001 by 100°C or more above the ambient temperature. In addition, the temperature of the gas sensor chip 1001 can be estimated by measuring the resistance between both ends of the heater wire. The thermometer section 1001T is made of a diode element. As described above, the temperature of the gas sensor chip 1001 can be estimated from the current value that flows when a constant voltage is applied to this diode element. By keeping the gas sensor chip 1001 at a predetermined temperature, the electrical characteristics of the sensor FET and reference FET can be stably maintained as expected.
 図1Aに示す電流検出部1004は、後述するように、センサFET1001S、参照FET1001R、ヒータ部1001Hを構成するヒータ線、温度計部1001Tを構成するダイオード素子に流れる電流を測定する。また、図1Aに示すパラメータ記憶部1009には、例えば、センサFET1001S、参照FET1001R、ヒータ部1001Hのヒータ線、温度計部1001Tのダイオード素子に印加する各電圧条件などが記憶される。 The current detection unit 1004 shown in FIG. 1A measures the current flowing through the sensor FET 1001S, the reference FET 1001R, the heater wire constituting the heater unit 1001H, and the diode element constituting the thermometer unit 1001T, as described below. The parameter storage unit 1009 shown in FIG. 1A stores, for example, the voltage conditions to be applied to the sensor FET 1001S, the reference FET 1001R, the heater wire of the heater unit 1001H, and the diode element of the thermometer unit 1001T.
 なお、図2では、素子ごとの各電極が、それぞれ対応する電極パッド(Pad)に接続されている。この構成は、ガスセンサチップ1001の構成を理解し易くするための一例である。したがって、例えば、複数の電極の配線を共通化して、電極パッドの数をより少なくするように構成し、省スペース化を図るようにしてもよい。 In FIG. 2, each electrode of each element is connected to a corresponding electrode pad. This configuration is an example to make the configuration of the gas sensor chip 1001 easier to understand. Therefore, for example, the wiring of multiple electrodes may be shared, and the number of electrode pads may be reduced to save space.
 図3Aは、センサFET(SFET)の断面の一例を模式的に示す図である。センサFET1001Sの要部は、半導体基板1、ウェル2、ソース層3、ドレイン層4、ゲート絶縁膜層5、検知材料となる金属酸化物層6と触媒金属層7から形成されている。なお、ソース層およびドレイン層は、ソース拡散層およびドレイン拡散層とも呼ばれる。 FIG. 3A is a schematic diagram showing an example of a cross section of a sensor FET (SFET). The main parts of the sensor FET 1001S are formed from a semiconductor substrate 1, a well 2, a source layer 3, a drain layer 4, a gate insulating film layer 5, a metal oxide layer 6 serving as a detection material, and a catalyst metal layer 7. The source layer and drain layer are also called the source diffusion layer and the drain diffusion layer.
 金属酸化物層6および触媒金属層7は、層間絶縁膜ILDにより覆われるが、触媒金属層7は、その表面が検知対象ガスを含む雰囲気に露出するように、層間絶縁膜ILDに開口が形成されている。半導体基板1には、例えば、シリコンや炭化珪素(SiC)を用いることができる。金属酸化物層6には、例えば、酸化チタン、イットリア安定化ジルコニア(YSZ)、などを用いることができる。触媒金属層7には、例えば、白金、パラジウム、イリジウムなどの貴金属の他、ニッケルなどを用いることもできる。図2に示すように、ガスセンサチップ1001には複数のセンサFET1001Sが搭載されている。これらセンサFET1001Sのガス検知材料層は、すべて同じではなく、構成が互いに異なるものを含んでいる。複数のセンサFET1001Sにおける複数のガス検知材料層は、例えば、金属酸化物層6の材料の種類、膜厚、結晶粒径、触媒金属層7の材料の種類、膜厚、結晶粒径のうち少なくとも1つが互いに異なるものを含んでいる。 The metal oxide layer 6 and the catalyst metal layer 7 are covered with an interlayer insulating film ILD, and an opening is formed in the interlayer insulating film ILD so that the surface of the catalyst metal layer 7 is exposed to an atmosphere containing the gas to be detected. The semiconductor substrate 1 may be made of, for example, silicon or silicon carbide (SiC). The metal oxide layer 6 may be made of, for example, titanium oxide, yttria-stabilized zirconia (YSZ), or the like. The catalyst metal layer 7 may be made of, for example, precious metals such as platinum, palladium, iridium, or nickel. As shown in FIG. 2, the gas sensor chip 1001 is equipped with a plurality of sensor FETs 1001S. The gas detection material layers of these sensor FETs 1001S are not all the same, and include layers with different configurations. The gas detection material layers in the plurality of sensor FETs 1001S include layers with different configurations, for example, at least one of the material type, film thickness, and crystal grain size of the metal oxide layer 6 and the material type, film thickness, and crystal grain size of the catalyst metal layer 7.
 図3Bは、参照FET(RFET)の断面の一例を模式的に示す図である。参照FET1001Rの要部は、半導体基板1、ウェル12、ソース層13、ドレイン層14、ゲート絶縁膜層15、検知材料となる金属酸化物層16と触媒金属層17から形成されている。触媒金属層17は、表面が層間絶縁膜ILDで被覆されており、検知対象ガスが含まれる雰囲気から隔離されている。金属酸化物層16と触媒金属層17には、センサFET1001Sのいずれかに用いるのと同じ材料を用いることができる。ウェル2,12、ソース層3,13、ドレイン層4,14、触媒金属層7,17、温度計部1001Tを構成するダイオード素子、ヒータ部1001Hを構成するヒータ線には、アルミニウム、タングステン、白金などの金属からなる配線層が接続されており、図1に示す電源1005~1008から給電できるようになっている。 FIG. 3B is a schematic diagram showing an example of a cross section of a reference FET (RFET). The main parts of the reference FET 1001R are formed from a semiconductor substrate 1, a well 12, a source layer 13, a drain layer 14, a gate insulating film layer 15, a metal oxide layer 16 serving as a detection material, and a catalyst metal layer 17. The surface of the catalyst metal layer 17 is covered with an interlayer insulating film ILD, and is isolated from the atmosphere containing the gas to be detected. The metal oxide layer 16 and the catalyst metal layer 17 can be made of the same material as that used for any of the sensor FETs 1001S. Wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12, the source layers 3 and 13, the drain layers 4 and 14, the catalyst metal layers 7 and 17, the diode element constituting the thermometer section 1001T, and the heater wire constituting the heater section 1001H, and can be powered from the power sources 1005 to 1008 shown in FIG. 1.
 センサFET1001Sと、参照FET1001Rは、両方ともN型FETを用いることもできるし、P型FETを用いることもできる。ガスセンサチップ1001において、センサFET1001Sは複数個含まれるが、すべてN型FETを用いることもできるし、すべてP型FETを用いることもできる。また、一部のセンサFET1001SをN型FETで形成し、残りの他部のセンサFET1001SをP型FETで形成することもできる。参照FET1001Rは、ガスセンサチップ1001に1つだけ搭載する場合には、N型FETで形成することもできるし、P型FETで形成することもできる。ガスセンサチップ1001において、参照FET1001Rを複数形成する場合、N型FETとP型FETの組合せのパタンについては、センサFET1001Sの場合と同様である。 The sensor FET 1001S and the reference FET 1001R can both be N-type FETs or P-type FETs. The gas sensor chip 1001 includes multiple sensor FETs 1001S, and all of them can be N-type FETs or P-type FETs. Also, some of the sensor FETs 1001S can be formed from N-type FETs, and the remaining sensor FETs 1001S can be formed from P-type FETs. When only one reference FET 1001R is mounted on the gas sensor chip 1001, it can be formed from an N-type FET or a P-type FET. When multiple reference FETs 1001R are formed on the gas sensor chip 1001, the combination pattern of N-type FETs and P-type FETs is the same as that of the sensor FET 1001S.
 図4は、センサFETと参照FETのガス検知材料層に用いる材料の一例を示す図である。図4では、10個のセンサFET1001S(図2においてゲートをGate1~Gate10で示したもの)のガス検知材料層が、金属酸化物層6と触媒金属層7のいずれかの材料の種類が互いに異なる例を挙げている。このようにすることで、10個のセンサFET1001Sは、検知対象ガスに対する感度を互いに異なるようにすることができる。図には示さないが、互いに金属酸化物層6の膜厚や結晶粒径が異なるように形成したり、互いに触媒金属層7の膜厚や結晶粒径が異なるように形成したりすることでも、検知対象ガスに対する感度を互いに異なるようにすることができる。参照FET1001R(図2においてゲートをGate11で示したもの)のガス検知材料層は、センサFET1001Sのいずれかと同じにすることでゲート形成を同時に行うことができるので、ガスセンサチップの製造に係る工程数増加を防ぐことができる。 FIG. 4 shows an example of materials used for the gas detection material layers of the sensor FET and the reference FET. FIG. 4 shows an example in which the gas detection material layers of the ten sensor FETs 1001S (with gates indicated as Gate1 to Gate10 in FIG. 2) have different types of materials for either the metal oxide layer 6 or the catalyst metal layer 7. In this way, the ten sensor FETs 1001S can have different sensitivities to the detection target gas. Although not shown in the figure, the metal oxide layers 6 can be formed to have different thicknesses or crystal grain sizes, or the catalyst metal layers 7 can be formed to have different thicknesses or crystal grain sizes, so that the sensitivities to the detection target gas can be made different from each other. The gas detection material layer of the reference FET 1001R (with gates indicated as Gate11 in FIG. 2) can be made the same as that of any of the sensor FETs 1001S, so that the gates can be formed at the same time, and therefore an increase in the number of steps involved in the manufacture of the gas sensor chip can be prevented.
 図5は、FET型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。ヒータ部1001H(Heater)を構成するヒータ線に電流を流し、ヒータ線の抵抗RHLで発生するジュール熱により、ガスセンサチップ1001を所定の温度、例えば、100℃に昇温する。このようにガスセンサチップの温度を周囲の環境温度から昇温し一定に保つことにより、センサの特性を常に安定にさせることができる。電源1005~1008は、センサFET1001Sおよび参照FET1001Rのウェル2,12、ソース層3,13に0V、ドレイン層4,14にドレイン電圧VDを印加する。また、電源1005~1008は、参照FET1001Rのゲートに可変電圧である電圧VGRを印加し、センサFET1001Sのゲートに可変電圧である電圧VGSを印加する。電流検出部1004は、センサFET1001Sと参照FET1001Rのそれぞれのドレイン端子に流れる電流を測定する。制御部1003が、両者が一定の電流Icに一致するようにVGS,VGRを制御する。このときのVGRとVGSとの差をVGRSとし、式1のように定義する。 FIG. 5 shows an example of the operation when detecting the concentration of a gas to be detected in a gas sensor chip using a FET type sensor. A current is passed through the heater wire constituting the heater section 1001H (Heater), and the gas sensor chip 1001 is heated to a predetermined temperature, for example, 100° C., by Joule heat generated by the resistance RHL of the heater wire. In this way, the temperature of the gas sensor chip is raised from the ambient temperature and kept constant, thereby making it possible to always stabilize the characteristics of the sensor. The power supplies 1005 to 1008 apply 0 V to the wells 2 and 12 and source layers 3 and 13 of the sensor FET 1001S and reference FET 1001R, and a drain voltage VD to the drain layers 4 and 14. The power supplies 1005 to 1008 also apply a variable voltage VGR to the gate of the reference FET 1001R, and a variable voltage VGS to the gate of the sensor FET 1001S. The current detection unit 1004 measures the current flowing through the drain terminals of the sensor FET 1001S and the reference FET 1001R. The control unit 1003 controls VGS and VGR so that both match a constant current Ic. The difference between VGR and VGS at this time is taken as VGRS and is defined as in Equation 1.
   VGRS=VGR-VGS  …(式1) VGRS = VGR - VGS ... (Equation 1)
 雰囲気中の検出対象ガス濃度が0のときのVGRSであるVGRS(0)と、検出対象ガスのガス濃度がXのときのVGRSであるVGRS(X)との差を、ΔVg(X)とし、次の式2のように定義する。 The difference between VGRS(0), which is the VGRS when the concentration of the gas to be detected in the atmosphere is 0, and VGRS(X), which is the VGRS when the concentration of the gas to be detected is X, is defined as ΔVg(X) in the following equation 2.
   ΔVg(X)=VGRS(0)-VGRS(X)  …(式2) ΔVg(X) = VGRS(0) - VGRS(X) ... (Equation 2)
 図6Aは、NFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性を示す図である。また、図6Bは、NFET型の参照FETにおけるゲート電圧対ドレイン電流の特性を示す図である。なお、ゲート電圧は、ゲート電位ともいう。NFET型のセンサFET1001Sは、ガス検知材料層である触媒金属層7が露出しているので、検知対象ガスによって触媒金属層7の仕事関数が変化し、検知対象ガス濃度が0の場合とXの場合とでゲート電圧-ドレイン電流特性が異なる。具体的には、図6Aに示すように、検知対象ガス濃度が高くなると、ゲート電圧とドレイン電流との関係を表す特性曲線が、電圧方向に平行移動する。その結果、しきい値電流である電流Icが流れるときのゲート電圧である電圧VGSは、検知対象ガスのガス濃度が0の場合のVGSであるVGS(0)から、検知対象ガスのガス濃度がXである場合のVGSであるVGS(X)に変化する。一方、参照FET1001Rは、触媒金属層17が層間絶縁膜ILDで被覆されているため、ガス濃度が変化してもゲート電圧-ドレイン電流特性は変化しない。具体的には、図6Bに示すように、ゲートに電圧VGRを印加することで流れる電流は、Icのまま一定である。その結果、式2のΔVg(X)がガス濃度Xに対するセンサFET1001Sのゲートしきい値電圧の変化量に対応することになる。 6A is a diagram showing the gate voltage vs. drain current characteristics of an NFET-type sensor FET. FIG. 6B is a diagram showing the gate voltage vs. drain current characteristics of an NFET-type reference FET. The gate voltage is also called the gate potential. In the NFET-type sensor FET 1001S, the catalyst metal layer 7, which is a gas detection material layer, is exposed, so the work function of the catalyst metal layer 7 changes depending on the detection target gas, and the gate voltage-drain current characteristics differ when the detection target gas concentration is 0 and when the detection target gas concentration is X. Specifically, as shown in FIG. 6A, when the detection target gas concentration increases, the characteristic curve showing the relationship between the gate voltage and the drain current moves in parallel in the voltage direction. As a result, the voltage VGS, which is the gate voltage when the current Ic, which is the threshold current, flows, changes from VGS(0), which is the VGS when the detection target gas concentration is 0, to VGS(X), which is the VGS when the detection target gas concentration is X. On the other hand, in the reference FET 1001R, the catalyst metal layer 17 is covered with the interlayer insulating film ILD, so the gate voltage-drain current characteristics do not change even if the gas concentration changes. Specifically, as shown in FIG. 6B, the current that flows when a voltage VGR is applied to the gate remains constant at Ic. As a result, ΔVg(X) in Equation 2 corresponds to the amount of change in the gate threshold voltage of the sensor FET 1001S with respect to the gas concentration X.
 式1のように、センサFET1001Sと参照FET1001Rのゲート電圧との差であるVGRSを用いると、前述のドレイン端子に流れるドレイン電流IDを適切な値に設定することで、温度変動などに起因するVGRとVGSの変動によるノイズの影響を抑制することができる。 As shown in Equation 1, by using VGRS, which is the difference between the gate voltages of the sensor FET 1001S and the reference FET 1001R, the influence of noise caused by fluctuations in VGR and VGS due to temperature fluctuations, etc. can be suppressed by setting the drain current ID flowing through the drain terminal mentioned above to an appropriate value.
 なお、こうしたノイズの影響が充分に抑制できる場合、または、こうしたノイズの影響を無視できる場合、例えば、比較的高い精度でのガス濃度検出が要求されない場合には、参照FET1001Rを用いなくてもよい。すなわち、検出雰囲気における検知対象ガス濃度が0のときのVGS(0)と検知対象ガス濃度がXのときのVGS(X)との差をΔVg(X)とし、次の式3のように定義する。 Note that if the effects of such noise can be sufficiently suppressed or ignored, for example, if gas concentration detection with relatively high accuracy is not required, the reference FET 1001R does not need to be used. In other words, the difference between VGS(0) when the target gas concentration in the detection atmosphere is 0 and VGS(X) when the target gas concentration is X is taken as ΔVg(X), and is defined as the following equation 3.
   ΔVg(X)=VGS(0)-VGS(X)  …(式3) ΔVg(X) = VGS(0) - VGS(X) ... (Equation 3)
 このように定義されたΔVg(X)は、検知対象ガスのガス濃度Xに応じたセンサFET1001Sのゲートしきい値電圧シフト(変化量)として用いることができる。なお、図5では、電流の計測をドレイン端子で行う例を示したが、後述するように、ソース端子側で電流の計測を行うことで、ΔVgを計測することももちろん可能である。 The ΔVg(X) defined in this way can be used as the gate threshold voltage shift (amount of change) of the sensor FET 1001S according to the gas concentration X of the gas to be detected. Note that while FIG. 5 shows an example in which the current is measured at the drain terminal, it is of course also possible to measure ΔVg by measuring the current at the source terminal side, as described later.
 図7は、センサFETにおけるガス濃度とゲートしきい値電圧シフトとの関係の一例を示す図である。図7においては、ガス濃度Xが充分に高い環境下でゲートしきい値電圧シフトΔVg(X)が飽和した値を、ΔVgmaxとしている。図7では、ガス濃度Xの雰囲気にFET型ガスセンサを充分長い時間保持して平衡状態になったときのΔVgとガス濃度Xとの関係の一例を示している。ΔVgmaxは、ガス種に応じて正の値になる場合もあるし、負の値になる場合もある。ΔVg(X)がΔVgmaxの50%になるときのガス濃度Xは、金属酸化物層6の材料の種類、膜厚、結晶粒径、触媒金属層7の材料の種類、膜厚、または結晶粒径を変更することで変わる。そして、そのガス濃度Xのゲート材料依存性は、検知対象のガスの種類を変えることで変化する。すなわち、センサFETのゲートしきい値電圧は、ガスの種類あるいは濃度によって変化し、ゲート材料を構成する金属酸化物層6および触媒金属層7の少なくとも一方における材料の種類、膜厚、あるいは結晶粒径が変わっても変化する。 FIG. 7 is a diagram showing an example of the relationship between the gas concentration and the gate threshold voltage shift in the sensor FET. In FIG. 7, the value at which the gate threshold voltage shift ΔVg(X) is saturated in an environment where the gas concentration X is sufficiently high is set to ΔVgmax. FIG. 7 shows an example of the relationship between ΔVg and the gas concentration X when the FET-type gas sensor is held in an atmosphere of the gas concentration X for a sufficiently long time and reaches an equilibrium state. ΔVgmax may be a positive value or a negative value depending on the gas type. The gas concentration X0 at which ΔVg(X) is 50% of ΔVgmax changes by changing the type of material, film thickness, and crystal grain size of the metal oxide layer 6, and the type of material, film thickness, or crystal grain size of the catalyst metal layer 7. The gate material dependency of the gas concentration X0 changes by changing the type of gas to be detected. That is, the gate threshold voltage of the sensor FET changes depending on the type or concentration of the gas, and also changes when the type of material, film thickness, or crystal grain size of at least one of the metal oxide layer 6 and the catalyst metal layer 7 constituting the gate material changes.
 図8Aは、一定濃度のいくつかのガスに対して2種類のセンサFETがどのように応答するかの一例を示す図である。図8Aでは、ガスの種類として、水素、硫化水素、アンモニア、一酸化炭素、一酸化窒素、および酸素を例にしている。また、図8Aは、2種類のセンサFET1001S(ここでは、ゲートがGate1とGate5であるものを例としている)のΔVgからなる2次元空間に、各種ガスのデータをプロットしたものである。 FIG. 8A is a diagram showing an example of how two types of sensor FETs respond to a certain concentration of several gases. In FIG. 8A, hydrogen, hydrogen sulfide, ammonia, carbon monoxide, nitric oxide, and oxygen are used as examples of gas types. FIG. 8A also shows data for various gases plotted in a two-dimensional space consisting of ΔVg for two types of sensor FETs 1001S (here, examples are those with gates Gate1 and Gate5).
 一般的には、センサFET1001Sの数に応じた次元の空間に各種ガスのデータはプロットされ区別される。すなわち、ゲートのガス検知材料が互いに異なるN個のセンサFETがガスセンサチップ1001に搭載されている場合、N個のΔVgからなるN次元空間に各種ガスのデータはプロットされ区別される。例えば、図2~4に示した例では、10種類の異なるガス検知材料からなるゲートを持つ10個のセンサFET1001Sがガスセンサチップ1001に搭載されているので、10個のΔVgからなる10次元空間に各種ガスのデータはプロットされ区別される。図8Aは、単ガスに対する応答を図示しているが、M種類のガス種を含む雰囲気に対する測定結果は、M≦Nであれば、含まれるガス種それぞれの濃度に応じてN個のΔVgからなるN次元空間に異なる点としてプロットされる。N<Mの場合には、ガス種とそれぞれの濃度が異なる雰囲気に対する測定結果が、同じ点にプロットされる場合が必然的に生じる。 In general, data on various gases are plotted and differentiated in a space of dimensions according to the number of sensor FETs 1001S. That is, when N sensor FETs with different gas detection materials at the gates are mounted on the gas sensor chip 1001, data on various gases are plotted and differentiated in an N-dimensional space consisting of N ΔVg. For example, in the example shown in Figures 2 to 4, 10 sensor FETs 1001S with gates made of 10 different gas detection materials are mounted on the gas sensor chip 1001, so data on various gases are plotted and differentiated in a 10-dimensional space consisting of 10 ΔVg. Figure 8A illustrates the response to a single gas, but the measurement results for an atmosphere containing M types of gas species are plotted as different points in an N-dimensional space consisting of N ΔVg according to the concentration of each of the gas species contained, if M≦N. When N<M, the measurement results for atmospheres with different gas species and their respective concentrations will inevitably be plotted at the same point.
 このようにしてプロットされる測定結果に基づいて、単ガスの場合に加えて多ガスの場合にも、異なるガス種とガス濃度の雰囲気をN次元空間の別の領域として区別することができる。すなわち、ガス種別に、濃度ごとに、N個の異なるセンサFETの各ゲートしきい値電圧に及ぼす変化量のパタンを、事前に調べておくことで、上記の測定結果から得られる連立方程式を解くことにより、雰囲気中のガス種とそれらの濃度を特定することが可能となる。あるいは、N個の異なるセンサFETの各ゲートしきい値電圧のシフト量のパタンと、雰囲気中のガス種およびそれらの濃度との対応関係を学習させた人工知能(AI)を用いることにより、上記の測定結果から雰囲気中のガス種とそれらの濃度を特定することが可能となる。 Based on the measurement results plotted in this way, it is possible to distinguish atmospheres of different gas types and gas concentrations as separate regions in an N-dimensional space, not only in the case of a single gas but also in the case of multiple gases. That is, by investigating in advance the pattern of the amount of change that affects each gate threshold voltage of N different sensor FETs for each gas type and concentration, it is possible to identify the gas types in the atmosphere and their concentrations by solving the simultaneous equations obtained from the above measurement results. Alternatively, by using artificial intelligence (AI) that has learned the correspondence between the pattern of the amount of shift in each gate threshold voltage of N different sensor FETs and the gas types in the atmosphere and their concentrations, it is possible to identify the gas types in the atmosphere and their concentrations from the above measurement results.
 図8Bは、互いに異なるN個のセンサFETを用いてM種類のガス濃度を推定することができることを説明するための図である。N種類の互いに異なるガス検知材料層を搭載した複数のセンサFET1001Sを用いてM種類のガスを含む雰囲気の成分パタンを計測する場合を考える。M≦Nであれば、図8Bに示すように、N個のセンサFETから得られるN個のセンサFETのしきい値電圧シフトの測定値ΔVg_Gate1~ΔVg_GateNに基づいて、M種類のガス濃度X_Gas1~X_GasMを推定することもできる。ΔVg_Gate1~ΔVg_GateNのそれぞれはM種類のガスの濃度X_Gas1~X_GasMの関数である。厳密にはM≦Nの場合には変数の数(X_Gas1~X_GasMのM個)よりも方程式の数(ΔVg_Gate1~ΔVg_GateNのN個)の方が多いので、変数(X_Gas1~X_GasM)の値が定まらない場合が生じる。その場合は、ΔVg_Gate1~ΔVg_GateNの実測値と、ガス濃度X_Gas1~X_GasMから求められるしきい電圧シフトの計算値ΔVg_Gate1_Calc~ΔVg_GateN_Calcの間の誤差が最小になるようにX_Gas1~X_GasMを推定するといった方法が適用できる。誤差の計算には、例えば、N個のしきい電圧シフトの測定値と計算値の差の2乗和、すなわち、次の式4を用いることができる。 FIG. 8B is a diagram for explaining that the concentration of M types of gases can be estimated using N different sensor FETs. Consider the case where a plurality of sensor FETs 1001S equipped with N different gas detection material layers are used to measure the component pattern of an atmosphere containing M types of gases. If M≦N, as shown in FIG. 8B, the concentrations of M types of gases X_Gas1 to X_GasM can also be estimated based on the measured values ΔVg_Gate1 to ΔVg_GateN of the threshold voltage shifts of the N sensor FETs obtained from the N sensor FETs. Each of ΔVg_Gate1 to ΔVg_GateN is a function of the concentrations of M types of gases X_Gas1 to X_GasM. Strictly speaking, when M≦N, the number of equations (N: ΔVg_Gate1 to ΔVg_GateN) is greater than the number of variables (M: X_Gas1 to X_GasM), so there are cases where the values of the variables (X_Gas1 to X_GasM) cannot be determined. In this case, a method can be applied in which X_Gas1 to X_GasM are estimated so that the error between the actual measured values of ΔVg_Gate1 to ΔVg_GateN and the calculated values of the threshold voltage shifts ΔVg_Gate1_Calc to ΔVg_GateN_Calc obtained from the gas concentrations X_Gas1 to X_GasM is minimized. The error can be calculated, for example, by using the sum of the squares of the differences between the measured and calculated values of N threshold voltage shifts, that is, the following formula 4.
   ΔVg_Sum=
    (ΔVg_Gate1-ΔVg_Gate1_Calc)
    (ΔVg_Gate2-ΔVg_Gate2_Calc)
    (ΔVg_Gate3-ΔVg_Gate3_Calc)
       ・・・・
    (ΔVg_GateN-ΔVg_GateN_Calc)  …(式4)
ΔVg_Sum=
(ΔVg_Gate1-ΔVg_Gate1_Calc) 2 +
(ΔVg_Gate2-ΔVg_Gate2_Calc) 2 +
(ΔVg_Gate3-ΔVg_Gate3_Calc) 2 +
...
(ΔVg_GateN-ΔVg_GateN_Calc) 2 ... (Equation 4)
 式4に示すΔVg_Sumが最小になるように、X_Gas1~X_GasMを推定する。ガス濃度推定部1002は、ガスセンサチップ1001から得られる情報に基づいて、上述の原理に基づく処理を行うことにより、各種ガスの濃度を推定する。 X_Gas1 to X_GasM are estimated so that ΔVg_Sum shown in Equation 4 is minimized. The gas concentration estimation unit 1002 estimates the concentrations of various gases by performing processing based on the above-mentioned principles, based on the information obtained from the gas sensor chip 1001.
<実施の形態1による効果>
 実施の形態1に係るガスセンサチップは、半導体基板と、半導体基板上に形成される複数のガス検知材料層と、を備えている。複数のガス検知材料層は、金属酸化物層と金属酸化物層の上側に形成される触媒金属層とを有し、触媒金属層が雰囲気に露出するように構成されている。また、当該ガスセンサチップでは、複数のガス検知材料層における、金属酸化物層の材料の種類、膜厚、多結晶粒径、触媒金属層の材料の種類、膜厚、多結晶粒径、の組合せが互いに異なる。すなわち、複数のガス検知材料層は、ガス検知材料層を構成する材料の種類、膜厚、および多結晶粒径のうち少なくとも1つが互いに異なっている。
<Effects of the First Embodiment>
The gas sensor chip according to the first embodiment includes a semiconductor substrate and a plurality of gas detection material layers formed on the semiconductor substrate. The plurality of gas detection material layers each include a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, and the catalytic metal layer is configured to be exposed to the atmosphere. In addition, in the gas sensor chip, the plurality of gas detection material layers are different from each other in combinations of the type of material, film thickness, and polycrystalline grain size of the metal oxide layer and the type of material, film thickness, and polycrystalline grain size of the catalytic metal layer. That is, the plurality of gas detection material layers are different from each other in at least one of the type of material constituting the gas detection material layer, the film thickness, and the polycrystalline grain size.
 ガスセンサ自体のゲートしきい値電圧は、検知対象ガスの濃度によって変化する。そのため、センサアレイに含まれる各々の仕事関数型センサが、雰囲気中に含まれる複数のガス種に対して異なる選択性を持つようにすることができ、1つのガスセンサチップで、多種類のガスの濃度を検出したり、検出したガス成分パタンに基づいて匂いの種類を特定したりすることが可能となる。 The gate threshold voltage of the gas sensor itself changes depending on the concentration of the gas to be detected. Therefore, each work function sensor included in the sensor array can be made to have different selectivity for multiple gas species contained in the atmosphere, making it possible to detect the concentrations of multiple types of gas with a single gas sensor chip and identify the type of odor based on the detected gas component pattern.
 このような実施の形態1に係るガスセンサチップによれば、ガスの種類あるいは濃度に対する特性が互いに異なり、かつ、それぞれがMOSFETに類似したシンプルな構造を有する、複数種類の仕事関数型センサが、1つの半導体基板に形成される。そのため、複数種類のガスのセンシングが可能なチップを、コストを抑えて製造することができる。すなわち、高いコストを掛けて複数種類のガスセンサを個別に用意したり、コストが掛かる構造を有するチップを製造したりする必要がない。その結果、雰囲気中のガスセンシングを低コストで実現させることができる。また、仕事関数型センサは、構造がシンプルであるため、安定な動作を期待することができ、信頼性が高い。 In the gas sensor chip according to the first embodiment, multiple types of work function sensors, each with different characteristics for the type or concentration of gas and each with a simple structure similar to a MOSFET, are formed on a single semiconductor substrate. As a result, a chip capable of sensing multiple types of gas can be manufactured at low cost. In other words, there is no need to incur high costs in preparing multiple types of gas sensors individually or to manufacture chips with costly structures. As a result, atmospheric gas sensing can be realized at low cost. Furthermore, because the work function sensor has a simple structure, stable operation can be expected and it is highly reliable.
 図9は、実施の形態1に係るガスセンサと従来型のガスセンサとの間でガス1種類当たりに対するガスセンサのサイズおよびコストを比較した結果の例を示す図である。実施の形態1の技術を用いることで、同一チップ上に、互いに異なるガス検知材料を有する複数のセンサFETを集積化することができる。そのため、実施の形態1では、従来技術と比較して、検知可能なガス種当りのガスセンサのサイズを小さくすることができ、検知可能なガス種当りのコストを低減することができる。 FIG. 9 is a diagram showing an example of the results of comparing the size and cost of the gas sensor per type of gas between the gas sensor according to the first embodiment and a conventional gas sensor. By using the technology of the first embodiment, it is possible to integrate multiple sensor FETs having different gas detection materials on the same chip. Therefore, in the first embodiment, it is possible to reduce the size of the gas sensor per detectable gas type and reduce the cost per detectable gas type compared to the conventional technology.
 実施の形態1に係るガスセンシングシステムは、ガスセンサチップと、ガスセンサチップを加熱昇温するヒータ部と、ガスセンサチップとヒータ部とを制御する制御部と、を備えている。ガスセンサチップは、半導体基板と、それぞれが半導体基板上の異なる位置に形成される複数のガス検知材料層と、を備えている。ガス検知材料層は、金属酸化物層と金属酸化物層の上側に形成される触媒金属層とを有し、触媒金属層が雰囲気に露出するように構成されている。複数のガス検知材料層は、金属酸化物層の材料の種類、膜厚、結晶粒径、触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なっている。また、制御部は、ガスセンサチップが所定の温度となるようにヒータ部を制御し、複数のガス検知材料層を用いて得られる情報に基づいて、雰囲気中のガスを検知する。 The gas sensing system according to the first embodiment includes a gas sensor chip, a heater section for heating the gas sensor chip, and a control section for controlling the gas sensor chip and the heater section. The gas sensor chip includes a semiconductor substrate and a plurality of gas detection material layers formed at different positions on the semiconductor substrate. The gas detection material layer includes a metal oxide layer and a catalyst metal layer formed on the metal oxide layer, and is configured so that the catalyst metal layer is exposed to the atmosphere. The plurality of gas detection material layers are different from each other in combinations of the type of material, film thickness, and crystal grain size of the metal oxide layer, and the type of material, film thickness, and crystal grain size of the catalyst metal layer. The control section controls the heater section so that the gas sensor chip is at a predetermined temperature, and detects gas in the atmosphere based on information obtained using the plurality of gas detection material layers.
 このようなガスセンシングシステムも、上記ガスセンサチップと同様の効果を得ることができ、例えば、雰囲気中のガスセンシングを低コストで実現させることができる。 Such a gas sensing system can achieve the same effects as the gas sensor chip described above, and can, for example, achieve atmospheric gas sensing at low cost.
<実施の形態1の変形例>
 図2~8では、複数のセンサFETと参照FETの、ソース端子、ドレイン端子、ウェル端子、ゲート端子のそれぞれに給電するための電極パッドをガスセンサチップ上に形成した例を示した。これらの例とは別に、センサFETどうしや参照FETどうし、センサFETと参照FETとで、端子を共有することも可能である。例えば、P型FET(以下、PFETともいう)どうし、N型FET(以下、NFETともいう)どうしで、ウェル端子を共有することが可能である。また、ソース電位を0Vに固定して動作させる場合、ソース端子を共有することも可能である。このように、ガスセンサチップに搭載されるFETの端子あるいは端子に接続される配線を共有化することで、電極パッドの個数を減らし、ガスセンサのチップ面積を低減して、センサFETの個数当りのコストを低減することが可能である。なお、ソース端子またはドレイン端子に接続され、電源から給電されるる「電極パッド」は、本願発明における「給電端子」の一例である。
<Modification of the First Embodiment>
2 to 8 show examples in which electrode pads for supplying power to the source terminals, drain terminals, well terminals, and gate terminals of a plurality of sensor FETs and a reference FET are formed on a gas sensor chip. In addition to these examples, it is also possible to share terminals between sensor FETs, between reference FETs, or between a sensor FET and a reference FET. For example, it is possible to share a well terminal between P-type FETs (hereinafter also referred to as PFETs) and between N-type FETs (hereinafter also referred to as NFETs). It is also possible to share a source terminal when operating with a fixed source potential of 0V. In this way, by sharing the terminals or wiring connected to the terminals of the FETs mounted on the gas sensor chip, it is possible to reduce the number of electrode pads, reduce the chip area of the gas sensor, and reduce the cost per number of sensor FETs. The "electrode pad" connected to the source terminal or drain terminal and supplied with power from a power source is an example of the "power supply terminal" in the present invention.
 また、ガスセンサチップに搭載する素子として、センサFETおよび参照FETの他に、これらのFETの中からゲートしきい値電圧の計測対象となるFETを選択するための選択トランジスタ(Selection Transistor)を含めることが可能である。選択トランジスタを用いることで、複数のセンサFETの端子を少ない電極端子で選択して動作させることが可能となる。選択トランジスタのオン/オフの切換えを制御することにより、選択されるセンサFETを高速に切り換えて、各センサFETのゲートしきい値電圧シフトの情報を収集し、雰囲気中の複数ガス種の濃度を計測することができる。 In addition to the sensor FET and reference FET, the elements mounted on the gas sensor chip can include a selection transistor for selecting from these FETs the FET whose gate threshold voltage is to be measured. By using the selection transistor, it becomes possible to select and operate the terminals of multiple sensor FETs using a small number of electrode terminals. By controlling the on/off switching of the selection transistor, the selected sensor FET can be switched at high speed to collect information on the shift in the gate threshold voltage of each sensor FET, and the concentration of multiple gas species in the atmosphere can be measured.
 図10は、選択トランジスタを用いたFET型ガスセンサアレイの第1例を示す図である。図10に示す例では、センサFET1001SはすべてNFETで形成され、センサFET1001Sはウェル端子とソース端子を共有し、ゲート端子はセンサFET1001Sごとに独立し、ドレイン端子を、選択FET1001Lを介して共有している。ここでは、選択トランジスタとして、選択FET(Selection FET )が用いられている。なお、「選択FET」は、本願発明における「第2のFET」の一例である。 FIG. 10 is a diagram showing a first example of a FET-type gas sensor array using a selection transistor. In the example shown in FIG. 10, all the sensor FETs 1001S are formed of NFETs, the sensor FETs 1001S share a well terminal and a source terminal, the gate terminal is independent for each sensor FET 1001S, and the drain terminal is shared via a selection FET 1001L. Here, a selection FET is used as the selection transistor. Note that the "selection FET" is an example of the "second FET" in the present invention.
 ウェル端子、ソース端子、ドレイン端子、ゲート端子は、図1の回路部1100に接続される。個々のセンサFETのゲートしきい値電圧の計測には、ドレイン電流またはソース電流をセンサFETごとに測定することが必要である。図10で示す回路において、選択FETを介さずにドレイン端子を共有すると、ドレイン端子とソース電流の間にセンサFETが並列に配置されるので、計測されるドレイン電流(またはソース電流)がどのセンサFETを流れたものであるかを区別することができなくなる。すなわち、ゲートしきい値電圧を計測することができない。そこで、複数のセンサFETのうちの1つだけとドレイン端子とを接続することができるように、選択FETを配置する。 The well terminal, source terminal, drain terminal, and gate terminal are connected to the circuit section 1100 in FIG. 1. To measure the gate threshold voltage of each sensor FET, it is necessary to measure the drain current or source current for each sensor FET. In the circuit shown in FIG. 10, if the drain terminal is shared without going through a selection FET, the sensor FET is placed in parallel between the drain terminal and the source current, making it impossible to distinguish which sensor FET the measured drain current (or source current) has flowed through. In other words, the gate threshold voltage cannot be measured. Therefore, a selection FET is placed so that only one of the multiple sensor FETs can be connected to the drain terminal.
 図10に示す回路では、8個のセンサFET1001Sに対して24個の選択FET1001Lが用いられている。また、各センサFET1001Sは、3個の選択FETが直列接続された選択FET直列回路を介してドレイン端子と接続されている。図10に示すように、最上段のセンサFET1001Sに接続される選択FETは、3つともNFETで形成されており、最下段のセンサFET1001Sに接続される選択FETは、3つともPFETで形成されている。その他の段のセンサFET1001Sについては、接続される3つの選択FET1001Lは、NFETとPFETの両方を含んでいる。左から1列目の8個の選択FET1001Lのゲートどうしは接続されており、左から2列目の8個の選択FET1001Lのゲートどうしは接続されており、また、左から3列目の8個の選択FET1001Lのゲートどうしも接続されている。 In the circuit shown in FIG. 10, 24 selection FETs 1001L are used for eight sensor FETs 1001S. Each sensor FET 1001S is connected to the drain terminal via a selection FET series circuit in which three selection FETs are connected in series. As shown in FIG. 10, all three selection FETs connected to the top sensor FET 1001S are formed of NFETs, and all three selection FETs connected to the bottom sensor FET 1001S are formed of PFETs. For the sensor FETs 1001S in the other stages, the three selection FETs 1001L connected include both NFETs and PFETs. The gates of the eight selection FETs 1001L in the first row from the left are connected to each other, the gates of the eight selection FETs 1001L in the second row from the left are connected to each other, and the gates of the eight selection FETs 1001L in the third row from the left are also connected to each other.
 各列の選択FET1001Lのゲートには、HighとLowの2値のいずれかに対応する電圧がそれぞれ印加される。NFETでは、ゲートがHigh(H)のときにONとなり、Low(L)のときにOFFとなる。逆に、PFETでは、ゲートがHigh(H)のときにOFFとなり、Low(L)のときにONとなる。図10に示すように配置することにより、3列の選択FETのゲートをすべてHigh(H)にすることで最上段のセンサFETだけがドレイン端子と接続される。選択FET直列回路の3つのゲートに印加されるHigh、Lowのパタンは、HHH,LHH,HLH,LLH,HHL,LHL,HLL,LLLの8通りである。これら8通りのそれぞれのパタンに応じて、8つのセンサFETのいずれか1つがドレイン端子と接続される。 A voltage corresponding to one of two values, High or Low, is applied to the gate of the selection FET 1001L in each column. An NFET is ON when the gate is High (H) and OFF when the gate is Low (L). Conversely, a PFET is OFF when the gate is High (H) and ON when the gate is Low (L). By arranging as shown in FIG. 10, only the uppermost sensor FET is connected to the drain terminal by setting all the gates of the selection FETs in the three columns to High (H). There are eight patterns of High and Low applied to the three gates of the selection FET series circuit: HHH, LHH, HLH, LLH, HHL, LHL, HLL, and LLL. Depending on each of these eight patterns, one of the eight sensor FETs is connected to the drain terminal.
 図10に示すように、直列に接続されている選択FETの数が3個の場合は、8個(2個)のセンサFETのドレイン端子を共有することができる。直列に接続される選択FETの個数を増やすことで、ドレイン端子を共有できるセンサFETの個数は増大し、一般に、N個の選択FETを直列に接続することで、2個のセンサFETのドレイン端子を共有することができる。N個の選択FETを使うことで選択FETのゲート端子N個分だけ電極パッドが増えるが、2個のセンサFETのドレイン端子を共有し1つにすることができる。そのため、選択FETを使う場合は、選択FETを使わない場合と比較して、必要な電極パッド数を(2-1-N)だけ減少させることができる。したがって、3≦Nの場合に、選択FETを使う方が、電極パッド数を減らすことができ、Nが大きくなるにつれて電極パッド数を減らす効果は顕著になる。 As shown in FIG. 10, when the number of selection FETs connected in series is three, the drain terminals of eight (2 × 3) sensor FETs can be shared. By increasing the number of selection FETs connected in series, the number of sensor FETs that can share the drain terminal increases, and generally, by connecting N selection FETs in series, the drain terminals of 2 N sensor FETs can be shared. By using N selection FETs, the number of electrode pads increases by the number of gate terminals of the selection FETs, but the drain terminals of 2 N sensor FETs can be shared and reduced to one. Therefore, when a selection FET is used, the number of required electrode pads can be reduced by (2 N -1-N) compared to when a selection FET is not used. Therefore, when 3≦N, the number of electrode pads can be reduced by using a selection FET, and the effect of reducing the number of electrode pads becomes more pronounced as N increases.
 なお、図10の例では、センサFET1001SをNFETで構成したが、センサFET1001SをPFETで構成する場合も、同様に、N個直列の選択FETを用いることができる。その場合の効果についても、センサFET1001SをNFETで構成した場合と同様に得られる。 In the example of FIG. 10, the sensor FET 1001S is configured as an NFET, but if the sensor FET 1001S is configured as a PFET, N series selection FETs can be used in the same way. In that case, the same effect can be obtained as when the sensor FET 1001S is configured as an NFET.
 また、図10の例では、選択FET1001LをNFETとPFETの両方を使って形成したが、このような構成に限定されない。 In the example of FIG. 10, the selection FET 1001L is formed using both an NFET and a PFET, but the present invention is not limited to this configuration.
 図11は、選択トランジスタを用いたFET型ガスセンサアレイの第2例を示す図である。図11に示すように、選択FETをすべてセンサFETと同じ導電型のNFETで形成することもできる。図11の例では、すべての複数の選択FETにおける共有のゲートは、6つあり、2つずつが組になっている。同じ組の2つのゲートは、一方にはHighの電圧が印加され他方にはLowの電圧が印加される。6つのゲートに印加される電圧パタンは、左側のゲートから順にH/Lのパタンを記載すると、HLHLHL、LHHLHL、HLLHHL、LHLHHL、HLHLLH、LHHLLH、HLLHLH、LHLHLH、の8通りである。6つのゲートに印加される電圧のH/Lパタンのそれぞれに応じて、8つのセンサFET1001Sのうち対応する1つのセンサFET1001Sがドレイン端子と接続される。 FIG. 11 is a diagram showing a second example of a FET-type gas sensor array using selection transistors. As shown in FIG. 11, all the selection FETs can be formed of NFETs of the same conductivity type as the sensor FETs. In the example of FIG. 11, there are six shared gates in all the selection FETs, and two gates are paired. A high voltage is applied to one of the two gates in the same pair, and a low voltage is applied to the other. The voltage patterns applied to the six gates, in order from the left gate, are HLHLHL, LHHLHL, HLLHHL, LHLHHL, HLHLLH, LHHLLH, HLLHLH, and LHLHLH, and there are eight patterns of H/L patterns: HLHLHL, LHHLHL, HLLHHL, LHLHLH, and LHLHLH. Depending on the H/L pattern of the voltage applied to the six gates, one of the eight sensor FETs 1001S corresponding to the sensor FET 1001S is connected to the drain terminal.
 図11に示すように、直列に接続されている選択FETの数が3個の場合は、8個(2個)のセンサFET1001Sのドレイン端子を共有することができる。直列に接続される選択FETの個数を増やすと、ドレイン端子を共有できるセンサFET1001Sの個数は増大する。一般に、N個の選択FETを直列に接続することで、2個のセンサFET1001Sのドレイン端子を共有することができる。N個の選択FET1001Lを直列に接続して使うことで、選択FET1001Lのゲート端子2N個分だけ電極パッドの数が増える。しかしながら、2個のセンサFET1001Sのドレイン端子を共有し1つにすることができるので、選択FET1001Lを使わない場合と比較して、必要な電極パッドの数は、(2-1-2N)だけ減少する。3≦Nの場合に、選択FET1001Lを使う方が電極パッドの数を減らすことができて、Nが大きくなるにつれて電極パッドの数を減らす効果は顕著になる。図11に示す回路の構成は、図10に示す回路の構成と比較して、電極パッドの数を低減する効果、すなわちガスセンサチップの面積を低減する効果は小さい。しかしながら、図11に示す回路の構成の場合、選択FET1001Lの回路をNFETだけで構成できるため、回路のレイアウトが単純になり、ガスセンサチップの製造における工程数を減らせるメリットがある。 As shown in FIG. 11, when the number of selection FETs connected in series is three, the drain terminals of eight (2 × 3) sensor FETs 1001S can be shared. Increasing the number of selection FETs connected in series increases the number of sensor FETs 1001S that can share the drain terminal. In general, by connecting N selection FETs in series, the drain terminals of 2 N sensor FETs 1001S can be shared. By connecting N selection FETs 1001L in series, the number of electrode pads increases by 2N gate terminals of the selection FETs 1001L. However, since the drain terminals of 2 N sensor FETs 1001S can be shared and reduced to one, the number of required electrode pads is reduced by (2 N -1-2N) compared to the case where the selection FET 1001L is not used. When 3≦N, the number of electrode pads can be reduced by using the selection FET 1001L, and the effect of reducing the number of electrode pads becomes more noticeable as N increases. The circuit configuration shown in Fig. 11 has a smaller effect of reducing the number of electrode pads, i.e., the effect of reducing the area of the gas sensor chip, than the circuit configuration shown in Fig. 10. However, in the case of the circuit configuration shown in Fig. 11, the circuit of the selection FET 1001L can be composed of only NFETs, which has the advantage of simplifying the circuit layout and reducing the number of steps in manufacturing the gas sensor chip.
 図11の例では、センサFET1001Sと選択FET1001LをNFETで構成したが、センサFET1001Sと選択FET1001LをPFETで構成する場合も同様に、N個の選択FETを直列に接続して用いることができる。効果についても、センサFET1001Sと選択FET1001LをNFETで構成した場合と同様の効果が得られる。 In the example of FIG. 11, the sensor FET 1001S and the selection FET 1001L are configured as NFETs, but even if the sensor FET 1001S and the selection FET 1001L are configured as PFETs, N selection FETs can be connected in series and used in the same way. The effect is also the same as when the sensor FET 1001S and the selection FET 1001L are configured as NFETs.
 図12は、選択トランジスタを用いたFET型ガスセンサアレイの第3例を示す図である。図10の例と図11の例では、センサFET1001Sを1次元方向に複数並べたが、図12に示すように、センサFET1001Sを2次元に並べることもできる。図12の例では、8個の独立したドレイン端子と、複数の選択FET1001Lにおける共有のゲート2個と、センサFET1001Sによる16個のアレイとが示されている。センサFET1001Sと選択FET1001Lは、ともにNFETで構成されている。独立なドレイン端子が8個あるので、8個のセンサFET1001Sを同時に選択することができる。選択FET1001Lにおける共有の2つのゲートのうち一方をHighにして他方をLowにすることで、8個のセンサFET1001Sを選択してゲートしきい値電圧を測定することができる。 FIG. 12 is a diagram showing a third example of a FET-type gas sensor array using a selection transistor. In the examples of FIG. 10 and FIG. 11, multiple sensor FETs 1001S are arranged in a one-dimensional direction, but as shown in FIG. 12, the sensor FETs 1001S can also be arranged two-dimensionally. In the example of FIG. 12, eight independent drain terminals, two shared gates for multiple selection FETs 1001L, and an array of 16 sensor FETs 1001S are shown. Both the sensor FETs 1001S and the selection FETs 1001L are composed of NFETs. Since there are eight independent drain terminals, eight sensor FETs 1001S can be selected simultaneously. By setting one of the two shared gates in the selection FET 1001L to High and the other to Low, eight sensor FETs 1001S can be selected and the gate threshold voltage can be measured.
 図12の例では、センサFET1001Sが8×2のアレイである例を示したが、独立なドレイン端子数は、8よりも増やして並べることができるし、選択FET1001Lにおける共有のゲートの数も2よりも増やして並べることができる。独立なドレイン端子数をNd、選択FETにおける共有のゲートの数をNsとすると、センサFET1001Sの数はNd×Ns個となる。選択FET1001Lを用いない場合は、ドレイン端子の個数がNd×Ns個必要であるのに対して、選択FET1001Lにおける共有のゲートをNs個用いることで、ドレイン端子数をNd個にすることができる。また、選択FET1001Lを用いることで、電極パッドの数をNd×Ns-Nd-Ns個減少させることができる。例えば、Ns=2の場合には、3≦Ndのときに、電極パッドの個数を低減できる。また例えば、3≦Nsの場合には、2≦Ndのときに電極パッドの個数を低減できる。 In the example of FIG. 12, the sensor FET 1001S is an 8×2 array, but the number of independent drain terminals can be increased to more than 8, and the number of shared gates in the selection FET 1001L can be increased to more than 2. If the number of independent drain terminals is Nd and the number of shared gates in the selection FET is Ns, the number of sensor FETs 1001S is Nd×Ns. If the selection FET 1001L is not used, the number of drain terminals required is Nd×Ns, but by using Ns shared gates in the selection FET 1001L, the number of drain terminals can be reduced to Nd. Furthermore, by using the selection FET 1001L, the number of electrode pads can be reduced by Nd×Ns-Nd-Ns. For example, when Ns=2, the number of electrode pads can be reduced when 3≦Nd. Furthermore, when 3≦Ns, the number of electrode pads can be reduced when 2≦Nd.
 図10の例、図11の例による構成では、ソース端子とドレイン端子の間に電流が流れるときに、N個の直列な選択FET1001Lに電流が流れることになり、センサFET1001Sのドレイン電流を測定する際に、N個(3≦N)の直列な選択FET1001Lの抵抗が寄生抵抗として影響する。一方、図12の例による構成では、センサFET1001Sのドレイン電流を測定する際に寄生抵抗となる選択FET1001Lは1つだけなので、図10、図11の例による構成よりも、選択FET1001Lの寄生抵抗による影響を抑制することができる。 In the configurations shown in the examples of Figures 10 and 11, when a current flows between the source terminal and the drain terminal, the current flows through N selection FETs 1001L connected in series, and when the drain current of the sensor FET 1001S is measured, the resistance of the N (3≦N) selection FETs 1001L connected in series affects the measurement of the drain current of the sensor FET 1001S as a parasitic resistance. On the other hand, in the configuration shown in the example of Figure 12, there is only one selection FET 1001L that acts as a parasitic resistance when measuring the drain current of the sensor FET 1001S, so the effect of the parasitic resistance of the selection FET 1001L can be suppressed more than in the configurations shown in the examples of Figures 10 and 11.
 図12の例では、センサFET1001Sと選択FET1001LをNFETで構成したが、センサFET1001Sと選択FET1001LをPFETで構成する場合も、センサFET1001Sのアレイを形成できる。この構成による効果についても、センサFET1001Sと選択FET1001LをNFETで構成した場合と同様の効果が得られる。 In the example of FIG. 12, the sensor FET 1001S and the selection FET 1001L are configured with NFETs, but an array of sensor FETs 1001S can also be formed when the sensor FET 1001S and the selection FET 1001L are configured with PFETs. The effect of this configuration is similar to that of the sensor FET 1001S and the selection FET 1001L configured with NFETs.
 なお、図10~12を参照して説明した回路例では、選択トラジスタとして、FETを用いたが、別の型のトランジスタ、例えばバイポーラ型のトランジスタを用いてもよい。 In the circuit examples described with reference to Figures 10 to 12, FETs are used as selection transistors, but other types of transistors, such as bipolar transistors, may also be used.
 図13は、TSVを用いたFET型ガスセンサアレイの一例を示す図である。図13では、上側に、本実施例のガスセンサアレイが形成されたガスセンサチップ1001の要部の正面図を示しており、下側に、同ガスセンサチップ1001の断面図を示している。図10~12の例では、選択FET1001Lを用いてセンサFET1001Sのアレイを構成したが、図13に示すように、半導体基板1への貫通電極(Through-Silicon Via: TSV)を用いて複数のセンサFET1001Sのソース端子、ドレイン端子、ウェル端子、ゲート端子に給電することもできる。図13に示すような構成によれば、ガスセンサチップ1001のセンサFET1001Sが形成される面に、選択FETを形成することなく、配線のレイアウトの制限に影響を受けずに、多数のセンサFET1001Sを配置することが可能である。 13 is a diagram showing an example of a FET-type gas sensor array using TSVs. In FIG. 13, the upper side shows a front view of the main part of a gas sensor chip 1001 on which the gas sensor array of this embodiment is formed, and the lower side shows a cross-sectional view of the gas sensor chip 1001. In the examples of FIGS. 10 to 12, an array of sensor FETs 1001S is formed using a selection FET 1001L, but as shown in FIG. 13, it is also possible to supply power to the source terminals, drain terminals, well terminals, and gate terminals of multiple sensor FETs 1001S using through electrodes (Through-Silicon Vias: TSVs) to the semiconductor substrate 1. With the configuration shown in FIG. 13, it is possible to arrange a large number of sensor FETs 1001S on the surface of the gas sensor chip 1001 on which the sensor FETs 1001S are formed without forming a selection FET and without being affected by wiring layout restrictions.
 図13の例では、ガスセンサチップ1001に、NFETからなるセンサFET1001Sと、PFETからなるセンサFET1001Sとが形成されている。さらに、NFETからなるセンサFET1001Sでは、ゲート絶縁膜となるシリコン酸化膜(SiO膜)の厚さとして2種類の厚さを用いている。同様に、PFETからなるセンサFETでは、ゲート絶縁膜となるシリコン酸化膜(SiO膜)の厚さとして2種類の厚さを用いている。図13の例では、この2種類の厚さとして、10nmと20nmを用いている。なお、ゲート絶縁膜の厚さは、3種類以上を用いることももちろん可能である。なお、「シリコン酸化膜」は、本願発明における「不純物層」の一例である。また、「SiO」は、図において視認性を良くするために、「SiO2」と表記することがある。 In the example of FIG. 13, a sensor FET 1001S made of an NFET and a sensor FET 1001S made of a PFET are formed in a gas sensor chip 1001. Furthermore, in the sensor FET 1001S made of an NFET, two types of thicknesses are used as the thickness of the silicon oxide film (SiO 2 film) that becomes the gate insulating film. Similarly, in the sensor FET made of a PFET, two types of thicknesses are used as the thickness of the silicon oxide film (SiO 2 film) that becomes the gate insulating film. In the example of FIG. 13, 10 nm and 20 nm are used as these two types of thicknesses. Of course, it is possible to use three or more types of thicknesses of the gate insulating film. The "silicon oxide film" is an example of the "impurity layer" in the present invention. In addition, "SiO 2 " may be written as "SiO2" in order to improve visibility in the figure.
 図14は、インターポーザを用いたFET型ガスセンサアレイの一例を示す図である。図14では、上側に、本実施例のガスセンサアレイが形成されたガスセンサチップ1001の要部の正面図を示しており、下側に、同ガスセンサチップ1001の断面図を示している。図14に示すように、インターポーザ(Interposer)を用いて、複数のセンサFET1001Sのソース端子、ドレイン端子、ウェル端子、およびゲート端子に給電することもできる。図13の例の場合と同様に、ガスセンサチップ1001のセンサFET1001Sが形成される面に選択FETを形成することなく、配線のレイアウトの制限に影響を受けずに、多数のセンサFET1001Sを配置することが可能である。 FIG. 14 is a diagram showing an example of a FET-type gas sensor array using an interposer. In FIG. 14, the upper side shows a front view of the main part of a gas sensor chip 1001 on which the gas sensor array of this embodiment is formed, and the lower side shows a cross-sectional view of the gas sensor chip 1001. As shown in FIG. 14, an interposer can also be used to supply power to the source terminals, drain terminals, well terminals, and gate terminals of multiple sensor FETs 1001S. As in the example of FIG. 13, it is possible to arrange a large number of sensor FETs 1001S without forming a selection FET on the surface of the gas sensor chip 1001 on which the sensor FETs 1001S are formed, and without being affected by wiring layout restrictions.
 図14の例でも図13の例と同様に、ガスセンサチップ1001に、NFETからなるセンサFET1001Sと、PFETからなるセンサFET1001Sとが形成されている。さらに、NFETからなるセンサFET1001Sでも、ゲート絶縁膜となるシリコン酸化膜(SiO膜)の厚さとして2種類の厚さを用いている。PFETからなるセンサFET1001Sも、ゲート絶縁膜となるシリコン酸化膜(SiO膜)の厚さとして2種類の厚さを用いている。ゲート絶縁膜の厚さは、3種類以上を用いることももちろん可能である。 In the example of Fig. 14, similarly to the example of Fig. 13, a sensor FET 1001S made of an NFET and a sensor FET 1001S made of a PFET are formed on a gas sensor chip 1001. Furthermore, the sensor FET 1001S made of an NFET also uses two types of thickness for the silicon oxide film ( SiO2 film) that serves as the gate insulating film. The sensor FET 1001S made of a PFET also uses two types of thickness for the silicon oxide film ( SiO2 film) that serves as the gate insulating film. Of course, it is also possible to use three or more types of thickness for the gate insulating film.
 ここで、PFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性について説明する。図15Aは、PFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性を示す図である。また、図15Bは、PFET型の参照FETにおけるゲート電圧対ドレイン電流の特性を示す図である。なお、NFET型のセンサFETにおけるゲート電圧対ドレイン電流の特性については、図6に示した通りである。 Here, the characteristics of the gate voltage versus drain current in a PFET-type sensor FET will be explained. FIG. 15A is a diagram showing the characteristics of the gate voltage versus drain current in a PFET-type sensor FET. Also, FIG. 15B is a diagram showing the characteristics of the gate voltage versus drain current in a PFET-type reference FET. Note that the characteristics of the gate voltage versus drain current in an NFET-type sensor FET are as shown in FIG. 6.
 PFET型のセンサFET1001Sにおいても、NFET型と同様に、ガス検知材料層である触媒金属層7が露出しているので、検知対象ガスによって触媒金属層7の仕事関数が変化し、検知対象ガス濃度が0の場合とXの場合とでゲート電圧-ドレイン電流特性が異なる。具体的には、図15Aに示すように、検知対象ガス濃度が高くなると、ゲート電圧とドレイン電流との関係を表す特性曲線が、電圧方向に平行移動する。その結果、しきい値電流である電流Icが流れるときのゲート電圧である電圧VGSは、検知対象ガス濃度が0の場合のVGSであるVGS(0)から、検知対象ガス濃度がXである場合のVGSであるVGS(X)に変化する。一方、参照FET1001Rは、触媒金属層17が層間絶縁膜ILDで被覆されているため、ガス濃度が変化してもゲート電圧-ドレイン電流特性は変化しない。具体的は、図15Bに示すように、ゲートに電圧VGRを印加することで流れる電流は、Icのまま一定である。その結果、式2のΔVg(X)がガス濃度Xに対するセンサFET1001Sのゲートしきい値電圧シフト(変化量)に対応することになる。 In the PFET-type sensor FET 1001S, as in the NFET-type, the catalytic metal layer 7, which is a gas detection material layer, is exposed, so the work function of the catalytic metal layer 7 changes depending on the gas to be detected, and the gate voltage-drain current characteristics differ when the gas concentration to be detected is 0 and when the gas concentration to be detected is X. Specifically, as shown in FIG. 15A, when the gas concentration to be detected increases, the characteristic curve representing the relationship between the gate voltage and the drain current moves parallel to the voltage direction. As a result, the voltage VGS, which is the gate voltage when the current Ic, which is the threshold current, flows, changes from VGS(0), which is the VGS when the gas concentration to be detected is 0, to VGS(X), which is the VGS when the gas concentration to be detected is X. On the other hand, in the reference FET 1001R, the catalytic metal layer 17 is covered with the interlayer insulating film ILD, so the gate voltage-drain current characteristics do not change even if the gas concentration changes. Specifically, as shown in FIG. 15B, the current flowing when the voltage VGR is applied to the gate remains constant at Ic. As a result, ΔVg(X) in Equation 2 corresponds to the gate threshold voltage shift (amount of change) of the sensor FET 1001S relative to the gas concentration X.
 センサFETがNFETからPFETに変わっても、ドレイン電流対ゲート電圧の特性曲線が電圧方向に平行移動するのは同じであるが、ゲート電圧を一定に保ったまま電流を計測した場合、同じガスへの応答に関し、ドレイン電流の増減は、NFETとPFETとでは逆になる。NFETでは、ゲートしきい値電圧が負側にシフトする場合にゲート電圧一定のときのドレイン電流の絶対値は増加し、ゲートしきい値電圧が正側にシフトする場合にゲート電圧一定のときのドレイン電流の絶対値は減少する。一方、PFETでは、ゲートしきい値電圧が負側にシフトする場合にゲート電圧一定のときのドレイン電流の絶対値は減少し、ゲートしきい値電圧が正側にシフトする場合にゲート電圧一定のときのドレイン電流の絶対値は増加する。 Even if the sensor FET is changed from an NFET to a PFET, the characteristic curve of drain current versus gate voltage still shifts parallel to the voltage direction, but when the current is measured while keeping the gate voltage constant, the increase or decrease in drain current in response to the same gas is opposite for NFET and PFET. For NFET, when the gate threshold voltage shifts to the negative side, the absolute value of the drain current at a constant gate voltage increases, and when the gate threshold voltage shifts to the positive side, the absolute value of the drain current at a constant gate voltage decreases. On the other hand, for PFET, when the gate threshold voltage shifts to the negative side, the absolute value of the drain current at a constant gate voltage decreases, and when the gate threshold voltage shifts to the positive side, the absolute value of the drain current at a constant gate voltage increases.
 この性質を利用して、NFET型のセンサFETとPFET型のセンサFETとを組み合わせることにより、あるガス種に対して、雰囲気中のガス濃度が一定の濃度範囲、例えば1ppmから10ppmにあるかどうかを判定するデバイスを構成することができる。ここでは、ガス濃度に応じてゲートしきい値電圧が負電圧方向にシフトするガス種の場合を一例として考えてみる。 By utilizing this property and combining an NFET type sensor FET and a PFET type sensor FET, it is possible to configure a device that determines whether the gas concentration in the atmosphere for a certain gas species is within a certain concentration range, for example, 1 ppm to 10 ppm. Here, we consider as an example the case of a gas species whose gate threshold voltage shifts toward the negative voltage direction depending on the gas concentration.
 図16は、NFET型センサFETとPFET型センサFETとを組み合わせてガス濃度を判定するデバイスの第1例を示す図である。例えば、図16に示すように、NFET型センサFETとPFET型センサFETとを直列に接続したデバイスにおいて、そのデバイスの両端の端子に1Vと0Vを印加する。PFETでは、ソースドレイン層とウェルとの間に順バイアスが印加されないように、ウェルに1Vを印加し、NFETのウェルには0Vを印加する。NFETのゲートには、ガス濃度が1ppmのときに判定電流である電流Icが流れるように、電圧VG_NFETを印加する。また、PFETのゲートには、ガス濃度が10ppmのときに判定電流である電流Icが流れるように、電圧VG_PFETを印加する。 FIG. 16 is a diagram showing a first example of a device that determines a gas concentration by combining an NFET-type sensor FET and a PFET-type sensor FET. For example, as shown in FIG. 16, in a device in which an NFET-type sensor FET and a PFET-type sensor FET are connected in series, 1 V and 0 V are applied to the terminals at both ends of the device. In the PFET, 1 V is applied to the well so that no forward bias is applied between the source-drain layer and the well, and 0 V is applied to the well of the NFET. A voltage VG_NFET is applied to the gate of the NFET so that a current Ic, which is the determination current, flows when the gas concentration is 1 ppm. A voltage VG_PFET is applied to the gate of the PFET so that a current Ic, which is the determination current, flows when the gas concentration is 10 ppm.
 このようなデバイスにおいて、ガス濃度を変化させると、ガス濃度が1ppmよりも低い場合にはNFETの電流がIcよりも小さくなるので、PFETはON状態だがデバイス全体でみるとOFF状態となる。ガス濃度が1ppmから10ppmの間にある場合には、NFETもPFETも電流がIcよりも大きくなり、デバイス全体でみるとON状態となる。また、ガス濃度が10ppmよりも高い場合には、PFETの電流がIcよりも小さくなるので、NFETはON状態だがデバイス全体でみるとOFF状態となる。このようなNFETおよびPFETの動作により、ガス濃度が1ppmから10ppmの間にある場合だけ全体としてON状態になり、両端間に電流が流れるデバイスを作ることができる。 In such a device, when the gas concentration is changed, if the gas concentration is lower than 1 ppm, the NFET current is smaller than Ic, so the PFET is ON but the device as a whole is OFF. If the gas concentration is between 1 ppm and 10 ppm, the current of both the NFET and PFET is larger than Ic, so the device as a whole is ON. Also, if the gas concentration is higher than 10 ppm, the PFET current is smaller than Ic, so the NFET is ON but the device as a whole is OFF. This operation of the NFET and PFET makes it possible to create a device that is ON overall only when the gas concentration is between 1 ppm and 10 ppm, and current flows between both ends.
 図17は、NFET型センサFETとPFET型センサFETとを組み合わせてガス濃度を判定するデバイスの第2例を示す図である。また例えば、図17に示すように、NFET型センサFETとPFET型センサFETとを並列接続したデバイスにおいて、そのデバイスの両端の端子に1Vと0Vを印加する。PFETではソースドレイン層とウェルの間に順バイアスが印加されないように、ウェルに1Vを印加し、NFETのウェルには0Vを印加する。また、NFETのゲートには、ガス濃度が10ppmのときに判定電流である電流Icが流れるように、電圧VG_NFETを印加する。PFETのゲートには、ガス濃度が1ppmのときに判定電流である電流Icが流れるように、電圧VG_PFETを印加する。 FIG. 17 is a diagram showing a second example of a device that determines a gas concentration by combining an NFET-type sensor FET and a PFET-type sensor FET. For example, as shown in FIG. 17, in a device in which an NFET-type sensor FET and a PFET-type sensor FET are connected in parallel, 1 V and 0 V are applied to the terminals at both ends of the device. In the PFET, 1 V is applied to the well so that no forward bias is applied between the source-drain layer and the well, and 0 V is applied to the well of the NFET. In addition, a voltage VG_NFET is applied to the gate of the NFET so that a current Ic, which is the determination current, flows when the gas concentration is 10 ppm. A voltage VG_PFET is applied to the gate of the PFET so that a current Ic, which is the determination current, flows when the gas concentration is 1 ppm.
 このようなデバイスにおいて、ガス濃度を変化させると、ガス濃度が1ppmよりも低い場合には、PFETの電流がIcよりも大きくなるので、NFETはOFF状態だがデバイス全体でみるとON状態となる。ガス濃度が1ppmから10ppmの間にある場合には、NFETもPFETも電流がIcよりも小さくなり、デバイス全体でみるとOFF状態となる。また、ガス濃度が10ppmよりも高い場合には、NFETの電流がIcよりも大きくなるので、PFETはOFF状態だがデバイス全体でみるとON状態となる。このようなNFETおよびPFETの動作により、ガス濃度が1ppmから10ppmの間にある場合だけ全体としてOFF状態になり、ガス濃度がこの範囲から外れると両端間に電流が流れるデバイスを作ることができる。 In such a device, when the gas concentration is changed, if the gas concentration is lower than 1 ppm, the PFET current becomes larger than Ic, so the NFET is in the OFF state but the device as a whole is in the ON state. If the gas concentration is between 1 ppm and 10 ppm, the current of both the NFET and the PFET becomes smaller than Ic and the device as a whole is in the OFF state. Also, if the gas concentration is higher than 10 ppm, the NFET current becomes larger than Ic, so the PFET is in the OFF state but the device as a whole is in the ON state. This operation of the NFET and PFET makes it possible to create a device that is in the OFF state overall only when the gas concentration is between 1 ppm and 10 ppm, and current flows between both ends when the gas concentration is outside this range.
 図16、図17の例では、ガス濃度に応じてゲートしきい値電圧が負電圧方向にシフトするガス種の場合を一例として考えたが、ガス濃度に応じてゲートしきい値電圧が正電圧方向にシフトするガス種の場合にも、同様のデバイスを構成することができる。 In the examples of Figures 16 and 17, we have considered the case of a gas species in which the gate threshold voltage shifts toward a negative voltage depending on the gas concentration, but a similar device can also be constructed in the case of a gas species in which the gate threshold voltage shifts toward a positive voltage depending on the gas concentration.
 <仕事関数型センサの他の例:キャパシタ型センサ>
 図1~17を用いて説明したガスセンサチップ1001の例では、仕事関数型センサの一つであるFET型センサを用いたが、FET型センサの代わりに、同じ仕事関数型センサであるキャパシタ型センサを用いることもできる。すなわち、センサFETおよび参照FETの代わりに、センサキャパシタ(SCAP)および参照キャパシタ(RCAP)を用いることもできる。
<Another example of a work function type sensor: a capacitor type sensor>
1 to 17, a FET sensor, which is one of the work function sensors, is used, but a capacitor sensor, which is the same work function sensor, can be used instead of the FET sensor. That is, a sensor capacitor (SCAP) and a reference capacitor (RCAP) can be used instead of the sensor FET and the reference FET.
 図18Aは、センサキャパシタの断面の一例を模式的に示す図である。図18Aに示すように、センサキャパシタ1201Sは、半導体基板1、ウェル2、ゲート絶縁膜5、検知材料となる金属酸化物層106と触媒金属層107から形成されている。センサキャパシタ1201Sの触媒金属層107は、表面が検知対象ガスを含む雰囲気に露出しており、触媒金属層107の固定、保護などの目的から、触媒金属層107の一部は、層間絶縁膜ILDで被覆されている。半導体基板1には、例えば、シリコンや炭化珪素(SiC)などを用いることができる。 FIG. 18A is a schematic diagram showing an example of a cross section of a sensor capacitor. As shown in FIG. 18A, the sensor capacitor 1201S is formed from a semiconductor substrate 1, a well 2, a gate insulating film 5, a metal oxide layer 106 serving as a detection material, and a catalyst metal layer 107. The surface of the catalyst metal layer 107 of the sensor capacitor 1201S is exposed to an atmosphere containing the gas to be detected, and a part of the catalyst metal layer 107 is covered with an interlayer insulating film ILD for the purpose of fixing and protecting the catalyst metal layer 107. For example, silicon or silicon carbide (SiC) can be used for the semiconductor substrate 1.
 図18Bは、参照キャパシタの断面の一例を模式的に示す図である。図18Bに示すように、参照キャパシタ1201Rは、半導体基板1、ウェル12、ゲート絶縁膜層15、検知材料となる金属酸化物層116と触媒金属層117から形成されており、参照キャパシタ1201Rの触媒金属層117は、表面が層間絶縁膜ILDで被覆され、検知対象ガスを含む雰囲気から隔離されている。 FIG. 18B is a schematic diagram showing an example of a cross section of a reference capacitor. As shown in FIG. 18B, the reference capacitor 1201R is formed from a semiconductor substrate 1, a well 12, a gate insulating film layer 15, a metal oxide layer 116 serving as a detection material, and a catalyst metal layer 117. The surface of the catalyst metal layer 117 of the reference capacitor 1201R is covered with an interlayer insulating film ILD, and is isolated from the atmosphere containing the gas to be detected.
 なお、上記のウェル2,12、および触媒金属層107,117には、アルミニウム、タングステン、白金などの金属からなる配線層が接続されており、図1の電源1005~1008から給電できるようになっている。 In addition, wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12 and the catalyst metal layers 107 and 117, and can be powered by the power sources 1005 to 1008 in Figure 1.
 以下では、センサキャパシタ1201Sおよび参照キャパシタ1201Rは、両方ともN型ウェル2,12を用いるものとして説明するが、P型ウェルを用いることもできる。 In the following, the sensor capacitor 1201S and the reference capacitor 1201R are described as both using N- type wells 2 and 12, but P-type wells can also be used.
 ガスセンサチップ1001にキャパシタ型センサを用いる構成では、FET型センサを用いる場合と比較して、ソースドレイン層が不要なため、ガスセンサチップ1001の構造が簡易になる。一方、後述するように、FET型センサを用いる場合には不要だった交流電圧を用いて静電容量を測定する必要が生じる。 In a configuration in which a capacitor-type sensor is used in the gas sensor chip 1001, a source-drain layer is not required, compared to when a FET-type sensor is used, and this simplifies the structure of the gas sensor chip 1001. On the other hand, as described below, it becomes necessary to measure the capacitance using an AC voltage, which is not necessary when a FET-type sensor is used.
 図19は、キャパシタ型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。ヒータ部1001Hを構成するヒータ線に電流を流し、ヒータ線の抵抗RHLで発生するジュール熱により、センサキャパシタ1201Sと参照キャパシタ1201Rを所定の温度、例えば、100℃程度に昇温する。センサキャパシタ1201S、参照キャパシタ1201Rのウェル2,12には、0Vが印加される。参照キャパシタ1201Rのゲートには、電源1005~1008により可変電圧である電圧VGRが印加され、センサキャパシタ1201Sのゲートには、電源1005~1008により可変電圧VGSが印加される。直流電圧である電圧VGR,VGSに加えて、ウェル2,12の端子には、電源1005~1008により振幅Vsigの交流電圧が印加される。センサキャパシタ1201Sと参照キャパシタ1201Rのそれぞれのゲート端子に流れる交流電流を、電流検出部1004により測定することで、センサキャパシタ1201Sの静電容量C(SCAP)、参照キャパシタ1201Rの静電容量C(RCAP)を検出することができる。制御部1003は、両者が一定の静電容量C0に一致するように、可変電圧である電圧VGS,VGRを制御する。このときのVGRとVGSの差VGRSは、式1と同じである。 19 is a diagram showing an example of the operation when detecting the concentration of a target gas in a gas sensor chip using a capacitor-type sensor. A current is passed through the heater wire constituting the heater section 1001H, and the sensor capacitor 1201S and reference capacitor 1201R are heated to a predetermined temperature, for example, about 100°C, by Joule heat generated in the resistance RHL of the heater wire. 0V is applied to wells 2 and 12 of the sensor capacitor 1201S and reference capacitor 1201R. A variable voltage VGR is applied to the gate of the reference capacitor 1201R by power supplies 1005 to 1008, and a variable voltage VGS is applied to the gate of the sensor capacitor 1201S by power supplies 1005 to 1008. In addition to the DC voltages VGR and VGS, an AC voltage of amplitude Vsig is applied to the terminals of wells 2 and 12 by power supplies 1005 to 1008. The capacitance C (SCAP) of the sensor capacitor 1201S and the capacitance C (RCAP) of the reference capacitor 1201R can be detected by measuring the AC current flowing through the gate terminals of the sensor capacitor 1201S and the reference capacitor 1201R using the current detection unit 1004. The control unit 1003 controls the variable voltages VGS and VGR so that both voltages match a constant capacitance C0. The difference VGRS between VGR and VGS at this time is the same as Equation 1.
 図20Aは、センサキャパシタの静電容量対ゲート電圧の特性曲線の一例を示す図である。また、図20Bは、参照キャパシタの静電容量対ゲート電圧の特性曲線の一例を示す図である。センサキャパシタ1201Sは、触媒金属層107が露出しているので検知対象ガスによって触媒金属層7の仕事関数が変化し、検知対象ガス濃度が0の場合とXの場合とで、静電容量対ゲート電圧の特性曲線は、電圧方向に平行移動する。その結果、静電容量がC0となるゲート電圧は、VGS(0)からVGS(X)に変化する。 FIG. 20A is a diagram showing an example of a characteristic curve of the capacitance vs. gate voltage of a sensor capacitor. FIG. 20B is a diagram showing an example of a characteristic curve of the capacitance vs. gate voltage of a reference capacitor. In the sensor capacitor 1201S, the catalyst metal layer 107 is exposed, so the work function of the catalyst metal layer 7 changes depending on the gas to be detected, and the characteristic curve of the capacitance vs. gate voltage moves parallel to the voltage direction when the concentration of the gas to be detected is 0 and when it is X. As a result, the gate voltage at which the capacitance becomes C0 changes from VGS(0) to VGS(X).
 一方、参照キャパシタ1201Rは、触媒金属層117が層間絶縁膜ILDで被覆されているため、検知対象ガス濃度が変化しても静電容量対ゲート電圧の特性は変化せず、ゲートに電圧VGRを印加したときの静電容量値はC0のまま一定である。上記の説明から理解されるように、センサキャパシタ1201Sおよび参照キャパシタ1201Rを用いたガスセンサチップ1001によれば、センサFET1001Sおよび参照FET1001Rを用いる場合と同様に、ゲートしきい値電圧のシフトに基づいてガス濃度を検出することができる。また複数のセンサキャパシタ1201Sをガスセンサチップ1001上に配置し、ゲートを構成するガス検知材料層に異なる金属酸化物層106と触媒金属層107を適用することで、ガスに対する感度と選択性を変えることができる。センサFETを用いるとき同様に、複数のガス種を含む雰囲気の成分パタンを計測することができる。 On the other hand, the reference capacitor 1201R has the catalytic metal layer 117 covered with the interlayer insulating film ILD, so that the capacitance vs. gate voltage characteristic does not change even if the concentration of the gas to be detected changes, and the capacitance value when the voltage VGR is applied to the gate remains constant at C0. As can be understood from the above explanation, the gas sensor chip 1001 using the sensor capacitor 1201S and the reference capacitor 1201R can detect the gas concentration based on the shift in the gate threshold voltage, similar to the case of using the sensor FET 1001S and the reference FET 1001R. In addition, by arranging multiple sensor capacitors 1201S on the gas sensor chip 1001 and applying different metal oxide layers 106 and catalytic metal layers 107 to the gas detection material layer that constitutes the gate, the sensitivity and selectivity to gas can be changed. As with the case of using the sensor FET, the component pattern of an atmosphere containing multiple gas species can be measured.
<仕事関数型センサの他の例:ダイオード型センサ>
 図1~17を用いて説明したガスセンサチップ1001の例では、仕事関数型センサとして、FET型センサを用いたが、FET型センサの代わりに、同じ仕事関数型センサとして、ダイオード型センサを用いることもできる。すなわち、センサFETおよび参照FETの代わりに、センサダイオード(SDIODE)および参照ダイオード(RDIODE)を用いることもできる。
<Another example of a work function type sensor: a diode type sensor>
1 to 17, a FET sensor is used as the work function sensor, but a diode sensor may be used as the same work function sensor instead of the FET sensor. That is, a sensor diode (SDIODE) and a reference diode (RDIODE) may be used instead of the sensor FET and the reference FET.
 図21Aは、センサダイオードの断面の一例を模式的に示す図である。図21Aに示すように、センサダイオード1301Sは、半導体基板1、ウェル2、検知材料となる金属酸化物層106と触媒金属層107から形成されている。センサダイオード1301Sの触媒金属層107は、表面が検知対象ガスを含む雰囲気に露出しており、触媒金属層107の固定、保護などの目的から、触媒金属層107の一部は、層間絶縁膜ILDで被覆されている。半導体基板1には、例えば、シリコンや炭化珪素(SiC)などを用いることができる。 FIG. 21A is a schematic diagram showing an example of a cross section of a sensor diode. As shown in FIG. 21A, the sensor diode 1301S is formed from a semiconductor substrate 1, a well 2, a metal oxide layer 106 serving as a detection material, and a catalyst metal layer 107. The surface of the catalyst metal layer 107 of the sensor diode 1301S is exposed to an atmosphere containing the gas to be detected, and a part of the catalyst metal layer 107 is covered with an interlayer dielectric film ILD for the purpose of fixing and protecting the catalyst metal layer 107. For example, silicon or silicon carbide (SiC) can be used for the semiconductor substrate 1.
 図21Bは、参照ダイオードの断面の一例を模式的に示す図である。図21Bに示すように、参照ダイオード1301Rは、半導体基板1、ウェル12、検知材料となる金属酸化物層116と触媒金属層117から形成されている。参照ダイオード1301Rの触媒金属層117は、表面が層間絶縁膜ILDで被覆され、検知対象ガスを含む雰囲気から隔離されている。 FIG. 21B is a schematic diagram showing an example of a cross section of a reference diode. As shown in FIG. 21B, the reference diode 1301R is formed from a semiconductor substrate 1, a well 12, a metal oxide layer 116 serving as a sensing material, and a catalyst metal layer 117. The surface of the catalyst metal layer 117 of the reference diode 1301R is covered with an interlayer dielectric film ILD, and is isolated from the atmosphere containing the gas to be sensed.
 なお、上記のウェル2、12、触媒金属層107、117には、アルミニウム、タングステン、白金などの金属からなる配線層が接続されており、図1の電源1005~1008から給電できるようになっている。 In addition, wiring layers made of metals such as aluminum, tungsten, and platinum are connected to the wells 2 and 12 and the catalyst metal layers 107 and 117, and can be powered by the power sources 1005 to 1008 in Figure 1.
 以下では、センサダイオード1301Sおよび参照ダイオード1301Rは、両方ともウェル2,12としてN型ウェルを用いるものとして説明するが、P型ウェルを用いることもできる。 In the following, the sensor diode 1301S and the reference diode 1301R are described as both using N-type wells as wells 2 and 12, but P-type wells can also be used.
 ガスセンサチップ1001にダイオード型センサを用いる構成では、FET型センサを用いる場合と比較して、構造が簡易である。また、キャパシタ型センサを用いる場合には必要だった交流電圧も不要である。 The configuration using a diode-type sensor in the gas sensor chip 1001 has a simpler structure than when a FET-type sensor is used. In addition, there is no need for the AC voltage that is required when a capacitor-type sensor is used.
 一方、FET型センサあるいはキャパシタ型センサを用いる場合にはガス検知材料となる金属酸化物層6,16,106,116や触媒金属層7,17,107,117には直流電流が流れなかったが、ダイオード型センサを用いる構成では、金属酸化物層106,116や触媒金属層107,117に直流電流が流れる。 On the other hand, when a FET type sensor or a capacitor type sensor is used, no direct current flows through the metal oxide layers 6, 16, 106, 116 or the catalyst metal layers 7, 17, 107, 117 that serve as the gas detection material. However, when a diode type sensor is used, a direct current flows through the metal oxide layers 106, 116 and the catalyst metal layers 107, 117.
 図22は、ダイオード型センサを用いたガスセンサチップにおける検知対象ガスの濃度を検出する際の動作の一例を示す図である。ヒータ部1001Hを構成するヒータ線に電流を流し、ヒータ線の抵抗RHLで発生するジュール熱により、センサダイオード1301Sと参照ダイオード1301Rを所定の温度、例えば、100℃に昇温する。電源1005~1008は、センサダイオード1301Sおよび参照ダイオード1301Rのウェル2,12に0Vを印加する。また、電源1005~1008は、参照ダイオード1301Rのゲートに可変電圧である電圧VGRを印加し、センサダイオード1301Sのゲートに可変電圧VGSを印加する。電流検出部1004は、センサダイオード1301Sと参照ダイオード1301Rのそれぞれのゲート端子に流れる電流を測定する。制御部1003は、両者の電流が一定のICに一致するようにVGS、VGRを制御する。このときのVGRとVGSの差VGRSは、式1と同じである。 FIG. 22 is a diagram showing an example of the operation when detecting the concentration of a gas to be detected in a gas sensor chip using a diode-type sensor. A current is passed through the heater wire constituting the heater section 1001H, and the sensor diode 1301S and the reference diode 1301R are heated to a predetermined temperature, for example, 100° C., by Joule heat generated in the resistance RHL of the heater wire. The power supplies 1005-1008 apply 0 V to the wells 2 and 12 of the sensor diode 1301S and the reference diode 1301R. The power supplies 1005-1008 also apply a variable voltage VGR to the gate of the reference diode 1301R, and a variable voltage VGS to the gate of the sensor diode 1301S. The current detection section 1004 measures the current flowing through the gate terminals of the sensor diode 1301S and the reference diode 1301R. The control section 1003 controls VGS and VGR so that the currents of both diodes match a constant IC. The difference VGRS between VGR and VGS at this time is the same as Equation 1.
 図23Aは、センサダイオードの電流対電圧の特性曲線の一例を示す図である。また、図23Bは、参照ダイオードの電流対電圧の特性曲線の一例を示す図である。センサダイオードは、触媒金属層107が露出しているので、検知対象ガスによって触媒金属層7の仕事関数が変化し、検知対象ガス濃度が0の場合とXの場合とで電流―ゲート電圧特性を表す曲線が、電圧方向に平行移動する。その結果、電流がIcとなるゲート電圧はVGS(0)からVGS(X)に変化する。 FIG. 23A is a diagram showing an example of a current-voltage characteristic curve of a sensor diode. FIG. 23B is a diagram showing an example of a current-voltage characteristic curve of a reference diode. Since the catalytic metal layer 107 is exposed in the sensor diode, the work function of the catalytic metal layer 7 changes depending on the gas to be detected, and the curve showing the current-gate voltage characteristic when the concentration of the gas to be detected is 0 and when it is X moves parallel to the voltage direction. As a result, the gate voltage at which the current becomes Ic changes from VGS(0) to VGS(X).
 一方、参照ダイオードは、触媒金属層117が層間絶縁膜ILDで被覆されているため、検知対象ガス濃度が変化しても電流―ゲート電圧特性は変化せず、ゲートに電圧VGRを印加したときの静電容量値は、C0のまま一定である。センサFETと参照FETを用いる場合と同様に、ゲートしきい値電圧のシフトから、ガス濃度を検出することができる。また、複数のセンサダイオードをガスセンサチップ上に配置し、ガス検知材料層に異なる金属酸化物層106と触媒金属層107を適用することで、ガスに対する感度と選択性を変えることができる。センサFET、センサキャパシタを用いるときと同様に、複数のガス種を含む雰囲気中の各ガスの濃度の計測が可能である。 On the other hand, since the catalytic metal layer 117 of the reference diode is covered with the interlayer dielectric film ILD, the current-gate voltage characteristics do not change even if the concentration of the gas to be detected changes, and the capacitance value when a voltage VGR is applied to the gate remains constant at C0. As in the case of using a sensor FET and a reference FET, the gas concentration can be detected from the shift in the gate threshold voltage. In addition, by arranging multiple sensor diodes on a gas sensor chip and applying different metal oxide layers 106 and catalytic metal layers 107 to the gas detection material layer, the sensitivity and selectivity to gases can be changed. As in the case of using a sensor FET and a sensor capacitor, it is possible to measure the concentration of each gas in an atmosphere containing multiple gas species.
<ガスセンサチップの製造方法>
 図24A~24Fは、実施の形態1に係るガスセンサチップの製造方法の一例を説明するための図である。図25は、実施の形態1に係るガスセンサチップの製造方法の一例を示すフローチャートである。実施の形態1に係るガスセンサチップ1001の製造方法は、半導体基板上にガス検知材料層が互いに異なる複数種類のFETを作製する方法である。
<Method of manufacturing gas sensor chip>
24A to 24F are diagrams for explaining an example of a method for manufacturing the gas sensor chip according to embodiment 1. Fig. 25 is a flowchart showing an example of a method for manufacturing the gas sensor chip according to embodiment 1. The method for manufacturing the gas sensor chip 1001 according to embodiment 1 is a method for fabricating a plurality of types of FETs having different gas detection material layers on a semiconductor substrate.
 ここで、複数種類のFETとは、センサFETおよび参照FETとして用いられるFETを意味する。すなわち、参照FETのガス検知材料層の種類が、いずれかのセンサFETのガス検知材料層の種類と重複して利用される場合には、作製されるFETの種類の数は、センサFETの種類の数と同じになる。一方、参照FETのガス検知材料層の種類が、センサFETのガス検知材料層の種類と重複しないで利用される場合には、作製されるFETの種類の数は、センサFETの種類の数+参照FETの種類の数と同じになる。 Here, multiple types of FETs refer to FETs used as sensor FETs and reference FETs. In other words, if the type of gas detection material layer of the reference FET overlaps with the type of gas detection material layer of any of the sensor FETs, the number of types of FETs fabricated will be the same as the number of types of sensor FETs. On the other hand, if the type of gas detection material layer of the reference FET does not overlap with the type of gas detection material layer of the sensor FET, the number of types of FETs fabricated will be the same as the number of types of sensor FETs + the number of types of reference FETs.
 ガスセンサチップの製造方法の流れについて説明する。図25に示すように、工程S1では、半導体基板1に、ウェル2、ソース層3、ドレイン層4を形成し、その上にゲート絶縁膜5を形成する処理が行われる。半導体基板1は、例えばシリコン基板である。ゲート絶縁膜5は、例えば、不純物層とSiO膜である。この工程S1により、FETの下地が作製される。なお、この工程S1には、従来利用されている既知の方法を用いることができる。 The flow of the manufacturing method of the gas sensor chip will be described. As shown in Fig. 25, in step S1, a well 2, a source layer 3, and a drain layer 4 are formed in a semiconductor substrate 1, and a gate insulating film 5 is formed thereon. The semiconductor substrate 1 is, for example, a silicon substrate. The gate insulating film 5 is, for example, an impurity layer and a SiO2 film. In this step S1, the base of the FET is fabricated. Note that a conventionally known method can be used in this step S1.
 工程S2では、工程S1で下地が作製された半導体基板1上に、レジストを塗布する処理が行われる。レジストは、現像したときにアンダーカットが形成されるように、例えば下層レジストと上層レジストの2層とすることができる。また、レジストの塗布には、ガス検知材料層が互いに異なる複数のセンサFETを作製するために、例えばレジストマスクを用いたリフトオフプロセスを用いることができる。 In step S2, a resist is applied onto the semiconductor substrate 1 on which the base was prepared in step S1. The resist can be, for example, two layers, a lower layer resist and an upper layer resist, so that an undercut is formed when developed. In addition, for example, a lift-off process using a resist mask can be used to apply the resist in order to fabricate multiple sensor FETs with different gas detection material layers.
 工程S3では、レジストが塗布された半導体基板1上に、露光工程と現像工程により、一部のセンサFETの触媒金属層が形成される領域(一ヶ所とは限らない)に開口部40を形成する処理が行われる。 In step S3, an exposure process and a development process are used to form openings 40 on the semiconductor substrate 1 coated with resist in the areas (not necessarily in one place) where the catalytic metal layers of some of the sensor FETs will be formed.
 工程S4では、半導体基板1上に、ガス検知材料層として、金属酸化物層と触媒金属層を形成する処理が行われる。この工程S4は、後述するように、作製されるFETの種類の数だけ繰り返し行われることになる。工程S4のN回目(N≧1)の実施の際には、金属酸化物層および触媒金属層として、MOX(N)およびCATAL(N)が用いられる。例えば、工程S4の1回目の実施の際には、金属酸化物層MOX1と触媒金属層CATAL1が形成される(図24A)。工程S4の2回目の実施の際には、金属酸化物層MOX2と触媒金属層CATAL2が形成される(図24C)。なお、例えば、図24Cにおける左から1番目の「金属酸化物層MOX1と触媒金属層CATAL1」は、本願発明における「第1のガス検知材料層」の一例である。また例えば、図24Cにおける左から2番目の「金属酸化物層MOX2と触媒金属層CATAL2」は、本願発明における「第2のガス検知材料層」の一例である。 In step S4, a metal oxide layer and a catalyst metal layer are formed on the semiconductor substrate 1 as a gas detection material layer. This step S4 is repeated for the number of types of FETs to be fabricated, as described below. When step S4 is performed the Nth time (N≧1), MOX(N) and CATAL(N) are used as the metal oxide layer and the catalyst metal layer. For example, when step S4 is performed the first time, a metal oxide layer MOX1 and a catalyst metal layer CATAL1 are formed (FIG. 24A). When step S4 is performed the second time, a metal oxide layer MOX2 and a catalyst metal layer CATAL2 are formed (FIG. 24C). For example, the first "metal oxide layer MOX1 and catalyst metal layer CATAL1" from the left in FIG. 24C is an example of the "first gas detection material layer" in the present invention. For example, the second from the left in FIG. 24C, "metal oxide layer MOX2 and catalyst metal layer CATAL2," is an example of the "second gas sensing material layer" in the present invention.
 工程S5では、塗布されたレジストを除去する処理が行われる。工程S4の処理により、上層レジストの上層にも金属酸化物層MOX1と触媒金属層CATAL1が形成されるが、この工程S5のレジスト除去により上層レジストの上層の金属酸化物層MOX1と触媒金属層CATAL1も除去される(図24B)。その結果、一部のセンサFETのチャネル部にゲート絶縁膜5を介して金属酸化物層MOX1と触媒金属層CATAL1の積層膜が形成される。 In step S5, the applied resist is removed. A metal oxide layer MOX1 and a catalyst metal layer CATAL1 are also formed on top of the upper resist by the process of step S4, but the metal oxide layer MOX1 and catalyst metal layer CATAL1 on top of the upper resist are also removed by removing the resist in step S5 (Figure 24B). As a result, a laminated film of the metal oxide layer MOX1 and catalyst metal layer CATAL1 is formed on the channel portion of some of the sensor FETs via the gate insulating film 5.
 工程S6では、計画されたすべてのFETが作製されたか否かを判定する処理が行われる。すなわち、作製されたFETの種類の数が、計画された種類の数に到達したか否かを判定する処理が行われる。この工程において、計画されたすべてのFETが作製されたと判定と判定された場合には、工程7に進む。一方、この工程において、計画されたすべてのFETが作製されていないと判定された場合には、工程S2に戻り、作製されたFETの種類の数が、計画された種類の数に到達するまで、工程S2から工程S5の処理が繰り返し行われる。 In step S6, a process is performed to determine whether all planned FETs have been produced. In other words, a process is performed to determine whether the number of types of FETs produced has reached the planned number. If it is determined in this step that all planned FETs have been produced, the process proceeds to step 7. On the other hand, if it is determined in this step that all planned FETs have not been produced, the process returns to step S2, and steps S2 to S5 are repeated until the number of types of FETs produced reaches the planned number.
 例えば、工程S2の2回目の実施においては、半導体基板1上にレジストを塗布し、露光工程と現像工程を実施する処理が行われる。そして、工程S3の2回目の実施においては、金属酸化物層MOX1と触媒金属層CATAL1の積層膜が既に形成された場所(図24B)とは別の一部のFETの触媒金属層が形成される領域に、開口部40を形成する処理が行われる。次いで、工程S4の2回目の実施においては、金属酸化物層MOX2と触媒金属層CATAL2を形成する処理が行われる(図24C)。この際、金属酸化物層MOX2が、MOX1と、材料、膜厚、結晶粒径のいずれかが異なるか、または、触媒金属層CATAL2が、CATAL1と、材料、膜厚、結晶粒径のいずれかが異なるようにする。上層レジストの上層にも金属酸化物層MOX2と触媒金属層CATAL2が形成されるが、工程S5の2回目の実施により、レジストが除去されるとともに、上層レジストの上層の金属酸化物層MOX2と触媒金属層CATAL2も除去される。 For example, in the second execution of step S2, a resist is applied onto the semiconductor substrate 1, and an exposure process and a development process are performed. Then, in the second execution of step S3, an opening 40 is formed in an area where the catalyst metal layer of a part of the FET is to be formed, other than the area where the laminated film of the metal oxide layer MOX1 and the catalyst metal layer CATAL1 has already been formed (FIG. 24B). Next, in the second execution of step S4, a metal oxide layer MOX2 and a catalyst metal layer CATAL2 are formed (FIG. 24C). At this time, the metal oxide layer MOX2 is made to differ from MOX1 in any of the material, film thickness, and crystal grain size, or the catalyst metal layer CATAL2 is made to differ from CATAL1 in any of the material, film thickness, and crystal grain size. A metal oxide layer MOX2 and a catalyst metal layer CATAL2 are also formed on top of the upper resist layer, but by performing step S5 a second time, the resist is removed and the metal oxide layer MOX2 and catalyst metal layer CATAL2 on top of the upper resist layer are also removed.
 上述した工程S2~S5を順次繰り返すことによって、金属酸化物層上に触媒金属層が積層された複数種類のガス検知材料層を形成することができる(図24D)。図24Dの例では、8種類のガス検知材料層Gate1~Gate8が形成された場合の例を示したが、もちろん、ガス検知材料層の種類、すなわちFETの種類の数は、この例に限定されない。工程2~工程5の繰り返す数を変えることで、形成するガス検知材料層の種類を変えることが可能である。実装では、例えば、数種類から数百種類もしくは数千種類程度のガス検知材料層を形成することが想定される。 By sequentially repeating steps S2 to S5 described above, it is possible to form multiple types of gas sensing material layers in which a catalyst metal layer is laminated on a metal oxide layer (Figure 24D). In the example of Figure 24D, eight types of gas sensing material layers Gate1 to Gate8 are formed, but of course the types of gas sensing material layers, i.e. the number of types of FETs, are not limited to this example. By changing the number of times steps 2 to 5 are repeated, it is possible to change the type of gas sensing material layer to be formed. In implementation, it is expected that, for example, several types to hundreds or thousands of types of gas sensing material layers will be formed.
 必要な複数種類のガス検知材料層を形成した後は、工程S7において、層間絶縁膜となるシリコン酸化膜とシリコン窒化膜を成膜する処理が行われる(図24E)。なお、本工程において、図示はしないが、公知の手法により、ソース、ドレイン、ウェル、ゲートに給電するためコンタクト孔を、上記のシリコン酸化膜とシリコン窒化膜からなる層間絶縁膜に形成する処理が行われる。また、配線となるアルミ、タングステンなどの金属膜を成膜し、公知のリソグラフィ技術とドライエッチング技術により配線を形成する処理が行われる。なお、「シリコン窒化膜」は、本願発明における「不純物層」の一例である。 After forming the required multiple types of gas detection material layers, a silicon oxide film and a silicon nitride film that will become the interlayer insulating film are formed in step S7 (Figure 24E). Note that in this step, although not shown, a process is performed by a known method to form contact holes in the interlayer insulating film made of the silicon oxide film and the silicon nitride film to supply power to the source, drain, well, and gate. In addition, a metal film such as aluminum or tungsten that will become the wiring is formed, and the wiring is formed by known lithography and dry etching techniques. Note that the "silicon nitride film" is an example of an "impurity layer" in the present invention.
 次に、工程S8において、層間絶縁膜におけるセンサFET用の触媒金属層、すなわちガス検知材料層の上部に、開口部50を形成する処理が行われる。これにより、センサFETの触媒金属層が雰囲気に露出されるようになり、センサチップが完成する(図24F)。なお、図示されていないが、参照FETを作製する場合には、図24Fに示す工程S8において、センサFET用の触媒金属層の上層に層間絶縁膜の開口部50を形成する際に、参照FET用の触媒金属層の上層の層間絶縁膜には開口を形成する処理を行わずに層間絶縁膜を残すようにする。 Next, in step S8, an opening 50 is formed in the catalytic metal layer for the sensor FET in the interlayer insulating film, i.e., in the upper part of the gas detection material layer. This exposes the catalytic metal layer of the sensor FET to the atmosphere, completing the sensor chip (Figure 24F). Although not shown, when fabricating a reference FET, in step S8 shown in Figure 24F, when forming the opening 50 in the interlayer insulating film above the catalytic metal layer for the sensor FET, no opening is formed in the interlayer insulating film above the catalytic metal layer for the reference FET, and the interlayer insulating film is left.
 図24A~24Fを参照しながら説明したガスセンサチップの製造方法では、ガス検知材料層の成膜の際に、レジストマスクとリフトオフプロセスを利用する手法を一例として説明した。しかしながら、この手法に限定されることなく、メタルマスクを用いる手法など、他の手法を用いることももちろん可能である。このことは、以下の変形例においても同様である。 In the gas sensor chip manufacturing method described with reference to Figures 24A to 24F, a method using a resist mask and a lift-off process when forming the gas detection material layer has been described as an example. However, the method is not limited to this, and it is of course possible to use other methods, such as a method using a metal mask. This also applies to the following modified examples.
 本願発明の実施の形態に係るガスセンサチップの製造方法は、半導体基板上に、不純物層を形成する工程と、半導体基板上に、触媒金属層を含む第1のガス検知材料層を形成する工程と、半導体基板上の、第1のガス検知材料層とは異なる位置に、触媒金属層を含む第2のガス検知材料層を形成する工程と、を含んでいる。また、第1のガス検知材料層と第2のガス検知材料層とは、ガス検知材料層を構成する材料の種類、膜厚、および結晶粒径のうち少なくとも1つが互いに異なる。 The manufacturing method of the gas sensor chip according to the embodiment of the present invention includes the steps of forming an impurity layer on a semiconductor substrate, forming a first gas sensing material layer including a catalytic metal layer on the semiconductor substrate, and forming a second gas sensing material layer including a catalytic metal layer on a position on the semiconductor substrate different from that of the first gas sensing material layer. The first gas sensing material layer and the second gas sensing material layer are different from each other in at least one of the type of material constituting the gas sensing material layer, the film thickness, and the crystal grain size.
 このようなガスセンサチップの製造方法によれば、複数種類の仕事関数型センサが1つの半導体基板に搭載されたガスセンサチップを、構造がシンプルなMOSFETと類似した製造方法によって製造することができ、ガスセンサチップを低コストで製造することができる。その結果、雰囲気中のガスセンシングを低コストで実現させることができる。 With this gas sensor chip manufacturing method, a gas sensor chip in which multiple types of work function type sensors are mounted on a single semiconductor substrate can be manufactured using a manufacturing method similar to that used for manufacturing a simple MOSFET, and the gas sensor chip can be manufactured at low cost. As a result, atmospheric gas sensing can be achieved at low cost.
 ところで、図24A~24Fを参照して説明した先のガスセンサチップの製造方法では、金属酸化物層と触媒金属層とからなるガス検知材料層を、個々のセンサFETに対して1個ずつ一気通貫で形成している。しかしながら、ガスセンサチップの別の製造方法として、複数のセンサFETに共通する金属酸化物層あるいは触媒金属層を一度に形成していく方法も考えられる。すなわち、複数のガス検知材料層を形成する工程、例えば、第1のガス検知材料層を形成する工程と第2のガス検知材料層を形成する工程が、マスクを用いる複数回の成膜工程に分割して行われるようにしてもよい。ガス検知材料層は、例えば、1以上の金属酸化物層および1以上の触媒金属層を含む、または、金属酸化物層は含まず1以上の触媒金属層を含む。 In the gas sensor chip manufacturing method described above with reference to Figures 24A to 24F, a gas detection material layer consisting of a metal oxide layer and a catalytic metal layer is formed for each sensor FET in a continuous manner. However, as another method for manufacturing a gas sensor chip, a method is also conceivable in which a metal oxide layer or catalytic metal layer common to multiple sensor FETs is formed at once. That is, the process of forming multiple gas detection material layers, for example, the process of forming a first gas detection material layer and the process of forming a second gas detection material layer, may be divided into multiple film formation processes using a mask. The gas detection material layer includes, for example, one or more metal oxide layers and one or more catalytic metal layers, or includes one or more catalytic metal layers without including a metal oxide layer.
<ガスセンサチップの製造方法の変形例1>
 図26A~26Dは、ガスセンサチップの製造方法の変形例1を説明するための図である。また、図27は、ガスセンサチップの製造方法の変形例1を示すフローチャートである。
<Modification 1 of the manufacturing method of the gas sensor chip>
26A to 26D are diagrams for explaining the modified example 1 of the method for manufacturing the gas sensor chip, and Fig. 27 is a flow chart showing the modified example 1 of the method for manufacturing the gas sensor chip.
 例えば、図27に示すように、工程S11では、上記工程S1と同様に、半導体基板1に対して、ウェル2、ソース層3、ドレイン層4を形成し、その上にゲート絶縁膜5を形成して、下地を作製する処理が行われる。 For example, as shown in FIG. 27, in step S11, similar to step S1 above, a well 2, a source layer 3, and a drain layer 4 are formed in a semiconductor substrate 1, and a gate insulating film 5 is formed thereon to create a base.
 工程S12では、下地が作製された半導体基板1にレジストを塗布する処理が行われる。 In step S12, a resist is applied to the semiconductor substrate 1 on which the base has been prepared.
 工程S13では、レジストが塗布された半導体基板1において、作製しようとしているFETの一部の組合せに対応した位置の部分に開口部を形成する処理が行われる。工程S13の2回目以降の実施において、開口部を形成する部分は、作製しようとしているすべてのFETのうち、これまでに開口部が形成されたことがあるFETを含む一部の組合せに対応した位置の部分であってもよいし、これまでに開口部が形成されたことがないFETの組合せに対応する位置の部分であってもよい。 In step S13, a process is performed in which openings are formed in the semiconductor substrate 1 coated with resist at positions corresponding to some combinations of FETs to be fabricated. When step S13 is performed for the second or subsequent times, the openings may be formed in positions corresponding to some combinations of all FETs to be fabricated, including FETs for which openings have previously been formed, or they may be positions corresponding to combinations of FETs for which openings have never previously been formed.
 工程S14では、開口部が形成された半導体基板1に、金属酸化物層MOX(N)層を形成する処理が行われる。ここで、Nは、工程S14が実施される回数目の数を表しており、1回目の実施であれば金属酸化物層MOX1が形成され、2回目の実施であれば金属酸化物層MOX2が形成される。 In step S14, a metal oxide layer MOX(N) is formed on the semiconductor substrate 1 with the openings formed therein. Here, N represents the number of times step S14 is performed; if it is performed the first time, a metal oxide layer MOX1 is formed, and if it is performed the second time, a metal oxide layer MOX2 is formed.
 図26Aは、レジストが塗布された半導体基板1上に、左から1番目~4番目のFETに対応する部分に開口部が形成され、その上から金属酸化物層MOX1が形成された状態の例を示している。 FIG. 26A shows an example in which openings are formed in the areas corresponding to the first to fourth FETs from the left on a semiconductor substrate 1 coated with resist, and a metal oxide layer MOX1 is formed on top of the openings.
 工程S15では、レジストを除去する処理が行われる。レジスト上に形成された金属酸化物層は、レジストとともに除去される。 In step S15, a process for removing the resist is performed. The metal oxide layer formed on the resist is removed together with the resist.
 工程S16では、さらに別の金属酸化物層を形成することになっているか否かを判定する。さらに別の金属酸化物層を形成することになっていると判定された場合には、工程S12に戻る。さらに別の金属酸化物層を形成することになっていないと判定された場合には、工程S17に進む。すなわち、形成すべき金属酸化物層がすべて形成されるまで、工程S12~S15の処理が繰り返し行われる。 In step S16, it is determined whether or not another metal oxide layer is to be formed. If it is determined that another metal oxide layer is to be formed, the process returns to step S12. If it is determined that another metal oxide layer is not to be formed, the process proceeds to step S17. In other words, steps S12 to S15 are repeated until all of the metal oxide layers to be formed have been formed.
 図26Bは、図26Aに示す半導体基板1にレジストの除去(工程S15)とレジスト塗布(工程S12)とが順次行われ、左から1番目~2番目と5番目~6番目のFETに対応する部分に開口部が形成され(工程S13)、その上から金属酸化物層MOX2が形成された(工程S15)状態の例を示している。 FIG. 26B shows an example of a state in which the resist is removed (step S15) and resist is applied (step S12) to the semiconductor substrate 1 shown in FIG. 26A, openings are formed in the areas corresponding to the first, second and fifth and sixth FETs from the left (step S13), and a metal oxide layer MOX2 is formed on top of the openings (step S15).
 すなわち、図26Bの例では、半導体基板1において、左から1番目~2番目のFETに対応する部分に、金属酸化物層MOX1と金属酸化物層MOX2とが積層して形成されており、左から3番目~4番目のFETに対応する部分に、金属酸化物層MOX1が形成されており、左から5番目~6番目のFETに対応する部分に、金属酸化物層MOX2が形成されている。 In other words, in the example of FIG. 26B, metal oxide layers MOX1 and MOX2 are laminated and formed in the portions of semiconductor substrate 1 corresponding to the first and second FETs from the left, metal oxide layer MOX1 is formed in the portions corresponding to the third and fourth FETs from the left, and metal oxide layer MOX2 is formed in the portions corresponding to the fifth and sixth FETs from the left.
 また、図26Cは、図26Bに示す半導体基板1にレジストの除去(工程S15)とレジスト塗布(工程S12)とが順次行われ、左から1番目、3番目、5番目、および7番目のFETに対応する部分に開口部が形成され(工程S13)、その上から金属酸化物層MOX3が形成された(工程S15)状態の例を示している。 FIG. 26C shows an example of a state in which the resist is removed (step S15) and resist is applied (step S12) to the semiconductor substrate 1 shown in FIG. 26B, openings are formed in the portions corresponding to the first, third, fifth, and seventh FETs from the left (step S13), and a metal oxide layer MOX3 is formed on top of the openings (step S15).
 すなわち、図26Cの例では、半導体基板1において、左から1番目のFETに対応する部分には、金属酸化物層MOX1,MOX2,MOX3が積層して形成されいる。左から2番目のFETに対応する部分には、金属酸化物層MOX1,MOX2が積層して形成されている。左から3番目のFETに対応する部分には、金属酸化物層MOX1,MOX3が積層して形成されている。左から4番目のFETに対応する部分には、金属酸化物層MOX1が形成されている。左から5番目のFETに対応する部分には、金属酸化物層MOX2,MOX3が積層して形成されいる。左から6番目のFETに対応する部分には、金属酸化物層MOX2が形成されいる。左から7番目のFETに対応する部分には、金属酸化物層MOX3が形成されいる。左から8番目のFETに対応する部分には、金属酸化物層は形成されていない。 In other words, in the example of FIG. 26C, in the semiconductor substrate 1, metal oxide layers MOX1, MOX2, and MOX3 are formed in a laminated manner in the portion corresponding to the first FET from the left. Metal oxide layers MOX1 and MOX2 are formed in a laminated manner in the portion corresponding to the second FET from the left. Metal oxide layers MOX1 and MOX3 are formed in a laminated manner in the portion corresponding to the third FET from the left. Metal oxide layer MOX1 is formed in the portion corresponding to the fourth FET from the left. Metal oxide layers MOX2 and MOX3 are formed in a laminated manner in the portion corresponding to the fifth FET from the left. Metal oxide layer MOX2 is formed in the portion corresponding to the sixth FET from the left. Metal oxide layer MOX3 is formed in the portion corresponding to the seventh FET from the left. No metal oxide layer is formed in the portion corresponding to the eighth FET from the left.
 工程S17では、半導体基板1にレジストを塗布する処理が行われる。 In step S17, a resist is applied to the semiconductor substrate 1.
 工程S18では、レジストが塗布された半導体基板1において、作製するすべてのFETに対応する部分に、開口部を形成する処理が行われる。 In step S18, a process is carried out to form openings in the semiconductor substrate 1 on which the resist has been applied, in areas corresponding to all of the FETs to be fabricated.
 工程S19では、開口部が形成された半導体基板1上に、ゲートとなる触媒金属層CATAL1を形成する処理が行われる。なお、例えば、図26Dにおける左から1番目のガス検知材料層、すなわち「金属酸化物層MOX1」~「MOX3」および「触媒金属層CATAL1」は、本願発明における「第1のガス検知材料層」の一例である。また例えば、図26Dにおける左から8番目のガス検知材料層、すなわち「触媒金属層CATAL1」は、本願発明における「第2のガス検知材料層」の一例である。 In step S19, a process is performed to form a catalyst metal layer CATAL1, which will become a gate, on the semiconductor substrate 1 with the opening formed therein. Note that, for example, the first gas sensing material layer from the left in FIG. 26D, i.e., the "metal oxide layers MOX1" to "MOX3" and the "catalyst metal layer CATAL1", are an example of the "first gas sensing material layer" in the present invention. Also, for example, the eighth gas sensing material layer from the left in FIG. 26D, i.e., the "catalyst metal layer CATAL1", is an example of the "second gas sensing material layer" in the present invention.
 工程S20では、レジストを除去する処理が行われる。レジスト上に形成された触媒金属層CATAL1は、レジストとともに除去される。
 工程S21では、層間絶縁膜となるシリコン酸化膜とシリコン窒化膜を成膜する処理が行われる。
In step S20, a process of removing the resist is performed. The catalyst metal layer CATAL1 formed on the resist is removed together with the resist.
In step S21, a silicon oxide film and a silicon nitride film that will become an interlayer insulating film are formed.
 工程S22では、半導体基板1において、作製が計画されたすべてのFETに対応した位置の部分に、開口部を形成する処理が行われる。 In step S22, openings are formed in the semiconductor substrate 1 at positions corresponding to all FETs planned to be fabricated.
 なお、図示されていないが、参照FETを作製する場合には、FETのゲート部で層間絶縁膜の開口部50を形成する際に、参照FETの触媒金属層の上層の層間絶縁膜は開口部を形成せずに残す。また、この参照FETを作製する場合の処理は、以下に示すガスセンサチップの製造方法の変形例についても同様である。 Note that, although not shown, when fabricating a reference FET, when forming an opening 50 in the interlayer insulating film at the gate portion of the FET, the interlayer insulating film above the catalyst metal layer of the reference FET is left without forming an opening. The process for fabricating this reference FET is also the same for the modified manufacturing method of the gas sensor chip shown below.
 このようなガスセンサチップの製造方法の変形例1によれば、先の製造方法と同様に、複数種類のセンサFETが形成されたガスチップセンサを製造することができる。 According to variant 1 of this gas sensor chip manufacturing method, as with the previous manufacturing method, a gas chip sensor having multiple types of sensor FETs formed therein can be manufactured.
 例えば、図26Bの例で示すように、金属酸化物層MOX2を成膜する前の構造で、金属酸化物層MOX1が成膜されているかどうかの態様が一致しているFETに対して、一部のFETに対しては金属酸化物層MOX2を成膜し、残りのFETに対しては金属酸化物層MOX2を成膜しないようにすると、互いに異なるガス検知材料層をもつセンサFETの種類を増やすことができる。金属酸化物層MOX2を成膜する前は同じだったガス検知材料層の構造が金属酸化物層MOX2を成膜することによって別のものになるからである。 For example, as shown in the example of FIG. 26B, for FETs that have the same structure before the deposition of the metal oxide layer MOX2, in terms of whether or not the metal oxide layer MOX1 is deposited, by depositing the metal oxide layer MOX2 on some FETs and not depositing the metal oxide layer MOX2 on the remaining FETs, it is possible to increase the variety of sensor FETs that have different gas detection material layers. This is because the structure of the gas detection material layer that was the same before the deposition of the metal oxide layer MOX2 becomes different after the deposition of the metal oxide layer MOX2.
 同様に、図26Cの例に示すように、金属酸化物層MOX3を成膜する前の構造で、金属酸化物層MOX1と金属酸化物層MOX2からなる積層構造が一致しているFETに対して、あるFETに対しては金属酸化物層MOX3を成膜し、残りのFETに対しては金属酸化物層MOX3を成膜しないようにすることで、ガス検知材料層が異なるセンサFETの種類を増やすことができる。 Similarly, as shown in the example of FIG. 26C, for FETs that have the same stacked structure consisting of metal oxide layers MOX1 and MOX2 in the structure before the metal oxide layer MOX3 is deposited, the metal oxide layer MOX3 is deposited on some FETs and the metal oxide layer MOX3 is not deposited on the remaining FETs, thereby increasing the number of types of sensor FETs with different gas detection material layers.
 なお、ここでも図示されていないが、参照FETを作製する場合には、FETのゲート部で層間絶縁膜の開口部50を形成する際に、参照FETのゲート部の上層の層間絶縁膜は開口を形成せずに残す。 Although not shown here, when fabricating a reference FET, when forming an opening 50 in the interlayer insulating film at the gate portion of the FET, the interlayer insulating film above the gate portion of the reference FET is left without forming an opening.
<ガスセンサチップの製造方法の変形例2>
 ガスセンサチップの製造方法の変形例1では、触媒金属層はすべてのFETで同一であった(CATAL1)。しかしながら、触媒金属層を複数種類に分けて形成することも可能である。以下に、ガスセンサチップの製造方法の変形例2について説明する。
<Modification 2 of the manufacturing method of the gas sensor chip>
In the modified example 1 of the manufacturing method of the gas sensor chip, the catalytic metal layer is the same for all FETs (CATAL 1). However, it is also possible to form a catalytic metal layer of a plurality of different types. The modified example 2 of the manufacturing method of the gas sensor chip will be described below.
 なお、これ以降の各変形例の説明においては、説明の簡単のため、レジストの塗布および除去の工程、レジスト層に開口部を形成する工程、層間絶縁膜を形成する工程については、必要な場合を除き説明を省略する。同様に、センサFETのゲート部の上層で層間絶縁膜に開口部を形成する工程、参照FETのゲート部の上層で層間絶縁膜に開口部を形成せずに残すことについても、必要な場合を除き説明を省略する。 In the following explanations of each modified example, for simplicity, the processes of applying and removing the resist, forming an opening in the resist layer, and forming the interlayer insulating film will be omitted unless necessary. Similarly, the process of forming an opening in the interlayer insulating film above the gate portion of the sensor FET, and leaving an opening in the interlayer insulating film above the gate portion of the reference FET will be omitted unless necessary.
 図28A~28Dは、ガスセンサチップの製造方法の変形例2を説明するための図である。例えば、ウェル2、ソース層3、ドレイン層4、およびゲート絶縁膜5が形成されて下地が作製された半導体基板1上において、作製されるFETの一部の組合せに対して金属酸化物層MOX1層を形成する処理が行われる(図28A)。また、別の組合せの一部に対して金属酸化物層MOX2を形成する処理が行われる(図28B)。次に、一部のFETにゲートとなる触媒金属層CATAL1を形成する処理が行われ(図28C)、残りのFETにゲートとなる触媒金属層CATAL2を形成する処理が行われる(図28D)。 Figures 28A to 28D are diagrams for explaining modified example 2 of the manufacturing method of a gas sensor chip. For example, on a semiconductor substrate 1 on which a base is prepared by forming a well 2, a source layer 3, a drain layer 4, and a gate insulating film 5, a process is performed to form a metal oxide layer MOX1 for some combinations of FETs to be manufactured (Figure 28A). In addition, a process is performed to form a metal oxide layer MOX2 for some of the other combinations (Figure 28B). Next, a process is performed to form a catalyst metal layer CATAL1 that will become the gates of some of the FETs (Figure 28C), and a process is performed to form a catalyst metal layer CATAL2 that will become the gates of the remaining FETs (Figure 28D).
 図28Bの例で示す、金属酸化物層MOX2が成膜される前の構造で、金属酸化物層MOX1が成膜されているかどうかの態様が一致しているFETにおいて、一部のFETに対しては金属酸化物層MOX2を成膜し、残りのFETに対しては金属酸化物層MOX2を成膜しないようにする。すると、互いに異なるガス検知材料層をもつセンサFETの種類を増やすことができる。金属酸化物層MOX2を成膜する前は同じだったガス検知材料層の構造が、金属酸化物層MOX2を成膜することによって別のものになるからである。 In the example shown in FIG. 28B, in FETs that are consistent in whether or not a metal oxide layer MOX1 is formed in the structure before the metal oxide layer MOX2 is formed, the metal oxide layer MOX2 is formed on some FETs, and the metal oxide layer MOX2 is not formed on the remaining FETs. This makes it possible to increase the variety of sensor FETs that have different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the metal oxide layer MOX2 was formed, becomes different by forming the metal oxide layer MOX2.
 また、図28C,28Dの例で示す、触媒金属層CATAL1,CATAL2を成膜する前の構造で、金属酸化物層MOX1と金属酸化物層MOX2からなる積層構造が一致しているセンサFETにおいて、あるFETに対しては触媒金属層CATAL1を成膜し、残りのFETに対しては触媒金属層CATAL2を成膜するようにする。すると、ガス検知材料層が異なるセンサFETの種類を増やすことができる。触媒金属層CATAL1,CATAL2が成膜される前は同じだったガス検知材料層の構造が、触媒金属層CATAL1,CATAL2が成膜されることによって別のものになるからである。 Also, in the sensor FETs shown in the examples of Figures 28C and 28D, in which the stacked structure consisting of the metal oxide layer MOX1 and the metal oxide layer MOX2 is the same in the structure before the formation of the catalyst metal layers CATAL1 and CATAL2, the catalyst metal layer CATAL1 is formed on one FET and the catalyst metal layer CATAL2 is formed on the remaining FET. This makes it possible to increase the types of sensor FETs with different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the formation of the catalyst metal layers CATAL1 and CATAL2, becomes different when the catalyst metal layers CATAL1 and CATAL2 are formed.
<ガスセンサチップの製造方法の変形例3>
 ガスセンサチップの製造方法の変形例1,2では、金属酸化物層どうしが積層されるような工程が含まれていたが、触媒金属層については、CATAL1の単層、あるいはCATAL2の単層で作られており、触媒金属層どうしが積層されるような工程は含まれていなかった。しかしながら、金属酸化物層どうしが積層されるような工程に加えて、触媒金属層どうしが積層されるような工程が含まれるようにして、センサFETのガス検知材料の種類を増やすこともできる。以下に、ガスセンサチップの製造方法の変形例3について説明する。なおここでは、説明を簡単にするため、レジストの塗布および除去の工程、開口部を形成する工程については説明を省略する。
<Modification 3 of the manufacturing method of the gas sensor chip>
In the modified examples 1 and 2 of the manufacturing method of the gas sensor chip, a process of laminating metal oxide layers on one another is included, but the catalyst metal layer is made of a single layer of CATAL1 or a single layer of CATAL2, and a process of laminating catalyst metal layers on one another is not included. However, in addition to the process of laminating metal oxide layers on one another, a process of laminating catalyst metal layers on one another can be included to increase the types of gas detection materials of the sensor FET. The following describes modified example 3 of the manufacturing method of the gas sensor chip. In order to simplify the description, the process of applying and removing the resist and the process of forming the opening are omitted.
 図29A~29Dは、ガスセンサチップの製造方法の変形例3を説明するための図である。例えば、ウェル2、ソース層3、ドレイン層4、およびゲート絶縁膜5が形成されて下地が作製された半導体基板1上において、作製されるFETの一部の組合せに対して金属酸化物層MOX1層を形成する処理が行われる(図29A)。また、別の組合せの一部に対して金属酸化物層MOX2を形成する処理が行われる(図29B)。次に、一部のFETにゲートとなる触媒金属層CATAL1を形成する処理が行われる(図29C)。次に、CATAL1が形成されたFETを含めてすべてのFETにゲートとなる触媒金属層CATAL2を形成する処理が行われる(図29D)。 Figures 29A to 29D are diagrams for explaining modified example 3 of the manufacturing method of a gas sensor chip. For example, on a semiconductor substrate 1 on which a base has been created by forming a well 2, a source layer 3, a drain layer 4, and a gate insulating film 5, a process is performed to form a metal oxide layer MOX1 for some combinations of FETs to be manufactured (Figure 29A). A process is also performed to form a metal oxide layer MOX2 for some of the other combinations (Figure 29B). Next, a process is performed to form a catalyst metal layer CATAL1 that will become the gates of some of the FETs (Figure 29C). Next, a process is performed to form a catalyst metal layer CATAL2 that will become the gates of all FETs, including the FETs on which CATAL1 has been formed (Figure 29D).
 図29Cで示す、触媒金属層CATAL1が成膜される前の構造で、金属酸化物層MOX1と金属酸化物層MOX2からなる積層構造が一致しているFETにおいて、あるFETに対しては触媒金属層CATAL1を成膜する処理が行われる。また、残りのFETに対しては触媒金属層CATAL2を成膜する処理が行われる。このような処理が行われることで、ガス検知材料層が異なるセンサFETの種類を増やすことができる。触媒金属層CATAL1が成膜される前は同じだったガス検知材料層の構造が、触媒金属層CATAL1が成膜されることで別のものになるからである。 In the FETs shown in Figure 29C, which have the same stacked structure consisting of metal oxide layers MOX1 and MOX2 in the structure before the catalyst metal layer CATAL1 is deposited, a process is performed to deposit the catalyst metal layer CATAL1 on one FET. Also, a process is performed to deposit the catalyst metal layer CATAL2 on the remaining FETs. By performing such a process, it is possible to increase the variety of sensor FETs with different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the catalyst metal layer CATAL1 was deposited, becomes different once the catalyst metal layer CATAL1 is deposited.
<ガスセンサチップの製造方法の変形例4>
 ガスセンサチップの製造方法の変形例1~3では、金属酸化物層は成膜時点で既に金属酸化物膜であったが、成膜時点では金属層として成膜し、後続の工程でその金属層を酸化させることで金属酸化物層を形成することもできる。
<Modification 4 of the manufacturing method of the gas sensor chip>
In the first to third variants of the gas sensor chip manufacturing method, the metal oxide layer is already a metal oxide film at the time of deposition, but it is also possible to deposit the metal layer as a metal layer at the time of deposition and then oxidize the metal layer in a subsequent process to form a metal oxide layer.
 図30A~30Fは、ガスセンサチップの製造方法の変形例4を説明するための図である。例えば、ウェル2、ソース層3、ドレイン層4、およびゲート絶縁膜5が形成されて下地が作製された半導体基板1上において、作製されるFETの一部の組合せに対して、後の酸化工程で金属酸化物層MOX1となる金属層M1を形成する処理が行われる(図30A)。また別の組合せの一部に対して後の酸化工程で金属酸化物層MOX2となる金属層M2を形成する処理が行われる(図30B)。さらに別の組合せの一部に対して後の酸化工程で金属酸化物層MOX3となる金属層M3を形成する処理が行われる(図30C)。そして、すべてのFETにゲートとなる触媒金属層CATAL1を形成する処理が行われる(図30D)。 Figures 30A to 30F are diagrams for explaining modified example 4 of the manufacturing method of a gas sensor chip. For example, on a semiconductor substrate 1 on which a base is prepared by forming a well 2, a source layer 3, a drain layer 4, and a gate insulating film 5, a process is performed on some combinations of FETs to be manufactured, which will form a metal layer M1 that will become a metal oxide layer MOX1 in a later oxidation process (Figure 30A). A process is performed on some of the other combinations to form a metal layer M2 that will become a metal oxide layer MOX2 in a later oxidation process (Figure 30B). A process is performed on some of the still other combinations to form a metal layer M3 that will become a metal oxide layer MOX3 in a later oxidation process (Figure 30C). Then, a process is performed to form a catalyst metal layer CATAL1 that will become the gate of all the FETs (Figure 30D).
 図30Dに示す態様の半導体基板1に対して、レジストを除去する処理が行われる(図30E)。その後、空気中で400℃程度の温度でアニールを行うことで、金属層M1,M2,M3は、それぞれ金属酸化物層MOX1,MOX2,MOX3となる(図30F)。金属層M1,M2,M3が酸化する際に、体積膨張が生じるので、金属層M1,M2,M3,触媒金属層CATAL1の種類と膜厚を適切に選択することで、最上層の触媒金属層CATAL1の結晶粒界に、膨張したMOX1,MOX2,MOX3が侵入し、触媒金属層CATAL1のナノ構造を形成することができる。触媒金属層CATAL1のナノ構造は、ガスセンサの感度の向上に有力な構造である。 The semiconductor substrate 1 in the form shown in FIG. 30D is subjected to a process for removing the resist (FIG. 30E). After that, by annealing in air at a temperature of about 400° C., the metal layers M1, M2, and M3 become metal oxide layers MOX1, MOX2, and MOX3, respectively (FIG. 30F). When the metal layers M1, M2, and M3 are oxidized, volume expansion occurs. By appropriately selecting the type and thickness of the metal layers M1, M2, and M3 and the catalyst metal layer CATAL1, the expanded MOX1, MOX2, and MOX3 can penetrate into the grain boundaries of the top catalyst metal layer CATAL1, forming a nanostructure of the catalyst metal layer CATAL1. The nanostructure of the catalyst metal layer CATAL1 is an effective structure for improving the sensitivity of gas sensors.
 図30Bに示すような、金属層M2が成膜される前の半導体基板1における、金属層M1が成膜されているかどうかの態様が一致しているFETにおいて、一部のFETに対しては金属層M2を成膜し、残りのFETに対しては金属層M2を成膜しないようにすると、互いに異なるガス検知材料層をもつセンサFETの種類を増やすことができる。金属層M2が成膜される前は同じだったガス検知材料層の構造が、金属層M2が成膜されることによって、別のものになるからである。同様に、図30Cに示すような、金属層M3が成膜される前の半導体基板1における、金属層M1と金属層M2からなる積層構造が一致しているFETにおいて、あるFETに対しては金属層M3を成膜し、残りのFETに対しては金属層M3を成膜しないようにすることで、ガス検知材料層が異なるセンサFETの種類を増やすことができる。 As shown in FIG. 30B, in FETs in which the state of whether or not the metal layer M1 is formed on the semiconductor substrate 1 before the metal layer M2 is formed is the same, by forming the metal layer M2 on some FETs and not forming the metal layer M2 on the remaining FETs, it is possible to increase the types of sensor FETs with different gas detection material layers. This is because the structure of the gas detection material layer, which was the same before the metal layer M2 was formed, becomes different when the metal layer M2 is formed. Similarly, as shown in FIG. 30C, in FETs in which the stacked structure consisting of the metal layer M1 and the metal layer M2 on the semiconductor substrate 1 before the metal layer M3 is formed is the same, by forming the metal layer M3 on some FETs and not forming the metal layer M3 on the remaining FETs, it is possible to increase the types of sensor FETs with different gas detection material layers.
<ガスセンサチップの製造方法の変形例5>
 特別な例として、YSZ(イットリア安定化ジルコニア)のような混晶系材料を成膜する例を考える。YSZの組成式は(ZrO1-Z(Yと書くことができるが、例えば、N回の成膜でZrOの成膜とYの成膜を交互に行い、このN回の成膜で形成される膜の膜厚(単位面積当たりのモル数)もすべて変えるものとする。この方法により、2個のセンサFETを、YSZの組成Z、すなわち、ガス検知材料が互いに異なるように作ることができる。ガス検知材料の違いでセンサの感度、選択性は変化するので、多種ガスの検出を行うことが可能となる。
<Fifth modified example of the manufacturing method of the gas sensor chip>
As a special example, consider the case of forming a film of a mixed crystal material such as YSZ (yttria stabilized zirconia). The composition formula of YSZ can be written as (ZrO 2 ) 1-Z (Y 2 O 3 ) Z. For example, the film formation of ZrO 2 and the film formation of Y 2 O 3 are alternately performed in N film formations, and the film thickness (number of moles per unit area) of the film formed in these N film formations is also all different. With this method, 2N sensor FETs can be made with different YSZ compositions Z, i.e., different gas detection materials. Since the sensitivity and selectivity of the sensor change depending on the difference in the gas detection material, it becomes possible to detect multiple gases.
 その他にも、CeOとGdなども混晶となり、組成式は(CeO1-Z(Gdと書くことができる。例えば、N回の成膜でCeOの成膜とGdの成膜を交互に行い、このN回の成膜で形成される膜の膜厚(単位面積当たりのモル数)もすべて変えるものとする。この方法により、2個のセンサFETを、(CeO1-Z(Gdの組成Z、すなわち、ガス検知材料が互いに異なるように作ることができる。ガス検知材料の違いでセンサの感度、選択性は変化するので、多種ガスの検出を行うことが可能となる。 In addition, CeO2 and Gd2O3 can also be mixed crystals, and the composition formula can be written as ( CeO2 ) 1-Z ( Gd2O3 ) Z . For example, CeO2 and Gd2O3 are alternately formed in N film formations, and the film thicknesses (number of moles per unit area) of the films formed in these N film formations are all different. With this method, 2N sensor FETs can be made with different compositions Z of ( CeO2 ) 1-Z ( Gd2O3 ) Z , i.e. , different gas detection materials. The sensitivity and selectivity of the sensor change depending on the gas detection material, making it possible to detect multiple gases.
 また、BaCe1-Zと、BaZr1-Z、SrCe1-Zと、SrZr1-Zなども混晶となる。BaCe1-Zの場合、例えば、N回の成膜でBaCeOの成膜とBaYO3-δの成膜を交互に行い、このN回の成膜で形成される膜の膜厚(単位面積当たりのモル数)もすべて変えるものとする。2個のセンサFETを、BaCe1-Zの組成Z、すなわち、ガス検知材料が互いに異なるように作ることができる。ガス検知材料の違いでセンサの感度、選択性は変化するので、多種ガスの検出を行うことが可能となる。BaZr1-Z、SrCe1-Zと、SrZr1-Zについても同様である。 Also, BaCe 1-Z Y Z O 3 , BaZr 1-Z Y Z O 3 , SrCe 1-Z Y Z O 3 , SrZr 1-Z Y Z O 3 , etc. are mixed crystals. In the case of BaCe 1-Z Y Z O 3 , for example, BaCeO 3 and BaYO 3-δ are alternately formed in N film formations, and the film thickness (moles per unit area) of the film formed in these N film formations is also changed. 2 N sensor FETs can be made so that the composition Z of BaCe 1-Z Y Z O 3 , that is, the gas detection material, is different from each other. Since the sensitivity and selectivity of the sensor change depending on the gas detection material, it is possible to detect multiple gases. The same is true for BaZr 1-Z Y Z O 3 , SrCe 1-Z Y Z O 3 and SrZr 1-Z Y Z O 3 .
<ガスセンサチップの製造方法の変形例6>
 これまでに説明したガスセンサチップの製造方法およびその変形例では、金属酸化物層または金属酸化物層となる金属層と、触媒金属層とを別々に成膜していた。しかしながら、金属酸化物層に、白金、パラジウム、イリジウム、ロジウム、ルテニウムなどの触媒金属をドーピングすることにより、FETのゲートとして機能させることもできる。これらの触媒金属は、金属酸化物層に電気伝導性を持たせてゲートとして機能する程度まで抵抗が下げられる場合は、触媒金属層として機能させることができる。別の表現をすると、触媒金属層に金属酸化物層を含ませることもできる。
<Modification 6 of the manufacturing method of the gas sensor chip>
In the gas sensor chip manufacturing method and its modified examples described so far, the metal oxide layer or the metal layer to be the metal oxide layer and the catalytic metal layer are formed separately. However, the metal oxide layer can also function as the gate of an FET by doping it with catalytic metals such as platinum, palladium, iridium, rhodium, and ruthenium. These catalytic metals can function as the catalytic metal layer if the resistance of the metal oxide layer can be reduced to a level where it can function as a gate by imparting electrical conductivity to the metal oxide layer. In other words, the catalytic metal layer can include a metal oxide layer.
 上記したガスセンサチップの製造方法の変形例4において、後続の工程で参加した金属酸化物となる金属層M1,M2,M3に、白金、パラジウム、イリジウム、ロジウム、ルテニウムなどの触媒金属をドーピングすることもできる。図30Fの例で示すような酸化工程で、金属層M1,M2,M3は、金属酸化物層MOX1、MOX2、MOX3となるが、それぞれドーピングした触媒金属を含んだ層になる。これらの触媒金属は、金属酸化物層に電気伝導性を持たせてゲートとして機能する程度まで抵抗が下げられる場合は、触媒金属層として機能させることができる。別の表現をすると、触媒金属層に金属酸化物層を含ませることもできる。 In the fourth variation of the manufacturing method of the gas sensor chip described above, the metal layers M1, M2, and M3, which will become metal oxides in subsequent processes, can also be doped with catalytic metals such as platinum, palladium, iridium, rhodium, and ruthenium. In the oxidation process shown in the example of FIG. 30F, the metal layers M1, M2, and M3 become metal oxide layers MOX1, MOX2, and MOX3, each of which contains a doped catalytic metal. These catalytic metals can function as catalytic metal layers if the resistance of the metal oxide layer can be reduced to a level where it can function as a gate by making the metal oxide layer electrically conductive. In other words, the catalytic metal layer can contain a metal oxide layer.
<ガスセンサチップの製造方法の変形例の効果>
 上記したガスセンサチップの製造方法の変形例1~6では、材料層を成膜するごとに、ガス検知材料層の種類を、最大2倍に増やすことができる。すべてのセンサFETには、触媒金属層が必要であることを反映して、N+1回の材料成膜で、2種類のガス検知材料層を形成することができる。このため、ガスセンサチップ上で必要なセンサFETの種類が特に多い場合、ガスセンサチップの製造方法の変形例1~6の手法は、ガスセンサチップの製造工程数を指数関数的に減らすことができる。例えば、図24A~24Fを参照して説明したガスセンサチップの製造方法では、1024種類のガス検知材料を作り分けるのに、1024回のリソグラフが必要であるが、ガスセンサチップの製造方法の変形例1~6の方法では、わずか11回のリソグラフですむ。
<Effects of the Modified Method of Manufacturing the Gas Sensor Chip>
In the above-mentioned first to sixth variations of the manufacturing method of the gas sensor chip, the types of gas sensing material layers can be increased by up to two times each time a material layer is deposited. Reflecting the fact that a catalyst metal layer is required for every sensor FET, 2N types of gas sensing material layers can be formed by N+1 material depositions. Therefore, when a large number of types of sensor FETs are required on the gas sensor chip, the first to sixth variations of the manufacturing method of the gas sensor chip can exponentially reduce the number of manufacturing steps of the gas sensor chip. For example, in the manufacturing method of the gas sensor chip described with reference to Figs. 24A to 24F, 1024 lithography steps are required to separately produce 1024 types of gas sensing materials, whereas the first to sixth variations of the manufacturing method of the gas sensor chip require only 11 lithography steps.
<実施の形態1のガスセンサを用いたセンシングシステム>
 図8Bの例で説明したように、ガスセンサチップに搭載されているセンサFETの検知材料の種類数Nが、雰囲気に含まれるガス成分の種類数Mと比較して、M≦Nであれば、例えば(式4)のΔVg_Sumを最小化することで、X_Gas1~X_GasMを推定することができる。一方、N<Mの場合には、X_Gas1~X_GasMを推定することができない。
<Sensing system using the gas sensor according to the first embodiment>
8B, when the number N of types of detection materials of the sensor FET mounted on the gas sensor chip is compared with the number M of types of gas components contained in the atmosphere, and M≦N, for example, by minimizing ΔVg_Sum in (Equation 4), X_Gas1 to X_GasM can be estimated. On the other hand, when N<M, X_Gas1 to X_GasM cannot be estimated.
 しかしながら、ガスセンサチップの温度を変化させることで、センサFETの検知対象ガスへの感度、選択性を変化させることができるので、同じセンサFETが温度を変えることで性質の異なる新たなセンサFETとみなせるようになる。同じガスセンサチップ上のN個のセンサを用いても、2種類の温度T1,T2で計測を行えば、2N個の異なるセンサFETで計測したのと同等の情報が得られる。そのため、たとえN<Mであっても、M≦2Nであれば、2N個のゲートしきい値電圧のシフトに対して次の式5で定義されるΔVg_Sum(T1,T2)、を最小化することで、X_Gas1~X_GasMを推定することができる。 However, by changing the temperature of the gas sensor chip, the sensitivity and selectivity of the sensor FET to the gas to be detected can be changed, so that the same sensor FET can be considered as a new sensor FET with different properties by changing the temperature. Even if N sensors on the same gas sensor chip are used, if measurements are performed at two temperatures T1 and T2, information equivalent to that obtained by measuring with 2N different sensor FETs can be obtained. Therefore, even if N<M, if M≦2N, X_Gas1 to X_GasM can be estimated by minimizing ΔVg_Sum(T1, T2), defined by the following equation 5, for the shift in 2N gate threshold voltages.
   ΔVg_Sum(T1,T2)=
  {ΔVg_Gate1(T1)-ΔVg_Gate1_Calc(T1)}
  {ΔVg_Gate2(T1)-ΔVg_Gate2_Calc(T1)}
    ・・・・
  {ΔVg_GateN(T1)-ΔVg_GateN_Calc(T1)}
  {ΔVg_Gate1(T2)-ΔVg_Gate1_Calc(T2)}
  {ΔVg_Gate2(T2)-ΔVg_Gate2_Calc(T2)}
    ・・・・
  {ΔVg_GateN(T2)-ΔVg_GateN_Calc(T2)}
                                  …(式5)
ΔVg_Sum(T1, T2)=
{ΔVg_Gate1(T1)-ΔVg_Gate1_Calc(T1)} 2 +
{ΔVg_Gate2(T1)-ΔVg_Gate2_Calc(T1)} 2 +
...
{ΔVg_GateN(T1)-ΔVg_GateN_Calc(T1)} 2 +
{ΔVg_Gate1(T2)-ΔVg_Gate1_Calc(T2)} 2 +
{ΔVg_Gate2(T2)-ΔVg_Gate2_Calc(T2)} 2 +
...
{ΔVg_GateN(T2)-ΔVg_GateN_Calc(T2)} 2
... (Equation 5)
 式5は、2種類の温度で計測した場合の例であるが、この式は一般化が可能である。ガス検知材料層が異なるN個のセンサFETを搭載するガスセンサチップを、P個用意し、それぞれのガスセンサチップを異なる温度T1~TPで使用することにより、雰囲気のガス成分計測を行う場合には、M≦N×Pであれば、X_Gas1~X_GasMを推定することができる。 Equation 5 is an example of measurements at two different temperatures, but this equation can be generalized. When P gas sensor chips, each equipped with N sensor FETs with different gas detection material layers, are prepared and each gas sensor chip is used at different temperatures T1 to TP to measure the gas components in the atmosphere, X_Gas1 to X_GasM can be estimated if M≦N×P.
 図31は、複数のガスセンサチップをそれぞれ異なる温度で使用するガスセンシングシステムの例を示す図である。図31に示すガスセンシングシステム2000は、複数のガスセンサチップ2001と、それらを制御するシステム制御部2003とを備えている。ガスセンサチップ2001は、ガス検知材料層が異なる複数のセンサFETを搭載する。それぞれのガスセンサチップ2001には、ガスセンサチップ2001を独立に昇温可能なヒータ部(Heater)、例えばヒータ線が搭載されている。すなわち、ガスセンシングシステム2000は、複数のガスセンサチップ2001と複数のヒータ部とを備えている。また、ガスセンサチップ2001には、温度計測が可能な温度計部(Thermometer)、例えばダイオードも配置されている。システム制御部2003は、図1の回路部1100を複数のガスセンサの制御が可能となるようにシステム化したものである。システム制御部2003は、図1の制御部1003と同様に、ガス濃度推定部2002、電流検出部2004、電源2005、およびパラメータ記憶部2009を備えている。 FIG. 31 is a diagram showing an example of a gas sensing system in which multiple gas sensor chips are used at different temperatures. The gas sensing system 2000 shown in FIG. 31 includes multiple gas sensor chips 2001 and a system control unit 2003 that controls them. The gas sensor chip 2001 is equipped with multiple sensor FETs with different gas detection material layers. Each gas sensor chip 2001 is equipped with a heater unit (Heater), such as a heater wire, that can independently heat the gas sensor chip 2001. That is, the gas sensing system 2000 includes multiple gas sensor chips 2001 and multiple heater units. The gas sensor chip 2001 also includes a thermometer unit (Thermometer), such as a diode, that can measure temperature. The system control unit 2003 is a systemized version of the circuit unit 1100 in FIG. 1 that can control multiple gas sensors. The system control unit 2003, like the control unit 1003 in FIG. 1, includes a gas concentration estimation unit 2002, a current detection unit 2004, a power source 2005, and a parameter storage unit 2009.
<複数のガスセンサチップを異なる温度で使用するガスセンシングシステムの効果>
 図31に示すようなガスセンサシステムを用いることで、複数種類の温度、図31の例では3種類の温度T1~T3℃で、雰囲気のガス成分計測が可能となるので、ガスセンサチップの数をNCとして、M≦N×NCであれば、X_Gas1~X_GasMを推定することができる。温度T1,T2,T3は、例えば、100℃,200℃,300℃とすることができる。
<Effects of a gas sensing system using multiple gas sensor chips at different temperatures>
31, it is possible to measure the gas components in the atmosphere at multiple temperatures, three temperatures T1 to T3° C. in the example of FIG. 31, so that X_Gas1 to X_GasM can be estimated if M≦N×NC, where NC is the number of gas sensor chips. The temperatures T1, T2, and T3 can be, for example, 100° C., 200° C., and 300° C.
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<Modifications of the present invention>
The present invention is not limited to the above-described embodiment, and includes various modified examples. For example, the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to those having all of the configurations described. In addition, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
<付記>
 本願は、感度と選択性が異なる複数のガスセンサ素子が半導体基板上に集積化され、雰囲気中に含まれる複数のガス種の各ガスの成分量が計測可能である安価なガスセンサチップを開示する。例えば、半導体基板上の不純物層上に、材料の種類、膜厚、および結晶粒径のうち少なくとも1つが互いに異なるガス検知材料層を形成することで、ガスに対する感度と選択性が異なる複数個(N個)の仕事関数型センサ(例えばセンサFET)を形成する。雰囲気中におけるN個のセンサの電気的な特性の変化量の計測結果に基づいて、1~M種類(M≦N)のガス種の各ガスの成分量を計測することができ、例えば、ガス種と各ガス種の濃度が異なる雰囲気を区別することが可能となる。
<Additional Notes>
This application discloses an inexpensive gas sensor chip in which a plurality of gas sensor elements with different sensitivities and selectivities are integrated on a semiconductor substrate, and the amount of each of a plurality of gas species contained in an atmosphere can be measured. For example, a gas detection material layer having at least one of different material types, film thicknesses, and crystal grain sizes is formed on an impurity layer on a semiconductor substrate, thereby forming a plurality (N) of work function type sensors (e.g., sensor FETs) with different gas sensitivities and selectivities. Based on the measurement results of the change in the electrical characteristics of the N sensors in an atmosphere, the amount of each gas component of 1 to M (M≦N) types of gas species can be measured, and it becomes possible to distinguish between atmospheres with different gas species and concentrations of each gas species, for example.
 本願の実施の形態に係るガスセンサの一例は、半導体基板上に形成され、材料の種類、または膜厚、または多結晶粒径が互いに異なる少なくとも1つの金属酸化物層と、材料の種類、または膜厚、または多結晶粒径が互いに異なる少なくとも1つの触媒金属層からなるガス検知材料層をゲートに搭載し、前記金属酸化物層と前記触媒金属層は前記触媒金属層が前記金属酸化物層の上層に形成されて雰囲気に露出する複数の触媒金属ゲートFET型センサ素子を有する。前記複数の触媒金属ゲートFET型センサはN型かP型のどちらか一方で形成することもできるし、N型とP型の両方を用いて形成してもよい。アレイ内の触媒金属ゲートFET型センサのうちの複数個を組み合わせて触媒金属ゲートFET型センサ回路を形成することもできる。複数の触媒金属ゲートFET型センサからなるアレイから特定のセンサにアクセスするための選択トランジスタをガスに反応しない通常のゲート材料を用いて触媒金属ゲートFET型センサとは別に形成することもできる。さらに、ゲート層の触媒金属層と金属酸化物層は、前記複数の触媒金属ゲートFET型センサのどれかと同じでありかつゲートが保護膜で被覆され雰囲気に露出しない参照FETを1つまたは複数個搭載してもよい。前記半導体基板上には、触媒金属ゲートFET型センサ素子を加熱し温度を制御するためのヒータ線や、触媒金属ゲートFET型センサ素子の温度を推定するための温度計となるダイオード素子を搭載することもできる。前記触媒金属ゲートFET型センサ素子、前記参照FET、前記ヒータ線、前記ダイオードなどへの給電は、ワイヤボンドを介して外部の電源から行うこともできるし、基板を貫通する孔を形成して給電するTSV技術を用いることもできる。 An example of a gas sensor according to an embodiment of the present application is formed on a semiconductor substrate, and a gas detection material layer is mounted on the gate, the gas detection material layer being composed of at least one metal oxide layer having different material types, film thicknesses, or polycrystalline grain sizes, and at least one catalytic metal layer having different material types, film thicknesses, or polycrystalline grain sizes. The metal oxide layer and the catalytic metal layer have a plurality of catalytic metal gate FET type sensor elements in which the catalytic metal layer is formed on the upper layer of the metal oxide layer and exposed to the atmosphere. The catalytic metal gate FET type sensors can be formed as either N-type or P-type, or may be formed using both N-type and P-type. A catalytic metal gate FET type sensor circuit can be formed by combining a plurality of catalytic metal gate FET type sensors in the array. A selection transistor for accessing a specific sensor from an array consisting of a plurality of catalytic metal gate FET type sensors can be formed separately from the catalytic metal gate FET type sensor using a normal gate material that does not react with gas. Furthermore, the catalytic metal layer and metal oxide layer of the gate layer may be the same as any of the plurality of catalytic metal gate FET type sensors, and one or more reference FETs may be mounted, the gate of which is covered with a protective film and not exposed to the atmosphere. A heater wire for heating and controlling the temperature of the catalytic metal gate FET sensor element, and a diode element that serves as a thermometer for estimating the temperature of the catalytic metal gate FET sensor element can also be mounted on the semiconductor substrate. Power can be supplied to the catalytic metal gate FET sensor element, the reference FET, the heater wire, the diode, etc. from an external power source via wire bonds, or TSV technology can be used to supply power by forming a hole penetrating the substrate.
 本願発明の実施の形態の一例を、以下に記載する。
 [付記1]
 半導体基板と、
 それぞれが前記半導体基板上の異なる位置に形成される複数のガス検知材料層と、
を備え、
 前記ガス検知材料層は、金属酸化物層と前記金属酸化物層の上側に形成される触媒金属層とを有し、前記触媒金属層が雰囲気に露出するように構成され、
 前記複数のガス検知材料層は、前記金属酸化物層の材料の種類、膜厚、結晶粒径、前記触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なる、
 ガスセンサチップ。
An example of an embodiment of the present invention is described below.
[Appendix 1]
A semiconductor substrate;
a plurality of gas-sensing material layers each formed at a different location on the semiconductor substrate;
Equipped with
the gas sensing material layer has a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, the catalytic metal layer being exposed to the atmosphere;
the plurality of gas detection material layers are different from one another in combination of the type of material, thickness, and crystal grain size of the metal oxide layer, and the type of material, thickness, and crystal grain size of the catalytic metal layer;
Gas sensor chip.
 [付記2]
 [付記1]に記載のガスセンサチップにおいて、
 前記複数のガス検知材料層の各々について、前記ガス検知材料層をゲート層とし、前記金属酸化物層と前記半導体基板との間に、ゲート絶縁膜層と、ウェルとが設けられることにより、複数のセンサキャパシタを構成する、
 ガスセンサチップ。
[Appendix 2]
In the gas sensor chip according to [Appendix 1],
a gate insulating film layer and a well are provided between the metal oxide layer and the semiconductor substrate, and the gas detection material layer is used as a gate layer for each of the gas detection material layers, thereby forming a plurality of sensor capacitors.
Gas sensor chip.
 [付記3]
 [付記1]に記載のガスセンサチップにおいて、
 前記複数のガス検知材料層の各々について、前記ガス検知材料層をゲート層とし、前記金属酸化物層と前記半導体基板との間に、ウェルが設けられることにより、複数のセンサダイオードを構成する、
 ガスセンサチップ。
[Appendix 3]
In the gas sensor chip according to [Appendix 1],
a plurality of sensor diodes are formed by using each of the plurality of gas detection material layers as a gate layer and providing a well between the metal oxide layer and the semiconductor substrate, for each of the plurality of gas detection material layers;
Gas sensor chip.
 [付記4]
 [付記1]に記載のガスセンサチップにおいて、
 電極端子を介して電力を供給することにより前記ガスセンサチップの温度を環境温度から昇温することが可能なヒータ線を含む、
 ガスセンサチップ。
[Appendix 4]
In the gas sensor chip according to [Appendix 1],
a heater wire capable of raising the temperature of the gas sensor chip from an environmental temperature by supplying electric power via an electrode terminal;
Gas sensor chip.
 [付記5]
 [付記1]に記載のガスセンサチップにおいて、
 電極端子を介して電流を測定することにより前記ガスセンサチップの温度を計測することが可能なダイオードを含む、
 ガスセンサチップ。
[Appendix 5]
In the gas sensor chip according to [Appendix 1],
a diode capable of measuring a temperature of the gas sensor chip by measuring a current through an electrode terminal;
Gas sensor chip.
1・・・半導体基板
2,12・・・ウェル
3,13・・・ソース層
4,14・・・ドレイン層
5,15・・・ゲート絶縁膜層
6,16,106・・・金属酸化物層
7,17,107・・・触媒金属層
40・・・レジストの開口部
50・・・層間絶縁膜の開口部
1000,2000・・・ガスセンシングシステム
1001,2001・・・ガスセンサチップ
1001H・・・ヒータ部(Heater)
1001R・・・参照FET(RFET)
1001S・・・センサFET(SFET)
1001SA・・・センサFETアレイ
1001T・・・温度計部(Thermometer)
1002,2002・・・ガス濃度推定部
1003・・・制御部
2003・・・システム制御部
1004,2004・・・電流検出部
1005,1006,1007,1008,2005・・・電源
1009,2009・・・パラメータ記憶部
1010・・・I/O部
1020・・・半導体デバイス
1201S・・・センサキャパシタ(SCAP)
1201R・・・参照キャパシタ(RCAP)
1301S・・・センサダイオード(SDIODE)
1301R・・・参照ダイオード(RDIODE)
ILD・・・層間絶縁膜
X,X・・・ガス濃度
X_Gas1,X_GasM・・・ガス濃度
RHL・・・ヒータ線の抵抗
VD・・・ドレイン電圧
VSS・・・ソース、ウェル電圧
Ic,Ic(X)・・・電流
VGS,VGS(X),VGS(0),VGS(X,Y)・・・電圧
VGR,VGRS・・・電圧
A・・・電流計
ID(SFET)・・・センサFETのドレイン電流
ID(RFET)・・・参照FETのドレイン電流
IS(SFET)・・・センサFETのソース電流
C0・・・静電容量
C(SCAP)・・・センサキャパシタの静電容量
C(RCAP)・・・参照キャパシタの静電容量
I(SDIODE)・・・センサダイオードの電流
I(RDIODE)・・・参照ダイオードの電流
ΔVg,ΔVg(X)・・・ガスセンサのしきい値電圧シフト
ΔVgmax・・・ガスセンサのしきい値シフトの最大値
ΔVg_Gate1,ΔVg_Gate5,ΔVg_GateN:ガスセンサのしきい値電圧シフトの実測値
ΔVg_Gate1_Calc,ΔVg_GateN_Calc:ガスセンサのしきい値電圧シフトの計算値
Vsig・・・交流電圧の振幅
MOX1,MOX2,MOX3・・・金属酸化物層
CATAL1,CATAL2・・・触媒金属層
M1,M2,M3・・・金属層
Z・・・組成
1: Semiconductor substrate 2, 12: Well 3, 13: Source layer 4, 14: Drain layer 5, 15: Gate insulating film layer 6, 16, 106: Metal oxide layer 7, 17, 107: Catalyst metal layer 40: Opening in resist 50: Opening in interlayer insulating film 1000, 2000: Gas sensing system 1001, 2001: Gas sensor chip 1001H: Heater section (Heater)
1001R...Reference FET (RFET)
1001S...Sensor FET (SFET)
1001SA: Sensor FET array 1001T: Thermometer
1002, 2002... Gas concentration estimation unit 1003... Control unit 2003... System control unit 1004, 2004... Current detection unit 1005, 1006, 1007, 1008, 2005... Power supply 1009, 2009... Parameter storage unit 1010... I/O unit 1020... Semiconductor device 1201S... Sensor capacitor (SCAP)
1201R...Reference capacitor (RCAP)
1301S...Sensor diode (SDIODE)
1301R...Reference diode (RDIODE)
ILD: Interlayer insulating film X, X0 : Gas concentration X_Gas1, X_GasM: Gas concentration RHL: Heater wire resistance VD: Drain voltage VSS: Source, well voltage Ic, Ic(X): Current VGS, VGS(X), VGS(0), VGS(X,Y): Voltage VGR, VGRS: Voltage A: Ammeter ID(SFET): Drain current of sensor FET ID(RFET): Drain current of reference FET IS(SFET): Source current of sensor FET C0: Capacitance C(SCAP): Capacitance of sensor capacitor C(RCAP): Capacitance of reference capacitor I(SDIODE) .. Current of sensor diode I (RDIODE)... Current of reference diode ΔVg, ΔVg(X)... Threshold voltage shift of gas sensor ΔVgmax... Maximum value of threshold voltage shift of gas sensor ΔVg_Gate1, ΔVg_Gate5, ΔVg_GateN: Measured value of threshold voltage shift of gas sensor ΔVg_Gate1_Calc, ΔVg_GateN_Calc: Calculated value of threshold voltage shift of gas sensor Vsig... Amplitude of AC voltage MOX1, MOX2, MOX3... Metal oxide layers CATAL1, CATAL2... Catalyst metal layers M1, M2, M3... Metal layer Z... Composition

Claims (15)

  1.  半導体基板と、
     それぞれが前記半導体基板上の異なる位置に形成される複数のガス検知材料層と、
    を備え、
     前記ガス検知材料層は、金属酸化物層と前記金属酸化物層の上側に形成される触媒金属層とを有し、前記触媒金属層が雰囲気に露出するように構成され、
     前記複数のガス検知材料層は、前記金属酸化物層の材料の種類、膜厚、結晶粒径、前記触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なる、
     ガスセンサチップ。
    A semiconductor substrate;
    a plurality of gas-sensing material layers each formed at a different location on the semiconductor substrate;
    Equipped with
    the gas sensing material layer has a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, the catalytic metal layer being exposed to the atmosphere;
    the plurality of gas detection material layers are different from one another in combination of the type of material, thickness, and crystal grain size of the metal oxide layer, and the type of material, thickness, and crystal grain size of the catalytic metal layer;
    Gas sensor chip.
  2.  請求項1に記載のガスセンサチップにおいて、
     前記複数のガス検知材料層の各々について、前記ガス検知材料層をゲート層とし、前記金属酸化物層と前記半導体基板との間に、ゲート絶縁膜層と、ドレイン層と、ソース層と、ウェルとが設けられることにより、複数のセンサFETを構成する、
     ガスセンサチップ。
    2. The gas sensor chip according to claim 1,
    a gate insulating film layer, a drain layer, a source layer, and a well are provided between the metal oxide layer and the semiconductor substrate, and the gas detection material layer is used as a gate layer for each of the plurality of gas detection material layers, thereby forming a plurality of sensor FETs.
    Gas sensor chip.
  3.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETに加えて、ゲート層が前記雰囲気から隔離されるように構成される第1のFETを含む、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    In addition to the plurality of sensor FETs, a first FET having a gate layer configured to be isolated from the atmosphere.
    Gas sensor chip.
  4.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETの一部がN型FETで形成されており、前記複数のセンサFETの他部がP型FETで形成されている、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    A part of the plurality of sensor FETs is formed of an N-type FET, and another part of the plurality of sensor FETs is formed of a P-type FET.
    Gas sensor chip.
  5.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETは、それぞれ、前記半導体基板と前記ゲート層との間にシリコン酸化膜を含み、
     前記複数のセンサFETにおける前記シリコン酸化膜の厚さは、複数種類の厚さに作り分けられている、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    each of the plurality of sensor FETs includes a silicon oxide film between the semiconductor substrate and the gate layer;
    The thickness of the silicon oxide film in the plurality of sensor FETs is made to have a plurality of different thicknesses.
    Gas sensor chip.
  6.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETは、センサFETどうしが並列接続もしくは直列接続された素子を含む、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    The plurality of sensor FETs include elements in which sensor FETs are connected in parallel or in series to each other.
    Gas sensor chip.
  7.  請求項2に記載のガスセンサチップにおいて、
     前記センサFETは、ソース端子、ドレイン端子、ウェル端子、およびゲート端子を含み、
     前記ソース端子および前記ドレイン端子の少なくとも一方は、ゲート層が前記雰囲気から隔離されるように構成される第2のFETを介して、前記ガスセンサチップに対する外部からの給電端子と接続される、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    the sensor FET includes a source terminal, a drain terminal, a well terminal, and a gate terminal;
    At least one of the source terminal and the drain terminal is connected to an external power supply terminal for the gas sensor chip via a second FET having a gate layer isolated from the atmosphere.
    Gas sensor chip.
  8.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETの少なくとも一部は、前記金属酸化物層および前記触媒金属層の少なくとも一方が、複数の層で形成されている、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    In at least some of the plurality of sensor FETs, at least one of the metal oxide layer and the catalytic metal layer is formed of a plurality of layers.
    Gas sensor chip.
  9.  請求項2に記載のガスセンサチップにおいて、
     前記複数のセンサFETの少なくとも一部は、前記金属酸化物層に触媒金属がドーピングされているか、または、前記触媒金属層に金属酸化物がドーピングされている、
     ガスセンサチップ。
    3. The gas sensor chip according to claim 2,
    At least some of the sensor FETs have a metal oxide layer doped with a catalytic metal or a catalytic metal layer doped with a metal oxide.
    Gas sensor chip.
  10.  ガスセンサチップと、
     前記ガスセンサチップを加熱昇温するヒータ部と、
     前記ガスセンサチップと前記ヒータ部とを制御する制御部と、
    を備え、
     前記ガスセンサチップは、
     半導体基板と、
     それぞれが前記半導体基板上の異なる位置に形成される複数のガス検知材料層と、
    を備え、
     前記ガス検知材料層は、金属酸化物層と前記金属酸化物層の上側に形成される触媒金属層とを有し、前記触媒金属層が雰囲気に露出するように構成され、
     前記複数のガス検知材料層は、前記金属酸化物層の材料の種類、膜厚、結晶粒径、前記触媒金属層の材料の種類、膜厚、結晶粒径、の組合せが互いに異なっており、
     前記制御部は、前記ガスセンサチップが所定の温度となるように前記ヒータ部を制御し、前記複数のガス検知材料層を用いて得られる情報に基づいて、雰囲気中のガスを検知する、
     ガスセンシングシステム。
    A gas sensor chip;
    a heater section for heating and increasing the temperature of the gas sensor chip;
    a control unit that controls the gas sensor chip and the heater unit;
    Equipped with
    The gas sensor chip includes:
    A semiconductor substrate;
    a plurality of gas-sensing material layers each formed at a different location on the semiconductor substrate;
    Equipped with
    the gas sensing material layer has a metal oxide layer and a catalytic metal layer formed on the metal oxide layer, the catalytic metal layer being exposed to the atmosphere;
    the plurality of gas detection material layers are different from one another in combination of the type of material, thickness, and crystal grain size of the metal oxide layer, and the type of material, thickness, and crystal grain size of the catalytic metal layer;
    the control unit controls the heater unit so that the gas sensor chip is at a predetermined temperature, and detects a gas in an atmosphere based on information obtained using the plurality of gas detection material layers.
    Gas sensing systems.
  11.  請求項10に記載のガスセンシングシステムにおいて、
     前記ガスセンサチップおよび前記ヒータ部は、それぞれ複数であり、
     前記複数のヒータ部は、それぞれ、前記複数のガスセンサチップの各々に配置され、
     前記制御部は、前記複数のガスセンサチップが互いに異なる温度となるように前記複数のヒータ部を制御し、前記複数のガスセンサチップの各々における前記複数のガス検知材料層を用いて得られる情報に基づいて、雰囲気中のガスを検知する、
     ガスセンシングシステム。
    11. The gas sensing system according to claim 10,
    the gas sensor chip and the heater portion are each provided in a plurality of portions,
    the heater units are disposed on the gas sensor chips, respectively;
    the control unit controls the heater units so that the gas sensor chips have temperatures different from one another, and detects a gas in an atmosphere based on information obtained using the gas detection material layers in each of the gas sensor chips.
    Gas sensing systems.
  12.  半導体基板上に、不純物層を形成する工程と、
     前記半導体基板上に、触媒金属層を含む第1のガス検知材料層を形成する工程と、
     前記半導体基板上の、前記第1のガス検知材料層とは異なる位置に、触媒金属層を含む第2のガス検知材料層を形成する工程と、
     を含み、
     前記第1のガス検知材料層と前記第2のガス検知材料層とは、ガス検知材料層を構成する材料の種類、膜厚、および結晶粒径のうち少なくとも1つが互いに異なる、
     ガスセンサチップの製造方法。
    forming an impurity layer on a semiconductor substrate;
    forming a first gas sensing material layer on the semiconductor substrate, the first gas sensing material layer including a catalytic metal layer;
    forming a second gas sensing material layer including a catalytic metal layer on the semiconductor substrate at a position different from the first gas sensing material layer;
    Including,
    the first gas detection material layer and the second gas detection material layer are different from each other in at least one of the type of material constituting the gas detection material layer, the film thickness, and the crystal grain size;
    A method for manufacturing a gas sensor chip.
  13.  請求項12に記載のガスセンサチップの製造方法において、
     前記第1のガス検知材料層を形成する工程および前記第2のガス検知材料層を形成する工程の少なくとも一方は、金属酸化物層を形成する工程を含む、
     ガスセンサチップの製造方法。
    13. The method for producing a gas sensor chip according to claim 12,
    At least one of the steps of forming the first gas sensing material layer and the step of forming the second gas sensing material layer includes a step of forming a metal oxide layer.
    A method for manufacturing a gas sensor chip.
  14.  請求項12に記載のガスセンサチップの製造方法において、
     前記第1のガス検知材料層を形成する工程および前記第2のガス検知材料層を形成する工程は、
     マスクを用いる複数回の成膜工程に分割して行われる、
     ガスセンサチップの製造方法。
    13. The method for producing a gas sensor chip according to claim 12,
    The steps of forming the first gas sensing material layer and forming the second gas sensing material layer include:
    This is done in multiple deposition steps using masks.
    A method for manufacturing a gas sensor chip.
  15.  請求項13に記載のガスセンサチップの製造方法において、
     前記金属酸化物層を形成する工程は、金属層を形成する工程と、前記形成された金属層を酸化する工程とを含む、
     ガスセンサチップの製造方法。
    14. The method for producing a gas sensor chip according to claim 13,
    The step of forming the metal oxide layer includes a step of forming a metal layer and a step of oxidizing the formed metal layer.
    A method for manufacturing a gas sensor chip.
PCT/JP2023/032889 2022-11-14 2023-09-08 Gas sensor chip, gas sensing system, and production method for gas sensor chip WO2024105985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022182007A JP2024071185A (en) 2022-11-14 2022-11-14 Gas sensor chip, gas sensing system, and method for manufacturing the gas sensor chip
JP2022-182007 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024105985A1 true WO2024105985A1 (en) 2024-05-23

Family

ID=91084344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032889 WO2024105985A1 (en) 2022-11-14 2023-09-08 Gas sensor chip, gas sensing system, and production method for gas sensor chip

Country Status (2)

Country Link
JP (1) JP2024071185A (en)
WO (1) WO2024105985A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480196A (en) * 1977-12-08 1979-06-26 Seiko Epson Corp Semiconductor gas sensor
JP2018072146A (en) * 2016-10-28 2018-05-10 株式会社日立製作所 Gas sensor
US20210104140A1 (en) * 2016-12-09 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and control method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480196A (en) * 1977-12-08 1979-06-26 Seiko Epson Corp Semiconductor gas sensor
JP2018072146A (en) * 2016-10-28 2018-05-10 株式会社日立製作所 Gas sensor
US20210104140A1 (en) * 2016-12-09 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and control method therefor

Also Published As

Publication number Publication date
JP2024071185A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
Skucha et al. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors
US10768133B2 (en) Integrated SMO gas sensor module
CN104950023B (en) TFT ion transducer, the TFT ion transducer device using the TFT ion transducer
Schipani et al. Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study
KR101931044B1 (en) Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors
Schalwig et al. Response mechanism of SiC-based MOS field-effect gas sensors
US20130219995A1 (en) Obtaining selectivity in gas sensors via a sensor array system composed of p and n type material
US10466198B2 (en) Gas sensor
Burgmair et al. Field effect transducers for work function gas measurements: device improvements and comparison of performance
CN107449812A (en) A kind of biochemical sensor under CMOS standard technologies
US7019343B2 (en) SnO2 ISFET device, manufacturing method, and methods and apparatus for use thereof
CN107315033A (en) Gas-detecting device and hydrogen detection method
JP6154011B2 (en) Semiconductor device and manufacturing method thereof
US20050212531A1 (en) Fluid sensor and methods
WO2024105985A1 (en) Gas sensor chip, gas sensing system, and production method for gas sensor chip
Hoefer et al. Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range
US6867059B2 (en) A-C:H ISFET device manufacturing method, and testing methods and apparatus thereof
Johnson et al. Integrated ultra-thin-film gas sensors
JP2007322355A (en) Gas sensor and gas detection system
Wilbertz et al. Suspended-Gate-and Lundstrom-FET integrated on a CMOS-chip
Oprea et al. Flip-chip suspended gate field effect transistors for ammonia detection
Hoefer et al. Highly sensitive NO2 sensor device featuring a JFET-like transducer mechanism
JP2005249722A (en) Semiconductor type gas sensor
US20230207633A1 (en) Semiconductor device, biosensor, biosensor array, and logic circuit
CN218512355U (en) Carbon-based thin film transistor type sensor array for multiple gas identification