WO2024105923A1 - Capacitance measurement circuit and load detection device - Google Patents

Capacitance measurement circuit and load detection device Download PDF

Info

Publication number
WO2024105923A1
WO2024105923A1 PCT/JP2023/024094 JP2023024094W WO2024105923A1 WO 2024105923 A1 WO2024105923 A1 WO 2024105923A1 JP 2023024094 W JP2023024094 W JP 2023024094W WO 2024105923 A1 WO2024105923 A1 WO 2024105923A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
measurement
value
unit
control
Prior art date
Application number
PCT/JP2023/024094
Other languages
French (fr)
Japanese (ja)
Inventor
雅規 田丸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024105923A1 publication Critical patent/WO2024105923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators

Definitions

  • the present invention relates to a capacitance measurement circuit for measuring capacitance, and a load detection device for detecting a load based on the results of capacitance measurement.
  • the capacitance of the element unit can also be detected from, for example, the amount of charge accumulated in the element unit when a voltage is applied to the element unit.
  • the amount of charge accumulated in the element unit can be calculated by measuring the amount of current flowing through the element unit during the period from when a voltage is applied to the element unit until the accumulated charge becomes saturated. Such measurement of the current amount can be performed, for example, by sampling and integrating the current value during this period using an AD converter.
  • measuring the amount of current described above requires a high-speed, high-precision AD converter that can sample the current value that changes over a short period of time.
  • the period until the amount of current becomes saturated is significantly short, making it difficult to stably measure the amount of current during this period.
  • the capacitance measurement results are affected by parasitic capacitance due to wiring and other electrical elements.
  • the calculated capacitance contains an error component due to the parasitic capacitance, and this error component makes it difficult to detect the load accurately.
  • the present invention aims to provide a capacitance measurement circuit and load detection device that can stably and accurately measure capacitance even in a small range.
  • the first aspect of the present invention relates to a capacitance measurement circuit.
  • the capacitance measurement circuit includes a reference capacitance having a predetermined capacitance value, a switching unit that switches between application and non-application of a voltage to the reference capacitance, a transfer unit that transfers the charge stored in the reference capacitance to a measurement capacitance, a connection unit that connects the negative electrode of the measurement capacitance to ground or a wiring having the same potential as the positive electrode of the measurement capacitance, a measurement unit that measures the voltage of the measurement capacitance, and a control unit that controls the switching unit, the transfer unit, and the connection unit.
  • the control unit executes a first control that applies a voltage to the reference capacitance and then causes the transfer unit to transfer the charge while the negative electrode of the measurement capacitance is connected to the ground, a second control that applies a voltage to the reference capacitance and then causes the transfer unit to transfer the charge while the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance, and a process that calculates the capacitance value of the measurement capacitance from the voltage values measured by the measurement unit after the charge is transferred by the first control and the second control, respectively.
  • the capacitance measurement circuit calculates the capacitance value of the measurement capacitance based on the voltage value after the charge is transferred from the reference capacitance, so that it is possible to stably measure capacitance values in a small range without using a high-precision AD converter.
  • the negative electrode of the measurement capacitance is connected to a wire having the same potential as the positive electrode of the measurement capacitance, so that the measured voltage value is hardly affected by the measurement capacitance, but is mainly affected by the reference capacitance and parasitic capacitance.
  • the negative electrode of the measurement capacitance is connected to ground, so that the measured voltage value is affected by the measurement capacitance as well as the reference capacitance and parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not affected by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high precision.
  • the second aspect of the present invention relates to a capacitance measurement circuit.
  • the capacitance measurement circuit includes a reference capacitance having a predetermined capacitance value, a switching unit for switching between application and non-application of a voltage to the measurement capacitance, a transfer unit for transferring the charge accumulated in the measurement capacitance to the reference capacitance, a connection unit for connecting the negative electrode of the measurement capacitance to the ground or to a wiring having the same potential as the positive electrode of the measurement capacitance, a measurement unit for measuring the voltage of the measurement capacitance, and a control unit for controlling the switching unit, the transfer unit, and the connection unit.
  • the control unit executes a first control for applying a voltage to the measurement capacitance while the negative electrode of the measurement capacitance is connected to the ground, and then causing the transfer unit to transfer the charge, a second control for applying a voltage to the measurement capacitance while the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance, and then causing the transfer unit to transfer the charge, and a process for calculating the capacitance value of the measurement capacitance from the voltage values measured by the measurement unit after the charge has been transferred by the first control and the second control, respectively.
  • the capacitance value of the measurement capacitance is calculated based on the voltage value after the charge is transferred from the measurement capacitance, so that it is possible to stably measure capacitance values in a small range without using a highly accurate AD converter.
  • the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance and a voltage is applied to the measurement capacitance, so that almost no charge is accumulated in the measurement capacitance, and charge is accumulated in the parasitic capacitance. Therefore, the voltage value measured by the second control is hardly influenced by the measurement capacitance, and is mainly influenced by the reference capacitance and the parasitic capacitance.
  • the negative electrode of the measurement capacitance is connected to the ground and a voltage is applied to the measurement capacitance, so that charge is applied to the measurement capacitance as well as the parasitic capacitance. Therefore, the voltage value measured by the first control is influenced by the measurement capacitance as well as the reference capacitance and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not influenced by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high accuracy.
  • the third aspect of the present invention relates to a load detection device.
  • the load detection device includes a load sensor having an element unit whose capacitance changes depending on the load, and the capacitance measurement circuit according to the first or second aspect.
  • the control unit performs the first control, the second control, and the capacitance calculation process using the element unit as the measurement capacitance.
  • the load detection device includes the capacitance measurement circuit according to the first or second aspect, so that the capacitance corresponding to the load can be stably obtained even in a range where the load applied to the element portion is small and the capacitance is small.
  • the load detection device includes the capacitance measurement circuit according to the first or second aspect, the capacitance value in which the influence of parasitic capacitance is suppressed can be obtained with high accuracy. Therefore, a small range of load can be detected stably and with high accuracy.
  • the present invention provides a capacitance measurement circuit and a load detection device that can stably and accurately measure capacitance even over a small range.
  • FIG. 1 is a diagram showing a configuration of a capacitance measuring circuit according to the first embodiment.
  • 2A and 2B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment.
  • 3A and 3B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment.
  • 4A and 4B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment.
  • 5A and 5B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment.
  • FIG. 6A and 6B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment.
  • FIG. 7 is a flowchart showing a process for calculating the capacitance value of a measurement capacitance according to the first embodiment.
  • FIG. 8 is a flowchart showing a calculation process of the capacitance value of the measurement capacitance according to the first modification of the first embodiment.
  • FIG. 9 is a diagram showing a configuration of a capacitance measuring circuit according to the second modification of the first embodiment.
  • FIG. 10 is a diagram showing a configuration of a capacitance measuring circuit according to the second embodiment.
  • 11A and 11B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment.
  • 12A and 12B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment.
  • 13A and 13B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment.
  • 14A and 14B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment.
  • FIG. 15A and 15B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment.
  • FIG. 16 is a flowchart showing a process for calculating the capacitance value of a measurement capacitance according to the second embodiment.
  • 17A and 17B are graphs showing simulation results of capacitance according to the first and second embodiments, respectively.
  • FIG. 18 is a flowchart showing a process of calculating the capacitance value of the measurement capacitance according to the first modification of the second embodiment.
  • FIG. 19 is a diagram showing a configuration of a capacitance measuring circuit according to a second modification of the second embodiment.
  • FIG. 20(a) is a perspective view showing a base member and a conductive elastic body provided on an upper surface of the base member according to embodiment 3.
  • Fig. 20(b) is a perspective view showing a state in which a conductor wire is provided on the structure of Fig. 20(a) according to embodiment 3.
  • Fig. 21(a) is a perspective view showing a state in which a thread is provided on the structure of Fig. 20(b) according to embodiment 3.
  • Fig. 21(b) is a perspective view showing a state in which a base member is provided on the structure of Fig. 21(a) according to embodiment 3.
  • 22(a) and 22(b) are diagrams each showing a schematic cross section of a load sensor according to the third embodiment.
  • FIG. 23 is a plan view illustrating a schematic internal configuration of the load sensor according to the third embodiment.
  • FIG. 24 is a diagram showing a configuration of a load detection device according to the third embodiment.
  • FIG. 25 is a diagram showing the operation of the load detection device when detecting the capacitance value of the element portion to be measured according to the third embodiment.
  • FIG. 26 is a diagram showing a configuration of a load detection device according to the fourth embodiment.
  • FIG. 27 is a diagram showing the operation of the load detection device when detecting the capacitance value of the element portion to be measured according to the fourth embodiment.
  • switch element 12a, switch element 12b, and switch element 13 correspond to the "switching unit,” “transfer unit,” and “connection unit” described in the claims, respectively.
  • this description is merely intended to associate the configurations of the claims with the configurations of the embodiments, and the above association does not in any way limit the inventions described in the claims to the configurations of the embodiments.
  • the configurations that realize the inventions described in the claims are not limited to the following embodiments 1 to 4.
  • FIG. 1 is a diagram showing a configuration of a capacitance measuring circuit 10 according to the first embodiment.
  • the capacitance measurement circuit 10 includes a control unit 11, switch elements 12a to 12c, switch element 13, a measurement unit 14, and a reference capacitance Cr.
  • the reference capacitance Cr is connected in parallel to the measurement capacitance Cs via switch element 12b.
  • the measurement capacitance Cs is the capacitance to be measured.
  • the capacitance value of the reference capacitance Cr is greater than the capacitance value of the measurement capacitance Cs.
  • the control unit 11 is configured with a microcomputer, FPGA, etc., and controls the switch elements 12a to 12c and 13.
  • the control unit 11 also calculates the capacitance value of the measurement capacitance Cs based on the voltage value measured by the measurement unit 14.
  • the switch element 12a switches between applying and not applying the power supply voltage Vdd to the reference capacitance Cr.
  • the switch element 12a changes from a non-conductive state to a conductive state, the power supply voltage Vdd is applied to the reference capacitance Cr, and charge is accumulated in the reference capacitance Cr.
  • the switch element 12b switches the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs between a connected state and a disconnected state.
  • the switch element 12b changes from a non-conductive state to a conductive state, the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs are connected, and the charge accumulated in the reference capacitance Cr is transferred to the measurement capacitance Cs. In this way, the switch element 12b transfers the charge accumulated in the reference capacitance Cr to the measurement capacitance Cs.
  • the switch element 12c switches between a connected state and a disconnected state between the positive electrode of the measurement capacitance Cs and the ground.
  • the switch element 12c changes from a non-conductive state to a conductive state, the positive electrode of the measurement capacitance Cs is connected to the ground, and the charge accumulated in the measurement capacitance Cs is discharged to the ground.
  • Switch elements 12a and 12b are configured with P-type FETs and become conductive when a low-level gate signal is applied to their gates.
  • Switch element 12c is configured with N-type FETs and becomes conductive when a high-level gate signal is applied to their gates.
  • Switch elements 12a to 12c may be other switch elements of a type other than FETs.
  • the switch element 13 connects the negative electrode of the measurement capacitance Cs to ground or to the positive electrode of the measurement capacitance Cs.
  • these positive and negative electrodes have the same potential, so that the measurement capacitance Cs is in a state where it disappears from the circuit (disabled state).
  • the measurement unit 14 measures the voltage of the measurement capacitance Cs.
  • the switch element 12b is conductive while the switch element 13 is connected to ground, the charge of the reference capacitance Cr is transferred to the measurement capacitance Cs and distributed.
  • a voltage corresponding to the capacitance ratio between the electrostatic capacitance value of the reference capacitance Cr and the electrostatic capacitance value of the measurement capacitance Cs is generated in the measurement capacitance Cs.
  • the measurement unit 14 measures this voltage.
  • the capacitance value of the reference capacitance Cr is set to a value that allows the measurement unit 14 to accurately measure the voltage that occurs in the measurement capacitance Cs after the charge is distributed in this manner.
  • the capacitance value of the reference capacitance Cr is set at least so that the voltage that occurs in the measurement capacitance Cs after the charge is distributed as described above is equal to or greater than the lower limit of the measurable range of the measurement unit 14.
  • the switch elements 12a to 12c that are in an operating state and the paths through which the switch elements charge, discharge, or transfer electric charge are indicated by thick lines.
  • the reference capacitance Cr and the measurement capacitance Cs are in a charged state, these capacitances are indicated by diagonal hatching.
  • switch elements 12a and 12c are each switched to a conductive state. This applies power supply voltage Vdd to reference capacitance Cr, and charge is accumulated in reference capacitance Cr.
  • the positive electrode of measurement capacitance Cs is connected to ground, and discharging to measurement capacitance Cs is performed.
  • Switch element 12a is set to a conductive state at least until reference capacitance Cr is fully charged. Whether reference capacitance Cr is fully charged can be determined, for example, by measuring the voltage of reference capacitance Cr with a measurement unit other than measurement unit 14 and checking whether the measurement result reaches power supply voltage Vdd and becomes stable.
  • switch element 12a is switched to a non-conductive state, and reference capacitance Cr is disconnected from power supply voltage Vdd.
  • switch element 12c is switched to a non-conductive state, and the positive electrode of measurement capacitance Cs is disconnected from ground.
  • switch element 12b is switched to a conductive state, and the positive electrode of reference capacitance Cr and the positive electrode of measurement capacitance Cs are connected. This causes the charge stored in reference capacitance Cr to be transferred to measurement capacitance Cs.
  • the measurement value of the measurement unit 14 immediately after the switch element 12b is switched to the conductive state is a voltage value according to the accumulated charge in the reference capacitance Cr, i.e., a voltage value approximately equal to the power supply voltage Vdd. Thereafter, as the transfer of charge to the measurement capacitance Cs progresses, the measurement value of the measurement unit 14 gradually decreases, and when the transfer of charge is completed, the measurement value of the measurement unit 14 stabilizes (saturates) at a constant value according to the capacitance ratio between the reference capacitance Cr and the measurement capacitance Cs.
  • the voltage value measured by the measurement unit 14 is obtained as the first voltage value Vx1.
  • this first voltage value Vx1 is determined mainly according to the capacitance ratio between the reference capacitance Cr and the measurement capacitance Cs, but is also affected by the parasitic capacitances of the wiring between the reference capacitance Cr and the measurement capacitance Cs and the switch elements 12b and 13, etc. For this reason, if the capacitance value of the measurement capacitance Cs is calculated from only the first voltage value Vx1, errors due to these parasitic capacitances will be included in the calculation result.
  • the switch element 13 is switched to the positive electrode side of the measurement capacitance Cs.
  • the switch elements 12a and 12c are each switched to a conductive state.
  • the power supply voltage Vdd is applied to the reference capacitance Cr, and charge is accumulated in the reference capacitance Cr.
  • the positive electrode of the measurement capacitance Cs is connected to ground, and discharging to the measurement capacitance Cs is performed.
  • the switch element 12a is set to a conductive state at least until the reference capacitance Cr is fully charged.
  • the switch element 12a is switched to a non-conductive state, and the reference capacitance Cr is disconnected from the power supply voltage Vdd. Also, the switch element 12c is switched to a non-conductive state, and the positive electrode of the measurement capacitance Cs is disconnected from ground. Then, as shown in FIG. 6(a), the switch element 12b is switched to a conductive state, and the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs are connected. This causes the charge stored in the reference capacitance Cr to be transferred.
  • the switch element 13 is switched to the positive electrode side of the measurement capacitance Cs, so the positive and negative electrodes of the measurement capacitance Cs are at the same potential. Therefore, during this charge transfer, no charge is distributed to the measurement capacitance Cs, but the charge is distributed to parasitic capacitances other than the measurement capacitance Cs. Therefore, in this case, the measurement value of the measurement unit 14 stabilizes to a voltage value according to the charge distribution to the parasitic capacitances.
  • the voltage value measured by the measurement unit 14 is acquired as the second voltage value Vx2.
  • the capacitance value of the measured capacitance Cs is calculated from the acquired second voltage value Vx2 and the first voltage value Vx1 acquired during the operation of FIG. 4(a).
  • the capacitance value of the measured capacitance Cs is calculated as follows:
  • the charge amount Qr of the reference capacitance Cr when the reference capacitance Cr is fully charged is expressed by the following formula, assuming that the capacitance value (known) of the reference capacitance Cr is Cr.
  • this capacitance value Cs1 includes an error component due to parasitic capacitance.
  • This error component Ce can be expressed by the following equation using the second voltage value Vx2 obtained by the operation of FIG. 6(b).
  • the electrostatic capacitance value of the parasitic capacitance i.e., the error component Ce, can be expressed by the above formula (4).
  • the capacitance value Cs of the measured capacitance Cs is the capacitance value Cs1 in equation (3) minus the error component Ce, and is calculated from equations (3) and (4) above using the following equation:
  • Equation (5) the capacitance value Cr and the power supply voltage Vdd are known, and the first voltage value Vx1 and the second voltage value Vx2 are obtained by the operations shown in Figures 4(a) and 6(b), so the capacitance value of the measured capacitance Cs can be calculated from equation (5) above.
  • FIG. 7 is a flowchart showing the process of calculating the capacitance value of the measurement capacitance Cs by the operations shown in FIGS. 2(a) to 6(b).
  • steps S101 to S105 correspond to the first control C1 for obtaining the first voltage value Vx1
  • steps S106 to S110 correspond to the second control C2 for obtaining the second voltage value Vx2.
  • the control unit 11 connects the negative electrode of the measurement capacitance Cs to ground (S101), and executes charging of the reference capacitance Cr and discharging of the measurement capacitance Cs (S102).
  • the control unit 11 disconnects the positive electrode of the reference capacitance Cr from the power supply voltage Vdd and the positive electrode of the measurement capacitance Cs from ground (S103), as shown in FIG. 2(b) and FIG. 3(a). Then, as shown in FIG.
  • the control unit 11 connects the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs, and transfers the charge of the reference capacitance Cr to the measurement capacitance Cs (S104). After a period of time has elapsed until the measurement value of the measurement unit 14 becomes stable (saturated), the control unit 11 acquires the measurement value of the measurement unit 14 as the first voltage value Vx1 (S105), as shown in FIG. 4(a). In this way, the first control C1 ends.
  • control unit 11 connects the negative electrode of the measurement capacitance Cs to the positive electrode of the measurement capacitance Cs as shown in FIG. 4(b) (S106), and executes charging of the reference capacitance Cr and discharging of the measurement capacitance Cs as shown in FIG. 5(a) (S107).
  • the control unit 11 disconnects the positive electrode of the reference capacitance Cr from the power supply voltage Vdd as shown in FIG. 5(b) and disconnects the positive electrode of the measurement capacitance Cs from the ground as shown in FIG. 5(b) (S108). Then, the control unit 11 connects the positive electrode of the reference capacitance Cr to the positive electrode of the measurement capacitance Cs as shown in FIG.
  • the control unit 11 acquires the measurement value of the measurement unit 14 as the second voltage value Vx2 as shown in FIG. 6(b) (S110). In this way, the second control C2 ends.
  • control unit 11 applies the acquired first voltage value Vx1 and second voltage value Vx2 to the above formula (5) to calculate the capacitance value of the measured capacitance Cs (S111). In this way, the control unit 11 ends the process of FIG. 7.
  • the stable (saturated) voltage values (first voltage value Vx1, second voltage value Vx2) after the charge is transferred from the reference capacitance Cr are measured by the measurement unit 14, so that the capacitance value in a small range can be stably measured without using a high-precision AD converter.
  • the negative electrode and the positive electrode (the wiring having the same potential as the positive electrode) of the measurement capacitance Cs are connected in step S106, so that the measured second voltage value Vx2 is hardly influenced by the measurement capacitance Cs, but is mainly influenced by the reference capacitance Cr and the parasitic capacitance.
  • the negative electrode of the measurement capacitance Cs is connected to the ground in step S101, so that the measured first voltage value Vx1 is influenced by the measurement capacitance Cs as well as the reference capacitance Cr and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance Cs from these two voltage values, the capacitance value without the influence of the parasitic capacitance can be calculated. Therefore, the capacitance value of the measurement capacitance Cs can be measured with high accuracy.
  • control unit 11 calculates the capacitance value of the measured capacitance Cs using the above formula (5) from the first voltage value Vx1 obtained by the first control C1, the second voltage value Vx2 obtained by the second control C2, the power supply voltage Vdd applied to the reference capacitance Cr, and the capacitance value of the reference capacitance Cr. This makes it possible to suppress the effect of error components due to parasitic capacitance on the capacitance value of the measured capacitance Cs, as described above, and to accurately obtain the capacitance value of the measured capacitance Cs.
  • ⁇ Modification 1> In the first embodiment, in the first control C1 of Fig. 7, after the charge of the reference capacitance Cr is transferred to the measurement capacitance Cs (S104), a fixed period from the completion of the transfer until the measurement value of the measurement unit 14 becomes stable (saturated) has elapsed, and the first voltage value Vx1 is acquired (S105).
  • this fixed period is defined in relation to the upper limit of the range (measurement range) that can be assumed as the capacitance value of the measurement capacitance Cs.
  • FIG. 8 is a flowchart showing the process for calculating the capacitance value of the measurement capacitance Cs in the first modification example.
  • steps S121 to S124 have been added to the process in FIG. 8.
  • the processes in steps S101 to S111 are the same as the corresponding steps in FIG. 7.
  • step S121 the control unit 11 sets a waiting period Tw.
  • the waiting period Tw that is initially set is set to a period slightly longer than the period from the start of charge transfer until the measurement value of the measurement unit 14 stabilizes (saturates) when the capacitance value of the measurement capacitance Cs is at the lower limit of the measurement range, for example.
  • the control unit 11 executes the processes of steps S102 to S104 as in the case of FIG. 7.
  • the control unit 11 waits for the waiting period Tw to elapse (S122).
  • the control unit 11 acquires the measurement result of the measurement unit 14 at that time as the first voltage value Vx1 (S105).
  • the control unit 11 determines whether the acquired first voltage value Vx1 is a voltage value after saturation (after stabilization) (S123). If the acquired first voltage value Vx1 is not a voltage value after saturation (after stabilization) (S123: NO), the control unit 11 returns the process to step S121 and resets the waiting period Tw.
  • control unit 11 sets the current waiting period Tw to be longer than the previous waiting period Tw by a predetermined time. Then, the control unit 11 executes the processes from step S102 onwards in the same manner. As a result, the waiting period Tw from when the charge transfer is started in step S104 until the first voltage value Vx1 is obtained is lengthened by a predetermined time. Therefore, in step S105, the voltage value after saturation (after stabilization) is more likely to be obtained as the first voltage value Vx1.
  • control unit 11 repeatedly executes the processes from step S102 onwards while resetting the waiting period Tw (S121) until the first voltage value Vx1 acquired in step S105 becomes the saturated (stable) voltage value (S123: NO). Then, when the determination in step S123 becomes YES, the control unit 11 holds the first voltage value Vx1 acquired at that time as the first voltage value Vx1 to be used in the capacitance value calculation process (S111).
  • step S123 is performed, for example, as follows:
  • control unit 11 determines whether the first voltage value Vx1 acquired by the previous processing of step S105 and the first voltage value Vx1 acquired this time are substantially the same (the difference between the two is within an allowable fluctuation range). Alternatively, the control unit 11 determines whether the first voltage values Vx1 acquired by the processing of step S105 several times in the past (for example, five times), including the current time, were substantially the same. Then, if these determinations are YES, the control unit 11 determines YES in step S123.
  • the method of determining whether the first voltage value Vx1 obtained in step S105 is a saturated (stable) voltage value is not limited to these, and this determination may be made by other methods.
  • control unit 11 executes the processes of steps S106 to S109 as in the case of FIG. 7.
  • the control unit 11 then waits for a waiting period Tw to elapse from the start of charge transfer in step S109 (S124).
  • This waiting period Tw is set to the last waiting period Tw repeatedly reset in step S121.
  • the parasitic capacitance is smaller than the measurement capacitance Cs. For this reason, when the waiting period Tw in step S124 is set in this way, the measurement result (second voltage value Vx2) of the measurement unit 14 after the waiting period Tw has elapsed is in a stable state.
  • the waiting period Tw in step S124 may be set as a fixed period in relation to the capacitance value of the parasitic capacitance that can be normally assumed. In other words, the waiting period Tw in step S124 may be set to a period slightly longer than the period until the charge distribution of the reference capacitance Cr is completed for the parasitic capacitance of the capacitance value that can be normally assumed.
  • the control unit 11 acquires the measurement result of the measurement unit 14 at that time as the second voltage value Vx2 (S110). Then, the control unit 11 applies the acquired second voltage value Vx2 and the first voltage value Vx1 when the determination in step S123 is YES to the above formula (5) to calculate the capacitance value of the measured capacitance Cs (S111).
  • the control unit 11 repeatedly executes the first control C1 (steps S101 to S105) while changing the waiting period Tw from the transfer of the charge in step S104 to the acquisition of the first voltage value Vx1 in step S105 (S121) until the first voltage value Vx1 is saturated (S123: NO), and calculates the capacitance value using the saturated first voltage value Vx1 (S111). Therefore, when the capacitance value of the measurement capacitance Cs is small and the measurement value of the measurement unit 14 is saturated and stabilized early, the first voltage value Vx1 can be quickly obtained by the short waiting period Tw. Therefore, the calculation process of the capacitance value of the measurement capacitance Cs can be performed quickly.
  • control unit 11 lengthens the waiting period Tw each time the first control C1 is repeated. This allows the waiting period Tw to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set the waiting period Tw appropriate for the measured capacitance Cs.
  • the method of changing the waiting period Tw in step S121 is not limited to the method of gradually lengthening it from the minimum value as described above.
  • the waiting period Tw may be decreased and increased by a predetermined length from near the middle of the possible range (set range) of the waiting period Tw, and if at least two of the first voltage values Vx1 obtained from these three waiting periods Tw are substantially the same, one of these two first voltage values Vx1 may be used in the capacitance calculation process. If at least two of the first voltage values Vx1 obtained from the three waiting periods Tw are not substantially the same, the waiting period may be increased from the maximum value of these three waiting periods until the first voltage value Vx1 is saturated, and the first voltage value Vx1 used in the capacitance calculation may be obtained.
  • FIG. 9 shows the configuration of the capacitance measurement circuit 10 according to the second modification.
  • the capacitance measurement circuit 10 includes four capacitors Cra to Crd, four switch elements 16a to 16d, and a capacitance selection unit 15 as a capacitance value change unit for changing the capacitance value of the reference capacitance Cr.
  • the switch elements 16a to 16d are switched between conductive and non-conductive by the capacitance selection unit 15.
  • the capacitors Cra to Crd are each connected between the wiring between the switch elements 12a, 12b and ground.
  • the reference capacitance Cr in FIG. 1 is formed by the combined capacitance of the four capacitors Cra to Crd that are connected between this wiring and ground. Therefore, the capacitance value of the reference capacitance Cr changes depending on which of the switch elements 16a to 16d is made conductive by the capacitance selection unit 15.
  • the control unit 11 changes the switch element that is turned on by the capacitance selection unit 15 according to the measurement range (dynamic range) of the measurement capacitance Cs, and sets the capacitance value of the reference capacitance Cr to a value suitable for that dynamic range. That is, as described above, the capacitance value of the reference capacitance Cr is set so that the measurement unit 14 can properly measure the voltage value of the measurement capacitance Cs after charge is transferred from the reference capacitance Cr to the measurement capacitance Cs.
  • the dynamic range of the measurement capacitance Cs is set in the control unit 11 by the user, for example, via a higher-level terminal (not shown).
  • the capacitance value of the reference capacitance Cr can be adjusted to a value suitable for the dynamic range of the measurement capacitance Cs. Therefore, even if the dynamic range of the measurement capacitance Cs is changed, the capacitance value of the measurement capacitance Cs can be properly measured within the dynamic range.
  • capacitors Cra to Crd and four switch elements 16a to 16d are arranged to change the capacitance value of the reference capacitance Cr, but the number of pairs of capacitors and switch elements is not limited to this.
  • the number of pairs may be set to a predetermined number of two or more in relation to the range of the dynamic range that can be supported.
  • the configuration for changing the capacitance value of the reference capacitance Cr is not limited to the configuration shown in FIG. 19.
  • a variable capacitance may be arranged instead of the four capacitors Cra to Crd and the four switch elements 16a to 16d.
  • the control unit 11 may control the capacitance value of the variable capacitance to a capacitance value that corresponds to the measurement range (dynamic range) of the measurement capacitance Cs.
  • FIG. 10 is a diagram showing the configuration of a capacitance measurement circuit 10 according to embodiment 2.
  • the positions of the reference capacitance Cr, the measurement capacitance Cs, the switch element 13, and the measurement unit 14 are changed compared to FIG. 1. That is, the measurement capacitance Cs is placed upstream of the reference capacitance Cr (on the power supply voltage Vdd side), and the positions of the switch element 13 and the measurement unit 14 are changed accordingly.
  • the functions of the switch element 13 and the measurement unit 14 are the same as in the above-mentioned embodiment 1.
  • the switch element 12b can be changed to an N-type FET.
  • the configuration and function of the switch elements 12a and 12c are the same as in the above-mentioned embodiment 1.
  • FIGS. 11(a) to 15(b) are diagrams showing the operation of the capacitance measurement circuit 10 when measuring the capacitance value of the measurement capacitance Cs.
  • FIG. 16 is a flowchart showing the processing of the control unit 11 when measuring the capacitance value of the measurement capacitance Cs.
  • the control unit 11 connects the negative electrode of the measurement capacitance Cs to ground (S201), switches the switch elements 12a and 12c to a conductive state, and charges the measurement capacitance Cs and discharges the reference capacitance Cr (S202). Thereafter, as shown in FIG. 11(b), the control unit 11 disconnects the positive electrode of the reference capacitance Cr from ground, and after the measurement capacitance Cs is fully charged, as shown in FIG. 12(a), disconnects the positive electrode of the measurement capacitance Cs from ground (S203). Whether the measurement capacitance Cs is fully charged can be determined by whether the voltage of the measurement capacitance Cs has reached the power supply voltage Vdd and stabilized, as in the above embodiment.
  • control unit 11 switches the switch element 12b to a conductive state, as shown in FIG. 12(b), and transfers the charge of the measurement capacitance Cs to the reference capacitance Cr (S204).
  • the control unit 11 then waits for a period of time until this transfer is completed, and thereafter, as shown in FIG. 13(a), obtains the measurement value of the measurement unit 14 as the first voltage value Vx1 (S205). This completes the first control C1.
  • the control unit 11 switches the switch element 13 to the positive electrode side of the measurement capacitance Cs, and connects the positive electrode and negative electrode of the measurement capacitance Cs (S206). Then, as shown in FIG. 14(a), the control unit 11 switches the switch elements 12b and 12c to the conductive state, and discharges the reference capacitance Cr and the measurement capacitance Cs (S207).
  • the control unit 11 switches the switch elements 12b and 12c to a non-conductive state, and further switches the switch element 12a to a conductive state as shown in FIG. 14(b) to connect the positive electrode of the measurement capacitance Cs to the power supply voltage Vdd (S208).
  • the positive electrode and negative electrode of the measurement capacitance Cs are connected, the positive electrode and negative electrode of the measurement capacitance Cs are at the same potential. Therefore, the measurement capacitance Cs is not charged, and charging is performed on the parasitic capacitance other than the measurement capacitance Cs.
  • the control unit 11 sets the switch element 12a to a non-conductive state to disconnect the positive electrode of the measurement capacitance Cs from the power supply voltage Vdd (S209), and then switches the switch element 12b to a conductive state to connect the positive electrode of the measurement capacitance Cs and the positive electrode of the reference capacitance Cr as shown in FIG. 15(a), thereby transferring charge to the reference capacitance Cr (S210).
  • the control unit 11 obtains the measurement value of the measurement unit 14 as the first voltage value Vx1 as shown in FIG. 15(b) (S205). This completes the second control C2.
  • control unit 11 calculates the capacitance value of the measured capacitance Cs from the first voltage value Vx1 and the second voltage value Vx2 obtained in the first control C1 and the second control C2, respectively (S212).
  • the capacitance value of the measured capacitance Cs is calculated as follows:
  • the charge Qs of the measured capacitance Cs is expressed by the following formula, assuming that the capacitance value of the measured capacitance Cs is Cs1.
  • this capacitance value Cs1 includes an error component due to parasitic capacitance.
  • This error component Ce can be expressed by the following equation using the second voltage value Vx2 obtained by the operation of FIG. 15(b).
  • the electrostatic capacitance value of the parasitic capacitance i.e., the error component Ce, can be expressed by the above formula (9).
  • the capacitance value Cs of the measured capacitance Cs is the capacitance value Cs in equation (8) minus the error component Ce, and is calculated from equations (8) and (9) above using the following equation:
  • Equation (10) the capacitance value Cr and the power supply voltage Vdd are known, and the first voltage value Vx1 and the second voltage value Vx2 are obtained by the operations shown in Figures 13(a) and 15(b), so the capacitance value of the measured capacitance Cs can be calculated from equation (10) above.
  • FIGS. 17(a) and (b) are graphs showing simulation results of capacitance detected by the capacitance detection process of FIG. 7 (embodiment 1) and FIG. 16 (embodiment 2), respectively.
  • the capacitance value of the measured capacitance Cs was calculated by the processes in Figures 7 and 16 when the capacitance value of the measured capacitance Cs was changed.
  • the horizontal axis is the capacitance value set for the measured capacitance Cs
  • the vertical axis is the capacitance value calculated by the processes.
  • the capacitance values calculated by the processes of the first and second embodiments are roughly equal to the capacitance values set for the measured capacitance Cs, and a linear approximation line was obtained from the plot of the simulation results. This confirms that these processes make it possible to obtain a capacitance value for the measured capacitance Cs in which the effects of parasitic capacitance are effectively suppressed.
  • the stable (saturated) voltage values (first voltage value Vx1, second voltage value Vx2) after the charge transfer are measured by the measuring unit 14, so that the capacitance value in a small range can be stably measured without using a high-precision AD converter.
  • the negative electrode and the positive electrode (wire with the same potential as the positive electrode) of the measurement capacitance Cs are connected in step S206, so that the measured second voltage value Vx2 is hardly influenced by the measurement capacitance Cs, but is mainly influenced by the reference capacitance Cr and the parasitic capacitance.
  • the negative electrode of the measurement capacitance Cs is connected to the ground in step S201, so that the measured first voltage value Vx1 is influenced by the measurement capacitance Cs as well as the reference capacitance Cr and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance Cs from these two voltage values, the capacitance value without the influence of the parasitic capacitance can be calculated. Therefore, the electrostatic capacitance value of the measurement capacitance Cs can be measured with high accuracy.
  • the control unit 11 calculates the capacitance value of the measurement capacitance Cs using the above formula (10) from the first voltage value Vx1 obtained by the first control C1, the second voltage value Vx2 obtained by the second control C2, the power supply voltage Vdd applied to the measurement capacitance Cs, and the capacitance value of the reference capacitance Cr.
  • the effect of error components due to parasitic capacitance on the capacitance value of the measurement capacitance Cs can be suppressed, and the capacitance value of the measurement capacitance Cs can be obtained with high accuracy.
  • FIG. 18 is a flowchart showing the process for calculating the capacitance value of the measurement capacitance Cs in the first modification example.
  • the control unit 11 acquires the first voltage value Vx1 (S205) while changing the waiting period Tw (S221) until the first voltage value Vx1 becomes saturated (stable) (S223: NO). That is, after the charge transfer is started in step S204 of FIG. 16, the waiting period Tw (S222) until the first voltage value Vx1 is acquired is changed, and the first voltage value Vx1 is acquired (S205).
  • the control unit 11 acquires the measurement value of the measurement unit 14 at the point when the measurement value becomes saturated (stable) as the first voltage value Vx1 to be used in calculating the capacitance value (S212).
  • the waiting period Tw is gradually lengthened from the minimum value of the setting range.
  • the method of changing the waiting period Tw is not limited to this, and it may be changed by other methods.
  • the determination in step S223 may be performed in the same manner as the determination in step S123 in FIG. 8.
  • control unit 11 performs the processes of steps S206 to S210 to obtain the second voltage value Vx2, as in FIG. 16.
  • the control unit 11 waits for the waiting period Tw to elapse when the determination in step S222 becomes YES (S224), and obtains the measurement value of the measurement unit 14 at the time when the waiting period Tw has elapsed as the second voltage value Vx2 (S211).
  • the waiting period Tw in step S224 may be set as a fixed period in relation to the capacitance value of the parasitic capacitance that can be normally assumed.
  • the waiting period Tw in step S224 may be set to a period slightly longer than the period until the distribution of charge from the parasitic capacitance of the normally assumed capacitance value to the reference capacitance Cr is completed.
  • control unit 11 applies the acquired second voltage value Vx2 and the first voltage value Vx1 when the determination in step S223 is YES to the above formula (10) to calculate the capacitance value of the measured capacitance Cs. This causes the control unit 11 to end the process of FIG. 18.
  • the control unit 11 repeatedly executes the first control C1 (steps S201 to S205) while changing the waiting period Tw from the transfer of the charge in step S204 to the acquisition of the first voltage value Vx1 in step S205 (S221) until the first voltage value Vx1 is saturated (S223: NO), and calculates the capacitance value using the saturated first voltage value Vx1 (S212). Therefore, when the capacitance value of the measurement capacitance Cs is small and the measurement value of the measurement unit 14 is saturated and stabilized early, the first voltage value Vx1 can be quickly obtained by the short waiting period Tw. Therefore, the calculation process of the capacitance value of the measurement capacitance Cs can be performed quickly.
  • control unit 11 lengthens the waiting period Tw each time the first control C1 is repeated. This allows the waiting period Tw to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set the waiting period Tw appropriate for the measured capacitance Cs.
  • FIG. 19 shows the configuration of the capacitance measurement circuit 10 according to the second modification.
  • the capacitance measurement circuit 10 includes, as in FIG. 9, four capacitors Cra to Crd, four switch elements 16a to 16d, and a capacitance selection unit 15 as a capacitance value change unit for changing the capacitance value of the reference capacitance Cr.
  • the switch elements 16a to 16d can be changed to N-type FETs.
  • the capacitors Cra to Crd are each connected between the wiring between the switch elements 12b and 12c and the ground.
  • the reference capacitance Cr in FIG. 10 is formed by the combined capacitance of the capacitors among the four capacitors Cra to Crd that are connected between this wiring and ground. Therefore, the capacitance value of the reference capacitance Cr can be changed depending on which of the switch elements 16a to 16d is turned on by the capacitance selection unit 15. This makes it possible to adjust the capacitance value of the reference capacitance Cr to a value appropriate for the dynamic range of the measurement capacitance Cs. Therefore, even if the dynamic range of the measurement capacitance Cs is changed, the capacitance value of the measurement capacitance Cs can be properly measured within that dynamic range.
  • the capacitance measurement circuit 10 of the first embodiment is applied to a load detection device.
  • the load detection device detects a load using a capacitance type load sensor.
  • This type of load detection device can be applied to various systems.
  • the load sensor included in the load detection device may be called a "capacitive pressure sensor element,” a “capacitive pressure detection sensor element,” a “pressure sensitive switch element,” or the like.
  • Figs. 20(a) to 23 For convenience, mutually orthogonal X, Y, and Z axes are indicated in Figs. 20(a) to 23.
  • the Z-axis direction is the thickness direction of the load sensor 20.
  • Figure 20(a) is a perspective view that shows a schematic diagram of a base member 21 and a conductive elastic body 22 that is placed on the upper surface (the surface on the positive side of the Z axis) of the base member 21.
  • the base member 21 is an elastic, insulating, flat-plate member.
  • the base member 21 has a rectangular shape in a plan view.
  • the thickness of the base member 21 is constant.
  • the thickness of the base member 21 is, for example, 0.01 mm to 2 mm. When the thickness of the base member 21 is small, the base member 21 is sometimes called a sheet member or a film member.
  • the base member 21 is made of a non-conductive resin material or a non-conductive rubber material.
  • the resin material used for the base member 21 is, for example, at least one resin material selected from the group consisting of styrene-based resin, silicone-based resin (e.g., polydimethylpolysiloxane (PDMS)), acrylic-based resin, rotaxane-based resin, and urethane-based resin.
  • silicone-based resin e.g., polydimethylpolysiloxane (PDMS)
  • acrylic-based resin e.g., rotaxane-based resin
  • rotaxane-based resin e.g., rotaxane-based resin
  • urethane-based resin e.g., urethane-based resin.
  • the rubber material used for the base member 21 is, for example, at least one rubber material selected from the group consisting of silicone rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluororubber, epichlorohydrin rubber, urethane rubber, and natural rubber.
  • the conductive elastic bodies 22 are disposed on the upper surface (the surface on the positive side of the Z axis) of the base member 21.
  • three conductive elastic bodies 22 are disposed on the upper surface of the base member 21.
  • the conductive elastic bodies 22 are elastic, conductive members.
  • Each conductive elastic body 22 has a long strip shape in the Y axis direction.
  • the three conductive elastic bodies 22 are disposed side by side at a predetermined interval in the X axis direction.
  • Wiring W2 electrically connected to the conductive elastic bodies 22 is provided at the end of each conductive elastic body 22 on the negative side of the Y axis.
  • the conductive elastic body 22 is formed on the upper surface of the base member 21 by a printing method such as screen printing, gravure printing, flexographic printing, offset printing, and gravure offset printing. These printing methods make it possible to form the conductive elastic body 22 on the upper surface of the base member 21 with a thickness of about 0.001 mm to 0.5 mm.
  • the conductive elastomer 22 is composed of a resin material with conductive filler dispersed therein, or a rubber material with conductive filler dispersed therein.
  • the resin material used for the conductive elastic body 22 is the same as the resin material used for the base member 21 described above, and is at least one resin material selected from the group consisting of, for example, styrene-based resins, silicone-based resins (polydimethylpolysiloxane (e.g., PDMS), etc.), acrylic-based resins, rotaxane-based resins, and urethane-based resins.
  • the rubber material used for the conductive elastomer 22 is the same as the rubber material used for the base member 21 described above, and is at least one type of rubber material selected from the group consisting of silicone rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluororubber, epichlorohydrin rubber, urethane rubber, and natural rubber.
  • silicone rubber isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluororubber, epichlorohydrin rubber, urethane rubber, and natural rubber.
  • the conductive filler used in the conductive elastomer 22 is at least one material selected from the group consisting of metal materials such as Au (gold), Ag (silver), Cu (copper), C (carbon), ZnO (zinc oxide), In 2 O 3 (indium (III) oxide), and SnO 2 (tin (IV) oxide), conductive polymer materials such as PEDOT:PSS (i.e., a composite of poly 3,4-ethylenedioxythiophene (PEDOT) and polystyrene sulfonate (PSS)), and conductive fibers such as metal-coated organic fibers and metal wires (in a fibrous state).
  • metal materials such as Au (gold), Ag (silver), Cu (copper), C (carbon), ZnO (zinc oxide), In 2 O 3 (indium (III) oxide), and SnO 2 (tin (IV) oxide
  • conductive polymer materials such as PEDOT:PSS (i.e., a composite of poly 3,4-ethylenedi
  • FIG. 20(b) is a perspective view that shows a schematic diagram of the structure of FIG. 20(a) with conductor wire 23 installed.
  • the conductor wires 23 are linear members and are arranged overlapping on the upper surface of the conductive elastic body 22 shown in FIG. 20(a). In this embodiment, three conductor wires 23 are arranged overlapping on the upper surfaces of the three conductive elastic bodies 22. The three conductor wires 23 are arranged side by side at a predetermined interval along the longitudinal direction (Y-axis direction) of the conductive elastic body 22 so as to intersect with the conductive elastic body 22. Each conductor wire 23 is arranged extending in the X-axis direction so as to straddle the three conductive elastic bodies 22.
  • the conductor wire 23 is, for example, a coated copper wire.
  • the conductor wire 23 is composed of a linear conductive member 23a and a dielectric 23b formed on the surface of the conductive member 23a.
  • Figure 21(a) is a schematic perspective view showing the state in which thread 24 is installed in the structure of Figure 20(b).
  • each conductor wire 23 is connected to the base member 21 by threads 24 so as to be movable in the longitudinal direction (X-axis direction) of the conductor wire 23.
  • 12 threads 24 connect the conductor wires 23 to the base member 21 at positions other than the positions where the conductive elastic body 22 and the conductor wire 23 overlap.
  • the threads 24 are made of chemical fibers, natural fibers, or a mixture of these fibers.
  • Figure 21(b) is a perspective view that shows a schematic diagram of the structure in Figure 21(a) with a base member 25 installed.
  • the base member 25 is placed from above (the positive side of the Z axis) of the structure shown in FIG. 21(a).
  • the base member 25 is an insulating member.
  • the base member 25 is, for example, at least one resin material selected from the group consisting of polyethylene terephthalate, polycarbonate, polyimide, etc.
  • the base member 25 may be made of the same material as the base member 21.
  • the base member 25 has a flat plate shape parallel to the XY plane, and has the same size and shape as the base member 21 in a planar view.
  • the thickness of the base member 25 in the Z axis direction is, for example, 0.01 mm to 2 mm.
  • the four outer periphery sides of base member 25 are connected to the four outer periphery sides of base member 21 with silicone rubber adhesive, thread, or the like. This fixes base member 25 to base member 21.
  • Conductor wire 23 is sandwiched between conductive elastic body 22 and base member 25. In this way, load sensor 20 is completed as shown in Figure 21 (b). Load sensor 20 can be used in a state where it is turned over from the state shown in Figure 21 (b).
  • FIG. 22(a) and 22(b) are schematic diagrams showing the cross section of the load sensor 20 when the load sensor 20 is cut along a plane parallel to the Y-Z plane at the center position in the X-axis direction of the conductive elastic body 22.
  • FIG. 22(a) shows the cross section when no load is applied
  • FIG. 22(b) shows the cross section when a load is applied.
  • the conductor wire 23 is composed of a conductive member 23a and a dielectric 23b formed on the conductive member 23a.
  • the conductive member 23a is a linear member having electrical conductivity.
  • the dielectric 23b covers the surface of the conductive member 23a.
  • the conductive member 23a is composed of, for example, copper.
  • the diameter of the conductive member 23a is, for example, about 60 ⁇ m.
  • the dielectric 23b has electrical insulation properties and is made of, for example, a resin material, a ceramic material, a metal oxide material, etc.
  • the dielectric 23b may be at least one resin material selected from the group consisting of polypropylene resin, polyester resin (for example, polyethylene terephthalate resin), polyimide resin, polyphenylene sulfide resin, polyvinyl formal resin, polyurethane resin, polyamideimide resin, polyamide resin, etc., or at least one metal oxide material selected from the group consisting of Al 2 O 3 , Ta 2 O 5 , etc.
  • the dielectric 23b is formed at least in the range of the conductor line 23 overlapping the conductive elastic body 22.
  • FIG. 23 is a plan view that shows a schematic diagram of the internal configuration of the load sensor 20. For convenience, the thread 24 and the base member 25 are omitted from FIG. 23.
  • Each element part includes a conductive elastic body 22 and a conductor line 23 near the intersection of the conductive elastic body 22 and the conductor line 23.
  • the conductor wire 23 constitutes one pole of the capacitance (e.g., an anode), and the conductive elastic body 22 constitutes the other pole of the capacitance (e.g., a cathode). That is, the conductive member 23a (see Figures 22(a) and (b)) in the conductor wire 23 constitutes one electrode of the load sensor 20 (capacitive load sensor), the conductive elastic body 22 constitutes the other electrode of the load sensor 20 (capacitive load sensor), and the dielectric 23b (see Figures 22(a) and (b)) included in the conductor wire 23 corresponds to the dielectric that determines the capacitance in the load sensor 20 (capacitive load sensor).
  • the conductor wire 23 When a load is applied to each element in the Z-axis direction, the conductor wire 23 is enveloped in the conductive elastic body 22. This changes the contact area between the conductor wire 23 and the conductive elastic body 22, and the capacitance between the conductor wire 23 and the conductive elastic body 22 changes.
  • the end of the conductor wire 23 on the negative side of the X-axis and the end of the wiring W2 installed on the conductive elastic body 22 on the negative side of the Y-axis are connected to the capacitance measurement circuit 10, which will be described later with reference to FIG. 24.
  • the load applied to element part A11 can be calculated by detecting the capacitance between the conductive elastic body 22 on the most negative side of the X-axis and the conductor line 23 on the most positive side of the Y-axis.
  • the load applied to the other element parts can be calculated by detecting the capacitance between the conductive elastic body 22 and the conductor line 23 that intersect in the other element parts.
  • FIG. 24 shows the configuration of the load detection device 1.
  • FIG. 24 illustrates only the conductor wire 23 and the conductive elastic body 22 as components of the load sensor 20, and the conductive elastic body 22 is illustrated as a line.
  • the load detection device 1 includes the capacitance measurement circuit 10 according to the first embodiment and the load sensor 20 shown in FIG. 21(b).
  • the nine element parts A11 to A33 shown in FIG. 23 each correspond to a measurement capacitance Cs.
  • the conductor wire 23 (conductive member 23a) of the element parts A11 to A33 corresponds to the positive electrode of the measurement capacitance Cs
  • the conductive elastic body 22 of the element parts A11 to A33 corresponds to the negative electrode of the measurement capacitance Cs.
  • the capacitance measurement circuit 10 includes element selection units 17 and 18 for switching the element unit to be measured among the nine element units A11 to A33 shown in FIG. 23.
  • the element selection unit 17 includes switch elements 17a to 17c, and the element selection unit 18 includes switch elements 18a to 18d.
  • Switch elements 17a to 17c connect the wiring W2 drawn out from the conductive elastic body 22 to either the ground line L3 or the potential line L2. These switch elements 17a to 17c correspond to switch element 13 in FIG. 1.
  • Switch element 18d connects the potential line L1 to one of switch elements 18a to 18c.
  • Switch elements 18a to 18c connect the wiring W1 drawn out from the conductor line 23 (conductive member 23a) to either the output terminal of switch element 18d or the ground line L3.
  • the capacitance measurement circuit 10 also includes an equipotential generator 19 for generating a potential equal to that of the potential line L1.
  • an equipotential generator 19 for generating a potential equal to that of the potential line L1.
  • one terminal of the switch element 17a is directly connected to the wiring between the switch elements 12b and 12c in order to make the positive and negative electrodes of the measurement capacitance Cs equal in potential.
  • FIG. 24 in addition to the switch element 17a, other switch elements 17b and 17c, wiring W2, conductive elastic body 22, and other circuit parts are connected to the potential line L2 to which one terminal of the switch element 17a is connected, so the impedance of these circuit parts is higher than in the case of FIG. 1.
  • an equipotential generator 19 is arranged to make the potential of the potential line L2 equal to that of the potential line L1.
  • FIG. 24 shows the states of switch elements 17a-17c, 18a-18d in first control C1 when measuring the capacitance value of element part A11.
  • the conductor wires 23 (positive poles) of element parts A11-A13 which are the topmost of the nine element parts, are connected to potential line L1.
  • the remaining six element parts are in a state of being disconnected in terms of the circuit.
  • the same potential as that of potential line L1 is applied to the conductive elastic bodies 22 of element parts A12 and A13 by equipotential generator 19, so element parts A12 and A13 are disabled. Therefore, only element part A11 to be measured is connected to capacitance measurement circuit 10.
  • the control unit 11 executes the first control C1 in FIG. 7 to obtain the first voltage value Vx1.
  • step S106 of the second control C2 in FIG. 7 the control unit 11 switches the switch element 17a to the potential line L2 side as shown in FIG. 25, and executes the processes of steps S107 to S110.
  • the control unit 11 obtains the second voltage value Vx2.
  • the control unit 11 executes the process of step S111 to calculate the capacitance value of the element unit A11.
  • the control unit 11 calculates the load applied to the element unit A11 from the calculated capacitance value.
  • the load may be calculated by a processing unit other than the control unit 11 from the capacitance value calculated by the control unit 11. In this way, the process for the element unit A11 is completed.
  • the control unit 11 controls the switch elements 17a to 17c and 18a to 18d to sequentially switch the element part to be measured. For example, when the element part A12 is the object to be measured, the control unit 11 connects the switch element 17b to the ground line L3 and connects the switch elements 17a and 17c to the potential line L2 in step S101 of the first control C1 in FIG. 7. The control unit 11 also causes the switch elements 18a to 18d to maintain the state shown in FIG. 24. In this state, the control unit 11 executes the process from step S102 onwards in FIG. 7. In step S106, the switch element 17b is switched to the potential line L2 side, and the process from step S107 onwards is carried out. In this way, the control unit 11 calculates the capacitance value of the element part A12, and calculates the load applied to the element part A12 from the calculation result.
  • the load detection device 1 of the third embodiment since it includes the capacitance measurement circuit 10 of the first embodiment, it is possible to stably obtain a capacitance value according to the load even when the load applied to the element parts A11 to A33 is small and the capacitance is small. Also, since it includes the capacitance measurement circuit 10 of the first embodiment, it is possible to accurately obtain a capacitance value in which the influence of parasitic capacitance is suppressed. Therefore, it is possible to stably and accurately detect a small range of load.
  • the load sensor 20 also includes multiple element parts A11 to A33, and the capacitance measurement circuit 10 includes element selection units 17 and 18 for switching between element parts to be measured. This allows the load to be detected over a wide range in which the multiple element parts A11 to A33 are arranged. By switching between element parts to be measured using the element selection units 17 and 18, the capacitance value of each element part can be measured stably and accurately using processing similar to that shown in FIG. 7.
  • the process of calculating the capacitance value of each element part may be changed to the process shown in FIG. 8. This allows the process of calculating the capacitance value for each element part to be performed quickly, and the load detection process for all nine element parts to be performed quickly.
  • modified example 2 shown in FIG. 9 may be applied to the configuration of FIG. 24.
  • the capacitance value of each element unit can be measured properly and the load of each element unit can be detected with high accuracy.
  • ⁇ Embodiment 4> a configuration example in which the capacitance measuring circuit 10 of the second embodiment is applied to a load detection device is shown.
  • the load detection device detects a load by a load sensor similar to that of the third embodiment.
  • FIG. 26 is a diagram showing the configuration of a load detection device 1 according to embodiment 4.
  • FIG. 26 illustrates only the conductor wire 23 and the conductive elastic body 22 as components of the load sensor 20, and the conductive elastic body 22 is illustrated as a line.
  • the load detection device 1 includes the capacitance measurement circuit 10 according to the second embodiment and the load sensor 20 shown in FIG. 21(b).
  • the nine element parts A11 to A33 shown in FIG. 23 each correspond to a measurement capacitance Cs.
  • the conductor wire 23 (conductive member 23a) of the element parts A11 to A33 corresponds to the positive electrode of the measurement capacitance Cs
  • the conductive elastic body 22 of the element parts A11 to A33 corresponds to the negative electrode of the measurement capacitance Cs.
  • switch elements 17a to 17c and switch elements 18a to 18d is the same as in FIG. 24. Also, as in FIG. 24, an equal potential generator 19 is provided to make the potential of potential line L2 equal to the potential of potential line L1.
  • FIG. 26 shows the states of the switch elements 17a-17c and 18a-18d in the first control C1 when measuring the capacitance value of the element part A11.
  • the element part A11 to be measured is connected to the capacitance measurement circuit 10.
  • the control unit 11 executes the first control C1 in FIG. 16 to obtain the first voltage value Vx1.
  • step S206 of the second control C2 in FIG. 16 the control unit 11 switches the switch element 17a to the potential line L2 side as shown in FIG. 27, and executes the processes of steps S207 to S211.
  • the control unit 11 obtains the second voltage value Vx2.
  • the control unit 11 executes the process of step S212 to calculate the capacitance value of the element unit A11.
  • the control unit 11 calculates the load applied to the element unit A11 from the calculated capacitance value.
  • the load may be calculated by a processing unit other than the control unit 11 from the capacitance value calculated by the control unit 11. In this way, the process for the element unit A11 is completed.
  • the control unit 11 controls the switch elements 17a to 17c and 18a to 18d to sequentially switch the element part to be measured. For example, when the element part A12 is the object to be measured, the control unit 11 connects the switch element 17b to the ground line L3 and connects the switch elements 17a and 17c to the potential line L2 in step S201 of the first control C1 in FIG. 16. The control unit 11 also causes the switch elements 18a to 18d to maintain the state shown in FIG. 26. In this state, the control unit 11 executes the process from step S202 onwards in FIG. 16. In step S206, the switch element 17b is switched to the potential line L2 side, and the process from step S207 onwards is carried out. In this way, the control unit 11 calculates the electrostatic capacitance value of the element part A12, and calculates the load applied to the element part A12 from the calculation result.
  • the load detection device 1 of the fourth embodiment since it includes the capacitance measurement circuit 10 of the second embodiment, it is possible to stably obtain a capacitance value according to the load even when the load applied to the element parts A11 to A33 is small and the capacitance is small. Also, since it includes the capacitance measurement circuit 10 of the second embodiment, it is possible to accurately obtain a capacitance value in which the influence of parasitic capacitance is suppressed. Therefore, it is possible to stably and accurately detect a small range of load. Also, by switching the element part to be measured by the element selection parts 17 and 18, it is possible to stably and accurately measure the capacitance value of each element part by the same process as that of FIG. 16.
  • the process of calculating the capacitance value of each element unit may be changed to the process shown in FIG. 18. This allows the process of calculating the capacitance value for each element unit to be performed quickly, and the load detection process for all nine element units to be performed quickly.
  • modified example 2 shown in FIG. 19 may be applied to the configuration of FIG. 26.
  • the load sensor 20 to be measured is changed and the dynamic range of the element unit is changed, the capacitance value of each element unit can be measured properly and the load of each element unit can be detected with high accuracy.
  • the switch elements 12a to 12c are configured by P-type or N-type FETs, but the switch elements 12a to 12c may be configured by switch elements other than FETs.
  • the switch element 13 may be configured by various types of switch elements as long as the connection destination of the negative electrode of the measurement capacitance Cs can be switched between ground and the positive electrode.
  • various types of switch elements may be used as the switch elements 17a to 17c and the switch elements 18a to 18d.
  • the reference capacitance Cr is charged in FIG. 5(a) without being discharged.
  • the reference capacitance Cr may be discharged once and then charged in FIG. 5(a). In this case, however, it takes longer for the reference capacitance Cr to be fully charged than when the reference capacitance Cr is charged without being discharged as described above. Therefore, in order to proceed with the process more quickly, it is preferable to charge the reference capacitance Cr without discharging it, as in FIG. 5(a). This is also true in the flow from the operation in FIG. 13(b) to the operation in FIG. 14(a) in embodiment 2.
  • an equal potential is applied to the positive and negative electrodes of element parts A12 and A13 other than the element part A11 to be measured, thereby disabling element parts A12 and A13.
  • switch elements 17b and 17c may be set so that the negative electrodes of these elements are connected to ground line L3.
  • the capacitance of element parts A12 and A13 is included in the parasitic capacitance described above, and is therefore cancelled out by the above formulas (5) and (10). Therefore, the capacitance of element part A11 to be measured can be obtained with high accuracy.
  • the two conductor lines 23 (conductive members 23a) other than the conductor line 23 (conductive member 23a) constituting the positive electrode of the element portion A11 to be measured are connected to the ground line by the switch elements 18b and 18c, but the switch elements 18b and 18c may be connected to the output line side of the switch element 18d, and the element portion having these two conductor lines 23 (conductive member 23a) as the positive electrode may be set in a floating state.
  • the parasitic capacitances other than those of the element portion A11 to be measured are canceled by the above equations (5) and (10), so that the capacitance of the element portion A11 to be measured can be obtained with high accuracy.
  • the configuration and switching form of the element selection units 17 and 18 may be other configurations and switching forms as long as the negative electrode of the element part to be measured can be connected to ground or to a wiring having the same potential as the positive electrode of the element part to be measured, and the capacitance of element parts other than the one to be measured can be canceled together with other parasitic capacitances by the above formulas (5) and (10).
  • the conductor wire 23 is composed of a coated copper wire, but it is not limited to this, and may be composed of a linear conductive member made of a material other than copper and a dielectric that coats the conductive member. Also, the conductive member may be composed of a twisted wire.
  • the conductive elastic body 22 is provided only on the surface of the base member 21 on the positive side of the Z axis, but a conductive elastic body may also be provided on the surface of the base member 25 on the negative side of the Z axis.
  • the conductive elastic body on the base member 25 side is configured similarly to the conductive elastic body 22 on the base member 21 side, and is arranged so as to overlap the conductive elastic body 22 with the conductor wire 23 in between in a plan view.
  • the wiring drawn out from the conductive elastic body on the base member 25 side is connected to the wiring W2 drawn out from the conductive elastic body 22 facing in the Z axis direction.
  • the dielectric 23b is formed on the conductive member 23a so as to cover the outer periphery of the conductive member 23a, but instead, the dielectric 23b may be formed on the upper surface of the conductive elastic body 22.
  • the conductive member 23a sinks so as to be enveloped by the conductive elastic body 22 and the dielectric 23b, and the contact area between the conductive member 23a and the conductive elastic body 22 changes. As a result, the load applied to the element portion can be detected, similar to the above embodiments.
  • the load sensor 20 is configured so that nine element parts are arranged in a matrix of three rows and three columns, but the number and arrangement of element parts in the load sensor 20 are not limited to this.
  • the load sensor 20 may be configured so that 16 element parts are arranged in a matrix of four rows and four columns, or the load sensor 20 may be configured so that multiple element parts are arranged in only one column.
  • the load sensor 20 may be configured to have only one element part.
  • the element portion is formed by intersecting the conductive elastic body 22 and the conductor wire 23, but the configuration of the element portion is not limited to this.
  • the element portion may be formed by a configuration in which a semi-spherical conductive elastic body and a flat electrode sandwich a dielectric.
  • the dielectric may be formed on the surface of the electrode facing the conductive elastic body, or on the surface of the semi-spherical conductive elastic body.
  • the measurement capacitance measured by the capacitance measurement circuit 10 is not limited to the element portion of the load sensor, but may be other measurement capacitance.
  • a capacitance element formed in an electrostatic touch panel or a semiconductor device, an electrolytic capacitor, a ceramic capacitor, etc. may be used as the measurement capacitance of the capacitance measurement circuit 10.
  • a reference capacitance having a predetermined capacitance value; a switching unit that switches between application and non-application of a voltage to the reference capacitance; a transfer unit that transfers the charge stored in the reference capacitance to a measurement capacitance; a connection part for connecting the negative electrode of the measurement capacitance to a ground or a wiring having the same potential as the positive electrode of the measurement capacitance; A measurement unit that measures a voltage of the measurement capacitance; a control unit that controls the switching unit, the transfer unit, and the connection unit, The control unit is a first control for causing the transfer unit to transfer charges while a negative electrode of the measurement capacitance is connected to the ground after a voltage is applied to the reference capacitance; a second control for causing the transfer unit to transfer charges in a state in which a negative electrode of the measurement capacitance is connected to the wiring having the same potential as a positive electrode of the measurement capacitance after a voltage is applied to the reference capacitance; and calculating a capacitance value
  • the capacitance value of the measurement capacitance is calculated based on the voltage value after the charge is transferred from the reference capacitance, so that it is possible to stably measure capacitance values in a small range without using a high-precision AD converter.
  • the negative electrode of the measurement capacitance is connected to a wire with the same potential as the positive electrode of the measurement capacitance, so the measured voltage value is hardly affected by the measurement capacitance, but is mainly affected by the reference capacitance and parasitic capacitance.
  • the negative electrode of the measurement capacitance is connected to ground, so the measured voltage value is affected by the measurement capacitance as well as the reference capacitance and parasitic capacitance.
  • the capacitance value of the measurement capacitance can be measured with high precision.
  • the control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the reference capacitance, and a capacitance value Cr of the reference capacitance by the following formula: 1.
  • a capacitance measurement circuit comprising:
  • This technology can suppress the effect of error components due to parasitic capacitance on the capacitance value of the measurement capacitance Cs, and the capacitance value of the measurement capacitance Cs can be obtained with high accuracy.
  • This technology calculates the capacitance value of the measurement capacitance based on the voltage value after the charge is transferred from the measurement capacitance, so that it is possible to stably measure capacitance values in a small range without using a highly accurate AD converter.
  • the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance and a voltage is applied to the measurement capacitance, so that almost no charge is accumulated in the measurement capacitance, but charges are accumulated in the parasitic capacitance. Therefore, the voltage value measured by the second control is hardly affected by the measurement capacitance, and is mainly affected by the reference capacitance and the parasitic capacitance.
  • the negative electrode of the measurement capacitance is connected to the ground and a voltage is applied to the measurement capacitance, so that charges are applied to the measurement capacitance as well as the parasitic capacitance. Therefore, the voltage value measured by the twelfth control is affected by the measurement capacitance as well as the reference capacitance and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not affected by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high accuracy.
  • the control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the measurement capacitance, and a capacitance value Cr of a reference capacitance, by the following formula: 1.
  • a capacitance measurement circuit comprising:
  • This technology can suppress the effect of error components due to parasitic capacitance on the capacitance value of the measured capacitance, allowing the capacitance value of the measured capacitance to be obtained with high accuracy.
  • a capacitance measurement circuit comprising:
  • the capacitance value of the measurement capacitance is small and the measurement value of the measurement unit saturates and stabilizes early, the first voltage value Vx1 can be obtained quickly with a short waiting period. Therefore, the calculation process of the capacitance value of the measurement capacitance can be performed quickly.
  • a capacitance measurement circuit comprising:
  • This technology allows the standby period to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set a standby period appropriate for the capacitance to be measured.
  • a capacitance value changing unit that changes the capacitance value of the reference capacitance 1.
  • a capacitance measurement circuit comprising:
  • This technology makes it possible to adjust the capacitance value of the reference capacitance to a value appropriate for the dynamic range of the measurement capacitance. Therefore, even if the dynamic range of the measurement capacitance is changed, the capacitance value of the measurement capacitance can be measured appropriately within that dynamic range.
  • a load detection device comprising:
  • this technology since it includes a capacitance measurement circuit described in any one of technologies 1 to 7, it is possible to stably obtain a capacitance corresponding to the load even in a range where the load applied to the element portion is small and the capacitance is small. In addition, since it includes a capacitance measurement circuit described in any one of technologies 1 to 7, it is possible to accurately obtain a capacitance value in which the effects of parasitic capacitance are suppressed. Therefore, it is possible to stably and accurately detect a small range of loads.
  • the load sensor includes a plurality of the element units,
  • the capacitance measurement circuit includes an element selection unit that switches the element unit to be measured.
  • a load detection device comprising:
  • the element selection units 17 and 18 can be used to switch the element part to be measured, allowing the capacitance measurement circuit to stably and accurately measure the capacitance value of each element part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

This capacitance measurement circuit comprises: a reference capacitance (Cr); a switching element (12a) for switching between application and non-application of a voltage to the reference capacitance (Cr); a switching element (12b) for transferring the charge of the reference capacitance (Cr) to a measurement capacitance (Cs); a switching element (13) for connecting a negative electrode of the measurement capacitance (Cs) to ground or a wire having the same potential as a positive electrode of the measurement capacitance (Cs); a measurement unit for measuring the voltage of the measurement capacitance (Cs); and a control unit (11). The control unit (11) executes: a first control for causing the switching element (12b) to perform charge transfer in a state in which the negative electrode of the measurement capacitance (Cs) is connected to ground; a second control for causing the switching element (12b) to perform charge transfer in a state in which the negative electrode of the measurement capacitance (Cs) is connected to the wire having the same potential as the positive electrode of the measurement capacitance (Cs); and a process for calculating the capacitance value of the measurement capacitance (Cs) on the basis of the voltage value measured after the charge transfer is performed by each control.

Description

静電容量測定回路および荷重検出装置Capacitance measurement circuit and load detection device
 本発明は、静電容量を測定するための静電容量測定回路、および静電容量の測定結果に基づいて荷重を検出する荷重検出装置に関する。 The present invention relates to a capacitance measurement circuit for measuring capacitance, and a load detection device for detecting a load based on the results of capacitance measurement.
 従来、荷重に応じで素子部の静電容量が変化する静電容量型の荷重センサが知られている。この種の荷重センサでは、たとえば、素子部に電圧を印加したときの電圧の変化に基づいて、当該素子部の静電容量が検出される。この種の荷重センサを用いた荷重検出装置が、たとえば、以下の特許文献1に記載されている。  Conventionally, there is known a capacitance-type load sensor in which the capacitance of an element changes depending on the load. In this type of load sensor, for example, the capacitance of the element is detected based on the change in voltage when a voltage is applied to the element. A load detection device using this type of load sensor is described, for example, in Patent Document 1 below.
特開2021-81209号公報JP 2021-81209 A
 静電容量型の荷重センサでは、上記のような電圧の変化に基づく方法の他、たとえば、素子部に電圧を印加した際に素子部に蓄積された電荷量からも、当該素子部の静電容量を検出できる。この場合、たとえば、素子部に電圧を印加してから蓄積電荷が飽和するまでの期間に素子部に流れる電流量を計測することで、素子部に蓄積された電荷量を算出できる。このような電流量の計測は、たとえば、この期間の電流値をADコンバータでサンプリングして積算する方法により行われ得る。 In a capacitance-type load sensor, in addition to the method based on voltage changes as described above, the capacitance of the element unit can also be detected from, for example, the amount of charge accumulated in the element unit when a voltage is applied to the element unit. In this case, for example, the amount of charge accumulated in the element unit can be calculated by measuring the amount of current flowing through the element unit during the period from when a voltage is applied to the element unit until the accumulated charge becomes saturated. Such measurement of the current amount can be performed, for example, by sampling and integrating the current value during this period using an AD converter.
 しかしながら、素子部に付与された荷重が小さいと、素子部の静電容量が小さくなり、素子部に電圧を印加してから蓄積電荷が飽和するまでの期間が短くなる。このため、上述の電流量の計測には、短期間に変化する電流値をサンプリングできるよう、高速かつ高精度のADコンバータが必要となる。しかし、このようなADコンバータを用いた場合も、荷重が比較的小さい範囲では、電流量が飽和するまでの期間が顕著に短いため、この期間の電流量の計測を安定的に行うことは困難となる。 However, when the load applied to the element portion is small, the capacitance of the element portion becomes small, and the period from when a voltage is applied to the element portion until the accumulated charge becomes saturated becomes shorter. For this reason, measuring the amount of current described above requires a high-speed, high-precision AD converter that can sample the current value that changes over a short period of time. However, even when such an AD converter is used, in the range where the load is relatively small, the period until the amount of current becomes saturated is significantly short, making it difficult to stably measure the amount of current during this period.
 また、静電容量の計測結果には、配線や他の電気素子等に基づく寄生容量の影響が及ぶ。このため、算出された静電容量は寄生容量に基づく誤差成分を含むこととなり、この誤差成分により、荷重の検出を精度良く行うことが困難となる。 In addition, the capacitance measurement results are affected by parasitic capacitance due to wiring and other electrical elements. As a result, the calculated capacitance contains an error component due to the parasitic capacitance, and this error component makes it difficult to detect the load accurately.
 かかる課題に鑑み、本発明は、小さい範囲の静電容量をも安定的かつ精度良く測定することが可能な静電容量測定回路および荷重検出装置を提供することを目的とする。 In view of these problems, the present invention aims to provide a capacitance measurement circuit and load detection device that can stably and accurately measure capacitance even in a small range.
 本発明の第1の態様は、静電容量測定回路に関する。この態様に係る静電容量測定回路は、所定の静電容量値を有する基準容量と、前記基準容量に対する電圧の印加および非印加を切り替える切替部と、前記基準容量に蓄積された電荷を測定容量に転送する転送部と、前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、前記測定容量の電圧を計測する計測部と、前記切替部、前記転送部および前記接続部を制御する制御部と、を備える。前記制御部は、前記基準容量に電圧を印加した後、前記測定容量の負極を前記グランドに接続した状態で、前記転送部に電荷の転送を行わせる第1制御と、前記基準容量に電圧を印加した後、前記測定容量の負極を前記測定容量の正極と同電位の配線に接続した状態で、前記転送部に電荷の転送を行わせる第2制御と、前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する。 The first aspect of the present invention relates to a capacitance measurement circuit. The capacitance measurement circuit according to this aspect includes a reference capacitance having a predetermined capacitance value, a switching unit that switches between application and non-application of a voltage to the reference capacitance, a transfer unit that transfers the charge stored in the reference capacitance to a measurement capacitance, a connection unit that connects the negative electrode of the measurement capacitance to ground or a wiring having the same potential as the positive electrode of the measurement capacitance, a measurement unit that measures the voltage of the measurement capacitance, and a control unit that controls the switching unit, the transfer unit, and the connection unit. The control unit executes a first control that applies a voltage to the reference capacitance and then causes the transfer unit to transfer the charge while the negative electrode of the measurement capacitance is connected to the ground, a second control that applies a voltage to the reference capacitance and then causes the transfer unit to transfer the charge while the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance, and a process that calculates the capacitance value of the measurement capacitance from the voltage values measured by the measurement unit after the charge is transferred by the first control and the second control, respectively.
 本態様に係る静電容量測定回路によれば、基準容量から電荷が転送された後の電圧値に基づいて測定容量の静電容量値が算出されるため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、第2制御では、測定容量の負極が測定容量の正極と同電位の配線に接続されるため、計測された電圧値には、測定容量の影響は殆ど及ばず、主として基準容量および寄生容量の影響が及ぶ。これに対し、第1制御では、測定容量の負極とグランドとが接続されるため、計測された電圧値には、基準容量および寄生容量とともに、測定容量の影響が及ぶ。したがって、これら2つの電圧値から測定容量の静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量の静電容量値を精度良く測定できる。 The capacitance measurement circuit according to this embodiment calculates the capacitance value of the measurement capacitance based on the voltage value after the charge is transferred from the reference capacitance, so that it is possible to stably measure capacitance values in a small range without using a high-precision AD converter. In addition, in the second control, the negative electrode of the measurement capacitance is connected to a wire having the same potential as the positive electrode of the measurement capacitance, so that the measured voltage value is hardly affected by the measurement capacitance, but is mainly affected by the reference capacitance and parasitic capacitance. In contrast, in the first control, the negative electrode of the measurement capacitance is connected to ground, so that the measured voltage value is affected by the measurement capacitance as well as the reference capacitance and parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not affected by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high precision.
 本発明の第2の態様は、静電容量測定回路に関する。この態様に係る静電容量測定回路は、所定の静電容量値を有する基準容量と、測定容量に対する電圧の印加および非印加を切り替える切替部と、前記測定容量に蓄積された電荷を前記基準容量に転送する転送部と、前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、前記測定容量の電圧を計測する計測部と、前記切替部、前記転送部および前記接続部を制御する制御部と、を備える。前記制御部は、前記測定容量の負極を前記グランドに接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第1制御と、前記測定容量の負極を前記測定容量の正極と同電位の配線に接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第2制御と、前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する。 The second aspect of the present invention relates to a capacitance measurement circuit. The capacitance measurement circuit according to this aspect includes a reference capacitance having a predetermined capacitance value, a switching unit for switching between application and non-application of a voltage to the measurement capacitance, a transfer unit for transferring the charge accumulated in the measurement capacitance to the reference capacitance, a connection unit for connecting the negative electrode of the measurement capacitance to the ground or to a wiring having the same potential as the positive electrode of the measurement capacitance, a measurement unit for measuring the voltage of the measurement capacitance, and a control unit for controlling the switching unit, the transfer unit, and the connection unit. The control unit executes a first control for applying a voltage to the measurement capacitance while the negative electrode of the measurement capacitance is connected to the ground, and then causing the transfer unit to transfer the charge, a second control for applying a voltage to the measurement capacitance while the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance, and then causing the transfer unit to transfer the charge, and a process for calculating the capacitance value of the measurement capacitance from the voltage values measured by the measurement unit after the charge has been transferred by the first control and the second control, respectively.
 本態様に係る静電容量測定回路によれば、測定容量から電荷が転送された後の電圧値に基づいて測定容量の静電容量値が算出されるため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、第2制御では、測定容量の負極が測定容量の正極と同電位の配線に接続されて測定容量に電圧が印加されるため、測定容量には殆ど電荷が蓄積されず、寄生容量に電荷が蓄積される。このため、第2制御により計測された電圧値には、測定容量の影響は殆ど及ばず、主として基準容量および寄生容量の影響が及ぶ。これに対し、第1制御では、測定容量の負極とグランドとが接続されて測定容量に電圧が印加されるため、寄生容量とともに測定容量にも電荷が印加される。このため、第1制御により計測された電圧値には、基準容量および寄生容量とともに、測定容量の影響が及ぶ。したがって、これら2つの電圧値から測定容量の静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量の静電容量値を精度良く測定できる。 According to the capacitance measurement circuit of this embodiment, the capacitance value of the measurement capacitance is calculated based on the voltage value after the charge is transferred from the measurement capacitance, so that it is possible to stably measure capacitance values in a small range without using a highly accurate AD converter. In addition, in the second control, the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance and a voltage is applied to the measurement capacitance, so that almost no charge is accumulated in the measurement capacitance, and charge is accumulated in the parasitic capacitance. Therefore, the voltage value measured by the second control is hardly influenced by the measurement capacitance, and is mainly influenced by the reference capacitance and the parasitic capacitance. In contrast, in the first control, the negative electrode of the measurement capacitance is connected to the ground and a voltage is applied to the measurement capacitance, so that charge is applied to the measurement capacitance as well as the parasitic capacitance. Therefore, the voltage value measured by the first control is influenced by the measurement capacitance as well as the reference capacitance and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not influenced by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high accuracy.
 本発明の第3の態様は、荷重検出装置に関する。この態様に係る荷重検出装置は、荷重に応じて静電容量が変化する素子部を有する荷重センサと、上記第1の態様または第2の態様の静電容量測定回路と、を備える。前記制御部は、前記素子部を前記測定容量として、前記第1制御、前記第2制御および前記静電容量の算出処理を実行する。 The third aspect of the present invention relates to a load detection device. The load detection device according to this aspect includes a load sensor having an element unit whose capacitance changes depending on the load, and the capacitance measurement circuit according to the first or second aspect. The control unit performs the first control, the second control, and the capacitance calculation process using the element unit as the measurement capacitance.
 本態様に係る荷重検出装置によれば、第1の態様または第2の態様に係る静電容量測定回路を含むため、素子部に付与された荷重が小さく静電容量が小さい範囲においても、荷重に応じた静電容量を安定的に取得できる。また、第1の態様または第2の態様に係る静電容量測定回路を含むため、寄生容量の影響が抑制された静電容量値を精度良く取得できる。よって、小さい範囲の荷重を安定的かつ高精度に検出できる。 The load detection device according to this aspect includes the capacitance measurement circuit according to the first or second aspect, so that the capacitance corresponding to the load can be stably obtained even in a range where the load applied to the element portion is small and the capacitance is small. In addition, since the load detection device includes the capacitance measurement circuit according to the first or second aspect, the capacitance value in which the influence of parasitic capacitance is suppressed can be obtained with high accuracy. Therefore, a small range of load can be detected stably and with high accuracy.
 以上のとおり、本発明によれば、小さい範囲の静電容量をも安定的かつ精度良く測定することが可能な静電容量測定回路および荷重検出装置を提供できる。 As described above, the present invention provides a capacitance measurement circuit and a load detection device that can stably and accurately measure capacitance even over a small range.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effects and significance of the present invention will become clearer from the description of the embodiment shown below. However, the embodiment shown below is merely an example of how the present invention may be put into practice, and the present invention is in no way limited to the embodiment described below.
図1は、実施形態1に係る、静電容量測定回路の構成を示す図である。FIG. 1 is a diagram showing a configuration of a capacitance measuring circuit according to the first embodiment. 図2(a)、(b)は、それぞれ、実施形態1に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。2A and 2B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment. 図3(a)、(b)は、それぞれ、実施形態1に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。3A and 3B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment. 図4(a)、(b)は、それぞれ、実施形態1に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。4A and 4B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment. 図5(a)、(b)は、それぞれ、実施形態1に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。5A and 5B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment. 図6(a)、(b)は、それぞれ、実施形態1に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。6A and 6B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the first embodiment. 図7は、実施形態1に係る、測定容量の静電容量値の算出処理を示すフローチャートである。FIG. 7 is a flowchart showing a process for calculating the capacitance value of a measurement capacitance according to the first embodiment. 図8は、実施形態1の変更例1に係る、測定容量の静電容量値の算出処理を示すフローチャートである。FIG. 8 is a flowchart showing a calculation process of the capacitance value of the measurement capacitance according to the first modification of the first embodiment. 図9は、実施形態1の変更例2に係る、静電容量測定回路の構成を示す図である。FIG. 9 is a diagram showing a configuration of a capacitance measuring circuit according to the second modification of the first embodiment. 図10は、実施形態2に係る、静電容量測定回路の構成を示す図である。FIG. 10 is a diagram showing a configuration of a capacitance measuring circuit according to the second embodiment. 図11(a)、(b)は、それぞれ、実施形態2に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。11A and 11B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment. 図12(a)、(b)は、それぞれ、実施形態2に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。12A and 12B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment. 図13(a)、(b)は、それぞれ、実施形態2に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。13A and 13B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment. 図14(a)、(b)は、それぞれ、実施形態2に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。14A and 14B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment. 図15(a)、(b)は、それぞれ、実施形態2に係る、測定容量の静電容量値を測定する際の静電容量測定回路の動作を示す図である。15A and 15B are diagrams illustrating the operation of the capacitance measurement circuit when measuring the capacitance value of a capacitance to be measured according to the second embodiment. 図16は、実施形態2に係る、測定容量の静電容量値の算出処理を示すフローチャートである。FIG. 16 is a flowchart showing a process for calculating the capacitance value of a measurement capacitance according to the second embodiment. 図17(a)、(b)は、それぞれ、実施形態1、2に係る、静電容量のシミュレーション結果を示すグラフである。17A and 17B are graphs showing simulation results of capacitance according to the first and second embodiments, respectively. 図18は、実施形態2の変更例1に係る、測定容量の静電容量値の算出処理を示すフローチャートである。FIG. 18 is a flowchart showing a process of calculating the capacitance value of the measurement capacitance according to the first modification of the second embodiment. 図19は、実施形態2の変更例2に係る、静電容量測定回路の構成を示す図である。FIG. 19 is a diagram showing a configuration of a capacitance measuring circuit according to a second modification of the second embodiment. 図20(a)は、実施形態3に係る、ベース部材と、ベース部材の上面に設置された導電弾性体とを模式的に示す斜視図である。図20(b)は、実施形態3に係る、図20(a)の構造体に導体線が設置された状態を模式的に示す斜視図である。Fig. 20(a) is a perspective view showing a base member and a conductive elastic body provided on an upper surface of the base member according to embodiment 3. Fig. 20(b) is a perspective view showing a state in which a conductor wire is provided on the structure of Fig. 20(a) according to embodiment 3. 図21(a)は、実施形態3に係る、図20(b)の構造体に糸が設置された状態を模式的に示す斜視図である。図21(b)は、実施形態3に係る、図21(a)の構造体にベース部材が設置された状態を模式的に示す斜視図である。Fig. 21(a) is a perspective view showing a state in which a thread is provided on the structure of Fig. 20(b) according to embodiment 3. Fig. 21(b) is a perspective view showing a state in which a base member is provided on the structure of Fig. 21(a) according to embodiment 3. 図22(a)および図22(b)は、それぞれ、実施形態3に係る、荷重センサの断面を模式的に示す図である。22(a) and 22(b) are diagrams each showing a schematic cross section of a load sensor according to the third embodiment. 図23は、実施形態3に係る、荷重センサの内部の構成を模式的に示す平面図である。FIG. 23 is a plan view illustrating a schematic internal configuration of the load sensor according to the third embodiment. 図24は、実施形態3に係る、荷重検出装置の構成を示す図である。FIG. 24 is a diagram showing a configuration of a load detection device according to the third embodiment. 図25は、実施形態3に係る、測定対象の素子部の静電容量値を検出する際の荷重検出装置の動作を示す図である。FIG. 25 is a diagram showing the operation of the load detection device when detecting the capacitance value of the element portion to be measured according to the third embodiment. 図26は、実施形態4に係る、荷重検出装置の構成を示す図である。FIG. 26 is a diagram showing a configuration of a load detection device according to the fourth embodiment. 図27は、実施形態4に係る、測定対象の素子部の静電容量値を検出する際の荷重検出装置の動作を示す図である。FIG. 27 is a diagram showing the operation of the load detection device when detecting the capacitance value of the element portion to be measured according to the fourth embodiment.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are for illustrative purposes only and do not limit the scope of the invention.
 以下、本発明の実施形態について図面を参照して説明する。実施形態1、2では、静電容量測定回路の構成が示され、実施形態3、4では、荷重検出装置の構成が示される。 Below, embodiments of the present invention will be described with reference to the drawings. In embodiments 1 and 2, the configuration of a capacitance measurement circuit is shown, and in embodiments 3 and 4, the configuration of a load detection device is shown.
 実施形態1、2では、スイッチ素子12a、スイッチ素子12bおよびスイッチ素子13が、それぞれ、特許請求の範囲に記載の「切替部」、「転送部」および「接続部」に対応する。ただし、この記載は、あくまで、特許請求の範囲の構成と実施形態の構成とを対応付けることを目的とするものであって、上記対応付けによって特許請求の範囲に記載の発明が実施形態の構成に何ら限定されるものではない。また、特許請求の範囲に記載の発明を実現する構成も、以下の実施形態1~4に限定されるものではない。 In the first and second embodiments, switch element 12a, switch element 12b, and switch element 13 correspond to the "switching unit," "transfer unit," and "connection unit" described in the claims, respectively. However, this description is merely intended to associate the configurations of the claims with the configurations of the embodiments, and the above association does not in any way limit the inventions described in the claims to the configurations of the embodiments. Furthermore, the configurations that realize the inventions described in the claims are not limited to the following embodiments 1 to 4.
 <実施形態1>
 図1は、実施形態1に係る静電容量測定回路10の構成を示す図である。
<Embodiment 1>
FIG. 1 is a diagram showing a configuration of a capacitance measuring circuit 10 according to the first embodiment.
 図1に示すように、静電容量測定回路10は、制御部11と、スイッチ素子12a~12cと、スイッチ素子13と、計測部14と、基準容量Crとを備える。基準容量Crは、スイッチ素子12bを介して、測定容量Csに並列に接続されている。測定容量Csは、測定対象の静電容量である。基準容量Crの静電容量値は、測定容量Csの静電容量値より大きい。 As shown in FIG. 1, the capacitance measurement circuit 10 includes a control unit 11, switch elements 12a to 12c, switch element 13, a measurement unit 14, and a reference capacitance Cr. The reference capacitance Cr is connected in parallel to the measurement capacitance Cs via switch element 12b. The measurement capacitance Cs is the capacitance to be measured. The capacitance value of the reference capacitance Cr is greater than the capacitance value of the measurement capacitance Cs.
 制御部11は、マイクロコンピュータやFPGA等により構成され、スイッチ素子12a~12c、13を制御する。また、制御部11は、計測部14により計測された電圧値に基づいて。測定容量Csの静電容量値を算出する。 The control unit 11 is configured with a microcomputer, FPGA, etc., and controls the switch elements 12a to 12c and 13. The control unit 11 also calculates the capacitance value of the measurement capacitance Cs based on the voltage value measured by the measurement unit 14.
 スイッチ素子12aは、基準容量Crに対する電源電圧Vddの印加および非印加を切り替える。スイッチ素子12aが非導通状態から導通状態に変化すると、電源電圧Vddが基準容量Crに印加されて、基準容量Crに電荷が蓄積される。 The switch element 12a switches between applying and not applying the power supply voltage Vdd to the reference capacitance Cr. When the switch element 12a changes from a non-conductive state to a conductive state, the power supply voltage Vdd is applied to the reference capacitance Cr, and charge is accumulated in the reference capacitance Cr.
 スイッチ素子12bは、基準容量Crの正極と測定容量Csの正極とを接続状態と非接続状態との間で切り替える。スイッチ素子12bが非導通状態から導通状態に変化すると、基準容量Crの正極と測定容量Csの正極とが接続されて、基準容量Crに蓄積された電荷が測定容量Csに転送される。こうして、スイッチ素子12bは、基準容量Crに蓄積された電荷を測定容量Csに転送する。 The switch element 12b switches the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs between a connected state and a disconnected state. When the switch element 12b changes from a non-conductive state to a conductive state, the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs are connected, and the charge accumulated in the reference capacitance Cr is transferred to the measurement capacitance Cs. In this way, the switch element 12b transfers the charge accumulated in the reference capacitance Cr to the measurement capacitance Cs.
 スイッチ素子12cは、測定容量Csの正極とグランドとを接続状態と非接続状態との間で切り替える。スイッチ素子12cが非導通状態から導通状態に変化すると、測定容量Csの正極がグランドに接続されて、測定容量Csに蓄積された電荷がグランドに放電される。 The switch element 12c switches between a connected state and a disconnected state between the positive electrode of the measurement capacitance Cs and the ground. When the switch element 12c changes from a non-conductive state to a conductive state, the positive electrode of the measurement capacitance Cs is connected to the ground, and the charge accumulated in the measurement capacitance Cs is discharged to the ground.
 スイッチ素子12a、12bは、P型のFETにより構成され、ゲートにローレベルのゲート信号が印加されることにより導通する。スイッチ素子12cは、N型のFETにより構成され、ゲートにハイレベルのゲート信号が印加されることにより導通する。スイッチ素子12a~12cは、FET以外の形式の他のスイッチ素子であってもよい。 Switch elements 12a and 12b are configured with P-type FETs and become conductive when a low-level gate signal is applied to their gates. Switch element 12c is configured with N-type FETs and becomes conductive when a high-level gate signal is applied to their gates. Switch elements 12a to 12c may be other switch elements of a type other than FETs.
 スイッチ素子13は、測定容量Csの負極をグランドまたは測定容量Csの正極に接続する。測定容量Csの正極と負極とがスイッチ素子13により接続されると、これら正極と負極が同電位となるため、測定容量Csは、回路的に消失した状態(無効化状態)となる。 The switch element 13 connects the negative electrode of the measurement capacitance Cs to ground or to the positive electrode of the measurement capacitance Cs. When the positive and negative electrodes of the measurement capacitance Cs are connected by the switch element 13, these positive and negative electrodes have the same potential, so that the measurement capacitance Cs is in a state where it disappears from the circuit (disabled state).
 計測部14は、測定容量Csの電圧を計測する。スイッチ素子13がグランドに接続された状態において、スイッチ素子12bが導通されると、基準容量Crの電荷が測定容量Csに転送されて分配される。これにより、基準容量Crの静電容量値と測定容量Csの静電容量値との容量比に応じた電圧が、測定容量Csに生じる。計測部14は、この電圧を計測する。 The measurement unit 14 measures the voltage of the measurement capacitance Cs. When the switch element 12b is conductive while the switch element 13 is connected to ground, the charge of the reference capacitance Cr is transferred to the measurement capacitance Cs and distributed. As a result, a voltage corresponding to the capacitance ratio between the electrostatic capacitance value of the reference capacitance Cr and the electrostatic capacitance value of the measurement capacitance Cs is generated in the measurement capacitance Cs. The measurement unit 14 measures this voltage.
 なお、基準容量Crの静電容量値は、このように電荷が分配された後に測定容量Csに生じる電圧を計測部14が正確に計測できる大きさに設定される。すなわち、基準容量Crの静電容量値は、少なくとも、上記のように電荷が分配された後に測定容量Csに生じる電圧が計測部14の測定可能範囲の下限値以上となるように設定される。 The capacitance value of the reference capacitance Cr is set to a value that allows the measurement unit 14 to accurately measure the voltage that occurs in the measurement capacitance Cs after the charge is distributed in this manner. In other words, the capacitance value of the reference capacitance Cr is set at least so that the voltage that occurs in the measurement capacitance Cs after the charge is distributed as described above is equal to or greater than the lower limit of the measurable range of the measurement unit 14.
 次に、測定容量Csの静電容量値を測定する際の静電容量測定回路10の動作について、図2(a)~図6(b)を参照して説明する。 Next, the operation of the capacitance measurement circuit 10 when measuring the capacitance value of the measurement capacitance Cs will be described with reference to Figures 2(a) to 6(b).
 便宜上、図2(a)~図6(b)には、スイッチ素子12a~12cのうち動作状態にあるスイッチ素子、および、このスイッチ素子により充電、放電または電荷の転送が行われる経路等が太線で示されている。また、基準容量Crおよび測定容量Csが充電状態にある場合は、これら容量に斜線のハッチングが付されている。 For convenience, in Fig. 2(a) to Fig. 6(b), the switch elements 12a to 12c that are in an operating state and the paths through which the switch elements charge, discharge, or transfer electric charge are indicated by thick lines. In addition, when the reference capacitance Cr and the measurement capacitance Cs are in a charged state, these capacitances are indicated by diagonal hatching.
 まず、図2(a)に示すように、スイッチ素子13がグランドに接続された状態において、スイッチ素子12a、12cがそれぞれ導通状態に切り替えられる。これにより、基準容量Crに電源電圧Vddが印加され、基準容量Crに電荷が蓄積される。また、測定容量Csの正極がグランドに接続され、測定容量Csに対する放電が行われる。スイッチ素子12aは、少なくとも、基準容量Crが満充電状態となるまでの間、導通状態に設定される。基準容量Crが満充電状態になったか否かは、たとえば、基準容量Crの電圧を計測部14とは別の計測部で計測し、その計測結果が電源電圧Vddに到達して安定したか否かで判断され得る。 First, as shown in FIG. 2(a), with switch element 13 connected to ground, switch elements 12a and 12c are each switched to a conductive state. This applies power supply voltage Vdd to reference capacitance Cr, and charge is accumulated in reference capacitance Cr. In addition, the positive electrode of measurement capacitance Cs is connected to ground, and discharging to measurement capacitance Cs is performed. Switch element 12a is set to a conductive state at least until reference capacitance Cr is fully charged. Whether reference capacitance Cr is fully charged can be determined, for example, by measuring the voltage of reference capacitance Cr with a measurement unit other than measurement unit 14 and checking whether the measurement result reaches power supply voltage Vdd and becomes stable.
 次に、図2(b)に示すように、スイッチ素子12aが非導通状態に切り替えられて、基準容量Crが電源電圧Vddから切り離される。また、図3(a)に示すように、スイッチ素子12cが非導通状態に切り替えられて、測定容量Csの正極がグランドから切り離される。そして、図3(b)に示すように、スイッチ素子12bが導通状態に切り替えられて、基準容量Crの正極と測定容量Csの正極とが接続される。これにより、基準容量Crに蓄積されていた電荷が測定容量Csへと転送される。 Next, as shown in FIG. 2(b), switch element 12a is switched to a non-conductive state, and reference capacitance Cr is disconnected from power supply voltage Vdd. Also, as shown in FIG. 3(a), switch element 12c is switched to a non-conductive state, and the positive electrode of measurement capacitance Cs is disconnected from ground. Then, as shown in FIG. 3(b), switch element 12b is switched to a conductive state, and the positive electrode of reference capacitance Cr and the positive electrode of measurement capacitance Cs are connected. This causes the charge stored in reference capacitance Cr to be transferred to measurement capacitance Cs.
 スイッチ素子12bが導通状態に切り替えられた直後の計測部14の計測値は、基準容量Crの蓄積電荷に応じた電圧値、すなわち、電源電圧Vddに略等しい電圧値となる。その後、測定容量Csへの電荷の転送が進むと、計測部14の計測値は徐々に低下し、電荷の転送が完了すると、計測部14の計測値は、基準容量Crと測定容量Csとの容量比に応じた一定値に安定(飽和)する。 The measurement value of the measurement unit 14 immediately after the switch element 12b is switched to the conductive state is a voltage value according to the accumulated charge in the reference capacitance Cr, i.e., a voltage value approximately equal to the power supply voltage Vdd. Thereafter, as the transfer of charge to the measurement capacitance Cs progresses, the measurement value of the measurement unit 14 gradually decreases, and when the transfer of charge is completed, the measurement value of the measurement unit 14 stabilizes (saturates) at a constant value according to the capacitance ratio between the reference capacitance Cr and the measurement capacitance Cs.
 こうして、電圧値が安定した後、図4(a)に示すように、計測部14により計測された電圧値が、第1電圧値Vx1として取得される。この第1電圧値Vx1は、上記のように、主として、基準容量Crと測定容量Csとの容量比に応じて決まるが、さらには、基準容量Crと測定容量Csとの間の配線やスイッチ素子12b、13等による寄生容量の影響も受ける。このため、第1電圧値Vx1のみから測定容量Csの静電容量値が算出されると、これら寄生容量に基づく誤差が算出結果に含まれる。 After the voltage value has stabilized in this way, as shown in FIG. 4(a), the voltage value measured by the measurement unit 14 is obtained as the first voltage value Vx1. As described above, this first voltage value Vx1 is determined mainly according to the capacitance ratio between the reference capacitance Cr and the measurement capacitance Cs, but is also affected by the parasitic capacitances of the wiring between the reference capacitance Cr and the measurement capacitance Cs and the switch elements 12b and 13, etc. For this reason, if the capacitance value of the measurement capacitance Cs is calculated from only the first voltage value Vx1, errors due to these parasitic capacitances will be included in the calculation result.
 これを回避するため、本実施形態では、さらに、寄生容量に基づく誤差を抑制するための動作が行われる。 To avoid this, in this embodiment, further operations are performed to suppress errors due to parasitic capacitance.
 すなわち、図4(b)に示すように、スイッチ素子13が、測定容量Csの正極側に切り替えられる。次に、図5(a)に示すように、スイッチ素子12a、12cがそれぞれ導通状態に切り替えられる。これにより、基準容量Crに電源電圧Vddが印加され、基準容量Crに電荷が蓄積される。また、測定容量Csの正極がグランドに接続され、測定容量Csに対する放電が行われる。スイッチ素子12aは、少なくとも、基準容量Crが満充電状態となるまでの間、導通状態に設定される。 That is, as shown in FIG. 4(b), the switch element 13 is switched to the positive electrode side of the measurement capacitance Cs. Next, as shown in FIG. 5(a), the switch elements 12a and 12c are each switched to a conductive state. As a result, the power supply voltage Vdd is applied to the reference capacitance Cr, and charge is accumulated in the reference capacitance Cr. In addition, the positive electrode of the measurement capacitance Cs is connected to ground, and discharging to the measurement capacitance Cs is performed. The switch element 12a is set to a conductive state at least until the reference capacitance Cr is fully charged.
 なお、図4(b)に示すように、基準容量Crには分配後の電荷が残っているため、図5(a)における基準容量Crへの充電は、図2(a)の場合に比べて速やかに行われる。すなわち、図4(b)の状態から、一旦、基準容量Crの電荷を放電して図5(a)の動作へと進めるよりも、上記のように、図4(b)の状態から、そのまま図5(a)の動作へと進めた方が、動作シーケンスを迅速化できる。 As shown in FIG. 4(b), since the reference capacitance Cr still has charge after distribution, charging of the reference capacitance Cr in FIG. 5(a) is performed more quickly than in the case of FIG. 2(a). In other words, rather than first discharging the charge of the reference capacitance Cr from the state of FIG. 4(b) and then proceeding to the operation of FIG. 5(a), proceeding directly from the state of FIG. 4(b) to the operation of FIG. 5(a) as described above can speed up the operational sequence.
 また、図5(a)では、スイッチ素子13が測定容量Csの正極側に接続されているため、測定容量Csに蓄積された電荷の他、スイッチ素子13や、スイッチ素子13と測定容量Csの正極との間の配線等の寄生容量に蓄積された電荷も、グランドに放電される。これにより、寄生容量による影響をより確実に除去できる。 In addition, in FIG. 5(a), since the switch element 13 is connected to the positive electrode of the measurement capacitance Cs, in addition to the charge stored in the measurement capacitance Cs, the charge stored in the parasitic capacitance of the switch element 13 and the wiring between the switch element 13 and the positive electrode of the measurement capacitance Cs is also discharged to ground. This makes it possible to more reliably eliminate the effects of parasitic capacitance.
 その後、図5(b)に示すように、スイッチ素子12aが非導通状態に切り替えられて、基準容量Crが電源電圧Vddから切り離される。また、スイッチ素子12cが非導通状態に切り替えられて、測定容量Csの正極がグランドから切り離される。そして、図6(a)に示すように、スイッチ素子12bが導通状態に切り替えられて、基準容量Crの正極と測定容量Csの正極とが接続される。これにより、基準容量Crに蓄積されていた電荷が転送される。 After that, as shown in FIG. 5(b), the switch element 12a is switched to a non-conductive state, and the reference capacitance Cr is disconnected from the power supply voltage Vdd. Also, the switch element 12c is switched to a non-conductive state, and the positive electrode of the measurement capacitance Cs is disconnected from ground. Then, as shown in FIG. 6(a), the switch element 12b is switched to a conductive state, and the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs are connected. This causes the charge stored in the reference capacitance Cr to be transferred.
 この場合、図6(a)に示すように、スイッチ素子13が測定容量Csの正極側に切り替えられているため、測定容量Csの正極と負極は同電位となる。このため、この電荷転送時には、測定容量Csには電荷は分配されず、測定容量Cs以外の寄生容量に電荷が分配される。したがって、この場合は、寄生容量への電荷分配に応じた電圧値に、計測部14の計測値が安定する。 In this case, as shown in FIG. 6(a), the switch element 13 is switched to the positive electrode side of the measurement capacitance Cs, so the positive and negative electrodes of the measurement capacitance Cs are at the same potential. Therefore, during this charge transfer, no charge is distributed to the measurement capacitance Cs, but the charge is distributed to parasitic capacitances other than the measurement capacitance Cs. Therefore, in this case, the measurement value of the measurement unit 14 stabilizes to a voltage value according to the charge distribution to the parasitic capacitances.
 こうして、電圧値が安定した後、図6(b)に示すように、計測部14により計測された電圧値が、第2電圧値Vx2として取得される。そして、取得された第2電圧値Vx2と、図4(a)の動作時に取得された第1電圧値Vx1とから、測定容量Csの静電容量値が算出される。 After the voltage value has stabilized in this way, as shown in FIG. 6(b), the voltage value measured by the measurement unit 14 is acquired as the second voltage value Vx2. Then, the capacitance value of the measured capacitance Cs is calculated from the acquired second voltage value Vx2 and the first voltage value Vx1 acquired during the operation of FIG. 4(a).
 測定容量Csの静電容量値の算出は、以下のように行われる。 The capacitance value of the measured capacitance Cs is calculated as follows:
 まず、図2(a)のように基準容量Crが満充電となったときの基準容量Crの電荷量Qrは、基準容量Crの静電容量値(既知)をCrとすると、以下の式で表される。 First, as shown in Figure 2(a), the charge amount Qr of the reference capacitance Cr when the reference capacitance Cr is fully charged is expressed by the following formula, assuming that the capacitance value (known) of the reference capacitance Cr is Cr.
  Qr=Cr×Vdd …(1)   Qr=Cr×Vdd…(1)
 また、図4(a)のように電荷の転送が完了した状態では、測定容量Csの静電容量値をCs1とすると、以下の関係が成立する。 Furthermore, when the charge transfer is complete as shown in FIG. 4(a), if the capacitance value of the measured capacitance Cs is Cs1, the following relationship holds:
  Qr=(Cr+Cs1)×Vx1 …(2)   Qr=(Cr+Cs1)×Vx1 …(2)
 したがって、式(1)、(2)から、以下の関係式が導き出される。 Therefore, the following relationship can be derived from equations (1) and (2):
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 但し、この静電容量値Cs1には、上記のように、寄生容量に基づく誤差成分が含まれる。この誤差成分Ceは、図6(b)の動作により取得された第2電圧値Vx2を用いて、以下の式により表され得る。 However, as described above, this capacitance value Cs1 includes an error component due to parasitic capacitance. This error component Ce can be expressed by the following equation using the second voltage value Vx2 obtained by the operation of FIG. 6(b).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、図5(a)~図6(b)の動作時には、測定容量Csの正極と負極は同電位であるため、測定容量Csは無効化され、基準容量Crと寄生容量のみが容量成分となる。このため、寄生容量の静電容量値、すなわち誤差成分Ceは、上記式(4)により表され得る。 In other words, during the operation shown in Figures 5(a) to 6(b), the positive and negative electrodes of the measurement capacitance Cs are at the same potential, so the measurement capacitance Cs is invalidated, and only the reference capacitance Cr and the parasitic capacitance become the capacitance components. Therefore, the electrostatic capacitance value of the parasitic capacitance, i.e., the error component Ce, can be expressed by the above formula (4).
 測定容量Csの静電容量値Csは、式(3)の静電容量値Cs1から誤差成分Ceを除いたものであるから、上記式(3)、(4)から、以下の式で算出される。 The capacitance value Cs of the measured capacitance Cs is the capacitance value Cs1 in equation (3) minus the error component Ce, and is calculated from equations (3) and (4) above using the following equation:
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)において、静電容量値Crおよび電源電圧Vddは既知であり、第1電圧値Vx1および第2電圧値Vx2は、図4(a)および図6(b)の動作により取得されるため、上記式(5)から、測定容量Csの静電容量値を算出できる。 In equation (5), the capacitance value Cr and the power supply voltage Vdd are known, and the first voltage value Vx1 and the second voltage value Vx2 are obtained by the operations shown in Figures 4(a) and 6(b), so the capacitance value of the measured capacitance Cs can be calculated from equation (5) above.
 図7は、図2(a)~図6(b)の動作による測定容量Csの静電容量値の算出処理を示すフローチャートである。 FIG. 7 is a flowchart showing the process of calculating the capacitance value of the measurement capacitance Cs by the operations shown in FIGS. 2(a) to 6(b).
 図7において、ステップS101~S105は、第1電圧値Vx1を取得するための第1制御C1に対応し、ステップS106~S110は、第2電圧値Vx2を取得するための第2制御C2に対応する。 In FIG. 7, steps S101 to S105 correspond to the first control C1 for obtaining the first voltage value Vx1, and steps S106 to S110 correspond to the second control C2 for obtaining the second voltage value Vx2.
 まず、制御部11は、図2(a)に示すように、測定容量Csの負極をグランドに接続し(S101)、基準容量Crに対する充電と、測定容量Csに対する放電とを実行する(S102)。基準容量Crに対する充電が完了すると、制御部11は、図2(b)および図3(a)に示すように、基準容量Crの正極を電源電圧Vddから切り離し、測定容量Csの正極をグランドから切り離す(S103)。そして、制御部11は、図3(b)に示すように、基準容量Crの正極と測定容量Csの正極とを接続し、基準容量Crの電荷を測定容量Csに転送する(S104)。その後、計測部14の計測値が安定(飽和)するまでの期間が経過してから、制御部11は、図4(a)に示すように、計測部14の計測値を第1電圧値Vx1として取得する(S105)。こうして、第1制御C1が終了する。 First, as shown in FIG. 2(a), the control unit 11 connects the negative electrode of the measurement capacitance Cs to ground (S101), and executes charging of the reference capacitance Cr and discharging of the measurement capacitance Cs (S102). When charging of the reference capacitance Cr is completed, the control unit 11 disconnects the positive electrode of the reference capacitance Cr from the power supply voltage Vdd and the positive electrode of the measurement capacitance Cs from ground (S103), as shown in FIG. 2(b) and FIG. 3(a). Then, as shown in FIG. 3(b), the control unit 11 connects the positive electrode of the reference capacitance Cr and the positive electrode of the measurement capacitance Cs, and transfers the charge of the reference capacitance Cr to the measurement capacitance Cs (S104). After a period of time has elapsed until the measurement value of the measurement unit 14 becomes stable (saturated), the control unit 11 acquires the measurement value of the measurement unit 14 as the first voltage value Vx1 (S105), as shown in FIG. 4(a). In this way, the first control C1 ends.
 次に、制御部11は、図4(b)に示すように、測定容量Csの負極を測定容量Csの正極に接続し(S106)、図5(a)に示すように、基準容量Crに対する充電と、測定容量Csに対する放電とを実行する(S107)。基準容量Crに対する充電が完了すると、制御部11は、図5(b)に示すように、基準容量Crの正極を電源電圧Vddから切り離し、測定容量Csの正極をグランドから切り離す(S108)。そして、制御部11は、図6(a)に示すように、基準容量Crの正極と測定容量Csの正極とを接続し、基準容量Crの電荷の転送を行う(S109)。その後、計測部14の計測値が安定(飽和)するまでの期間が経過してから、制御部11は、図6(b)に示すように、計測部14の計測値を第2電圧値Vx2として取得する(S110)。こうして、第2制御C2が終了する。 Next, the control unit 11 connects the negative electrode of the measurement capacitance Cs to the positive electrode of the measurement capacitance Cs as shown in FIG. 4(b) (S106), and executes charging of the reference capacitance Cr and discharging of the measurement capacitance Cs as shown in FIG. 5(a) (S107). When charging of the reference capacitance Cr is completed, the control unit 11 disconnects the positive electrode of the reference capacitance Cr from the power supply voltage Vdd as shown in FIG. 5(b) and disconnects the positive electrode of the measurement capacitance Cs from the ground as shown in FIG. 5(b) (S108). Then, the control unit 11 connects the positive electrode of the reference capacitance Cr to the positive electrode of the measurement capacitance Cs as shown in FIG. 6(a) and transfers the charge of the reference capacitance Cr (S109). After a period of time has elapsed until the measurement value of the measurement unit 14 becomes stable (saturated), the control unit 11 acquires the measurement value of the measurement unit 14 as the second voltage value Vx2 as shown in FIG. 6(b) (S110). In this way, the second control C2 ends.
 そして、制御部11は、取得した第1電圧値Vx1および第2電圧値Vx2を上記式(5)に適用して、測定容量Csの静電容量値を算出する(S111)。こうして、制御部11は、図7の処理を終了する。 Then, the control unit 11 applies the acquired first voltage value Vx1 and second voltage value Vx2 to the above formula (5) to calculate the capacitance value of the measured capacitance Cs (S111). In this way, the control unit 11 ends the process of FIG. 7.
 <実施形態1の効果>
 図4(a)および図6(b)に示したように、基準容量Crから電荷が転送された後の安定(飽和)した電圧値(第1電圧値Vx1、第2電圧値Vx2)が計測部14により計測されればよいため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、図7に示した第2制御C2では、ステップS106により、測定容量Csの負極と正極(正極と同電位の配線)とが接続されるため、計測された第2電圧値Vx2には、測定容量Csの影響は殆ど及ばず、主として基準容量Crおよび寄生容量の影響が及ぶ。これに対し、第1制御C1では、ステップS101により、測定容量Csの負極とグランドとが接続されるため、計測された第1電圧値Vx1には、基準容量Crおよび寄生容量とともに、測定容量Csの影響が及ぶ。したがって、これら2つの電圧値から測定容量Csの静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量Csの静電容量値を精度良く測定できる。
Effects of First Embodiment
As shown in FIG. 4(a) and FIG. 6(b), the stable (saturated) voltage values (first voltage value Vx1, second voltage value Vx2) after the charge is transferred from the reference capacitance Cr are measured by the measurement unit 14, so that the capacitance value in a small range can be stably measured without using a high-precision AD converter. In addition, in the second control C2 shown in FIG. 7, the negative electrode and the positive electrode (the wiring having the same potential as the positive electrode) of the measurement capacitance Cs are connected in step S106, so that the measured second voltage value Vx2 is hardly influenced by the measurement capacitance Cs, but is mainly influenced by the reference capacitance Cr and the parasitic capacitance. In contrast, in the first control C1, the negative electrode of the measurement capacitance Cs is connected to the ground in step S101, so that the measured first voltage value Vx1 is influenced by the measurement capacitance Cs as well as the reference capacitance Cr and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance Cs from these two voltage values, the capacitance value without the influence of the parasitic capacitance can be calculated. Therefore, the capacitance value of the measurement capacitance Cs can be measured with high accuracy.
 ここで、制御部11は、第1制御C1により取得した第1電圧値Vx1と、第2制御C2により取得した第2電圧値Vx2と、基準容量Crに印加される電源電圧Vddと、基準容量Crの静電容量値とから、上記式(5)により、測定容量Csの静電容量値を算出する。これにより、上記のように、測定容量Csの静電容量値に対する寄生容量による誤差成分の影響を抑制でき、測定容量Csの静電容量値を精度良く取得できる。 Here, the control unit 11 calculates the capacitance value of the measured capacitance Cs using the above formula (5) from the first voltage value Vx1 obtained by the first control C1, the second voltage value Vx2 obtained by the second control C2, the power supply voltage Vdd applied to the reference capacitance Cr, and the capacitance value of the reference capacitance Cr. This makes it possible to suppress the effect of error components due to parasitic capacitance on the capacitance value of the measured capacitance Cs, as described above, and to accurately obtain the capacitance value of the measured capacitance Cs.
 <変更例1>
 上記実施形態1では、図7の第1制御C1において、基準容量Crの電荷が測定容量Csに転送された後(S104)、転送が完了して計測部14の計測値が安定(飽和)するまでの固定の期間が経過してから、第1電圧値Vx1の取得が行われた(S105)。ここで、この固定の期間は、測定容量Csの静電容量値として想定され得る範囲(測定レンジ)の上限値との関係から規定される。すなわち、測定容量Csの静電容量値がこの上限値である場合に、基準容量Crの電荷の転送が開始されてから計測部14の計測値が安定(飽和)するまでの期間よりやや長めの期間が、この固定の期間に設定される。
<Modification 1>
In the first embodiment, in the first control C1 of Fig. 7, after the charge of the reference capacitance Cr is transferred to the measurement capacitance Cs (S104), a fixed period from the completion of the transfer until the measurement value of the measurement unit 14 becomes stable (saturated) has elapsed, and the first voltage value Vx1 is acquired (S105). Here, this fixed period is defined in relation to the upper limit of the range (measurement range) that can be assumed as the capacitance value of the measurement capacitance Cs. In other words, when the capacitance value of the measurement capacitance Cs is this upper limit, a period slightly longer than the period from the start of the transfer of the charge of the reference capacitance Cr until the measurement value of the measurement unit 14 becomes stable (saturated) is set as this fixed period.
 しかしながら、測定容量Csの実際の静電容量値が、この上限よりもかなり小さい場合、電荷の転送後、計測部14の計測値が速やかに安定(飽和)しているにも拘わらず、固定の期間が経過するまでの間、第1電圧値Vx1の取得を待機しなければならない。このため、その分、処理シーケンスが遅延し、測定容量Csの測定結果を迅速に取得できなくなってしまう。この問題は、測定容量Csの測定レンジが広くなるほど顕著となる。 However, if the actual capacitance value of the measurement capacitance Cs is significantly smaller than this upper limit, even though the measurement value of the measurement unit 14 quickly stabilizes (saturates) after the charge is transferred, it is necessary to wait until a fixed period of time has elapsed before obtaining the first voltage value Vx1. This causes a corresponding delay in the processing sequence, and the measurement results of the measurement capacitance Cs cannot be obtained quickly. This problem becomes more pronounced the wider the measurement range of the measurement capacitance Cs.
 変更例1では、このような問題を解消するため、図7の処理が一部変更される。 In modification example 1, the process in Figure 7 is partially modified to solve this problem.
 図8は、変更例1に係る、測定容量Csの静電容量値の算出処理を示すフローチャートである。 FIG. 8 is a flowchart showing the process for calculating the capacitance value of the measurement capacitance Cs in the first modification example.
 図7に比べて、図8の処理では、ステップS121~S124が追加されている。ステップS101~S111の処理は、図7の対応するステップと同様である。 Compared to FIG. 7, steps S121 to S124 have been added to the process in FIG. 8. The processes in steps S101 to S111 are the same as the corresponding steps in FIG. 7.
 ステップS121において、制御部11は、待機期間Twを設定する。ここで、最初に設定される待機期間Twは、たとえば、測定容量Csの静電容量値が測定レンジの下限値である場合に、電荷の転送開始から計測部14の計測値が安定(飽和)するまでの期間よりやや長めの期間に設定される。次に、制御部11は、図7の場合と同様、ステップS102~S104の処理を実行する。そして、制御部11は、ステップS104において電荷の転送を開始した後、待機期間Twが経過するのを待つ(S122)。待機期間Twが経過すると(S122:YES)、制御部11は、その時点の計測部14の計測結果を、第1電圧値Vx1として取得する(S105)。 In step S121, the control unit 11 sets a waiting period Tw. Here, the waiting period Tw that is initially set is set to a period slightly longer than the period from the start of charge transfer until the measurement value of the measurement unit 14 stabilizes (saturates) when the capacitance value of the measurement capacitance Cs is at the lower limit of the measurement range, for example. Next, the control unit 11 executes the processes of steps S102 to S104 as in the case of FIG. 7. Then, after starting the charge transfer in step S104, the control unit 11 waits for the waiting period Tw to elapse (S122). When the waiting period Tw has elapsed (S122: YES), the control unit 11 acquires the measurement result of the measurement unit 14 at that time as the first voltage value Vx1 (S105).
 制御部11は、取得した第1電圧値Vx1が飽和後(安定後)の電圧値であるか否かを判定する(S123)。取得した第1電圧値Vx1が飽和後(安定後)の電圧値でない場合(S123:NO)、制御部11は、処理をステップS121に戻して、待機期間Twを再設定する。 The control unit 11 determines whether the acquired first voltage value Vx1 is a voltage value after saturation (after stabilization) (S123). If the acquired first voltage value Vx1 is not a voltage value after saturation (after stabilization) (S123: NO), the control unit 11 returns the process to step S121 and resets the waiting period Tw.
 たとえば、制御部11は、今回の待機期間Twを前回の待機期間Twよりも所定時間だけ長く設定する。そして、制御部11は、ステップS102以降の処理を同様に実行する。これにより、ステップS104により電荷の転送が開始されてから第1電圧値Vx1を取得するまでの待機期間Twが、所定時間だけ長くなる。このため、ステップS105において、飽和後(安定後)の電圧値が第1電圧値Vx1として取得されやすくなる。 For example, the control unit 11 sets the current waiting period Tw to be longer than the previous waiting period Tw by a predetermined time. Then, the control unit 11 executes the processes from step S102 onwards in the same manner. As a result, the waiting period Tw from when the charge transfer is started in step S104 until the first voltage value Vx1 is obtained is lengthened by a predetermined time. Therefore, in step S105, the voltage value after saturation (after stabilization) is more likely to be obtained as the first voltage value Vx1.
 こうして、制御部11は、ステップS105で取得した第1電圧値Vx1が飽和後(安定後)の電圧値になるまで(S123:NO)、待機期間Twを再設定しながら(S121)、ステップS102以降の処理を繰り返し実行する。そして、ステップS123の判定がYESになると、制御部11は、その時点で取得した第1電圧値Vx1を、静電容量値の算出処理(S111)に用いる第1電圧値Vx1として保持する。 In this way, the control unit 11 repeatedly executes the processes from step S102 onwards while resetting the waiting period Tw (S121) until the first voltage value Vx1 acquired in step S105 becomes the saturated (stable) voltage value (S123: NO). Then, when the determination in step S123 becomes YES, the control unit 11 holds the first voltage value Vx1 acquired at that time as the first voltage value Vx1 to be used in the capacitance value calculation process (S111).
 ここで、ステップS123の判定は、たとえば、以下のように行われる。 The determination in step S123 is performed, for example, as follows:
 たとえば、制御部11は、前回のステップS105の処理により取得した第1電圧値Vx1と今回取得した第1電圧値Vx1とが実質的に同じ(両者の差分が許容され得る変動幅以下)であるか否かを判定する。あるいは、制御部11は、今回を含む過去数回(たとえば5回)のステップS105の処理により取得した第1電圧値Vx1が実質的に同じであったか否かを判定する。そして、制御部11は、これらの判定がYESの場合にステップS123の判定をYESとする。 For example, the control unit 11 determines whether the first voltage value Vx1 acquired by the previous processing of step S105 and the first voltage value Vx1 acquired this time are substantially the same (the difference between the two is within an allowable fluctuation range). Alternatively, the control unit 11 determines whether the first voltage values Vx1 acquired by the processing of step S105 several times in the past (for example, five times), including the current time, were substantially the same. Then, if these determinations are YES, the control unit 11 determines YES in step S123.
 但し、ステップS105において取得された第1電圧値Vx1が飽和後(安定後)の電圧値であるか否かの判定方法は、これらに限られるものではなく、他の方法によりこの判定が行われてもよい。 However, the method of determining whether the first voltage value Vx1 obtained in step S105 is a saturated (stable) voltage value is not limited to these, and this determination may be made by other methods.
 その後、制御部11は、図7の場合と同様、ステップS106~S109の処理を実行する。そして、制御部11は、ステップS109による電荷転送の開始から待機期間Twが経過するのを待つ(S124)。この待機期間Twは、ステップS121により繰り返し再設定された最後の待機期間Twに設定される。通常、寄生容量は、測定容量Csより小さい。このため、ステップS124の待機期間Twがこのように設定されると、待機期間Tw経過後の計測部14の計測結果(第2電圧値Vx2)は、安定した状態にある。 Then, the control unit 11 executes the processes of steps S106 to S109 as in the case of FIG. 7. The control unit 11 then waits for a waiting period Tw to elapse from the start of charge transfer in step S109 (S124). This waiting period Tw is set to the last waiting period Tw repeatedly reset in step S121. Normally, the parasitic capacitance is smaller than the measurement capacitance Cs. For this reason, when the waiting period Tw in step S124 is set in this way, the measurement result (second voltage value Vx2) of the measurement unit 14 after the waiting period Tw has elapsed is in a stable state.
 なお、ステップS124の待機期間Twは、通常想定され得る寄生容量の静電容量値との関係から、固定の期間として設定されてもよい。すなわち、通常想定され得る静電容量値の寄生容量に対して基準容量Crの電荷の分配が完了するまでの期間よりやや長めの期間が、ステップS124の待機期間Twに設定されてもよい。 The waiting period Tw in step S124 may be set as a fixed period in relation to the capacitance value of the parasitic capacitance that can be normally assumed. In other words, the waiting period Tw in step S124 may be set to a period slightly longer than the period until the charge distribution of the reference capacitance Cr is completed for the parasitic capacitance of the capacitance value that can be normally assumed.
 待機期間Twが経過すると(S124:YES)、制御部11は、その時点の計測部14の計測結果を、第2電圧値Vx2として取得する(S110)。そして、制御部11は、取得した第2電圧値Vx2と、ステップS123の判定がYESとなったときの第1電圧値Vx1とを上記式(5)に適用して、測定容量Csの静電容量値を算出する(S111)。 When the waiting period Tw has elapsed (S124: YES), the control unit 11 acquires the measurement result of the measurement unit 14 at that time as the second voltage value Vx2 (S110). Then, the control unit 11 applies the acquired second voltage value Vx2 and the first voltage value Vx1 when the determination in step S123 is YES to the above formula (5) to calculate the capacitance value of the measured capacitance Cs (S111).
 <変更例1の効果>
 図8に示したとおり、制御部11は、ステップS104による電荷の転送から、ステップS105による第1電圧値Vx1の取得までの待機期間Twを変化させながら(S121)、第1電圧値Vx1が飽和するまで(S123:NO)、第1制御C1(ステップS101~S105)を繰り返し実行し、飽和した第1電圧値Vx1を用いて静電容量値の算出を行う(S111)。このため、測定容量Csの静電容量値が小さく、計測部14の計測値が早期に飽和して安定する場合は、短い待機期間Twにより速やかに第1電圧値Vx1を取得できる。よって、測定容量Csの静電容量値の算出処理を迅速に行うことができる。
<Effects of Modification Example 1>
8, the control unit 11 repeatedly executes the first control C1 (steps S101 to S105) while changing the waiting period Tw from the transfer of the charge in step S104 to the acquisition of the first voltage value Vx1 in step S105 (S121) until the first voltage value Vx1 is saturated (S123: NO), and calculates the capacitance value using the saturated first voltage value Vx1 (S111). Therefore, when the capacitance value of the measurement capacitance Cs is small and the measurement value of the measurement unit 14 is saturated and stabilized early, the first voltage value Vx1 can be quickly obtained by the short waiting period Tw. Therefore, the calculation process of the capacitance value of the measurement capacitance Cs can be performed quickly.
 また、制御部11は、第1制御C1を繰り返すごとに待機期間Twを長くする。これにより、待機期間Twを第1電圧値Vx1が飽和する長さに徐々に近づけていくことができる。よって、測定容量Csに適した待機期間Twを円滑に設定できる。 In addition, the control unit 11 lengthens the waiting period Tw each time the first control C1 is repeated. This allows the waiting period Tw to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set the waiting period Tw appropriate for the measured capacitance Cs.
 なお、ステップS121における待機期間Twの変更方法は、上記のように、最小値から徐々に長くする方法に限られるものではない。たとえば、待機期間Twの取り得る範囲(設定レンジ)の中間付近から待機期間Twを所定長さだけ減少および増加させ、これら3つの待機期間Twから取得された第1電圧値Vx1の少なくとも2つが実質的に同じであれば、これら2つの第1電圧値Vx1の一方を静電容量の算出処理に用い、3つの待機期間Twから取得された第1電圧値Vx1の少なくとも2つが実質的に同じでなければ、これら3つの待機期間の最大値をから、第1電圧値Vx1が飽和するまで待機期間を増加させて、静電容量の算出に用いる第1電圧値Vx1を取得してもよい。 The method of changing the waiting period Tw in step S121 is not limited to the method of gradually lengthening it from the minimum value as described above. For example, the waiting period Tw may be decreased and increased by a predetermined length from near the middle of the possible range (set range) of the waiting period Tw, and if at least two of the first voltage values Vx1 obtained from these three waiting periods Tw are substantially the same, one of these two first voltage values Vx1 may be used in the capacitance calculation process. If at least two of the first voltage values Vx1 obtained from the three waiting periods Tw are not substantially the same, the waiting period may be increased from the maximum value of these three waiting periods until the first voltage value Vx1 is saturated, and the first voltage value Vx1 used in the capacitance calculation may be obtained.
 <変更例2>
 上記実施形態1では、基準容量Crの静電容量値が固定であったが、変更例2では、基準容量Crの静電容量値が変更可能となっている。
<Modification 2>
In the first embodiment, the capacitance value of the reference capacitance Cr is fixed. However, in the second modification, the capacitance value of the reference capacitance Cr is changeable.
 図9は、変更例2に係る、静電容量測定回路10の構成を示す図である。 FIG. 9 shows the configuration of the capacitance measurement circuit 10 according to the second modification.
 図9に示すように、変更例2に係る静電容量測定回路10は、基準容量Crの静電容量値を変化させるための容量値変更部として、4つのキャパシタCra~Crdと、4つのスイッチ素子16a~16dと、容量選択部15とを備える。スイッチ素子16a~16dは、容量選択部15によって導通/非導通に切り替えられる。スイッチ素子16a~16dが導通すると、スイッチ素子12a、12bとの間の配線とグランドとの間に、キャパシタCra~Crdがそれぞれ接続される。 As shown in FIG. 9, the capacitance measurement circuit 10 according to the second modification includes four capacitors Cra to Crd, four switch elements 16a to 16d, and a capacitance selection unit 15 as a capacitance value change unit for changing the capacitance value of the reference capacitance Cr. The switch elements 16a to 16d are switched between conductive and non-conductive by the capacitance selection unit 15. When the switch elements 16a to 16d are conductive, the capacitors Cra to Crd are each connected between the wiring between the switch elements 12a, 12b and ground.
 この構成では、4つのキャパシタCra~Crdのうち、この配線とグランドとの間に接続されたキャパシタの合成容量によって、図1の基準容量Crが構成される。したがって、容量選択部15によってスイッチ素子16a~16dの何れが導通されるかによって、基準容量Crの静電容量値が変化する。 In this configuration, the reference capacitance Cr in FIG. 1 is formed by the combined capacitance of the four capacitors Cra to Crd that are connected between this wiring and ground. Therefore, the capacitance value of the reference capacitance Cr changes depending on which of the switch elements 16a to 16d is made conductive by the capacitance selection unit 15.
 制御部11は、測定容量Csの測定範囲(ダイナミックレンジ)に応じて、容量選択部15により導通されるスイッチ素子を変更し、基準容量Crの静電容量値を、当該ダイナミックレンジに適する値に設定する。すなわち、上記のように、基準容量Crから測定容量Csに電荷が転送された後の測定容量Csの電圧値を、計測部14が適正に計測できるように、基準容量Crの静電容量値が設定される。測定容量Csのダイナミックレンジは、たとえば、図示しない上位端末を介して、ユーザにより、制御部11に設定される。 The control unit 11 changes the switch element that is turned on by the capacitance selection unit 15 according to the measurement range (dynamic range) of the measurement capacitance Cs, and sets the capacitance value of the reference capacitance Cr to a value suitable for that dynamic range. That is, as described above, the capacitance value of the reference capacitance Cr is set so that the measurement unit 14 can properly measure the voltage value of the measurement capacitance Cs after charge is transferred from the reference capacitance Cr to the measurement capacitance Cs. The dynamic range of the measurement capacitance Cs is set in the control unit 11 by the user, for example, via a higher-level terminal (not shown).
 <変更例2の効果>
 変更例2によれば、上記のように、測定容量Csのダイナミックレンジに適する値に基準容量Crの静電容量値を調整できる。よって、測定容量Csのダイナミックレンジが変更された場合も、当該ダイナミックレンジにおいて、測定容量Csの静電容量値を適正に測定できる。
<Effects of Modification Example 2>
According to the second modification, as described above, the capacitance value of the reference capacitance Cr can be adjusted to a value suitable for the dynamic range of the measurement capacitance Cs. Therefore, even if the dynamic range of the measurement capacitance Cs is changed, the capacitance value of the measurement capacitance Cs can be properly measured within the dynamic range.
 なお、図9の構成では、基準容量Crの静電容量値を変化させるために、4つのキャパシタCra~Crdと、4つのスイッチ素子16a~16dとが配置されたが、キャパシタおよびスイッチ素子の組の数は、これに限られるものではない。この組の数は、対応可能なダイナミックレンジの範囲との関係から、2つ以上の所定の数に設定されればよい。 In the configuration of FIG. 9, four capacitors Cra to Crd and four switch elements 16a to 16d are arranged to change the capacitance value of the reference capacitance Cr, but the number of pairs of capacitors and switch elements is not limited to this. The number of pairs may be set to a predetermined number of two or more in relation to the range of the dynamic range that can be supported.
 なお、基準容量Crの静電容量値を変化させるため構成は、図19に示す構成に限られるものではなく、たとえば、4つのキャパシタCra~Crdと、4つのスイッチ素子16a~16dとに代えて可変容量が配置されてもよい。この場合、制御部11は、測定容量Csの測定範囲(ダイナミックレンジ)に応じた容量値に可変容量の容量値を制御すればよい。 Note that the configuration for changing the capacitance value of the reference capacitance Cr is not limited to the configuration shown in FIG. 19. For example, a variable capacitance may be arranged instead of the four capacitors Cra to Crd and the four switch elements 16a to 16d. In this case, the control unit 11 may control the capacitance value of the variable capacitance to a capacitance value that corresponds to the measurement range (dynamic range) of the measurement capacitance Cs.
 <実施形態2>
 上記実施形態1では、基準容量Crに充電された電荷が測定容量Csに分配されて静電容量値が算出された。これに対し、実施形態2では、測定容量Csに充電された電荷が基準容量Crに分配されて静電容量値が算出される。
<Embodiment 2>
In the above-described embodiment 1, the charge stored in the reference capacitance Cr is distributed to the measurement capacitance Cs to calculate the capacitance value, whereas in the embodiment 2, the charge stored in the measurement capacitance Cs is distributed to the reference capacitance Cr to calculate the capacitance value.
 図10は、実施形態2に係る静電容量測定回路10の構成を示す図である。 FIG. 10 is a diagram showing the configuration of a capacitance measurement circuit 10 according to embodiment 2.
 図10では、図1に比べて、基準容量Cr、測定容量Cs、スイッチ素子13および計測部14の配置が変更されている。すなわち、測定容量Csは、基準容量Crよりも上流側(電源電圧Vdd側)に配置され、これに伴い、スイッチ素子13および計測部14の配置が変更されている。スイッチ素子13および計測部14の機能は、上記実施形態1と同様である。スイッチ素子12a~12cのうちスイッチ素子12bは、N型のFETに変更され得る。スイッチ素子12a、12cの構成および機能は、上記実施形態1と同様である。 In FIG. 10, the positions of the reference capacitance Cr, the measurement capacitance Cs, the switch element 13, and the measurement unit 14 are changed compared to FIG. 1. That is, the measurement capacitance Cs is placed upstream of the reference capacitance Cr (on the power supply voltage Vdd side), and the positions of the switch element 13 and the measurement unit 14 are changed accordingly. The functions of the switch element 13 and the measurement unit 14 are the same as in the above-mentioned embodiment 1. Of the switch elements 12a to 12c, the switch element 12b can be changed to an N-type FET. The configuration and function of the switch elements 12a and 12c are the same as in the above-mentioned embodiment 1.
 図11(a)~図15(b)は、測定容量Csの静電容量値を測定する際の静電容量測定回路10の動作を示す図である。図16は、測定容量Csの静電容量値を測定する際の制御部11の処理を示すフローチャートである。 FIGS. 11(a) to 15(b) are diagrams showing the operation of the capacitance measurement circuit 10 when measuring the capacitance value of the measurement capacitance Cs. FIG. 16 is a flowchart showing the processing of the control unit 11 when measuring the capacitance value of the measurement capacitance Cs.
 まず、制御部11は、図11(a)に示すように、測定容量Csの負極をグランドに接続した状態で(S201)、スイッチ素子12a、12cを導通状態に切り替え、測定容量Csに対する充電および基準容量Crに対する放電を行う(S202)。その後、制御部11は、図11(b)に示すように、基準容量Crの正極をグランドから切り離し、さらに、測定容量Csが満充電状態になった後、図12(a)に示すように、測定容量Csの正極をグランドから切り離す(S203)。測定容量Csが満充電状態になったか否かは、上記実施形態と同様、測定容量Csの電圧が電源電圧Vddに到達して安定したか否かで判定され得る。 First, as shown in FIG. 11(a), the control unit 11 connects the negative electrode of the measurement capacitance Cs to ground (S201), switches the switch elements 12a and 12c to a conductive state, and charges the measurement capacitance Cs and discharges the reference capacitance Cr (S202). Thereafter, as shown in FIG. 11(b), the control unit 11 disconnects the positive electrode of the reference capacitance Cr from ground, and after the measurement capacitance Cs is fully charged, as shown in FIG. 12(a), disconnects the positive electrode of the measurement capacitance Cs from ground (S203). Whether the measurement capacitance Cs is fully charged can be determined by whether the voltage of the measurement capacitance Cs has reached the power supply voltage Vdd and stabilized, as in the above embodiment.
 次に、制御部11は、図12(b)に示すように、スイッチ素子12bを導通状態に切り替え、測定容量Csの電荷を基準容量Crに転送する(S204)。そして、制御部11は、この転送が完了するまでの期間が経過するのを待ち、その後、図13(a)に示すように、計測部14の計測値を第1電圧値Vx1として取得する(S205)。これにより、第1制御C1が完了する。 Next, the control unit 11 switches the switch element 12b to a conductive state, as shown in FIG. 12(b), and transfers the charge of the measurement capacitance Cs to the reference capacitance Cr (S204). The control unit 11 then waits for a period of time until this transfer is completed, and thereafter, as shown in FIG. 13(a), obtains the measurement value of the measurement unit 14 as the first voltage value Vx1 (S205). This completes the first control C1.
 続いて、制御部11は、図13(b)に示すように、スイッチ素子13を測定容量Csの正極側に切り替え、測定容量Csの正極と負極とを接続する(S206)。そして、制御部11は、図14(a)に示すように、スイッチ素子12b、12cを導通状態に切り替えて、基準容量Crおよび測定容量Csに対する放電を行う(S207)。 Then, as shown in FIG. 13(b), the control unit 11 switches the switch element 13 to the positive electrode side of the measurement capacitance Cs, and connects the positive electrode and negative electrode of the measurement capacitance Cs (S206). Then, as shown in FIG. 14(a), the control unit 11 switches the switch elements 12b and 12c to the conductive state, and discharges the reference capacitance Cr and the measurement capacitance Cs (S207).
 その後、制御部11は、スイッチ素子12b、12cを非導通状態に切り替え、さらに、図14(b)に示すように、スイッチ素子12aを導通状態に切り替えて、測定容量Csの正極を電源電圧Vddに接続する(S208)。ここでは、測定容量Csの正極と負極が接続されているため、測定容量Csの正極および負極は同電位となる。このため、測定容量Csは充電されず、測定容量Cs以外の寄生容量に充電が行われる。 Then, the control unit 11 switches the switch elements 12b and 12c to a non-conductive state, and further switches the switch element 12a to a conductive state as shown in FIG. 14(b) to connect the positive electrode of the measurement capacitance Cs to the power supply voltage Vdd (S208). Here, since the positive electrode and negative electrode of the measurement capacitance Cs are connected, the positive electrode and negative electrode of the measurement capacitance Cs are at the same potential. Therefore, the measurement capacitance Cs is not charged, and charging is performed on the parasitic capacitance other than the measurement capacitance Cs.
 続いて、制御部11は、スイッチ素子12aを非導通状態に設定して測定容量Csの正極を電源電圧Vddから切り離し(S209)、さらに、図15(a)に示すように、スイッチ素子12bを導通状態に切り替えて測定容量Csの正極と基準容量Crの正極とを接続して、基準容量Crに対する電荷の転送を行う(S210)。ここでは、上記のように測定容量Csには電荷が蓄積されていないため、寄生容量に蓄積されている電荷が基準容量Crに転送される。電荷が転送された後、制御部11は、図15(b)に示すように、計測部14の計測値を第1電圧値Vx1として取得する(S205)。これにより、第2制御C2が完了する。 Then, the control unit 11 sets the switch element 12a to a non-conductive state to disconnect the positive electrode of the measurement capacitance Cs from the power supply voltage Vdd (S209), and then switches the switch element 12b to a conductive state to connect the positive electrode of the measurement capacitance Cs and the positive electrode of the reference capacitance Cr as shown in FIG. 15(a), thereby transferring charge to the reference capacitance Cr (S210). Here, since no charge has been accumulated in the measurement capacitance Cs as described above, the charge accumulated in the parasitic capacitance is transferred to the reference capacitance Cr. After the charge has been transferred, the control unit 11 obtains the measurement value of the measurement unit 14 as the first voltage value Vx1 as shown in FIG. 15(b) (S205). This completes the second control C2.
 そして、制御部11は、第1制御C1および第2制御C2でそれぞれ取得した第1電圧値Vx1および第2電圧値Vx2から、測定容量Csの静電容量値を算出する(S212)。 Then, the control unit 11 calculates the capacitance value of the measured capacitance Cs from the first voltage value Vx1 and the second voltage value Vx2 obtained in the first control C1 and the second control C2, respectively (S212).
 測定容量Csの静電容量値の算出は、以下のように行われる。 The capacitance value of the measured capacitance Cs is calculated as follows:
 まず、図11(a)のように測定容量Csが満充電となったときの測定容量Csの電荷量Qsは、測定容量Csの静電容量値をCs1とすると、以下の式で表される。 First, as shown in FIG. 11(a), when the measured capacitance Cs is fully charged, the charge Qs of the measured capacitance Cs is expressed by the following formula, assuming that the capacitance value of the measured capacitance Cs is Cs1.
  Qs=Cs1×Vdd …(6) Qs = Cs1 x Vdd ... (6)
 また、図2(b)のように電荷の転送が完了した状態では、基準容量Crとの静電容量値をCrとすると、以下の関係が成立する。 Furthermore, when the charge transfer is complete as shown in Figure 2(b), if the capacitance value with respect to the reference capacitance Cr is Cr, the following relationship holds:
  Qs=(Cr+Cs1)×Vx1 …(7)   Qs=(Cr+Cs1)×Vx1 …(7)
 したがって、式(6)、(7)から、以下の関係式が導き出される。 Therefore, the following relationship can be derived from equations (6) and (7):
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 但し、この静電容量値Cs1には、上記のように、寄生容量に基づく誤差成分が含まれる。この誤差成分Ceは、図15(b)の動作により取得された第2電圧値Vx2を用いて、以下の式により表され得る。 However, as described above, this capacitance value Cs1 includes an error component due to parasitic capacitance. This error component Ce can be expressed by the following equation using the second voltage value Vx2 obtained by the operation of FIG. 15(b).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 すなわち、図14(a)~図15(b)の動作時には、測定容量Csの正極と負極は同電位であるため、測定容量Csは無効化され、基準容量Crと寄生容量のみが容量成分となる。このため、寄生容量の静電容量値、すなわち誤差成分Ceは、上記式(9)により表され得る。 In other words, during the operation shown in Figures 14(a) to 15(b), the positive and negative electrodes of the measurement capacitance Cs are at the same potential, so the measurement capacitance Cs is invalidated, and only the reference capacitance Cr and the parasitic capacitance become the capacitance components. Therefore, the electrostatic capacitance value of the parasitic capacitance, i.e., the error component Ce, can be expressed by the above formula (9).
 測定容量Csの静電容量値Csは、式(8)の静電容量値Csから誤差成分Ceを除いたものであるから、上記式(8)、(9)から、以下の式で算出される。 The capacitance value Cs of the measured capacitance Cs is the capacitance value Cs in equation (8) minus the error component Ce, and is calculated from equations (8) and (9) above using the following equation:
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(10)において、静電容量値Crおよび電源電圧Vddは既知であり、第1電圧値Vx1および第2電圧値Vx2は、図13(a)および図15(b)の動作により取得されるため、上記式(10)から、測定容量Csの静電容量値を算出できる。 In equation (10), the capacitance value Cr and the power supply voltage Vdd are known, and the first voltage value Vx1 and the second voltage value Vx2 are obtained by the operations shown in Figures 13(a) and 15(b), so the capacitance value of the measured capacitance Cs can be calculated from equation (10) above.
 図17(a)、(b)は、それぞれ、図7(実施形態1)および図16(実施形態2)の静電容量検出処理により検出される静電容量のシミュレーション結果を示すグラフである。 FIGS. 17(a) and (b) are graphs showing simulation results of capacitance detected by the capacitance detection process of FIG. 7 (embodiment 1) and FIG. 16 (embodiment 2), respectively.
 このシミュレーションでは、測定容量Csにおける静電容量値を変化させた場合に、上記図7および図16の各処理により測定容量Csの静電容量値を算出した。図17(a)、(b)において、横軸は、測定容量Csに設定された静電容量値であり、縦軸は、上記各処理により算出された静電容量値である。 In this simulation, the capacitance value of the measured capacitance Cs was calculated by the processes in Figures 7 and 16 when the capacitance value of the measured capacitance Cs was changed. In Figures 17(a) and (b), the horizontal axis is the capacitance value set for the measured capacitance Cs, and the vertical axis is the capacitance value calculated by the processes.
 図17(a)、(b)に示すように、上記実施形態1、2の各処理により算出された静電容量値は、測定容量Csに設定された静電容量値に略符合し、シミュレーション結果のプロットからリニアな近似直線が取得された。これにより、これらの処理によれば、寄生容量の影響が効果的に抑制された静電容量値を測定容量Csについて取得できることが確認できた。 As shown in Figures 17(a) and (b), the capacitance values calculated by the processes of the first and second embodiments are roughly equal to the capacitance values set for the measured capacitance Cs, and a linear approximation line was obtained from the plot of the simulation results. This confirms that these processes make it possible to obtain a capacitance value for the measured capacitance Cs in which the effects of parasitic capacitance are effectively suppressed.
 <実施形態2の効果>
 図13(a)および図15(b)に示したように、電荷の転送がなされた後の安定(飽和)した電圧値(第1電圧値Vx1、第2電圧値Vx2)が計測部14により計測されればよいため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、図16に示した第2制御C2では、ステップS206により、測定容量Csの負極と正極(正極と同電位の配線)とが接続されるため、計測された第2電圧値Vx2には、測定容量Csの影響は殆ど及ばず、主として基準容量Crおよび寄生容量の影響が及ぶ。これに対し、第1制御C1では、ステップS201により、測定容量Csの負極とグランドとが接続されるため、計測された第1電圧値Vx1には、基準容量Crおよび寄生容量とともに、測定容量Csの影響が及ぶ。したがって、これら2つの電圧値から測定容量Csの静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量Csの静電容量値を精度良く測定できる。
<Effects of the Second Embodiment>
As shown in FIG. 13(a) and FIG. 15(b), the stable (saturated) voltage values (first voltage value Vx1, second voltage value Vx2) after the charge transfer are measured by the measuring unit 14, so that the capacitance value in a small range can be stably measured without using a high-precision AD converter. In addition, in the second control C2 shown in FIG. 16, the negative electrode and the positive electrode (wire with the same potential as the positive electrode) of the measurement capacitance Cs are connected in step S206, so that the measured second voltage value Vx2 is hardly influenced by the measurement capacitance Cs, but is mainly influenced by the reference capacitance Cr and the parasitic capacitance. In contrast, in the first control C1, the negative electrode of the measurement capacitance Cs is connected to the ground in step S201, so that the measured first voltage value Vx1 is influenced by the measurement capacitance Cs as well as the reference capacitance Cr and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance Cs from these two voltage values, the capacitance value without the influence of the parasitic capacitance can be calculated. Therefore, the electrostatic capacitance value of the measurement capacitance Cs can be measured with high accuracy.
 ここで、制御部11は、第1制御C1により取得した第1電圧値Vx1と、第2制御C2により取得した第2電圧値Vx2と、測定容量Csに印加される電源電圧Vddと、基準容量Crの静電容量値とから、上記式(10)により、測定容量Csの静電容量値を算出する。これにより、上記のように、測定容量Csの静電容量値に対する寄生容量による誤差成分の影響を抑制でき、測定容量Csの静電容量値を精度良く取得できる。 Here, the control unit 11 calculates the capacitance value of the measurement capacitance Cs using the above formula (10) from the first voltage value Vx1 obtained by the first control C1, the second voltage value Vx2 obtained by the second control C2, the power supply voltage Vdd applied to the measurement capacitance Cs, and the capacitance value of the reference capacitance Cr. As a result, as described above, the effect of error components due to parasitic capacitance on the capacitance value of the measurement capacitance Cs can be suppressed, and the capacitance value of the measurement capacitance Cs can be obtained with high accuracy.
 <変更例1>
 上記実施形態1では、図7の第1制御C1において、基準容量Crの電荷が測定容量Csに転送された後(S204)、転送が完了して計測部14の計測値が安定(飽和)するまでの固定の期間が経過してから、第1電圧値Vx1の取得が行われた(S205)。これに対し、変更例1では、上記実施形態1の変更例1と同様、待機期間Twを変更しながら、第1電圧値Vx1が取得される。
<Modification 1>
7, after the charge of the reference capacitance Cr is transferred to the measurement capacitance Cs (S204), the first voltage value Vx1 is acquired after a fixed period has elapsed until the transfer is completed and the measurement value of the measurement unit 14 becomes stable (saturated) (S205). In contrast, in the modified example 1, the first voltage value Vx1 is acquired while changing the waiting period Tw, as in the modified example 1 of the above-mentioned embodiment 1.
 図18は、変更例1に係る、測定容量Csの静電容量値の算出処理を示すフローチャートである。 FIG. 18 is a flowchart showing the process for calculating the capacitance value of the measurement capacitance Cs in the first modification example.
 図18においても、図8と同様、制御部11は、第1電圧値Vx1が飽和(安定)するまで(S223:NO)、待機期間Twを変化させながら(S221)、第1電圧値Vx1を取得する(S205)。すなわち、図16のステップS204により電荷の転送が開始された後、第1電圧値Vx1を取得するまでの待機期間Tw(S222)が変更されて、第1電圧値Vx1が取得される(S205)。制御部11は、計測部14の計測値が飽和(安定)した時点におけるその計測値を、静電容量値の算出(S212)に用いる第1電圧値Vx1として取得する。 18, as in FIG. 8, the control unit 11 acquires the first voltage value Vx1 (S205) while changing the waiting period Tw (S221) until the first voltage value Vx1 becomes saturated (stable) (S223: NO). That is, after the charge transfer is started in step S204 of FIG. 16, the waiting period Tw (S222) until the first voltage value Vx1 is acquired is changed, and the first voltage value Vx1 is acquired (S205). The control unit 11 acquires the measurement value of the measurement unit 14 at the point when the measurement value becomes saturated (stable) as the first voltage value Vx1 to be used in calculating the capacitance value (S212).
 この場合も、図8の場合と同様、待機期間Twは、設定レンジの最小値から徐々に長くされる。但し、この場合も、図8の場合と同様、待機期間Twの変更方法はこれに限られるものではなく、他の方法によって変更されてもよい。また、ステップS223における判定は、図8のステップS123の判定と同様に行われればよい。 In this case, as in the case of FIG. 8, the waiting period Tw is gradually lengthened from the minimum value of the setting range. However, in this case, as in the case of FIG. 8, the method of changing the waiting period Tw is not limited to this, and it may be changed by other methods. Also, the determination in step S223 may be performed in the same manner as the determination in step S123 in FIG. 8.
 その後、制御部11は、図16と同様、第2電圧値Vx2を取得するために、ステップS206~S210の処理を行う。制御部11は、ステップS210にて電荷の転送を開始した後、ステップS222の判定がYESとなったときの待機期間Twが経過するのを待ち(S224)、待機期間Twの経過した時点の計測部14の計測値を第2電圧値Vx2として取得する(S211)。 Then, the control unit 11 performs the processes of steps S206 to S210 to obtain the second voltage value Vx2, as in FIG. 16. After starting the transfer of charge in step S210, the control unit 11 waits for the waiting period Tw to elapse when the determination in step S222 becomes YES (S224), and obtains the measurement value of the measurement unit 14 at the time when the waiting period Tw has elapsed as the second voltage value Vx2 (S211).
 この場合も、図8の場合と同様、ステップS224の待機期間Twは、通常想定され得る寄生容量の静電容量値との関係から、固定の期間として設定されてもよい。すなわち、通常想定され得る静電容量値の寄生容量から基準容量Crへ電荷の分配が完了するまでの期間よりやや長めの期間が、ステップS224の待機期間Twに設定されてもよい。 In this case, as in the case of FIG. 8, the waiting period Tw in step S224 may be set as a fixed period in relation to the capacitance value of the parasitic capacitance that can be normally assumed. In other words, the waiting period Tw in step S224 may be set to a period slightly longer than the period until the distribution of charge from the parasitic capacitance of the normally assumed capacitance value to the reference capacitance Cr is completed.
 その後、制御部11は、取得した第2電圧値Vx2と、ステップS223の判定がYESとなったときの第1電圧値Vx1とを上記式(10)に適用して、測定容量Csの静電容量値を算出する。これにより、制御部11は、図18の処理を終了する。 Then, the control unit 11 applies the acquired second voltage value Vx2 and the first voltage value Vx1 when the determination in step S223 is YES to the above formula (10) to calculate the capacitance value of the measured capacitance Cs. This causes the control unit 11 to end the process of FIG. 18.
 <変更例1の効果>
 図18の処理によれば、制御部11は、ステップS204による電荷の転送から、ステップS205による第1電圧値Vx1の取得までの待機期間Twを変化させながら(S221)、第1電圧値Vx1が飽和するまで(S223:NO)、第1制御C1(ステップS201~S205)を繰り返し実行し、飽和した第1電圧値Vx1を用いて静電容量値の算出を行う(S212)。このため、測定容量Csの静電容量値が小さく、計測部14の計測値が早期に飽和して安定する場合は、短い待機期間Twにより速やかに第1電圧値Vx1を取得できる。よって、測定容量Csの静電容量値の算出処理を迅速に行うことができる。
<Effects of Modification Example 1>
18, the control unit 11 repeatedly executes the first control C1 (steps S201 to S205) while changing the waiting period Tw from the transfer of the charge in step S204 to the acquisition of the first voltage value Vx1 in step S205 (S221) until the first voltage value Vx1 is saturated (S223: NO), and calculates the capacitance value using the saturated first voltage value Vx1 (S212). Therefore, when the capacitance value of the measurement capacitance Cs is small and the measurement value of the measurement unit 14 is saturated and stabilized early, the first voltage value Vx1 can be quickly obtained by the short waiting period Tw. Therefore, the calculation process of the capacitance value of the measurement capacitance Cs can be performed quickly.
 また、制御部11は、第1制御C1を繰り返すごとに待機期間Twを長くする。これにより、待機期間Twを第1電圧値Vx1が飽和する長さに徐々に近づけていくことができる。よって、測定容量Csに適した待機期間Twを円滑に設定できる。 In addition, the control unit 11 lengthens the waiting period Tw each time the first control C1 is repeated. This allows the waiting period Tw to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set the waiting period Tw appropriate for the measured capacitance Cs.
 <変更例2>
 この変更例2では、上記実施形態1の変更例2と同様、基準容量Crの静電容量値が変更可能となっている。
<Modification 2>
In this modification example 2, similarly to the modification example 2 of the first embodiment, the capacitance value of the reference capacitance Cr is changeable.
 図19は、変更例2に係る、静電容量測定回路10の構成を示す図である。 FIG. 19 shows the configuration of the capacitance measurement circuit 10 according to the second modification.
 図19に示すように、変更例2に係る静電容量測定回路10は、基準容量Crの静電容量値を変化させるための容量値変更部として、図9と同様、4つのキャパシタCra~Crdと、4つのスイッチ素子16a~16dと、容量選択部15とを備える。スイッチ素子16a~16dは、N型のFETに変更され得る。容量選択部15によってスイッチ素子16a~16dが導通されることにより、スイッチ素子12b、12cとの間の配線とグランドとの間に、キャパシタCra~Crdがそれぞれ接続される。 As shown in FIG. 19, the capacitance measurement circuit 10 according to the second modification includes, as in FIG. 9, four capacitors Cra to Crd, four switch elements 16a to 16d, and a capacitance selection unit 15 as a capacitance value change unit for changing the capacitance value of the reference capacitance Cr. The switch elements 16a to 16d can be changed to N-type FETs. When the switch elements 16a to 16d are made conductive by the capacitance selection unit 15, the capacitors Cra to Crd are each connected between the wiring between the switch elements 12b and 12c and the ground.
 この構成によっても、4つのキャパシタCra~Crdのうち、この配線とグランドとの間に接続されたキャパシタの合成容量によって、図10の基準容量Crが構成される。したがって、容量選択部15によってスイッチ素子16a~16dの何れが導通されるかによって、基準容量Crの静電容量値を変化させることができる。これにより、測定容量Csのダイナミックレンジに適する値に基準容量Crの静電容量値を調整できる。よって、測定容量Csのダイナミックレンジが変更された場合も、当該ダイナミックレンジにおいて、測定容量Csの静電容量値を適正に測定できる。 Even with this configuration, the reference capacitance Cr in FIG. 10 is formed by the combined capacitance of the capacitors among the four capacitors Cra to Crd that are connected between this wiring and ground. Therefore, the capacitance value of the reference capacitance Cr can be changed depending on which of the switch elements 16a to 16d is turned on by the capacitance selection unit 15. This makes it possible to adjust the capacitance value of the reference capacitance Cr to a value appropriate for the dynamic range of the measurement capacitance Cs. Therefore, even if the dynamic range of the measurement capacitance Cs is changed, the capacitance value of the measurement capacitance Cs can be properly measured within that dynamic range.
 <実施形態3>
 実施形態3では、上記実施形態1の静電容量測定回路10が荷重検出装置に適用された場合の構成例が示される。荷重検出装置は、静電容量型の荷重センサにより荷重を検出する。この種の荷重検出装置は、様々なシステムに適用され得る。荷重検出装置に含まれる荷重センサは、「静電容量型感圧センサ素子」、「容量性圧力検出センサ素子」、「感圧スイッチ素子」などと称される場合もある。
<Embodiment 3>
In the third embodiment, a configuration example is shown in which the capacitance measurement circuit 10 of the first embodiment is applied to a load detection device. The load detection device detects a load using a capacitance type load sensor. This type of load detection device can be applied to various systems. The load sensor included in the load detection device may be called a "capacitive pressure sensor element," a "capacitive pressure detection sensor element," a "pressure sensitive switch element," or the like.
 まず、図20(a)~図23を参照して、荷重センサ20の構成を説明する。便宜上、図20(a)~図23には、互いに直交するX、Y、Z軸が付記されている。Z軸方向は、荷重センサ20の厚み方向である。 First, the configuration of the load sensor 20 will be described with reference to Figs. 20(a) to 23. For convenience, mutually orthogonal X, Y, and Z axes are indicated in Figs. 20(a) to 23. The Z-axis direction is the thickness direction of the load sensor 20.
 図20(a)は、ベース部材21と、ベース部材21の上面(Z軸正側の面)に設置された導電弾性体22とを模式的に示す斜視図である。 Figure 20(a) is a perspective view that shows a schematic diagram of a base member 21 and a conductive elastic body 22 that is placed on the upper surface (the surface on the positive side of the Z axis) of the base member 21.
 ベース部材21は、弾性を有する絶縁性の平板状の部材である。ベース部材21は、平面視において矩形の形状を有する。ベース部材21の厚みは一定である。ベース部材21の厚みは、たとえば、0.01mm~2mmである。ベース部材21の厚みが小さい場合、ベース部材21は、シート部材またはフィルム部材と呼ばれることもある。ベース部材21は、非導電性の樹脂材料または非導電性のゴム材料から構成される。 The base member 21 is an elastic, insulating, flat-plate member. The base member 21 has a rectangular shape in a plan view. The thickness of the base member 21 is constant. The thickness of the base member 21 is, for example, 0.01 mm to 2 mm. When the thickness of the base member 21 is small, the base member 21 is sometimes called a sheet member or a film member. The base member 21 is made of a non-conductive resin material or a non-conductive rubber material.
 ベース部材21に用いられる樹脂材料は、たとえば、スチレン系樹脂、シリコーン系樹脂(たとえば、ポリジメチルポリシロキサン(PDMS)など)、アクリル系樹脂、ロタキサン系樹脂、およびウレタン系樹脂等からなる群から選択される少なくとも1種の樹脂材料である。ベース部材21に用いられるゴム材料は、たとえば、シリコーンゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ポリイソブチレン、エチレンプロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、エピクロルヒドリンゴム、ウレタンゴム、および天然ゴム等からなる群から選択される少なくとも1種のゴム材料である。 The resin material used for the base member 21 is, for example, at least one resin material selected from the group consisting of styrene-based resin, silicone-based resin (e.g., polydimethylpolysiloxane (PDMS)), acrylic-based resin, rotaxane-based resin, and urethane-based resin. The rubber material used for the base member 21 is, for example, at least one rubber material selected from the group consisting of silicone rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluororubber, epichlorohydrin rubber, urethane rubber, and natural rubber.
 導電弾性体22は、ベース部材21の上面(Z軸正側の面)に配置される。図20(a)では、ベース部材21の上面に、3つの導電弾性体22が配置されている。導電弾性体22は、弾性を有する導電性の部材である。各導電弾性体22は、Y軸方向に長い帯状の形状を有する。3つの導電弾性体22は、X軸方向に所定の間隔をあけて並んで配置されている。各導電弾性体22のY軸負側の端部に、導電弾性体22に対して電気的に接続された配線W2が設置される。 The conductive elastic bodies 22 are disposed on the upper surface (the surface on the positive side of the Z axis) of the base member 21. In FIG. 20(a), three conductive elastic bodies 22 are disposed on the upper surface of the base member 21. The conductive elastic bodies 22 are elastic, conductive members. Each conductive elastic body 22 has a long strip shape in the Y axis direction. The three conductive elastic bodies 22 are disposed side by side at a predetermined interval in the X axis direction. Wiring W2 electrically connected to the conductive elastic bodies 22 is provided at the end of each conductive elastic body 22 on the negative side of the Y axis.
 導電弾性体22は、ベース部材21の上面に、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷、およびグラビアオフセット印刷などの印刷工法により形成される。これらの印刷工法によれば、ベース部材21の上面に0.001mm~0.5mm程度の厚みで導電弾性体22を形成することが可能となる。 The conductive elastic body 22 is formed on the upper surface of the base member 21 by a printing method such as screen printing, gravure printing, flexographic printing, offset printing, and gravure offset printing. These printing methods make it possible to form the conductive elastic body 22 on the upper surface of the base member 21 with a thickness of about 0.001 mm to 0.5 mm.
 導電弾性体22は、樹脂材料とその中に分散した導電性フィラー、またはゴム材料とその中に分散した導電性フィラーから構成される。 The conductive elastomer 22 is composed of a resin material with conductive filler dispersed therein, or a rubber material with conductive filler dispersed therein.
 導電弾性体22に用いられる樹脂材料は、上述したベース部材21に用いられる樹脂材料と同様、たとえば、スチレン系樹脂、シリコーン系樹脂(ポリジメチルポリシロキサン(たとえば、PDMS)など)、アクリル系樹脂、ロタキサン系樹脂、およびウレタン系樹脂等からなる群から選択される少なくとも1種の樹脂材料である。 The resin material used for the conductive elastic body 22 is the same as the resin material used for the base member 21 described above, and is at least one resin material selected from the group consisting of, for example, styrene-based resins, silicone-based resins (polydimethylpolysiloxane (e.g., PDMS), etc.), acrylic-based resins, rotaxane-based resins, and urethane-based resins.
 導電弾性体22に用いられるゴム材料は、上述したベース部材21に用いられるゴム材料と同様、たとえば、シリコーンゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ポリイソブチレン、エチレンプロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、エピクロルヒドリンゴム、ウレタンゴム、および天然ゴム等からなる群から選択される少なくとも1種のゴム材料である。 The rubber material used for the conductive elastomer 22 is the same as the rubber material used for the base member 21 described above, and is at least one type of rubber material selected from the group consisting of silicone rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluororubber, epichlorohydrin rubber, urethane rubber, and natural rubber.
 導電弾性体22に用いられる導電性フィラーは、たとえば、Au(金)、Ag(銀)、Cu(銅)、C(カーボン)、ZnO(酸化亜鉛)、In(酸化インジウム(III))、およびSnO(酸化スズ(IV))等の金属材料や、PEDOT:PSS(すなわち、ポリ3,4-エチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)からなる複合物)等の導電性高分子材料や、金属コート有機物繊維、金属線(繊維状態)等の導電性繊維からなる群から選択される少なくとも1種の材料である。 The conductive filler used in the conductive elastomer 22 is at least one material selected from the group consisting of metal materials such as Au (gold), Ag (silver), Cu (copper), C (carbon), ZnO (zinc oxide), In 2 O 3 (indium (III) oxide), and SnO 2 (tin (IV) oxide), conductive polymer materials such as PEDOT:PSS (i.e., a composite of poly 3,4-ethylenedioxythiophene (PEDOT) and polystyrene sulfonate (PSS)), and conductive fibers such as metal-coated organic fibers and metal wires (in a fibrous state).
 図20(b)は、図20(a)の構造体に導体線23が設置された状態を模式的に示す斜視図である。 FIG. 20(b) is a perspective view that shows a schematic diagram of the structure of FIG. 20(a) with conductor wire 23 installed.
 導体線23は、線状の部材であり、図20(a)に示した導電弾性体22の上面に重ねて配置される。本実施形態では、3つの導体線23が3つの導電弾性体22の上面に重ねて配置される。3つの導体線23は、導電弾性体22に交差するように、導電弾性体22の長手方向(Y軸方向)に沿って所定の間隔をあけて並んで配置される。各導体線23は、3つの導電弾性体22に跨がるよう、X軸方向に延びて配置される。 The conductor wires 23 are linear members and are arranged overlapping on the upper surface of the conductive elastic body 22 shown in FIG. 20(a). In this embodiment, three conductor wires 23 are arranged overlapping on the upper surfaces of the three conductive elastic bodies 22. The three conductor wires 23 are arranged side by side at a predetermined interval along the longitudinal direction (Y-axis direction) of the conductive elastic body 22 so as to intersect with the conductive elastic body 22. Each conductor wire 23 is arranged extending in the X-axis direction so as to straddle the three conductive elastic bodies 22.
 導体線23は、たとえば、被覆付き銅線である。導体線23は、線状の導電部材23aと、当該導電部材23aの表面に形成された誘電体23bとからなっている。 The conductor wire 23 is, for example, a coated copper wire. The conductor wire 23 is composed of a linear conductive member 23a and a dielectric 23b formed on the surface of the conductive member 23a.
 図21(a)は、図20(b)の構造体に糸24が設置された状態を模式的に示す斜視図である。 Figure 21(a) is a schematic perspective view showing the state in which thread 24 is installed in the structure of Figure 20(b).
 図20(b)のように導体線23が配置された後、各導体線23は、導体線23の長手方向(X軸方向)に移動可能に、糸24によりベース部材21に接続される。図21(a)に示す例では、12個の糸24が、導電弾性体22と導体線23とが重なる位置以外の位置において、導体線23をベース部材21に接続している。糸24は、化学繊維、天然繊維、またはそれらの混合繊維などにより構成される。 After the conductor wires 23 are arranged as shown in FIG. 20(b), each conductor wire 23 is connected to the base member 21 by threads 24 so as to be movable in the longitudinal direction (X-axis direction) of the conductor wire 23. In the example shown in FIG. 21(a), 12 threads 24 connect the conductor wires 23 to the base member 21 at positions other than the positions where the conductive elastic body 22 and the conductor wire 23 overlap. The threads 24 are made of chemical fibers, natural fibers, or a mixture of these fibers.
 図21(b)は、図21(a)の構造体にベース部材25が設置された状態を模式的に示す斜視図である。 Figure 21(b) is a perspective view that shows a schematic diagram of the structure in Figure 21(a) with a base member 25 installed.
 図21(a)に示した構造体の上方(Z軸正側)から、ベース部材25が設置される。ベース部材25は、絶縁性の部材である。ベース部材25は、たとえば、ポリエチレンテレフタレート、ポリカーボネート、およびポリイミド等からなる群から選択される少なくとも1種の樹脂材料である。ベース部材25は、ベース部材21と同じ材料からなっていてもよい。ベース部材25は、X-Y平面に平行な平板形状を有し、平面視においてベース部材21と同じ大きさおよび形状を有する。ベース部材25のZ軸方向の厚みは、たとえば、0.01mm~2mmである。 The base member 25 is placed from above (the positive side of the Z axis) of the structure shown in FIG. 21(a). The base member 25 is an insulating member. The base member 25 is, for example, at least one resin material selected from the group consisting of polyethylene terephthalate, polycarbonate, polyimide, etc. The base member 25 may be made of the same material as the base member 21. The base member 25 has a flat plate shape parallel to the XY plane, and has the same size and shape as the base member 21 in a planar view. The thickness of the base member 25 in the Z axis direction is, for example, 0.01 mm to 2 mm.
 ベース部材25の外周四辺がベース部材21の外周四辺に対して、シリコーンゴム系接着剤や糸などで接続される。これにより、ベース部材21にベース部材25が固定される。導体線23は、導電弾性体22とベース部材25とによって挟まれる。こうして、図21(b)に示すように、荷重センサ20が完成する。荷重センサ20は、図21(b)の状態から表裏反転された状態で使用され得る。 The four outer periphery sides of base member 25 are connected to the four outer periphery sides of base member 21 with silicone rubber adhesive, thread, or the like. This fixes base member 25 to base member 21. Conductor wire 23 is sandwiched between conductive elastic body 22 and base member 25. In this way, load sensor 20 is completed as shown in Figure 21 (b). Load sensor 20 can be used in a state where it is turned over from the state shown in Figure 21 (b).
 図22(a)および図22(b)は、荷重センサ20を導電弾性体22のX軸方向の中央位置でY-Z平面に平行な面で切断したときの荷重センサ20の断面を模式的に示す図である。図22(a)は、荷重が加えられていない状態の断面を示し、図22(b)は、荷重が加えられている状態の断面を示している。 22(a) and 22(b) are schematic diagrams showing the cross section of the load sensor 20 when the load sensor 20 is cut along a plane parallel to the Y-Z plane at the center position in the X-axis direction of the conductive elastic body 22. FIG. 22(a) shows the cross section when no load is applied, and FIG. 22(b) shows the cross section when a load is applied.
 図22(a)、(b)に示すように、導体線23は、導電部材23aと、導電部材23aに形成された誘電体23bと、により構成される。導電部材23aは、導電性を有する線状の部材である。誘電体23bは、導電部材23aの表面を被覆している。導電部材23aは、たとえば、銅により構成されている。導電部材23aの直径は、たとえば、約60μmである。 As shown in Figures 22(a) and (b), the conductor wire 23 is composed of a conductive member 23a and a dielectric 23b formed on the conductive member 23a. The conductive member 23a is a linear member having electrical conductivity. The dielectric 23b covers the surface of the conductive member 23a. The conductive member 23a is composed of, for example, copper. The diameter of the conductive member 23a is, for example, about 60 μm.
 誘電体23bは、電気絶縁性を有し、たとえば、樹脂材料、セラミック材料、金属酸化物材料などにより構成される。誘電体23bは、ポリプロピレン樹脂、ポリエステル樹脂(たとえば、ポリエチレンテレフテレート樹脂)、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂などからなる群から選択される少なくとも1種の樹脂材料でもよく、AlおよびTaなどからなる群から選択される少なくとも1種の金属酸化物材料でもよい。誘電体23bは、少なくとも、導電弾性体22に重なる導体線23の範囲に形成される。 The dielectric 23b has electrical insulation properties and is made of, for example, a resin material, a ceramic material, a metal oxide material, etc. The dielectric 23b may be at least one resin material selected from the group consisting of polypropylene resin, polyester resin (for example, polyethylene terephthalate resin), polyimide resin, polyphenylene sulfide resin, polyvinyl formal resin, polyurethane resin, polyamideimide resin, polyamide resin, etc., or at least one metal oxide material selected from the group consisting of Al 2 O 3 , Ta 2 O 5 , etc. The dielectric 23b is formed at least in the range of the conductor line 23 overlapping the conductive elastic body 22.
 図22(a)に示すように、荷重が加えられていない場合、導電弾性体22と導体線23との間にかかる力、および、ベース部材25と導体線23との間にかかる力は、ほぼゼロである。この状態から、図22(b)に示すように、ベース部材21のZ軸負側の面に荷重が加えられると、導体線23によって導電弾性体22およびベース部材21が変形する。 As shown in Figure 22(a), when no load is applied, the force applied between the conductive elastic body 22 and the conductor wire 23, and the force applied between the base member 25 and the conductor wire 23, are almost zero. From this state, when a load is applied to the surface of the base member 21 on the negative side of the Z axis, as shown in Figure 22(b), the conductive elastic body 22 and the base member 21 are deformed by the conductor wire 23.
 図22(b)に示すように、導体線23は、荷重の付与により、導電弾性体22に包まれるように導電弾性体22に近付けられる。これに伴い、導体線23と導電弾性体22との接触面積が増加する。これにより、導電部材23aと導電弾性体22との間の静電容量が変化する。導電部材23aと導電弾性体22との間の静電容量が検出されることにより、この領域に付与された荷重が取得される。 As shown in FIG. 22(b), when a load is applied, the conductor wire 23 is brought closer to the conductive elastic body 22 so that it is wrapped in the conductive elastic body 22. As a result, the contact area between the conductor wire 23 and the conductive elastic body 22 increases. This causes a change in the capacitance between the conductive member 23a and the conductive elastic body 22. By detecting the capacitance between the conductive member 23a and the conductive elastic body 22, the load applied to this area is obtained.
 図23は、荷重センサ20の内部の構成を模式的に示す平面図である。図23では、便宜上、糸24およびベース部材25の図示が省略されている。 FIG. 23 is a plan view that shows a schematic diagram of the internal configuration of the load sensor 20. For convenience, the thread 24 and the base member 25 are omitted from FIG. 23.
 図23に示すように、3つの導電弾性体22と3つの導体線23とが交わる位置に、荷重に応じて静電容量が変化する素子部A11、A12、A13、A21、A22、A23、A31、A32、A33が形成される。各素子部は、導電弾性体22と導体線23との交点近傍の導電弾性体22および導体線23を含んでいる。 As shown in Figure 23, element parts A11, A12, A13, A21, A22, A23, A31, A32, and A33 whose capacitance changes depending on the load are formed at the positions where three conductive elastic bodies 22 and three conductor lines 23 intersect. Each element part includes a conductive elastic body 22 and a conductor line 23 near the intersection of the conductive elastic body 22 and the conductor line 23.
 各素子部において、導体線23は、静電容量の一方の極(たとえば陽極)を構成し、導電弾性体22は、静電容量の他方の極(たとえば陰極)を構成する。すなわち、導体線23内の導電部材23a(図22(a)、(b)参照)は、荷重センサ20(静電容量型荷重センサ)の一方の電極を構成し、導電弾性体22は、荷重センサ20(静電容量型荷重センサ)の他方の電極を構成し、導体線23に含まれる誘電体23b(図22(a)、(b)参照)は、荷重センサ20(静電容量型荷重センサ)において静電容量を規定する誘電体に対応する。 In each element portion, the conductor wire 23 constitutes one pole of the capacitance (e.g., an anode), and the conductive elastic body 22 constitutes the other pole of the capacitance (e.g., a cathode). That is, the conductive member 23a (see Figures 22(a) and (b)) in the conductor wire 23 constitutes one electrode of the load sensor 20 (capacitive load sensor), the conductive elastic body 22 constitutes the other electrode of the load sensor 20 (capacitive load sensor), and the dielectric 23b (see Figures 22(a) and (b)) included in the conductor wire 23 corresponds to the dielectric that determines the capacitance in the load sensor 20 (capacitive load sensor).
 各素子部に対してZ軸方向に荷重が加わると、導体線23が導電弾性体22に包み込まれる。これにより、導体線23と導電弾性体22との接触面積が変化し、当該導体線23と当該導電弾性体22との間の静電容量が変化する。導体線23のX軸負側の端部および導電弾性体22に設置された配線W2のY軸負側の端部は、図24を参照して後述する静電容量測定回路10に接続されている。 When a load is applied to each element in the Z-axis direction, the conductor wire 23 is enveloped in the conductive elastic body 22. This changes the contact area between the conductor wire 23 and the conductive elastic body 22, and the capacitance between the conductor wire 23 and the conductive elastic body 22 changes. The end of the conductor wire 23 on the negative side of the X-axis and the end of the wiring W2 installed on the conductive elastic body 22 on the negative side of the Y-axis are connected to the capacitance measurement circuit 10, which will be described later with reference to FIG. 24.
 素子部A11に対して荷重が加えられると、素子部A11において、誘電体23bを介して、導体線23の導電部材23aと導電弾性体22との接触面積が増加する。この場合、最もX軸負側の導電弾性体22と最もY軸正側の導体線23との間の静電容量を検出することにより、素子部A11において加えられた荷重を算出することができる。同様に、他の素子部においても、当該他の素子部において交わる導電弾性体22と導体線23との間の静電容量を検出することにより、当該他の素子部に付与された荷重を算出することができる。 When a load is applied to element part A11, the contact area between the conductive member 23a of the conductor line 23 and the conductive elastic body 22 increases in element part A11 via the dielectric 23b. In this case, the load applied to element part A11 can be calculated by detecting the capacitance between the conductive elastic body 22 on the most negative side of the X-axis and the conductor line 23 on the most positive side of the Y-axis. Similarly, in other element parts, the load applied to the other element parts can be calculated by detecting the capacitance between the conductive elastic body 22 and the conductor line 23 that intersect in the other element parts.
 図24は、荷重検出装置1の構成を示す図である。 FIG. 24 shows the configuration of the load detection device 1.
 図24では、便宜上、荷重センサ20の構成として、導体線23と導電弾性体22のみが図示され、導電弾性体22は、線状に図示されている。 For convenience, FIG. 24 illustrates only the conductor wire 23 and the conductive elastic body 22 as components of the load sensor 20, and the conductive elastic body 22 is illustrated as a line.
 荷重検出装置1は、上記実施形態1に係る静電容量測定回路10と、図21(b)に示した荷重センサ20とを備える。ここでは、図23に示した9個の素子部A11~A33が、それぞれ、測定容量Csに対応する。素子部A11~A33の導体線23(導電部材23a)が測定容量Csの正極に対応し、素子部A11~A33の導電弾性体22が測定容量Csの負極に対応する。 The load detection device 1 includes the capacitance measurement circuit 10 according to the first embodiment and the load sensor 20 shown in FIG. 21(b). Here, the nine element parts A11 to A33 shown in FIG. 23 each correspond to a measurement capacitance Cs. The conductor wire 23 (conductive member 23a) of the element parts A11 to A33 corresponds to the positive electrode of the measurement capacitance Cs, and the conductive elastic body 22 of the element parts A11 to A33 corresponds to the negative electrode of the measurement capacitance Cs.
 静電容量測定回路10は、図23に示した9個の素子部A11~A33のうち、測定対象の素子部を切り替えるための素子選択部17、18を備えている。素子選択部17は、スイッチ素子17a~17cを備え、素子選択部18は、スイッチ素子18a~18dを備えている。 The capacitance measurement circuit 10 includes element selection units 17 and 18 for switching the element unit to be measured among the nine element units A11 to A33 shown in FIG. 23. The element selection unit 17 includes switch elements 17a to 17c, and the element selection unit 18 includes switch elements 18a to 18d.
 スイッチ素子17a~17cは、導電弾性体22から引き出された配線W2をグランドラインL3と電位ラインL2との何れか一方に接続する。これらスイッチ素子17a~17cは、図1のスイッチ素子13に対応する。スイッチ素子18dは、電位ラインL1をスイッチ素子18a~18cの何れか1つに接続する。スイッチ素子18a~18cは、導体線23(導電部材23a)からそれぞれ引き出された配線W1を、スイッチ素子18dの出力端子とグランドラインL3との何れか一方に接続する。 Switch elements 17a to 17c connect the wiring W2 drawn out from the conductive elastic body 22 to either the ground line L3 or the potential line L2. These switch elements 17a to 17c correspond to switch element 13 in FIG. 1. Switch element 18d connects the potential line L1 to one of switch elements 18a to 18c. Switch elements 18a to 18c connect the wiring W1 drawn out from the conductor line 23 (conductive member 23a) to either the output terminal of switch element 18d or the ground line L3.
 また、静電容量測定回路10は、電位ラインL1の電位と同じ電位を生成するための等電位生成部19を備えている。図1の構成では、測定容量Csの正極および負極を同電位にするために、スイッチ素子17aの一方の端子が直接、スイッチ素子12b、12cの間の配線に接続された。これに対し、図24では、スイッチ素子17aの一方の端子が接続される電位ラインL2に、スイッチ素子17aの他、他のスイッチ素子17b、17cや、配線W2および導電弾性体22等の回路部が接続されるため、図1の場合に比べて、これら回路部によるインピーダンスが高くなる。このため、図24の構成では、電位ラインL2の電位を電位ラインL1の電位と等しくするために、等電位生成部19が配置される。 The capacitance measurement circuit 10 also includes an equipotential generator 19 for generating a potential equal to that of the potential line L1. In the configuration of FIG. 1, one terminal of the switch element 17a is directly connected to the wiring between the switch elements 12b and 12c in order to make the positive and negative electrodes of the measurement capacitance Cs equal in potential. In contrast, in FIG. 24, in addition to the switch element 17a, other switch elements 17b and 17c, wiring W2, conductive elastic body 22, and other circuit parts are connected to the potential line L2 to which one terminal of the switch element 17a is connected, so the impedance of these circuit parts is higher than in the case of FIG. 1. For this reason, in the configuration of FIG. 24, an equipotential generator 19 is arranged to make the potential of the potential line L2 equal to that of the potential line L1.
 図24には、素子部A11の静電容量値を測定する場合の第1制御C1におけるスイッチ素子17a~17c、18a~18dの状態が示されている。この状態では、9つの素子部のうち最上段の素子部A11~A13の導体線23(正極)が電位ラインL1に接続される。このため、残り6つの素子部は、回路的に切り離された状態とされる。また、素子部A12、A13の導電弾性体22には等電位生成部19によって電位ラインL1と同じ電位が印加されるため、素子部A12、A13は無効化される。よって、測定対象の素子部A11のみが、静電容量測定回路10に接続された状態となる。 FIG. 24 shows the states of switch elements 17a-17c, 18a-18d in first control C1 when measuring the capacitance value of element part A11. In this state, the conductor wires 23 (positive poles) of element parts A11-A13, which are the topmost of the nine element parts, are connected to potential line L1. As a result, the remaining six element parts are in a state of being disconnected in terms of the circuit. In addition, the same potential as that of potential line L1 is applied to the conductive elastic bodies 22 of element parts A12 and A13 by equipotential generator 19, so element parts A12 and A13 are disabled. Therefore, only element part A11 to be measured is connected to capacitance measurement circuit 10.
 この状態で、制御部11は、図7の第1制御C1を実行して、第1電圧値Vx1を取得する。次に、制御部11は、図7の第2制御C2のステップS106において、図25のように、スイッチ素子17aを電位ラインL2側に切り替えて、ステップS107~S110の処理を実行する。これにより、制御部11は、第2電圧値Vx2を取得する。そして、制御部11はステップS111の処理を実行して、素子部A11の静電容量値を算出する。さらに、制御部11は、算出した静電容量値から、素子部A11に付与された荷重を算出する。荷重の算出は、制御部11以外の他の処理部が、制御部11により算出された静電容量値から算出してもよい。こうして、素子部A11に対する処理が終了する。 In this state, the control unit 11 executes the first control C1 in FIG. 7 to obtain the first voltage value Vx1. Next, in step S106 of the second control C2 in FIG. 7, the control unit 11 switches the switch element 17a to the potential line L2 side as shown in FIG. 25, and executes the processes of steps S107 to S110. As a result, the control unit 11 obtains the second voltage value Vx2. Then, the control unit 11 executes the process of step S111 to calculate the capacitance value of the element unit A11. Furthermore, the control unit 11 calculates the load applied to the element unit A11 from the calculated capacitance value. The load may be calculated by a processing unit other than the control unit 11 from the capacitance value calculated by the control unit 11. In this way, the process for the element unit A11 is completed.
 制御部11は、スイッチ素子17a~17c、18a~18dを制御して、測定対象の素子部を順次切り替える。たとえば、素子部A12が測定対象の場合、制御部11は、図7の第1制御C1のステップS101において、スイッチ素子17bをグランドラインL3に接続し、スイッチ素子17a、17cを電位ラインL2に接続する。また、制御部11は、スイッチ素子18a~18dは、図24の状態を維持させる。この状態で、制御部11は、図7のステップS102以降の処理を実行する。ステップS106では、スイッチ素子17bが電位ラインL2側に切り替えられて、ステップS107以降の処理が行われる。こうして、制御部11は、素子部A12の静電容量値を算出し、その算出結果から素子部A12に付与された荷重を算出する。 The control unit 11 controls the switch elements 17a to 17c and 18a to 18d to sequentially switch the element part to be measured. For example, when the element part A12 is the object to be measured, the control unit 11 connects the switch element 17b to the ground line L3 and connects the switch elements 17a and 17c to the potential line L2 in step S101 of the first control C1 in FIG. 7. The control unit 11 also causes the switch elements 18a to 18d to maintain the state shown in FIG. 24. In this state, the control unit 11 executes the process from step S102 onwards in FIG. 7. In step S106, the switch element 17b is switched to the potential line L2 side, and the process from step S107 onwards is carried out. In this way, the control unit 11 calculates the capacitance value of the element part A12, and calculates the load applied to the element part A12 from the calculation result.
 <実施形態3の効果>
 実施形態3に係る荷重検出装置1によれば、実施形態1に係る静電容量測定回路10を含むため、素子部A11~A33に付与された荷重が小さく静電容量が小さい範囲においても、荷重に応じた静電容量値を安定的に取得できる。また、実施形態1に係る静電容量測定回路10を含むため、寄生容量の影響が抑制された静電容量値を精度良く取得できる。よって、小さい範囲の荷重を安定的かつ高精度に検出できる。
<Effects of the Third Embodiment>
According to the load detection device 1 of the third embodiment, since it includes the capacitance measurement circuit 10 of the first embodiment, it is possible to stably obtain a capacitance value according to the load even when the load applied to the element parts A11 to A33 is small and the capacitance is small. Also, since it includes the capacitance measurement circuit 10 of the first embodiment, it is possible to accurately obtain a capacitance value in which the influence of parasitic capacitance is suppressed. Therefore, it is possible to stably and accurately detect a small range of load.
 また、荷重センサ20は、複数の素子部A11~A33を備え、静電容量測定回路10は、測定対象の素子部を切り替えるための素子選択部17、18を備える。これにより、複数の素子部A11~A33が配置された広い範囲において荷重を検出できる。また、素子選択部17、18により測定対象の素子部を切り替えることで、図7と同様の処理により、各素子部の静電容量値を安定的かつ精度良く測定できる。 The load sensor 20 also includes multiple element parts A11 to A33, and the capacitance measurement circuit 10 includes element selection units 17 and 18 for switching between element parts to be measured. This allows the load to be detected over a wide range in which the multiple element parts A11 to A33 are arranged. By switching between element parts to be measured using the element selection units 17 and 18, the capacitance value of each element part can be measured stably and accurately using processing similar to that shown in FIG. 7.
 なお、図24の構成では、図1の構成に比べて、多くのスイッチ素子17a~17c、18a~18dおよび配線が配置され、さらに等電位生成部19が配置されため、寄生容量が増大する。しかし、この場合も、上記式(5)によって、寄生容量の影響が抑制されるため、各素子部の静電容量値を精度良く算出でき、各素子部に付与された荷重を精度良く検出できる。 In the configuration of FIG. 24, compared to the configuration of FIG. 1, more switch elements 17a-17c, 18a-18d and wiring are arranged, and furthermore, an equipotential generating unit 19 is arranged, so that the parasitic capacitance increases. However, even in this case, the effect of the parasitic capacitance is suppressed by the above formula (5), so that the capacitance value of each element unit can be calculated with high accuracy, and the load applied to each element unit can be detected with high accuracy.
 また、各素子部の静電容量値を算出する処理は、図8の処理に変更されてもよい。これにより、各素子部に対する静電容量値の算出処理を迅速に行うことができ、9個の素子部全体の荷重検出処理を迅速に行うことができる。 The process of calculating the capacitance value of each element part may be changed to the process shown in FIG. 8. This allows the process of calculating the capacitance value for each element part to be performed quickly, and the load detection process for all nine element parts to be performed quickly.
 さらに、図9に示した変更例2の構成が、図24の構成に適用されてもよい。これにより、たとえば、測定対象の荷重センサ20が変更され、素子部のダイナミックレンジが変更されても、各素子部の静電容量値を適正に測定でき、各素子部の荷重を精度良く検出できる。 Furthermore, the configuration of modified example 2 shown in FIG. 9 may be applied to the configuration of FIG. 24. As a result, even if the load sensor 20 to be measured is changed and the dynamic range of the element unit is changed, the capacitance value of each element unit can be measured properly and the load of each element unit can be detected with high accuracy.
 <実施形態4>
 実施形態4では、上記実施形態2の静電容量測定回路10が荷重検出装置に適用された場合の構成例が示される。荷重検出装置は、上記実施形態3と同様の荷重センサにより荷重を検出する。
<Embodiment 4>
In the fourth embodiment, a configuration example in which the capacitance measuring circuit 10 of the second embodiment is applied to a load detection device is shown. The load detection device detects a load by a load sensor similar to that of the third embodiment.
 図26は、実施形態4に係る荷重検出装置1の構成を示す図である。 FIG. 26 is a diagram showing the configuration of a load detection device 1 according to embodiment 4.
 図24と同様、図26では、便宜上、荷重センサ20の構成として、導体線23と導電弾性体22のみが図示され、導電弾性体22は、線状に図示されている。 As in FIG. 24, for convenience, FIG. 26 illustrates only the conductor wire 23 and the conductive elastic body 22 as components of the load sensor 20, and the conductive elastic body 22 is illustrated as a line.
 荷重検出装置1は、上記実施形態2に係る静電容量測定回路10と、図21(b)に示した荷重センサ20とを備える。ここでは、上記実施形態3と同様、図23に示した9個の素子部A11~A33が、それぞれ、測定容量Csに対応する。素子部A11~A33の導体線23(導電部材23a)が測定容量Csの正極に対応し、素子部A11~A33の導電弾性体22が測定容量Csの負極に対応する。 The load detection device 1 includes the capacitance measurement circuit 10 according to the second embodiment and the load sensor 20 shown in FIG. 21(b). As in the third embodiment, the nine element parts A11 to A33 shown in FIG. 23 each correspond to a measurement capacitance Cs. The conductor wire 23 (conductive member 23a) of the element parts A11 to A33 corresponds to the positive electrode of the measurement capacitance Cs, and the conductive elastic body 22 of the element parts A11 to A33 corresponds to the negative electrode of the measurement capacitance Cs.
 スイッチ素子17a~17cおよびスイッチ素子18a~18dの構成は、図24の場合と同様である。また、図24の場合と同様、電位ラインL2の電位を電位ラインL1の電位と等しくするための等電位生成部19が配置されている。 The configuration of switch elements 17a to 17c and switch elements 18a to 18d is the same as in FIG. 24. Also, as in FIG. 24, an equal potential generator 19 is provided to make the potential of potential line L2 equal to the potential of potential line L1.
 図24と同様、図26には、素子部A11の静電容量値を測定する場合の第1制御C1におけるスイッチ素子17a~17c、18a~18dの状態が示されている。この場合も、図24の場合と同様、測定対象の素子部A11のみが、静電容量測定回路10に接続された状態となる。 As in FIG. 24, FIG. 26 shows the states of the switch elements 17a-17c and 18a-18d in the first control C1 when measuring the capacitance value of the element part A11. In this case, as in FIG. 24, only the element part A11 to be measured is connected to the capacitance measurement circuit 10.
 この状態で、制御部11は、図16の第1制御C1を実行して、第1電圧値Vx1を取得する。次に、制御部11は、図16の第2制御C2のステップS206において、図27のように、スイッチ素子17aを電位ラインL2側に切り替えて、ステップS207~S211の処理を実行する。これにより、制御部11は、第2電圧値Vx2を取得する。そして、制御部11はステップS212の処理を実行して、素子部A11の静電容量値を算出する。さらに、制御部11は、算出した静電容量値から、素子部A11に付与された荷重を算出する。荷重の算出は、制御部11以外の他の処理部が、制御部11により算出された静電容量値から算出してもよい。こうして、素子部A11に対する処理が終了する。 In this state, the control unit 11 executes the first control C1 in FIG. 16 to obtain the first voltage value Vx1. Next, in step S206 of the second control C2 in FIG. 16, the control unit 11 switches the switch element 17a to the potential line L2 side as shown in FIG. 27, and executes the processes of steps S207 to S211. As a result, the control unit 11 obtains the second voltage value Vx2. Then, the control unit 11 executes the process of step S212 to calculate the capacitance value of the element unit A11. Furthermore, the control unit 11 calculates the load applied to the element unit A11 from the calculated capacitance value. The load may be calculated by a processing unit other than the control unit 11 from the capacitance value calculated by the control unit 11. In this way, the process for the element unit A11 is completed.
 制御部11は、スイッチ素子17a~17c、18a~18dを制御して、測定対象の素子部を順次切り替える。たとえば、素子部A12が測定対象の場合、制御部11は、図16の第1制御C1のステップS201において、スイッチ素子17bをグランドラインL3に接続し、スイッチ素子17a、17cを電位ラインL2に接続する。また、制御部11は、スイッチ素子18a~18dは、図26の状態を維持させる。この状態で、制御部11は、図16のステップS202以降の処理を実行する。ステップS206では、スイッチ素子17bが電位ラインL2側に切り替えられて、ステップS207以降の処理が行われる。こうして、制御部11は、素子部A12の静電容量値を算出し、その算出結果から素子部A12に付与された荷重を算出する。 The control unit 11 controls the switch elements 17a to 17c and 18a to 18d to sequentially switch the element part to be measured. For example, when the element part A12 is the object to be measured, the control unit 11 connects the switch element 17b to the ground line L3 and connects the switch elements 17a and 17c to the potential line L2 in step S201 of the first control C1 in FIG. 16. The control unit 11 also causes the switch elements 18a to 18d to maintain the state shown in FIG. 26. In this state, the control unit 11 executes the process from step S202 onwards in FIG. 16. In step S206, the switch element 17b is switched to the potential line L2 side, and the process from step S207 onwards is carried out. In this way, the control unit 11 calculates the electrostatic capacitance value of the element part A12, and calculates the load applied to the element part A12 from the calculation result.
 <実施形態4の効果>
 実施形態4に係る荷重検出装置1によれば、実施形態2に係る静電容量測定回路10を含むため、素子部A11~A33に付与された荷重が小さく静電容量が小さい範囲においても、荷重に応じた静電容量値を安定的に取得できる。また、実施形態2に係る静電容量測定回路10を含むため、寄生容量の影響が抑制された静電容量値を精度良く取得できる。よって、小さい範囲の荷重を安定的かつ高精度に検出できる。また、素子選択部17、18により測定対象の素子部を切り替えることで、図16と同様の処理により、各素子部の静電容量値を安定的かつ精度良く測定できる。
<Effects of the Fourth Embodiment>
According to the load detection device 1 of the fourth embodiment, since it includes the capacitance measurement circuit 10 of the second embodiment, it is possible to stably obtain a capacitance value according to the load even when the load applied to the element parts A11 to A33 is small and the capacitance is small. Also, since it includes the capacitance measurement circuit 10 of the second embodiment, it is possible to accurately obtain a capacitance value in which the influence of parasitic capacitance is suppressed. Therefore, it is possible to stably and accurately detect a small range of load. Also, by switching the element part to be measured by the element selection parts 17 and 18, it is possible to stably and accurately measure the capacitance value of each element part by the same process as that of FIG. 16.
 なお、図26の構成では、図10の構成に比べて、多くのスイッチ素子17a~17c、18a~18dおよび配線が配置され、さらに等電位生成部19が配置されるため、寄生容量が増大する。しかし、この場合も、上記式(10)によって、寄生容量の影響が抑制されるため、各素子部の静電容量値を精度良く算出でき、各素子部に付与された荷重を精度良く検出できる。 In the configuration of FIG. 26, more switch elements 17a-17c, 18a-18d and wiring are arranged than in the configuration of FIG. 10, and an equipotential generator 19 is also arranged, so that the parasitic capacitance increases. However, even in this case, the effect of the parasitic capacitance is suppressed by the above formula (10), so that the capacitance value of each element can be calculated with high accuracy, and the load applied to each element can be detected with high accuracy.
 また、各素子部の静電容量値を算出する処理は、図18の処理に変更されてもよい。これにより、各素子部に対する静電容量値の算出処理を迅速に行うことができ、9個の素子部全体の荷重検出処理を迅速に行うことができる。 The process of calculating the capacitance value of each element unit may be changed to the process shown in FIG. 18. This allows the process of calculating the capacitance value for each element unit to be performed quickly, and the load detection process for all nine element units to be performed quickly.
 さらに、図19に示した変更例2の構成が、図26の構成に適用されてもよい。これにより、たとえば、測定対象の荷重センサ20が変更され、素子部のダイナミックレンジが変更されても、各素子部の静電容量値を適正に測定でき、各素子部の荷重を精度良く検出できる。 Furthermore, the configuration of modified example 2 shown in FIG. 19 may be applied to the configuration of FIG. 26. As a result, even if the load sensor 20 to be measured is changed and the dynamic range of the element unit is changed, the capacitance value of each element unit can be measured properly and the load of each element unit can be detected with high accuracy.
 <その他の変更例>
 上記実施形態1、2では、スイッチ素子12a~12cがP型またはN型のFETにより構成されたが、スイッチ素子12a~12cが、FET以外の他のスイッチ素子により構成されてもよい。スイッチ素子13も同様、測定容量Csの負極の接続先をグランドと正極とに切り替え可能である限りにおいて、種々のタイプのスイッチ素子を用いることができる。同様に、図24~26の構成においても、スイッチ素子17a~17cおよびスイッチ素子18a~18dとして、種々のタイプのスイッチ素子が用いられ得る。
<Other changes>
In the above-mentioned first and second embodiments, the switch elements 12a to 12c are configured by P-type or N-type FETs, but the switch elements 12a to 12c may be configured by switch elements other than FETs. Similarly, the switch element 13 may be configured by various types of switch elements as long as the connection destination of the negative electrode of the measurement capacitance Cs can be switched between ground and the positive electrode. Similarly, in the configurations of Figs. 24 to 26, various types of switch elements may be used as the switch elements 17a to 17c and the switch elements 18a to 18d.
 また、上記実施形態1では、図4(b)においてスイッチ素子13が切り替えられた後、基準容量Crが放電されることなく、図5(a)において基準容量Crに対する充電が行われたが、一旦、基準容量Crが放電された後、図5(a)において基準容量Crに対する充電が行われてもよい。但し、この場合は、上記のように基準容量Crが放電されずに充電される場合に比べて、基準容量Crが満充電になるまでの時間が長くなる。よって、より迅速に処理を進めるためには、図5(a)のように、基準容量Crに対する放電を行うことなく、基準容量Crの充電を行うことが好ましい。このことは、実施形態2における図13(b)の動作から図14(a)の動作への流れにおいても、同様である。 In the above embodiment 1, after the switch element 13 is switched in FIG. 4(b), the reference capacitance Cr is charged in FIG. 5(a) without being discharged. However, the reference capacitance Cr may be discharged once and then charged in FIG. 5(a). In this case, however, it takes longer for the reference capacitance Cr to be fully charged than when the reference capacitance Cr is charged without being discharged as described above. Therefore, in order to proceed with the process more quickly, it is preferable to charge the reference capacitance Cr without discharging it, as in FIG. 5(a). This is also true in the flow from the operation in FIG. 13(b) to the operation in FIG. 14(a) in embodiment 2.
 また、実施形態3、4では、図24~26に示したように、測定対象の素子部A11以外の素子部A12、A13には、正極と負極に等電位が印加されて、素子部A12、A13が無効化されたが、これらの負極がグランドラインL3に接続されるよう、スイッチ素子17b、17cが設定されてもよい。この場合も、素子部A12、A13の静電容量は、上述の寄生容量に含まれることになるため、上記式(5)、(10)によりキャンセルされる。よって、測定対象の素子部A11の静電容量を精度良く取得できる。 In addition, in the third and fourth embodiments, as shown in FIGS. 24 to 26, an equal potential is applied to the positive and negative electrodes of element parts A12 and A13 other than the element part A11 to be measured, thereby disabling element parts A12 and A13. However, switch elements 17b and 17c may be set so that the negative electrodes of these elements are connected to ground line L3. In this case as well, the capacitance of element parts A12 and A13 is included in the parasitic capacitance described above, and is therefore cancelled out by the above formulas (5) and (10). Therefore, the capacitance of element part A11 to be measured can be obtained with high accuracy.
 また、図24~図26では、測定対象の素子部A11の正極を構成する導体線23(導電部材23a)以外の2つの導体線23(導電部材23a)は、スイッチ素子18b、18cによりグランドラインに接続されたが、スイッチ素子18b、18cがスイッチ素子18dの出力ライン側に接続されて、これら2つの導体線23(導電部材23a)を正極とする素子部をフローティング状態に設定してもよい。この場合も、上記式(5)、(10)により、測定対象の素子部A11以外の寄生容量がキャンセルされるため、測定対象の素子部A11の静電容量を精度良く取得できる。 24 to 26, the two conductor lines 23 (conductive members 23a) other than the conductor line 23 (conductive member 23a) constituting the positive electrode of the element portion A11 to be measured are connected to the ground line by the switch elements 18b and 18c, but the switch elements 18b and 18c may be connected to the output line side of the switch element 18d, and the element portion having these two conductor lines 23 (conductive member 23a) as the positive electrode may be set in a floating state. In this case, too, the parasitic capacitances other than those of the element portion A11 to be measured are canceled by the above equations (5) and (10), so that the capacitance of the element portion A11 to be measured can be obtained with high accuracy.
 素子選択部17、18の構成および切替形態は、測定対象の素子部の負極をグランドまたは測定対象の素子部の正極と同電位の配線に接続でき、測定対象以外の素子部の静電容量を他の寄生容量とともに上記式(5)、(10)によりキャンセルできれば、他の構成および切替形態であってもよい。 The configuration and switching form of the element selection units 17 and 18 may be other configurations and switching forms as long as the negative electrode of the element part to be measured can be connected to ground or to a wiring having the same potential as the positive electrode of the element part to be measured, and the capacitance of element parts other than the one to be measured can be canceled together with other parasitic capacitances by the above formulas (5) and (10).
 また、上記実施形態3、4では、導体線23は、被覆付き銅線により構成されたが、これに限らず、銅以外の物質からなる線状の導電部材と、当該導電部材を被覆する誘電体とにより構成されてもよい。また、導電部材が撚り線によって構成されてもよい。 In addition, in the above-mentioned third and fourth embodiments, the conductor wire 23 is composed of a coated copper wire, but it is not limited to this, and may be composed of a linear conductive member made of a material other than copper and a dielectric that coats the conductive member. Also, the conductive member may be composed of a twisted wire.
 また、上記実施形態3、4では、ベース部材21のZ軸正側の面にのみ導電弾性体22が設けられたが、ベース部材25のZ軸負側の面にも導電弾性体が設けられてもよい。この場合、ベース部材25側の導電弾性体は、ベース部材21側の導電弾性体22と同様に構成され、平面視において導体線23を挟んで導電弾性体22に重なるように配置される。そして、ベース部材25側の導電弾性体から引き出された配線は、Z軸方向に対向する導電弾性体22から引き出された配線W2と接続される。このように、導体線23に対して上下に導電弾性体が設けられると、素子部における静電容量の変化が上下の導電弾性体に対応してほぼ2倍となるため、素子部にかかる荷重の検出感度を高めることができる。 In addition, in the above-mentioned third and fourth embodiments, the conductive elastic body 22 is provided only on the surface of the base member 21 on the positive side of the Z axis, but a conductive elastic body may also be provided on the surface of the base member 25 on the negative side of the Z axis. In this case, the conductive elastic body on the base member 25 side is configured similarly to the conductive elastic body 22 on the base member 21 side, and is arranged so as to overlap the conductive elastic body 22 with the conductor wire 23 in between in a plan view. The wiring drawn out from the conductive elastic body on the base member 25 side is connected to the wiring W2 drawn out from the conductive elastic body 22 facing in the Z axis direction. In this way, when conductive elastic bodies are provided above and below the conductor wire 23, the change in capacitance in the element unit is approximately doubled in response to the conductive elastic bodies above and below, and the detection sensitivity of the load applied to the element unit can be improved.
 また、上記実施形態3、4では、導電部材23aの外周を被覆するように導電部材23aに対して誘電体23bが形成されたが、これに代えて、誘電体23bが、導電弾性体22の上面に形成されてもよい。この場合、荷重の付与に応じて、導電部材23aが導電弾性体22および誘電体23bに対して包まれるように沈み込み、導電部材23aと導電弾性体22との間の接触面積が変化する。これにより、上記実施形態と同様、素子部に付与された荷重を検出することができる。 In addition, in the above third and fourth embodiments, the dielectric 23b is formed on the conductive member 23a so as to cover the outer periphery of the conductive member 23a, but instead, the dielectric 23b may be formed on the upper surface of the conductive elastic body 22. In this case, in response to the application of a load, the conductive member 23a sinks so as to be enveloped by the conductive elastic body 22 and the dielectric 23b, and the contact area between the conductive member 23a and the conductive elastic body 22 changes. As a result, the load applied to the element portion can be detected, similar to the above embodiments.
 また、上記実施形態3、4では、9個の素子部が3行、3列にマトリクス状に並ぶように荷重センサ20が構成されたが、荷重センサ20における素子部の数および配置は、これに限られるものではない。たとえば、16個の素子部が4行、4列にマトリクス状に並ぶように荷重センサ20が構成されてもよく、あるいは、複数の素子部が1列だけ並ぶよう荷重センサ20が構成されてもよい。あるいは、荷重センサ20が素子部を1つだけ備える構成であってもよい。 In addition, in the above embodiments 3 and 4, the load sensor 20 is configured so that nine element parts are arranged in a matrix of three rows and three columns, but the number and arrangement of element parts in the load sensor 20 are not limited to this. For example, the load sensor 20 may be configured so that 16 element parts are arranged in a matrix of four rows and four columns, or the load sensor 20 may be configured so that multiple element parts are arranged in only one column. Alternatively, the load sensor 20 may be configured to have only one element part.
 また、上記実施形態3、4では、導電弾性体22と導体線23とが交差することにより素子部が構成されたが、素子部の構成はこれに限られるものではない。たとえば、半球状の導電弾性体と平板状の電極とが誘電体を挟む構成により、素子部が構成されてもよい。この場合、誘電体は、導電弾性体に対向する電極の表面に形成されてもよく、半球状の導電弾性体の表面に形成されてもよい。 In addition, in the above third and fourth embodiments, the element portion is formed by intersecting the conductive elastic body 22 and the conductor wire 23, but the configuration of the element portion is not limited to this. For example, the element portion may be formed by a configuration in which a semi-spherical conductive elastic body and a flat electrode sandwich a dielectric. In this case, the dielectric may be formed on the surface of the electrode facing the conductive elastic body, or on the surface of the semi-spherical conductive elastic body.
 また、本発明に係る静電容量測定回路10によって測定される測定容量は、荷重センサの素子部に限られるものではなく、他の測定容量であってもよい。たとえが、静電式タッチパネルや半導体デバイス内に形成される容量素子、電解コンデンサやセラミックコンデンサ等が、静電容量測定回路10の測定容量とされてもよい。 In addition, the measurement capacitance measured by the capacitance measurement circuit 10 according to the present invention is not limited to the element portion of the load sensor, but may be other measurement capacitance. For example, a capacitance element formed in an electrostatic touch panel or a semiconductor device, an electrolytic capacitor, a ceramic capacitor, etc. may be used as the measurement capacitance of the capacitance measurement circuit 10.
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, various modifications of the embodiments of the present invention are possible within the scope of the technical ideas set forth in the claims.
(付記)
 以上の実施形態の記載により、下記の技術が開示される。
(Additional Note)
The above description of the embodiments discloses the following techniques.
(技術1)
 所定の静電容量値を有する基準容量と、
 前記基準容量に対する電圧の印加および非印加を切り替える切替部と、
 前記基準容量に蓄積された電荷を測定容量に転送する転送部と、
 前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、
 前記測定容量の電圧を計測する計測部と、
 前記切替部、前記転送部および前記接続部を制御する制御部と、を備え、
 前記制御部は、
  前記基準容量に電圧を印加した後、前記測定容量の負極を前記グランドに接続した状態で、前記転送部に電荷の転送を行わせる第1制御と、
  前記基準容量に電圧を印加した後、前記測定容量の負極を前記測定容量の正極と同電位の前記配線に接続した状態で、前記転送部に電荷の転送を行わせる第2制御と、
  前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する、
ことを特徴とする静電容量測定回路。
(Technique 1)
a reference capacitance having a predetermined capacitance value;
a switching unit that switches between application and non-application of a voltage to the reference capacitance;
a transfer unit that transfers the charge stored in the reference capacitance to a measurement capacitance;
a connection part for connecting the negative electrode of the measurement capacitance to a ground or a wiring having the same potential as the positive electrode of the measurement capacitance;
A measurement unit that measures a voltage of the measurement capacitance;
a control unit that controls the switching unit, the transfer unit, and the connection unit,
The control unit is
a first control for causing the transfer unit to transfer charges while a negative electrode of the measurement capacitance is connected to the ground after a voltage is applied to the reference capacitance;
a second control for causing the transfer unit to transfer charges in a state in which a negative electrode of the measurement capacitance is connected to the wiring having the same potential as a positive electrode of the measurement capacitance after a voltage is applied to the reference capacitance;
and calculating a capacitance value of the measurement capacitor based on a voltage value measured by the measurement unit after the charge is transferred by the first control and the second control.
1. A capacitance measurement circuit comprising:
 この技術によれば、基準容量から電荷が転送された後の電圧値に基づいて測定容量の静電容量値が算出されるため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、第2制御では、測定容量の負極が測定容量の正極と同電位の配線に接続されるため、計測された電圧値には、測定容量の影響は殆ど及ばず、主として基準容量および寄生容量の影響が及ぶ。これに対し、第1制御では、測定容量の負極とグランドとが接続されるため、計測された電圧値には、基準容量および寄生容量とともに、測定容量の影響が及ぶ。したがって、これら2つの電圧値から測定容量の静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量の静電容量値を精度良く測定できる。 With this technology, the capacitance value of the measurement capacitance is calculated based on the voltage value after the charge is transferred from the reference capacitance, so that it is possible to stably measure capacitance values in a small range without using a high-precision AD converter. In addition, in the second control, the negative electrode of the measurement capacitance is connected to a wire with the same potential as the positive electrode of the measurement capacitance, so the measured voltage value is hardly affected by the measurement capacitance, but is mainly affected by the reference capacitance and parasitic capacitance. In contrast, in the first control, the negative electrode of the measurement capacitance is connected to ground, so the measured voltage value is affected by the measurement capacitance as well as the reference capacitance and parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not affected by parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high precision.
(技術2)
 技術1に記載の静電容量測定回路において、
 前記制御部は、前記第1制御により取得した第1電圧値Vx1と、前記第2制御により取得した第2電圧値Vx2と、前記基準容量に印加される前記電圧の値Vddと、基準容量の静電容量値Crとから、以下の式により、測定容量の静電容量値Csを算出する、
ことを特徴とする静電容量測定回路。
(Technique 2)
In the capacitance measurement circuit according to the first aspect of the present invention,
The control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the reference capacitance, and a capacitance value Cr of the reference capacitance by the following formula:
1. A capacitance measurement circuit comprising:
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 この技術によれば、測定容量Csの静電容量値に対する寄生容量による誤差成分の影響を抑制でき、測定容量Csの静電容量値を精度良く取得できる。 This technology can suppress the effect of error components due to parasitic capacitance on the capacitance value of the measurement capacitance Cs, and the capacitance value of the measurement capacitance Cs can be obtained with high accuracy.
(技術3)
 所定の静電容量値を有する基準容量と、
 測定容量に対する電圧の印加および非印加を切り替える切替部と、
 前記測定容量に蓄積された電荷を前記基準容量に転送する転送部と、
 前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、
 前記測定容量の電圧を計測する計測部と、
 前記切替部、前記転送部および前記接続部を制御する制御部と、を備え、
 前記制御部は、
  前記測定容量の負極を前記グランドに接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第1制御と、
  前記測定容量の負極を前記測定容量の正極と同電位の配線に接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第2制御と、
  前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する、
ことを特徴とする静電容量測定回路。
(Technique 3)
a reference capacitance having a predetermined capacitance value;
A switching unit that switches between application and non-application of a voltage to the capacitance to be measured;
a transfer section that transfers the charge stored in the measurement capacitance to the reference capacitance;
a connection part for connecting the negative electrode of the measurement capacitance to a ground or a wiring having the same potential as the positive electrode of the measurement capacitance;
A measurement unit that measures a voltage of the measurement capacitance;
a control unit that controls the switching unit, the transfer unit, and the connection unit,
The control unit is
a first control for applying a voltage to the capacitance to be measured while the negative electrode of the capacitance to be measured is connected to the ground, and then causing the transfer unit to transfer charges;
a second control for applying a voltage to the capacitance to be measured while connecting the negative electrode of the capacitance to be measured to a wiring having the same potential as the positive electrode of the capacitance to be measured, and then causing the transfer unit to transfer charges;
and calculating a capacitance value of the measurement capacitor based on a voltage value measured by the measurement unit after the charge is transferred by the first control and the second control.
1. A capacitance measurement circuit comprising:
 この技術によれば、測定容量から電荷が転送された後の電圧値に基づいて測定容量の静電容量値が算出されるため、高精度のADコンバータを用いずとも、安定的に、小さな範囲の静電容量値を測定できる。また、第2制御では、測定容量の負極が測定容量の正極と同電位の配線に接続されて測定容量に電圧が印加されるため、測定容量には殆ど電荷が蓄積されず、寄生容量に電荷が蓄積される。このため、第2制御により計測された電圧値には、測定容量の影響は殆ど及ばず、主として基準容量および寄生容量の影響が及ぶ。これに対し、第1制御では、測定容量の負極とグランドとが接続されて測定容量に電圧が印加されるため、寄生容量とともに測定容量にも電荷が印加される。このため、第12制御により計測された電圧値には、基準容量および寄生容量とともに、測定容量の影響が及ぶ。したがって、これら2つの電圧値から測定容量の静電容量値を算出することにより、寄生容量の影響のない静電容量値を算出できる。よって、測定容量の静電容量値を精度良く測定できる。 This technology calculates the capacitance value of the measurement capacitance based on the voltage value after the charge is transferred from the measurement capacitance, so that it is possible to stably measure capacitance values in a small range without using a highly accurate AD converter. In addition, in the second control, the negative electrode of the measurement capacitance is connected to a wiring having the same potential as the positive electrode of the measurement capacitance and a voltage is applied to the measurement capacitance, so that almost no charge is accumulated in the measurement capacitance, but charges are accumulated in the parasitic capacitance. Therefore, the voltage value measured by the second control is hardly affected by the measurement capacitance, and is mainly affected by the reference capacitance and the parasitic capacitance. In contrast, in the first control, the negative electrode of the measurement capacitance is connected to the ground and a voltage is applied to the measurement capacitance, so that charges are applied to the measurement capacitance as well as the parasitic capacitance. Therefore, the voltage value measured by the twelfth control is affected by the measurement capacitance as well as the reference capacitance and the parasitic capacitance. Therefore, by calculating the capacitance value of the measurement capacitance from these two voltage values, it is possible to calculate a capacitance value that is not affected by the parasitic capacitance. Therefore, the capacitance value of the measurement capacitance can be measured with high accuracy.
(技術4)
 技術3に記載の静電容量測定回路において、
 前記制御部は、前記第1制御により取得した第1電圧値Vx1と、前記第2制御により取得した第2電圧値Vx2と、前記測定容量に印加される前記電圧の値Vddと、基準容量の静電容量値Crとから、以下の式により、測定容量の静電容量値Csを算出する、
ことを特徴とする静電容量測定回路。
(Technique 4)
In the capacitance measurement circuit according to the third aspect,
The control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the measurement capacitance, and a capacitance value Cr of a reference capacitance, by the following formula:
1. A capacitance measurement circuit comprising:
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 この技術によれば、測定容量の静電容量値に対する寄生容量による誤差成分の影響を抑制でき、測定容量の静電容量値を精度良く取得できる。 This technology can suppress the effect of error components due to parasitic capacitance on the capacitance value of the measured capacitance, allowing the capacitance value of the measured capacitance to be obtained with high accuracy.
(技術5)
 技術1ないし4の何れか1つに記載の静電容量測定回路において、
 前記制御部は、前記電荷の転送から前記電圧値の取得までの待機期間を変化させながら前記電圧値が飽和するまで前記第1制御を繰り返し実行し、飽和した前記電圧値を用いて前記静電容量値の算出を行う、
ことを特徴とする静電容量測定回路。
(Technique 5)
In the capacitance measurement circuit according to any one of the first to fourth aspects,
the control unit repeatedly executes the first control while changing a waiting period from the transfer of the electric charge to the acquisition of the voltage value until the voltage value becomes saturated, and calculates the capacitance value using the saturated voltage value.
1. A capacitance measurement circuit comprising:
 この技術によれば、測定容量の静電容量値が小さく、計測部の計測値が早期に飽和して安定する場合は、短い待機期間により速やかに第1電圧値Vx1を取得できる。よって、測定容量の静電容量値の算出処理を迅速に行うことができる。  With this technology, if the capacitance value of the measurement capacitance is small and the measurement value of the measurement unit saturates and stabilizes early, the first voltage value Vx1 can be obtained quickly with a short waiting period. Therefore, the calculation process of the capacitance value of the measurement capacitance can be performed quickly.
(技術6)
 技術5に記載の静電容量測定回路において、
 前記制御部は、前記第1制御を繰り返すごとに前記待機期間を長くする、
ことを特徴とする静電容量測定回路。
(Technique 6)
In the capacitance measurement circuit according to technology 5,
The control unit extends the waiting period each time the first control is repeated.
1. A capacitance measurement circuit comprising:
 この技術によれば、待機期間を第1電圧値Vx1が飽和する長さに徐々に近づけていくことができる。よって、測定容量に適した待機期間を円滑に設定できる。 This technology allows the standby period to gradually approach the length at which the first voltage value Vx1 saturates. This makes it possible to smoothly set a standby period appropriate for the capacitance to be measured.
(技術7)
 技術1ないし6の何れか一項に記載の静電容量測定回路において、
 前記基準容量の静電容量値を変化させる容量値変更部をさらに備える、
ことを特徴とする静電容量測定回路。
(Technique 7)
In the capacitance measurement circuit according to any one of the first to sixth aspects of the present invention,
A capacitance value changing unit that changes the capacitance value of the reference capacitance,
1. A capacitance measurement circuit comprising:
 この技術によれば、測定容量のダイナミックレンジに適する値に基準容量の静電容量値を調整できる。よって、測定容量のダイナミックレンジが変更された場合も、当該ダイナミックレンジにおいて、測定容量の静電容量値を適正に測定できる。 This technology makes it possible to adjust the capacitance value of the reference capacitance to a value appropriate for the dynamic range of the measurement capacitance. Therefore, even if the dynamic range of the measurement capacitance is changed, the capacitance value of the measurement capacitance can be measured appropriately within that dynamic range.
(技術8)
 技術7に記載の荷重検出装置において、
 荷重に応じて静電容量が変化する素子部を有する荷重センサと、
 技術1ないし7の何れか一つに記載の静電容量測定回路と、を備え、
 前記制御部は、前記素子部を前記測定容量として、前記第1制御、前記第2制御および前記静電容量の算出処理を実行する、
ことを特徴とする荷重検出装置。
(Technique 8)
In the load detection device described in Technology 7,
a load sensor having an element portion whose capacitance changes in response to a load;
The capacitance measurement circuit according to any one of the first to seventh aspects of the present invention is provided.
The control unit performs the first control, the second control, and the process of calculating the capacitance by using the element unit as the measurement capacitance.
A load detection device comprising:
 この技術によれば、技術1ないし7の何れか1つに記載の静電容量測定回路を含むため、素子部に付与された荷重が小さく静電容量が小さい範囲においても、荷重に応じた静電容量を安定的に取得できる。また、技術1ないし7の何れか1つに記載の静電容量測定回路を含むため、寄生容量の影響が抑制された静電容量値を精度良く取得できる。よって、小さい範囲の荷重を安定的かつ高精度に検出できる。 According to this technology, since it includes a capacitance measurement circuit described in any one of technologies 1 to 7, it is possible to stably obtain a capacitance corresponding to the load even in a range where the load applied to the element portion is small and the capacitance is small. In addition, since it includes a capacitance measurement circuit described in any one of technologies 1 to 7, it is possible to accurately obtain a capacitance value in which the effects of parasitic capacitance are suppressed. Therefore, it is possible to stably and accurately detect a small range of loads.
(技術9)
 技術8に記載の荷重検出装置において、
 前記荷重センサは、複数の前記素子部を備え、
 前記静電容量測定回路は、測定対象の素子部を切り替える素子選択部を備える、
ことを特徴とする荷重検出装置。
(Technique 9)
In the load detection device described in Technology 8,
The load sensor includes a plurality of the element units,
The capacitance measurement circuit includes an element selection unit that switches the element unit to be measured.
A load detection device comprising:
 この技術によれば、素子選択部17、18により測定対象の素子部を切り替えることで、静電容量測定回路により、各素子部の静電容量値を安定的かつ精度良く測定できる。 With this technology, the element selection units 17 and 18 can be used to switch the element part to be measured, allowing the capacitance measurement circuit to stably and accurately measure the capacitance value of each element part.
 1 荷重検出装置
 10 静電容量測定回路
 11 制御部
 20 荷重センサ
 10a スイッチ素子(切替部)
 10b スイッチ素子(転送部)
 13 スイッチ素子(接続部)
 14 計測部
 15 容量選択部(容量値変更部)
 16a~16d スイッチ素子(容量値変更部)
 17、18 素子選択部
 17a~17c スイッチ素子(接続部)
 Cra~Crd キャパシタ(容量値変更部)
 Cr 基準容量
 Cs 測定容量
 A11~A33 素子部(測定容量)
REFERENCE SIGNS LIST 1 Load detection device 10 Capacitance measurement circuit 11 Control unit 20 Load sensor 10a Switch element (switching unit)
10b Switch element (transfer section)
13 Switch element (connection part)
14 Measurement unit 15 Capacitance selection unit (capacitance value change unit)
16a to 16d Switch elements (capacitance value change units)
17, 18 Element selection section 17a to 17c Switch elements (connection section)
Cra to Crd Capacitor (capacitance value change unit)
Cr: Reference capacitance Cs: Measurement capacitance A11 to A33: Element part (measurement capacitance)

Claims (12)

  1.  所定の静電容量値を有する基準容量と、
     前記基準容量に対する電圧の印加および非印加を切り替える切替部と、
     前記基準容量に蓄積された電荷を測定容量に転送する転送部と、
     前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、
     前記測定容量の電圧を計測する計測部と、
     前記切替部、前記転送部および前記接続部を制御する制御部と、を備え、
     前記制御部は、
      前記基準容量に電圧を印加した後、前記測定容量の負極を前記グランドに接続した状態で、前記転送部に電荷の転送を行わせる第1制御と、
      前記基準容量に電圧を印加した後、前記測定容量の負極を前記測定容量の正極と同電位の前記配線に接続した状態で、前記転送部に電荷の転送を行わせる第2制御と、
      前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する、
    ことを特徴とする静電容量測定回路。
     
    a reference capacitance having a predetermined capacitance value;
    a switching unit that switches between application and non-application of a voltage to the reference capacitance;
    a transfer unit that transfers the charge stored in the reference capacitance to a measurement capacitance;
    a connection part for connecting the negative electrode of the measurement capacitance to a ground or a wiring having the same potential as the positive electrode of the measurement capacitance;
    A measurement unit that measures a voltage of the measurement capacitance;
    a control unit that controls the switching unit, the transfer unit, and the connection unit,
    The control unit is
    a first control for causing the transfer unit to transfer charges while a negative electrode of the measurement capacitance is connected to the ground after a voltage is applied to the reference capacitance;
    a second control for causing the transfer unit to transfer charges in a state in which a negative electrode of the measurement capacitance is connected to the wiring having the same potential as a positive electrode of the measurement capacitance after a voltage is applied to the reference capacitance;
    and calculating a capacitance value of the measurement capacitor based on a voltage value measured by the measurement unit after the charge is transferred by the first control and the second control.
    1. A capacitance measurement circuit comprising:
  2.  請求項1に記載の静電容量測定回路において、
     前記制御部は、前記電荷の転送から前記電圧値の取得までの待機期間を変化させながら前記電圧値が飽和するまで前記第1制御を繰り返し実行し、飽和した前記電圧値を用いて前記静電容量値の算出を行う、
    ことを特徴とする静電容量測定回路。
     
    2. The capacitance measurement circuit according to claim 1,
    the control unit repeatedly executes the first control while changing a waiting period from the transfer of the electric charge to the acquisition of the voltage value until the voltage value becomes saturated, and calculates the capacitance value using the saturated voltage value.
    1. A capacitance measurement circuit comprising:
  3.  請求項2に記載の静電容量測定回路において、
     前記制御部は、前記第1制御を繰り返すごとに前記待機期間を長くする、
    ことを特徴とする静電容量測定回路。
     
    3. The capacitance measurement circuit according to claim 2,
    The control unit extends the waiting period each time the first control is repeated.
    1. A capacitance measurement circuit comprising:
  4.  請求項1に記載の静電容量測定回路において、
     前記制御部は、前記第1制御により取得した第1電圧値Vx1と、前記第2制御により取得した第2電圧値Vx2と、前記基準容量に印加される前記電圧の値Vddと、基準容量の静電容量値Crとから、以下の式により、測定容量の静電容量値Csを算出する、
    ことを特徴とする静電容量測定回路。
    Figure JPOXMLDOC01-appb-M000001
     
    2. The capacitance measurement circuit according to claim 1,
    The control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the reference capacitance, and a capacitance value Cr of the reference capacitance by the following formula:
    1. A capacitance measurement circuit comprising:
    Figure JPOXMLDOC01-appb-M000001
  5.  請求項1に記載の静電容量測定回路において、
     前記基準容量の静電容量値を変化させる容量値変更部をさらに備える、
    ことを特徴とする静電容量測定回路。
     
    2. The capacitance measurement circuit according to claim 1,
    A capacitance value changing unit that changes the capacitance value of the reference capacitance is further provided.
    1. A capacitance measurement circuit comprising:
  6.  所定の静電容量値を有する基準容量と、
     測定容量に対する電圧の印加および非印加を切り替える切替部と、
     前記測定容量に蓄積された電荷を前記基準容量に転送する転送部と、
     前記測定容量の負極をグランドまたは前記測定容量の正極と同電位の配線に接続する接続部と、
     前記測定容量の電圧を計測する計測部と、
     前記切替部、前記転送部および前記接続部を制御する制御部と、を備え、
     前記制御部は、
      前記測定容量の負極を前記グランドに接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第1制御と、
      前記測定容量の負極を前記測定容量の正極と同電位の配線に接続した状態で、前記測定容量に電圧を印加した後、前記転送部に電荷の転送を行わせる第2制御と、
      前記第1制御および前記第2制御によりそれぞれ前記電荷の転送が行われた後に前記計測部により計測された電圧値により前記測定容量の静電容量値を算出する処理と、を実行する、
    ことを特徴とする静電容量測定回路。
     
    a reference capacitance having a predetermined capacitance value;
    A switching unit that switches between application and non-application of a voltage to the capacitance to be measured;
    a transfer section that transfers the charge stored in the measurement capacitance to the reference capacitance;
    a connection part for connecting the negative electrode of the measurement capacitance to a ground or a wiring having the same potential as the positive electrode of the measurement capacitance;
    A measurement unit that measures a voltage of the measurement capacitance;
    a control unit that controls the switching unit, the transfer unit, and the connection unit,
    The control unit is
    a first control for applying a voltage to the capacitance to be measured while the negative electrode of the capacitance to be measured is connected to the ground, and then causing the transfer unit to transfer charges;
    a second control for applying a voltage to the capacitance to be measured while connecting the negative electrode of the capacitance to be measured to a wiring having the same potential as the positive electrode of the capacitance to be measured, and then causing the transfer unit to transfer charges;
    and calculating a capacitance value of the measurement capacitor based on a voltage value measured by the measurement unit after the charge is transferred by the first control and the second control.
    1. A capacitance measurement circuit comprising:
  7.  請求項6に記載の静電容量測定回路において、
     前記制御部は、前記電荷の転送から前記電圧値の取得までの待機期間を変化させながら前記電圧値が飽和するまで前記第1制御を繰り返し実行し、飽和した前記電圧値を用いて前記静電容量値の算出を行う、
    ことを特徴とする静電容量測定回路。
     
    7. The capacitance measurement circuit according to claim 6,
    the control unit repeatedly executes the first control while changing a waiting period from the transfer of the electric charge to the acquisition of the voltage value until the voltage value becomes saturated, and calculates the capacitance value using the saturated voltage value.
    1. A capacitance measurement circuit comprising:
  8.  請求項7に記載の静電容量測定回路において、
     前記制御部は、前記第1制御を繰り返すごとに前記待機期間を長くする、
    ことを特徴とする静電容量測定回路。
     
    8. The capacitance measurement circuit according to claim 7,
    The control unit extends the waiting period each time the first control is repeated.
    1. A capacitance measurement circuit comprising:
  9.  請求項6に記載の静電容量測定回路において、
     前記制御部は、前記第1制御により取得した第1電圧値Vx1と、前記第2制御により取得した第2電圧値Vx2と、前記測定容量に印加される前記電圧の値Vddと、基準容量の静電容量値Crとから、以下の式により、測定容量の静電容量値Csを算出する、
    ことを特徴とする静電容量測定回路。
    Figure JPOXMLDOC01-appb-M000002
     
    7. The capacitance measurement circuit according to claim 6,
    The control unit calculates a capacitance value Cs of the measurement capacitance from the first voltage value Vx1 acquired by the first control, the second voltage value Vx2 acquired by the second control, a value Vdd of the voltage applied to the measurement capacitance, and a capacitance value Cr of a reference capacitance, using the following formula:
    1. A capacitance measurement circuit comprising:
    Figure JPOXMLDOC01-appb-M000002
  10.  請求項6に記載の静電容量測定回路において、
     前記基準容量の静電容量値を変化させる容量値変更部をさらに備える、
    ことを特徴とする静電容量測定回路。
     
    7. The capacitance measurement circuit according to claim 6,
    A capacitance value changing unit that changes the capacitance value of the reference capacitance is further provided.
    1. A capacitance measurement circuit comprising:
  11.  荷重に応じて静電容量が変化する素子部を有する荷重センサと、
     請求項1ないし10の何れか一項に記載の静電容量測定回路と、を備え、
     前記制御部は、前記素子部を前記測定容量として、前記第1制御、前記第2制御および前記静電容量の算出処理を実行する、
    ことを特徴とする荷重検出装置。
     
    a load sensor having an element portion whose capacitance changes in response to a load;
    A capacitance measurement circuit according to any one of claims 1 to 10,
    The control unit performs the first control, the second control, and the process of calculating the capacitance by using the element unit as the measurement capacitance.
    A load detection device comprising:
  12.  請求項11に記載の荷重検出装置において、
     前記荷重センサは、複数の前記素子部を備え、
     前記静電容量測定回路は、測定対象の素子部を切り替える素子選択部を備える、
    ことを特徴とする荷重検出装置。
    The load detection device according to claim 11,
    The load sensor includes a plurality of the element units,
    The capacitance measurement circuit includes an element selection unit that switches the element unit to be measured.
    A load detection device comprising:
PCT/JP2023/024094 2022-11-14 2023-06-28 Capacitance measurement circuit and load detection device WO2024105923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182182 2022-11-14
JP2022182182 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024105923A1 true WO2024105923A1 (en) 2024-05-23

Family

ID=91084391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024094 WO2024105923A1 (en) 2022-11-14 2023-06-28 Capacitance measurement circuit and load detection device

Country Status (1)

Country Link
WO (1) WO2024105923A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536319A (en) * 2002-07-18 2004-12-02 エンドレス ウント ハウザー ゲーエムベーハー ウント コンパニー コマンディートゲゼルシャフト Circuit configuration for capacitive sensor
US20180081482A1 (en) * 2016-09-17 2018-03-22 Shenzhen GOODIX Technology Co., Ltd. Pressure detection method, touch control chip, and pressure detection module
US20180364867A1 (en) * 2016-11-08 2018-12-20 Shenzhen GOODIX Technology Co., Ltd. Method for determining change of initial distance of sensing electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536319A (en) * 2002-07-18 2004-12-02 エンドレス ウント ハウザー ゲーエムベーハー ウント コンパニー コマンディートゲゼルシャフト Circuit configuration for capacitive sensor
US20180081482A1 (en) * 2016-09-17 2018-03-22 Shenzhen GOODIX Technology Co., Ltd. Pressure detection method, touch control chip, and pressure detection module
US20180364867A1 (en) * 2016-11-08 2018-12-20 Shenzhen GOODIX Technology Co., Ltd. Method for determining change of initial distance of sensing electrode

Similar Documents

Publication Publication Date Title
US11954296B2 (en) Flexible capacitive tactile sensor and method for manufacturing same and tactile sensing system
CN109781315B (en) Touch sensor
US20120162122A1 (en) Force sensitive device with force sensitive resistors
CN111238545B (en) Sensor, intelligent device, sensing method and storage medium
US20100077868A1 (en) Tactile sensor
US20060220740A1 (en) Apparatus for current measuring and a resistor
WO2010059216A1 (en) Method and system for measuring position on surface capacitance touch panel using a flying capacitor
WO2024105923A1 (en) Capacitance measurement circuit and load detection device
JP7296603B2 (en) Detection circuit and load detection device
JP7352883B2 (en) Detection circuit and load detection device
KR101621233B1 (en) Touch detecting apparatus and method
JP2001043002A (en) Diagonal type coordinate detecting device
KR20170019740A (en) Apparatus for touch sensor test
WO2024070102A1 (en) Load detecting device and detecting circuit
JP7245995B2 (en) Detection circuit and load detection device
KR101569337B1 (en) Touch detecting apparatus and method
EP3775818B1 (en) Sensing physical attributes
KR101537228B1 (en) Touch detecting apparatus and method
Vlasov et al. Investigation of a capacitor array of a composite capacitive touch panel
WO2023074222A1 (en) Load detecting device
WO2023002709A1 (en) Load detection system
WO2024111149A1 (en) Load sensor and load detecting device
WO2021215390A1 (en) Capacitive proximity detection device
US11333696B2 (en) Mutual capacitance measurement
JP7432854B2 (en) load detection device