WO2024105845A1 - Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method - Google Patents

Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method Download PDF

Info

Publication number
WO2024105845A1
WO2024105845A1 PCT/JP2022/042685 JP2022042685W WO2024105845A1 WO 2024105845 A1 WO2024105845 A1 WO 2024105845A1 JP 2022042685 W JP2022042685 W JP 2022042685W WO 2024105845 A1 WO2024105845 A1 WO 2024105845A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
pulse light
chirp pulse
light
chirp
Prior art date
Application number
PCT/JP2022/042685
Other languages
French (fr)
Japanese (ja)
Inventor
哲賢 李
欣増 岸田
大治 東
Original Assignee
ニューブレクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニューブレクス株式会社 filed Critical ニューブレクス株式会社
Priority to PCT/JP2022/042685 priority Critical patent/WO2024105845A1/en
Publication of WO2024105845A1 publication Critical patent/WO2024105845A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Definitions

  • This application relates to an optical fiber ultrasonic distribution measurement device and an optical fiber ultrasonic distribution measurement method.
  • one effective way to solve the above problems is to realize constant remote monitoring of a large number of offshore wind turbines using ultrasonic measurement technology that can detect damage to wind turbine blades installed more than 30 km away, or loose bolts that secure the wind turbine blades, enabling constant monitoring.
  • the measurement speed limit of conventional DAS is due to the travel speed of the pulsed light in the optical fiber, and the next pulse cannot be input until the input pulsed light returns from the end of the optical fiber to the measuring device (see, for example, Non-Patent Document 2).
  • the maximum measurable sampling speed is 50 Ksps (sps: samples per second), which is the 20 ⁇ s period converted into the acoustic sampling speed, and it cannot keep up with the speed of ultrasonic testing, which has a higher sampling speed.
  • the maximum measurable sampling speed also decreases. If the optical fiber length is 20 km, 10 times that of the normal size, the maximum measurable sampling speed also becomes 1/10 of the normal size, at 5 Ksps, making it difficult to measure ultrasound over long distances using optical fiber.
  • FBG sensors Fiber Bragg Gratings
  • PZT piezoelectric element
  • the upper limit of the elastic waves used in this elastic wave measurement has been reported to be around 1 MHz (see, for example, Non-Patent Document 3 and Patent Document 1).
  • This application discloses technology to solve the problems described above, and aims to realize a device that enables both long-distance measurements and high time resolution by combining two characteristic times: the interval between adjacent chirp pulse light and the interval between chirp pulse light groups. It also aims to provide a device that can vary the measurable length of a measured object while maintaining the sampling rate of the incident light by controlling the time interval at which the chirp pulse light groups are incident on the measured object.
  • the optical fiber ultrasonic distribution measurement device disclosed in the present application is an LD, a chirp pulse light generating module which controls the frequency sweep range of the laser light emitted from the LD to generate a plurality of chirp pulse lights, an optical fiber ring circuit having a predetermined ring length, receiving the chirp pulse light generated by the chirp pulse light generating module and outputting a chirp pulse light group which is a collection of chirp pulse lights having a prescribed sweep time interval, and a polarization diversity receiving module which receives backscattered light from an optical fiber which is a measured object when the chirp pulse light group emitted from the optical fiber ring circuit is input into the optical fiber, and receives the laser light from the LD.
  • a light source module having a ring chirp interval and delay control module for controlling a sweep time interval of the chirp pulse light and for controlling a timing at which the chirp pulse light group is input to the optical fiber to be delayed by a certain time; Equipped with The present invention is characterized in that a number of backscattered lights from the optical fiber are received and restored, the number of which is equal to the number of chirp pulse lights generated when a plurality of chirp pulse lights having different sweep frequencies generated by the chirp pulse light generating module are incident on the optical fiber, and by specifying the frequency bandwidth of the received signal during the restoration process, each chirp pulse light incident on the optical fiber is identified and received, and a distribution measurement of the ultrasound detected by the optical fiber is performed.
  • the optical fiber ultrasonic distribution measurement device disclosed in this application combines two characteristic times, the interval between adjacent chirp pulse light and the interval between chirp pulse light groups, to realize a device that is capable of both long-distance measurement and high time resolution, and by controlling the time interval at which the chirp pulse light groups are incident on the object to be measured, it is possible to provide a device that can vary the measurable length of the object to be measured while maintaining the sampling rate of the incident light.
  • 1 is a model diagram showing an application example of an optical fiber ultrasonic distribution measurement device according to a first embodiment.
  • 1 is a table comparing methods for monitoring damage to wind turbine blades to which the optical fiber ultrasonic distribution measurement device of the first embodiment is applied.
  • FIG. This is a table categorizing the measurement technologies used in monitoring wind turbine blades.
  • 1A to 1C are diagrams for explaining a method for detecting damage or the like that has occurred in an object to be inspected using optical fibers.
  • 1 is a diagram for explaining a high-speed DAS technique used in an optical fiber ultrasonic distribution measurement device according to a first embodiment.
  • FIG. 1 is a block diagram showing an example of an optical fiber ultrasonic distribution measurement device according to a first embodiment
  • 1 is a diagram showing a specific example of an optical fiber ultrasonic distribution measurement device according to a first embodiment
  • 3A to 3C are diagrams for explaining specific examples of chirp pulse light incident on a measurement object by the optical fiber ultrasonic distribution measurement device according to the first embodiment, and backscattered light of this chirp pulse light.
  • FIG. 11 is a diagram for explaining signal processing in the case where a beat signal after receiving backscattered light of chirp pulse light is divided into a plurality of bands by a numerical simulation.
  • FIG. 13 is a diagram for explaining signal processing in which signals divided into multiple bands are corrected for distance deviations and then reconstructed on a time basis with a shortened sampling period.
  • FIG. 11 is a diagram for explaining the results when a 10 KHz signal is measured at 1 Ksps as a specific example of signal processing.
  • FIG. 13 is a diagram showing an example of vibration waveform results obtained by analyzing ultrasonic test data divided into eight bands used in a simulation using a piezoelectric element.
  • FIG. 13 is a diagram showing an analysis result of a vibration waveform when ultrasonic test data is analyzed with the eight bands used in the simulation aligned.
  • FIG. 13 is a diagram showing the results when a vibration waveform, which is ultrasonic test data, is passed through a low-pass filter to remove high-frequency noise.
  • FIG. 2 is a diagram showing an enlarged time axis scale of a vibration waveform.
  • This application primarily relates to a maintenance and inspection device using optical fiber for remote monitoring technology related to the maintenance and inspection of wind turbines for offshore wind power generation.
  • the contents of this application will be explained below using a representative embodiment as an example.
  • FIG. 1A is a model diagram of a wind turbine 10 which is an example to which the optical fiber ultrasonic distribution measurement device according to the first embodiment is applied.
  • Figure 1B is an enlarged view of a portion P in Figure 1A.
  • Figure 1C is a diagram showing an overview of a processing device that processes signals from an optical fiber in the optical fiber ultrasonic distribution measurement device.
  • a number of blades 1 wings 1 are fixedly attached to a hub 2, and rotate together with the wind force.
  • This hub 2 constitutes a part of the wind turbine body called a nacelle 3, and the nacelle 3 is supported by a tower 4.
  • a sensing optical fiber cable 5 using, for example, a single mode optical fiber is installed at a predetermined position on the blade 1 of the wind turbine 10 (see FIG. 1B), which can continuously measure the temperature or strain distribution at a predetermined position on the blade 1.
  • a sensor measurement signal at the predetermined position on the blade 1 measured by this optical fiber cable 5 is transmitted to an optical fiber signal processing device 20 (see FIG. 1C) via a signal communication optical fiber cable (not shown).
  • the optical fiber signal processing device 20 processes the sensor measurement signal to remotely detect the continuous distribution state of the temperature or strain at the predetermined position on the blade 1.
  • the signal (line) between the rotating part and the fixed part of the wind turbine can be connected using an optical rotary joint.
  • an optical fiber ultrasonic distribution measurement device 30 (described in detail below) using ultrasonic measurement is applied as the optical fiber signal processing device.
  • FIG 2 is a table comparing the above-mentioned blade damage monitoring method with conventional examples. In this table, three typical monitoring methods are shown for comparison. Typical conventional methods include a manual inspection method and the above-mentioned method using FBG as an optical fiber sensor (hereinafter referred to as the FBG method). Figure 2 shows a comparison of these methods with the method of the present application by monitoring content.
  • the method of the present invention can adequately handle any monitoring needs, such as constant monitoring, monitoring for deformation or damage to the blade, and monitoring for delamination or loose bolts.
  • the measurement technology used in the monitoring method of the present application will be described below.
  • the method of monitoring deformation and damage of blades, and delamination and loose bolts using optical fiber distributed measurement sensors will be described, with emphasis on the ultrasonic DAS monitoring method for monitoring delamination and loose bolts.
  • no electrical equipment is required for measurements at wind turbines or outdoors, and lightning and bad weather are not a factor, making monitoring possible even in high weather conditions.
  • the measurement speed is divided into a measurement time of several seconds (hereinafter referred to as measurement speed category 1), up to about 100 KHz (hereinafter referred to as measurement speed category 2), and 1 MHz or higher (hereinafter referred to as measurement speed category 3).
  • measurement speed category 1 is static strain such as blade deflection, and the optical fiber distribution measurement used here is DTSS technology (resolution, accuracy, etc. are as shown in FIG. 3).
  • measurement speed category 2 is dynamic vibration/sound such as blade deflection, and the optical fiber distribution measurement used here is DAS technology (resolution, accuracy, etc. are as shown in FIG. 3).
  • a typical measurement target for measurement speed category 3 is ultrasonic waves for ultrasonic flaw detection used to detect delamination of blades. Conventionally, there has been no practical example of detection using this ultrasonic wave as the measurement target using an optical fiber distribution measurement sensor. In this application, ultrasonic waves refer to 1 MHz or higher in the above measurement speed category 3.
  • the diagram on the left side of Fig. 4 is a configuration diagram showing an ultrasonic flaw detector equipped with a piezoelectric element 6 that generates and receives ultrasonic waves, a bolt 8a which is a measurement object in which internal damage 9 is measured by ultrasonic waves, a blade 13 and a flange 14 which are fixed by this bolt 8a and a nut 8b, and a coupling 15 for transmitting ultrasonic waves to this measurement object without attenuation.
  • An optical fiber 7 is installed in the coupling 15 to detect generated strain, etc.
  • the coupling material is usually made of a material that has a small attenuation when ultrasonic waves are transmitted (for example, an attenuation of less than 1 dB per 5 MHz), such as silicone, thermoplastic resin, etc.
  • the symbol F in the figure indicates the (main) propagation direction of ultrasonic waves.
  • the diagram on the right side of Figure 4 shows a schematic diagram of the signal strength of the detected signal in response to the passage of time from the generation of the ultrasonic wave from the piezoelectric element 6, with the signal detection time at the position of the optical fiber 7 on the left side being the reference time (reference zero position of the time coordinate) in the case where the piezoelectric element 6 on the left side receives a reflected signal from the measured object of the ultrasonic wave generated by this piezoelectric element, and damage 9 inside the bolt 8a is detected.
  • the ultrasonic wave propagates in the direction indicated by the arrow F, and the optical fiber 7 placed inside the coupling material detects (on the time axis) the signal generated inside the measured object by the ultrasonic wave, as a result of strain occurring in the longitudinal direction of the optical fiber due to the (relationship with) Poisson's ratio.
  • the direction perpendicular to the direction in which the ultrasonic wave propagates indicated by the arrow F corresponds to the longitudinal direction of the optical fiber.
  • the curves labeled Wa, Wb, and Wc in the diagram on the right side of Figure 4 are schematic representations of signals from the object to be measured detected by optical fiber 7 using ultrasonic signals emitted by the piezoelectric element, and the symbols Wa, Wb, and Wc respectively represent the signal detected when the ultrasonic signal first reaches the position (surface) of the object to be measured (bolt 8a in this case), the signal detected when the signal reaches the position of damage 9 inside the object to be measured, and the signal detected when reflected off the bottom surface of the object to be measured.
  • the intensity levels of these three signals have the relationship Wa>Wc>Wb, as shown in Fig. 4.
  • a signal corresponding to the reflected wave from the object to be measured due to the ultrasonic signal emitted by the piezoelectric element is detected by the optical fiber 7 installed in the coupling 15.
  • the signal due to damage or the like of the object to be measured detected by the piezoelectric element is mainly used as a verification signal to be compared when the optical fiber detects a signal due to damage or the like of the object to be measured.
  • the thickness of the coupling 15 is about 6 mm, and if the object being measured is made of CFRP, it is less than 60 mm, and if it is made of steel, it is less than 100 mm. Details of the method of detecting ultrasonic waves using the optical fiber 7 are described below.
  • delamination of the blades can also be detected using the optical fiber 7.
  • this detection method involves investigating the generation and propagation characteristics of elastic waves such as Lamb waves in the blades by comparing measurements made using optical fiber with numerical analysis, and based on the results, it is possible to determine the location and size of the delamination.
  • broadband Lamb waves can be used to detect delamination of the layers that make up the wind turbine blades, and the location and size of the delamination can be identified.
  • the speed of ultrasonic waves inside the bolt is approximately 5000 m/s, and a frequency of 3.3 Msps (with a discrimination speed of 0.3 ⁇ s) corresponds to a bolt length of 1.5 mm. Damage measurement in bolts longer than 1.5 mm can be achieved by delaying the timing of incidence of the chirp pulse light.
  • the above describes the detection of ultrasonic waves when the bolt is damaged, but this is not the only case.
  • loosening of the bolt's fastening of the blade can also be detected by optical fiber, since it is possible to detect this as a change in strain in the optical fiber based on the change in stress when the bolt is loosened.
  • Figure 5A is a diagram for explaining conventional DAS technology.
  • the next pulse of light must be input after the backscattered light of the pulse of light input to the optical fiber has finished reflecting, so only one pulse of light input to the optical fiber can be recognized.
  • the time it takes for a pulse of light to travel back and forth through a 2 km long optical fiber is approximately 20 ⁇ s, so the upper limit of the measurable speed is limited to this value (see Figure 5A).
  • the measurement speed is limited to the speed of the pulse of light traveling through the optical fiber (approximately 200,000 km/sec).
  • the sampling speed was improved to about 66 times that of conventional DAS by using frequency-swept chirp pulse light (here, chirp pulse light of one bandwidth is referred to. For example, a bandwidth of 150 MHz to 250 MHz. Details will be described later), and the chirp pulse light group, which is a collection of chirp pulse light consisting of several tens of chirp pulse lights (here, each bandwidth is constant, for example), is incident on the object to be measured with a (time) interval between them, making it possible to measure long distances of 30 km.
  • frequency-swept chirp pulse light here, chirp pulse light of one bandwidth is referred to. For example, a bandwidth of 150 MHz to 250 MHz. Details will be described later
  • the chirp pulse light group which is a collection of chirp pulse light consisting of several tens of chirp pulse lights (here, each bandwidth is constant, for example), is incident on the object to be measured with a (time) interval between them, making it possible to measure long distances
  • the chirp pulse light is incident on the optical fiber to be measured with an interval of about 300 ⁇ s (the time it takes for the pulse light to go round trip through a 30 km long optical fiber), which is the time equivalent to a distance of 30 km, and the backscattered light returning from this optical fiber is received (see Figure 5B).
  • the backscattered light returning from the optical fiber is individually received by a bandpass filter.
  • the chirp pulse light groups are received with an interval of about 300 ⁇ s between each other, the location on the optical fiber that corresponds to the time interval will be a missing section, which is a problem. Therefore, we decided to acquire the signal using the method shown in Figure 6.
  • a group of chirp pulse light delayed at regular intervals (here, by a few microseconds, which is the time for one cycle of ultrasound, as shown in Figure 6) is injected into the optical fiber (see the group of chirp pulse light shown in the upper part of Figure 6), and after receiving them individually, they are all combined.
  • the optical fiber see the group of chirp pulse light shown in the upper part of Figure 6
  • the measurable optical fiber length can be varied while maintaining the sampling speed. Specifically, when the total length of the optical fiber is 30 km, the time it takes for the pulse light to travel this distance back and forth in the optical fiber is 2 x 30 km/(200,000 km/s) ⁇ 300 ( ⁇ s), assuming that the speed of light in the optical fiber is approximately 200,000 km/s, so the time interval at which the chirp pulse light group is input to the optical fiber is controlled to approximately 300 ( ⁇ s).
  • the features of the developed long-distance ultrasonic DAS technology compared to other DAS technologies can be summarized as shown in Figure 7.
  • the measurable optical fiber length is 30 km
  • the maximum sampling speed is 3.3 Msps, which is 66 times faster than conventional DAS.
  • This value of 3.3 Msps corresponds to 0.3 ⁇ s, which is the discrimination speed of each optical pulse in the optical fiber ring circuit described later.
  • the (delay) control of the incident pulse light also uses 300 ⁇ s, which is the time interval between each chirp pulse light group, in addition to 0.3 ⁇ s.
  • the optical fiber ultrasonic distribution measurement device of the present application satisfies the following specifications: spatial resolution is 1 m to 2 m, sampling speed is 2 Ksps to 3.3 Msps, and measurable range is 500 m to 30 km.
  • an arrow with arrows on both sides indicates that signals are sent and received in both directions, while an arrow with arrows on only one side indicates that signals are sent only in the direction of the arrow. Note that the thicker the arrow, the faster data can be sent and received. Also, the open arrows represent transmission and reception between the measurement device and the object being measured.
  • FIG. 8 is a block diagram showing an example of an optical fiber ultrasonic distribution measurement device 30 that is a measurement device that realizes the specifications of the long-distance ultrasonic DAS.
  • the optical fiber ultrasonic distribution measurement device 30 includes a light source module 31 for generating chirp pulse light, transmitting it to the object to be measured, and receiving backscattered light from the object to be measured, an optical control module 32 for controlling the frequency of the generated chirp pulse, etc., a ring chirp interval and delay control module 33 for controlling the chirp pulse signal on the time axis or controlling the time delay of the received signal with a high accuracy of about 10 ns, an A/D converter 34 for converting the received analog signal into a digital signal for processing by a computer (CPU module 35 having a processor, memory, etc., not shown), and a PCIe bus 36 (PCIe: an abbreviation for Peripheral Component Interconnect Express, a high-speed serial expansion bus standard) for transmitting data
  • the light source module 31 includes an LD 311 (LD: Laser Diode) that oscillates a narrow-linewidth laser (e.g., a single-frequency laser) that cannot be directly modulated and has a spectral linewidth of, for example, less than 1 kHz, a polarization diversity receiving module 317 that receives and processes only a specific polarization, an I/O circuit 312 that transmits and receives signals to and from the LD 311, an optical control module 32, and the polarization diversity receiving module 317, a chirp pulse light generating module 314 for generating chirp pulses, and a narrow-linewidth LD 311.
  • LD 311 Laser Diode
  • a narrow-linewidth laser e.g., a single-frequency laser
  • a polarization diversity receiving module 317 that receives and processes only a specific polarization
  • an I/O circuit 312 that transmits and receives signals to and from the LD 311, an optical control module 32, and
  • a beam splitter 313 (also called BS313 for simplicity) for splitting the optical path of the laser light emitted from 11 and sending it to the chirp pulse light generating module 314 and the polarization diversity receiving module 317, an optical fiber ring circuit 315 for circulating the laser light to measure changes in physical quantities in an optical fiber of a specified distance using chirp pulses, and an optical coupler 316 for injecting the chirp pulse light into the object to be measured and sending the backscattered light from the object to the polarization diversity receiving module 317.
  • BS313 also called BS313 for simplicity
  • FIG. 9 shows a specific example of a measurement device that realizes the above-mentioned optical fiber ultrasonic distribution measurement device 30.
  • specific examples of the two components, the chirp pulse light generating module 314 in FIG. 8 above, and the optical fiber ring circuit 315, which are the most characteristic components of this measurement device, will be described below with reference to FIG. 9.
  • the laser light emitted from the LD used for DAS measurement is split into two by a polarizing beam splitter, and one of these laser lights is directed toward a board on which an AOM (Acousto-Optics Modulator, hereafter the same) and driver circuit are mounted, as shown in Figure 9, to generate a chirp pulse.
  • AOM Acoustic-Optics Modulator
  • the LD mentioned above has a narrow linewidth and cannot be directly modulated. Therefore, the laser light is modulated by a board on which an AOM and driver circuit are mounted, as explained below.
  • the AOM can generally control and modulate the intensity of light at a speed faster than a mechanical shutter by repeatedly turning it on and off at a specified frequency (here, for example, 100 MHz as shown in the figure), and can continuously generate multiple pulsed lights with a certain frequency difference.
  • This control is performed by an LFM (Linear Frequency Modulate, or Chirp) using a DDS (Direct Digital Synthesizer) and a driving circuit as shown in Figure 9.
  • LFM Linear Frequency Modulate, or Chirp
  • DDS Direct Digital Synthesizer
  • this optical frequency loop circuit uses an AOM similar to the chirp pulse light generating module 314 described above, as well as a polarizing beam splitter (P-BS) and an EDFA (Erbium-Doped Fiber Amplifier) for signal flattening.
  • P-BS polarizing beam splitter
  • EDFA Erbium-Doped Fiber Amplifier
  • the chirped pulse light can detect changes in physical quantities such as distortion corresponding to positions within the same optical fiber at an identification speed of 0.3 ⁇ s.
  • This identification speed of 0.3 ⁇ s is equivalent to a sampling speed of 3.3 Msps.
  • FIG. 10 shows an example of a signal whose frequency sweep range (also called the chirp frequency sweep range) is controlled by the 100 MHz AOM output.
  • the lower part of Figure 10 shows a specific example of a total of 20 signals that have been BPF (band pass filtered) at 100 ksps on the receiving side. The accuracy of the delay control in this case was 10 ns.
  • the output pattern of the optical output is swept by a 100 MHz AOM, with 150 MHz set as the first frequency, and then swept in increasing order at six different frequencies (also called chirp frequencies) from 150 MHz to 650 MHz in increments of 100 MHz.
  • This chirp pulse light is configured as one set of units, and the final set is a set of 20 chirp pulse lights consisting of a set from 1650 MHz to 2150 MHz (this set is the chirp pulse light group described above).
  • the time interval between adjacent sweep frequencies (also called the sweep time interval for simplicity) is set to 300 ns.
  • the time from the first chirp pulse light group (from 150 MHz to 2150 MHz) to the generation of the next chirp pulse light group is 300 ⁇ s (the time it takes for the pulse light to travel back and forth through a 30 km long optical fiber).
  • a total of 20 chirp signals are observed at a discrimination speed of 0.3 ⁇ s, so the target signal can be observed in an observation time window of 6 ⁇ s.
  • a bandpass filter is used to individually discriminate the 20 chirp signals.
  • the optical fiber ultrasonic distribution measurement device of the first embodiment by combining two characteristic times, namely, the interval time between adjacent chirp pulse light and the interval time between chirp pulse light groups, it is possible to realize a device that enables both long distance and high time resolution, and by controlling the time interval at which the chirp pulse light groups are incident on the object to be measured, it is possible to provide a device that can vary the measurable length of the object to be measured while maintaining the sampling speed of the incident light. Furthermore, this optical fiber ultrasonic distribution measurement device can be used to provide a device or system that constantly monitors the blades or bolts of offshore wind turbines installed several tens of kilometers away to detect damage, etc.
  • step S1 50 consecutive measurements are performed at measurement intervals of 1 Ksps using a conventional chirp pulse with a time width of 2 ⁇ s (chirp frequency of 100 MHz) (step S1).
  • the received beat signal is subjected to signal processing and passed through eight matched filters having equal bandwidths of 12.5 MHz, as shown below, to divide the 2 ⁇ s beat signal into the following eight bands (step S2).
  • the distance difference between the divided signals of band 1 and band 2 is 25 m
  • the distance difference between the divided signals of band 1 and band 3 is 50 m, calculated by adding the distance difference between the divided signals of band 2 and band 3, 25 m, to this 25 m.
  • the signal is divided into the eight bands, that is, a distance shift is performed to correct the distance deviation of each divided signal (step S3).
  • the signal data subjected to the distance shift processing has a measurement speed of 1 Ksps, i.e., 50 data sets with a period T of 1002 ⁇ s. Therefore, the data is reconstructed on the time axis to remove the time corresponding to this period difference so that all signal data are connected with signals with a 0.25 ⁇ s interval (step S4).
  • Figure 13 explains that by using a 2 ⁇ s chirp pulse to measure 50 periods of a 10 KHz sine wave at a measurement speed of 1 Ksps and resampling at 4 Msps, it is possible to measure one period of 10 KHz.
  • FIG. 11A to 12C are diagrams illustrating the principle of the above-mentioned resampling method based on the received beat signal.
  • Fig. 11A shows a beat signal measured by a conventional method.
  • Each of these beat signals has frequency components from 145.0 MHz to 245.0 MHz.
  • FIG. 11B is a diagram showing an example in which the beat signal in the optical fiber ultrasonic distribution measurement device of the first embodiment is divided at a constant bandwidth (12.5 MHz) (see step S2 above), and shows the results of dividing each of the beat signals measured 50 times into a total of eight bands with an interval of 0.25 ⁇ s between bands.
  • a certain distance shift occurs depending on each band (the difference in distance shift between adjacent bands is a constant 25 m).
  • Figure 12A is a reprint of Figure 11B (part of it).
  • the result is shown in Figure 12C.
  • Figures 14A and 14B show an example of the results when each of the above bands is analyzed (independently).
  • Figure 14A is a waterfall graph showing the measurement results of test data in band 1 as an example.
  • the PZT signal can be seen at a point of 499.8 m.
  • the horizontal axis is time (unit: ⁇ s) and the vertical axis is distance (unit: m).
  • Fig. 15A shows the analysis results (hereafter referred to as the original data) of the vibration waveform when all eight bands are aligned (combined) rather than the measurement results for each of the above bands (the scale of the horizontal axis is the same as in Fig. 14B). Looking at the whole picture, it can be seen that it shows a similar shape to the graph shown in Fig. 14B.
  • Fig. 15B also shows the results of calculating the spectrum (power spectral density) based on the data in Fig. 15A (the horizontal axis is frequency). From Fig. 15B, the 10 KHz vibration component of the piezoelectric element can be confirmed.
  • Figure 16B shows the results when the above raw data (see Figure 16A; the same data as Figure 15A) is passed through an LPF (Low pass filter) with a cutoff frequency of 15 kHz to remove high frequency noise.
  • LPF Low pass filter
  • the time difference between the vibration peak waveforms is 100 ⁇ s, which can be said to represent the above 10 kHz vibration waveform.
  • FIGS. 17B and 17C show the vibration waveform with the scale of the time axis enlarged.
  • the time scale shown in FIG. 17B is about 10 times that of FIG. 17A
  • the time scale shown in FIG. 17C is about 400 times that of FIG. 17A.
  • the above enabled us to verify through simulation a method of resampling a 10 KHz sine wave at 4 Msps with a sampling rate of 1 Ksps using a chirp pulse with a time width of 2 ⁇ s.
  • Optical fiber signal processing device 30 Optical fiber ultrasonic distribution measurement device, 31 Light source module, 32 Optical control module, 33 Ring chirp interval and delay control module, 34 A/D converter, 35 CPU module, 36 PCIe bus, 311 LD, 312 I/O circuit, 313 Beam splitter, 314 Chirp pulse light generation module, 315 Optical fiber ring circuit, 316 Optical coupler, 317 Polarization diversity receiving module

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

This optical fiber ultrasonic distribution measurement device (30) is provided with: a light source module (31) that has an LD (311), a chirped pulse light generation module (314), an optical fiber ring circuit (315) which has a predetermined ring length, into which chirped pulse light is input, and which outputs a chirped pulse light group at a prescribed sweep time interval, and a polarized wave diversity reception module (317) that receives back scattered light and laser light from the LD (311); and a ring chirp interval and delay control module (33) that controls the sweep time interval for chirped pulse light and delays the timing at which a chirped pulse light group enters a measurement object, wherein a plurality of pulses of chirped pulse light with different sweep frequency bands are caused to enter the measurement object, the same number of rays of back scattered light as the number of pulses of the chirped pulse light are received and restored, and in the restoration, the frequency band widths of the received signals are defined so as to receive the pulses of the chirped pulse light in such a manner that each chirped pulse light that has entered the measurement object is identified.

Description

光ファイバ超音波分布計測装置および光ファイバ超音波分布計測方法Optical fiber ultrasonic distribution measuring device and optical fiber ultrasonic distribution measuring method
 本願は、光ファイバ超音波分布計測装置および光ファイバ超音波分布計測方法に関わる。 This application relates to an optical fiber ultrasonic distribution measurement device and an optical fiber ultrasonic distribution measurement method.
 洋上風力発電の規模拡大に伴い、多数の洋上風車の点検・保守メンテナンスが必要となっている。現状では、風車の点検・保守に関わる検査は、人力による外観検査、および打音検査に依存しており、低コストで信頼性の高い点検・保守メンテナンスが求められる。
ここで、日本近海での洋上風力発電に関する調査は、離岸距離30km以内の条件でなされており、将来計画される我が国での洋上風力発電設備の設置場所に対応するためには、30kmの計測距離が必要である(例えば、非特許文献1参照)。
As offshore wind power generation expands, inspection and maintenance of many offshore wind turbines is required.Currently, inspection and maintenance of wind turbines relies on manual visual inspection and hammering inspection, so there is a need for low-cost and reliable inspection and maintenance.
Here, surveys on offshore wind power generation near Japan have been conducted within a distance of 30 km from the shore, and a measurement distance of 30 km is required to accommodate the installation locations of offshore wind power generation facilities planned in Japan in the future (see, for example, non-patent document 1).
 よって、具体的には、30km以上離れた位置に設置された風車ブレードの損傷、あるいは風車ブレードを固定するボルトの緩みなどが検知できて、これらの常時監視が可能となる超音波計測技術を用いて、多数の洋上風車の常時リモート監視を実現することが、上記課題を解決するための1つの有力な方法と考えられる。 Therefore, one effective way to solve the above problems is to realize constant remote monitoring of a large number of offshore wind turbines using ultrasonic measurement technology that can detect damage to wind turbine blades installed more than 30 km away, or loose bolts that secure the wind turbine blades, enabling constant monitoring.
 ところで、従来のDAS(DAS:distributed acoustic sensing。分布型音波計測)の計測速度の限界は、光ファイバ中のパルス光の進行速度に起因しており、入射したパルス光が光ファイバの終端から計測装置側に帰ってくるまで、次のパルスを入射することはできない(例えば、非特許文献2参照)。例えば2kmの光ファイバをパルス光が往復するのにかかる時間は約20μsであることから、測定できる上限のサンプリング速度は、20μsの周期を音波のサンプリング速度に換算した50Ksps(sps:サンプル/秒)であり、これよりサンプリング速度の大きい超音波検査の速度には追随できない。 The measurement speed limit of conventional DAS (distributed acoustic sensing) is due to the travel speed of the pulsed light in the optical fiber, and the next pulse cannot be input until the input pulsed light returns from the end of the optical fiber to the measuring device (see, for example, Non-Patent Document 2). For example, since it takes about 20 μs for the pulsed light to travel back and forth through a 2 km optical fiber, the maximum measurable sampling speed is 50 Ksps (sps: samples per second), which is the 20 μs period converted into the acoustic sampling speed, and it cannot keep up with the speed of ultrasonic testing, which has a higher sampling speed.
 同様に、光ファイバの計測対象距離が伸びた場合、測定可能な上限のサンプリング速度も低下する。光ファイバ長が、通常サイズの10倍の20kmになると、測定上限のサンプリング速度も1/10の5Kspsとなり、長距離での光ファイバによる超音波計測は困難である。 Similarly, if the measurement distance of the optical fiber is extended, the maximum measurable sampling speed also decreases. If the optical fiber length is 20 km, 10 times that of the normal size, the maximum measurable sampling speed also becomes 1/10 of the normal size, at 5 Ksps, making it difficult to measure ultrasound over long distances using optical fiber.
 従来、構造物の損傷をモニターしつつ検出する手段として、光ファイバセンサとしてFBGセンサ(FBG:Fiber Bragg Gratings、ファイバ・ブラッグ・グレーティング)を用い、このFBGセンサとピエゾ素子(PZT)のハイブリッドシステムを計測対象となる構造物に組込んで弾性波を計測することにより、構造物の剥離などの損傷(剥離長さを含む)の有無および発生位置、あるいは損傷のサイズを同定した例があるが、この弾性波計測に用いられた弾性波は1MHz程度が報告された上限である(例えば、非特許文献3、特許文献1参照)。超音波検知の原理は、弾性波の速度を用いた計算の目安となり、鋼材中の弾性波速度Ve=5mm/μsで計算すると、f=1MHzでの計測位置精度は、約2.5mmとなる。  In the past, as a means of monitoring and detecting damage to structures, FBG sensors (Fiber Bragg Gratings) have been used as optical fiber sensors, and a hybrid system of this FBG sensor and a piezoelectric element (PZT) has been incorporated into the structure to be measured to measure elastic waves, thereby identifying the presence or absence of damage such as peeling of the structure (including the peeling length), as well as the location of the damage, or the size of the damage. However, the upper limit of the elastic waves used in this elastic wave measurement has been reported to be around 1 MHz (see, for example, Non-Patent Document 3 and Patent Document 1). The principle of ultrasonic detection is a guideline for calculations using the speed of elastic waves, and when calculated with an elastic wave speed in steel, Ve = 5 mm/μs, the measurement position accuracy at f = 1 MHz is approximately 2.5 mm.
特開2014-194379号公報JP 2014-194379 A
 本願は、上記のような課題を解決するための技術を開示するものであり、隣接するチャープパルス光間の間隔時間およびチャープパルス光グループ間の間隔時間の2つの特徴時間を組み合わせることにより、長距離計測と高い時間分解能がともに可能となる装置を実現することを目的とするとともに、チャープパルス光グループが被測定体へ入射する時間間隔を制御することにより、この入射光のサンプリング速度を保ちながら、計測可能な被測定体の長さを可変にできる装置を提供することを目的とする。 This application discloses technology to solve the problems described above, and aims to realize a device that enables both long-distance measurements and high time resolution by combining two characteristic times: the interval between adjacent chirp pulse light and the interval between chirp pulse light groups. It also aims to provide a device that can vary the measurable length of a measured object while maintaining the sampling rate of the incident light by controlling the time interval at which the chirp pulse light groups are incident on the measured object.
 本願に開示される光ファイバ超音波分布計測装置は、
LDと、前記LDから出射されたレーザ光の周波数掃引範囲を制御して、複数のチャープパルス光を発生するチャープパルス光発生モジュールと、所定の長さのリング長を持ち、前記チャープパルス光発生モジュールで発生したチャープパルス光が入力されるとともに、掃引時間間隔が規定されたチャープパルス光の集合体であるチャープパルス光グループを出力する光ファイバリング回路と、前記光ファイバリング回路から出射された前記チャープパルス光グループを被測定体である光ファイバに入射した際に生じる光ファイバからの後方散乱光、および前記LDからのレーザ光が受信される偏波ダイバーシティ受信モジュールと、
を有する光源モジュール、
前記チャープパルス光の掃引時間間隔を制御するとともに、前記チャープパルス光グループが前記光ファイバに入射するタイミングを一定時間遅延させるための制御を行うリングチャープ間隔および遅れ制御モジュール、
を備え、
前記チャープパルス光発生モジュールで発生させた掃引周波数の異なる複数のチャープパルス光を、前記光ファイバに入射した際に生じる前記チャープパルス光の個数と同じ数の前記光ファイバからの後方散乱光を受信して復元するとともに、復元処理する際に、受信信号の周波数帯域幅を規定することにより、前記光ファイバに入射された各チャープパルス光を識別して受信して、前記光ファイバで検知された超音波の分布計測を行うことを特徴とするものである。
The optical fiber ultrasonic distribution measurement device disclosed in the present application is
an LD, a chirp pulse light generating module which controls the frequency sweep range of the laser light emitted from the LD to generate a plurality of chirp pulse lights, an optical fiber ring circuit having a predetermined ring length, receiving the chirp pulse light generated by the chirp pulse light generating module and outputting a chirp pulse light group which is a collection of chirp pulse lights having a prescribed sweep time interval, and a polarization diversity receiving module which receives backscattered light from an optical fiber which is a measured object when the chirp pulse light group emitted from the optical fiber ring circuit is input into the optical fiber, and receives the laser light from the LD.
A light source module having
a ring chirp interval and delay control module for controlling a sweep time interval of the chirp pulse light and for controlling a timing at which the chirp pulse light group is input to the optical fiber to be delayed by a certain time;
Equipped with
The present invention is characterized in that a number of backscattered lights from the optical fiber are received and restored, the number of which is equal to the number of chirp pulse lights generated when a plurality of chirp pulse lights having different sweep frequencies generated by the chirp pulse light generating module are incident on the optical fiber, and by specifying the frequency bandwidth of the received signal during the restoration process, each chirp pulse light incident on the optical fiber is identified and received, and a distribution measurement of the ultrasound detected by the optical fiber is performed.
 本願に開示される光ファイバ超音波分布計測装置によれば、隣接するチャープパルス光間の間隔時間およびチャープパルス光グループ間の間隔時間の2つの特徴時間を組み合わせることにより、長距離計測と高い時間分解能がともに可能となる装置を実現するとともに、チャープパルス光グループが被測定体へ入射する時間間隔を制御することにより、この入射光のサンプリング速度を保ちながら、計測可能な被測定体の長さを可変にできる装置を提供することができる。 The optical fiber ultrasonic distribution measurement device disclosed in this application combines two characteristic times, the interval between adjacent chirp pulse light and the interval between chirp pulse light groups, to realize a device that is capable of both long-distance measurement and high time resolution, and by controlling the time interval at which the chirp pulse light groups are incident on the object to be measured, it is possible to provide a device that can vary the measurable length of the object to be measured while maintaining the sampling rate of the incident light.
実施の形態1に係る光ファイバ超音波分布計測装置の適用例を示したモデル図である。1 is a model diagram showing an application example of an optical fiber ultrasonic distribution measurement device according to a first embodiment. 実施の形態1に係る光ファイバ超音波分布計測装置が適用された風車ブレードの損傷監視方法を比較して表にした図である。1 is a table comparing methods for monitoring damage to wind turbine blades to which the optical fiber ultrasonic distribution measurement device of the first embodiment is applied. FIG. 風車ブレードの監視を行う際に用いられる計測技術を区分して表にした図である。This is a table categorizing the measurement technologies used in monitoring wind turbine blades. 被検査対象物に生じた損傷等について、光ファイバを用いて検知する方法について説明するための図である。1A to 1C are diagrams for explaining a method for detecting damage or the like that has occurred in an object to be inspected using optical fibers. 実施の形態1に係る光ファイバ超音波分布計測装置に用いられる高速化されたDAS技術を説明するための図である。1 is a diagram for explaining a high-speed DAS technique used in an optical fiber ultrasonic distribution measurement device according to a first embodiment. FIG. 実施の形態1に係る光ファイバ超音波分布計測装置に用いられるチャープパルス光の後方散乱光の取得方法を説明するための図である。4A to 4C are diagrams for explaining a method of acquiring backscattered light of chirp pulse light used in the optical fiber ultrasonic distribution measurement device according to the first embodiment. 実施の形態1に係る光ファイバ超音波分布計測装置に用いられるDASの仕様を説明するための図である。2 is a diagram for explaining the specifications of a DAS used in the optical fiber ultrasonic distribution measurement apparatus according to the first embodiment. FIG. 実施の形態1に係る光ファイバ超音波分布計測装置の一例を示すブロック図である。1 is a block diagram showing an example of an optical fiber ultrasonic distribution measurement device according to a first embodiment; 実施の形態1に係る光ファイバ超音波分布計測装置の具体例を示した図である。1 is a diagram showing a specific example of an optical fiber ultrasonic distribution measurement device according to a first embodiment; 実施の形態1に係る光ファイバ超音波分布計測装置により被測定体に入射されるチャープパルス光、およびこのチャープパルス光の後方散乱光の具体例を説明するための図である。3A to 3C are diagrams for explaining specific examples of chirp pulse light incident on a measurement object by the optical fiber ultrasonic distribution measurement device according to the first embodiment, and backscattered light of this chirp pulse light. 数値シミュレーションによりチャープパルス光の後方散乱光を受信した後のビート信号を複数の帯域に分割する場合の信号処理を説明するための図である。11 is a diagram for explaining signal processing in the case where a beat signal after receiving backscattered light of chirp pulse light is divided into a plurality of bands by a numerical simulation. FIG. 複数の帯域に分割した信号の距離のずれを補正した後、サンプリング周期を短くした時間上で再構築する信号処理を説明するための図である。13 is a diagram for explaining signal processing in which signals divided into multiple bands are corrected for distance deviations and then reconstructed on a time basis with a shortened sampling period. FIG. 信号処理の具体例として、1Kspsで、10KHzの信号を測定した場合の結果を説明するための図である。FIG. 11 is a diagram for explaining the results when a 10 KHz signal is measured at 1 Ksps as a specific example of signal processing. 圧電素子を用いて、超音波の試験データを、シミュレーションに用いた8つの帯域ごとに分けて解析した振動波形の結果の一例を示した図である。FIG. 13 is a diagram showing an example of vibration waveform results obtained by analyzing ultrasonic test data divided into eight bands used in a simulation using a piezoelectric element. 超音波の試験データを、シミュレーションに用いた8つの帯域を揃えて解析した場合の振動波形の解析結果を示した図である。FIG. 13 is a diagram showing an analysis result of a vibration waveform when ultrasonic test data is analyzed with the eight bands used in the simulation aligned. 超音波の試験データである振動波形をローパスフィルタにかけて高周波ノイズを除いた場合の結果を示した図である。FIG. 13 is a diagram showing the results when a vibration waveform, which is ultrasonic test data, is passed through a low-pass filter to remove high-frequency noise. 振動波形の時間軸のスケールを拡大して示した図である。FIG. 2 is a diagram showing an enlarged time axis scale of a vibration waveform.
 本願は、主として、洋上風力発電用の風車の保守・点検に関わる遠隔モニタリング技術に用いられる光ファイバを用いた保守・点検用装置に関わるものである。以下、本願の内容について、代表的な実施の形態を例に説明する。 This application primarily relates to a maintenance and inspection device using optical fiber for remote monitoring technology related to the maintenance and inspection of wind turbines for offshore wind power generation. The contents of this application will be explained below using a representative embodiment as an example.
実施の形態1.
 実施の形態1の光ファイバ超音波分布計測装置の適用例について、図1A~図1Cを用いて説明する。図1Aは、実施の形態1に係る光ファイバ超音波分布計測装置が適用された一例である風車10のモデル図である。また、図1Bは図1AのP部を拡大して示した拡大図である。さらに図1Cは光ファイバ超音波分布計測装置のうち、光ファイバからの信号を処理する処理装置の概観を示す図である。
 上記図1Aにおいて、ハブ2には、複数のブレード1(翼1)が、固定されて取り付けられており、風力により一体で回転する。このハブ2は、ナセル3と呼ばれる風車本体の一部を構成し、ナセル3は、タワー4によって支持されている。
Embodiment 1.
An application example of the optical fiber ultrasonic distribution measurement device of the first embodiment will be described with reference to Figures 1A to 1C. Figure 1A is a model diagram of a wind turbine 10 which is an example to which the optical fiber ultrasonic distribution measurement device according to the first embodiment is applied. Also, Figure 1B is an enlarged view of a portion P in Figure 1A. Furthermore, Figure 1C is a diagram showing an overview of a processing device that processes signals from an optical fiber in the optical fiber ultrasonic distribution measurement device.
1A, a number of blades 1 (wings 1) are fixedly attached to a hub 2, and rotate together with the wind force. This hub 2 constitutes a part of the wind turbine body called a nacelle 3, and the nacelle 3 is supported by a tower 4.
 ここで、上記ブレード1には、上記風車10のブレード1の所定位置の温度、あるいはひずみの分布を連続的に測定できる、例えばシングルモード光ファイバを使用したセンシング用の光ファイバケーブル5が、所定位置に設置され(図1B参照)、この光ファイバケーブル5によって計測された、ブレード1の所定位置のセンサ計測信号を、(図示しない)信号通信用光ファイバケーブルを介して、光ファイバ信号処理装置20(図1C参照)に伝送し、この光ファイバ信号処理装置20により、センサ計測信号を演算処理して、ブレード1の所定位置の温度、あるいはひずみについて連続した分布状態をリモートで検出する。
 なお、風車の回転部と固定部間の信号(線)は、光ロータリージョイントを用いて接続することができる。ナセルとタワー間にも相対回転があるが、その回転角度は180度以内であるため、ケーブルの柔軟性により、その影響は吸収できる。なお、本実施の形態1では、上記光ファイバ信号処理装置として、超音波計測を用いた光ファイバ超音波分布計測装置30(以下で詳しく説明する)を適用した。
Here, a sensing optical fiber cable 5 using, for example, a single mode optical fiber is installed at a predetermined position on the blade 1 of the wind turbine 10 (see FIG. 1B), which can continuously measure the temperature or strain distribution at a predetermined position on the blade 1. A sensor measurement signal at the predetermined position on the blade 1 measured by this optical fiber cable 5 is transmitted to an optical fiber signal processing device 20 (see FIG. 1C) via a signal communication optical fiber cable (not shown). The optical fiber signal processing device 20 processes the sensor measurement signal to remotely detect the continuous distribution state of the temperature or strain at the predetermined position on the blade 1.
The signal (line) between the rotating part and the fixed part of the wind turbine can be connected using an optical rotary joint. Although there is a relative rotation between the nacelle and the tower, the rotation angle is within 180 degrees, so the effect of this can be absorbed by the flexibility of the cable. In the first embodiment, an optical fiber ultrasonic distribution measurement device 30 (described in detail below) using ultrasonic measurement is applied as the optical fiber signal processing device.
 上記検出結果から、風車の運転管理設備から30km程度離れた風車のブレードの損傷、あるいはブレード1をハブ2に固定しているボルトの緩みなどを検出することができる。なお、従来、風車のブレード(以下、単にブレードとも呼ぶ)の損傷監視方法として、人力による外観検査、また、光ファイバとしてFBGを利用した(連続計測ではない)計測手法により、風車ブレードの変形、あるいは損傷などの計測を行っている例が知られている(例えば、非特許文献4参照)。 The above detection results make it possible to detect damage to the blades of a wind turbine approximately 30 km away from the wind turbine's operation and management facility, or loosening of the bolts that secure the blade 1 to the hub 2. Conventionally, methods for monitoring damage to wind turbine blades (hereinafter simply referred to as blades) include manual visual inspection, and examples of measuring deformation or damage to wind turbine blades using a measurement method (not continuous measurement) that uses FBG as an optical fiber (see, for example, Non-Patent Document 4).
 図2は、上述のブレードの損傷監視方法を従来例と比較し、表として示した図である。この表において、監視方法を比較するため、3種類の代表的な監視方法を示している。従来の代表的な方法として、人力による検査方法、および上述の光ファイバセンサとしてFBGを用いた方式(以下、FBG方式と呼ぶ)がある。これらの方式と本願の方法とを監視内容別に比較して、図2に示している。 Figure 2 is a table comparing the above-mentioned blade damage monitoring method with conventional examples. In this table, three typical monitoring methods are shown for comparison. Typical conventional methods include a manual inspection method and the above-mentioned method using FBG as an optical fiber sensor (hereinafter referred to as the FBG method). Figure 2 shows a comparison of these methods with the method of the present application by monitoring content.
 従来の方法では、まず、人力によるものでは、定期的な監視となり常時監視が困難である。また、ブレードの層間剥離のように目視で確認できない内容については、超音波探傷検査が行われているが、洋上設置の風車のブレードに対する検査はコスト的な問題がある。また、FBG方式では、ブレードの変形・損傷の監視は、商用化の点で不十分であり、層間剥離・ボルトの緩みなどの計測は困難である。 Firstly, conventional methods require manual monitoring, which means that constant monitoring is difficult. Also, ultrasonic inspection is used to check for issues that cannot be visually confirmed, such as delamination of the blades, but inspecting the blades of offshore wind turbines poses cost issues. Also, the FBG method is insufficient in terms of commercial viability when it comes to monitoring deformation and damage to the blades, and it is difficult to measure delamination and loose bolts.
 一方、本願の方式によれば、常時監視、ブレードの変形・損傷の監視、層間剥離・ボルトの緩みの監視など、いずれの監視内容についても十分対応できる。
 以下では、本願の監視方式で用いられる計測技術について述べる。特に、光ファイバ分布計測センサを用いて、ブレードの変形・損傷の監視、および層間剥離・ボルトの緩みの監視を行う方式について、層間剥離・ボルトの緩みの監視を行う超音波DAS方式による監視方式に重点をおいて説明する。本願によれば、風車あるいは屋外での計測では電気機器を一切必要としないため、雷、あるいは悪天候に全く影響されないので、たとえ、このような気候上のリスクが高い場合でも監視が可能となる。
On the other hand, the method of the present invention can adequately handle any monitoring needs, such as constant monitoring, monitoring for deformation or damage to the blade, and monitoring for delamination or loose bolts.
The measurement technology used in the monitoring method of the present application will be described below. In particular, the method of monitoring deformation and damage of blades, and delamination and loose bolts using optical fiber distributed measurement sensors will be described, with emphasis on the ultrasonic DAS monitoring method for monitoring delamination and loose bolts. According to the present application, no electrical equipment is required for measurements at wind turbines or outdoors, and lightning and bad weather are not a factor, making monitoring possible even in high weather conditions.
 監視方式で用いられる計測技術について述べるに当たって、まず、光ファイバ分布計測センサを用いて、風車ブレードの監視を行う際に用いられる計測技術について、計測速度により区分した区分ごとの特徴を整理し、図3に計測技術区分表として示した。 In discussing the measurement technologies used in the monitoring method, we first classify the measurement technologies used to monitor wind turbine blades using optical fiber distributed measurement sensors according to measurement speed, and present the characteristics of each category in the measurement technology category table in Figure 3.
 この図3において、計測速度としては、計測時間が数秒間のもの(以下、計測速度区分1と呼ぶ)、100KHz程度まで(以下、計測速度区分2と呼ぶ)、及び1MHz以上のもの(以下、計測速度区分3と呼ぶ)に分けた。計測速度区分1としての代表的な計測対象はブレードのたわみなどの静的ひずみであり、ここで用いられる光ファイバ分布計測はDTSS技術である(分解能、精度等は、図3に示した通りである)。また、計測速度区分2としての代表的な計測対象は、ブレードのたわみなどの動的振動・音響であり、ここで用いられる光ファイバ分布計測はDAS技術である(分解能、精度等は、図3に示した通りである)。さらに、計測速度区分3としての代表的な計測対象は、ブレードの層間剥離を検知する際に用いられる超音波探傷検査の超音波である。従来、光ファイバ分布計測センサを用いて、この超音波を計測対象とする検知を行った実用例は無い。なお、本願では、超音波とは、上記計測速度区分3の1MHz以上のものを言う。 In FIG. 3, the measurement speed is divided into a measurement time of several seconds (hereinafter referred to as measurement speed category 1), up to about 100 KHz (hereinafter referred to as measurement speed category 2), and 1 MHz or higher (hereinafter referred to as measurement speed category 3). A typical measurement target for measurement speed category 1 is static strain such as blade deflection, and the optical fiber distribution measurement used here is DTSS technology (resolution, accuracy, etc. are as shown in FIG. 3). A typical measurement target for measurement speed category 2 is dynamic vibration/sound such as blade deflection, and the optical fiber distribution measurement used here is DAS technology (resolution, accuracy, etc. are as shown in FIG. 3). A typical measurement target for measurement speed category 3 is ultrasonic waves for ultrasonic flaw detection used to detect delamination of blades. Conventionally, there has been no practical example of detection using this ultrasonic wave as the measurement target using an optical fiber distribution measurement sensor. In this application, ultrasonic waves refer to 1 MHz or higher in the above measurement speed category 3.
 そこで、次に、図4に示したモデル図により、上記計測速度区分3に関わる、ブレードを固定するボルトの損傷、緩み、あるいはブレードの層間剥離を検知する際に用いられる光ファイバを用いた検知方法について、超音波探傷子(圧電素子)を用いた方法を例にして、以下説明する。 Then, next, using the model diagram shown in Figure 4, a detection method using optical fiber to detect damage or loosening of the bolts that secure the blade, or delamination of the blade, which are related to the above measurement speed category 3, will be explained below, taking as an example a method using an ultrasonic flaw detector (piezoelectric element).
 図4の左側の図は、超音波を発生し受信する圧電素子6を備えた超音波探傷子、超音波によって内部の損傷9などが測定される被測定体であるボルト8a、このボルト8aおよびナット8bによって固定されるブレード13およびフランジ14、及びこの被測定体へ超音波を減衰なく伝送するためのカップリング15を示す構成図である。また、上記カップリング15内には光ファイバ7が設置され、発生したひずみなどを検知する。
 また、通常、上記カップリング材としては、シリコン、熱可塑性樹脂等など、超音波が伝送する際、その減衰量が小さい材料(例えば5MHz当りの減衰量が1dB未満のもの)が使用される。なお、図中の符号Fは超音波の(主となる)伝播方向を示している。
The diagram on the left side of Fig. 4 is a configuration diagram showing an ultrasonic flaw detector equipped with a piezoelectric element 6 that generates and receives ultrasonic waves, a bolt 8a which is a measurement object in which internal damage 9 is measured by ultrasonic waves, a blade 13 and a flange 14 which are fixed by this bolt 8a and a nut 8b, and a coupling 15 for transmitting ultrasonic waves to this measurement object without attenuation. An optical fiber 7 is installed in the coupling 15 to detect generated strain, etc.
Furthermore, the coupling material is usually made of a material that has a small attenuation when ultrasonic waves are transmitted (for example, an attenuation of less than 1 dB per 5 MHz), such as silicone, thermoplastic resin, etc. The symbol F in the figure indicates the (main) propagation direction of ultrasonic waves.
 また、図4の右側の図は、上記左側の圧電素子6で発生させた超音波の被測定体からの反射信号を、この圧電素子が受信することによって、ボルト8aの内部の損傷9が検出された場合において、検出された信号の信号強度を、上記左側の光ファイバ7の位置での信号検出時間を基準時間(時間座標の基準ゼロ位置)として、圧電素子6から発した超音波の発生からの時間経過に対応させて模式的に示したものである。この際、矢印Fで示した方向に超音波が伝播し、これに対して、カップリング材の内部に載置された光ファイバ7は、この光ファイバの長手方向に、ポアソン比(の関係)によるひずみが生ずることで、上記超音波によって、被測定体の内部に発生した信号を(時間軸上で)検知する。なお、この図4では、上記矢印Fで示した超音波が伝播する方向と直交する方向が光ファイバの長手方向に該当する。 The diagram on the right side of Figure 4 shows a schematic diagram of the signal strength of the detected signal in response to the passage of time from the generation of the ultrasonic wave from the piezoelectric element 6, with the signal detection time at the position of the optical fiber 7 on the left side being the reference time (reference zero position of the time coordinate) in the case where the piezoelectric element 6 on the left side receives a reflected signal from the measured object of the ultrasonic wave generated by this piezoelectric element, and damage 9 inside the bolt 8a is detected. In this case, the ultrasonic wave propagates in the direction indicated by the arrow F, and the optical fiber 7 placed inside the coupling material detects (on the time axis) the signal generated inside the measured object by the ultrasonic wave, as a result of strain occurring in the longitudinal direction of the optical fiber due to the (relationship with) Poisson's ratio. In Figure 4, the direction perpendicular to the direction in which the ultrasonic wave propagates indicated by the arrow F corresponds to the longitudinal direction of the optical fiber.
 また、この図4の右側の図に、符号Wa、Wb、Wcを付してした曲線は、圧電素子により発信された超音波信号により、光ファイバ7によって検出された被測定体からの信号を模式的に示したものであり、符号Wa、Wb、Wcの順に、被測定体(ここではボルト8a)の位置(表面)に最初に到達したときに検出された信号、被測定体の内部の損傷9の位置に到達したときに検出された信号、被測定体の底面で反射したときに検出された信号を、それぞれ示している。
 そして、これら3つの信号の強度レベルは、図4に示したように、Wa>Wc>Wbの関係にあることを示している。また、上記圧電素子による、被測定体で発生した信号の受信に並行して、上記カップリング15内に設置された光ファイバ7により、上記圧電素子が発した超音波信号による被測定体からの反射波に対応する信号が、当該光ファイバ7により検出される。なお、圧電素子が検出した被測定体の損傷などによる信号は、光ファイバが被測定体の損傷などによる信号を検知した際に、対比する検証用信号として主として用いられる。
Furthermore, the curves labeled Wa, Wb, and Wc in the diagram on the right side of Figure 4 are schematic representations of signals from the object to be measured detected by optical fiber 7 using ultrasonic signals emitted by the piezoelectric element, and the symbols Wa, Wb, and Wc respectively represent the signal detected when the ultrasonic signal first reaches the position (surface) of the object to be measured (bolt 8a in this case), the signal detected when the signal reaches the position of damage 9 inside the object to be measured, and the signal detected when reflected off the bottom surface of the object to be measured.
The intensity levels of these three signals have the relationship Wa>Wc>Wb, as shown in Fig. 4. In parallel with the reception of the signal generated in the object to be measured by the piezoelectric element, a signal corresponding to the reflected wave from the object to be measured due to the ultrasonic signal emitted by the piezoelectric element is detected by the optical fiber 7 installed in the coupling 15. The signal due to damage or the like of the object to be measured detected by the piezoelectric element is mainly used as a verification signal to be compared when the optical fiber detects a signal due to damage or the like of the object to be measured.
 ここで、測定用の超音波の減衰の影響を少なくする観点から、上記被測定体等には、材質により、その測定可能な厚さの上限値がある。例えば、上記カップリング15の厚みは6mm程度、被測定体の材質がCFRPの場合には60mm未満、鋼(スチール)の場合には100mm未満などである。なお、光ファイバ7による超音波の検出方法の詳細については、以下で説明する。 Here, in order to reduce the effects of attenuation of the ultrasonic waves used for measurement, there is an upper limit to the measurable thickness of the object being measured, depending on the material. For example, the thickness of the coupling 15 is about 6 mm, and if the object being measured is made of CFRP, it is less than 60 mm, and if it is made of steel, it is less than 100 mm. Details of the method of detecting ultrasonic waves using the optical fiber 7 are described below.
 また、ブレードの層間剥離に関しても、上記光ファイバ7による検出が可能である。この検出方法としては、例えば、ブレードにおけるラム波などの弾性波の発生及び伝播特性を光ファイバによる計測値と数値解析の比較検討により調査し、その結果を踏まえ、層間剥離の存在位置と大きさを見出すことが可能である。例えば、広帯域ラム波を用いて、風車のブレードを形成している層の剥離を検知して、剥離の位置、大きさが同定される。 Furthermore, delamination of the blades can also be detected using the optical fiber 7. For example, this detection method involves investigating the generation and propagation characteristics of elastic waves such as Lamb waves in the blades by comparing measurements made using optical fiber with numerical analysis, and based on the results, it is possible to determine the location and size of the delamination. For example, broadband Lamb waves can be used to detect delamination of the layers that make up the wind turbine blades, and the location and size of the delamination can be identified.
 なお、ボルトの材質が鋼の場合には、ボルト内部での超音波の速度は、約5000m/sであり、周波数3.3Msps(識別速度が0.3μs)は、1.5mmのボルトの長さに相当する。また、長さが1.5mmより長いボルトにおける損傷等の計測においては、チャープパルス光の入射タイミングを遅延させることにより対応可能である。なお、上記はボルトに損傷がある場合の超音波の検出について述べたが、これに限らず、例えば、ボルトによるブレードの締め付けの緩みについても、ボルトの締め付けが緩んだ場合に応力が変化することを基にした光ファイバの歪変化として検知することが可能であることから、光ファイバによって検出可能である。 When the bolt is made of steel, the speed of ultrasonic waves inside the bolt is approximately 5000 m/s, and a frequency of 3.3 Msps (with a discrimination speed of 0.3 μs) corresponds to a bolt length of 1.5 mm. Damage measurement in bolts longer than 1.5 mm can be achieved by delaying the timing of incidence of the chirp pulse light. The above describes the detection of ultrasonic waves when the bolt is damaged, but this is not the only case. For example, loosening of the bolt's fastening of the blade can also be detected by optical fiber, since it is possible to detect this as a change in strain in the optical fiber based on the change in stress when the bolt is loosened.
 さらに、背景技術でも指摘したように、30km程度の長距離においても、超音波の帯域での計測が必要となるので、これらの要求を満足した計測方式(計測システム)を開発する必要がある。
 すなわち、従来のDAS技術における光ファイバのレーザパルス光(以下、単にパルス光とも呼ぶ)の進行速度に起因した計測速度の限界(限界上限サンプリング速度が50Ksps)、および、このサンプリング速度の限界が、長距離計測によってさらに低下すること(光ファイバ長が通常の10倍の20kmになると限界上限サンプリング速度が低下し、上記50Kspsの1/10の5Kspsになること)により、超音波計測が困難になる問題があるので、この問題を克服する必要がある。
Furthermore, as pointed out in the background art, measurements in the ultrasonic band will be necessary even over long distances of about 30 km, so it is necessary to develop a measurement method (measurement system) that satisfies these requirements.
That is, in conventional DAS technology, there is a problem that ultrasonic measurement becomes difficult due to the measurement speed limit (upper limit sampling speed is 50 Ksps) caused by the traveling speed of laser pulse light (hereinafter also simply referred to as pulse light) in optical fiber, and this sampling speed limit is further reduced by long-distance measurement (when the optical fiber length becomes 20 km, which is 10 times longer than usual, the upper limit sampling speed decreases to 5 Ksps, which is 1/10 of the above 50 Ksps), and so this problem needs to be overcome.
 そこで、上記の超音波計測が可能となる光ファイバ超音波分布計測装置を実現するため、従来のDAS技術の高速化が必要となる。このため、本開発においては、光ファイバへ入射するパルス光の周波数を高速かつ広範囲に掃引することにより、20個の周波数帯の異なるチャープパルス光を用いる手法を採用した。以下、この具体的内容について図を用いて説明する。 In order to realize an optical fiber ultrasonic distributed measurement device that can perform the above ultrasonic measurements, it is necessary to increase the speed of conventional DAS technology. For this reason, in this development, a method was adopted that uses chirped pulse light in 20 different frequency bands by sweeping the frequency of the pulse light entering the optical fiber quickly and over a wide range. The specific details of this method are explained below using figures.
 図5Aは、従来のDAS技術を説明するための図である。この図に示すように、従来のDASにおいては、光ファイバへ入射させたパルス光の後方散乱光の反射が終了してから次のパルス光を入射させる必要があるため、光ファイバへ入射したパルス光は1個しか認識できない。例えば、長さ2kmの光ファイバをパルス光が往復するのに要する時間は約20μsであることから、計測可能な速度の上限は、この値に制限される(図5A参照)。言い換えると、従来のDASにおいては、計測速度は、光ファイバ中を進むパルス光の速度(約20万km/秒)に限定される。 Figure 5A is a diagram for explaining conventional DAS technology. As shown in this figure, in conventional DAS, the next pulse of light must be input after the backscattered light of the pulse of light input to the optical fiber has finished reflecting, so only one pulse of light input to the optical fiber can be recognized. For example, the time it takes for a pulse of light to travel back and forth through a 2 km long optical fiber is approximately 20 μs, so the upper limit of the measurable speed is limited to this value (see Figure 5A). In other words, in conventional DAS, the measurement speed is limited to the speed of the pulse of light traveling through the optical fiber (approximately 200,000 km/sec).
 そこで、本開発においては、長距離において超音波を計測する必要があることを考慮し、周波数掃引したチャープパルス光(ここでは、1つの帯域幅分のチャープ光を言う。例えば150MHzから250MHzの帯域幅分。詳細は後述する)を用いて、サンプリング速度を従来のDASの約66倍に向上させるとともに、上記チャープパルス光(ここでは各帯域幅は一定のものを例とする)を数10個集めたチャープパルス光の集合体であるチャープパルス光グループの間の(時間)間隔を空けて被測定体に入射することで、30kmの長距離計測に対応させた。すなわち、30kmの距離に相当する時間である約300μs(30km長の光ファイバをパルス光が往復するのに要する時間)空けて被測定体である光ファイバに入射し、この光ファイバから戻ってくる後方散乱光を受信するようにした(図5B参照)。また、この際、光ファイバから戻ってきた後方散乱光をバンドパスフィルタで個別に受信するようにした。ただし、各チャープパルス光グループ間の間隔を約300μs空けて受信すると、間隔があいた時間に対応する光ファイバ上の場所は、欠測区間となってしまうという問題が生じる。そこで、図6に示す方式で信号を取得するようにした。 In this development, taking into consideration the need to measure ultrasonic waves over long distances, the sampling speed was improved to about 66 times that of conventional DAS by using frequency-swept chirp pulse light (here, chirp pulse light of one bandwidth is referred to. For example, a bandwidth of 150 MHz to 250 MHz. Details will be described later), and the chirp pulse light group, which is a collection of chirp pulse light consisting of several tens of chirp pulse lights (here, each bandwidth is constant, for example), is incident on the object to be measured with a (time) interval between them, making it possible to measure long distances of 30 km. In other words, the chirp pulse light is incident on the optical fiber to be measured with an interval of about 300 μs (the time it takes for the pulse light to go round trip through a 30 km long optical fiber), which is the time equivalent to a distance of 30 km, and the backscattered light returning from this optical fiber is received (see Figure 5B). In addition, at this time, the backscattered light returning from the optical fiber is individually received by a bandpass filter. However, if the chirp pulse light groups are received with an interval of about 300 μs between each other, the location on the optical fiber that corresponds to the time interval will be a missing section, which is a problem. Therefore, we decided to acquire the signal using the method shown in Figure 6.
 すなわち、光ファイバに一定間隔で(ここでは図6に示したように、超音波の1周期分の時間である数μsだけ)遅延させたチャープパルス光グループを入射し(図6の上段に示したチャープパルス光グループを参照)、それらを個別に受信して後、全てを合成するようにした。このようにすることで、信号が途切れることなく時間的に連続した計測が可能となった。言い換えると、このようにすることで、欠測区間のない連続した信号の取得が可能となった。 In other words, a group of chirp pulse light delayed at regular intervals (here, by a few microseconds, which is the time for one cycle of ultrasound, as shown in Figure 6) is injected into the optical fiber (see the group of chirp pulse light shown in the upper part of Figure 6), and after receiving them individually, they are all combined. In this way, it is possible to perform measurements that are continuous in time without signal interruption. In other words, this makes it possible to obtain a continuous signal without any missing intervals.
 開発した長距離超音波DAS技術の要点は以上に述べた通りである。以下では、実際に用いる具体的な数値の例について説明する。
 光ファイバへ入射させるパルス光として、20個の周波数帯の異なるチャープパルス光を被測定体に入射した場合に発生する、この被測定体からの後方散乱光を復元してデジタル処理する際に周波数幅を設定することにより、入射させた元の各信号を識別して受信し、100MHzの復元バンドのチャープ信号の数に対応する2GHzの受信機を用いることで、サンプリング速度を50Kspsの約66倍の3.3Mspsまで高める。
The main points of the long-distance ultrasonic DAS technology that we have developed have been described above. Below, we will explain examples of specific values that are actually used.
When 20 different frequency bands of chirp pulse light are incident on the test object as pulse light to be input into the optical fiber, the backscattered light from the test object is generated. By setting the frequency width when restoring and digitally processing the backscattered light from the test object, each of the original incident signals can be identified and received, and by using a 2 GHz receiver corresponding to the number of chirp signals in the 100 MHz restoration band, the sampling speed can be increased to 3.3 Msps, approximately 66 times faster than 50 Ksps.
 そして、上記チャープパルス光の集合体であるチャープパルス光グループを対象として、チャープパルス光グループが集合体へ入射する間隔を制御することにより、サンプリング速度を保ちながら、計測可能な光ファイバ長を可変にできる。具体的には、光ファイバの全長が30kmの場合には、光ファイバ中において、この距離をパルス光が往復するのに要する時間は、光ファイバ中での光の速度を約20万km/sとして、2×30km/(20万km/s)≒300(μs)であるので、チャープパルス光グループを光ファイバに入射する時間間隔を約300(μs)に制御するようにする。 Then, by controlling the interval at which the chirp pulse light group, which is an aggregate of the above chirp pulse light, is input to the aggregate, the measurable optical fiber length can be varied while maintaining the sampling speed. Specifically, when the total length of the optical fiber is 30 km, the time it takes for the pulse light to travel this distance back and forth in the optical fiber is 2 x 30 km/(200,000 km/s) ≈ 300 (μs), assuming that the speed of light in the optical fiber is approximately 200,000 km/s, so the time interval at which the chirp pulse light group is input to the optical fiber is controlled to approximately 300 (μs).
 以上により、他のDAS技術と比較した場合の、開発した長距離超音波DAS技術の特徴は、図7に示したように纏めることができる。結論として、計測可能な光ファイバ長は30km、サンプリング最高速度は、従来DASの66倍に相当する3.3Mspsである。なお、この3.3Mspsの値は、後述する光ファイバリング回路での各光パルスの識別速度である0.3μsに相当する。ただし、本実施の形態1では、入射するパルス光の(遅れ)制御は、0.3μs以外に、各チャープパルス光グループ間の時間間隔である300μsも併せて用いられる。
 なお、上記の数値を含め、本願の光ファイバ超音波分布計測装置は、以下の仕様を満足する。まず、空間分解能は1m~2m、サンプリング速度は2Kspsから3.3Msps、測定可能範囲:500m~30km、である。
From the above, the features of the developed long-distance ultrasonic DAS technology compared to other DAS technologies can be summarized as shown in Figure 7. In conclusion, the measurable optical fiber length is 30 km, and the maximum sampling speed is 3.3 Msps, which is 66 times faster than conventional DAS. This value of 3.3 Msps corresponds to 0.3 μs, which is the discrimination speed of each optical pulse in the optical fiber ring circuit described later. However, in this embodiment 1, the (delay) control of the incident pulse light also uses 300 μs, which is the time interval between each chirp pulse light group, in addition to 0.3 μs.
Including the above values, the optical fiber ultrasonic distribution measurement device of the present application satisfies the following specifications: spatial resolution is 1 m to 2 m, sampling speed is 2 Ksps to 3.3 Msps, and measurable range is 500 m to 30 km.
 次に、上記長距離超音波DASの仕様を実現するための計測装置について、図8を用いて詳しく説明する。図8において、両側に矢が付された矢印は、双方向に信号が送受信されることを示し、片側だけに矢が付された矢印は、矢のついた方向だけに信号が送られることを示している。なお、矢印の線が太いものほど、高速でのデータの送受信が可能であることを示している。また、白抜き矢印は、この計測装置と被測定体との間での送受信を表す。 Next, the measurement device for achieving the specifications of the long-distance ultrasonic DAS will be described in detail with reference to Figure 8. In Figure 8, an arrow with arrows on both sides indicates that signals are sent and received in both directions, while an arrow with arrows on only one side indicates that signals are sent only in the direction of the arrow. Note that the thicker the arrow, the faster data can be sent and received. Also, the open arrows represent transmission and reception between the measurement device and the object being measured.
 図8は、上記長距離超音波DASの仕様を実現した計測装置である光ファイバ超音波分布計測装置30の一例を示すブロック図である。この図8に示すように、光ファイバ超音波分布計測装置30は、チャープパルス光を生成して、被測定体に送信し、被測定体からの後方散乱光を受信するための光源モジュール31、発生させるチャープパルスの周波数などを制御するための光学制御モジュール32、チャープパルス信号の時間軸上での制御、あるいは受信信号の時間遅れに関する制御を10ns程度の高精度で行うためのリングチャープ間隔および遅れ制御モジュール33、受信したアナログ信号を計算機(図示しないプロセッサ、メモリなどを有するCPUモジュール35)で処理するため、デジタル信号に変換するA/Dコンバータ34、上記各モジュールと上記プロセッサ間において、データを高速で伝送するためのPCIeバス36(PCIe:Peripheral Component Interconnect Expressの略。高速シリアル拡張バス標準)などを備えている。 FIG. 8 is a block diagram showing an example of an optical fiber ultrasonic distribution measurement device 30 that is a measurement device that realizes the specifications of the long-distance ultrasonic DAS. As shown in FIG. 8, the optical fiber ultrasonic distribution measurement device 30 includes a light source module 31 for generating chirp pulse light, transmitting it to the object to be measured, and receiving backscattered light from the object to be measured, an optical control module 32 for controlling the frequency of the generated chirp pulse, etc., a ring chirp interval and delay control module 33 for controlling the chirp pulse signal on the time axis or controlling the time delay of the received signal with a high accuracy of about 10 ns, an A/D converter 34 for converting the received analog signal into a digital signal for processing by a computer (CPU module 35 having a processor, memory, etc., not shown), and a PCIe bus 36 (PCIe: an abbreviation for Peripheral Component Interconnect Express, a high-speed serial expansion bus standard) for transmitting data at high speed between each of the above modules and the above processor.
 ここで、上記光源モジュール31は、直接変調できず、かつスペクトル線幅が例えば1kHz未満の狭線幅のレーザ(例えば、単一周波数のレーザ)を発振するLD311(LD:Laser Diode、レーザダイオード)、特定の偏波だけを受信して処理する偏波ダイバーシティ受信モジュール317、LD311、光学制御モジュール32、および偏波ダイバーシティ受信モジュール317などと信号の送受信を行うI/O回路312、チャープパルスを生成するためのチャープパルス光発生モジュール314、狭線幅のLD311から出射されたレーザ光の光路を分割して、このチャープパルス光発生モジュール314、および偏波ダイバーシティ受信モジュール317に送るためのビームスプリッタ313(簡略化してBS313とも呼ぶ)、チャープパルスを用いて所定の距離の光ファイバ中での物理量の変化を計測するため、レーザ光を周回させるための光ファイバリング回路315、チャープパルス光を被測定体に入射させるとともに、被測定体からの後方散乱光を上記偏波ダイバーシティ受信モジュール317に送るための光カップラ316、を備える。 Here, the light source module 31 includes an LD 311 (LD: Laser Diode) that oscillates a narrow-linewidth laser (e.g., a single-frequency laser) that cannot be directly modulated and has a spectral linewidth of, for example, less than 1 kHz, a polarization diversity receiving module 317 that receives and processes only a specific polarization, an I/O circuit 312 that transmits and receives signals to and from the LD 311, an optical control module 32, and the polarization diversity receiving module 317, a chirp pulse light generating module 314 for generating chirp pulses, and a narrow-linewidth LD 311. It is equipped with a beam splitter 313 (also called BS313 for simplicity) for splitting the optical path of the laser light emitted from 11 and sending it to the chirp pulse light generating module 314 and the polarization diversity receiving module 317, an optical fiber ring circuit 315 for circulating the laser light to measure changes in physical quantities in an optical fiber of a specified distance using chirp pulses, and an optical coupler 316 for injecting the chirp pulse light into the object to be measured and sending the backscattered light from the object to the polarization diversity receiving module 317.
 また、サンプリング速度を3.3Mspsまで高めたことにより、超音波(例えば超音波速度5000m/s=5mm/μs)を用いて、後述するように継続観察時間が6μsなので、長さが最大3mmまでのボルトの損傷を検出することが可能である。さらに、上記リングチャープ間隔および遅れ制御モジュール33(遅延タイミングの制御精度は10ns)を用いて、チャープパルス光の被測定体への入射タイミングを遅延させることにより超音波の伝播の観測時間を移動させ、ボルトの長さが3mmより大きい場合においても、当該長さを持つボルトの損傷を検出することが可能となる。 In addition, by increasing the sampling speed to 3.3 Msps, it is possible to detect damage to bolts up to 3 mm in length using ultrasonic waves (for example, ultrasonic speed 5000 m/s = 5 mm/μs), since the continuous observation time is 6 μs as described below. Furthermore, by using the ring chirp interval and delay control module 33 (with a control accuracy of 10 ns for the delay timing) to delay the timing of incidence of the chirp pulse light on the object being measured, the observation time of ultrasonic propagation is shifted, making it possible to detect damage to bolts of a length greater than 3 mm.
 次に、上記光ファイバ超音波分布計測装置30を実現した計測装置の具体例を図9に示す。ここでは、特に、本計測装置の最も特徴ある構成要素である、上述の図8におけるチャープパルス光発生モジュール314、および光ファイバリング回路315の2つの構成要素の具体例について、図9を用いて、以下に説明する。 Next, FIG. 9 shows a specific example of a measurement device that realizes the above-mentioned optical fiber ultrasonic distribution measurement device 30. Here, specific examples of the two components, the chirp pulse light generating module 314 in FIG. 8 above, and the optical fiber ring circuit 315, which are the most characteristic components of this measurement device, will be described below with reference to FIG. 9.
 DAS計測のために使用されるLDから出射されたレーザ光は、偏向ビームスプリッタで2つに分けられるが、このうちの一方のレーザ光が、チャープパルスを生成するため、図9に示した、AOM(Acousto-Optics Modulator、音響光学素子。以下同様)と駆動回路が載置されたボードに向かうが、上記LDは、狭線幅なので直接変調できない。そこで、以下に説明するAOMと駆動回路が載置されたボードでレーザ光の変調が行われる。 The laser light emitted from the LD used for DAS measurement is split into two by a polarizing beam splitter, and one of these laser lights is directed toward a board on which an AOM (Acousto-Optics Modulator, hereafter the same) and driver circuit are mounted, as shown in Figure 9, to generate a chirp pulse. However, the LD mentioned above has a narrow linewidth and cannot be directly modulated. Therefore, the laser light is modulated by a board on which an AOM and driver circuit are mounted, as explained below.
 上記AOMは、一般的に、規定した周波数(ここでは、例えば、図中に示した100MHz)でオン・オフを繰り返すことで、メカニカルシャッタを超える速度で光の強度を制御・変調できるため、一定の周波数差を持つ複数のパルス光を連続的に発生させることができる。この制御は、図9に示した、DDS(Direct Digital Synthesizer、ダイレクト・デジタル・シンセサイザ)によるLFM (Linear Frequency Modulate、すなわちChirp)および駆動回路によって行われる。ここで使用される具体的な数値は、例えば、一定の周波数差Δf=100MHz、時間間隔300μs(各チャープパルス光グループ間の間隔)である。以上がチャープパルス光発生モジュール314の具体例の説明である。 The AOM can generally control and modulate the intensity of light at a speed faster than a mechanical shutter by repeatedly turning it on and off at a specified frequency (here, for example, 100 MHz as shown in the figure), and can continuously generate multiple pulsed lights with a certain frequency difference. This control is performed by an LFM (Linear Frequency Modulate, or Chirp) using a DDS (Direct Digital Synthesizer) and a driving circuit as shown in Figure 9. Specific values used here are, for example, a certain frequency difference Δf = 100 MHz and a time interval of 300 μs (the interval between each chirp pulse light group). This concludes the explanation of a specific example of the chirp pulse light generating module 314.
 次に、光ファイバリング回路315の具体例について説明する。以上説明したように制御して生じさせたチャープパルス光を用いて、図に示した光周波数周回回路(以下、光ファイバリング回路とも呼ぶ)で、100MHzのチャープパルス光を複数(例えば20個)、一定の時間間隔τ(ここではτ=300ns)で遅延させてチャープ生成する。この光周波数周回回路には、図中に示したように、上記チャープパルス光発生モジュール314と同様のAOMの他、偏光ビームスプリッタ(P-BS)、信号の平坦化のためのEDFA(Erbium-Doped Fiber Amplifier、エルビウム添加光ファイバ増幅器)などが用いられる。 Next, a specific example of the optical fiber ring circuit 315 will be described. Using the chirp pulse light generated through the control described above, the optical frequency loop circuit (hereinafter also referred to as the optical fiber ring circuit) shown in the figure generates chirps by delaying multiple (e.g. 20) 100 MHz chirp pulse lights at a constant time interval τ (here τ = 300 ns). As shown in the figure, this optical frequency loop circuit uses an AOM similar to the chirp pulse light generating module 314 described above, as well as a polarizing beam splitter (P-BS) and an EDFA (Erbium-Doped Fiber Amplifier) for signal flattening.
 この場合において、所定の距離(例えば30km)に対応させて、前記光周波数周回回路のリング長を60mに設定すれば、0.3μsの識別速度で同じ光ファイバ内の位置に対応した歪みなどの物理量の変化を上記チャープパルス光により検知できる。なお、この0.3μsの識別速度は、サンプリング速度に換算すると3.3Mspsになる。 In this case, if the ring length of the optical frequency loop circuit is set to 60 m to correspond to a given distance (e.g., 30 km), the chirped pulse light can detect changes in physical quantities such as distortion corresponding to positions within the same optical fiber at an identification speed of 0.3 μs. This identification speed of 0.3 μs is equivalent to a sampling speed of 3.3 Msps.
 次に、上記計測装置を使って実現される、被測定体に入射されるチャープパルス光の例、およびこのチャープパルス光の後方散乱光に関わる信号の具体例について、図10を用いて説明する。図10の上段には、100MHzAOM出力により、周波数掃引範囲(チャープ周波数掃引範囲とも呼ぶ)を制御された信号の例が示されている。また、図10の下段には、受信側において100kspsでBPF(band pass filter)された、計20個の信号の具体例が示されている。なお、この場合における遅れ制御の精度は10nsであった。 Next, an example of chirp pulse light incident on the object to be measured, which is realized using the above-mentioned measuring device, and a specific example of a signal related to the backscattered light of this chirp pulse light will be explained with reference to Figure 10. The upper part of Figure 10 shows an example of a signal whose frequency sweep range (also called the chirp frequency sweep range) is controlled by the 100 MHz AOM output. The lower part of Figure 10 shows a specific example of a total of 20 signals that have been BPF (band pass filtered) at 100 ksps on the receiving side. The accuracy of the delay control in this case was 10 ns.
 まず、光出力(被測定体に入射されるチャープパルス光)の出力パターン例について、図10に基づいて以下、具体的に説明する。この光出力の出力パターンは、100MHzAOMによる周波数掃引により、まず、第1番目の周波数として150MHzが設定され、150MHzから100MHzごとに650MHzまでの6つの異なる周波数(チャープ周波数とも呼ぶ)で順に増加するように掃引され、このチャープパルス光を1組の単位として構成され、最終の組が1650MHzから2150MHzまでの組で構成された合計20個のチャープパルス光の集合体である(この集合体が先に説明したチャープパルス光グループである)。なお、隣接する掃引周波数までの時間間隔(簡略化して掃引時間間隔とも呼ぶ)は300nsになるよう設定されている。また、最初のチャープパルス光グループ(150MHzから2150MHzまで)から次のチャープパルス光グループが生成されるまでの時間は300μsである(30kmの長さの光ファイバをパルス光が往復するのにかかる時間)。 First, an example of the output pattern of the optical output (chirp pulse light incident on the measured object) will be specifically described below with reference to FIG. 10. The output pattern of this optical output is swept by a 100 MHz AOM, with 150 MHz set as the first frequency, and then swept in increasing order at six different frequencies (also called chirp frequencies) from 150 MHz to 650 MHz in increments of 100 MHz. This chirp pulse light is configured as one set of units, and the final set is a set of 20 chirp pulse lights consisting of a set from 1650 MHz to 2150 MHz (this set is the chirp pulse light group described above). The time interval between adjacent sweep frequencies (also called the sweep time interval for simplicity) is set to 300 ns. The time from the first chirp pulse light group (from 150 MHz to 2150 MHz) to the generation of the next chirp pulse light group is 300 μs (the time it takes for the pulse light to travel back and forth through a 30 km long optical fiber).
 次に、受信側の信号パターンについて説明する。受信側では、上記100MHzの復元バンドのチャープ信号の数に対応する2GHz(=100MHz×20個)の受信機を用いる。この場合においては、0.3μsの識別速度で計20個のチャープ信号を観察するため、6μsの観測時間窓で観察対象の信号を観測できることになる。また、受信側ではBPFを用いて20個のチャープ信号を個別に識別する。 Next, the signal pattern on the receiving side will be explained. On the receiving side, a 2 GHz (= 100 MHz x 20) receiver is used, which corresponds to the number of chirp signals in the 100 MHz recovery band mentioned above. In this case, a total of 20 chirp signals are observed at a discrimination speed of 0.3 μs, so the target signal can be observed in an observation time window of 6 μs. Also, on the receiving side, a bandpass filter is used to individually discriminate the 20 chirp signals.
 以上、本実施の形態1の光ファイバ超音波分布計測装置によれば、隣接するチャープパルス光間の間隔時間およびチャープパルス光グループ間の間隔時間の2つの特徴時間を組み合わせることにより、長距離と高い時間分解能がともに可能となる装置を実現するとともに、チャープパルス光グループが被測定体へ入射する時間間隔を制御することにより、この入射光のサンプリング速度を保ちながら、計測可能な被測定体の長さを可変にできる装置を提供することができる。
 また、この光ファイバ超音波分布計測装置を用いて、数10km遠方に設置された洋上風車のブレード、あるいはボルトの損傷検知などを常時監視する装置、あるいはシステムを提供することができる。
As described above, according to the optical fiber ultrasonic distribution measurement device of the first embodiment, by combining two characteristic times, namely, the interval time between adjacent chirp pulse light and the interval time between chirp pulse light groups, it is possible to realize a device that enables both long distance and high time resolution, and by controlling the time interval at which the chirp pulse light groups are incident on the object to be measured, it is possible to provide a device that can vary the measurable length of the object to be measured while maintaining the sampling speed of the incident light.
Furthermore, this optical fiber ultrasonic distribution measurement device can be used to provide a device or system that constantly monitors the blades or bolts of offshore wind turbines installed several tens of kilometers away to detect damage, etc.
<数値シミュレーションによる検証>
 上述の長距離超音波DAS技術について、数値シミュレーションによる検証を行い、実現可能であることを確認した。以下この数値シミュレーションによる検証内容について詳しく説明する。
<Verification by Numerical Simulation>
The long-distance ultrasonic DAS technology described above was verified by a numerical simulation, and it was confirmed that it is feasible. The details of the verification by the numerical simulation will be described in detail below.
 この数値シミュレーションにおいては、時間幅2μsのチャープパルス(Chirp Pulse)を用いて1Kspsのサンプリング速度で10KHzのsin波を4Mspsでリサンプリング(resampling)する方法についてシミュレーションを実施した。この方法について以下、具体的な数値を用いて詳しく説明する。なお、4Mspsでのリサンプリングの周期は0.25μsであるので、この値を使ってシミュレーション上での確認ができれば、本願の光パルスの識別速度が0.3μsの場合の検証になると考えられる。 In this numerical simulation, a method of resampling a 10 KHz sine wave at 4 Msps with a sampling rate of 1 Ksps using a chirp pulse with a time width of 2 μs was simulated. This method will be explained in detail below using specific numerical values. Note that the resampling period at 4 Msps is 0.25 μs, so if this value can be used to confirm the simulation, it is believed that this will serve as a verification of the case where the discrimination speed of the optical pulse of this application is 0.3 μs.
 まず、従来から用いられている2μsの時間幅のチャープパルス(100MHzのチャープ周波数)を使用して1Kspsの測定間隔で50回の連続した測定を行う(ステップS1)。
 次に、受信後のビート信号(Beat信号)を信号処理し、以下に示した8種の等しい帯域幅12.5MHzを持つ整合フィルタ(Matched Filter)に通過させて、2μsのビート信号を以下の8つの帯域に分割する(ステップS2)。
・帯域1(band1):145.0MHz~157.5MHz
・帯域2(band2):157.5MHz~170.0MHz
・帯域3(band3):170.0MHz~182.5MHz
・帯域4(band4):182.5MHz~195.0MHz
・帯域5(band5):195.0MHz~207.5MHz
・帯域6(band6):207.5MHz~220.0MHz
・帯域7(band7):220.0MHz~232.5MHz
・帯域8(band8):232.5MHz~245.0MHz
 ここで、分割された各帯域の隣接する帯域間の間隔は2μs/8=0.25μsであるので、距離に換算して25mのずれがあることになる。例えば、上記帯域1と帯域2の分割された信号間の距離のずれは、25mであり、帯域1と帯域3の分割された信号間の距離のずれは、この25mに、帯域2と帯域3の分割された信号間の距離のずれ25mを足した50mである。
 そこで、次に、上記8帯域の分割処理、すなわち、各分割された信号の距離ずれを補正する距離シフトを行う(ステップS3)。
 上記距離シフト処理された信号データは、1Kspsの測定速度、すなわち、周期T=1002μs間隔で50回分あるので、どの信号データも0.25μs間隔の信号で繋がるように、この周期差に相当する時間を取り除くべく、時間軸上でのデータの再構築を行う(ステップS4)。
 以上の信号処理により、4Msps(T=0.25μs)の速度でのリサンプリングが可能となる。具体的には、T=1002μsの測定速度で50回、連続して測定を行う場合を考えると、時間幅2μsのチャープパルスを用いることにより、2μs×50回=100μsの間隔でのリサンプリングが可能となる。具体的には、4Mspsの疑似連続測定(0.25μs間隔で連続した測定)が可能となる。この場合の空間分解能は、約8m(Δf=12.5MHz)となる。この結果、重複した10kHzの信号を繋ぐことができる。
First, 50 consecutive measurements are performed at measurement intervals of 1 Ksps using a conventional chirp pulse with a time width of 2 μs (chirp frequency of 100 MHz) (step S1).
Next, the received beat signal is subjected to signal processing and passed through eight matched filters having equal bandwidths of 12.5 MHz, as shown below, to divide the 2 μs beat signal into the following eight bands (step S2).
Band 1: 145.0MHz to 157.5MHz
Band 2: 157.5MHz to 170.0MHz
Band 3: 170.0MHz to 182.5MHz
Band 4: 182.5MHz to 195.0MHz
Band 5: 195.0MHz to 207.5MHz
Band 6: 207.5MHz to 220.0MHz
Band 7: 220.0MHz to 232.5MHz
Band 8: 232.5MHz to 245.0MHz
Here, the interval between adjacent divided bands is 2 μs/8=0.25 μs, which translates into a distance difference of 25 m. For example, the distance difference between the divided signals of band 1 and band 2 is 25 m, and the distance difference between the divided signals of band 1 and band 3 is 50 m, calculated by adding the distance difference between the divided signals of band 2 and band 3, 25 m, to this 25 m.
Next, the signal is divided into the eight bands, that is, a distance shift is performed to correct the distance deviation of each divided signal (step S3).
The signal data subjected to the distance shift processing has a measurement speed of 1 Ksps, i.e., 50 data sets with a period T of 1002 μs. Therefore, the data is reconstructed on the time axis to remove the time corresponding to this period difference so that all signal data are connected with signals with a 0.25 μs interval (step S4).
The above signal processing enables resampling at a speed of 4 Msps (T = 0.25 μs). Specifically, when considering a case where 50 consecutive measurements are performed at a measurement speed of T = 1002 μs, resampling at intervals of 2 μs x 50 times = 100 μs is possible by using a chirp pulse with a time width of 2 μs. Specifically, pseudo-continuous measurements at 4 Msps (continuous measurements at 0.25 μs intervals) are possible. The spatial resolution in this case is about 8 m (Δf = 12.5 MHz). As a result, overlapping 10 kHz signals can be connected.
 次に、以上の方法について、図11A~図17Cを用いて、以下詳しく説明する。これらの図のうち、図11A~図12Cは、受信後のビート信号について行う信号処理の内容を上記で説明した処理ステップごとに示したものであり、1Ksps(周期T=1002μs)のサンプリング速度で10KHzのサイン波を4Mspsでリサンプリングする方法を説明するための図となっている。図13は、2μsのチャープパルスを用いて、1Kspsの測定速度で10KHzのサイン波を50周期分測定して、4Mspsでリサンプリングすると、10KHzの1周期分の測定ができることを説明した図である。 The above method will now be described in detail with reference to Figures 11A to 17C. Of these figures, Figures 11A to 12C show the signal processing carried out on the received beat signal for each processing step described above, and are intended to explain a method of resampling a 10 KHz sine wave at 4 Msps with a sampling speed of 1 Ksps (period T = 1002 μs). Figure 13 explains that by using a 2 μs chirp pulse to measure 50 periods of a 10 KHz sine wave at a measurement speed of 1 Ksps and resampling at 4 Msps, it is possible to measure one period of 10 KHz.
 まず、図11A~図12Cについて説明する。これらの図は、受信後のビート信号を基に、上述のリサンプリング方法の原理を説明した図である。
 図11Aは、従来の方法で測定したビート信号である。ここでは、パルス(時間)幅が2μsのチャープパルスを用いて、1Ksps(T=1002μs≒1ms)の測定速度で、計50回の測定を行うことを示した図である。この図11Aに示したNが測定回数である。測定周期が1002μsであることから、1回目(N=1)のスタート時間を0(ゼロ)秒(s)とすると、50回目(N=50)のスタート時間は、49.098msとなる。これら各回のビート信号はいずれも、周波数145.0MHzから245.0MHzの成分をもっている。   
11A to 12C are diagrams illustrating the principle of the above-mentioned resampling method based on the received beat signal.
Fig. 11A shows a beat signal measured by a conventional method. Here, a chirp pulse with a pulse (time) width of 2 μs is used, and a total of 50 measurements are performed at a measurement speed of 1 Ksps (T = 1002 μs ≒ 1 ms). N shown in Fig. 11A is the number of measurements. Since the measurement period is 1002 μs, if the start time of the first measurement (N = 1) is 0 (zero) seconds (s), the start time of the 50th measurement (N = 50) is 49.098 ms. Each of these beat signals has frequency components from 145.0 MHz to 245.0 MHz.
 次に、図11Bは、本実施の形態1の光ファイバ超音波分布計測装置におけるビート信号を一定の帯域幅(12.5MHz)で分割処理した一例を示した図(上記ステップS2参照)であり、上記50回分測定した各ビート信号を帯域間の間隔が0.25μsの計8帯域でそれぞれ分割処理した結果を示した図である。
 図11Bにおいて、DN=m(mは1から50の整数。以下同様)として示したように、図11AにおいてN=mで示した測定回数に対応して、ビート信号を整合フィルタにより、145.0MHzから245.0MHz間で8帯域に分割する。この場合において、各DN=mで示したそれぞれのDN内に示した、帯域2から帯域8までの各帯域では、各帯域に応じて一定の距離ずれが生じている(隣接する帯域間の距離ずれの差は一定で25mである)。
Next, FIG. 11B is a diagram showing an example in which the beat signal in the optical fiber ultrasonic distribution measurement device of the first embodiment is divided at a constant bandwidth (12.5 MHz) (see step S2 above), and shows the results of dividing each of the beat signals measured 50 times into a total of eight bands with an interval of 0.25 μs between bands.
As shown in Fig. 11B as DN=m (m is an integer from 1 to 50, the same applies below), the beat signal is divided into eight bands between 145.0 MHz and 245.0 MHz by a matched filter, corresponding to the number of measurements shown as N=m in Fig. 11A. In this case, in each band from band 2 to band 8 shown in each DN=m, a certain distance shift occurs depending on each band (the difference in distance shift between adjacent bands is a constant 25 m).
 次に、図12A~図12Cについて説明する。図12Aは上記図11B(の一部)を再掲した図である。図12Bは、図12Aの各帯域で発生した距離ずれをなくすべく、各DN=mにおいて、帯域ごとに一定量の距離シフト処理を行った結果を示す図である。この図から、隣接する各DN=m間(例えば、DN=1とDN=2間)では、各帯域での距離シフト量は同じパターンになっており、これが1002μsの周期で繰り返されていることがわかる。言い換えると隣接する各DN=m間の時間差は1002μsである。そこで、この周期に関わる時間差を解消するため、各DN=mにおいて、周期を1002μsから0.25μsに変更し、時間軸上で再構築する(リサンプリングする)処理を行う。この結果を図12Cに示す。 Next, we will explain Figures 12A to 12C. Figure 12A is a reprint of Figure 11B (part of it). Figure 12B is a diagram showing the results of performing a fixed amount of distance shift processing for each band at DN=m in order to eliminate the distance deviation that occurred in each band in Figure 12A. From this diagram, it can be seen that the distance shift amount in each band between adjacent DN=m (for example, between DN=1 and DN=2) has the same pattern, and this is repeated in a period of 1002 μs. In other words, the time difference between adjacent DN=m is 1002 μs. Therefore, in order to eliminate the time difference related to this period, the period is changed from 1002 μs to 0.25 μs at each DN=m, and a process of reconstructing (resampling) on the time axis is performed. The result is shown in Figure 12C.
 次に、図13は、1Ksps(T=1002μs)で、10KHzの信号を測定し、リサンプリングした場合の上述の処理方法による結果を示した図である。横軸に時間を取り、縦軸に信号レベル(任意スケール)を取ると、50周期分の測定で10KHzの1周期分の測定ができていることが分かる。この場合のサンプリング速度は、0.25μsに対応する4Mspsである。 Next, Figure 13 shows the results of the above processing method when a 10 KHz signal is measured and resampled at 1 Ksps (T = 1002 μs). If the horizontal axis represents time and the vertical axis represents signal level (arbitrary scale), it can be seen that one period of 10 KHz can be measured by measuring 50 periods. The sampling speed in this case is 4 Msps, which corresponds to 0.25 μs.
 次に、PZT(圧電素子)を用いて、10KHzの試験データを上記シミュレーションの方法で解析した結果の一例を、以下説明する。図14A、図14Bに、上述の帯域ごとに(独立で)解析した場合の結果の一例を示した。図14Aは、一例として、帯域1での試験データの計測結果を示した滝グラフ(waterfall図)である。PZTの信号は499.8m地点で見られる。ここで横軸は時間(単位:μs)、縦軸は距離(単位:m)である。 Next, an example of the results of analyzing 10 KHz test data using a PZT (piezoelectric element) with the above simulation method will be described below. Figures 14A and 14B show an example of the results when each of the above bands is analyzed (independently). Figure 14A is a waterfall graph showing the measurement results of test data in band 1 as an example. The PZT signal can be seen at a point of 499.8 m. Here, the horizontal axis is time (unit: μs) and the vertical axis is distance (unit: m).
 上記結果を含む、上記8つの帯域(帯域1~帯域8)での圧電素子の振動による被測定体の歪率(単位:nε/μs)の解析結果を図14Bに示す。横軸は、図14Aと同じく時間(単位:μs)である。 The analysis results of the distortion rate (unit: nε/μs) of the measured object due to the vibration of the piezoelectric element in the above eight bands (band 1 to band 8), including the above results, are shown in Figure 14B. The horizontal axis is time (unit: μs), the same as in Figure 14A.
 次に、上記帯域ごとの計測結果ではなく、8つの帯域を揃えた(合わせた)場合の振動波形の解析結果(以降、原データと呼ぶ)を図15Aに示す(横軸のスケールは図14Bと同一である)。全体的に見れば、図14Bに示したグラフと類似の形状を示していることがわかる。また、図15Bは、この図15Aのデータを基に、そのスペクトル(パワースペクトル密度)を計算した場合の結果である(横軸は周波数)。図15Bより、圧電素子の10KHzの振動成分が確認できている。 Next, Fig. 15A shows the analysis results (hereafter referred to as the original data) of the vibration waveform when all eight bands are aligned (combined) rather than the measurement results for each of the above bands (the scale of the horizontal axis is the same as in Fig. 14B). Looking at the whole picture, it can be seen that it shows a similar shape to the graph shown in Fig. 14B. Fig. 15B also shows the results of calculating the spectrum (power spectral density) based on the data in Fig. 15A (the horizontal axis is frequency). From Fig. 15B, the 10 KHz vibration component of the piezoelectric element can be confirmed.
 次に、上記原データ(図16A参照。図15Aのデータと同一。)をカットオフ周波数が15kHzのLPF(Low pass filter、ローパスフィルタ)にかけて高周波ノイズを除いた場合の結果を、図16Bに示す。振動のピーク波形間の時間差は図に示すように100μsであり、上記10kHZの振動波形が表れていると言える。 Next, Figure 16B shows the results when the above raw data (see Figure 16A; the same data as Figure 15A) is passed through an LPF (Low pass filter) with a cutoff frequency of 15 kHz to remove high frequency noise. As shown in the figure, the time difference between the vibration peak waveforms is 100 μs, which can be said to represent the above 10 kHz vibration waveform.
 さらに、図16Bの10kHzの振動波形を基に(ここでは、図16Bの振動波形と同じものを図17Aとして示した)、その振動波形の時間軸のスケールを拡大して示したのが、図17B、図17Cである。図17Bに示した時間軸のスケールは、図17Aの場合の約10倍であり、図17Cに示した時間軸のスケールは、図17Aの場合の約400倍である。図17Cまで時間軸のスケールを拡大すると、図17A、図17Bでは明確でなかった、グラフ中に丸印で示した10kHzの解析した点(上記識別速度に相当する0.25μs)が明確に表れていることが判る。 Furthermore, based on the 10 kHz vibration waveform in FIG. 16B (here, the same vibration waveform as in FIG. 16B is shown as FIG. 17A), FIGS. 17B and 17C show the vibration waveform with the scale of the time axis enlarged. The time scale shown in FIG. 17B is about 10 times that of FIG. 17A, and the time scale shown in FIG. 17C is about 400 times that of FIG. 17A. When the time scale is enlarged to FIG. 17C, it can be seen that the analyzed point of 10 kHz (0.25 μs, which corresponds to the above-mentioned discrimination speed), indicated by a circle in the graph, which was not clear in FIGS. 17A and 17B, is clearly shown.
 以上により、時間幅2μsのチャープパルス(Chirp Pulse)を用いて1Kspsのサンプリング速度で10KHzのsin波を4Mspsでリサンプリング(resampling)する方法についてシミュレーションによる確認ができた。 The above enabled us to verify through simulation a method of resampling a 10 KHz sine wave at 4 Msps with a sampling rate of 1 Ksps using a chirp pulse with a time width of 2 μs.
 本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
Although exemplary embodiments are described herein, the various features, aspects, and functions described in the embodiments are not limited to application to a particular embodiment, but may be applied to the embodiments alone or in various combinations.
Therefore, countless modifications not illustrated are expected within the scope of the technology disclosed in the present specification, including, for example, modifying, adding, or omitting at least one component.
 1 ブレード(翼)、2 ハブ、3 ナセル、4 タワー、5 光ファイバケーブル、6 圧電素子、7 光ファイバ、8a ボルト、8b ナット、9 損傷、10 風車、13 ブレード、14 フランジ、15 カップリング、20 光ファイバ信号処理装置、30 光ファイバ超音波分布計測装置、31 光源モジュール、32 光学制御モジュール、33 リングチャープ間隔および遅れ制御モジュール、34 A/Dコンバータ、35 CPUモジュール、36 PCIeバス、311 LD、312 I/O回路、313 ビームスプリッタ、314 チャープパルス光発生モジュール、315 光ファイバリング回路、316 光カップラ、317 偏波ダイバーシティ受信モジュール 1 Blade, 2 Hub, 3 Nacelle, 4 Tower, 5 Optical fiber cable, 6 Piezoelectric element, 7 Optical fiber, 8a Bolt, 8b Nut, 9 Damage, 10 Wind turbine, 13 Blade, 14 Flange, 15 Coupling, 20 Optical fiber signal processing device, 30 Optical fiber ultrasonic distribution measurement device, 31 Light source module, 32 Optical control module, 33 Ring chirp interval and delay control module, 34 A/D converter, 35 CPU module, 36 PCIe bus, 311 LD, 312 I/O circuit, 313 Beam splitter, 314 Chirp pulse light generation module, 315 Optical fiber ring circuit, 316 Optical coupler, 317 Polarization diversity receiving module

Claims (5)

  1. LDと、前記LDから出射されたレーザ光の周波数掃引範囲を制御して、複数のチャープパルス光を発生するチャープパルス光発生モジュールと、所定の長さのリング長を持ち、前記チャープパルス光発生モジュールで発生したチャープパルス光が入力されるとともに、掃引時間間隔が規定されたチャープパルス光の集合体であるチャープパルス光グループを出力する光ファイバリング回路と、前記光ファイバリング回路から出射された前記チャープパルス光グループを被測定体である光ファイバに入射した際に生じる光ファイバからの後方散乱光、および前記LDからのレーザ光が受信される偏波ダイバーシティ受信モジュールと、
    を有する光源モジュール、
    前記チャープパルス光の掃引時間間隔を制御するとともに、前記チャープパルス光グループが前記光ファイバに入射するタイミングを一定時間遅延させるための制御を行うリングチャープ間隔および遅れ制御モジュール、
    を備え、
    前記チャープパルス光発生モジュールで発生させた掃引周波数の異なる複数のチャープパルス光を、前記光ファイバに入射した際に生じる前記チャープパルス光の個数と同じ数の前記光ファイバからの後方散乱光を受信して復元するとともに、復元処理する際に、受信信号の周波数帯域幅を規定することにより、前記光ファイバに入射された各チャープパルス光を識別して受信して、前記光ファイバで検知された超音波の分布計測を行うことを特徴とする光ファイバ超音波分布計測装置。
    an LD, a chirp pulse light generating module which controls the frequency sweep range of the laser light emitted from the LD to generate a plurality of chirp pulse lights, an optical fiber ring circuit having a predetermined ring length, receiving the chirp pulse light generated by the chirp pulse light generating module and outputting a chirp pulse light group which is a collection of chirp pulse lights having a prescribed sweep time interval, and a polarization diversity receiving module which receives backscattered light from an optical fiber which is a measured object when the chirp pulse light group emitted from the optical fiber ring circuit is input into the optical fiber, and receives the laser light from the LD.
    A light source module having
    a ring chirp interval and delay control module for controlling a sweep time interval of the chirp pulse light and for controlling a timing at which the chirp pulse light group is input to the optical fiber to be delayed by a certain time;
    Equipped with
    An optical fiber ultrasonic distribution measurement device, characterized in that the optical fiber receives and restores the same number of backscattered lights from the optical fiber as the number of chirp pulse lights generated when a plurality of chirp pulse lights having different sweep frequencies generated by the chirp pulse light generating module are incident on the optical fiber, and by specifying the frequency bandwidth of the received signal during the restoration process, the optical fiber receives and identifies each chirp pulse light incident on the optical fiber, and performs distribution measurement of the ultrasonic waves detected by the optical fiber.
  2. 前記チャープパルス光の掃引時間間隔は、前記光ファイバが検知する信号の周波数に対応して定められ、前記チャープパルス光グループの入射タイミングを決める一定の遅延時間は、前記光ファイバの長さによって定められることを特徴とする請求項1に記載の光ファイバ超音波分布計測装置。 The optical fiber ultrasonic distribution measurement device according to claim 1, characterized in that the sweep time interval of the chirped pulse light is determined according to the frequency of the signal detected by the optical fiber, and the constant delay time that determines the timing of incidence of the chirped pulse light group is determined according to the length of the optical fiber.
  3. 前記光ファイバリング回路は、所定の周波数帯域のチャープパルス光を複数、一定の時間間隔で遅延させてチャープパルスを生成するための音響光学素子を有し、前記光ファイバリング回路のリング長は、光ファイバ内でのチャープパルス光の識別速度に対応した所定の長さに設定されていることを特徴とする請求項1または請求項2に記載の光ファイバ超音波分布計測装置。 The optical fiber ring circuit has an acousto-optical element for delaying multiple chirp pulse lights of a predetermined frequency band at regular time intervals to generate chirp pulses, and the ring length of the optical fiber ring circuit is set to a predetermined length corresponding to the discrimination speed of the chirp pulse light in the optical fiber. The optical fiber ultrasonic distribution measurement device described in claim 1 or 2 is characterized in that:
  4. 請求項1から請求項3のいずれか1項に記載の光ファイバ超音波分布計測装置を用いて、前記光ファイバからの後方散乱光に含まれる超音波を計測する光ファイバ超音波分布計測方法であって、
    前記光ファイバへ入射する前記チャープパルス光の周波数を、所定の高速かつ広範囲のサンプリング速度の範囲で掃引することにより、複数個の周波数帯の異なるチャープパルス光を発生させ、この発生させたチャープパルス光を前記光ファイバへ入射した後のチャープパルス光の後方散乱光を復元してデジタル処理する際に、規定された周波数幅に復元時の周波数幅を設定することにより、入射させた各チャープパルス光を識別して受信することを特徴とする光ファイバ超音波分布計測方法。
    4. An optical fiber ultrasonic distribution measurement method for measuring ultrasonic waves contained in backscattered light from an optical fiber by using the optical fiber ultrasonic distribution measurement device according to claim 1, comprising:
    The optical fiber ultrasonic distribution measurement method is characterized in that the frequency of the chirp pulse light incident on the optical fiber is swept within a predetermined high-speed and wide range of sampling speeds to generate chirp pulse light of a plurality of different frequency bands, and when the generated chirp pulse light is incident on the optical fiber and the backscattered light of the chirp pulse light is restored and digitally processed, a frequency width at the time of restoration is set to a specified frequency width, thereby identifying and receiving each incident chirp pulse light.
  5. 前記リングチャープ間隔および遅れ制御モジュールにより、前記チャープパルス光の光ファイバへの入射タイミングを遅延させるとともに、前記規定された周波数幅に対応する周期で時間軸上において連続した信号を形成することを特徴とする請求項4に記載の光ファイバ超音波分布計測方法。 The optical fiber ultrasonic distribution measurement method according to claim 4, characterized in that the ring chirp interval and delay control module delays the timing of incidence of the chirp pulse light into the optical fiber and forms a continuous signal on the time axis with a period corresponding to the specified frequency width.
PCT/JP2022/042685 2022-11-17 2022-11-17 Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method WO2024105845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042685 WO2024105845A1 (en) 2022-11-17 2022-11-17 Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042685 WO2024105845A1 (en) 2022-11-17 2022-11-17 Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method

Publications (1)

Publication Number Publication Date
WO2024105845A1 true WO2024105845A1 (en) 2024-05-23

Family

ID=91084118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042685 WO2024105845A1 (en) 2022-11-17 2022-11-17 Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method

Country Status (1)

Country Link
WO (1) WO2024105845A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194847A (en) * 1991-07-29 1993-03-16 Texas A & M University System Apparatus and method for fiber optic intrusion sensing
JP2011232138A (en) * 2010-04-27 2011-11-17 Neubrex Co Ltd Distribution type optical fiber sensor
US20190219441A1 (en) * 2018-01-12 2019-07-18 Ap Sensing Gmbh High-Rate Fiber-Optical Distributed Acoustic Sensing
JP2019183806A (en) * 2018-04-17 2019-10-24 株式会社日立製作所 Windmill blade and wind generator system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194847A (en) * 1991-07-29 1993-03-16 Texas A & M University System Apparatus and method for fiber optic intrusion sensing
JP2011232138A (en) * 2010-04-27 2011-11-17 Neubrex Co Ltd Distribution type optical fiber sensor
US20190219441A1 (en) * 2018-01-12 2019-07-18 Ap Sensing Gmbh High-Rate Fiber-Optical Distributed Acoustic Sensing
JP2019183806A (en) * 2018-04-17 2019-10-24 株式会社日立製作所 Windmill blade and wind generator system

Similar Documents

Publication Publication Date Title
EP3112857B1 (en) System comprising an aircraft structural object attached to an ultrasonic test system, and ultrasonic test method
US8131121B2 (en) Optical fiber pipeline monitoring system and method
US6081481A (en) Method for detecting buried objects by measuring seismic vibrations induced by acoustical coupling with a remote source of sound
CA3004394C (en) Optoelectronic distributed measuring device based on brillouin scattering
US10481131B2 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
JP7435160B2 (en) Optical fiber vibration detection device and vibration detection method
US10794733B2 (en) Optoelectronic device for distributed measurement by means of optical fibre
WO2014146676A1 (en) Brillouin optical distributed sensing device and method with improved tolerance to sensor failure
Hayashi et al. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate
US20230152131A1 (en) Techniques and apparatus for improved spatial resolution for locating anomolies in optical fiber
WO2003092128A3 (en) Method to optimize generation of ultrasound using mathematical modeling for laser ultrasound inspection
CN114543973A (en) Distributed ultrahigh frequency vibration signal measuring method and optical fiber sensor
WO2024105845A1 (en) Optical fiber ultrasonic distribution measurement device and optical fiber ultrasonic distribution measurement method
CN108594081A (en) A kind of submarine cable Fault of Insulating Breakdown locating and detecting device
CA2965628A1 (en) Apparatus and method for characterization of fbg reflector array
JP5218852B2 (en) Optical fiber strain measurement device
Sohn Laser based structural health monitoring for civil, mechanical, and aerospace systems
US4747309A (en) Structures and methods of testing them with linear microphones
Sohn et al. Non-contact laser ultrasonics for SHM in aerospace structures
GB2583712A (en) Distributed acoustic sensor applications
Lee et al. Integrated guided wave generation and sensing using a single laser source and optical fibers
CN113447772A (en) High-voltage cable partial discharge online monitoring system and method
Jeong et al. Measurement range enlargement in Brillouin optical correlation domain analysis using multiple correlation peaks
JP5907907B2 (en) Optical line characteristic analyzer and analysis method thereof
SOMAN et al. Fiber Bragg Grating Sensor Based Mode Filtering Using Cosine Distance Metric