WO2024105809A1 - Manufacturing method for rolling bearing device - Google Patents

Manufacturing method for rolling bearing device Download PDF

Info

Publication number
WO2024105809A1
WO2024105809A1 PCT/JP2022/042555 JP2022042555W WO2024105809A1 WO 2024105809 A1 WO2024105809 A1 WO 2024105809A1 JP 2022042555 W JP2022042555 W JP 2022042555W WO 2024105809 A1 WO2024105809 A1 WO 2024105809A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
raceway groove
shaft portion
ring raceway
rolling bearing
Prior art date
Application number
PCT/JP2022/042555
Other languages
French (fr)
Japanese (ja)
Inventor
義孝 早稲田
宗史 岩丸
隆之 廣瀬
涼太郎 戸上
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to PCT/JP2022/042555 priority Critical patent/WO2024105809A1/en
Publication of WO2024105809A1 publication Critical patent/WO2024105809A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings

Definitions

  • the present invention relates to a method for manufacturing a rolling bearing device.
  • a rolling bearing device that includes an inner shaft, an outer ring for supporting the inner shaft, and multiple balls (see Patent Documents 1 and 2).
  • the inner shaft has an inner ring raceway groove on its outer periphery with which the balls roll and make contact. With this rolling bearing device, an inner ring is not necessary, making it possible to reduce the number of parts.
  • a rolling bearing device 90 is known in which an inner shaft 91 has a power transmission member such as a gear 93 or a pulley.
  • the inner shaft 91 has an inner ring raceway groove 92 on its outer periphery.
  • the radius R of the circumscribing circle of the gear 93 is greater than the radius r of the shaft portion 94 of the inner shaft 91 that has the inner ring raceway groove 92.
  • a manufacturing method for such a rolling bearing device 90 includes an insertion step of inserting a ball 97 between the shaft portion 94 (inner ring raceway groove 92) and the outer ring 95 (outer ring raceway groove 96) by its own weight, as shown in Figures 15 and 16.
  • the central axis C of the inner shaft 91 is vertical, and the insertion process is performed in this state.
  • a first jig 101 supports the outer ring 95 from below.
  • the central axis of the outer ring 95 is shifted relative to the central axis of the inner shaft 91, forming a crescent-shaped space between the inner shaft 91 and the outer ring 95, and the ball 97 is inserted into the crescent-shaped space by gravity.
  • a second jig 102 is positioned between the outer ring 95 and the gear 93 to prevent the ball 97 from falling through the crescent-shaped space.
  • the second jig 102 is configured to be thin. In this case, there is a risk that the second jig 102 will not be able to ensure sufficient mechanical strength. Or, it may be impossible for the second jig 102 to be positioned between the gear 93 and the outer ring 95.
  • the present disclosure therefore provides a method for easily manufacturing a rolling bearing device, even when the outer ring (bearing portion) and a power transmission portion such as a gear are close to each other in the axial direction.
  • the method according to an embodiment of the present invention comprises the steps of: A manufacturing method for a rolling bearing device including an inner shaft, an outer ring, and a plurality of balls positioned between the inner shaft and the outer ring, comprising the steps of: the inner shaft has a first shaft portion located on a first side in the axial direction, a second shaft portion located on a second side in the axial direction, and a power transmission portion located between the first shaft portion and the second shaft portion, the first shaft portion has a first inner ring raceway groove, the outer ring has a first outer ring raceway groove, a boundary between the first inner ring raceway groove and a first shoulder located on a first side in an axial direction of the first inner ring raceway groove is a first boundary, a boundary between the first inner ring raceway groove and a second shoulder located on a second side in the axial direction of the first inner ring raceway groove is a second boundary,
  • the method for manufacturing the rolling bearing device includes the steps of: a combining step of positioning the
  • the rolling bearing device is easy to manufacture, even when the outer ring (bearing portion) and the power transmission portion are close to each other in the axial direction.
  • FIG. 1 is a side view showing an example of a rolling bearing device manufactured by the manufacturing method of the present disclosure.
  • FIG. 2 is a flow diagram showing a manufacturing method of the rolling bearing device.
  • FIG. 3 is an explanatory diagram of the combining step and the preparation step.
  • FIG. 4 is an explanatory diagram of the supporting step.
  • FIG. 5 is an explanatory diagram of the decentering step.
  • FIG. 6 is an explanatory diagram of the insertion process.
  • FIG. 7 is an explanatory diagram of the moving process.
  • FIG. 8 is an explanatory diagram of the mounting process.
  • FIG. 9 is an explanatory diagram of a crown cage.
  • FIG. 10 is an explanatory diagram of a horn-shaped cage.
  • 11A to 11C are explanatory diagrams of another method for manufacturing the rolling bearing device shown in FIG. 12A to 12C are explanatory diagrams of a manufacturing method for a rolling bearing device according to another embodiment.
  • 13A to 13C are explanatory diagrams of a manufacturing method for a rolling bearing device according to another embodiment.
  • 14A to 14C are explanatory diagrams of a manufacturing method for the rolling bearing device shown in FIG.
  • FIG. 15 is an explanatory diagram of a conventional method for manufacturing a rolling bearing device.
  • FIG. 16 is an explanatory diagram of a conventional method for manufacturing a rolling bearing device.
  • a method for manufacturing a rolling bearing device includes: A manufacturing method for a rolling bearing device including an inner shaft, an outer ring, and a plurality of balls positioned between the inner shaft and the outer ring, comprising the steps of: the inner shaft has a first shaft portion located on a first side in an axial direction, a second shaft portion located on a second side in the axial direction, and a power transmission portion located between the first shaft portion and the second shaft portion, the first shaft portion has a first inner ring raceway groove, the outer ring has a first outer ring raceway groove, a boundary between the first inner ring raceway groove and a first shoulder located on a first side in an axial direction of the first inner ring raceway groove is a first boundary, a boundary between the first inner ring raceway groove and a second shoulder located on a second side in the axial direction of the first inner ring raceway groove
  • an adsorption device is used to adsorb the ball by vacuum or magnetic force, and the adsorption portion of the adsorption device that has adsorbed the ball is moved to insert the ball between the first outer ring raceway groove and the first inner ring raceway groove.
  • the manufacturing method facilitates the insertion process.
  • the rolling bearing device has a horn-shaped cage or a crown-shaped cage that holds the plurality of balls
  • the manufacturing method for the rolling bearing device includes, after the moving step, an attachment step of assembling the horn-shaped cage or the crown-shaped cage to the plurality of balls from a first side in the axial direction.
  • Fig. 1 is a side view showing an example of a rolling bearing device manufactured by the manufacturing method of the present disclosure.
  • a part (bearing portion 18) of the rolling bearing device 10 is shown in cross section.
  • the rolling bearing device 10 includes an inner shaft 11, an outer ring 12, and a plurality of balls 13 located between the inner shaft 11 and the outer ring 12.
  • the rolling bearing device 10 has a cage 14 that holds the plurality of balls 13.
  • the inner shaft 11 is a straight shaft.
  • the directions of the rolling bearing device 10 are defined as follows: The direction along the central axis C of the inner shaft 11 is the "axial direction”. The direction perpendicular to the central axis C is the "radial direction”. The direction along a circle centered on the central axis C is the "circumferential direction”. In each figure, the left side in the axial direction is the “first side”, and the right side in the axial direction is the "second side”.
  • the inner shaft 11 has a first shaft portion 21 located on a first axial side, a second shaft portion 22 located on a second axial side, and a power transmission portion located between the first shaft portion 21 and the second shaft portion 22.
  • the power transmission portion is a gear 20.
  • the first shaft portion 21 is on the first axial side of the gear 20, and the second shaft portion 22 is on the second axial side of the gear 20.
  • the power transmission part is a part that transmits a rotational force to the inner shaft 11 or transmits the rotational force of the inner shaft 11 to another device, and may be something other than the gear 20, for example, a pulley.
  • the central axes of the first shaft part 21, the gear 20 (power transmission part), and the second shaft part 22 each coincide with the central axis C of the inner shaft 11.
  • the gear 20 is integral with the central shaft portion 11b of the inner shaft 11.
  • the central shaft portion 11b is the portion of the inner shaft 11 between the first shaft portion 21 and the second shaft portion 22.
  • the gear 20 may be a separate part from the central shaft portion 11b, and the gear 20 may be fixed to the central shaft portion 11b. In this case, the gear 20 is fitted, for example, to the central shaft portion 11b.
  • the gear 20 may be prevented from rotating on the central shaft portion 11b, for example, by a key or spline.
  • the gear 20 including the central shaft portion 11b in the center and the first shaft portion 21 and second shaft portion 22 may be a member integrally formed through a forging process.
  • the first shaft portion 21 is a shaft-shaped portion.
  • the first shaft portion 21 has a first inner ring raceway groove 26 on its outer periphery.
  • the first inner ring raceway groove 26 has a concave arc shape in a cross section including the central axis C.
  • a first axial side (left side in the case of FIG. 1) of the first inner ring raceway groove 26 has a linear shape over its entire length.
  • a second axial side (right side in the case of FIG. 1) of the first inner ring raceway groove 26 has a linear shape up to the gear 20.
  • the radius R of the circumscribing circle of the gear 20 (power transmission part) is greater than the radius r of the first shaft portion 21 having the first inner ring raceway groove 26.
  • the first shaft portion 21 has a first shoulder 27 on a first axial side of the first inner ring raceway groove 26.
  • the first shaft portion 21 has a second shoulder 28 on a second axial side of the first inner ring raceway groove 26.
  • the boundary between the first inner ring raceway groove 26 and the first shoulder 27 is the "first boundary 31.”
  • the boundary between the first inner ring raceway groove 26 and the second shoulder 28 is the "second boundary 32.”
  • the boundary between the first inner ring raceway groove 26 and the first shoulder 27 has a cross-sectional convex radius (chamfer)
  • the intersection point between the imaginary extension line of the first inner ring raceway groove 26, which is a concave arc shape, and the imaginary extension line of the first shoulder 27, which is a straight line is the "first boundary 31.”
  • the boundary between the first inner ring raceway groove 26 and the second shoulder 28 has a cross-sectional convex radius (chamfer)
  • the intersection point between the imaginary extension line of the first inner ring raceway groove 26, which is a concave arc shape, and the imaginary extension line of the second shoulder 28, which is a straight line is the "second boundary 32.”
  • the second shaft portion 22 is an axial portion. In a cross section including the central axis C, the outer periphery of the second shaft portion 22 has a linear shape over its entire length. Although not shown, the outer periphery of the second shaft portion 22 may have a step portion midway in the axial direction. Similarly, the outer periphery of the first shaft portion 21 may have a step portion midway in the axial direction. However, the radius of each of the steps is smaller than the radius R of the circumscribing circle of the gear 20 (power transmission portion) and is also smaller than the radius of the inner circumferential surface of the outer ring 12.
  • the outer ring 12 is an annular member.
  • the outer ring 12 has a first outer ring raceway groove 29 on its inner circumference.
  • the first outer ring raceway groove 29 has a concave arc shape in a cross section including the center axis C.
  • the outer ring 12 has a third shoulder 35 on a first axial side of the first outer ring raceway groove 29.
  • the outer ring 12 has a fourth shoulder 36 on a second axial side of the first outer ring raceway groove 29.
  • the third shoulder 35 and the fourth shoulder 36 do not have insertion grooves for inserting the balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
  • the balls 13 are provided between the outer ring 12 and the first shaft portion 21, and roll in contact with the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
  • the outer ring 12, the balls 13, the first shaft portion 21 (the portion where the first inner ring raceway groove 26 is formed), and the retainer 14 form the bearing portion 18.
  • the bearing portion 18 is a deep groove ball bearing (groove ball bearing) and rotatably supports the inner shaft 11 including the gear 20.
  • the cage 14 is a crown-shaped cage as shown in FIG. 9, or a horn-shaped cage as shown in FIG. 10.
  • the cage 14 has one annular body 15 and multiple horns 16 protruding from the annular body 15 in the axial direction.
  • the pocket 14a that holds the balls 13 is between two adjacent horns 16 in the circumferential direction.
  • the pocket 14a opens to one side in the axial direction (the right side in the cases of FIGS. 9 and 10), and is combined with the balls 13 through the opening.
  • the cage 14 is attached to the multiple balls 13 attached between the first shaft portion 21 and the outer ring 12 from the first axial side (the left side in the case of FIG. 1).
  • the horns 16 have claws 17 at their tips that come into axial contact with the balls 13.
  • FIG. 2 is a flow diagram showing the manufacturing method.
  • the manufacturing method includes an assembling step St1, a preparation step St2, a supporting step St3, an eccentric step St4, an inserting step St5, a moving step St6, and an attachment step St7.
  • Each step is performed in the above-mentioned order from the assembling step St1 to the attachment step St7.
  • the assembling step St1 and the preparation step St2 one of them may be performed first and the other may be performed later, or the assembling step St1 and the preparation step St2 may be performed simultaneously.
  • Each step will be described below.
  • FIG. 3 is an explanatory diagram of the assembly process St1 and the preparation process St2.
  • the assembly process St1 is a process of positioning the outer ring 12 radially outside the first shaft portion 21.
  • the inner shaft 11 is inserted into the annular outer ring 12 from its axial first end 11a.
  • the preparation step St2 is a step of positioning the central axis C of the inner shaft 11 in a horizontal direction.
  • the preparation step St2 may be any step as long as it positions the central axis C of the inner shaft 11 in a substantially horizontal direction.
  • the preparation step St2 is a step of positioning the inner shaft 11 so that the tangent direction at any position in the first inner ring raceway groove 26, excluding the first boundary 31 and the second boundary 32, is horizontal.
  • the tangent direction at the deepest position of the first inner ring raceway groove 26 is horizontal.
  • the central axis C of the inner shaft 11 is horizontal.
  • the reason for making the position of the inner shaft 11 nearly horizontal is as follows.
  • the ball 13 is inserted between the first inner ring raceway groove 26 and the first outer ring raceway groove 29 from the first axial side.
  • a stopper (jig) for preventing the ball 13 from falling out is not used on the second axial side of the first inner ring raceway groove 26 and the first outer ring raceway groove 29.
  • the reason for making it horizontal is that, although the ball 13 is positioned between the first inner ring raceway groove 26 and the first outer ring raceway groove 29 in the insertion step St5, the ball 13 is prevented from rolling past the second shoulder 28 and falling out of the outer ring 12.
  • the position of the inner shaft 11 with the central axis C in the horizontal direction continues at least until the end of the moving step St6. Note that the position of the inner shaft 11 with the central axis C in the horizontal direction may also be maintained in the subsequent attachment step St7.
  • FIG. 4 is an explanatory diagram of the supporting step St3.
  • the supporting step St3 is a step of supporting the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 after the combining step St1 and the preparing step St2 from below in the vertical direction.
  • the first shaft portion 21 is supported from below by the first supporting member 41.
  • the second shaft portion 22 is supported from below by the second supporting member 42.
  • the first supporting member 41 has a recess 46 on which the first shaft portion 21 is placed, and the first shaft portion 21 fits into the recess 46 on its upper part.
  • the second supporting member 42 has a recess 47 on which the second shaft portion 22 is placed, and the second shaft portion 22 fits into the recess 47 on its upper part.
  • the recesses 46 and 47 may be arc-shaped or triangular.
  • the inner shaft 11 is stably supported by the first supporting member 41 and the second supporting member 42.
  • the second support member 42 is located on the second axial side of the gear 20 and is relatively close to the gear 20.
  • the axial distance between the gear 20 and the second support member 42 is "E2".
  • the first support member 41 is located on the first axial side of the outer ring 12 located radially outward of the first inner ring raceway groove 26.
  • the first support member 41 is relatively far from the outer ring 12.
  • the axial distance E1 between the first support portion 41 and the outer ring 12 is greater than the distance E2.
  • the center of gravity of the inner shaft 11 having the gear 20 is biased toward the second axial side. Since the second support member 42 is relatively close to the gear 20, the inner shaft 11 is stably supported.
  • FIG. 5 is an explanatory diagram of the eccentric step St4.
  • the eccentric step St4 is a step of moving the outer ring 12 upward in the vertical direction.
  • the third support member 43 lifts the outer ring 12 from below in the vertical direction.
  • the inner peripheral surface of the lowermost part of the outer ring 12 comes into contact with the outer peripheral surface of the lowermost part of the first shaft portion 21.
  • the central axis of the outer ring 12 is shifted from the central axis C of the inner shaft 11, and a crescent-shaped space Q is formed between the inner shaft 11 (first shaft portion 21) and the outer ring 12.
  • the gap between the first shaft portion 21 and the outer ring 12 is widest at the top of the crescent-shaped space Q in the vertical direction.
  • the gap between the first shaft portion 21 and the outer ring 12 is widest on the 180° opposite side of the central axis C of the position where the inner peripheral surface of the outer ring 12 and the outer peripheral surface of the first shaft portion 21 come into contact in the crescent-shaped space Q.
  • FIG. 6 is an explanatory diagram of the insertion step St5.
  • the insertion step St5 is a step of inserting the balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26 from the axial direction.
  • the balls 13 are inserted into the crescent-shaped space Q.
  • the balls 13 are inserted from at least one of the first axial side and the second axial side.
  • the balls 13 are inserted into the crescent-shaped space Q from the first axial side. This ensures that the gear 20 does not get in the way.
  • the balls 13 may be inserted into the crescent-shaped space Q one by one, or, for example, a group of three or four balls 13 may be inserted into the crescent-shaped space Q together. All the balls 13 are inserted into the crescent-shaped space Q.
  • the support height of the outer ring 12 with respect to the first shaft portion 21 by the third support member 43 may be changed and adjusted.
  • the manufacturing device 50 having the first support member 41, the second support member 42, and the third support member 43 further has an adsorption device 49.
  • the adsorption device 49 has a function of adsorbing one or more balls 13 by reducing pressure. In other words, the adsorption device 49 adsorbs the balls 13 by sucking in air.
  • the adsorption device 49 may have a function of adsorbing one or more balls 13 by magnetism (electromagnet).
  • the suction device 49 has an suction portion 49a that contacts the ball 13.
  • the suction device 49 is used to suction the ball 13 by reducing pressure (or by magnetism).
  • An actuator (not shown) moves the suction portion 49a that has suctioned the ball 13 with an axial movement component, and inserts the ball or balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
  • the suction by the suction portion 49a is released, the ball or balls 13 move away from the suction portion 49a.
  • the ball or balls 13 are inserted between the first outer ring raceway groove 29 and the first inner ring raceway groove 26 by their own weight.
  • the suction portion 49a is located above the first shaft portion 21.
  • the ball or balls 13 are inserted from the top of the crescent-shaped space Q in the vertical direction.
  • the suction device 49 automates the insertion of the balls 13, making the operation easier.
  • FIG. 7 is an explanatory diagram of the moving process St6.
  • the moving process St6 is a process of aligning the central axis of the outer ring 12 with the central axis of the inner shaft 11 after the insertion process St5. In other words, when all the balls 13 are inserted into the crescent-shaped space Q, the central axis of the outer ring 12 coincides with the central axis of the inner shaft 11. As a result, support of the outer ring 12 by the third support member 43 is released.
  • the moving process St6 is a process in which the multiple balls 13 are dispersed in the circumferential direction between the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
  • the mounting step St7 is a step of assembling the cage 14 (a crown cage shown in FIG. 9 or a horn cage shown in FIG. 10) to the plurality of balls 13 from the first axial side after the moving step St6.
  • the cage 14 approaches the plurality of balls 13 mounted between the first shaft portion 21 and the outer ring 12 from the first axial side and is assembled thereto.
  • the cage 14 is a crown cage or a horn cage in which the pockets 14a open to the second axial side (the right side in the case of FIG. 8). Therefore, the cage 14 can be easily assembled to the plurality of balls 13.
  • the mounting process St7 may include ball splitting to provide spaces between the balls 13 in order to arrange the balls 13 at equal intervals in the circumferential direction before assembling the cage 14 to the balls 13.
  • the ball splitting may be performed by inserting a plurality of rods extending in the axial direction between the balls 13 and removing the rods.
  • the mounting step St7 is performed in a state where the inner shaft 11 is supported by the first support member 41 and the second support member 42.
  • the mounting step St7 may be performed in a state where the inner shaft 11 is not supported by the first support member 41 and the second support member 42.
  • the mounting step St7 may be performed in a position other than where the central axis C of the inner shaft 11 is substantially horizontal.
  • Fig. 11 is an explanatory diagram of another manufacturing method (2) of the rolling bearing device 10 shown in Fig. 1.
  • Fig. 11 shows a supporting step St3.
  • the first supporting member 41 is located on a first side (the left side in the case of FIG. 4) in the axial direction of the outer ring 12.
  • 11 is the same as the supporting step St3 shown in Fig. 4 in that the first supporting member 41 supports the first shaft portion 21, but the first supporting member 41 is located on the second side in the axial direction of the outer ring 12 (the right side in the case of Fig. 11).
  • the first supporting member 41 is located between the outer ring 12 and the gear 20.
  • the first supporting member 41 supports the first shaft portion 21 at a position closer to the gear 20 than the outer ring 12.
  • the other steps in the production method (2) are the same as those in the production method (1).
  • FIG. 12 is an explanatory diagram of a manufacturing method (3) of a rolling bearing device 10 of another embodiment.
  • the inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, a first power transmission portion located between the first shaft portion 21 and the second shaft portion 22, and a second power transmission portion located in the middle of the second shaft portion 22.
  • the first power transmission portion of this embodiment is a first gear 20, and the second power transmission portion is a second gear 23.
  • the configuration other than the second gear 23 is the same as that of the rolling bearing device 10 shown in FIG. 12 and the rolling bearing device 10 shown in FIG. 1.
  • the supporting step St3 is a step of supporting, from below, the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 after the combining step St1 and the preparing step St2.
  • the steps of the manufacturing method (3) of the rolling bearing device 10 shown in Fig. 12 are the same as the steps of the manufacturing method (1).
  • the first support member 41 may support the first shaft portion 21 between the outer ring 12 and the first gear 20, as in the manufacturing method (2) shown in Fig. 11.
  • FIG. 13 is an explanatory diagram of a manufacturing method (4) of a rolling bearing device 10 of another embodiment.
  • the inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, and a gear 20 (power transmission portion) located between the first shaft portion 21 and the second shaft portion 22.
  • the rolling bearing device 10 shown in FIG. 13 is the same as the rolling bearing device 10 shown in FIG. 1.
  • the first shaft portion 21 has a first inner ring raceway groove 26 on its outer periphery
  • the second shaft portion 22 has a second inner ring raceway groove 56 on its outer periphery.
  • the rolling bearing device 10 shown in FIG. 13 has a second outer ring 24 located radially outward of the second inner ring raceway groove 56 in addition to the first outer ring 12 located radially outward of the first inner ring raceway groove 26.
  • the second outer ring 24 has a second outer ring raceway groove 57 on its inner circumference.
  • the rolling bearing device 10 has a plurality of second balls 25 located between the second outer ring 24 and the second shaft portion 22 (second inner ring raceway groove 56).
  • the rolling bearing device 10 shown in FIG. 13 is the same as the rolling bearing device 10 shown in FIG. 1, except that the rolling bearing device 10 shown in FIG. 13 has a second inner ring raceway groove 56 on the second shaft portion 22 and has a second outer ring 24 and second balls 25.
  • the first outer ring 12 and the second outer ring 24 are the same, and the first balls 13 and the second balls 25 are the same, but they may be different.
  • the rolling bearing device 10 shown in FIG. 13 has a first bearing portion 18 including a first outer ring 12 and a first ball 13, and a second bearing portion 19 including a second outer ring 24 and a second ball 25.
  • the first bearing portion 18 is first manufactured by the steps shown in FIG. 2 (except for the steps within the range surrounded by the dashed line). Then, the second bearing portion 18 is manufactured. Note that the mounting step St7 for the first bearing portion 18 may be performed after the manufacturing of the second bearing portion 18.
  • the inner shaft 11 is supported by the first support member 41 and the second support member 42.
  • the second bearing portion 19 is manufactured. That is, to manufacture the second bearing portion 19, the eccentric step St14, the insertion step St15, the movement step St16, and the attachment step St17 shown in the respective steps within the area surrounded by the dashed line in FIG. 2 are performed.
  • the eccentric step St14 is a step in which the fourth support member 44 (see FIG. 13) moves the second outer ring 24 upward.
  • the insertion step St15 is a step in which the second ball 25 is inserted between the second outer ring raceway groove 57 and the second inner ring raceway groove 56 from the axial direction.
  • the movement step St16 is a step in which the center axis of the second outer ring 24 is aligned with the center axis C of the inner shaft 11 after the insertion step St15 (see FIG. 14).
  • the attachment step St17 is a step in which the cage 14 is attached to the second ball 25.
  • the eccentric step St4, the insertion step St5, and the movement step St6 for the first bearing portion 18 are the same as the eccentric step St14, the insertion step St15, and the movement step St16 for the second bearing portion 19.
  • the second ball 25 is inserted between the second inner ring raceway groove 56 and the second outer ring raceway groove 57 from the second side in the axial direction.
  • the attachment step St17 the cage 14 is attached by approaching the second ball 25 from the second side in the axial direction.
  • the rolling bearing device 10 of each embodiment includes the inner shaft 11, the outer ring 12, and a plurality of balls 13.
  • the inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, and a gear 20 (power transmission portion) located between the first shaft portion 21 and the second shaft portion 22.
  • the first shaft portion 21 has a first inner ring raceway groove 26.
  • the outer ring 12 has a first outer ring raceway groove 29.
  • the boundary between the first inner ring raceway groove 26 and a first shoulder 27 on the first side in the axial direction is a first boundary 31, and the boundary between the first inner ring raceway groove 26 and a second shoulder 28 on the second side in the axial direction is a second boundary 32.
  • the manufacturing method of the rolling bearing device 10 includes an assembly process St1, a preparation process St2, a support process St3, an eccentricity process St4, an insertion process St5, and a movement process St6.
  • the assembly process St1 (see FIG. 3) is a process of positioning the outer ring 12 radially outside the first shaft portion 21.
  • the preparation process St2 (see FIG. 3) is a process of positioning the inner shaft 11 so that the tangent direction at any position in the first inner ring raceway groove 26, except for the first boundary 31 and the second boundary 32, is horizontal.
  • the support process St3 (see FIG. 4) is a process of supporting the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 from below.
  • the eccentricity process St4 (see FIG.
  • the manufacturing method further includes an attachment process St7 (see FIG. 8), in which the cage 14 is attached to the multiple balls 13.
  • the rolling bearing device of the present invention may not include the cage 14.
  • one power transmission part may be a plurality of gears arranged to coincide with the central axis C of the inner shaft 11.
  • One power transmission part may be a plurality of pulleys arranged to coincide with the central axis C of the inner shaft 11, or a pulley and a gear.
  • the scope of the present invention is defined by the claims rather than the above-described embodiments, and includes all modifications within the scope equivalent to the configurations described in the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A manufacturing method for a rolling bearing device 10 includes a combination step for positioning an outer ring 12 radially outside of a first shaft portion 21, a preparation step for positioning an inner shaft 11 so that the tangential direction at a freely selected position is horizontal, excluding a first boundary 31 and a second boundary 32, in a first inner ring raceway groove 26, a support step for supporting the first shaft portion 21 and a second shaft portion 22 from below, an eccentric step for moving the outer ring 12 upward, an insertion step for inserting balls 13 from the axial direction between a first outer ring raceway groove 29 and the first inner ring raceway groove 26, and a moving step for aligning the central axis of the outer ring 12 with the central axis of the inner shaft 11 after the insertion step.

Description

転がり軸受装置の製造方法Manufacturing method of rolling bearing device
 本発明は、転がり軸受装置の製造方法に関する。 The present invention relates to a method for manufacturing a rolling bearing device.
 内軸と、その内軸を支持するための外輪及び複数の玉とを備える転がり軸受装置が知られている(特許文献1及び特許文献2参照)。内軸は、その外周に、玉が転がり接触する内輪軌道溝を有する。この転がり軸受装置によれば、内輪は、不要であり、部品点数の削減が可能である。 A rolling bearing device is known that includes an inner shaft, an outer ring for supporting the inner shaft, and multiple balls (see Patent Documents 1 and 2). The inner shaft has an inner ring raceway groove on its outer periphery with which the balls roll and make contact. With this rolling bearing device, an inner ring is not necessary, making it possible to reduce the number of parts.
特開2002-206558号公報JP 2002-206558 A 特開2004-092755号公報JP 2004-092755 A
 図15及び図16に示すように、内軸91が歯車93又はプーリ等のような動力伝達部材を有する転がり軸受装置90が知られている。内軸91は、その外周に、内輪軌道溝92を有する。歯車93の外接円の半径Rは、内軸91のうちの内輪軌道溝92を有する軸部94の半径rよりも大きい。このような転がり軸受装置90の製造方法は、図15及び図16に示すように、玉97を、その自重によって、軸部94(内輪軌道溝92)と外輪95(外輪軌道溝96)との間に挿入する挿入工程を有する。 As shown in Figures 15 and 16, a rolling bearing device 90 is known in which an inner shaft 91 has a power transmission member such as a gear 93 or a pulley. The inner shaft 91 has an inner ring raceway groove 92 on its outer periphery. The radius R of the circumscribing circle of the gear 93 is greater than the radius r of the shaft portion 94 of the inner shaft 91 that has the inner ring raceway groove 92. A manufacturing method for such a rolling bearing device 90 includes an insertion step of inserting a ball 97 between the shaft portion 94 (inner ring raceway groove 92) and the outer ring 95 (outer ring raceway groove 96) by its own weight, as shown in Figures 15 and 16.
 図15に示す製造方法の場合、内軸91の中心軸Cが鉛直方向となり、その状態で挿入工程が行われる。挿入工程において、第一の治具101が外輪95を下から支える。外輪95の中心軸が内軸91の中心軸に対してずらされ、三日月形の空間が内軸91と外輪95との間に形成され、玉97は、その重力で前記三日月形の空間に挿入される。その際、玉97を前記三日月形の空間を通過して落下させないために、第二の治具102が外輪95と歯車93との間に位置する。 In the case of the manufacturing method shown in Figure 15, the central axis C of the inner shaft 91 is vertical, and the insertion process is performed in this state. In the insertion process, a first jig 101 supports the outer ring 95 from below. The central axis of the outer ring 95 is shifted relative to the central axis of the inner shaft 91, forming a crescent-shaped space between the inner shaft 91 and the outer ring 95, and the ball 97 is inserted into the crescent-shaped space by gravity. At this time, a second jig 102 is positioned between the outer ring 95 and the gear 93 to prevent the ball 97 from falling through the crescent-shaped space.
 転がり軸受装置90をコンパクトにするために、歯車93と外輪95(軸受部)との間隔Sが小さく設定されることが望ましい。そのため、第二の治具102は、薄く構成される。この場合、第二の治具102は、機械的強度を確保できないおそれがある。又は、第二の治具102が、歯車93と外輪95との間に位置することが不可能となる場合がある。 In order to make the rolling bearing device 90 compact, it is desirable to set the distance S between the gear 93 and the outer ring 95 (bearing portion) small. Therefore, the second jig 102 is configured to be thin. In this case, there is a risk that the second jig 102 will not be able to ensure sufficient mechanical strength. Or, it may be impossible for the second jig 102 to be positioned between the gear 93 and the outer ring 95.
 図16に示す製造方法の場合、歯車93が上であり、外輪95(軸受部)が下となる姿勢が採用される。歯車93を下から支持する治具103が、歯車93と外輪95との間に位置する。その状態で、玉97は、歯車93を支持する治具103と外輪95との間の空間を通じて、内軸91と外輪95との間に形成される三日月形の空間に挿入される。転がり軸受装置90のコンパクト化のために、歯車93と外輪95(軸受部)との間隔Sが小さく設定されると、治具103は邪魔となり、玉97を挿入することが不可能となる場合がある。 In the case of the manufacturing method shown in FIG. 16, a position is adopted in which the gear 93 is on top and the outer ring 95 (bearing portion) is on the bottom. A jig 103 that supports the gear 93 from below is positioned between the gear 93 and the outer ring 95. In this state, the ball 97 is inserted into the crescent-shaped space formed between the inner shaft 91 and the outer ring 95 through the space between the jig 103 that supports the gear 93 and the outer ring 95. If the distance S between the gear 93 and the outer ring 95 (bearing portion) is set small in order to make the rolling bearing device 90 compact, the jig 103 gets in the way and it may become impossible to insert the ball 97.
 そこで、本開示は、外輪(軸受部)と歯車等の動力伝達部とが軸方向について接近している場合であっても、転がり軸受装置の製造が容易となる方法を提供する。 The present disclosure therefore provides a method for easily manufacturing a rolling bearing device, even when the outer ring (bearing portion) and a power transmission portion such as a gear are close to each other in the axial direction.
 本発明の実施形態に係る方法は、
 内軸と、外輪と、前記内軸と前記外輪との間に位置する複数の玉と、を備える転がり軸受装置の製造方法であって、
 前記内軸は、軸方向の第一の側に位置する第一の軸部と、軸方向の第二の側に位置する第二の軸部と、前記第一の軸部と前記第二の軸部との間に位置する動力伝達部と、を有し、
 前記第一の軸部は第一の内輪軌道溝を有し、
 前記外輪は第一の外輪軌道溝を有し、
 前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第一の側に位置する第一の肩との境界が、第一境界であり、
 前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第二の側に位置する第二の肩との境界が、第二境界であり、
 前記転がり軸受装置の製造方法は、
  前記第一の軸部の径方向の外側に前記外輪を位置させる組み合わせ工程と、
  前記第一の内輪軌道溝における、前記第一境界及び前記第二境界を除く、任意の位置での接線方向が水平方向となるように、前記内軸を位置させる準備工程と、
  前記内軸の前記第一の軸部と前記第二の軸部とを下から支持する支持工程と、
  前記外輪を上に移動させる偏心工程と、
  前記第一の外輪軌道溝と前記第一の内輪軌道溝との間に、前記玉を、軸方向から挿入する挿入工程と、
  前記外輪の中心軸を前記内軸の中心軸と一致させる移動工程と、
 を有する。
The method according to an embodiment of the present invention comprises the steps of:
A manufacturing method for a rolling bearing device including an inner shaft, an outer ring, and a plurality of balls positioned between the inner shaft and the outer ring, comprising the steps of:
the inner shaft has a first shaft portion located on a first side in the axial direction, a second shaft portion located on a second side in the axial direction, and a power transmission portion located between the first shaft portion and the second shaft portion,
the first shaft portion has a first inner ring raceway groove,
the outer ring has a first outer ring raceway groove,
a boundary between the first inner ring raceway groove and a first shoulder located on a first side in an axial direction of the first inner ring raceway groove is a first boundary,
a boundary between the first inner ring raceway groove and a second shoulder located on a second side in the axial direction of the first inner ring raceway groove is a second boundary,
The method for manufacturing the rolling bearing device includes the steps of:
a combining step of positioning the outer ring radially outside the first shaft portion;
a preparation step of positioning the inner shaft so that a tangent direction at any position on the first inner ring raceway groove, excluding the first boundary and the second boundary, is horizontal;
a supporting step of supporting the first shaft portion and the second shaft portion of the inner shaft from below;
an eccentric step of moving the outer ring upward;
an inserting step of inserting the ball between the first outer ring raceway groove and the first inner ring raceway groove in an axial direction;
a moving step of aligning a central axis of the outer ring with a central axis of the inner shaft;
has.
 外輪(軸受部)と動力伝達部とが軸方向について接近している場合であっても、転がり軸受装置の製造が容易となる。 The rolling bearing device is easy to manufacture, even when the outer ring (bearing portion) and the power transmission portion are close to each other in the axial direction.
図1は、本開示の製造方法によって製造される転がり軸受装置の一例を示す側面図である。FIG. 1 is a side view showing an example of a rolling bearing device manufactured by the manufacturing method of the present disclosure. 図2は、転がり軸受装置の製造方法を示すフロー図である。FIG. 2 is a flow diagram showing a manufacturing method of the rolling bearing device. 図3は、組み合わせ工程及び準備工程の説明図である。FIG. 3 is an explanatory diagram of the combining step and the preparation step. 図4は、支持工程の説明図である。FIG. 4 is an explanatory diagram of the supporting step. 図5は、偏心工程の説明図である。FIG. 5 is an explanatory diagram of the decentering step. 図6は、挿入工程の説明図である。FIG. 6 is an explanatory diagram of the insertion process. 図7は、移動工程の説明図である。FIG. 7 is an explanatory diagram of the moving process. 図8は、取り付け工程の説明図である。FIG. 8 is an explanatory diagram of the mounting process. 図9は、冠形保持器の説明図である。FIG. 9 is an explanatory diagram of a crown cage. 図10は、つの形保持器の説明図である。FIG. 10 is an explanatory diagram of a horn-shaped cage. 図11は、図1に示す転がり軸受装置の他の製造方法の説明図である。11A to 11C are explanatory diagrams of another method for manufacturing the rolling bearing device shown in FIG. 図12は、他の形態の転がり軸受装置の製造方法の説明図である。12A to 12C are explanatory diagrams of a manufacturing method for a rolling bearing device according to another embodiment. 図13は、他の形態の転がり軸受装置の製造方法の説明図である。13A to 13C are explanatory diagrams of a manufacturing method for a rolling bearing device according to another embodiment. 図14は、図13に示す転がり軸受装置の製造方法の説明図である。14A to 14C are explanatory diagrams of a manufacturing method for the rolling bearing device shown in FIG. 図15は、従来の転がり軸受装置の製造方法の説明図である。FIG. 15 is an explanatory diagram of a conventional method for manufacturing a rolling bearing device. 図16は、従来の転がり軸受装置の製造方法の説明図である。FIG. 16 is an explanatory diagram of a conventional method for manufacturing a rolling bearing device.
<本発明の実施形態の概要>
 以下、本発明の実施形態の概要を列記して説明する。
 (1)本発明の実施形態に係る転がり軸受装置の製造方法は、
 内軸と、外輪と、前記内軸と前記外輪との間に位置する複数の玉と、を備える転がり軸受装置の製造方法であって、
 前記内軸は、軸方向の第一の側に位置する第一の軸部と、軸方向の第二の側に位置する第二の軸部と、前記第一の軸部と前記第二の軸部との間に位置する動力伝達部と、を有し、
 前記第一の軸部は第一の内輪軌道溝を有し、
 前記外輪は第一の外輪軌道溝を有し、
 前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第一の側に位置する第一の肩との境界が、第一境界であり、
 前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第二の側に位置する第二の肩との境界が、第二境界であり、
 前記転がり軸受装置の製造方法は、
  前記第一の軸部の径方向の外側に前記外輪を位置させる組み合わせ工程と、
  前記第一の内輪軌道溝における、前記第一境界及び前記第二境界を除く、任意の位置での接線方向が水平方向となるように、前記内軸を位置させる準備工程と、
  前記第一の軸部と前記第二の軸部とを下から支持する支持工程と、
  前記外輪を上に移動させる偏心工程と、
  前記第一の外輪軌道溝と前記第一の内輪軌道溝との間に、前記玉を、軸方向から挿入する挿入工程と、
  前記挿入工程の後、前記外輪の中心軸を前記内軸の中心軸と一致させる移動工程と、
 を有する。
Overview of the embodiment of the present invention
Hereinafter, an outline of an embodiment of the present invention will be described.
(1) A method for manufacturing a rolling bearing device according to an embodiment of the present invention includes:
A manufacturing method for a rolling bearing device including an inner shaft, an outer ring, and a plurality of balls positioned between the inner shaft and the outer ring, comprising the steps of:
the inner shaft has a first shaft portion located on a first side in an axial direction, a second shaft portion located on a second side in the axial direction, and a power transmission portion located between the first shaft portion and the second shaft portion,
the first shaft portion has a first inner ring raceway groove,
the outer ring has a first outer ring raceway groove,
a boundary between the first inner ring raceway groove and a first shoulder located on a first side in an axial direction of the first inner ring raceway groove is a first boundary,
a boundary between the first inner ring raceway groove and a second shoulder located on a second side in the axial direction of the first inner ring raceway groove is a second boundary,
The method for manufacturing the rolling bearing device includes the steps of:
a combining step of positioning the outer ring radially outside the first shaft portion;
a preparation step of positioning the inner shaft so that a tangent direction at any position on the first inner ring raceway groove, excluding the first boundary and the second boundary, is horizontal;
a supporting step of supporting the first shaft portion and the second shaft portion from below;
an eccentric step of moving the outer ring upward;
an inserting step of inserting the ball between the first outer ring raceway groove and the first inner ring raceway groove in an axial direction;
a moving step of aligning a central axis of the outer ring with a central axis of the inner shaft after the inserting step;
has.
 前記製造方法によれば、外輪(軸受部)と動力伝達部とが軸方向について接近している場合であっても、従来のように、玉又は動力伝達部を支持する治具が、外輪と動力伝達部との間に位置する必要がなくなり、転がり軸受装置の製造が容易となる。 With this manufacturing method, even if the outer ring (bearing portion) and the power transmission portion are close to each other in the axial direction, there is no need to position a jig that supports the balls or the power transmission portion between the outer ring and the power transmission portion as in the past, making it easier to manufacture the rolling bearing device.
 (2)好ましくは、前記挿入工程において、吸着装置を用いて、前記玉を減圧により吸着し又は磁気により吸着し、前記玉を吸着した前記吸着装置の吸着部を移動させて、前記第一の外輪軌道溝と前記第一の内輪軌道溝との間に、前記玉を挿入する。
 前記製造方法により、挿入工程が容易となる。
(2) Preferably, in the insertion process, an adsorption device is used to adsorb the ball by vacuum or magnetic force, and the adsorption portion of the adsorption device that has adsorbed the ball is moved to insert the ball between the first outer ring raceway groove and the first inner ring raceway groove.
The manufacturing method facilitates the insertion process.
 (3)好ましくは、前記転がり軸受装置は、前記複数の玉を保持する、つの形保持器又は冠形保持器を有し、前記転がり軸受装置の製造方法は、前記移動工程の後に、前記つの形保持器又は前記冠形保持器を、前記軸方向の第一の側から前記複数の玉に組み付ける取り付け工程を、有する。
 前記製造方法により、つの形保持器又は冠形保持器を複数の玉に容易に組み付けることが可能である。
(3) Preferably, the rolling bearing device has a horn-shaped cage or a crown-shaped cage that holds the plurality of balls, and the manufacturing method for the rolling bearing device includes, after the moving step, an attachment step of assembling the horn-shaped cage or the crown-shaped cage to the plurality of balls from a first side in the axial direction.
The manufacturing method described above makes it possible to easily assemble a horn-shaped cage or a crown-shaped cage to a number of balls.
<本発明の実施形態の詳細>
 以下、本発明の実施形態を説明する。
〔転がり軸受装置の構成〕
 図1は、本開示の製造方法によって製造される転がり軸受装置の一例を示す側面図である。図1において、転がり軸受装置10の一部(軸受部18)は断面で示されている。転がり軸受装置10は、内軸11と、外輪12と、内軸11と外輪12との間に位置する複数の玉13とを備える。転がり軸受装置10は、複数の玉13を保持する保持器14を有する。
<Details of the embodiment of the present invention>
Hereinafter, an embodiment of the present invention will be described.
[Configuration of rolling bearing device]
Fig. 1 is a side view showing an example of a rolling bearing device manufactured by the manufacturing method of the present disclosure. In Fig. 1, a part (bearing portion 18) of the rolling bearing device 10 is shown in cross section. The rolling bearing device 10 includes an inner shaft 11, an outer ring 12, and a plurality of balls 13 located between the inner shaft 11 and the outer ring 12. The rolling bearing device 10 has a cage 14 that holds the plurality of balls 13.
 内軸11は、直線状の軸である。転がり軸受装置10の各方向は、次のように定義される。内軸11の中心軸Cに沿った方向が「軸方向」である。中心軸Cに直交する方向が「径方向」である。中心軸Cを中心とする円に沿った方向が「周方向」である。各図において、軸方向の左側が「第一の側」であり、軸方向の右側が「第二の側」である。 The inner shaft 11 is a straight shaft. The directions of the rolling bearing device 10 are defined as follows: The direction along the central axis C of the inner shaft 11 is the "axial direction". The direction perpendicular to the central axis C is the "radial direction". The direction along a circle centered on the central axis C is the "circumferential direction". In each figure, the left side in the axial direction is the "first side", and the right side in the axial direction is the "second side".
 内軸11は、軸方向の第一の側に位置する第一の軸部21と、軸方向の第二の側に位置する第二の軸部22と、第一の軸部21と第二の軸部22との間に位置する動力伝達部とを有する。本実施形態の前記動力伝達部は歯車20である。歯車20よりも軸方向の第一の側が第一の軸部21であり、歯車20よりも軸方向の第二の側が第二の軸部22である。 The inner shaft 11 has a first shaft portion 21 located on a first axial side, a second shaft portion 22 located on a second axial side, and a power transmission portion located between the first shaft portion 21 and the second shaft portion 22. In this embodiment, the power transmission portion is a gear 20. The first shaft portion 21 is on the first axial side of the gear 20, and the second shaft portion 22 is on the second axial side of the gear 20.
 前記動力伝達部は、内軸11に回転力を伝達する、又は、内軸11の回転力を他の機器に伝達する部分であり、歯車20以外であってもよく、例えばプーリであってもよい。第一の軸部21、歯車20(動力伝達部)、及び、第二の軸部22それぞれの中心軸は、内軸11の中心軸Cと一致する。 The power transmission part is a part that transmits a rotational force to the inner shaft 11 or transmits the rotational force of the inner shaft 11 to another device, and may be something other than the gear 20, for example, a pulley. The central axes of the first shaft part 21, the gear 20 (power transmission part), and the second shaft part 22 each coincide with the central axis C of the inner shaft 11.
 歯車20は、内軸11が有する中央軸部11bと一体である。中央軸部11bは、内軸11のうち、第一の軸部21と第二の軸部22との間の部分である。歯車20は、中央軸部11bと別部品であって、歯車20が中央軸部11bに固定されていてもよい。この場合、歯車20は、例えば、中央軸部11bに嵌っている。歯車20は、中央軸部11bに、例えばキー又はスプラインにより廻り止めされていてもよい。又は、中央軸部11bを中央に含む歯車20と、第一の軸部21及び第二の軸部22とは、鍛造工程を経て一体成形された部材であってもよい。 The gear 20 is integral with the central shaft portion 11b of the inner shaft 11. The central shaft portion 11b is the portion of the inner shaft 11 between the first shaft portion 21 and the second shaft portion 22. The gear 20 may be a separate part from the central shaft portion 11b, and the gear 20 may be fixed to the central shaft portion 11b. In this case, the gear 20 is fitted, for example, to the central shaft portion 11b. The gear 20 may be prevented from rotating on the central shaft portion 11b, for example, by a key or spline. Alternatively, the gear 20 including the central shaft portion 11b in the center and the first shaft portion 21 and second shaft portion 22 may be a member integrally formed through a forging process.
 第一の軸部21は、軸状の部分である。第一の軸部21は、その外周に、第一の内輪軌道溝26を有する。第一の内輪軌道溝26は、中心軸Cを含む断面において、凹円弧形状を有する。第一の内輪軌道溝26の軸方向の第一の側(図1の場合、左側)は、全長にわたって、直線形状を有する。第一の内輪軌道溝26の軸方向の第二の側(図1の場合、右側)は、歯車20まで、直線形状を有する。歯車20(動力伝達部)の外接円の半径Rは、第一の内輪軌道溝26を有する第一の軸部21の半径rよりも、大きい。 The first shaft portion 21 is a shaft-shaped portion. The first shaft portion 21 has a first inner ring raceway groove 26 on its outer periphery. The first inner ring raceway groove 26 has a concave arc shape in a cross section including the central axis C. A first axial side (left side in the case of FIG. 1) of the first inner ring raceway groove 26 has a linear shape over its entire length. A second axial side (right side in the case of FIG. 1) of the first inner ring raceway groove 26 has a linear shape up to the gear 20. The radius R of the circumscribing circle of the gear 20 (power transmission part) is greater than the radius r of the first shaft portion 21 having the first inner ring raceway groove 26.
 第一の軸部21は、第一の内輪軌道溝26の軸方向の第一の側に、第一の肩27を有する。第一の軸部21は、第一の内輪軌道溝26の軸方向の第二の側に、第二の肩28を有する。第一の内輪軌道溝26と第一の肩27との境界が「第一境界31」である。第一の内輪軌道溝26と第二の肩28との境界が「第二境界32」である。 The first shaft portion 21 has a first shoulder 27 on a first axial side of the first inner ring raceway groove 26. The first shaft portion 21 has a second shoulder 28 on a second axial side of the first inner ring raceway groove 26. The boundary between the first inner ring raceway groove 26 and the first shoulder 27 is the "first boundary 31." The boundary between the first inner ring raceway groove 26 and the second shoulder 28 is the "second boundary 32."
 第一の内輪軌道溝26と第一の肩27との境界が、断面凸アール形状(面取り)を有する場合、凹円弧形状である第一の内輪軌道溝26の仮想延長線と、直線状である第一の肩27の仮想延長線との交点が「第一境界31」である。第一の内輪軌道溝26と第二の肩28との境界が、断面凸アール形状(面取り)を有する場合、凹円弧形状である第一の内輪軌道溝26の仮想延長線と、直線状である第二の肩28の仮想延長線との交点が「第二境界32」である。 When the boundary between the first inner ring raceway groove 26 and the first shoulder 27 has a cross-sectional convex radius (chamfer), the intersection point between the imaginary extension line of the first inner ring raceway groove 26, which is a concave arc shape, and the imaginary extension line of the first shoulder 27, which is a straight line, is the "first boundary 31." When the boundary between the first inner ring raceway groove 26 and the second shoulder 28 has a cross-sectional convex radius (chamfer), the intersection point between the imaginary extension line of the first inner ring raceway groove 26, which is a concave arc shape, and the imaginary extension line of the second shoulder 28, which is a straight line, is the "second boundary 32."
 第二の軸部22は、軸状の部分である。中心軸Cを含む断面において、第二の軸部22の外周は、全長にわたって直線形状を有する。なお、図示しないが、第二の軸部22の外周は、軸方向の途中に段部を有していてもよい。同様に、第一の軸部21の外周は、軸方向の途中に段部を有していてもよい。ただし、前記段部それぞれの半径は、歯車20(動力伝達部)の外接円の半径Rよりも小さく、さらに、外輪12の内周面の半径よりも小さい。 The second shaft portion 22 is an axial portion. In a cross section including the central axis C, the outer periphery of the second shaft portion 22 has a linear shape over its entire length. Although not shown, the outer periphery of the second shaft portion 22 may have a step portion midway in the axial direction. Similarly, the outer periphery of the first shaft portion 21 may have a step portion midway in the axial direction. However, the radius of each of the steps is smaller than the radius R of the circumscribing circle of the gear 20 (power transmission portion) and is also smaller than the radius of the inner circumferential surface of the outer ring 12.
 外輪12は、環状の部材である。外輪12は、その内周に、第一の外輪軌道溝29を有する。第一の外輪軌道溝29は、中心軸Cを含む断面において、凹円弧形状を有する。外輪12は、第一の外輪軌道溝29の軸方向の第一の側に、第三の肩35を有する。外輪12は、第一の外輪軌道溝29の軸方向の第二の側に、第四の肩36を有する。第三の肩35及び第四の肩36は、玉13を第一の外輪軌道溝29と第一の内輪軌道溝26との間に挿入するための入れ溝を有していない。 The outer ring 12 is an annular member. The outer ring 12 has a first outer ring raceway groove 29 on its inner circumference. The first outer ring raceway groove 29 has a concave arc shape in a cross section including the center axis C. The outer ring 12 has a third shoulder 35 on a first axial side of the first outer ring raceway groove 29. The outer ring 12 has a fourth shoulder 36 on a second axial side of the first outer ring raceway groove 29. The third shoulder 35 and the fourth shoulder 36 do not have insertion grooves for inserting the balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
 玉13は、外輪12と第一の軸部21との間に設けられ、第一の外輪軌道溝29と第一の内輪軌道溝26とを転がり接触する。外輪12、複数の玉13、第一の軸部21(第一の内輪軌道溝26が形成されている部分)、及び、保持器14により、軸受部18が構成される。軸受部18は、深溝玉軸受(溝玉軸受)となり、歯車20を含む内軸11を回転自在に支持する。 The balls 13 are provided between the outer ring 12 and the first shaft portion 21, and roll in contact with the first outer ring raceway groove 29 and the first inner ring raceway groove 26. The outer ring 12, the balls 13, the first shaft portion 21 (the portion where the first inner ring raceway groove 26 is formed), and the retainer 14 form the bearing portion 18. The bearing portion 18 is a deep groove ball bearing (groove ball bearing) and rotatably supports the inner shaft 11 including the gear 20.
 保持器14は、図9に示す冠形保持器である、又は、図10に示すつの形保持器である。保持器14は、一つの環状体15と、その環状体15から軸方向に突出している複数のつの16とを有する。周方向について隣り合う二つのつの16の間が、玉13を保持するポケット14aとなる。ポケット14aは、軸方向の一方(図9及び図10の場合、右側)に開口していて、その開口する箇所を通じて、玉13と組み合わされる。図1において、保持器14は、第一の軸部21と外輪12との間に取り付けられた複数の玉13に対して、軸方向の第一の側(図1の場合、左側)から取り付けられる。保持器14は、複数の玉13に取り付けられると、軸方向の第一側に脱落しない。そのために、例えば図9に示す冠形保持器の場合、つの16は、その先端に、玉13に軸方向に接触する爪17を有する。 The cage 14 is a crown-shaped cage as shown in FIG. 9, or a horn-shaped cage as shown in FIG. 10. The cage 14 has one annular body 15 and multiple horns 16 protruding from the annular body 15 in the axial direction. The pocket 14a that holds the balls 13 is between two adjacent horns 16 in the circumferential direction. The pocket 14a opens to one side in the axial direction (the right side in the cases of FIGS. 9 and 10), and is combined with the balls 13 through the opening. In FIG. 1, the cage 14 is attached to the multiple balls 13 attached between the first shaft portion 21 and the outer ring 12 from the first axial side (the left side in the case of FIG. 1). When the cage 14 is attached to the multiple balls 13, it does not fall off to the first axial side. For this reason, for example, in the case of the crown-shaped cage shown in FIG. 9, the horns 16 have claws 17 at their tips that come into axial contact with the balls 13.
〔転がり軸受装置の製造方法(1)について〕
 前記構成を備える転がり軸受装置10の製造方法について説明する。図2は、その製造方法を示すフロー図である。その製造方法は、組み合わせ工程St1、準備工程St2、支持工程St3、偏心工程St4、挿入工程St5、移動工程St6、及び、取り付け工程St7を有する。各工程は、組み合わせ工程St1から取り付け工程St7まで、前記の順に行われる。ただし、組み合わせ工程St1と準備工程St2とに関して、これらのうちのいずれか一方が先に行われ、他方が後に行われてもよく、又は、組み合わせ工程St1と準備工程St2とは、併せて同時に行われてもよい。
 以下、各工程について説明する。
[Regarding manufacturing method (1) of rolling bearing device]
A manufacturing method of the rolling bearing device 10 having the above-mentioned configuration will be described. Fig. 2 is a flow diagram showing the manufacturing method. The manufacturing method includes an assembling step St1, a preparation step St2, a supporting step St3, an eccentric step St4, an inserting step St5, a moving step St6, and an attachment step St7. Each step is performed in the above-mentioned order from the assembling step St1 to the attachment step St7. However, regarding the assembling step St1 and the preparation step St2, one of them may be performed first and the other may be performed later, or the assembling step St1 and the preparation step St2 may be performed simultaneously.
Each step will be described below.
 図3は、組み合わせ工程St1及び準備工程St2の説明図である。組み合わせ工程St1は、第一の軸部21の径方向の外側に外輪12を位置させる工程である。内軸11は、その軸方向の第一側の端部11aから、環状である外輪12に挿入される。 FIG. 3 is an explanatory diagram of the assembly process St1 and the preparation process St2. The assembly process St1 is a process of positioning the outer ring 12 radially outside the first shaft portion 21. The inner shaft 11 is inserted into the annular outer ring 12 from its axial first end 11a.
 準備工程St2は、内軸11の中心軸Cを水平方向に位置させる工程である。なお、準備工程St2は、内軸11の中心軸Cをほぼ水平方向に位置させる工程であればよい。具体的に説明すると、準備工程St2は、第一の内輪軌道溝26における、第一境界31及び第二境界32を除く、任意の位置での接線方向が水平方向となるように、内軸11を位置させる工程である。図3に示す方法の場合、中心軸Cを含む断面において、第一の内輪軌道溝26の最も深い位置での接線方向が水平方向となる。これにより、内軸11の中心軸Cが水平方向となる。 The preparation step St2 is a step of positioning the central axis C of the inner shaft 11 in a horizontal direction. Note that the preparation step St2 may be any step as long as it positions the central axis C of the inner shaft 11 in a substantially horizontal direction. Specifically, the preparation step St2 is a step of positioning the inner shaft 11 so that the tangent direction at any position in the first inner ring raceway groove 26, excluding the first boundary 31 and the second boundary 32, is horizontal. In the case of the method shown in FIG. 3, in a cross section including the central axis C, the tangent direction at the deepest position of the first inner ring raceway groove 26 is horizontal. As a result, the central axis C of the inner shaft 11 is horizontal.
 内軸11の姿勢をほぼ水平にする理由は、次のとおりである。後の挿入工程St5において(図6参照)、玉13が、第一の内輪軌道溝26と第一の外輪軌道溝29との間に軸方向の第一側から挿入される。この際、本実施形態の製造方法の場合、第一の内輪軌道溝26及び第一の外輪軌道溝29の軸方向の第二側に、玉13が脱落することを防止するストッパ(治具)が用いられない。つまり、水平にする理由は、挿入工程St5において、玉13を、第一の内輪軌道溝26と第一の外輪軌道溝29との間に位置させるが、その玉13が、転がって第二の肩28を通過し、外輪12の外に脱落することを防ぐためである。 The reason for making the position of the inner shaft 11 nearly horizontal is as follows. In the subsequent insertion step St5 (see FIG. 6), the ball 13 is inserted between the first inner ring raceway groove 26 and the first outer ring raceway groove 29 from the first axial side. At this time, in the case of the manufacturing method of this embodiment, a stopper (jig) for preventing the ball 13 from falling out is not used on the second axial side of the first inner ring raceway groove 26 and the first outer ring raceway groove 29. In other words, the reason for making it horizontal is that, although the ball 13 is positioned between the first inner ring raceway groove 26 and the first outer ring raceway groove 29 in the insertion step St5, the ball 13 is prevented from rolling past the second shoulder 28 and falling out of the outer ring 12.
 中心軸Cが水平方向となる内軸11の姿勢は、少なくとも移動工程St6の終了まで継続される。なお、その後の取り付け工程St7においても、中心軸Cが水平方向となる内軸11の姿勢が維持されてもよい。 The position of the inner shaft 11 with the central axis C in the horizontal direction continues at least until the end of the moving step St6. Note that the position of the inner shaft 11 with the central axis C in the horizontal direction may also be maintained in the subsequent attachment step St7.
 図4は、支持工程St3の説明図である。支持工程St3は、組み合わせ工程St1及び準備工程St2を終えた内軸11の第一の軸部21と第二の軸部22とを鉛直方向の下から支持する工程である。第一の軸部21は、第一の支持部材41によって下から支持される。第二の軸部22は、第二の支持部材42によって下から支持される。第一の支持部材41は、その上部に、第一の軸部21を載せる凹部46を有し、凹部46に第一の軸部21が嵌まる。第二の支持部材42は、その上部に、第二の軸部22を載せる凹部47を有し、凹部47に第二の軸部22が嵌まる。凹部46及び凹部47の形状は、円弧形状であってもよく、三角形状であってもよい。内軸11は、第一の支持部材41及び第二の支持部材42により、安定して支持される。 FIG. 4 is an explanatory diagram of the supporting step St3. The supporting step St3 is a step of supporting the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 after the combining step St1 and the preparing step St2 from below in the vertical direction. The first shaft portion 21 is supported from below by the first supporting member 41. The second shaft portion 22 is supported from below by the second supporting member 42. The first supporting member 41 has a recess 46 on which the first shaft portion 21 is placed, and the first shaft portion 21 fits into the recess 46 on its upper part. The second supporting member 42 has a recess 47 on which the second shaft portion 22 is placed, and the second shaft portion 22 fits into the recess 47 on its upper part. The recesses 46 and 47 may be arc-shaped or triangular. The inner shaft 11 is stably supported by the first supporting member 41 and the second supporting member 42.
 第二の支持部材42は、歯車20の軸方向の第二の側に位置し、歯車20と比較的接近している。図4において、歯車20と第二の支持部材42との軸方向の間隔を「E2」とする。第一の支持部材41は、第一の内輪軌道溝26の径方向外方に位置する外輪12の軸方向の第一の側に位置する。第一の支持部材41は、外輪12と比較的離れている。第一支持部41と外輪12との軸方向の間隔E1は、前記間隔E2よりも大きい。歯車20を有する内軸11の重心は、軸方向の第二の側に偏る。第二の支持部材42が歯車20と比較的接近していることで、内軸11は安定して支持される。 The second support member 42 is located on the second axial side of the gear 20 and is relatively close to the gear 20. In FIG. 4, the axial distance between the gear 20 and the second support member 42 is "E2". The first support member 41 is located on the first axial side of the outer ring 12 located radially outward of the first inner ring raceway groove 26. The first support member 41 is relatively far from the outer ring 12. The axial distance E1 between the first support portion 41 and the outer ring 12 is greater than the distance E2. The center of gravity of the inner shaft 11 having the gear 20 is biased toward the second axial side. Since the second support member 42 is relatively close to the gear 20, the inner shaft 11 is stably supported.
 図5は、偏心工程St4の説明図である。偏心工程St4は、外輪12を鉛直方向の上に移動させる工程である。第三の支持部材43が外輪12を鉛直方向の下から持ち上げる。外輪12の最下部の内周面が、第一の軸部21の最下部の外周面に接触する。この状態で、外輪12の中心軸が内軸11の中心軸Cとずらされ、内軸11(第一の軸部21)と外輪12との間に三日月形の空間Qが形成される。第一の軸部21と外輪12との間隔は、三日月形の空間Qの鉛直方向の最上部で最も広い。第一の軸部21と外輪12との間隔は、三日月形の空間Qにおいて、外輪12の内周面と第1の軸部21の外周面の接触した位置の中心軸Cに対して180°反対側で最も広い。 FIG. 5 is an explanatory diagram of the eccentric step St4. The eccentric step St4 is a step of moving the outer ring 12 upward in the vertical direction. The third support member 43 lifts the outer ring 12 from below in the vertical direction. The inner peripheral surface of the lowermost part of the outer ring 12 comes into contact with the outer peripheral surface of the lowermost part of the first shaft portion 21. In this state, the central axis of the outer ring 12 is shifted from the central axis C of the inner shaft 11, and a crescent-shaped space Q is formed between the inner shaft 11 (first shaft portion 21) and the outer ring 12. The gap between the first shaft portion 21 and the outer ring 12 is widest at the top of the crescent-shaped space Q in the vertical direction. The gap between the first shaft portion 21 and the outer ring 12 is widest on the 180° opposite side of the central axis C of the position where the inner peripheral surface of the outer ring 12 and the outer peripheral surface of the first shaft portion 21 come into contact in the crescent-shaped space Q.
 図6は、挿入工程St5の説明図である。挿入工程St5は、第一の外輪軌道溝29と第一の内輪軌道溝26との間に、玉13を、軸方向から挿入する工程である。玉13は、三日月形の空間Qに挿入される。玉13は、軸方向の第一の側と軸方向の第二の側とのうちの少なくとも一方から挿入される。図6に示す方法の場合、玉13は、三日月形の空間Qに、軸方向の第一の側から挿入される。これにより、歯車20が邪魔にならない。玉13は、三日月形の空間Qに、一つずつ挿入されてもよいが、例えば3~4個の複数の玉13がまとまって、三日月形の空間Qに挿入されてもよい。全ての玉13が、三日月形の空間Qに挿入される。この間、第三の支持部材43による外輪12の、第一の軸部21に対する支持高さが変更調整されてもよい。 FIG. 6 is an explanatory diagram of the insertion step St5. The insertion step St5 is a step of inserting the balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26 from the axial direction. The balls 13 are inserted into the crescent-shaped space Q. The balls 13 are inserted from at least one of the first axial side and the second axial side. In the case of the method shown in FIG. 6, the balls 13 are inserted into the crescent-shaped space Q from the first axial side. This ensures that the gear 20 does not get in the way. The balls 13 may be inserted into the crescent-shaped space Q one by one, or, for example, a group of three or four balls 13 may be inserted into the crescent-shaped space Q together. All the balls 13 are inserted into the crescent-shaped space Q. During this time, the support height of the outer ring 12 with respect to the first shaft portion 21 by the third support member 43 may be changed and adjusted.
 第一の支持部材41、第二の支持部材42、及び、第三の支持部材43を有する製造装置50は、吸着装置49を更に有する。吸着装置49は、一つ又は複数の玉13を減圧により吸着する機能を有する。つまり、吸着装置49は、エアの吸引を行うことで、玉13を吸着する。又は、吸着装置49は、一つ又は複数の玉13を磁気(電磁石)により吸着する機能を有していてもよい。 The manufacturing device 50 having the first support member 41, the second support member 42, and the third support member 43 further has an adsorption device 49. The adsorption device 49 has a function of adsorbing one or more balls 13 by reducing pressure. In other words, the adsorption device 49 adsorbs the balls 13 by sucking in air. Alternatively, the adsorption device 49 may have a function of adsorbing one or more balls 13 by magnetism (electromagnet).
 吸着装置49は、玉13と接する吸着部49aを有する。挿入工程St5において、吸着装置49を用いて、玉13を減圧により吸着する(又は磁気により吸着する)。図外のアクチュエータが、玉13を吸着した吸着部49aを、軸方向の移動成分を有して移動させて、第一の外輪軌道溝29と第一の内輪軌道溝26との間に、その一つ又は複数の玉13を挿入する。吸着部49aによる吸着が解除されることで、一つ又は複数の玉13は吸着部49aから離れる。すると、一つ又は複数の玉13は、その自重によって、第一の外輪軌道溝29と第一の内輪軌道溝26との間に挿入される。吸着部49aは、第一の軸部21の上方に位置する。一つ又は複数の玉13は、三日月形の空間Qのうち、鉛直方向の最上部から挿入される。吸着装置49によれば、玉13の挿入が自動化され、その作業が容易となる。 The suction device 49 has an suction portion 49a that contacts the ball 13. In the insertion step St5, the suction device 49 is used to suction the ball 13 by reducing pressure (or by magnetism). An actuator (not shown) moves the suction portion 49a that has suctioned the ball 13 with an axial movement component, and inserts the ball or balls 13 between the first outer ring raceway groove 29 and the first inner ring raceway groove 26. When the suction by the suction portion 49a is released, the ball or balls 13 move away from the suction portion 49a. Then, the ball or balls 13 are inserted between the first outer ring raceway groove 29 and the first inner ring raceway groove 26 by their own weight. The suction portion 49a is located above the first shaft portion 21. The ball or balls 13 are inserted from the top of the crescent-shaped space Q in the vertical direction. The suction device 49 automates the insertion of the balls 13, making the operation easier.
 図7は、移動工程St6の説明図である。移動工程St6は、挿入工程St5の後、外輪12の中心軸を内軸11の中心軸と一致させる工程である。つまり、全ての玉13が三日月形の空間Qに挿入されると、外輪12の中心軸は、内軸11の中心軸と一致する。このために、第三の支持部材43による外輪12の支持が解除される。移動工程St6は、第一の外輪軌道溝29と第一の内輪軌道溝26との間で、複数の玉13が周方向に分散する工程となる。 FIG. 7 is an explanatory diagram of the moving process St6. The moving process St6 is a process of aligning the central axis of the outer ring 12 with the central axis of the inner shaft 11 after the insertion process St5. In other words, when all the balls 13 are inserted into the crescent-shaped space Q, the central axis of the outer ring 12 coincides with the central axis of the inner shaft 11. As a result, support of the outer ring 12 by the third support member 43 is released. The moving process St6 is a process in which the multiple balls 13 are dispersed in the circumferential direction between the first outer ring raceway groove 29 and the first inner ring raceway groove 26.
 図8は、取り付け工程St7の説明図である。取り付け工程St7は、移動工程St6の後に、保持器14(図9に示す冠形保持器、又は、図10に示すつの形保持器)を、軸方向の第一の側から複数の玉13に組み付ける工程である。保持器14は、第一の軸部21と外輪12との間に取り付けられた複数の玉13に対して、軸方向の第一の側から接近し、組み付けられる。保持器14は、ポケット14aが軸方向の第二の側(図8の場合、右側)に開口する冠形保持器又はつの形保持器である。このため、保持器14は、複数の玉13に容易に組み付けられる。
 取り付け工程St7は、保持器14を複数の玉13に組付ける前に、複数の玉13を周方向に等間隔に配置するために、玉13どうしの間に間隔を開ける玉割りを含んでも良い。玉割りは、軸方向に延在する複数の棒を各玉13の間に挿入し、脱離することで行っても良い。
8 is an explanatory diagram of the mounting step St7. The mounting step St7 is a step of assembling the cage 14 (a crown cage shown in FIG. 9 or a horn cage shown in FIG. 10) to the plurality of balls 13 from the first axial side after the moving step St6. The cage 14 approaches the plurality of balls 13 mounted between the first shaft portion 21 and the outer ring 12 from the first axial side and is assembled thereto. The cage 14 is a crown cage or a horn cage in which the pockets 14a open to the second axial side (the right side in the case of FIG. 8). Therefore, the cage 14 can be easily assembled to the plurality of balls 13.
The mounting process St7 may include ball splitting to provide spaces between the balls 13 in order to arrange the balls 13 at equal intervals in the circumferential direction before assembling the cage 14 to the balls 13. The ball splitting may be performed by inserting a plurality of rods extending in the axial direction between the balls 13 and removing the rods.
 取り付け工程St7は、内軸11が第一の支持部材41及び第二の支持部材42によって支持された状態で実施される。又は、内軸11が第一の支持部材41及び第二の支持部材42によって支持されていない状態で実施されていてもよい。この場合、取り付け工程St7は、内軸11の中心軸Cがほぼ水平方向となる姿勢以外で実施されてもよい。 The mounting step St7 is performed in a state where the inner shaft 11 is supported by the first support member 41 and the second support member 42. Alternatively, the mounting step St7 may be performed in a state where the inner shaft 11 is not supported by the first support member 41 and the second support member 42. In this case, the mounting step St7 may be performed in a position other than where the central axis C of the inner shaft 11 is substantially horizontal.
〔転がり軸受装置の製造方法(2)について〕
 図11は、図1に示す転がり軸受装置10の他の製造方法(2)の説明図である。図11は、支持工程St3を示す。
 図4に示す製造方法(1)の支持工程St3の場合、第一の支持部材41は外輪12の軸方向の第一の側(図4の場合、左側)に位置する。
 図11に示す支持工程St3の場合、第一の支持部材41は第一の軸部21を支持している点で、図4に示す支持工程St3と同じであるが、第一の支持部材41は、外輪12の軸方向の第二の側(図11の場合、右側)に位置する。つまり、第一の支持部材41は、外輪12と歯車20との間に位置する。さらに、第一の支持部材41は、外輪12よりも歯車20に近い位置で、第一の軸部21を支持する。
 製造方法(2)が有するその他の各工程は、前記製造方法(1)の各工程と同じである。
[Regarding manufacturing method (2) of the rolling bearing device]
Fig. 11 is an explanatory diagram of another manufacturing method (2) of the rolling bearing device 10 shown in Fig. 1. Fig. 11 shows a supporting step St3.
In the case of the supporting step St3 of the manufacturing method (1) shown in FIG. 4, the first supporting member 41 is located on a first side (the left side in the case of FIG. 4) in the axial direction of the outer ring 12.
11 is the same as the supporting step St3 shown in Fig. 4 in that the first supporting member 41 supports the first shaft portion 21, but the first supporting member 41 is located on the second side in the axial direction of the outer ring 12 (the right side in the case of Fig. 11). In other words, the first supporting member 41 is located between the outer ring 12 and the gear 20. Furthermore, the first supporting member 41 supports the first shaft portion 21 at a position closer to the gear 20 than the outer ring 12.
The other steps in the production method (2) are the same as those in the production method (1).
〔他の形態の転がり軸受装置、及びその製造方法(3)について〕
 図12は、他の形態の転がり軸受装置10の製造方法(3)の説明図である。図12に示す転がり軸受装置10の場合、内軸11は、軸方向の第一の側に位置する第一の軸部21と、軸方向の第二の側に位置する第二の軸部22と、第一の軸部21と第二の軸部22との間に位置する第一の動力伝達部と、第二の軸部22の途中に位置する第二の動力伝達部とを有する。本実施形態の前記第一の動力伝達部は第一の歯車20であり、前記第二の動力伝達部は第二の歯車23である。第二の歯車23以外の構成は、図12に示す転がり軸受装置10と、図1に示す転がり軸受装置10と同じである。
[Regarding another embodiment of the rolling bearing device and its manufacturing method (3)]
12 is an explanatory diagram of a manufacturing method (3) of a rolling bearing device 10 of another embodiment. In the case of the rolling bearing device 10 shown in FIG. 12, the inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, a first power transmission portion located between the first shaft portion 21 and the second shaft portion 22, and a second power transmission portion located in the middle of the second shaft portion 22. The first power transmission portion of this embodiment is a first gear 20, and the second power transmission portion is a second gear 23. The configuration other than the second gear 23 is the same as that of the rolling bearing device 10 shown in FIG. 12 and the rolling bearing device 10 shown in FIG. 1.
 図12は、支持工程St3を示す。支持工程St3は、組み合わせ工程St1及び準備工程St2を終えた内軸11の第一の軸部21と第二の軸部22とを下から支持する工程である。
 図12に示す転がり軸受装置10の製造方法(3)が有する各工程は、前記製造方法(1)の各工程と同じである。又は、図11に示す製造方法(2)と同じように、第一の支持部材41は、第一の軸部21を、外輪12と第一の歯車20との間で支持してもよい。
12 shows the supporting step St3. The supporting step St3 is a step of supporting, from below, the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 after the combining step St1 and the preparing step St2.
The steps of the manufacturing method (3) of the rolling bearing device 10 shown in Fig. 12 are the same as the steps of the manufacturing method (1). Alternatively, the first support member 41 may support the first shaft portion 21 between the outer ring 12 and the first gear 20, as in the manufacturing method (2) shown in Fig. 11.
〔更に他の形態の転がり軸受装置、及びその製造方法(4)について〕
 図13は、他の形態の転がり軸受装置10の製造方法(4)の説明図である。図13に示す転がり軸受装置10の場合、内軸11は、軸方向の第一の側に位置する第一の軸部21と、軸方向の第二の側に位置する第二の軸部22と、第一の軸部21と第二の軸部22との間に位置する歯車20(動力伝達部)とを有する。この点、図13に示す転がり軸受装置10と、図1に示す転がり軸受装置10と同じである。図13に示す転がり軸受装置10の場合、第一の軸部21は、その外周に、第一の内輪軌道溝26を有し、第二の軸部22は、その外周に、第二の内輪軌道溝56を有する。
[Regarding still another embodiment of the rolling bearing device and its manufacturing method (4)]
13 is an explanatory diagram of a manufacturing method (4) of a rolling bearing device 10 of another embodiment. In the case of the rolling bearing device 10 shown in FIG. 13, the inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, and a gear 20 (power transmission portion) located between the first shaft portion 21 and the second shaft portion 22. In this respect, the rolling bearing device 10 shown in FIG. 13 is the same as the rolling bearing device 10 shown in FIG. 1. In the case of the rolling bearing device 10 shown in FIG. 13, the first shaft portion 21 has a first inner ring raceway groove 26 on its outer periphery, and the second shaft portion 22 has a second inner ring raceway groove 56 on its outer periphery.
 更に、図13に示す転がり軸受装置10は、第一の内輪軌道溝26の径方向外方に位置する第一の外輪12の他に、第二の内輪軌道溝56の径方向外方に位置する第二の外輪24を有する。第二の外輪24は、その内周に、第二の外輪軌道溝57を有する。転がり軸受装置10は、第二の外輪24と第二の軸部22(第二の内輪軌道溝56)との間に位置する複数の第二の玉25を有する。図13に示す転がり軸受装置10が第二の軸部22に第二の内輪軌道溝56を有する点、転がり軸受装置10が第二の外輪24及び第二の玉25を有する点を除き、図13に示す転がり軸受装置10は、図1に示す転がり軸受装置10と同じである。図13に示す形態の場合、第一の外輪12と第二の外輪24とは同じであり、第一の玉13と第二の玉25とは同じであるが、これらは異なっていてもよい。 Furthermore, the rolling bearing device 10 shown in FIG. 13 has a second outer ring 24 located radially outward of the second inner ring raceway groove 56 in addition to the first outer ring 12 located radially outward of the first inner ring raceway groove 26. The second outer ring 24 has a second outer ring raceway groove 57 on its inner circumference. The rolling bearing device 10 has a plurality of second balls 25 located between the second outer ring 24 and the second shaft portion 22 (second inner ring raceway groove 56). The rolling bearing device 10 shown in FIG. 13 is the same as the rolling bearing device 10 shown in FIG. 1, except that the rolling bearing device 10 shown in FIG. 13 has a second inner ring raceway groove 56 on the second shaft portion 22 and has a second outer ring 24 and second balls 25. In the case of the embodiment shown in FIG. 13, the first outer ring 12 and the second outer ring 24 are the same, and the first balls 13 and the second balls 25 are the same, but they may be different.
 図13に示す転がり軸受装置10は、第一の外輪12及び第一の玉13を含む第一の軸受部18と、第二の外輪24及び第二の玉25を含む第二の軸受部19とを有する。この転がり軸受装置10の製造方法の場合、第一の軸受部18が、図2に示す各工程(ただし、破線で囲まれた範囲内の各工程以外)によって先ず製造される。その後、第二の軸受部18が製造される。なお、第一の軸受部18のための取り付け工程St7は、第二の軸受部18の製造後であってもよい。 The rolling bearing device 10 shown in FIG. 13 has a first bearing portion 18 including a first outer ring 12 and a first ball 13, and a second bearing portion 19 including a second outer ring 24 and a second ball 25. In the manufacturing method of this rolling bearing device 10, the first bearing portion 18 is first manufactured by the steps shown in FIG. 2 (except for the steps within the range surrounded by the dashed line). Then, the second bearing portion 18 is manufactured. Note that the mounting step St7 for the first bearing portion 18 may be performed after the manufacturing of the second bearing portion 18.
 第一の軸受部18の製造のために、内軸11が第一の支持部材41及び第二の支持部材42によって支持されている。その状態で、第二の軸受部19の製造が行われる。つまり、第二の軸受部19の製造のために、図2の破線で囲まれた範囲内の各工程に示す、偏心工程St14、挿入工程St15、移動工程St16、及び取り付け工程St17が行われる。偏心工程St14は、第四の支持部材44(図13参照)が第二の外輪24を上に移動させる工程である。挿入工程St15は、第二の外輪軌道溝57と第二の内輪軌道溝56との間に、第二の玉25を、軸方向から挿入する工程である。移動工程St16は、挿入工程St15の後、第二の外輪24の中心軸を内軸11の中心軸Cと一致させる工程である(図14参照)。取り付け工程St17は、第二の玉25に対して保持器14が取り付けられる工程である。 To manufacture the first bearing portion 18, the inner shaft 11 is supported by the first support member 41 and the second support member 42. In this state, the second bearing portion 19 is manufactured. That is, to manufacture the second bearing portion 19, the eccentric step St14, the insertion step St15, the movement step St16, and the attachment step St17 shown in the respective steps within the area surrounded by the dashed line in FIG. 2 are performed. The eccentric step St14 is a step in which the fourth support member 44 (see FIG. 13) moves the second outer ring 24 upward. The insertion step St15 is a step in which the second ball 25 is inserted between the second outer ring raceway groove 57 and the second inner ring raceway groove 56 from the axial direction. The movement step St16 is a step in which the center axis of the second outer ring 24 is aligned with the center axis C of the inner shaft 11 after the insertion step St15 (see FIG. 14). The attachment step St17 is a step in which the cage 14 is attached to the second ball 25.
 第一の軸受部18のための偏心工程St4、挿入工程St5及び移動工程St6は、それぞれ、第二の軸受部19のための偏心工程St14、挿入工程St15及び移動工程St16と、同じである。ただし、図13に示すように、挿入工程St15において、第二の玉25は、第二の内輪軌道溝56と第二の外輪軌道溝57との間に軸方向の第二側から挿入される。取り付け工程St17において、保持器14は、第二の玉25に対して、軸方向の第二側から接近させ取り付けられる。
 以上より、第一の軸受部18及び第二の軸受部19が完成する。
The eccentric step St4, the insertion step St5, and the movement step St6 for the first bearing portion 18 are the same as the eccentric step St14, the insertion step St15, and the movement step St16 for the second bearing portion 19. However, as shown in Fig. 13, in the insertion step St15, the second ball 25 is inserted between the second inner ring raceway groove 56 and the second outer ring raceway groove 57 from the second side in the axial direction. In the attachment step St17, the cage 14 is attached by approaching the second ball 25 from the second side in the axial direction.
Through the above, the first bearing portion 18 and the second bearing portion 19 are completed.
〔各形態の転がり軸受装置の製造方法について〕
 以上のように、前記各形態の転がり軸受装置10は、内軸11と、外輪12と、複数の玉13とを備える。内軸11は、軸方向の第一の側に位置する第一の軸部21と、軸方向の第二の側に位置する第二の軸部22と、第一の軸部21と第二の軸部22との間に位置する歯車20(動力伝達部)とを有する。第一の軸部21は第一の内輪軌道溝26を有する。外輪12は第一の外輪軌道溝29を有する。第一の内輪軌道溝26と、軸方向の第一の側の第一の肩27との境界が、第一境界31であり、第一の内輪軌道溝26と、軸方向の第二の側の第二の肩28との境界が、第二境界32である。
[Regarding manufacturing methods of each type of rolling bearing device]
As described above, the rolling bearing device 10 of each embodiment includes the inner shaft 11, the outer ring 12, and a plurality of balls 13. The inner shaft 11 has a first shaft portion 21 located on a first side in the axial direction, a second shaft portion 22 located on a second side in the axial direction, and a gear 20 (power transmission portion) located between the first shaft portion 21 and the second shaft portion 22. The first shaft portion 21 has a first inner ring raceway groove 26. The outer ring 12 has a first outer ring raceway groove 29. The boundary between the first inner ring raceway groove 26 and a first shoulder 27 on the first side in the axial direction is a first boundary 31, and the boundary between the first inner ring raceway groove 26 and a second shoulder 28 on the second side in the axial direction is a second boundary 32.
 前記転がり軸受装置10の製造方法は、組み合わせ工程St1と、準備工程St2と、準備工程St2と、支持工程St3と、偏心工程St4と、挿入工程St5と、移動工程St6とを有する。組み合わせ工程St1は(図3参照)、第一の軸部21の径方向の外側に外輪12を位置させる工程である。準備工程St2は(図3参照)、第一の内輪軌道溝26における、第一境界31及び第二境界32を除く、任意の位置での接線方向が水平方向となるように、内軸11を位置させる工程である。支持工程St3は(図4参照)、内軸11の第一の軸部21と第二の軸部22とを下から支持する工程である。偏心工程St4は(図5参照)、外輪12を上に移動させる工程である。挿入工程St5は(図6参照)、第一の外輪軌道溝29と第一の内輪軌道溝26との間に、玉13を、軸方向から挿入する工程である。移動工程St6は(図7参照)、挿入工程St5の後、外輪12の中心軸を内軸11の中心軸と一致させる工程である。製造方法は、更に取り付け工程St7(図8参照)を有し、保持器14が複数の玉13に取り付けられる。 The manufacturing method of the rolling bearing device 10 includes an assembly process St1, a preparation process St2, a support process St3, an eccentricity process St4, an insertion process St5, and a movement process St6. The assembly process St1 (see FIG. 3) is a process of positioning the outer ring 12 radially outside the first shaft portion 21. The preparation process St2 (see FIG. 3) is a process of positioning the inner shaft 11 so that the tangent direction at any position in the first inner ring raceway groove 26, except for the first boundary 31 and the second boundary 32, is horizontal. The support process St3 (see FIG. 4) is a process of supporting the first shaft portion 21 and the second shaft portion 22 of the inner shaft 11 from below. The eccentricity process St4 (see FIG. 5) is a process of moving the outer ring 12 upward. The insertion process St5 (see FIG. 6) is a process of inserting the balls 13 axially between the first outer ring raceway groove 29 and the first inner ring raceway groove 26. The movement process St6 (see FIG. 7) is a process of aligning the center axis of the outer ring 12 with the center axis of the inner shaft 11 after the insertion process St5. The manufacturing method further includes an attachment process St7 (see FIG. 8), in which the cage 14 is attached to the multiple balls 13.
 前記製造方法によれば、外輪12(軸受部18)と歯車20(動力伝達部)とが軸方向について接近している場合であっても、例えば図15に示す従来のように外輪95と歯車93との間に治具102を位置させる必要がなくなり、転がり軸受装置10の製造が容易となる。 According to the above manufacturing method, even if the outer ring 12 (bearing portion 18) and the gear 20 (power transmission portion) are close to each other in the axial direction, it is no longer necessary to position the jig 102 between the outer ring 95 and the gear 93 as in the conventional method shown in FIG. 15, making it easier to manufacture the rolling bearing device 10.
〔その他について〕
 前記実施形態は、すべての点で例示であって制限的なものではない。例として、本発明の転がり軸受装置は、保持器14を備えていなくてもよい。他の例として、一つの動力伝達部は、内軸11の中心軸Cに一致させて配置された複数の歯車であってもよい。一つの動力伝達部は、内軸11の中心軸Cに一致させて配置された複数のプーリ、又は、プーリと歯車であってもよい。
 本発明の権利範囲は、前記実施形態ではなく請求の範囲によって示され、請求の範囲に記載された構成と均等の範囲内でのすべての変更を含む。
[Other matters]
The above-described embodiment is illustrative in all respects and is not restrictive. For example, the rolling bearing device of the present invention may not include the cage 14. As another example, one power transmission part may be a plurality of gears arranged to coincide with the central axis C of the inner shaft 11. One power transmission part may be a plurality of pulleys arranged to coincide with the central axis C of the inner shaft 11, or a pulley and a gear.
The scope of the present invention is defined by the claims rather than the above-described embodiments, and includes all modifications within the scope equivalent to the configurations described in the claims.
 10 転がり軸受装置
 11 内軸
 12 外輪
 13 玉
 14 保持器
 20 歯車(動力伝達部)
 21 第一の軸部
 22 第二の軸部
 26 第一の内輪軌道溝
 27 第一の肩
 28 第二の肩
 29 第一の外輪軌道溝
 31 第一境界
 32 第二境界
 49 吸着装置
 49a 吸着部
 St1 組み合わせ工程
 St2 準備工程St
 St3 支持工程St
 St4 偏心工程St
 St5 挿入工程St
 St6 移動工程St
 St7 取り付け工程
REFERENCE SIGNS LIST 10 Rolling bearing device 11 Inner shaft 12 Outer ring 13 Ball 14 Cage 20 Gear (power transmission section)
21 First shaft portion 22 Second shaft portion 26 First inner ring raceway groove 27 First shoulder 28 Second shoulder 29 First outer ring raceway groove 31 First boundary 32 Second boundary 49 Suction device 49a Suction portion St1 Assembling step St2 Preparation step St
St3 Support process St
St4 Eccentricity process St
St5 Insertion process St
St6 Movement process St
St7 Installation process

Claims (3)

  1.  内軸と、外輪と、前記内軸と前記外輪との間に位置する複数の玉と、を備える転がり軸受装置の製造方法であって、
     前記内軸は、軸方向の第一の側に位置する第一の軸部と、軸方向の第二の側に位置する第二の軸部と、前記第一の軸部と前記第二の軸部との間に位置する動力伝達部と、を有し、
     前記第一の軸部は第一の内輪軌道溝を有し、
     前記外輪は第一の外輪軌道溝を有し、
     前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第一の側に位置する第一の肩との境界が、第一境界であり、
     前記第一の内輪軌道溝と、前記第一の内輪軌道溝の軸方向の第二の側に位置する第二の肩との境界が、第二境界であり、
     前記転がり軸受装置の製造方法は、
      前記第一の軸部の径方向の外側に前記外輪を位置させる組み合わせ工程と、
      前記第一の内輪軌道溝における、前記第一境界及び前記第二境界を除く、任意の位置での接線方向が水平方向となるように、前記内軸を位置させる準備工程と、
      前記第一の軸部と前記第二の軸部とを下から支持する支持工程と、
      前記外輪を上に移動させる偏心工程と、
      前記第一の外輪軌道溝と前記第一の内輪軌道溝との間に、前記玉を、軸方向から挿入する挿入工程と、
      前記挿入工程の後、前記外輪の中心軸を前記内軸の中心軸と一致させる移動工程と、
     を有する、転がり軸受装置の製造方法。
    A manufacturing method for a rolling bearing device including an inner shaft, an outer ring, and a plurality of balls positioned between the inner shaft and the outer ring, comprising the steps of:
    the inner shaft has a first shaft portion located on a first side in an axial direction, a second shaft portion located on a second side in the axial direction, and a power transmission portion located between the first shaft portion and the second shaft portion,
    the first shaft portion has a first inner ring raceway groove,
    the outer ring has a first outer ring raceway groove,
    a boundary between the first inner ring raceway groove and a first shoulder located on a first side in an axial direction of the first inner ring raceway groove is a first boundary,
    a boundary between the first inner ring raceway groove and a second shoulder located on a second side in the axial direction of the first inner ring raceway groove is a second boundary,
    The method for manufacturing the rolling bearing device includes the steps of:
    a combining step of positioning the outer ring radially outside the first shaft portion;
    a preparation step of positioning the inner shaft so that a tangent direction at any position on the first inner ring raceway groove, excluding the first boundary and the second boundary, is horizontal;
    a supporting step of supporting the first shaft portion and the second shaft portion from below;
    an eccentric step of moving the outer ring upward;
    an inserting step of inserting the ball between the first outer ring raceway groove and the first inner ring raceway groove in an axial direction;
    a moving step of aligning a central axis of the outer ring with a central axis of the inner shaft after the inserting step;
    A manufacturing method of a rolling bearing device comprising the steps of:
  2.  前記挿入工程において、
      吸着装置を用いて、前記玉を減圧により吸着し又は磁気により吸着し、
      前記玉を吸着した前記吸着装置の吸着部を移動させて、前記第一の外輪軌道溝と前記第一の内輪軌道溝との間に、前記玉を挿入する、
     請求項1に記載の転がり軸受装置の製造方法。
    In the inserting step,
    Using a suction device, the balls are attracted by vacuum or magnetic force;
    a suction portion of the suction device that has suctioned the ball is moved to insert the ball between the first outer ring raceway groove and the first inner ring raceway groove;
    A method for manufacturing the rolling bearing device according to claim 1.
  3.  前記転がり軸受装置は、前記複数の玉を保持する、つの形保持器又は冠形保持器を有し、
     前記転がり軸受装置の製造方法は、
      前記移動工程の後に、前記つの形保持器又は前記冠形保持器を、前記軸方向の第一の側から前記複数の玉に組み付ける取り付け工程を、有する、
      請求項1又は請求項2に記載の転がり軸受装置の製造方法。
     
    The rolling bearing device has a horn-shaped cage or a crown-shaped cage that holds the plurality of balls,
    The method for manufacturing the rolling bearing device includes the steps of:
    a mounting step of assembling the horn-shaped cage or the crown-shaped cage to the plurality of balls from a first side in the axial direction after the moving step,
    A method for manufacturing the rolling bearing device according to claim 1 or 2.
PCT/JP2022/042555 2022-11-16 2022-11-16 Manufacturing method for rolling bearing device WO2024105809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042555 WO2024105809A1 (en) 2022-11-16 2022-11-16 Manufacturing method for rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042555 WO2024105809A1 (en) 2022-11-16 2022-11-16 Manufacturing method for rolling bearing device

Publications (1)

Publication Number Publication Date
WO2024105809A1 true WO2024105809A1 (en) 2024-05-23

Family

ID=91084029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042555 WO2024105809A1 (en) 2022-11-16 2022-11-16 Manufacturing method for rolling bearing device

Country Status (1)

Country Link
WO (1) WO2024105809A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204414A (en) * 1989-12-29 1991-09-06 Ntn Corp Ball inserting method for bearing and apparatus therefor
US20130343684A1 (en) * 2007-12-21 2013-12-26 Schaeffler Technologies AG & Co. KG Method for filling a ball roller bearing with roll bodies as well as a ball roller bearing filled according to the method
WO2016039434A1 (en) * 2014-09-12 2016-03-17 日本精工株式会社 Ball bearing assembly method and assembly device, and ball bearing produced using said assembly method
WO2019230023A1 (en) * 2018-05-30 2019-12-05 日本精工株式会社 Ball arrangement method for ball bearing, ball bearing manufacturing method and manufacturing device, and machine and vehicle manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204414A (en) * 1989-12-29 1991-09-06 Ntn Corp Ball inserting method for bearing and apparatus therefor
US20130343684A1 (en) * 2007-12-21 2013-12-26 Schaeffler Technologies AG & Co. KG Method for filling a ball roller bearing with roll bodies as well as a ball roller bearing filled according to the method
WO2016039434A1 (en) * 2014-09-12 2016-03-17 日本精工株式会社 Ball bearing assembly method and assembly device, and ball bearing produced using said assembly method
WO2019230023A1 (en) * 2018-05-30 2019-12-05 日本精工株式会社 Ball arrangement method for ball bearing, ball bearing manufacturing method and manufacturing device, and machine and vehicle manufacturing method

Similar Documents

Publication Publication Date Title
CN102016325B (en) Bearing device for supercharger
CN1860306A (en) Self-aligning antifriction bearing and cage for said self-aligning antifriction bearing
US8899840B2 (en) Tapered roller bearing
JP2006226527A (en) Dynamic pressure air bearing device
US20080229582A1 (en) Single piece hub with integral upper and lower female cones and method for making the same
EP1347185A2 (en) Cylindrical roller bearing
JPH10238535A (en) Spindle motor for disc
EP2042754A2 (en) Angular contact ball bearing
KR20180037028A (en) Method and apparatus for manufacturing each contact roller bearing
WO2024105809A1 (en) Manufacturing method for rolling bearing device
JP2005351480A (en) Steering column device and rolling bearing for column
EP2988010B1 (en) Angular ball bearing cage
JP2007078078A (en) Retainer for rolling ball bearing and its manufacturing method
JP4004115B2 (en) Supercharger and supercharger assembly method
TWI776014B (en) Ball bearing cage and ball bearing
JP2014040916A (en) Cage of rolling bearing, rolling bearing and electric power steering for vehicle
EP2921730B1 (en) Crown-shaped retainer
CN103842680A (en) Electromagnetic clutch and method for producing armature for electromagnetic clutch
SE524350C2 (en) An improved bearing seat
CN101877510B (en) Motor component used for anti-lock brake system
JP2006242263A (en) Fixed constant velocity universal joint and its manufacturing method
JP2008039036A (en) Tripod type constant velocity joint
WO2019151456A1 (en) Ball bearing and bearing unit
JP2016080150A (en) Pulley support double-row angular ball bearing
US20150043852A1 (en) Rolling Bearing With Reduced Friction Torque