WO2024105733A1 - Nn growth device, information processing device, neural network information production method, and program - Google Patents

Nn growth device, information processing device, neural network information production method, and program Download PDF

Info

Publication number
WO2024105733A1
WO2024105733A1 PCT/JP2022/042235 JP2022042235W WO2024105733A1 WO 2024105733 A1 WO2024105733 A1 WO 2024105733A1 JP 2022042235 W JP2022042235 W JP 2022042235W WO 2024105733 A1 WO2024105733 A1 WO 2024105733A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
unit
edge
score
Prior art date
Application number
PCT/JP2022/042235
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 石若
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2022/042235 priority Critical patent/WO2024105733A1/en
Publication of WO2024105733A1 publication Critical patent/WO2024105733A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections

Definitions

  • the present invention relates to an NN growth device, which is a device that virtually realizes the mechanism of brain growth.
  • the NN growth device of the first invention includes an NN storage unit in which neural network information having two or more pieces of node information with node identifiers and one or more pieces of edge information having an edge identifier and identifying connections between the nodes is stored, a start point storage unit in which one or more pieces of ignition start point information having one or more node identifiers that identify nodes that ignite without passing through other nodes is stored in correspondence with an initial ignition condition, which is a condition related to one or more types of feature information out of one or more image feature information for image information and one or more sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes, a standard score storage unit that stores standard scores related to positivity and negativity, an information receiving unit that receives image information and sound information, an image feature acquisition unit that uses the image information received by the information receiving unit to acquire one or more pieces of image feature information for the image information, an overall score acquisition unit that acquires an overall score based on the one or more pieces of image feature information
  • the NN growing device includes an image score acquisition unit that acquires one or more sound feature information for the sound information using the sound information received by the information receiving unit, a sound feature acquisition unit that acquires one or more sound feature information for the sound information using the one or more sound feature information, a sound score acquisition unit that acquires a sound score, which is a score for positive and negative, using the one or more sound feature information, a total score acquisition unit that acquires a total score using the image score and the sound score, an ignition node determination unit that determines, from a starting point storage unit, one or more node identifiers that are paired with an initial ignition condition in which one or more types of information out of the one or more image feature information and the one or more sound feature information match, and determines the node identifier of a node that is connected to the node identified by each of the one or more node identifiers by an edge and is passed one or more types of information out of the one or more image feature information and the one or more sound feature information, and a growth unit that performs
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the second invention compared to the first invention, further includes an image score acquisition unit that uses one or more image feature information to acquire an image score, which is a score related to positivity and negativity, a sound feature acquisition unit that uses sound information accepted by the information acceptance unit to acquire one or more sound feature information for the sound information, and a sound score acquisition unit that uses one or more sound feature information to acquire a sound score, which is a score related to positivity and negativity, and the overall score acquisition unit acquires an overall score using the image score and sound score.
  • an image score acquisition unit that uses one or more image feature information to acquire an image score, which is a score related to positivity and negativity
  • a sound feature acquisition unit that uses sound information accepted by the information acceptance unit to acquire one or more sound feature information for the sound information
  • a sound score acquisition unit that uses one or more sound feature information to acquire a sound score, which is a score related to positivity and negativity
  • the overall score acquisition unit acquires an overall score using the image score and sound score.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the third invention is a NN growing device in which, compared to the first or second invention, edge information has a weight, the firing node determination unit determines the node identifier of a node that is connected by an edge and whose edge weight satisfies a weight-related transmission condition, the growing unit acquires difference information relating to the difference between the total score and the reference score, and, if the difference information meets the first edge growing condition, performs a first edge growing process that increases the weight of the edge information of one or more edges.
  • This configuration makes it possible to simulate brain growth.
  • the edge information may have edge position information indicating the position of the end of the edge
  • the growth unit acquires difference information regarding the difference between the total score and the reference score, and when the difference information matches the second edge growth condition, the NN growth device performs a second edge growth process that changes the edge position information contained in the edge information of one or more edges and extends the length of the edge.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the fifth invention compared to the fourth invention, further comprises a goal storage unit in which goal information identifying goals corresponding to two or more states including positive and negative is stored, and a state determination unit that uses difference information acquired by the growth unit to determine one state from two or more states including positive and negative, the goal information having goal position information identifying the position of the goal, or goal direction information indicating the direction of the goal, and the growth unit is a NN growing device that performs a second edge growth process in which it acquires goal information that pairs with the one state determined by the state determination unit, changes the edge position information held by the edge information of each of one or more edges, acquires new edge position information in the direction indicated by the goal information, and accumulates the new edge position information.
  • a goal storage unit in which goal information identifying goals corresponding to two or more states including positive and negative is stored
  • a state determination unit that uses difference information acquired by the growth unit to determine one state from two or more states including positive and negative, the goal information having goal position information identifying the position of the goal,
  • the NN growth device of the sixth invention is a NN growth device according to any one of the first to fifth inventions, further comprising a reference score change unit that changes the reference score in the reference score storage unit based on the total score acquired by the total score acquisition unit.
  • This configuration makes it possible to simulate brain growth.
  • the NN growth device of the seventh invention is different from the sixth invention in that the reference score change unit changes the reference score in the reference score storage unit only when the total score meets the score change condition.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the eighth invention is a NN growing device according to any one of the first to seventh inventions, in which the standard score storage unit stores standard scores paired with one or more firing patterns using one or more node identifiers, and the growing unit obtains standard scores paired with firing patterns corresponding to one or more node identifiers determined by the firing node determination unit from the standard score storage unit, obtains difference information regarding the difference between the total score and the standard score, and performs a growth process based on the difference information.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the ninth invention is a NN growing device according to any one of the first to eighth inventions, in which the firing node determination unit determines whether one or more pieces of feature information passed from one or more other nodes connected by an edge satisfy a firing condition related to one or more pieces of feature information, and determines the node identifier of the node determined to satisfy the firing condition.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the tenth invention is different from the first invention in that the node information has node position information that identifies the node position, and further includes a goal storage unit in which goal information that identifies goals corresponding to two or more states including positive and negative is stored, and a state determination unit that uses difference information acquired by the growing unit to determine one state from two or more states including positive and negative, and the growing unit acquires difference information regarding the difference between the total score and the reference score, and based on the difference information, performs edge generation processing to generate and accumulate edge information for edges extending from nodes identified by one or more node identifiers among the one or more node identifiers determined by the firing node determination unit in the direction indicated by the goal information that pairs with the one state determined by the state determination unit.
  • This configuration makes it possible to simulate brain growth.
  • the NN growing device of the eleventh invention is a NN growing device in which, compared to the tenth invention, the firing node determination unit stores frequency information relating to the frequency of the determined node identifier in association with the node identifier, and the growing unit performs edge generation processing on the node identified by the node identifier corresponding to the frequency information that meets the edge generation condition.
  • This configuration makes it possible to simulate brain growth.
  • the NN growth device of the twelfth invention is an NN growth device according to any one of the first to eleventh inventions, in which the nodes are somas, the edges have AXONs and dendrites, and the edge information has AXON information having an AXON identifier and AXON position information indicating the position of the AXON, and dendrites information having a dendrites identifier and dendrites position information indicating the position of the dendrites.
  • This configuration makes it possible to simulate brain growth.
  • the information processing device of the thirteenth invention is an information processing device that includes an NN storage unit in which neural network information accumulated by the NN growing device is stored, an information receiving unit that receives received information that is one or more types of information from image information or sound information, a feature acquisition unit that acquires one or more feature information for the received information received by the information receiving unit, an information transmission unit that determines the node identifier of the node that will ignite, which is a node identifier corresponding to each of the one or more feature information acquired by the feature acquisition unit, from a start point storage unit in which one or more ignition start point information is stored, the start point information having an information identifier that identifies the feature information of the received information and one or more node identifiers that identify nodes that will ignite without passing through other nodes when the feature information is accepted, and is connected by an edge to the nodes identified by the one or more node identifiers, and is a node to which the feature information is passed, and determines the node identifier of the node that
  • This configuration makes it possible to simulate brain function using a model of a fully grown brain.
  • the information processing device of the fourteenth invention is an information processing device that further includes a temperature receiving unit that receives temperature information, and the information transmission unit performs an information transmission process in which the fired node passes characteristic information corresponding to the fired node to the next node that will fire, and changes the processing time for performing the information transmission process according to the temperature information received by the temperature receiving unit.
  • This configuration makes it possible to simulate brain function using a model of a fully grown brain.
  • the neural network growth device of the present invention can simulate brain growth.
  • Block diagram of NN growth device 1 according to the first embodiment.
  • a flowchart explaining an example of the operation of the NN growing device 1. A flowchart illustrating an example of the score acquisition process A flowchart illustrating an example of the growth process A flowchart illustrating an example of the initial firing node determination process.
  • a flowchart illustrating an example of the information acquisition process A flowchart illustrating an example of the single growth process.
  • a flowchart illustrating an example of the edge growth process. A flowchart for explaining an example of the edge extension process.
  • a flowchart illustrating an example of the edge generation process. A flowchart illustrating an example of the edge information generation process.
  • a flowchart for explaining an example of the node generation process A flowchart illustrating an example of the node information generation process A flowchart illustrating an example of the criterion change process.
  • Block diagram of information processing device 2 according to embodiment 2. A flowchart illustrating an example of the operation of the information processing device 2.
  • Block diagram of the information processing device 3 Overview of the computer system according to the above embodiment Block diagram of the computer system
  • a NN growing device receives image information and sound information, obtains a total score using image feature information obtained from the image information and sound feature information obtained from the sound information, and performs a growth process based on the difference between the total score and a reference score.
  • the growth process here is, for example, an edge growth process, an edge generation process, or a node generation process.
  • Edge growth processing is processing that grows edges that make up a neural network (hereinafter referred to as "NN" where appropriate).
  • Edge growth processing includes, for example, a first edge growth processing that increases the weight of an edge, and a second edge growth processing that increases the length of an edge.
  • Edge generation processing is processing that generates new edges.
  • Node generation processing is processing that generates nodes that make up a NN.
  • the neural network used here is a spiking neural network.
  • the neural network may be another type of neural network, such as a deep neural network. In other words, the type of neural network is not important.
  • the weight of the edge is increased.
  • the length of the edge is increased.
  • the edge is grown in a direction according to the acquired state (for example, positive or negative).
  • a NN growth device in which the reference score changes dynamically will be described. Note that, for example, the reference score changes only when the total score meets a score change condition.
  • the NN growth device in the case where the nodes are somas and the edges have axons and dendrites.
  • information X corresponding to information Y means that information Y can be obtained from information X, or information X can be obtained from information Y, and the method of association is not important.
  • Information X and information Y may be linked, may exist in the same buffer, information X may be included in information Y, or information Y may be included in information X, etc.
  • FIG. 1 is a block diagram of the NN growing device 1 in this embodiment.
  • the NN growing device 1 includes a storage unit 11, a reception unit 12, a processing unit 13, and an output unit 14.
  • the storage unit 11 includes a starting point storage unit 111, a goal storage unit 112, a reference score storage unit 113, and an NN storage unit 114.
  • the reception unit 12 includes an information reception unit 121.
  • the processing unit 13 includes an image feature acquisition unit 131, a sound feature acquisition unit 132, an image score acquisition unit 133, a sound score acquisition unit 134, a total score acquisition unit 135, an ignition node determination unit 136, a state determination unit 137, a growth unit 138, and a reference score change unit 139.
  • the various types of information include, for example, firing start information (described later), goal information (described later), a reference score (described later), a neural network (NN), one or more pieces of glial cell information (described later), one or more pieces of connection information (described later), one or more pieces of firing information (described later), state determination information (described later), and various conditions (described later).
  • the start point storage unit 111 stores one or more pieces of ignition start point information. Typically, two or more pieces of ignition start point information are stored in the start point storage unit 111.
  • the ignition start point information corresponds to the initial ignition condition.
  • the ignition start point information is information that specifies the node that will ignite in the first stage when information is accepted.
  • the accepted information is, for example, one or two types of information from among image information and sound information.
  • a node that ignites in the first stage is a node that ignites without going through other nodes.
  • the ignition start point information has, for example, an initial ignition condition and one or more node identifiers.
  • the initial firing condition is a condition under which a node fires in the first stage.
  • the initial firing condition is a condition related to one or more pieces of feature information.
  • the one or more pieces of feature information are one or more types of information selected from the group consisting of one or more image feature information for image information and one or more sound feature information for sound information.
  • the initial firing condition may be, for example, a condition related to one or more information identifiers.
  • the initial firing condition has, for example, an information identifier.
  • the initial firing condition is, for example, a condition related to an information identifier and an amount of information.
  • the information identifier is information that identifies feature information.
  • the information identifier is, for example, information that identifies image feature information.
  • the information identifier is, for example, information that specifies the type of image feature information.
  • the information identifier is, for example, information that identifies sound feature information.
  • the information identifier is, for example, "R", "G", or "B”. "R” is information that indicates the color red, "G” is information that indicates the color green, and "B" is information that indicates the color blue.
  • image feature information is feature information of image information.
  • the information identifier is, for example, information that indicates a specific frequency or a specific frequency range.
  • the frequencies Fa and Fb are values that indicate specific frequencies.
  • a node identifier is information that identifies a node that constitutes a NN.
  • a node identifier is, for example, a node ID or a node name.
  • a node may also be called a soma.
  • a node identifier may also be called a soma identifier.
  • Feature information here refers to the feature amount of image information or sound information.
  • Feature information is, for example, an information identifier, or an information identifier and an amount of information.
  • the goal storage unit 112 stores one or more pieces of goal information. Usually, the goal storage unit 112 stores two or more pieces of goal information.
  • Goal information is information that specifies the goal to which the nodes or edges that make up the NN will grow.
  • Goal information is information that specifies a goal that corresponds to one of two or more states.
  • the state is, for example, an emotion or an internal state of the brain.
  • the state is, for example, positive or negative. It is preferable that the type of state is either positive or negative. However, there may be three or more types of states. When there are three or more types of states, each state is, for example, information indicating one of two or more degrees of positivity or information indicating one of two or more degrees of negativity, or positive, negative, and neutral.
  • Goal information can be said to be information that specifies the position where a node or edge grows.
  • Goal information has goal position information or goal direction information.
  • Goal information corresponds to a state identifier.
  • Goal position information is information that specifies the position of the goal.
  • Goal direction information indicates the direction of the goal.
  • a position is a position in a virtual space of two or more dimensions. Goal information is, for example, position information.
  • Position information is, for example, three-dimensional coordinate values (x, y, z) or two-dimensional coordinate values (x, y) or a four-dimensional quaternion (x, y, x, w).
  • the fact that goal information corresponds to a state identifier means that the goal information corresponding to the determined state identifier is used for the growth of the NN.
  • a state identifier is information that identifies a state. State identifiers are, for example, "positive" and "negative.”
  • the standard score storage unit 113 stores one or more standard scores. Each of the one or more standard scores is paired with, for example, an ignition pattern. However, when only one standard score is stored in the standard score storage unit 113, the standard score is not paired with an ignition pattern.
  • the standard score storage unit 113 may store one default standard score.
  • the base score is the standard score used when determining positive, negative, and other states.
  • the score is information that indicates the degree of a state, such as positive or negative.
  • the base score can also be called an expected value.
  • a firing pattern is a pattern of firing one or more nodes.
  • a firing pattern has one or more node identifiers of the nodes that fire.
  • the NN storage unit 114 stores neural network information (hereinafter referred to as "NN information" where appropriate).
  • NN information can be said to be information that mimics the brain.
  • NN information has two or more pieces of node information and one or two or more pieces of edge information.
  • NN information is sometimes referred to as NN.
  • Node information is information about the nodes that make up the NN.
  • the node information has a node identifier.
  • the node information has, for example, node position information, firing conditions, firing probability information, and number of times information.
  • the node information has required energy amount information that indicates the amount of energy required for firing.
  • the node position information is the position information of a node.
  • the position information is, for example, three-dimensional coordinate values (x, y, z), two-dimensional coordinate values (x, y), or a four-dimensional quaternion (x, y, x, w).
  • the firing condition is the condition under which a node fires.
  • the firing condition usually has one or more pieces of characteristic information.
  • the characteristic information may have an information identifier that identifies the information and an amount of information that indicates the size of the information, or may be only the amount of information that indicates the size of the information.
  • the amount of information is, for example, a numerical value greater than 0.
  • Firing probability information is information about the probability of firing.
  • the firing probability information may be the firing probability itself, or a value obtained by converting the firing probability using a function or the like. It is preferable that the firing probability information is referenced, and the node may or may not fire at the probability indicated by the firing probability information, even if the feature information is the same.
  • the number of occurrences information is information based on the number of occurrences of firing.
  • the number of occurrences information is, for example, the number of occurrences of firing, or the firing frequency (firing rate).
  • Edge information is information about edges that make up a NN.
  • Edge information is information that specifies connections between nodes.
  • Edge information usually has an edge identifier.
  • Edge information has, for example, a node identifier for each of two nodes that an edge connects.
  • Edge information has, for example, a node identifier for one connecting node.
  • Edge information has, for example, edge position information.
  • Edge position information is information that specifies the position of the end point of an edge.
  • Edge information has, for example, a weight. The larger the edge weight, the easier it is for feature information to be transmitted via the edge.
  • the edge weight may be a parameter of firing probability information. In other words, the larger the edge weight, the higher the firing probability.
  • the edge information has retained energy amount information that indicates the amount of energy held by the edge.
  • Edge information includes, for example, dendrites information and AXON information.
  • an edge includes dendrites and AXON.
  • an edge may be considered to be a single line, or a line that branches into two or more branches.
  • An edge may also be called a synapse.
  • An edge identifier is information that identifies an edge.
  • an edge identifier is an edge ID or an edge name.
  • Dendrites information is information about DENDRITES.
  • DENDRITES are also called dendrites and are part of nerve cells. They are multiple projections that branch out from the cell body like the branches of a tree in order for nerve cells to receive external stimuli and information sent from the axons (AXONs) of other nerve cells. In this case, DENDRITES are the elements that make up an edge.
  • DENDRITES information has a DENDRITES identifier and DENDRITES position information.
  • the DENDRITES identifier is information that identifies the DENDRITES.
  • the DENDRITES identifier is the DENDRITES ID or the DENDRITES name.
  • DENDRITES position information is position information that indicates the position of DENDRITES.
  • DENDRITES position information is information that specifies the position of DENDRITES, and is, for example, one or more three-dimensional coordinate values (x, y, z), or one or more two-dimensional coordinate values (x, y).
  • DENDRITES position information has two or more coordinate values
  • DENDRITES is a line connecting each point of the two or more coordinate values.
  • the dendrites information includes information on the amount of stored energy that indicates the amount of energy that the dendrites hold. It is also preferable that the dendrites information includes information on the amount of required energy that is required to transmit information using the dendrites.
  • Axon information is information about an axon.
  • An axon is also called an axon, and is a protruding structure that extends from the cell body and is responsible for outputting signals in a nerve cell.
  • an axon is an element that constitutes an edge.
  • Axon information has an axon identifier and axon position information.
  • the AXON identifier is information that identifies the AXON. For example, the AXON ID or the AXON name.
  • AXON position information is position information that indicates the position of AXON.
  • AXON position information is information that specifies the position of AXON, and is, for example, one or more three-dimensional coordinate values (x, y, z), or one or more two-dimensional coordinate values (x, y).
  • AXON position information has two or more coordinate values
  • AXON is a line connecting each point of the two or more coordinate values.
  • the AXON information includes information on the amount of stored energy that indicates the amount of energy that the AXON holds. It is also preferable that the AXON information includes information on the amount of required energy that is required to transmit information using the AXON.
  • dendrites and AXON may branch out.
  • the position information of each may be expressed by three or more coordinate values.
  • the glial cell information stored in the storage unit 11 is information about glial cells. Note that the glial cell information does not have to be present in the storage unit 11.
  • glial cells also known as neuroglial cells
  • neuroglial cells are a general term for non-neuronal cells that make up the nervous system.
  • Glial cells are a glue- or cement-like substance that fills the spaces between neurons.
  • the glial cell information has a glial cell identifier for identifying the glial cell.
  • the glial cell information has, for example, a node identifier for identifying a node that assists the binding, or an edge identifier for identifying an edge that assists the binding.
  • the glial cell information has, for example, an axon identifier for an axon for which the glial cell assists the binding, or a dendrites identifier for dendrites for which the glial cell assists the binding.
  • the glial cell information may also have a glial cell type identifier for identifying the type of the glial cell.
  • glial cell is, for example, oligodendrocites (hereinafter referred to as "oligo" as appropriate) or astrocites.
  • oligos are cells that can connect to axons.
  • Astrocites are cells that can connect to somas or dendrites.
  • the glial cell information has glial cell position information.
  • the glial cell position information is position information that specifies the position of the glial cell.
  • the oligo glial cell information includes glial cell position information.
  • the glial cell information may also include hand length information indicating the length of each of one or more hands.
  • the glial cell information may also include hand number information indicating the number of hands emerging from the glial cell. And, typically, when the total length of the glial cell calculated from the hand length information of each hand reaches a threshold value, it is preferable that the glial cell does not grow any further.
  • the connection information stored in the storage unit 11 is information that specifies connections between two or more nodes.
  • the connection information may be information that specifies a connection between an AXON of one node and dendrites of another node. Such information is also information that specifies a connection between nodes.
  • the connection information may be information that specifies a connection between a synapse and a spine. Such information is also information that specifies a connection between nodes.
  • the connection information has, for example, identifiers of two nodes to be connected.
  • the connection information also has, for example, an AXON identifier of an AXON and a dendrites identifier of a dendrite that is connected to the AXON.
  • the connection information also has, for example, a synapse identifier of a synapse and a spine identifier of a spine that can transmit information between the synapse.
  • the connection information may have information transmission probability information.
  • the information transmission probability information is information regarding the probability of information transmission between one node and another node.
  • the information transmission probability information may be information regarding the probability of information transmission between an AXON and a dendrite. In such a case, the information transmission probability information is information about the probability of information transmission between one node and another node.
  • the information transmission probability information may also be information about the probability of information transmission between a synapse and a spine. In such a case, the information transmission probability information is information about the probability of information transmission between one node and another node. Note that the connection direction between the nodes is usually unidirectional.
  • the binding information may be information indicating a binding between a node and an AXON. In such a case, the binding information has a node identifier and an AXON identifier.
  • the binding information may also be information indicating a binding between a node and Dendrites. In such a case, the binding information has a node identifier and a Dendrites identifier.
  • the binding information may be information that specifies the binding between a glial cell and an AXON or dendrites.
  • the binding information may include, for example, a glial cell identifier that identifies glial cell information, and an AXON identifier.
  • the binding information may include, for example, a glial cell identifier and a dendrites identifier.
  • connection information specifying the connections between the elements (nodes, edges, axons, dendrites, glial cells, synapses, or spines) that make up the NN may be stored in the NN storage unit 114.
  • connection information specifying the connections between the elements that make up the NN may be included in the information of each element.
  • Ignition information is information about the result of an ignition.
  • the ignition information has a node identifier that identifies the node that ignited.
  • the ignition information may usually have timer information that indicates the time of ignition.
  • the timer information may be information that indicates a relative time, or time information that indicates an absolute time.
  • the ignition information may be automatically deleted by the processing unit 13 after a certain time has passed since it was accumulated.
  • the state determination information is information for determining a state using one or more types of information from among image information and sound information.
  • the state determination information is, for example, a condition based on difference information, which will be described later.
  • the state determination information is, for example, two or more sets having an image condition, which is a condition related to image information, and a state identifier.
  • the state determination information is, for example, two or more sets having a sound condition, which is a condition related to sound information, and a state identifier.
  • the state determination information is, for example, two or more sets having an image sound condition, which is a condition related to image information and sound information, and a state identifier.
  • the reception unit 12 receives various types of information. Examples of the various types of information include image information and sound information.
  • reception is a concept that includes the reception of information input from input devices such as cameras, microphones, keyboards, mice, and touch panels, the reception of information transmitted via wired or wireless communication lines, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories.
  • the information receiving unit 121 receives information.
  • the information receiving unit 121 receives one or two types of information, image information and sound information.
  • the information receiving unit 121 receives image information and sound information at the same time.
  • the information receiving unit 121 may receive image information and sound information with some delay.
  • the image information is a still image or a video.
  • the sound information is, for example, audio data or music data, but the type is not important as long as it is sound information.
  • the information receiving unit 121 acquires image information captured by a camera.
  • the information receiving unit 121 acquires sound information acquired by a microphone.
  • "acceptance" refers to the acceptance of information acquired by a device such as a microphone or camera, but may also be a concept that includes the reception of information transmitted via a wired or wireless communication line, and the acceptance of information read from a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory.
  • the processing unit 13 performs various types of processing. For example, various types of processing are performed by the image feature acquisition unit 131, the sound feature acquisition unit 132, the growth unit 138, etc.
  • the image feature acquisition unit 131 uses the image information accepted by the information acceptance unit 121 to acquire one or more pieces of image feature information for the image information.
  • the sound feature acquisition unit 132 uses the sound information accepted by the information acceptance unit 121 to acquire one or more pieces of sound feature information for the sound information.
  • the image score acquisition unit 133 acquires an image score using one or more pieces of image feature information acquired by the image feature acquisition unit 131.
  • An image score is a score for the received image information.
  • An image score is typically a score related to positivity and negativity.
  • an image score is information indicating the degree of positivity or information indicating the degree of negativity.
  • the image score acquisition unit 133 acquires the image score by, for example, one of the following three methods. (1) Method using an arithmetic formula
  • the image score acquisition unit 133 substitutes the amount of information possessed by one or more pieces of image feature information acquired by the image feature acquisition unit 131 into an image calculation formula, executes the image calculation formula, and calculates an image score.
  • the image calculation formula is a formula in which the amount of information possessed by one or more pieces of image feature information is a parameter.
  • the image calculation formula is stored in the storage unit 11. (2) Using a correspondence table
  • the image score acquisition unit 133 acquires, from the image correspondence table, an image score that is paired with a vector that is most similar to a vector whose elements are the amount of information possessed by one or more pieces of image feature information acquired by the image feature acquisition unit 131.
  • the image correspondence table is a table that indicates the correspondence between a set of one or more pieces of image feature information and an image score.
  • the image correspondence table has two or more pieces of image correspondence information.
  • the image correspondence information is information that indicates the correspondence between a vector whose elements are the amount of information possessed by one or more pieces of image feature information and an image score.
  • the image correspondence information is, for example, a pair of a vector and an image score.
  • the image score acquisition unit 133 provides a vector whose elements are the amount of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and an image learning model to a machine learning prediction module, executes the prediction module, and acquires an image score.
  • the image learning model is information obtained by providing two or more pieces of teacher data having vectors whose elements are the amount of information contained in one or more pieces of image feature information and image scores to a machine learning learning module and executing the learning module.
  • the image learning model is stored in the storage unit 11.
  • the sound score acquisition unit 134 acquires a sound score using one or more pieces of sound feature information acquired by the sound feature acquisition unit 132.
  • a sound score is a score for received sound information.
  • a sound score is typically a positive and negative score.
  • a sound score is, for example, information that indicates the degree of positivity or information that indicates the degree of negativity.
  • the sound score acquisition unit 134 acquires the sound score by, for example, one of the following three methods. (1) Method using an arithmetic formula
  • the sound score acquisition unit 134 assigns the amount of information possessed by each of the one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 to a sound calculation formula, executes the sound calculation formula, and calculates a sound score.
  • the sound calculation formula is a formula in which the amount of information possessed by each of the one or more pieces of sound feature information is a parameter.
  • the sound calculation formula is stored in the storage unit 11. (2) Using a correspondence table
  • the sound score acquisition unit 134 acquires from the sound correspondence table a sound score that is paired with a vector that is most similar to a vector whose elements are the amount of information possessed by one or more pieces of sound feature information acquired by the sound feature acquisition unit 132.
  • the sound correspondence table is a table that shows the correspondence between a set of one or more pieces of sound feature information and a sound score.
  • the sound correspondence table has two or more pieces of sound correspondence information.
  • the sound correspondence information is information that shows the correspondence between a vector whose elements are the amount of information possessed by one or more pieces of sound feature information and a sound score.
  • the sound correspondence information is, for example, a pair of a vector and a sound score.
  • the sound score acquisition unit 134 provides a vector whose elements are the amount of information contained in one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 and a sound learning model to a machine learning prediction module, executes the prediction module, and acquires a sound score.
  • the sound learning model is information obtained by providing two or more pieces of teacher data having a vector whose elements are the amount of information contained in one or more pieces of sound feature information and a sound score to a machine learning learning module and executing the learning module.
  • the sound learning model is stored in the storage unit 11.
  • Learning models such as the image learning model, sound learning model, and comprehensive learning model described below, are information constructed by the learning process of machine learning, and are information used in the prediction process of machine learning.
  • a learning model may also be called a learner, classifier, classification model, etc.
  • the above machine learning algorithms may be deep learning, random forest, decision tree, SVR, etc.
  • various machine learning functions such as the TensorFlow library, the random forest module of the R language, fastText, TinySVM, and various existing libraries can be used.
  • the overall score acquisition unit 135 acquires an overall score based on one or more pieces of image feature information and one or more pieces of sound feature information.
  • the overall score acquisition unit 135 acquires an overall score, for example, using the image score and the sound score.
  • the overall score acquisition unit 135 acquires a larger overall score the larger the image score value.
  • the overall score acquisition unit 135 acquires a larger overall score the larger the sound score value.
  • the overall score acquisition unit 135 acquires an overall score, for example, by an increasing function with the image score and the sound score as parameters.
  • the overall score acquisition unit 135 acquires an overall score that is, for example, the sum of the image score and the sound score.
  • the overall score acquisition unit 135 acquires an overall score that is, for example, the average value of the image score and the sound score.
  • the overall score acquisition unit 135 acquires an overall score that is, for example, the weighted average value of the image score and the sound score.
  • the overall score acquiring unit 135 may acquire the overall score without using the image score or the sound score. In such a case, the overall score acquiring unit 135 acquires the sound score by, for example, one of the following three methods. (1) Method using an arithmetic formula
  • the overall score acquisition unit 135 substitutes one or more of the amounts of information contained in the one or more pieces of image feature information acquired by the image feature acquisition unit 131 and the amount of information contained in the one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 into an overall calculation formula, executes the overall calculation formula, and calculates an overall score.
  • the overall calculation formula is a formula in which the amount of information contained in each of the one or more pieces of feature information is a parameter.
  • the overall calculation formula is stored in the storage unit 11. (2) Using a correspondence table
  • the overall score acquisition unit 135 acquires from the overall correspondence table an overall score paired with a vector that is most similar to a vector whose elements are the amounts of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and one or more pieces of sound feature information acquired by the sound feature acquisition unit 132.
  • the overall correspondence table is a table showing the correspondence between a set of one or more pieces of feature information and an overall score.
  • the overall correspondence table has two or more pieces of overall correspondence information.
  • the overall correspondence information is information showing the correspondence between a vector whose elements are the amounts of information contained in one or more pieces of feature information and an overall score.
  • the overall correspondence information is, for example, a pair of a vector and an overall score.
  • the overall score acquisition unit 135 provides a vector whose elements are the amount of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and one or more pieces of sound feature information acquired by the sound feature acquisition unit 132, and an overall learning model to a machine learning prediction module, executes the prediction module, and acquires an overall score.
  • the comprehensive learning model is information obtained by providing two or more pieces of teacher data having a vector whose elements are the amount of information contained in one or more pieces of feature information and an overall score to a machine learning learning module and executing the learning module.
  • the comprehensive learning model is stored in the storage unit 11.
  • the ignition node determination unit 136 determines from the starting point storage unit 111 one or more node identifiers that are paired with an initial ignition condition in which one or two types of information out of one or more image feature information and one or more sound feature information match.
  • the ignition node determination unit 136 determines the node identifier of a node that is connected by an edge to each ignition node identified by the one or more node identifiers and that is to be ignited, and that receives one or more pieces of feature information from the ignition node.
  • the node identifier of the ignition node is appropriately referred to as the ignition node identifier.
  • the one or more pieces of feature information are one or two types of information from among one or more pieces of image feature information and one or more pieces of sound feature information.
  • the firing node determination unit 136 determines the node identifier of a node that is connected by an edge, for example, and the weight of the edge satisfies a transmission condition.
  • a transmission condition is a condition for transmitting feature information from one node to another node that is connected to the node by an edge.
  • the firing node determination unit 136 determines whether one or more pieces of feature information passed from one or more other nodes connected by an edge satisfy a firing condition related to one or more pieces of feature information, and determines the node identifier of the node determined to satisfy the firing condition.
  • the firing condition is a condition related to one or more pieces of feature information.
  • the firing node determination unit 136 stores the number of times information regarding the number of times of the determined node identifier in association with the node identifier. In other words, it is preferable that the firing node determination unit 136 increases the number of times information of the fired node.
  • the state determination unit 137 uses the difference information to determine one state from two or more states including positive and negative. Note that the two or more states are, for example, "positive” and “negative”, or “positive”, “negative”, and “neutral”.
  • Difference information is information about the difference between the total score and the standard score. Examples of difference information are “total score - standard score,” “absolute value of the difference between the total score and the standard score,” “total score/standard score,” and “standard score/total score.”
  • the state determination unit 137 obtains difference information indicating the difference between the total score obtained by the total score acquisition unit 135 and the reference score. Next, the state determination unit 137 obtains a state identifier corresponding to the difference information. Note that the difference information may be information obtained by the growth unit 138, which will be described later.
  • the state determination unit 137 obtains the total score obtained by the total score acquisition unit 135.
  • the state determination unit 137 also determines an ignition pattern that matches one or more node identifiers determined by the ignition node determination unit 136 from the standard score storage unit 113, and obtains a standard score that pairs with the ignition pattern from the standard score storage unit 113.
  • the state determination unit 137 obtains difference information between the total score and the standard score.
  • the state determination unit 137 obtains a state identifier that corresponds to the difference information.
  • the growth unit 138 performs a growth process.
  • the growth unit 138 performs a growth process of a NN that mimics the brain.
  • the growth unit 138 performs a growth process of the NN using the received image information and sound information.
  • the growth unit 138 performs a process of growing the nodes or edges, or the nodes and edges, that constitute the NN, using one or more pieces of image feature information acquired from the received image information and one or more pieces of sound feature information acquired from the sound information.
  • the growth unit 138 acquires difference information regarding the difference between the overall score and the reference score, and performs growth processing based on the difference information.
  • the growth unit 138 performs growth processing when the difference information matches the growth conditions.
  • the growth unit 138 obtains from the standard score storage unit 113 a standard score that is paired with an ignition pattern corresponding to one or more node identifiers determined by the ignition node determination unit 136. Next, the growth unit 138 obtains difference information regarding the difference between the obtained total score and the standard score, and performs a growth process based on the difference information.
  • the growth process is, for example, an edge growth process, an edge creation process, and a node creation process.
  • the edge growth process is, for example, a first edge growth process and a second edge growth process. Each process will be described below.
  • the growing unit 138 performs, for example, an edge growing process.
  • the edge growing process is a process of growing an edge.
  • the edge growing process is, for example, a process of increasing the weight of an edge. Increasing the weight of an edge means making the edge thicker.
  • the edge growing process is, for example, a process of increasing the length of an edge.
  • the edge growing process may be a process of connecting the edge from the node from which the edge originates to another node. (1-1) First edge growth treatment
  • the growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and when the difference information matches the first edge growth condition, performs a first edge growth process that increases the weight of the edge information of one or more edges connected to the fired node.
  • the first edge growth condition is a condition for changing the weight of an edge.
  • the edge weight is usually increased when the difference between the total score and the reference score is small.
  • the first edge growth condition may have degree information indicating the degree of weight change.
  • the growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and if the difference information matches the second edge growth condition, performs a second edge growth process that changes the edge position information contained in the edge information of one or more edges connected to nodes identified by one or more node identifiers determined by the ignition node determination unit 136, and extends the length of the edges.
  • the second edge growth condition is a condition for extending the length of an edge.
  • the second edge growth condition is, for example, a condition based on difference information or a condition based on count information.
  • the growth unit 138 acquires goal information paired with a state identifier (for example, "positive” or "negative") of one state determined by the state determination unit 137.
  • the growth unit 138 performs a second edge growth process, for example, acquiring edge position information contained in the edge information of each of one or more edges, acquiring new edge position information in the direction indicated by the goal information for the edge position information, and accumulating the new edge position information.
  • the target of the second edge growth process is, for example, an edge connected to one or more nodes determined by the ignition node determination unit 136.
  • the target of the second edge growth process may be, for example, a portion of edges that meet a specific condition, among the one or more nodes determined by the ignition node determination unit 136.
  • the specific condition is, for example, a condition based on weight.
  • the specific condition is, for example, "weight is equal to or greater than a threshold" or "weight is greater than a threshold.”
  • the second edge growth process may be one or more of a Dendrites growth process (to be described later) and an AXON growth process (to be described later). (1-3) Dendrites growth treatment
  • the growth unit 138 performs, for example, a dendrites growth process.
  • the dendrites growth process is a process for growing dendrites.
  • the dendrites growth process may be included in the edge growth process.
  • the process for growing dendrites is usually a process for increasing the length of the dendrites.
  • the process for growing dendrites is a process for acquiring new dendrites position information for the dendrites position information contained in the dendrites information of the dendrites, which sets the position of the end point indicated by the dendrites position information to a position away from the position of the connected node, and storing the new dendrites position information.
  • the growth unit 138 performs a dendrites growth process, for example, by acquiring and accumulating dendrites information by growing dendrites extending from nodes identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
  • one or more of the node identifiers determined by the firing node determination unit 136 are node identifiers of one or more nodes that meet the Dendrites growth condition among the one or more node identifiers determined by the firing node determination unit 136.
  • one or more of the node identifiers determined by the firing node determination unit 136 may be all of the node identifiers determined by the firing node determination unit 136.
  • obtaining dendrites information by growing dendrites extending from a node means changing the dendrites position information contained in the dendrites information to position information in which the end point of the dendrite indicated by the dendrites position information is located farther away from the node.
  • the process of growing dendrites extending from a node is a process of obtaining position information in the direction indicated by the goal information from the dendrites position information contained in the dendrites information that pairs with the node identifier that identifies the node, and setting this position information as the dendrites position information.
  • the growth unit 138 performs, for example, an AXON growth process.
  • the AXON growth process is a process for growing an AXON.
  • the AXON growth process may be included in an edge growth process.
  • the AXON growth process is usually a process for increasing the length of an AXON.
  • the AXON growth process is a process for acquiring new AXON position information for the AXON position information contained in the AXON information of the AXON, which is a position that is farther away from the position of the connected node than the position of the end point indicated by the AXON position information, and storing the new AXON position information.
  • the growth unit 138 performs an AXON growth process, for example, by acquiring and storing AXON information obtained by growing an AXON extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
  • one or more of the node identifiers determined by the firing node determination unit 136 are node identifiers of one or more nodes that meet the AXON growth condition among the one or more node identifiers determined by the firing node determination unit 136.
  • one or more of the node identifiers determined by the firing node determination unit 136 may be all of the node identifiers determined by the firing node determination unit 136.
  • obtaining AXON information by growing an AXON extending from a node means changing the AXON position information contained in the AXON information to position information in which the end point of the AXON indicated by the AXON position information is located farther away from the node.
  • the AXON growth conditions are conditions for performing the AXON growth process.
  • the AXON growth conditions are conditions based on, for example, difference information and number information.
  • the AXON growth conditions may be the same as the second edge growth conditions, or may be different.
  • the process of growing an AXON extending from a node is a process of obtaining position information in the direction indicated by the goal information from the AXON position information contained in the AXON information that pairs with the node identifier that identifies the node, and treating this position information as the AXON position information.
  • the growth unit 138 performs, for example, edge generation processing.
  • the edge generation processing can be said to be processing for generating new edges.
  • the edge generation processing is processing for generating new edge information and storing it in the NN storage unit 114.
  • the growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and based on the difference information, generates and accumulates edge information for edges extending from nodes identified by one or more of the one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by the goal information paired with a state determined by the state determination unit 137.
  • the growth unit 138 performs edge generation processing on a node identified by a node identifier, for example, if the edge generation conditions are met.
  • the edge generation condition is a condition for generating edge information.
  • the edge generation condition is, for example, a condition based on difference information.
  • the edge generation condition may be a condition based on count information.
  • the edge generation condition may be common to all nodes of interest, may be different for each node, or may be different for each edge. When the edge generation condition is different for each node, for example, the node information has the edge generation condition. When the edge generation condition is different for each edge, for example, the edge information has the edge generation condition.
  • the growth unit 138 generates and stores edge information of edges extending from nodes identified by one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 at a position in a direction indicated by goal information that pairs with a state determined by the state determination unit 137.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that match the edge generation condition.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
  • the process of generating edge information is a process of generating edge information of an edge connected to a node identified by a target node identifier.
  • the process of generating edge information is, for example, a process of acquiring a unique edge identifier, and generating edge information having an edge identifier, which is information on an edge connecting a node identified by a target node identifier to another node in a direction indicated by goal information from the node.
  • Such edge information has, for example, an edge identifier and the node identifiers of the two nodes to be connected.
  • the process of generating edge information is, for example, a process of acquiring a unique edge identifier, acquiring edge position information that extends from a node identified by a target node identifier and specifies the position of its end point from the node in the direction indicated by goal information, and generating edge information having the edge position information.
  • edge information has, for example, an edge identifier, a node identifier of a target (connecting) node, and edge position information that specifies the position of the end point of the edge.
  • the edge generation process may be one or more of a dendrites generation process and an AXON generation process, which will be described later.
  • the edge generation process may also include a glial cell generation process, which will be described later. (2-1) Dendrites generation process
  • the growth unit 138 performs, for example, a dendrites generation process.
  • the dendrites generation process is a process for generating new dendrites.
  • the dendrites generation process may include a process for generating new dendrites information and storing it in the NN storage unit 114.
  • the growth unit 138 generates and stores dendrites information for dendrites extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that match the Dendrites generation condition.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
  • the process of generating dendrites information is a process of generating dendrites information for dendrites connected to a node identified by a target node identifier.
  • the process of generating dendrites information is a process of, for example, acquiring a unique dendrites identifier, acquiring dendrites position information in the direction indicated by the goal information from the node identified by the target node identifier (the node identifier of the node to which the dendrites are connected), and constructing and storing dendrites information having the dendrites identifier and the dendrites position information.
  • the dendrites generation condition is a condition for generating dendrites.
  • the dendrites generation condition is, for example, a condition based on difference information or number information.
  • the dendrites generation condition may be the same as the edge generation condition, or may be different.
  • the growth unit 138 performs, for example, an AXON generation process.
  • the AXON generation process is a process for generating a new AXON.
  • the AXON generation process may include a process for generating new AXON information and storing it in the NN storage unit 114.
  • the growth unit 138 generates and stores AXON information for an AXON extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that meet the AXON generation condition.
  • the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
  • the process of generating AXON information is a process of generating AXON information of an AXON connected to a node identified by a target node identifier (the node identifier of the node to which the AXON is connected).
  • the process of generating AXON information is, for example, a process of acquiring a unique AXON identifier, acquiring AXON position information in the direction indicated by the goal information from the node identified by the target node identifier, and constructing and storing AXON information having the AXON identifier and the AXON position information.
  • the AXON generation condition is a condition for generating an AXON.
  • the AXON generation condition is, for example, a condition based on difference information or number information.
  • the AXON generation condition may be the same as the edge generation condition, or may be different.
  • the growth unit 138 performs, for example, a node generation process.
  • the node generation process is a process of generating new node information.
  • the growth unit 138 performs a node generation process to generate and store node information of a new node in a position in the vicinity of the position indicated by the node position information of a node identified by one or more node identifiers among the one or more node identifiers acquired by the ignition node determination unit 136, which is a position in the direction indicated by the goal information that pairs with one state determined by the state determination unit 137.
  • the growth unit 138 acquires a new node identifier.
  • the growth unit 138 also acquires new node position information for a position in a direction indicated by goal information that pairs with a state determined by the state determination unit 137 and that is a predetermined distance away from the position indicated by the node position information of the target node (firing node).
  • the growth unit 138 also acquires information (for example, firing condition or firing probability information) contained in the node information of the target node.
  • the growth unit 138 then constructs node information that includes, for example, one or more pieces of information among the new node identifier, the new node position information, and the firing condition or firing probability information, and accumulates the information in the NN storage unit 114.
  • the predetermined distance may be a predetermined distance, or may change dynamically.
  • each of the one or more node identifiers among the one or more node identifiers is, for example, one or more node identifiers included in the node information that matches the node generation condition among the one or more node identifiers.
  • the one or more node identifiers among the one or more node identifiers may be, for example, all of the node identifiers among the one or more node identifiers.
  • a node generation condition is a condition for generating a node.
  • the node generation condition is, for example, a condition based on difference information.
  • the node generation condition may be the same as the edge generation condition or may be different.
  • the node generation condition may be common to all nodes of interest or may be different for each node. When the node generation condition is different for each node, for example, the node information has the node generation condition. (4) Glial cell generation treatment
  • the growth unit 138 performs the following glial cell generation process. That is, for example, when the amount of energy held by an element that is a node or edge becomes small enough to satisfy a predetermined condition relative to the amount of required energy, the growth unit 138 generates glial cell information that connects to the element.
  • the element may be an axon or a dendrite. That is, when the amount of energy held by an element that is an axon or a dendrite becomes small enough to satisfy a predetermined condition relative to the amount of required energy, the growth unit 138 generates glial cell information that connects to the element.
  • the growth unit 138 compares the amount of retained energy indicated by the retained energy amount information of the information of each element (node information, edge information, AXON information, or Dendrites information) with the amount of required energy indicated by the required energy amount information of the information of each element to determine whether the amount of retained energy is small enough to satisfy a predetermined condition, and if it determines that the amount is small, generates glial cell information having an identifier that identifies the element (node identifier, edge identifier, AXON identifier, or Dendrites identifier) and stores it in the storage unit 11.
  • the standard score modification unit 139 modifies the standard score in the standard score storage unit 113 based on the total score acquired by the total score acquisition unit 135. For example, the standard score modification unit 139 modifies the standard score to the total score. For example, the standard score modification unit 139 modifies the standard score using an increasing function (for example, an average value, a weighted average value) with the original standard score and the total score as parameters.
  • an increasing function for example, an average value, a weighted average value
  • the standard score change unit 139 changes the standard score in the standard score storage unit 113 only when the total score matches the score change condition.
  • the score change condition is a condition based on difference information between the total score and the standard score.
  • the degree to which the standard score is changed is based on, for example, the difference information or the total score.
  • the degree to which the standard score is changed is "average value of the total score and the standard score" or "weighted average value of the total score and the standard score”.
  • the output unit 14 outputs various information.
  • the various information is, for example, the identifier of the fired node, the NN information in the NN storage unit 114, and the state identifier acquired by the state determination unit 137.
  • the various types of information are, for example, information that graphically illustrates the NN information.
  • the processing unit 13 constructs a diagram (e.g., a sphere) of the nodes that make up the NN from each node information contained in the NN information, and constructs a diagram (e.g., a line) of the edges that make up the NN from the edge information.
  • the processing unit 13 also arranges the node diagram (e.g., a sphere) at the position in virtual space indicated by the node position information contained in each node information, arranges a diagram of an edge (e.g., a line) whose end point is the position in virtual space indicated by the edge position information contained in each edge information, and constructs a diagram that clearly shows that the node to which the edge is connected is connected to the diagram of the edge (e.g., a line).
  • the node diagram e.g., a sphere
  • output is a concept that includes displaying on a display, projecting using a projector, printing on a printer, outputting sound, sending to an external device, storing on a recording medium, and passing on the processing results to other processing devices or other programs, etc.
  • the storage unit 11, the starting point storage unit 111, the goal storage unit 112, the reference score storage unit 113, and the NN storage unit 114 are preferably non-volatile recording media, but can also be realized with volatile recording media.
  • information may be stored in the storage unit 11, etc. via a recording medium, information transmitted via a communication line, etc. may be stored in the storage unit 11, etc., or information inputted via an input device may be stored in the storage unit 11, etc.
  • the reception unit 12 and the information reception unit 121 are realized, for example, by wireless or wired communication means, means for receiving broadcasts, device drivers for input means such as a touch panel or keyboard, control software for a menu screen, etc.
  • the processing unit 13, image feature acquisition unit 131, sound feature acquisition unit 132, image score acquisition unit 133, sound score acquisition unit 134, total score acquisition unit 135, firing node determination unit 136, growth unit 138, state determination unit 137, and reference score change unit 139 can usually be realized by a processor, memory, etc.
  • the processing procedures of the processing unit 13, etc. are usually realized by software, and the software is recorded in a recording medium such as a ROM. However, they may also be realized by hardware (dedicated circuitry).
  • the processor may be a CPU, MPU, GPU, etc., and the type does not matter.
  • the output unit 14 can be realized, for example, by driver software for an output device, or by a combination of driver software for an output device and an output device, or by wireless or wired communication means or broadcasting means.
  • the output device can be, for example, a display or a speaker.
  • Step S201 The information receiving unit 121 determines whether or not information has been received. If information has been received, the process proceeds to step S202; if information has not been received, the process returns to step S201.
  • Step S202 The processing unit 13 determines whether image information is present in the information received in step S201. If image information is present, the process proceeds to step S203; if not, the process proceeds to step S204.
  • Step S203 The image feature acquisition unit 131 acquires one or more pieces of image feature information from the image information accepted in step S201, and temporarily stores the information in a buffer (not shown).
  • Step S204 The processing unit 13 determines whether or not sound information is present in the information received in step S201. If sound information is present, the process proceeds to step S205; if not, the process proceeds to step S206.
  • Step S205 The sound feature acquisition unit 132 acquires one or more pieces of sound feature information from the sound information accepted in step S201.
  • Step S206 The total score acquisition unit 135 etc. acquires the total score. An example of such score acquisition processing will be explained using the flowchart in FIG. 3.
  • Step S207 The growth unit 138 etc. performs growth processing. An example of the growth processing is explained using the flowchart in FIG. 4.
  • Step S208 The standard score change unit 139 performs processing to change the standard score. Return to step S201. An example of such standard change processing will be described using the flowchart in FIG. 16.
  • processing ends when the power is turned off or an interrupt occurs to end processing.
  • Step S301 The image score acquisition unit 133 determines whether image feature information is present in the acquired feature information. If image feature information is present, the process proceeds to step S302; if not, the process proceeds to step S304.
  • Step S302 The image score acquisition unit 133 acquires one or more pieces of image feature information from the acquired feature information from a buffer (not shown).
  • Step S303 The image score acquisition unit 133 acquires an image score using one or more pieces of image feature information acquired in step S302.
  • Step S304 The sound score acquisition unit 134 determines whether or not sound feature information is present in the acquired feature information. If sound feature information is present, the process proceeds to step S305; if not, the process proceeds to step S307.
  • Step S306 The sound score acquisition unit 134 acquires a sound score using one or more pieces of sound feature information acquired in step S302.
  • Step S307 The total score acquisition unit 135 acquires a total score using one or more of the acquired image scores or sound scores. It then returns to the upper level process.
  • the one or more pieces of feature information acquired are one or more types of information selected from the group consisting of one or more pieces of image feature information acquired in step S302 and one or more pieces of sound feature information acquired in step S305.
  • the overall score acquisition unit 135 may acquire the overall score using one or more pieces of acquired feature information, without using the image score and sound score.
  • step S207 an example of the growth process in step S207 will be explained using the flowchart in Figure 4.
  • Step S401 The firing node determination unit 136 performs a process to determine the node that will be fired initially. An example of such an initial firing node determination process will be described using the flowchart in FIG. 5.
  • Step S402 The firing node determination unit 136 assigns 1 to counter i.
  • Step S403 The ignition node determination unit 136 determines whether or not the i-th initial ignition node exists among the initial ignition nodes determined in step S401. If the i-th initial ignition node exists, the process proceeds to step S404; if not, the process proceeds to step S406.
  • Step S404 The ignition node determination unit 136 performs ignition transmission processing.
  • An example of the ignition transmission processing is described using the flowchart in FIG. 6.
  • Step S406 The state determination unit 137 acquires the difference information.
  • An example of the difference information acquisition process is described using the flowchart in FIG. 8.
  • Step S407 The state determination unit 137 acquires a state identifier corresponding to the difference information acquired in step S406.
  • the state determination unit 137 for example, refers to a correspondence table having two or more pieces of correspondence information indicating the correspondence between the difference information conditions and the state identifiers, and acquires a state identifier that pairs with the condition that matches the acquired difference information.
  • the correspondence table is stored in the storage unit 11.
  • Step S408 The growth unit 138 assigns 1 to counter j.
  • Step S409 The growth unit 138 determines whether or not the jth ignition node exists among the nodes that were ignited in steps S401 to S405. If the jth ignition node exists, the process proceeds to step S408; if not, the process returns to the upper level process.
  • Step S410 The growth unit 138 increments the number of times information that is paired with the node identifier of the j-th firing node by 1.
  • Step S411 The growth unit 138 performs single growth processing on the j-th firing node.
  • An example of single growth processing is explained using the flowchart in FIG. 9.
  • a single growth process is a growth process for one firing node and the edge connected to that node.
  • Step S412 The growth unit 138 increments the counter j by 1. Return to step S407.
  • Step S501 The firing node determination unit 136 assigns 1 to counter i.
  • Step S502 The ignition node determination unit 136 determines whether or not the i-th initial ignition condition exists in the start point storage unit 111. If the i-th initial ignition condition exists, the process proceeds to step S503; if it does not exist, the process returns to the upper level process.
  • Step S503 The firing node determination unit 136 obtains the i-th initial firing condition from the starting point storage unit 111.
  • the ignition node determination unit 136 acquires one or more pieces of feature information to be used in determining the i-th initial ignition condition from a buffer (not shown).
  • Each of the one or more pieces of feature information is, for example, image feature information or sound feature information.
  • Step S505 The ignition node determination unit 136 judges whether or not the one or more pieces of feature information acquired in step S504 satisfy the i-th initial ignition condition acquired in step S503. If the i-th initial ignition condition is satisfied, the process proceeds to step S506; if not, the process proceeds to step S509.
  • the ignition node determination unit 136 refers to the NN storage unit 114 and determines whether or not a ignition probability exists for the ignition node identifier that is paired with the i-th initial ignition condition. If a ignition probability exists, the process proceeds to step S507; if not, the process proceeds to step S508.
  • Step S507 The ignition node determination unit 136 uses the ignition probability of the i-th initial ignition condition and the ignition node identifier that is paired with it to determine whether or not it will ignite this time. If it will ignite, the process proceeds to step S508, and if it will not ignite, the process proceeds to step S509.
  • the ignition node determination unit 136 acquires ignition information having an ignition node identifier that pairs with the i-th initial ignition condition, and stores the ignition information in the storage unit 11.
  • Step S509 The ignition node determination unit 136 increments the counter i by 1. Return to step S502.
  • step S404 an example of the ignition transmission process in step S404 will be described using the flowchart in FIG. 6.
  • the firing node determination unit 136 acquires all edge information including the firing node identifier as the identifier of the connection source node from the NN storage unit 114.
  • the firing node identifier here is, for example, the node identifier of the i-th initial firing node in step S403.
  • Step S602 The firing node determination unit 136 assigns 1 to counter i.
  • Step S603 The ignition node determination unit 136 determines whether the i-th edge information exists among the edge information acquired in step S601. If the i-th edge information exists, the process proceeds to step S604; if not, the process returns to the upper level process.
  • Step S604 The firing node determination unit 136 judges whether or not the node identifier of another node is present in the i-th edge information. If the node identifier of another node is present, the process proceeds to step S605; if not, the process proceeds to step S612. Note that the node identifier of another node in the edge information is the node identifier of the node to which the edge is connected.
  • Step S605 The firing node determination unit 136 acquires the node identifier of another node in the i-th edge information. Next, the firing node determination unit 136 acquires the node information of the node identified by the node identifier from the NN storage unit 114.
  • Step S606 The ignition node determination unit 136 uses the node information acquired in step S605 to determine whether or not the node corresponding to the node information will ignite. An example of such ignition determination processing will be described with reference to the flowchart in FIG. 7.
  • Step S607 If the determination result in step S606 is "fire”, the ignition node determination unit 136 proceeds to step S608, and if the determination result is "do not ignite”, the ignition node determination unit 136 proceeds to step S612.
  • Step S608 The ignition node determination unit 136 acquires ignition information having the node identifier included in the node information acquired in step S605, and stores the ignition information in the storage unit 11.
  • Step S609 The ignition node determination unit 136 changes the ignition probability information contained in the node information acquired in step S605.
  • the ignition node determination unit 136 changes the ignition probability information so that the ignition probability specified by the ignition probability information increases. Note that the amount of increase does not matter.
  • Step S610 The firing node determination unit 136 judges whether or not to end the transmission of firing (which can also be called the transmission of information) between nodes. If the transmission is to be ended, the process proceeds to step S612, and if the transmission is not to be ended, the process proceeds to step S611. Note that the transmission is to be ended, for example, when the node in question is the terminal node in the NN.
  • Step S611 The ignition node determination unit 136 performs ignition transmission processing with the node in question as the node of interest.
  • An example of the ignition transmission processing is shown in FIG. 6.
  • Step S612 The ignition node determination unit 136 increments the counter i by 1. Return to step S603.
  • the firing node determination unit 136 when transmitting firing (transmission of information) between nodes, the firing node determination unit 136 preferably updates the retained energy amount information by subtracting the amount of energy indicated by the retained energy amount information held by the node information that caused the firing. This may also be applied to the retained energy amount information paired with the AXON identifier of the AXON used for the transmission, and the retained energy amount information paired with the Dendrites identifier of the Dendrites used for the transmission.
  • the function for reducing the amount of energy is stored, for example, in the storage unit 11. The function in question is not important. As the function is a publicly known technology, a detailed description will be omitted.
  • the ignition node determination unit 136 typically performs processing to pass one or more pieces of feature information received by the ignition source node to the destination node where the ignition will occur.
  • Step S701 The firing node determination unit 136 obtains the firing conditions corresponding to the node information obtained in step S605.
  • Step S702 The ignition node determination unit 136 acquires one or more pieces of feature information. Note that the one or more pieces of feature information are passed from the node that is the source of the ignition.
  • Step S703 The ignition node determination unit 136 judges whether or not one or more pieces of feature information acquired in step S702 satisfy the ignition condition acquired in step S701. If the ignition condition is satisfied, the process proceeds to step S704, and if the ignition condition is not satisfied, the process proceeds to step S707.
  • Step S704 The firing node determination unit 136 judges whether the node information of interest has firing probability information. If it has firing probability information, the process proceeds to step S705, and if it does not have firing probability information, the process proceeds to step S706.
  • Step S705 The ignition node determination unit 136 acquires ignition probability information contained in the node information of interest. Next, the ignition node determination unit 136 uses the ignition probability information to determine whether or not ignition will occur. If ignition will occur, the process proceeds to step S706, and if ignition will not occur, the process proceeds to step S707.
  • Step S706 The ignition node determination unit 136 assigns "ignite” to the judgment result. Returns to the upper level process.
  • Step S707 The firing node determination unit 136 assigns "do not fire” to the judgment result. It returns to the upper level process.
  • Step S801 The state determination unit 137 obtains the total score obtained in step S206.
  • Step S802 The state determination unit 137 assigns 1 to counter i.
  • Step S803 The state determination unit 137 judges whether the i-th firing pattern exists in the standard score storage unit 113. If the i-th firing pattern exists, the process proceeds to step S804. If it does not exist, the process proceeds to step S809.
  • Step S804 The state determination unit 137 acquires the i-th firing pattern.
  • Step S805 The state determination unit 137 refers to one or more pieces of ignition information in the storage unit 11 and determines whether the ignition pattern acquired in step S804 is satisfied. If the ignition pattern is satisfied, the process proceeds to step S806; if not, the process proceeds to step S808.
  • Step S806 The state determination unit 137 obtains the reference score that is paired with the i-th firing pattern from the reference score storage unit 113.
  • Step S807 The state determination unit 137 obtains difference information using the obtained total score and the obtained reference score. It then returns to the upper level process.
  • Step S808 The state determination unit 137 increments the counter i by 1. Return to step S803.
  • Step S809 The state determination unit 137 obtains the default standard score from the standard score storage unit 113. Go to step S807.
  • step S509 single growth processing is performed in step S509.
  • An example of single growth processing is explained using the flowchart in Figure 9.
  • Step S901 The growth unit 138 performs edge growth processing.
  • An example of the edge growth processing is explained using the flowchart in FIG. 10.
  • Step S902 The growth unit 138 performs edge generation processing.
  • An example of the edge generation processing is described using the flowchart in FIG. 12.
  • Step S903 The growth unit 138 performs node generation processing. Then, the process returns to the upper level. An example of the node generation processing is explained using the flowchart in FIG. 14.
  • Step S1001 The growth unit 138 obtains node information identified by the node identifier of interest from the NN storage unit 114.
  • Step S1002 The growth unit 138 assigns 1 to counter i.
  • Step S1003 The growth unit 138 determines whether or not the i-th edge information exists in the NN storage unit 114 among the edge information of the edge whose origin is the node identified by the node identifier of interest. If the i-th edge information exists, the process proceeds to step S1004, and if not, the process returns to the upper level process.
  • Step S1004 The growth unit 138 obtains the i-th edge information from the NN storage unit 114.
  • Step S1005 The growth unit 138 determines whether or not a node is connected to the end of the edge corresponding to the i-th edge information. More specifically, the growth unit 138 determines whether or not the node identifier contained in the i-th edge information is only the focus node identifier. If it is only the focus node identifier, the process proceeds to step S1006; if it is not only the focus node identifier (if there are two node identifiers), the process proceeds to step S1010. Note that edge information containing only the focus node identifier is connected to the focus node and is information about an edge that can grow. On the other hand, edge information containing two node identifiers is information about an edge that cannot grow.
  • Step S1006 The growth unit 138 acquires the second edge growth conditions.
  • Step S1007 The growth unit 138 acquires the difference information acquired in step S207.
  • Step S1008 The growth unit 138 determines whether the difference information acquired in step S1007 satisfies the second edge growth condition. If the second edge growth condition is satisfied, the process proceeds to step S1009; if not, the process proceeds to step S1014.
  • Step S1009 The growth unit 138 performs edge extension processing. Proceed to step S1014. An example of edge extension processing will be explained using the flowchart in FIG. 10.
  • edge extension processing is processing that extends the length of an edge, and is usually processing that changes edge position information or processing that adds the node identifier of the connected node to edge information.
  • Step S1010 The growth unit 138 acquires the first edge growth conditions.
  • Step S1011 The growth unit 138 acquires the difference information acquired in step S207.
  • Step S1012 The growth unit 138 determines whether the difference information acquired in step S1011 satisfies the first edge growth condition. If the first edge growth condition is satisfied, the process proceeds to step S1013; if not, the process proceeds to step S1014.
  • Step S1013 The growth unit 138 changes the weight of the i-th edge information to an increased weight.
  • Step S1014 The growth unit 138 increments the counter i by 1. Return to step S1003.
  • the edge growth process may be replaced with a dendrites growth process for the dendrites that make up the edge, or an AXON growth process for the AXON.
  • Step S1101 The growth unit 138 acquires edge position information contained in the acquired edge information.
  • Step S1102 The growth unit 138 acquires goal information.
  • Step S1103 The growth unit 138 uses the edge position information acquired in step S1101 and the goal information acquired in step S1102 to acquire new edge position information and update the edge position information.
  • the growth unit 138 acquires position information from the edge position information that identifies the position in the direction indicated by the goal information.
  • the growth unit 138 acquires edge position information indicating a position that is a predetermined distance away from the position indicated by the edge position information acquired in step S1101 in the direction specified by the goal information, for example.
  • the growth unit 138 acquires edge position information indicating a position that is between the position indicated by the edge position information and the node position information of the other node in the direction specified by the goal information, and that is a distance within a predetermined distance.
  • the growth unit 138 acquires the node position information of the other node as edge position information.
  • the growth unit 138 acquires new edge position information, it is sufficient to acquire edge position information in the direction specified by the goal information from the current edge position information, and the edge position information does not matter.
  • the node position information of another node is acquired as edge position information, this is the case when the edge is connected to another node by edge extension processing, as described later. In such a case, the growth unit 138 may obtain the node identifier of the other node.
  • Step S1104 The growth unit 138 assigns 1 to counter i.
  • Step S1105) The growth unit 138 determines whether the i-th node information exists in the NN storage unit 114. If the i-th node information exists, the process proceeds to step S1106; if not, the process returns to the upper level process.
  • Step S1106 The growth unit 138 obtains the node position information contained in the i-th node information.
  • Step S1107 The growth unit 138 judges whether or not the node position information acquired in step S1106 satisfies the connection condition. If the connection condition is satisfied, the process proceeds to step S1108; if not, the process proceeds to step S1111.
  • the connection condition is a condition for an edge to be connected to a node.
  • the connection condition is, for example, that the distance between the position indicated by the node position information acquired in step S1106 and the position indicated by the new edge position information acquired in step S1103 is within a threshold or is smaller than the threshold.
  • Step S1108 The growth unit 138 obtains the node identifier contained in the i-th node information.
  • Step S1109 The growth unit 138 changes the edge position information updated in step S1103 to the node position information contained in the i-th node information.
  • Step S1110 The growth unit 138 adds the node identifier obtained in step S1108 to the acquired edge information. It then returns to the upper level processing.
  • Step S1111 The growth unit 138 increments the counter i by 1. Return to step S1105.
  • the edge extension process may be replaced with dendrites extension process of the dendrites that make up the edge, or with AXON extension process of AXON.
  • Dendrites extension processing is processing that extends dendrites, and in the processing explanation using FIG. 11, edge information is replaced with dendrites information.
  • AXON extension processing is processing that extends AXON, and in the processing explanation using FIG. 11, edge information is replaced with AXON information.
  • step S1110 after processing in step S1110, the process may proceed to step S1111.
  • one edge may branch and be connected to two or more nodes.
  • step S1107 of the flowchart in FIG. 11 the distance between the new edge position information acquired in step S1103 and the node position information of each node may be calculated, and it may be determined whether the node position information of the node with the smallest distance satisfies the connection condition.
  • Step S1201 The growth unit 138 obtains node information identified by the node identifier of interest from the NN storage unit 114.
  • Step S1202 The growth unit 138 acquires the edge generation conditions.
  • Step S1203 The growth unit 138 reads the difference information that has already been acquired.
  • Step S1204 The growth unit 138 determines whether the difference information acquired in step S1203 satisfies the edge generation condition. If the edge generation condition is satisfied, the process proceeds to step S1204; if not, the process returns to the upper level process.
  • Step S1205 The growth unit 138 performs edge information generation processing.
  • An example of the edge information generation processing is explained using the flowchart in FIG. 13.
  • Step S1206 The growth unit 138 accumulates the edge information constructed in step S1205 in the NN storage unit 114. It then returns to the upper level processing.
  • Step S1301 The growth unit 138 obtains goal information corresponding to the state identifier obtained in step S208 from the goal storage unit 112.
  • Step S1302 The growing unit 138 obtains edge position information of a new edge using the node position information of the node of interest (the node where the edge is to be generated) and the goal information obtained in step S1301.
  • the growing unit 138 obtains edge position information of an edge that starts from the node position information and extends in the direction of the goal information. Note that, for example, the distance between the position indicated by the edge position information and the position indicated by the node position information may or may not be determined in advance.
  • the growth unit 138 acquires edge position information indicating a position a predetermined distance away from the position indicated by the node position information of the node of interest in the direction specified by the goal information, for example.
  • the growth unit 138 acquires the node position information of the other node as edge position information.
  • the generated edge becomes an edge connecting the node corresponding to the node position information of the node of interest and the other node.
  • the growth unit 138 acquires node position information indicating a position a predetermined distance away from the position indicated by the node position information of the node of interest, and when the distance between the position indicated by the node position information of the node of interest and the position indicated by the node position information of the other node is equal to or less than a threshold value that is smaller than the threshold value, the growth unit 138 acquires the node position information of the other node as edge position information. In other words, the growth unit 138 only needs to obtain edge position information for an edge that starts from the node position information and extends in the direction of the goal information, and the edge position information is not important.
  • the growing unit 138 obtains an edge identifier for the new edge. For example, the growing unit 138 generates a new edge identifier. For example, the growing unit 138 obtains an unused edge identifier from the set of edge identifiers.
  • the growing unit 138 acquires the node identifier (target node identifier) of the node to which the edge is connected.
  • the growing unit 138 acquires the node identifier that pairs with the node position information of the target node.
  • the growing unit 138 may also acquire the node identifier of the newly connected node.
  • Step S1305) The growth unit 138 constructs edge information having the edge identifier acquired in step S1303, the edge position information acquired in step S1302, and one or two node identifiers acquired in step S1304. It then returns to the upper level processing.
  • the edge corresponding to the generated edge information may be in a situation where there is no node connected ahead, or there may be a node connected ahead.
  • the growing unit 138 acquires the node identifier that pairs with the node position information of the position in the direction of the goal information as the node identifier of the connected node. Note that when the growing unit 138 always configures and stores edge information such that a generated edge always connects two nodes, edge growing processing is not normally performed.
  • Step S1401 The growth unit 138 acquires difference information.
  • Step S1402 The growth unit 138 acquires the node generation conditions.
  • Step S1403 The growth unit 138 determines whether the difference information acquired in step S1401 satisfies the node generation condition acquired in step S1402. If the node generation condition is satisfied, the process proceeds to step S1404, and if the node generation condition is not satisfied, the process returns to the upper level process.
  • Step S1404 The growth unit 138 performs node information generation processing.
  • An example of the node information generation processing is explained using the flowchart in FIG. 15.
  • Step S1405 The growth unit 138 accumulates the node information constructed in step S1404 in the NN storage unit 114. It then returns to the upper level processing.
  • Step S1501 The growth unit 138 acquires node position information contained in the focus node information identified by the focus node identifier.
  • Step S1502 The growth unit 138 obtains goal information corresponding to the state identifier obtained in step S407 from the goal storage unit 112.
  • Step S1503 The growth unit 138 uses the node position information acquired in step S1501 and the goal information acquired in step S1502 to acquire node position information indicating a position in the direction specified by the goal information relative to the position indicated by the node position information acquired in step S1501.
  • This node position information is the position information of the new node.
  • the growth unit 138 acquires, for example, node position information indicating a position that is a predetermined distance away from the position indicated by the node position information acquired in step S1501 in the direction specified by the goal information. For example, if there is another node in the direction specified by the goal information from the position indicated by the node position information acquired in step S1501, the growth unit 138 acquires node position information indicating a position that is between the position indicated by the node position information acquired in step S1501 and the node position information of the other node in the direction specified by the goal information and that is within a predetermined distance. In other words, when the growth unit 138 acquires node position information of a new node, it is sufficient to acquire node position information in the direction specified by the goal information, and the node position information is not important.
  • Step S1504 The growth unit 138 obtains a node identifier for the new node.
  • the growth unit 138 generates a new node identifier.
  • the growth unit 138 may obtain an unused node identifier from the set of node identifiers.
  • the growth unit 138 acquires information contained in the node information of the node of interest, which is used for the node information of the new node.
  • information includes, for example, ignition conditions, ignition probability information, and possessed energy amount information.
  • Step S1506 The growth unit 138 constructs node information having the node identifier acquired in step S1504, the node position information acquired in step S1503, and the information acquired in step S1505. It then returns to the upper-level processing.
  • Step S1601 The standard score change unit 139 obtains the score change conditions from the storage unit 11.
  • Step S1602 The reference score change unit 139 obtains the total score or difference information from a buffer (not shown).
  • Step S1603 The reference score change unit 139 determines whether the total score or difference information satisfies the score change condition. If the score change condition is met, the process proceeds to step S1604; if not, the process returns to the upper level process.
  • Step S1604 The standard score change unit 139 determines whether or not the i-th firing pattern exists in the standard score storage unit 113. If the i-th firing pattern exists, the process proceeds to step S1605; if not, the process returns to the upper level process.
  • Step S1605 The reference score modification unit 139 assigns 1 to the counter i.
  • Step S1606 The standard score change unit 139 obtains the i-th firing pattern from the standard score storage unit 113.
  • the standard score change unit 139 refers to the firing information (information on the fired node) in the storage unit 11 and determines whether the i-th firing pattern is satisfied. If the i-th firing pattern is satisfied, the process proceeds to step S1608; if not, the process proceeds to step S1610. Note that if the i-th firing pattern is satisfied, this is usually the case when all node identifiers included in the firing pattern are included in the set of node identifiers of the fired node. However, if the i-th firing pattern is satisfied, it may also be the case, for example, that a threshold or higher percentage of node identifiers included in the firing pattern are included in the set of node identifiers of the fired node.
  • the standard score modification unit 139 obtains the standard score that is paired with the i-th firing pattern from the standard score storage unit 113.
  • the standard score modification unit 139 uses the obtained standard score to obtain the modified standard score.
  • the revised standard score will usually be greater than the original standard score. If the status identifier is "negative”, the revised standard score will usually be less than the original standard score.
  • Step S1609 The standard score change unit 139 changes the standard score paired with the i-th firing pattern to the standard score obtained in step S1608.
  • Step S1610 The reference score modification unit 139 increments the counter i by 1. Return to step S1606.
  • the score change condition may be different for each firing pattern. In such a case, if the score change condition paired with the firing pattern determined to be satisfied in step S1607 is satisfied, the score change condition paired with the firing pattern is changed.
  • the standard score change unit 139 may change the default standard score.
  • the NN growth device 1 it is possible to simulate, for example, the growth of a person's brain from infancy onwards.
  • the processing in this embodiment may be realized by software.
  • This software may be distributed by software download or the like.
  • This software may also be recorded on a recording medium such as a CD-ROM and distributed. This also applies to the other embodiments in this specification.
  • the software that realizes the NN growth device 1 in this embodiment is a program such as the following.
  • this program includes a computer that can access an NN storage unit in which neural network information having two or more pieces of node information each having a node identifier and one or more pieces of edge information each having an edge identifier and identifying a connection between the nodes is stored, a start point storage unit in which one or more pieces of ignition start point information each having one or more node identifiers that identify a node that ignites without passing through other nodes is stored in association with an initial ignition condition, which is a condition related to one or more types of feature information out of one or more pieces of image feature information for image information and one or more pieces of sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes, and a standard score storage unit that stores standard scores related to positivity and negativity, an information receiving unit that receives image information and sound information, an image feature acquisition unit that uses the image information received by the information receiving unit to acquire one or more pieces of image feature information for the image information, and a process for acquiring the NN
  • a sound feature acquisition unit that acquires one or more sound feature information for the sound information; a total score acquisition unit that acquires a total score based on the one or more image feature information and the one or more sound feature information; an ignition node determination unit that determines one or more node identifiers that are paired with an initial ignition condition in which one or more types of information of the one or more image feature information and the one or more sound feature information match from the starting point storage unit, and determines the node identifier of a node that will ignite, the node being connected to the node identified by the one or more node identifiers by edges and that is passed one or more types of information of the one or more image feature information and the one or more sound feature information; and a growth unit that performs a growth process that grows edge information of one or more edges that are connected to nodes identified by one or more node identifiers of the one or more node identifiers determined by the ignition node determination unit, based on difference information regarding the difference between the total score and the reference score.
  • an information processing device uses neural network information generated by a neural network growing device 1 to obtain firing patterns for received image information and/or sound information, and outputs information for the firing patterns.
  • FIG. 17 is a block diagram of the information processing device 2 in this embodiment.
  • the information processing device 2 includes a storage unit 21, a reception unit 22, a processing unit 23, and an output unit 24.
  • the storage unit 21 includes a starting point storage unit 111 and an NN storage unit 114.
  • the reception unit 22 includes an information reception unit 221 and a temperature reception unit 222.
  • the processing unit 23 includes a feature acquisition unit 231, an information transmission unit 232, an ignition pattern acquisition unit 233, and an output information acquisition unit 234.
  • the output unit 24 includes an information output unit 241.
  • the storage unit 21 that constitutes the information processing device 2 stores various types of information.
  • the various types of information include, for example, neural network information, one or more pieces of ignition start information, and one or more pieces of output management information.
  • the ignition start information is information that has an information identifier that identifies the characteristic information of the received information, and one or more node identifiers that identify the node that will be ignited first when the characteristic information is received.
  • the reception information is information received by the information reception unit 221.
  • the reception information includes one or two types of information, image information or sound information.
  • the reception information may be two or more types of information.
  • the reception information may include, for example, tactile information and smell information.
  • Tactile information is information relating to the sense of touch.
  • Smell information is information relating to smell.
  • Output management information is information that has output conditions and output information.
  • Output management information may be a pair of information of output conditions and output information.
  • An output condition is a condition used to determine output information.
  • An output condition is a condition for output using a firing pattern.
  • An output condition may be the firing pattern itself, or may be information having a firing pattern and output probability information.
  • Output probability information is information regarding the probability of obtaining output information.
  • An output condition may be information regarding a firing pattern and a lower limit of the number of node identifiers that the firing pattern to be applied has, or information regarding a lower limit of the ratio of node identifiers that the firing pattern to be applied has, etc.
  • An firing pattern has one or more node identifiers.
  • An firing pattern is a pattern of firing of one or more nodes.
  • Output information is information corresponding to an firing pattern.
  • the output information is, for example, emotional information related to a person's emotions, behavioral information related to a person's bodily movements, etc.
  • Emotional information is, for example, happy, sad, frightened, surprised, etc.
  • Emotional information is, for example, an ID that identifies an emotion.
  • Emotional information may also be the above-mentioned state identifier.
  • Behavioral information is, for example, information reflected in the movements of an avatar (character).
  • Behavioral information is, for example, information reflected in the movements of an infant avatar. Note that the technology for moving an avatar is publicly known technology, so a detailed explanation will be omitted.
  • the output condition may be a condition that uses the firing pattern and one or more pieces of information related to external information.
  • External information is information from the outside. External information may also be called user context. Examples of external information include temperature, weather, smell, sound, light, etc.
  • the NN storage unit 114 stores the neural network information accumulated by the NN growth device 1.
  • the reception unit 22 receives various types of information. Examples of the various types of information include reception information and temperature information.
  • the information receiving unit 221 receives reception information.
  • the information receiving unit 221 acquires image information captured by a camera.
  • the information receiving unit 221 may also accept sound information acquired by a microphone.
  • the reception information may include both image information and sound information.
  • reception is a concept that includes the reception of information acquired by devices such as cameras and microphones, the reception of information transmitted via wired or wireless communication lines, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories.
  • the temperature reception unit 222 receives temperature information. Temperature information is information that specifies a temperature. The temperature is, for example, the temperature of the external environment.
  • reception is a concept that includes the reception of information input from input devices such as a microphone, keyboard, mouse, or touch panel, the reception of information transmitted via a wired or wireless communication line, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memory.
  • the processing unit 23 performs various types of processing. For example, the various types of processing are performed by the feature acquisition unit 231, the information transmission unit 232, the firing pattern acquisition unit 233, and the output information acquisition unit 234.
  • the feature acquisition unit 231 uses the image information accepted by the information acceptance unit 221 to acquire one or more pieces of image feature information for the image information.
  • the feature acquisition unit 231 uses the sound information accepted by the information acceptance unit 221 to acquire one or more pieces of sound feature information for the sound information.
  • the processing performed by the feature acquisition unit 231 may be the same as the processing performed by one or two of the components of the image feature acquisition unit 131 and the sound feature acquisition unit 132.
  • the information transmission unit 232 determines a node identifier corresponding to each of the one or more pieces of feature information acquired by the feature acquisition unit 231 from one or more pieces of ignition start point information.
  • a node identifier is the identifier of the node that will ignite.
  • a node identifier is the identifier of the node that will ignite in the first stage.
  • the information transmission unit 232 determines the node identifier of the node that is connected by an edge to the node identified by the one or more determined node identifiers, is passed feature information, and is to be fired.
  • the information transmission unit 232 performs an information transmission process that passes characteristic information from one firing node to the next firing node.
  • the next firing node is a node that is connected to the first firing node by an edge and is a node that is determined to fire.
  • the information transmission unit 232 acquires node information of nodes connected to one firing node by an edge. Next, the information transmission unit 232 judges whether or not the node information satisfies the firing condition. Then, the information transmission unit 232 composes and accumulates firing information that includes the node identifier of the node information that satisfies the firing condition.
  • the information transmission unit 232 determines whether or not the node information will ignite with the probability indicated by the ignition probability information of the node information. Then, when the information transmission unit 232 determines that the node information will ignite based on the probability indicated by the ignition probability information, for example, it configures and stores ignition information including the node identifier of the node information.
  • the information transmission unit 232 changes the processing time for performing the information transmission process according to the temperature information received by the temperature reception unit 222. For example, when the temperature information indicates a high temperature, the information transmission unit 232 performs the information transmission process faster than when the temperature information indicates a lower temperature. For example, when the temperature information indicates a low temperature, the information transmission unit 232 delays the information transmission process compared to when the temperature information indicates a higher temperature. For example, when a delay condition is met, the information transmission unit 232 delays the information transmission process for a predetermined time. Delaying the information transmission process means, for example, waiting for a predetermined time.
  • the information transmission unit 232 prefferably increases the firing probability information contained in the node information of the firing node. This is because the more a node fires, the easier it becomes to fire that node.
  • the firing pattern acquisition unit 233 acquires a firing pattern using one or more node identifiers determined by the information transmission unit 232.
  • a firing pattern is a collection of information that identifies one or more firing nodes.
  • a firing pattern is usually information that identifies nodes that fire simultaneously.
  • a firing pattern has one or more node identifiers.
  • the firing pattern acquisition unit 233 acquires a firing pattern having one or more node identifiers of the node that finally fired.
  • the node that finally fired is a node that, among the nodes that fired, did not transmit information to other nodes connected by edges.
  • the output information acquisition unit 234 acquires output information corresponding to the firing pattern acquired by the firing pattern acquisition unit 233.
  • the output information acquisition unit 234 refers to one or more pieces of output management information in the storage unit 21, and determines the firing pattern of the output condition that is satisfied by the firing pattern acquired by the firing pattern acquisition unit 233. Next, the output information acquisition unit 234 determines whether or not to acquire output information, for example, with a probability based on the output probability information that pairs with the determined firing pattern, and if it is determined to acquire the output information, acquires the output information contained in the output management information.
  • the output unit 24 outputs various information.
  • the various information is, for example, output information.
  • the information output unit 241 outputs the output information acquired by the output information acquisition unit 234.
  • output is a concept that includes display on a display, projection using a projector, printing on a printer, sound output, transmission to an external device, storage on a recording medium, and delivery of processing results to other processing devices, other programs, etc.
  • the storage unit 21 and the NN storage unit 114 are preferably non-volatile recording media, but can also be realized using volatile recording media.
  • information may be stored in the storage unit 21, etc. via a recording medium, information transmitted via a communication line, etc. may be stored in the storage unit 21, etc., or information inputted via an input device may be stored in the storage unit 21, etc.
  • the reception unit 22, the information reception unit 221, and the temperature reception unit 222 are realized, for example, by a camera, a microphone, a wireless or wired communication means, a means for receiving broadcasts, a device driver for an input means such as a touch panel or a keyboard, control software for a menu screen, etc.
  • the processing unit 23, feature acquisition unit 231, information transmission unit 232, firing pattern acquisition unit 233, and output information acquisition unit 234 can usually be realized by a processor, memory, etc.
  • the processing procedures of the processing unit 23, etc. are usually realized by software, and the software is recorded in a recording medium such as a ROM. However, they may also be realized by hardware (dedicated circuitry).
  • the processor may be a CPU, MPU, GPU, etc., and the type is not important.
  • the output unit 24 and the information output unit 241 may or may not include output devices such as a display or a speaker.
  • the output unit 24, etc. may be realized by driver software for an output device, or by driver software for an output device and an output device, etc.
  • the output unit 24, etc. may be configured by a robot, for example.
  • Step S1801 The information reception unit 221 determines whether reception information has been received. If reception information has been received, the process proceeds to step S1802, and if reception information has not been received, the process returns to step S1801.
  • Step S1802 The feature acquisition unit 231 acquires one or more pieces of feature information from the reception information accepted in step S1801. For example, the feature acquisition unit 231 acquires one or more pieces of feature information from the image information accepted in step S1801. For example, the feature acquisition unit 231 acquires one or more pieces of feature information from the sound information accepted in step S1801.
  • Step S1803 The temperature reception unit 222 acquires the temperature information.
  • Step S1804 The information transmission unit 232 performs information transmission processing within the neural network. An example of the information transmission processing is explained using the flowchart in FIG. 19.
  • Step S1805 The firing pattern acquisition unit 233 acquires a firing pattern having one or more node identifiers of the node that fired last in step S1804. Note that the node that fired last is a node that fired and did not pass on feature information to other nodes.
  • Step S1806 The output information acquisition unit 234 acquires output information corresponding to the firing pattern acquired in step S1805.
  • Step S1807 If the output information was obtained in step S1806, proceed to step S1808; if not, return to step S1801.
  • Step S1808 The information output unit 241 outputs the information acquired in step S1806. Return to step S1801.
  • the processing unit 23 may have a state determination unit 137 and a growth unit 138, and may perform the growth process described above.
  • processing ends when the power is turned off or an interrupt occurs to end processing.
  • Step S1901 The information transmission unit 232 assigns 1 to counter i.
  • Step S1902 The information transmission unit 232 determines whether the i-th feature information exists among the feature information acquired in step S1802. If the i-th feature information exists, the process proceeds to step S1903; if it does not exist, the process returns to the upper level process.
  • the information transmission unit 232 refers to one or more pieces of ignition start point information in the storage unit 21, and acquires a node identifier contained in each of the one or more pieces of ignition start point information that satisfy the i-th feature information.
  • the information transmission unit 232 composes ignition information including the node identifier, and stores it in the storage unit 21. It is preferable that the information transmission unit 232 acquires timer information indicating the time of ignition from a clock (not shown), composes ignition information having the timer information and the node identifier, and stores it in the storage unit 21.
  • the one or more node identifiers are identifiers of nodes that ignite in the first stage. Also, the node identifiers are ignition node identifiers. It is also possible that the information transmission unit 232 is not able to acquire ignition node identifiers.
  • Step S1904 The information transmission unit 232 assigns 1 to counter j.
  • Step S1905 The information transmission unit 232 determines whether or not the jth ignition node identifier exists among the ignition node identifiers acquired in step S1903. If the jth ignition node identifier exists, the process proceeds to step S1906; if not, the process proceeds to step S1910.
  • Step S1906 The information transmission unit 232 performs a process of adding the i-th feature information to the node identified by the j-th firing node identifier.
  • the process of adding the i-th feature information to a node is, for example, a process of writing the i-th feature information to the node information of the node, and a process of associating the i-th feature information with the node information of the node.
  • Step S1907 The information transmission unit 232 performs an update to increase the number of times information contained in the node information corresponding to the j-th ignition node identifier. For example, the information transmission unit 232 reads out the number of times information contained in the node information corresponding to the j-th ignition node identifier, and overwrites the number of times information by adding 1 to the read number of times information.
  • Step S1908 The information transmission unit 232 performs the next transmission process using the j-th ignition node identifier as the node identifier of interest.
  • An example of the next transmission process is described using the flowchart in FIG. 20.
  • the next transmission process is a process of transmitting characteristic information for the node identified by the target node identifier to the node that is connected by an edge to the node identified by the target node identifier and that fires.
  • the process of transmitting characteristic information is an information transmission process.
  • Step S1909 The information transmission unit 232 increments the counter j by 1. Return to step S1905.
  • Step S1910 The information transmission unit 232 increments the counter i by 1. Return to step S1902.
  • Step S2001 The information transmission unit 232 determines whether the acquired temperature information matches the delay condition. If the delay condition is met, the process proceeds to step S2002; if the delay condition is not met, the process proceeds to step S2003.
  • Step S2002 The information transmission unit 232 WAITs. Note that it is preferable that the WAIT time be determined in advance, but this is not limiting.
  • Step S2003 The information transmission unit 232 acquires all edge information including the ignition node identifier of interest from the NN storage unit 114.
  • Step S2004 The information transmission unit 232 assigns 1 to counter i.
  • Step S2005 The information transmission unit 232 determines whether the i-th edge information exists among the edge information acquired in step S2001. If the i-th edge information exists, the process proceeds to step S2006; if not, the process returns to the upper level process.
  • Step S2006 The information transmission unit 232 determines whether or not the node identifier of another node is present in the i-th edge information. If the node identifier of another node is present, the process proceeds to step S2007; if not, the process proceeds to step S2014. Note that the node identifier of another node in the edge information is the node identifier of the node to which the edge is connected. If the node identifier of another node is present in the i-th edge information, this is the case when the edge is connected to two nodes.
  • Step S2007 The information transmission unit 232 acquires the node identifier of another node in the i-th edge information. Next, the information transmission unit 232 acquires the node information of the node identified by the node identifier from the NN storage unit 114.
  • Step S2008 The information transmission unit 232 uses the node information acquired in step S2007 to determine whether or not the node corresponding to the node information will ignite. An example of such ignition determination processing will be described with reference to the flowchart in FIG. 21.
  • Step S2009 If the result of the determination in step S2008 is "fire”, the information transmission unit 232 proceeds to step S2010, and if the result is "do not fire", the information transmission unit 232 proceeds to step S2014.
  • Step S2010 The information transmission unit 232 acquires ignition information having the node identifier included in the node information acquired in step S2007, and stores the ignition information in the storage unit 11.
  • Step S2011 The information transmission unit 232 changes the ignition probability information contained in the node information acquired in step S2007.
  • the information transmission unit 232 changes the ignition probability information so that the ignition probability specified by the ignition probability information increases.
  • Step S2012 The information transmission unit 232 judges whether or not to end the transmission of information between nodes. If the transmission is to be ended, the process proceeds to step S2014, and if the transmission is not to be ended, the process proceeds to step S2013. Note that the transmission is to be ended, for example, when the node in question is the terminal node in the NN. Also, when the transmission is to be ended, the node identifiers contained in the firing information accumulated immediately before in step S2010 are the node identifiers that constitute the firing pattern.
  • Step S2013 The information transmission unit 232 performs the next transmission process with the node in question as the node of interest. An example of the next transmission process is shown in FIG. 20.
  • Step S2014 The information transmission unit 232 increments the counter i by 1. Return to step S2005.
  • the information transmission unit 232 transmits information between nodes, it is preferable to update the retained energy amount information by subtracting the amount of energy indicated by the retained energy amount information held by the node information that caused the ignition. This may also be applied to the retained energy amount information paired with the AXON identifier of the AXON used for the transmission, and the retained energy amount information paired with the Dendrites identifier of the Dendrites used for the transmission.
  • the function for reducing the amount of energy is stored, for example, in the storage unit 21. The function in question is not important. As the function is a publicly known technology, a detailed explanation will be omitted.
  • step S2008 an example of the ignition determination process in step S2008 will be explained using the flowchart in Figure 21.
  • Step S2101 The information transmission unit 232 acquires the firing condition corresponding to the node information of step S2005. Note that the firing condition may be different for each node, or may be common to two or more nodes.
  • Step S2102 The information transmission unit 232 acquires one or more pieces of feature information.
  • the one or more pieces of feature information here are pieces of feature information passed from the node that caused the ignition.
  • Step S2103 The information transmission unit 232 determines whether or not the one or more pieces of feature information acquired in step S2102 satisfy the ignition condition acquired in step S2101. If the ignition condition is satisfied, the process proceeds to step S2104, and if the ignition condition is not satisfied, the process proceeds to step S2107.
  • Step S2104 The information transmission unit 232 determines whether the node information of interest has firing probability information. If it has firing probability information, the process proceeds to step S2105, and if it does not have firing probability information, the process proceeds to step S2106.
  • Step S2105 The information transmission unit 232 acquires the firing probability information contained in the node information of interest. Next, the information transmission unit 232 uses the firing probability information to determine whether or not firing will occur. If firing will occur, the process proceeds to step S2106, and if not, the process proceeds to step S2107.
  • Step S2106 The information transmission unit 232 assigns "fire” to the judgment result. It returns to the upper level process.
  • Step S2107 The information transmission unit 232 assigns "does not fire” to the judgment result. It returns to the upper level process.
  • the information processing device 2 can simulate the operation of the brain reacting to received information using the NN information constructed by the NN growth device 1.
  • the information processing device 2 can simulate the operation of a person's brain from infancy onwards.
  • the information processing device may realize the growth process performed by the NN growth device 1.
  • the information processing device can output output information for the received reception information while growing the neural network.
  • the information processing device in such a case is the information processing device 3.
  • the processing unit 23 of the information processing device 3 has the image score acquisition unit 133, sound score acquisition unit 134, total score acquisition unit 135, ignition node determination unit 136, state determination unit 137, growth unit 138, and reference score change unit 139 of the NN growth device 1.
  • FIG. 22 A block diagram of the information processing device 3 in such a case is shown in FIG. 22.
  • the processing of the firing node determination unit 136 of the NN growth device 1 is performed by the information transmission unit 232.
  • the feature acquisition unit 231 is a combination of the image feature acquisition unit 131 and the sound feature acquisition unit 132.
  • the software that realizes the information processing device 2 in this embodiment is a program such as the following.
  • this program is a program for making a computer that can access the NN storage unit in which the neural network information accumulated by the NN growing device 1 is stored function as an information receiving unit that receives received information, which is one or more pieces of information from image information or sound information; a feature acquisition unit that acquires one or more pieces of feature information for the received information received by the information receiving unit; an information transmission unit that determines the node identifier of a node that will ignite, which is a node identifier corresponding to each of the one or more pieces of feature information acquired by the feature acquisition unit, from a start point storage unit in which one or more pieces of firing start point information having an information identifier that identifies the feature information of the received information and one or more node identifiers that identify the node that will ignite first when the feature information is accepted, and that is connected by an edge to the node identified by each of the one or more node identifiers and is a
  • FIG. 23 also shows the appearance of a computer that executes the programs described in this specification to realize the NN growth device 1, information processing device 2, and information processing device 3 of the various embodiments described above.
  • the above-mentioned embodiments can be realized by computer hardware and a computer program executed thereon.
  • FIG. 23 is an overview of this computer system 300
  • FIG. 24 is a block diagram of system 300.
  • computer system 300 includes computer 301, which includes a CD-ROM drive, keyboard 302, mouse 303, monitor 304, microphone 305, and camera 306.
  • computer 301 in addition to a CD-ROM drive 3012, computer 301 includes an MPU 3013, a bus 3014 connected to the CD-ROM drive 3012 etc., a ROM 3015 for storing programs such as a boot-up program, a RAM 3016 connected to the MPU 3013 for temporarily storing instructions for application programs and providing temporary storage space, and a hard disk 3017 for storing application programs, system programs, and data.
  • computer 301 may further include a network card that provides connection to a LAN.
  • a program that causes computer system 300 to execute functions such as the NN growth device 1 of the above-mentioned embodiment may be stored on CD-ROM 3101, inserted into CD-ROM drive 3012, and then transferred to hard disk 3017.
  • the program may be sent to computer 301 via a network (not shown) and stored on hard disk 3017.
  • the program is loaded into RAM 3016 when executed.
  • the program may be loaded directly from CD-ROM 3101 or the network.
  • the program does not necessarily have to include an operating system (OS) or a third-party program that causes the computer 301 to execute functions such as the NN growth device 1 of the above-mentioned embodiment.
  • the program only needs to include an instruction portion that calls appropriate functions (modules) in a controlled manner to obtain the desired results. How the computer system 300 operates is well known, and a detailed description will be omitted.
  • the steps of transmitting information and receiving information do not include processing performed by hardware, such as processing performed by a modem or interface card in the transmission step (processing that can only be performed by hardware).
  • the computer that executes the above program may be a single computer or multiple computers. In other words, it may perform centralized processing or distributed processing.
  • two or more communication means present in one device may be realized physically by one medium.
  • each process may be realized by centralized processing in a single device, or may be realized by distributed processing in multiple devices.
  • the NN growth device 1 of the present invention has the effect of simulating brain growth and is useful as an NN growth device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

[Problem] Conventionally, the simulation of brain growth has not been possible. [Solution] It is possible to simulate brain growth using an NN growth device 1 comprising: an overall score acquisition unit 135 which acquires an overall score that is based on one or more pieces of image feature information from image information and one or more pieces of audio feature information from audio information; a firing node determination unit 136 which determines one or more node identifiers to pair with an initial firing condition that is satisfied by the one or more pieces of image feature information and the one or more pieces of audio feature information, and determines the node identifier of a node that will fire, said node being a node which is linked by edges to the nodes identified by the one or more node identifiers and to which at least one type of information among the one or more pieces of image feature information and the one or more pieces of audio feature information is passed; and a growth unit 138 which carries out a growth process which, on the basis of difference information for the overall score and a reference score, causes the growth of edge information for one or more edges which connect to the nodes identified by one or more node identifiers among the one or more node identifiers that were determined.

Description

NN成長装置、情報処理装置、ニューラル・ネットワーク情報の生産方法、およびプログラムNN growth device, information processing device, neural network information production method, and program
 本発明は、脳の成長の仕組みを仮想的に実現する装置であるNN成長装置等に関するものである。 The present invention relates to an NN growth device, which is a device that virtually realizes the mechanism of brain growth.
 従来、被験者の脳波を表す脳波信号を取得して処理する脳波信号処理装置があった(例えば、特許文献1、特許文献2参照)。  Conventionally, there have been electroencephalogram signal processing devices that acquire and process electroencephalogram signals that represent the subject's brain waves (see, for example, Patent Document 1 and Patent Document 2).
特開2016-47239号公報JP 2016-47239 A 特開2016-52430号公報JP 2016-52430 A
 しかしながら、従来技術においては、脳の成長をシミュレーションできなかった。 However, conventional technology was unable to simulate brain growth.
 本第一の発明のNN成長装置は、ノード識別子を有する2以上のノード情報と、エッジ識別子を有し、ノード間の結合を特定する1以上のエッジ情報とを有するニューラル・ネットワーク情報が格納されるNN格納部と、画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の特徴情報に関する条件であり、他のノードを介さずに発火するノードを決定するための条件である初期発火条件に対応付けて、他のノードを介さずに発火するノードを識別する1以上のノード識別子を有する1以上の発火始点情報が格納される始点格納部と、ポジティブおよびネガティブに関する基準スコアを格納する基準スコア格納部と、画像情報と音情報とを受け付ける情報受付部と、情報受付部が受け付けた画像情報を用いて、画像情報に対する1以上の画像特徴情報を取得する画像特徴取得部と、1以上の画像特徴情報および1以上の音特徴情報に基づく総合スコアを取得する総合スコア取得部と、1以上の画像特徴情報を用いて、ポジティブおよびネガティブに関するスコアである画像スコアを取得する画像スコア取得部と、情報受付部が受け付けた音情報を用いて、音情報に対する1以上の音特徴情報を取得する音特徴取得部と、1以上の音特徴情報を用いて、ポジティブおよびネガティブに関するスコアである音スコアを取得する音スコア取得部と、画像スコアと音スコアとを用いて総合スコアを取得する総合スコア取得部と、1以上の画像特徴情報と1以上の音特徴情報のうちの1種類以上の情報が合致する初期発火条件と対になる1以上のノード識別子を始点格納部から決定し、1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、1以上の画像特徴情報と1以上の音特徴情報のうちの1種類以上の情報を渡されるノードであり、発火するノードのノード識別子を決定する発火ノード決定部と、総合スコアと基準スコアとの差異に関する差情報に基づいて、発火ノード決定部が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードに結合する1以上のエッジのエッジ情報を成長させる処理である成長処理を行う成長部とを具備するNN成長装置である。 The NN growth device of the first invention includes an NN storage unit in which neural network information having two or more pieces of node information with node identifiers and one or more pieces of edge information having an edge identifier and identifying connections between the nodes is stored, a start point storage unit in which one or more pieces of ignition start point information having one or more node identifiers that identify nodes that ignite without passing through other nodes is stored in correspondence with an initial ignition condition, which is a condition related to one or more types of feature information out of one or more image feature information for image information and one or more sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes, a standard score storage unit that stores standard scores related to positivity and negativity, an information receiving unit that receives image information and sound information, an image feature acquisition unit that uses the image information received by the information receiving unit to acquire one or more pieces of image feature information for the image information, an overall score acquisition unit that acquires an overall score based on the one or more pieces of image feature information and the one or more pieces of sound feature information, and an image score that is a score related to positivity and negativity, using the one or more pieces of image feature information. The NN growing device includes an image score acquisition unit that acquires one or more sound feature information for the sound information using the sound information received by the information receiving unit, a sound feature acquisition unit that acquires one or more sound feature information for the sound information using the one or more sound feature information, a sound score acquisition unit that acquires a sound score, which is a score for positive and negative, using the one or more sound feature information, a total score acquisition unit that acquires a total score using the image score and the sound score, an ignition node determination unit that determines, from a starting point storage unit, one or more node identifiers that are paired with an initial ignition condition in which one or more types of information out of the one or more image feature information and the one or more sound feature information match, and determines the node identifier of a node that is connected to the node identified by each of the one or more node identifiers by an edge and is passed one or more types of information out of the one or more image feature information and the one or more sound feature information, and a growth unit that performs a growth process that is a process of growing edge information of one or more edges that are connected to a node identified by each of the one or more node identifiers determined by the ignition node determination unit based on difference information regarding the difference between the total score and the reference score.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第二の発明のNN成長装置は、第一の発明に対して、1以上の画像特徴情報を用いて、ポジティブおよびネガティブに関するスコアである画像スコアを取得する画像スコア取得部と、情報受付部が受け付けた音情報を用いて、音情報に対する1以上の音特徴情報を取得する音特徴取得部と、1以上の音特徴情報を用いて、ポジティブおよびネガティブに関するスコアである音スコアを取得する音スコア取得部とをさらに具備し、総合スコア取得部は、画像スコアと音スコアとを用いて総合スコアを取得する、NN成長装置である。 The NN growing device of the second invention, compared to the first invention, further includes an image score acquisition unit that uses one or more image feature information to acquire an image score, which is a score related to positivity and negativity, a sound feature acquisition unit that uses sound information accepted by the information acceptance unit to acquire one or more sound feature information for the sound information, and a sound score acquisition unit that uses one or more sound feature information to acquire a sound score, which is a score related to positivity and negativity, and the overall score acquisition unit acquires an overall score using the image score and sound score.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第三の発明のNN成長装置は、第一または第二の発明に対して、エッジ情報は重みを有し、発火ノード決定部は、エッジにより繋がっており、エッジの重みが、重みに関する伝達条件を満たすノードのノード識別子を決定し、成長部は、総合スコアと基準スコアとの差に関する差情報を取得し、差情報が第一エッジ成長条件に合致する場合に、1以上の各エッジのエッジ情報の重みを大きくする第一エッジ成長処理を行うNN成長装置である。 Furthermore, the NN growing device of the third invention is a NN growing device in which, compared to the first or second invention, edge information has a weight, the firing node determination unit determines the node identifier of a node that is connected by an edge and whose edge weight satisfies a weight-related transmission condition, the growing unit acquires difference information relating to the difference between the total score and the reference score, and, if the difference information meets the first edge growing condition, performs a first edge growing process that increases the weight of the edge information of one or more edges.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第四の発明のNN成長装置は、第一または第二の発明に対して、エッジ情報はエッジの端の位置を示すエッジ位置情報を有する場合があり、成長部は、総合スコアと基準スコアとの差に関する差情報を取得し、差情報が第二エッジ成長条件に合致する場合に、1以上の各エッジのエッジ情報が有するエッジ位置情報を変更し、エッジの長さの延伸させる第二エッジ成長処理を行うNN成長装置である。 Furthermore, in the NN growth device of the fourth invention, compared to the first or second invention, the edge information may have edge position information indicating the position of the end of the edge, and the growth unit acquires difference information regarding the difference between the total score and the reference score, and when the difference information matches the second edge growth condition, the NN growth device performs a second edge growth process that changes the edge position information contained in the edge information of one or more edges and extends the length of the edge.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第五の発明のNN成長装置は、第四の発明に対して、ポジティブおよびネガティブを含む2以上の各状態に対応するゴールを特定するゴール情報が格納されるゴール格納部と、成長部が取得した差情報を用いて、ポジティブおよびネガティブを含む2以上の状態から一の状態を決定する状態決定部とをさらに具備し、ゴール情報は、ゴールの位置を特定するゴール位置情報、またはゴールの方向を示すゴール方向情報を有し、成長部は、状態決定部が決定した一の状態と対になるゴール情報を取得し、1以上の各エッジのエッジ情報が有するエッジ位置情報を変更し、ゴール情報が示す方向の新たなエッジ位置情報を取得し、新たなエッジ位置情報を蓄積する第二エッジ成長処理を行うNN成長装置である。 かかる構成により、脳の成長をシミュレーションできる。 The NN growing device of the fifth invention, compared to the fourth invention, further comprises a goal storage unit in which goal information identifying goals corresponding to two or more states including positive and negative is stored, and a state determination unit that uses difference information acquired by the growth unit to determine one state from two or more states including positive and negative, the goal information having goal position information identifying the position of the goal, or goal direction information indicating the direction of the goal, and the growth unit is a NN growing device that performs a second edge growth process in which it acquires goal information that pairs with the one state determined by the state determination unit, changes the edge position information held by the edge information of each of one or more edges, acquires new edge position information in the direction indicated by the goal information, and accumulates the new edge position information. With this configuration, brain growth can be simulated.
 また、本第六の発明のNN成長装置は、第一から第五のいずれかの発明に対して、総合スコア取得部が取得した総合スコアに基づいて、基準スコア格納部の基準スコアを変更する基準スコア変更部をさらに具備するNN成長装置である。 The NN growth device of the sixth invention is a NN growth device according to any one of the first to fifth inventions, further comprising a reference score change unit that changes the reference score in the reference score storage unit based on the total score acquired by the total score acquisition unit.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第七の発明のNN成長装置は、第六の発明に対して、基準スコア変更部は、総合スコアがスコア変更条件に合致する場合のみ、基準スコア格納部の基準スコアを変更する、NN成長装置である。 The NN growth device of the seventh invention is different from the sixth invention in that the reference score change unit changes the reference score in the reference score storage unit only when the total score meets the score change condition.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第八の発明のNN成長装置は、第一から第七のいずれかの発明に対して、基準スコア格納部は、1以上のノード識別子を用いた1以上の各発火パターンと対になる基準スコアを格納しており、成長部は、発火ノード決定部が決定した1以上のノード識別子に対応する発火パターンと対になる基準スコアを基準スコア格納部から取得し、総合スコアと基準スコアとの差に関する差情報を取得し、差情報に基づいて、成長処理を行うNN成長装置である。 The NN growing device of the eighth invention is a NN growing device according to any one of the first to seventh inventions, in which the standard score storage unit stores standard scores paired with one or more firing patterns using one or more node identifiers, and the growing unit obtains standard scores paired with firing patterns corresponding to one or more node identifiers determined by the firing node determination unit from the standard score storage unit, obtains difference information regarding the difference between the total score and the standard score, and performs a growth process based on the difference information.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第九の発明のNN成長装置は、第一から第八いずれか1つの発明に対して、発火ノード決定部は、エッジにより繋がっている他の1以上のノードから渡される1以上の特徴情報が、1または2以上の特徴情報に関する発火条件を満たすか否かを判断し、発火条件を満たすと判断したノードのノード識別子を決定する、NN成長装置である。 The NN growing device of the ninth invention is a NN growing device according to any one of the first to eighth inventions, in which the firing node determination unit determines whether one or more pieces of feature information passed from one or more other nodes connected by an edge satisfy a firing condition related to one or more pieces of feature information, and determines the node identifier of the node determined to satisfy the firing condition.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第十の発明のNN成長装置は、第一の発明に対して、ノード情報は、ノードの位置を特定するノード位置情報を有し、ポジティブおよびネガティブを含む2以上の各状態に対応するゴールを特定するゴール情報が格納されるゴール格納部と、成長部が取得した差情報を用いて、ポジティブおよびネガティブを含む2以上の状態から一の状態を決定する状態決定部とをさらに具備し、成長部は、総合スコアと基準スコアとの差に関する差情報を取得し、差情報に基づいて、状態決定部が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるエッジに対するエッジ情報を生成し、蓄積するエッジ生成処理を行う、NN成長装置である。 The NN growing device of the tenth invention is different from the first invention in that the node information has node position information that identifies the node position, and further includes a goal storage unit in which goal information that identifies goals corresponding to two or more states including positive and negative is stored, and a state determination unit that uses difference information acquired by the growing unit to determine one state from two or more states including positive and negative, and the growing unit acquires difference information regarding the difference between the total score and the reference score, and based on the difference information, performs edge generation processing to generate and accumulate edge information for edges extending from nodes identified by one or more node identifiers among the one or more node identifiers determined by the firing node determination unit in the direction indicated by the goal information that pairs with the one state determined by the state determination unit.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第十一の発明のNN成長装置は、第十の発明に対して、発火ノード決定部は、決定したノード識別子の回数に関する回数情報を、ノード識別子に対応付けて蓄積し、成長部は、エッジ生成条件に合致する回数情報に対応するノード識別子で識別されるノードに対して、エッジ生成処理を行う、NN成長装置である。 The NN growing device of the eleventh invention is a NN growing device in which, compared to the tenth invention, the firing node determination unit stores frequency information relating to the frequency of the determined node identifier in association with the node identifier, and the growing unit performs edge generation processing on the node identified by the node identifier corresponding to the frequency information that meets the edge generation condition.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第十二の発明のNN成長装置は、第一から第十一いずれか1つの発明に対して、ノードは、somaであり、エッジは、AXONとDendritesとを有し、エッジ情報は、AXON識別子とAXONの位置を示すAXON位置情報とを有するAXON情報と、Dendrites識別子とDendritesの位置を示すDendrites位置情報とを有するDendrites情報を有する、NN成長装置である。 The NN growth device of the twelfth invention is an NN growth device according to any one of the first to eleventh inventions, in which the nodes are somas, the edges have AXONs and dendrites, and the edge information has AXON information having an AXON identifier and AXON position information indicating the position of the AXON, and dendrites information having a dendrites identifier and dendrites position information indicating the position of the dendrites.
 かかる構成により、脳の成長をシミュレーションできる。 This configuration makes it possible to simulate brain growth.
 また、本第十三の発明の情報処理装置は、NN成長装置が蓄積したニューラル・ネットワーク情報が格納されるNN格納部と、画像情報または音情報のうちの1種類以上の情報である受付情報を受け付ける情報受付部と、情報受付部が受け付けた受付情報に対する1以上の特徴情報を取得する特徴取得部と、特徴取得部が取得した1以上の各特徴情報に対応するノード識別子であり、発火するノードのノード識別子を、受付情報の特徴情報を識別する情報識別子と、特徴情報が受け付けられた場合に他のノードを介さずに発火するノードを識別する1以上のノード識別子とを有する1以上の発火始点情報が格納される始点格納部から決定し、1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、特徴情報を渡されるノードであり、発火するノードのノード識別子を決定する情報伝達部と、情報伝達部が決定した1以上のノード識別子を用いた発火パターンを取得する発火パターン取得部と、発火パターン取得部が取得した発火パターンに対応する出力情報を取得する出力情報取得部と、出力情報を出力する情報出力部とを具備する情報処理装置である。 The information processing device of the thirteenth invention is an information processing device that includes an NN storage unit in which neural network information accumulated by the NN growing device is stored, an information receiving unit that receives received information that is one or more types of information from image information or sound information, a feature acquisition unit that acquires one or more feature information for the received information received by the information receiving unit, an information transmission unit that determines the node identifier of the node that will ignite, which is a node identifier corresponding to each of the one or more feature information acquired by the feature acquisition unit, from a start point storage unit in which one or more ignition start point information is stored, the start point information having an information identifier that identifies the feature information of the received information and one or more node identifiers that identify nodes that will ignite without passing through other nodes when the feature information is accepted, and is connected by an edge to the nodes identified by the one or more node identifiers, and is a node to which the feature information is passed, and determines the node identifier of the node that will ignite, an ignition pattern acquisition unit that acquires an ignition pattern using the one or more node identifiers determined by the information transmission unit, an output information acquisition unit that acquires output information corresponding to the ignition pattern acquired by the ignition pattern acquisition unit, and an information output unit that outputs the output information.
 かかる構成により、成長した脳のモデルを用いて、脳の動作をシミュレーションできる。 This configuration makes it possible to simulate brain function using a model of a fully grown brain.
 また、本第十四の発明の情報処理装置は、第十三の発明に対して、温度情報を受け付ける温度受付部をさらに具備し、情報伝達部は、発火したノードから、次に発火するノードに対して発火したノードに対応する特徴情報を渡す処理である情報伝達処理を行い、かつ温度受付部が受け付けた温度情報に応じて、情報伝達処理を行うための処理時間を変える、情報処理装置である。 The information processing device of the fourteenth invention is an information processing device that further includes a temperature receiving unit that receives temperature information, and the information transmission unit performs an information transmission process in which the fired node passes characteristic information corresponding to the fired node to the next node that will fire, and changes the processing time for performing the information transmission process according to the temperature information received by the temperature receiving unit.
 かかる構成により、成長した脳のモデルを用いて、脳の動作をシミュレーションできる。 This configuration makes it possible to simulate brain function using a model of a fully grown brain.
 本発明によるNN成長装置によれば、脳の成長をシミュレーションできる。 The neural network growth device of the present invention can simulate brain growth.
実施の形態1におけるNN成長装置1のブロック図Block diagram of NN growth device 1 according to the first embodiment. 同NN成長装置1の動作例について説明するフローチャートA flowchart explaining an example of the operation of the NN growing device 1. 同スコア取得処理の例について説明するフローチャートA flowchart illustrating an example of the score acquisition process 同成長処理の例について説明するフローチャートA flowchart illustrating an example of the growth process 同初期発火ノード決定処理の例について説明するフローチャートA flowchart illustrating an example of the initial firing node determination process. 同発火伝達処理の例について説明するフローチャートA flowchart illustrating an example of the ignition transmission process. 同発火判断処理の例について説明するフローチャートA flowchart illustrating an example of the ignition determination process. 同情報取得処理の例について説明するフローチャートA flowchart illustrating an example of the information acquisition process 同単一成長処理の例について説明するフローチャートA flowchart illustrating an example of the single growth process. 同エッジ成長処理の例について説明するフローチャートA flowchart illustrating an example of the edge growth process. 同エッジ伸長処理の例について説明するフローチャートA flowchart for explaining an example of the edge extension process. 同エッジ生成処理の例について説明するフローチャートA flowchart illustrating an example of the edge generation process. 同エッジ情報生成処理の例について説明するフローチャートA flowchart illustrating an example of the edge information generation process. 同ノード生成処理の例について説明するフローチャートA flowchart for explaining an example of the node generation process 同ノード情報生成処理の例について説明するフローチャートA flowchart illustrating an example of the node information generation process 同基準変更処理の例について説明するフローチャートA flowchart illustrating an example of the criterion change process. 実施の形態2における情報処理装置2のブロック図Block diagram of information processing device 2 according to embodiment 2. 同情報処理装置2の動作例について説明するフローチャートA flowchart illustrating an example of the operation of the information processing device 2. 同情報伝達処理の例について説明するフローチャートA flowchart illustrating an example of the information transmission process. 同次伝達処理の例について説明するフローチャートA flowchart illustrating an example of a homogeneous transfer process. 同発火判断処理の例について説明するフローチャートA flowchart illustrating an example of the ignition determination process. 同情報処理装置3のブロック図Block diagram of the information processing device 3 上記実施の形態のコンピュータシステムの概観図Overview of the computer system according to the above embodiment 同コンピュータシステムのブロック図Block diagram of the computer system
 以下、NN成長装置等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。 Below, embodiments of the NN growth device and the like will be described with reference to the drawings. Note that components with the same reference numerals in the embodiments perform similar operations, and therefore repeated explanations may be omitted.
 (実施の形態1)
 本実施の形態において、画像情報と音情報とを受け付け、画像情報から取得された画像特徴情報と音情報から取得された音特徴情報とを用いて、総合スコアを取得し、当該総合スコアと基準スコアとの差異に基づいて、成長処理を行うNN成長装置について説明する。なお、ここでの成長処理は、例えば、エッジ成長処理、エッジ生成処理、ノード生成処理である。
(Embodiment 1)
In this embodiment, a NN growing device is described that receives image information and sound information, obtains a total score using image feature information obtained from the image information and sound feature information obtained from the sound information, and performs a growth process based on the difference between the total score and a reference score. The growth process here is, for example, an edge growth process, an edge generation process, or a node generation process.
 エッジ成長処理とは、ニューラル・ネットワーク(以下、適宜、「NN」と言う)を構成するエッジを成長させる処理である。エッジを成長させる処理は、例えば、エッジの重みを大きくする第一エッジ成長処理、エッジの長さを長くする第二エッジ成長処理がある。エッジ生成処理とは、新しいエッジを生成する処理である。ノード生成処理とは、NNを構成するノードを生成する処理である。 Edge growth processing is processing that grows edges that make up a neural network (hereinafter referred to as "NN" where appropriate). Edge growth processing includes, for example, a first edge growth processing that increases the weight of an edge, and a second edge growth processing that increases the length of an edge. Edge generation processing is processing that generates new edges. Node generation processing is processing that generates nodes that make up a NN.
 なお、ここでのニューラル・ネットワークは、スパイキング・ニューラル・ネットワークであることは好適である。ただし、ニューラル・ネットワークは、ディープ・ニューラル・ネットワーク等の他の種類のニューラル・ネットワークでも良い。つまり、ニューラル・ネットワークの種類は問わない。 Note that it is preferable that the neural network used here is a spiking neural network. However, the neural network may be another type of neural network, such as a deep neural network. In other words, the type of neural network is not important.
 なお、本実施の形態において、例えば、総合スコアと基準スコアとの差異が小さい時は、エッジの重みを大きくする。また、本実施の形態において、例えば、総合スコアと基準スコアとの差異が大きい時は、エッジの長さを長くする。また、本実施の形態において、エッジの長さを長くする場合に、例えば、取得された状態(例えば、ポジティブまたはネガティブ)に応じた方向にエッジを成長させる。 In this embodiment, for example, when the difference between the total score and the reference score is small, the weight of the edge is increased. Also, in this embodiment, for example, when the difference between the total score and the reference score is large, the length of the edge is increased. Also, in this embodiment, when the length of the edge is increased, for example, the edge is grown in a direction according to the acquired state (for example, positive or negative).
 また、本実施の形態において、画像特徴情報に基づく画像スコアと音特徴情報に基づく音スコアとを取得し、当該画像スコアと当該音スコアとを用いて総合スコアを取得する場合について説明する。 In addition, in this embodiment, a case will be described in which an image score based on image feature information and a sound score based on sound feature information are obtained, and a total score is obtained using the image score and the sound score.
 また、本実施の形態において、基準スコアが動的に変化するNN成長装置について説明する。なお、例えば、総合スコアがスコア変更条件に合致する場合のみ基準スコが変化する。 In addition, in this embodiment, a NN growth device in which the reference score changes dynamically will be described. Note that, for example, the reference score changes only when the total score meets a score change condition.
 また、本実施の形態において、発火パターンに応じた基準スコアを格納しているNN成長装置について説明する。 In addition, in this embodiment, we will explain a neural network growing device that stores standard scores according to firing patterns.
 また、本実施の形態において、発火条件に合致するノードのみを発火させるNN成長装置について説明する。 In this embodiment, we will also explain a neural network growth device that fires only nodes that meet the firing conditions.
 さらに、本実施の形態において、ノードは、somaであり、エッジは、AXONとDendritesとを有する、とした場合のNN成長装置について説明する。 Furthermore, in this embodiment, we will explain the NN growth device in the case where the nodes are somas and the edges have axons and dendrites.
 なお、本明細書において、情報Xが情報Yに対応付いていることは、情報Xから情報Yを取得できること、または情報Yから情報Xを取得できることであり、その対応付けの方法は問わない。情報Xと情報Yとがリンク付いていても良いし、同じバッファに存在していても良いし、情報Xが情報Yに含まれていても良いし、情報Yが情報Xに含まれている等でも良い。 In this specification, information X corresponding to information Y means that information Y can be obtained from information X, or information X can be obtained from information Y, and the method of association is not important. Information X and information Y may be linked, may exist in the same buffer, information X may be included in information Y, or information Y may be included in information X, etc.
 図1は、本実施の形態におけるNN成長装置1のブロック図である。NN成長装置1は、格納部11、受付部12、処理部13、および出力部14を備える。格納部11は、始点格納部111、ゴール格納部112、基準スコア格納部113、およびNN格納部114を備える。受付部12は、情報受付部121を備える。処理部13は、画像特徴取得部131、音特徴取得部132、画像スコア取得部133、音スコア取得部134、総合スコア取得部135、発火ノード決定部136、状態決定部137、成長部138、および基準スコア変更部139を備える。 FIG. 1 is a block diagram of the NN growing device 1 in this embodiment. The NN growing device 1 includes a storage unit 11, a reception unit 12, a processing unit 13, and an output unit 14. The storage unit 11 includes a starting point storage unit 111, a goal storage unit 112, a reference score storage unit 113, and an NN storage unit 114. The reception unit 12 includes an information reception unit 121. The processing unit 13 includes an image feature acquisition unit 131, a sound feature acquisition unit 132, an image score acquisition unit 133, a sound score acquisition unit 134, a total score acquisition unit 135, an ignition node determination unit 136, a state determination unit 137, a growth unit 138, and a reference score change unit 139.
 NN成長装置1を構成する格納部11には、各種の情報が格納される。各種の情報とは、例えば、後述する発火始点情報、後述するゴール情報、後述する基準スコア、ニューラル・ネットワーク(NN)、後述する1または2以上のグリア細胞情報、後述する1または2以上の結合情報、後述する1または2以上の発火情報、後述する状態決定情報、後述する各種の条件である。 Various types of information are stored in the storage unit 11 that constitutes the NN growth device 1. The various types of information include, for example, firing start information (described later), goal information (described later), a reference score (described later), a neural network (NN), one or more pieces of glial cell information (described later), one or more pieces of connection information (described later), one or more pieces of firing information (described later), state determination information (described later), and various conditions (described later).
 始点格納部111には、1または2以上の発火始点情報が格納される。始点格納部111には、通常、2以上の発火始点情報が格納される。発火始点情報は、初期発火条件に対応付いている。 The start point storage unit 111 stores one or more pieces of ignition start point information. Typically, two or more pieces of ignition start point information are stored in the start point storage unit 111. The ignition start point information corresponds to the initial ignition condition.
 発火始点情報とは、情報が受け付けられた場合に、第一段階で発火するノードを特定する情報である。なお、受け付けられる情報は、例えば、画像情報と音情報のうちで1または2種類の情報である。第一段階で発火するノードとは、他のノードを介さずに発火するノードである。発火始点情報は、例えば、初期発火条件と1以上のノード識別子とを有する。 The ignition start point information is information that specifies the node that will ignite in the first stage when information is accepted. The accepted information is, for example, one or two types of information from among image information and sound information. A node that ignites in the first stage is a node that ignites without going through other nodes. The ignition start point information has, for example, an initial ignition condition and one or more node identifiers.
 初期発火条件とは、第一段階でノードが発火する条件である。初期発火条件は、1または2以上の特徴情報に関する条件である。1または2以上の特徴情報は、画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の情報である。初期発火条件は、例えば、1または2以上の情報識別子に関する条件でも良い。初期発火条件は、例えば、情報識別子を有する。初期発火条件は、例えば、情報識別子と情報量に関する条件である。 The initial firing condition is a condition under which a node fires in the first stage. The initial firing condition is a condition related to one or more pieces of feature information. The one or more pieces of feature information are one or more types of information selected from the group consisting of one or more image feature information for image information and one or more sound feature information for sound information. The initial firing condition may be, for example, a condition related to one or more information identifiers. The initial firing condition has, for example, an information identifier. The initial firing condition is, for example, a condition related to an information identifier and an amount of information.
 情報識別子とは、特徴情報を識別する情報である。情報識別子は、例えば、画像特徴情報を識別する情報である。情報識別子は、例えば、画像特徴情報の種類を特定する情報である。情報識別子は、例えば、音特徴情報を識別する情報である。情報識別子は、例えば、「R」「G」「B」である。「R」は赤の色を示す情報、「G」は緑の色を示す情報、「B」は青の色を示す情報である。なお、画像特徴情報とは、画像情報の特徴情報である。情報識別子は、例えば、特定の周波数を示す情報、特定の周波数の範囲を示す情報である。 The information identifier is information that identifies feature information. The information identifier is, for example, information that identifies image feature information. The information identifier is, for example, information that specifies the type of image feature information. The information identifier is, for example, information that identifies sound feature information. The information identifier is, for example, "R", "G", or "B". "R" is information that indicates the color red, "G" is information that indicates the color green, and "B" is information that indicates the color blue. Note that image feature information is feature information of image information. The information identifier is, for example, information that indicates a specific frequency or a specific frequency range.
 初期発火条件は、例えば、「<情報識別子>R <条件>情報量>=150」である。初期発火条件は、例えば、「「R」の情報量 >= 150」、「(「R」の情報量 >= 150) & (「G」の情報量 >= 80)」、「(「R」の情報量 >= 150) & (「G」の情報量 >= 80) & (「B」の情報量 >= 120)」、「<情報識別子>周波数=Fa <条件>情報量>=100」、「<情報識別子>Fa<=周波数<Fb <条件>情報量>=100」、「<情報識別子>R <条件>情報量>=150 & <情報識別子>周波数=Fa <条件>情報量>=180」である。なお、周波数のFa、Fbが、特定の周波数を示す値である。 The initial firing condition is, for example, "<information identifier>R <condition> amount of information>=150." The initial firing condition is, for example, "Amount of information of "R" >=150," "(Amount of information of "R" >=150) & (Amount of information of "G" >=80)," "(Amount of information of "R" >=150) & (Amount of information of "G" >=80) & (Amount of information of "B" >=120)," "<information identifier>Frequency=Fa <condition> amount of information>=100," "<information identifier>Fa<=Frequency<Fb <condition> amount of information>=100," "<information identifier>R <condition> amount of information>=150 & <information identifier>Frequency=Fa <condition> amount of information>=180." Note that the frequencies Fa and Fb are values that indicate specific frequencies.
 ノード識別子とは、NNを構成するノードを識別する情報である。ノード識別子は、例えば、ノードのID、ノード名である。ノードは、somaと言っても良い。ノード識別子は、soma識別子と言っても良い。 A node identifier is information that identifies a node that constitutes a NN. A node identifier is, for example, a node ID or a node name. A node may also be called a soma. A node identifier may also be called a soma identifier.
 特徴情報とは、ここでは、画像情報または音情報の特徴量である。特徴情報は、例えば、情報識別子、または情報識別子と情報量である。情報量とは、対になる情報識別子で識別される情報の大きさを示す情報である。特徴情報は、例えば、「<情報識別子>R <情報量>150」、「<情報識別子>周波数=Fa <情報量>100」、「<情報識別子>Fa<=周波数<Fb <情報量>=150」である。 Feature information here refers to the feature amount of image information or sound information. Feature information is, for example, an information identifier, or an information identifier and an amount of information. The amount of information is information that indicates the size of information identified by a paired information identifier. Examples of feature information are "<information identifier> R <amount of information> 150", "<information identifier> frequency = Fa <amount of information> 100", and "<information identifier> Fa <= frequency < Fb <amount of information> = 150".
 ゴール格納部112には、1または2以上のゴール情報が格納される。ゴール格納部112には、通常、2以上のゴール情報が格納される。 The goal storage unit 112 stores one or more pieces of goal information. Usually, the goal storage unit 112 stores two or more pieces of goal information.
 ゴール情報とは、NNを構成するノードまたはエッジが成長する先であるゴールを特定する情報である。ゴール情報は、2以上の状態のうちのいずれかの状態に対応するゴールを特定する情報である。状態は、例えば、感情、脳の内部の状況である。状態は、例えば、ポジティブまたはネガティブである。状態の種類は、ポジティブまたはネガティブのいずれかであることは好適である。ただし、状態の種類は、3以上でも良い。状態の種類が3以上である場合、各状態は、例えば、ポジティブの2以上のいずれかの程度を示す情報とまたはネガティブの2以上のいずれかの程度を示す情報、またはポジティブとネガティブとニュートラルである。 Goal information is information that specifies the goal to which the nodes or edges that make up the NN will grow. Goal information is information that specifies a goal that corresponds to one of two or more states. The state is, for example, an emotion or an internal state of the brain. The state is, for example, positive or negative. It is preferable that the type of state is either positive or negative. However, there may be three or more types of states. When there are three or more types of states, each state is, for example, information indicating one of two or more degrees of positivity or information indicating one of two or more degrees of negativity, or positive, negative, and neutral.
 ゴール情報は、ノードまたはエッジが成長する位置を特定する情報である、と言える。ゴール情報は、ゴール位置情報またはゴール方向情報を有する。ゴール情報は、状態識別子に対応する。ゴール位置情報とは、ゴールの位置を特定する情報である。ゴール方向情報とは、ゴールの方向を示す。位置とは、2以上の次元の仮想的な空間における位置である。ゴール情報は、例えば、位置情報である。位置情報は、例えば、三次元の座標値(x,y,z)または二次元の座標値(x,y)または四次元のクオータニオン(x,y,x,w)である。また、ゴール情報が状態識別子に対応することは、決定された状態識別子に対応するゴール情報が、NNの成長のために使用されることである。なお、状態識別子とは、状態を識別する情報である。状態識別子は、例えば、「ポジティブ」「ネガティブ」である。 Goal information can be said to be information that specifies the position where a node or edge grows. Goal information has goal position information or goal direction information. Goal information corresponds to a state identifier. Goal position information is information that specifies the position of the goal. Goal direction information indicates the direction of the goal. A position is a position in a virtual space of two or more dimensions. Goal information is, for example, position information. Position information is, for example, three-dimensional coordinate values (x, y, z) or two-dimensional coordinate values (x, y) or a four-dimensional quaternion (x, y, x, w). Furthermore, the fact that goal information corresponds to a state identifier means that the goal information corresponding to the determined state identifier is used for the growth of the NN. Note that a state identifier is information that identifies a state. State identifiers are, for example, "positive" and "negative."
 基準スコア格納部113には、1または2以上の基準スコアが格納される。1以上の各基準スコアは、例えば、発火パターンと対になる。ただし、基準スコア格納部113に1つの基準スコアのみが格納されている場合、基準スコアは、発火パターンと対になっていない。基準スコア格納部113には、デフォルトの一の基準スコアが格納されていても良い。 The standard score storage unit 113 stores one or more standard scores. Each of the one or more standard scores is paired with, for example, an ignition pattern. However, when only one standard score is stored in the standard score storage unit 113, the standard score is not paired with an ignition pattern. The standard score storage unit 113 may store one default standard score.
 基準スコアとは、ポジティブおよびネガティブ等の状態を決定する際に、基準となるスコアである。スコアとは、ポジティブおよびネガティブ等の状態の度合いを示す情報である。基準スコアは、期待値と言っても良い。 The base score is the standard score used when determining positive, negative, and other states. The score is information that indicates the degree of a state, such as positive or negative. The base score can also be called an expected value.
 発火パターンとは、1または2以上のノードの発火のパターンである。発火パターンは、1または2以上の発火するノードのノード識別子を有する。 A firing pattern is a pattern of firing one or more nodes. A firing pattern has one or more node identifiers of the nodes that fire.
 NN格納部114には、ニューラル・ネットワーク情報(以下、適宜、「NN情報」と言う)が格納される。NN情報は、脳を模倣した情報である、と言える。NN情報は、2以上のノード情報と、1または2以上のエッジ情報とを有する。NN情報は、NNと言う場合がある。 The NN storage unit 114 stores neural network information (hereinafter referred to as "NN information" where appropriate). NN information can be said to be information that mimics the brain. NN information has two or more pieces of node information and one or two or more pieces of edge information. NN information is sometimes referred to as NN.
 ノード情報とは、NNを構成するノードの情報である。ノード情報は、ノード識別子を有する。ノード情報は、例えば、ノード位置情報、発火条件、発火確率情報、回数情報を有する。また、ノード情報は、発火に必要なエネルギー量を示す必要エネルギー量情報を有していることは好適である。 Node information is information about the nodes that make up the NN. The node information has a node identifier. The node information has, for example, node position information, firing conditions, firing probability information, and number of times information. In addition, it is preferable that the node information has required energy amount information that indicates the amount of energy required for firing.
 ノード位置情報とは、ノードの位置情報である。上述した通り、位置情報は、例えば、三次元の座標値(x,y,z)または二次元の座標値(x,y)または四次元のクオータニオン(x,y,x,w)である。 The node position information is the position information of a node. As described above, the position information is, for example, three-dimensional coordinate values (x, y, z), two-dimensional coordinate values (x, y), or a four-dimensional quaternion (x, y, x, w).
 発火条件とは、ノードが発火する条件である。発火条件は、通常、1以上の特徴情報を有する。特徴情報は、情報を識別する情報識別子と、情報の大きさを示す情報量とを有する情報でも良いし、情報の大きさを示す情報量のみの情報でも良い。情報量は、例えば、0より大きい数値である。発火条件は、例えば、「R>=180」、「R>150 & G>=100」、「G<=50 & B <=30」、「R>=250 & G>=250 & B>=250」、「<情報識別子>周波数=Fa <条件>情報量>=80」、「<情報識別子>Fa<=周波数<Fb <条件>情報量>=150」、「<情報識別子>R <条件>情報量>=150 & <情報識別子>周波数=Fa <条件>情報量>=180」等である。 The firing condition is the condition under which a node fires. The firing condition usually has one or more pieces of characteristic information. The characteristic information may have an information identifier that identifies the information and an amount of information that indicates the size of the information, or may be only the amount of information that indicates the size of the information. The amount of information is, for example, a numerical value greater than 0. Examples of firing conditions are "R>=180", "R>=150 & G>=100", "G<=50 & B<=30", "R>=250 & G>=250 & B>=250", "<information identifier> frequency = Fa <condition> amount of information>=80", "<information identifier> Fa <= frequency <Fb <condition> amount of information>=150", "<information identifier> R <condition> amount of information>=150 & <information identifier> frequency = Fa <condition> amount of information>=180", etc.
 発火確率情報とは、発火する確率に関する情報である。発火確率情報は、発火確率そのものでも良いし、発火確率を関数等で変換した値等でも良い。発火確率情報が参照され、発火確率情報が示す確率で、特徴情報が同じでも、ノードが発火したり、発火しなかったりすることは好適である。 Firing probability information is information about the probability of firing. The firing probability information may be the firing probability itself, or a value obtained by converting the firing probability using a function or the like. It is preferable that the firing probability information is referenced, and the node may or may not fire at the probability indicated by the firing probability information, even if the feature information is the same.
 回数情報とは、発火した回数に基づく情報である。回数情報は、例えば、発火回数、発火頻度(発火割合)である。 The number of occurrences information is information based on the number of occurrences of firing. The number of occurrences information is, for example, the number of occurrences of firing, or the firing frequency (firing rate).
 エッジ情報とは、NNを構成するエッジの情報である。エッジ情報は、ノード間の結合を特定する情報である。エッジ情報は、通常、エッジ識別子を有する。エッジ情報は、例えば、エッジが接続する2つの各ノードのノード識別子を有する。エッジ情報は、例えば、接続する一のノードのノード識別子を有する。エッジ情報が一のノード識別子のみを有する場合、当該エッジは、2つのノードを接続する前の成長過程のエッジである。エッジ情報は、例えば、エッジ位置情報を有する。エッジ位置情報とは、エッジの端点の位置を特定する情報である。エッジ情報は、例えば、重みを有する。エッジの重みが大きな値であるほど、当該エッジを介して、特徴情報が伝達されやすくなる。エッジの重みは、発火確率情報のパラメータでも良い。つまり、エッジの重みが大きいほど、発火確率が大きくなっても良い。また、エッジ情報は、エッジが保持しているエネルギー量を示す保有エネルギー量情報を有していることは好適である。 Edge information is information about edges that make up a NN. Edge information is information that specifies connections between nodes. Edge information usually has an edge identifier. Edge information has, for example, a node identifier for each of two nodes that an edge connects. Edge information has, for example, a node identifier for one connecting node. When edge information has only one node identifier, the edge is an edge in the growth process before connecting two nodes. Edge information has, for example, edge position information. Edge position information is information that specifies the position of the end point of an edge. Edge information has, for example, a weight. The larger the edge weight, the easier it is for feature information to be transmitted via the edge. The edge weight may be a parameter of firing probability information. In other words, the larger the edge weight, the higher the firing probability. In addition, it is preferable that the edge information has retained energy amount information that indicates the amount of energy held by the edge.
 エッジ情報は、例えば、Dendrites情報とAXON情報とを有する。かかる場合、エッジは、DendritesとAXONとを有する。なお、エッジは、一の線、または2以上の枝分かれした線である、と考えても良い。エッジは、シナプスと言っても良い。 Edge information includes, for example, dendrites information and AXON information. In such a case, an edge includes dendrites and AXON. Note that an edge may be considered to be a single line, or a line that branches into two or more branches. An edge may also be called a synapse.
 エッジ識別子とは、エッジを識別する情報である。エッジ識別子は、例えば、エッジのID、エッジの名称である。 An edge identifier is information that identifies an edge. For example, an edge identifier is an edge ID or an edge name.
 Dendrites情報とは、DENDRITESの情報である。DENDRITESとは、樹状突起とも言い、神経細胞の一部である。 神経細胞が、外部からの刺激や他の神経細胞の軸索(AXON)から送り出される情報を受け取るために、細胞体から 樹木の枝のように分岐した複数の突起である。DENDRITESは、ここではエッジを構成する要素である。DENDRITES情報は、DENDRITES識別子と、DENDRITES位置情報とを有する。 Dendrites information is information about DENDRITES. DENDRITES are also called dendrites and are part of nerve cells. They are multiple projections that branch out from the cell body like the branches of a tree in order for nerve cells to receive external stimuli and information sent from the axons (AXONs) of other nerve cells. In this case, DENDRITES are the elements that make up an edge. DENDRITES information has a DENDRITES identifier and DENDRITES position information.
 DENDRITES識別子とは、DENDRITESを識別する情報である。DENDRITES識別子は、例えば、DENDRITESのID、DENDRITESの名称である。 The DENDRITES identifier is information that identifies the DENDRITES. For example, the DENDRITES identifier is the DENDRITES ID or the DENDRITES name.
 DENDRITES位置情報とは、DENDRITESの位置を示す位置情報である。DENDRITES位置情報は、DENDRITESの位置を特定する情報であり、例えば、1または2以上の三次元の座標値(x,y,z)、または1または2以上の二次元の座標値(x,y)である。DENDRITES位置情報が2以上の座標値を有する場合、DENDRITESは、2以上の座標値の各点を結ぶ線である。 DENDRITES position information is position information that indicates the position of DENDRITES. DENDRITES position information is information that specifies the position of DENDRITES, and is, for example, one or more three-dimensional coordinate values (x, y, z), or one or more two-dimensional coordinate values (x, y). When DENDRITES position information has two or more coordinate values, DENDRITES is a line connecting each point of the two or more coordinate values.
 また、Dendrites情報は、Dendritesが保持しているエネルギー量を示す保有エネルギー量情報を有していることは好適である。また、Dendrites情報は、Dendritesを利用して情報伝達を行うために必要な必要エネルギー量情報を有していることは好適である。 It is also preferable that the dendrites information includes information on the amount of stored energy that indicates the amount of energy that the dendrites hold. It is also preferable that the dendrites information includes information on the amount of required energy that is required to transmit information using the dendrites.
 AXON情報とは、AXONの情報である。AXONとは、軸索とも言い、細胞体から延びている突起状の構造で、神経細胞において信号の出力を担う。AXONは、ここではエッジを構成する要素である。AXON情報は、AXON識別子と、AXON位置情報とを有する。 Axon information is information about an axon. An axon is also called an axon, and is a protruding structure that extends from the cell body and is responsible for outputting signals in a nerve cell. In this case, an axon is an element that constitutes an edge. Axon information has an axon identifier and axon position information.
 AXON識別子とは、AXONを識別する情報である。AXON識別子は、例えば、AXONのID、AXONの名称である。 The AXON identifier is information that identifies the AXON. For example, the AXON ID or the AXON name.
 AXON位置情報とは、AXONの位置を示す位置情報である。AXON位置情報は、AXONの位置を特定する情報であり、例えば、1または2以上の三次元の座標値(x,y,z)、または1または2以上の二次元の座標値(x,y)である。AXON位置情報が2以上の座標値を有する場合、AXONは、2以上の座標値の各点を結ぶ線である。 AXON position information is position information that indicates the position of AXON. AXON position information is information that specifies the position of AXON, and is, for example, one or more three-dimensional coordinate values (x, y, z), or one or more two-dimensional coordinate values (x, y). When AXON position information has two or more coordinate values, AXON is a line connecting each point of the two or more coordinate values.
 また、AXON情報は、AXONが保持しているエネルギー量を示す保有エネルギー量情報を有していることは好適である。さらに、AXON情報は、AXONを利用して情報伝達を行うために必要な必要エネルギー量情報を有していることは好適である。 It is also preferable that the AXON information includes information on the amount of stored energy that indicates the amount of energy that the AXON holds. It is also preferable that the AXON information includes information on the amount of required energy that is required to transmit information using the AXON.
 なお、Dendrites、AXONは枝分かれしても良い。Dendrites、AXONが枝分かれする場合の各々の位置情報は、3または4以上の座標値で表現され得る。ただし、Dendrites位置情報、AXON位置情報の表現方法は問わない。 Note that dendrites and AXON may branch out. When dendrites and AXON branch out, the position information of each may be expressed by three or more coordinate values. However, there is no restriction on the method of expressing dendrites position information and AXON position information.
 格納部11に格納されているグリア細胞情報とは、グリア細胞に関する情報である。なお、グリア細胞情報は、格納部11に存在しなくても良い。 The glial cell information stored in the storage unit 11 is information about glial cells. Note that the glial cell information does not have to be present in the storage unit 11.
 ここで、グリア細胞とは、神経膠細胞とも呼ばれ、神経系を構成する神経細胞ではない細胞の総称である。グリア細胞は、ニューロンとニューロンの間の空間を埋める糊やセメントのような物質である。 Here, glial cells, also known as neuroglial cells, are a general term for non-neuronal cells that make up the nervous system. Glial cells are a glue- or cement-like substance that fills the spaces between neurons.
 グリア細胞情報は、グリア細胞を識別するグリア細胞識別子を有することは好適である。グリア細胞情報は、例えば、結合を補佐するノードを識別するノード識別子、または結合を補佐するエッジを識別するエッジ識別子を有する。グリア細胞情報は、例えば、当該グリア細胞が結合を補佐するAXONのAXON識別子、または当該グリア細胞が結合を補佐するDendritesのDendrites識別子を有する。また、グリア細胞情報は、グリア細胞の種類を識別するグリア細胞種類識別子を有しても良い。グリア細胞の種類とは、例えば、oligodendrocites(以下、適宜「oligo」と言う)、またはastrocitesである。なお、oligoは、axonに接続し得る細胞である。astrocitesは、somaまたはDendritesに接続し得る細胞である。また、グリア細胞情報は、グリア細胞位置情報を有することは好適である。グリア細胞位置情報とは、グリア細胞の位置を特定する位置情報である。特に、oligoのグリア細胞情報は、グリア細胞位置情報を有することは好適である。また、グリア細胞情報は、1以上の各手の長さを示す手長情報を有しても良い。また、グリア細胞情報は、グリア細胞から出ている手の数を示す手数情報を有しても良い。そして、通常、各手の手長情報から算出されるグリア細胞の全体の長さが閾値に届いた場合、それ以上、グリア細胞は成長しないことは好適である。 It is preferable that the glial cell information has a glial cell identifier for identifying the glial cell. The glial cell information has, for example, a node identifier for identifying a node that assists the binding, or an edge identifier for identifying an edge that assists the binding. The glial cell information has, for example, an axon identifier for an axon for which the glial cell assists the binding, or a dendrites identifier for dendrites for which the glial cell assists the binding. The glial cell information may also have a glial cell type identifier for identifying the type of the glial cell. The type of glial cell is, for example, oligodendrocites (hereinafter referred to as "oligo" as appropriate) or astrocites. Note that oligos are cells that can connect to axons. Astrocites are cells that can connect to somas or dendrites. It is also preferable that the glial cell information has glial cell position information. The glial cell position information is position information that specifies the position of the glial cell. In particular, it is preferable that the oligo glial cell information includes glial cell position information. The glial cell information may also include hand length information indicating the length of each of one or more hands. The glial cell information may also include hand number information indicating the number of hands emerging from the glial cell. And, typically, when the total length of the glial cell calculated from the hand length information of each hand reaches a threshold value, it is preferable that the glial cell does not grow any further.
 格納部11に格納されている結合情報とは、2以上のノードの間の結合を特定する情報である。結合情報は、一のノードのAXONと他のノードのDendritesとの結合を特定する情報でも良い。かかる情報も、ノードの間の結合を特定する情報である。結合情報は、一のシナプスと一のスパインとの間の結合を特定する情報でも良い。かかる情報も、ノードの間の結合を特定する情報である。結合情報は、例えば、結合する2つのノード識別子を有する。また、結合情報は、例えば、AXONのAXON識別子と、当該AXONと結合するDendritesのDendrites識別子とを有する。また、結合情報は、例えば、シナプスのシナプス識別子と、当該シナプスとの間で情報伝達を行えるスパインのスパイン識別子とを有する。結合情報は、情報伝達確率情報を有しても良い。情報伝達確率情報は、一のノードと他のノードとの間の情報伝達を行う確率に関する情報である。情報伝達確率情報は、AXONとDendritesとの間の情報伝達を行う確率に関する情報でも良い。かかる場合も、情報伝達確率情報は、一のノードと他のノードとの間の情報伝達を行う確率に関する情報である。また、情報伝達確率情報は、シナプスとスパインとの間の情報伝達を行う確率に関する情報でも良い。かかる場合も、情報伝達確率情報は、一のノードと他のノードとの間の情報伝達を行う確率に関する情報である。なお、ここでノード間の結合方向は、通常、一方向である。 The connection information stored in the storage unit 11 is information that specifies connections between two or more nodes. The connection information may be information that specifies a connection between an AXON of one node and dendrites of another node. Such information is also information that specifies a connection between nodes. The connection information may be information that specifies a connection between a synapse and a spine. Such information is also information that specifies a connection between nodes. The connection information has, for example, identifiers of two nodes to be connected. The connection information also has, for example, an AXON identifier of an AXON and a dendrites identifier of a dendrite that is connected to the AXON. The connection information also has, for example, a synapse identifier of a synapse and a spine identifier of a spine that can transmit information between the synapse. The connection information may have information transmission probability information. The information transmission probability information is information regarding the probability of information transmission between one node and another node. The information transmission probability information may be information regarding the probability of information transmission between an AXON and a dendrite. In such a case, the information transmission probability information is information about the probability of information transmission between one node and another node. The information transmission probability information may also be information about the probability of information transmission between a synapse and a spine. In such a case, the information transmission probability information is information about the probability of information transmission between one node and another node. Note that the connection direction between the nodes is usually unidirectional.
 結合情報は、ノードとAXONとの結合を示す情報でも良い。かかる場合、結合情報は、ノード識別子とAXON識別子とを有する。また、結合情報は、ノードとDendritesとの結合を示す情報でも良い。かかる場合、結合情報は、ノード識別子とDendrites識別子とを有する。 The binding information may be information indicating a binding between a node and an AXON. In such a case, the binding information has a node identifier and an AXON identifier. The binding information may also be information indicating a binding between a node and Dendrites. In such a case, the binding information has a node identifier and a Dendrites identifier.
 結合情報は、グリア細胞とAXONまたはDendritesとの間の結合を特定する情報でも良い。かかる場合、結合情報は、例えば、グリア細胞情報を識別するグリア細胞識別子と、AXON識別子とを有する。結合情報は、例えば、グリア細胞識別子と、Dendrites識別子とを有しても良い。 The binding information may be information that specifies the binding between a glial cell and an AXON or dendrites. In such a case, the binding information may include, for example, a glial cell identifier that identifies glial cell information, and an AXON identifier. The binding information may include, for example, a glial cell identifier and a dendrites identifier.
 なお、NNを構成する要素(ノード,エッジ,AXON,Dendrites,グリア細胞,シナプス,またはスパイン)の間の結合を特定する結合情報は、NN格納部114に格納されていても良い。つまり、NNを構成する要素間の結合を特定する結合情報は、各要素の情報の中に含まれていても良い。 Note that connection information specifying the connections between the elements (nodes, edges, axons, dendrites, glial cells, synapses, or spines) that make up the NN may be stored in the NN storage unit 114. In other words, connection information specifying the connections between the elements that make up the NN may be included in the information of each element.
 発火情報とは、発火した結果に関する情報である。発火情報は、発火したノードを識別するノード識別子を有する。発火情報は、通常、発火した時を示すタイマー情報を有しても良い。タイマー情報は、相対的な時を示す情報でも良いし、絶対的な時を示す時刻の情報でも良い。なお、発火情報は、蓄積から一定時間経過後、自動的に処理部13により削除されても良い。 Ignition information is information about the result of an ignition. The ignition information has a node identifier that identifies the node that ignited. The ignition information may usually have timer information that indicates the time of ignition. The timer information may be information that indicates a relative time, or time information that indicates an absolute time. The ignition information may be automatically deleted by the processing unit 13 after a certain time has passed since it was accumulated.
 状態決定情報とは、画像情報と音情報のうちの1種類以上の情報を用いて一の状態を決定するための情報である。状態決定情報は、例えば、後述する差情報に基づく条件である。状態決定情報は、例えば、画像情報に関する条件である画像条件と状態識別子とを有する2以上の組である。状態決定情報は、例えば、音情報に関する条件である音条件と状態識別子とを有する2以上の組である。状態決定情報は、例えば、画像情報と音情報とに関する条件である画像音条件と状態識別子とを有する2以上の組である。 The state determination information is information for determining a state using one or more types of information from among image information and sound information. The state determination information is, for example, a condition based on difference information, which will be described later. The state determination information is, for example, two or more sets having an image condition, which is a condition related to image information, and a state identifier. The state determination information is, for example, two or more sets having a sound condition, which is a condition related to sound information, and a state identifier. The state determination information is, for example, two or more sets having an image sound condition, which is a condition related to image information and sound information, and a state identifier.
 状態決定情報は、例えば、「差情報>=閾値A <状態識別子>状態P」、「差情報<閾値B <状態識別子>状態N」、状態決定情報は、例えば、「<画像条件>Rの情報量>=150 <状態識別子>状態P」、「<画像条件>(「R」の情報量 <= 10) & (「G」の情報量 <= 80) <状態識別子>状態N」、「<音条件>情報識別子「周波数=X」の情報量>=50 <状態識別子>状態P」「<音条件>情報識別子「周波数=X」の情報量>=80 <状態識別子>状態N」、「<音条件>情報識別子「周波数=Y」の情報量>=50 & 情報識別子「周波数=Z」の情報量>=90 <状態識別子>状態P」、「<画像音条件>Rの情報量>=150 & 情報識別子「周波数=Y」の情報量>=50 <状態識別子>状態P」である。なお、状態Pは状態識別子「ポジティブ」、状態Nは状態識別子「ネガティブ」である。 The state determination information is, for example, "difference information >= threshold A <state identifier> state P", "difference information <threshold B <state identifier> state N", and the state determination information is, for example, "<image condition> amount of information of R >= 150 <state identifier> state P", "<image condition> (amount of information of "R" <= 10) & (amount of information of "G" <= 80) <state identifier> state N", "<sound condition> amount of information of information identifier "frequency = X" >= 50 <state identifier> state P", "<sound condition> amount of information of information identifier "frequency = X" >= 80 <state identifier> state N", "<sound condition> amount of information of information identifier "frequency = Y" >= 50 & amount of information of information identifier "frequency = Z" >= 90 <state identifier> state P", "<image sound condition> amount of information of R >= 150 & amount of information of information identifier "frequency = Y" >= 50 <state identifier> state P". Note that state P has a state identifier "positive" and state N has a state identifier "negative."
 受付部12は、各種の情報を受け付ける。各種の情報とは、例えば、画像情報、音情報である。 The reception unit 12 receives various types of information. Examples of the various types of information include image information and sound information.
 ここで、受け付けとは、カメラやマイクやキーボードやマウス、タッチパネルなどの入力デバイスから入力された情報の受け付け、有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどを含む概念である。 Here, reception is a concept that includes the reception of information input from input devices such as cameras, microphones, keyboards, mice, and touch panels, the reception of information transmitted via wired or wireless communication lines, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories.
 情報受付部121は、情報を受け付ける。情報受付部121は、例えば、画像情報と音情報のうちの1または2種類の情報を受け付ける。情報受付部121は、例えば、画像情報と音情報とを同じタイミングで受け付ける。ただし、情報受付部121は、例えば、画像情報と音情報との受け付けは、多少のずれがあっても良い。また、画像情報は、静止画、または動画である。音情報は、例えば、音声データ、楽曲データであるが、音の情報であれば良く、その種類は問わない。 The information receiving unit 121 receives information. For example, the information receiving unit 121 receives one or two types of information, image information and sound information. For example, the information receiving unit 121 receives image information and sound information at the same time. However, for example, the information receiving unit 121 may receive image information and sound information with some delay. Furthermore, the image information is a still image or a video. The sound information is, for example, audio data or music data, but the type is not important as long as it is sound information.
 情報受付部121は、例えば、カメラが撮影した画像情報を取得する。情報受付部121は、例えば、マイクが取得した音情報を取得する。つまり、受け付けとは、マイクやカメラなどのデバイスにより取得された情報の受け付けであるが、有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどを含む概念であっても良い。 The information receiving unit 121, for example, acquires image information captured by a camera. The information receiving unit 121, for example, acquires sound information acquired by a microphone. In other words, "acceptance" refers to the acceptance of information acquired by a device such as a microphone or camera, but may also be a concept that includes the reception of information transmitted via a wired or wireless communication line, and the acceptance of information read from a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory.
 処理部13は、各種の処理を行う。各種の処理とは、例えば、画像特徴取得部131、音特徴取得部132、成長部138等が行う処理である。 The processing unit 13 performs various types of processing. For example, various types of processing are performed by the image feature acquisition unit 131, the sound feature acquisition unit 132, the growth unit 138, etc.
 画像特徴取得部131は、情報受付部121が受け付けた画像情報を用いて、当該画像情報に対する1または2以上の画像特徴情報を取得する。 The image feature acquisition unit 131 uses the image information accepted by the information acceptance unit 121 to acquire one or more pieces of image feature information for the image information.
 音特徴取得部132は、情報受付部121が受け付けた音情報を用いて、音情報に対する1または2以上の音特徴情報を取得する。 The sound feature acquisition unit 132 uses the sound information accepted by the information acceptance unit 121 to acquire one or more pieces of sound feature information for the sound information.
 画像スコア取得部133は、画像特徴取得部131が取得した1または2以上の画像特徴情報を用いて、画像スコアを取得する。 The image score acquisition unit 133 acquires an image score using one or more pieces of image feature information acquired by the image feature acquisition unit 131.
 画像スコアとは、受け付けられた画像情報に対するスコアである。画像スコアは、通常、ポジティブおよびネガティブに関するスコアである。画像スコアは、例えば、ポジティブな度合いを示す情報、またはネガティブな度合いを示す情報である。 An image score is a score for the received image information. An image score is typically a score related to positivity and negativity. For example, an image score is information indicating the degree of positivity or information indicating the degree of negativity.
 画像スコア取得部133は、例えば、以下の3つの方法のいずれかにより、画像スコアを取得する。
(1)演算式を用いる方法
The image score acquisition unit 133 acquires the image score by, for example, one of the following three methods.
(1) Method using an arithmetic formula
 画像スコア取得部133は、画像特徴取得部131が取得した1または2以上の各画像特徴情報が有する情報量を画像演算式に代入し、当該画像演算式を実行し、画像スコアを算出する。なお、画像演算式は、1以上の各画像特徴情報が有する情報量をパラメータとする式である。当該画像演算式は、格納部11に格納されている。
(2)対応表を用いる方法
The image score acquisition unit 133 substitutes the amount of information possessed by one or more pieces of image feature information acquired by the image feature acquisition unit 131 into an image calculation formula, executes the image calculation formula, and calculates an image score. Note that the image calculation formula is a formula in which the amount of information possessed by one or more pieces of image feature information is a parameter. The image calculation formula is stored in the storage unit 11.
(2) Using a correspondence table
 画像スコア取得部133は、画像特徴取得部131が取得した1または2以上の各画像特徴情報が有する情報量を要素とするベクトルに最も近似するベクトルと対になる画像スコアを画像対応表から取得する。画像対応表とは、1または2以上の各画像特徴情報の集合と画像スコアとの対応を示す表である。画像対応表は、2以上の画像対応情報を有する。画像対応情報とは、1以上の各画像特徴情報が有する情報量を要素とするベクトルと画像スコアとの対応を示す情報である。画像対応情報は、例えば、ベクトルと画像スコアとの組である。
(3)機械学習による方法
The image score acquisition unit 133 acquires, from the image correspondence table, an image score that is paired with a vector that is most similar to a vector whose elements are the amount of information possessed by one or more pieces of image feature information acquired by the image feature acquisition unit 131. The image correspondence table is a table that indicates the correspondence between a set of one or more pieces of image feature information and an image score. The image correspondence table has two or more pieces of image correspondence information. The image correspondence information is information that indicates the correspondence between a vector whose elements are the amount of information possessed by one or more pieces of image feature information and an image score. The image correspondence information is, for example, a pair of a vector and an image score.
(3) Machine learning method
 画像スコア取得部133は、画像特徴取得部131が取得した1または2以上の各画像特徴情報が有する情報量を要素とするベクトルと画像学習モデルとを、機械学習の予測モジュールに与え、当該予測モジュールを実行し、画像スコアを取得する。 The image score acquisition unit 133 provides a vector whose elements are the amount of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and an image learning model to a machine learning prediction module, executes the prediction module, and acquires an image score.
 なお、画像学習モデルは、1以上の各画像特徴情報が有する情報量を要素とするベクトルと画像スコアとを有する2以上の教師データを機械学習の学習モジュールに与え、当該学習モジュールを実行することにより得られた情報である。画像学習モデルは、格納部11に格納されている。 The image learning model is information obtained by providing two or more pieces of teacher data having vectors whose elements are the amount of information contained in one or more pieces of image feature information and image scores to a machine learning learning module and executing the learning module. The image learning model is stored in the storage unit 11.
 音スコア取得部134は、音特徴取得部132が取得した1または2以上の音特徴情報を用いて、音スコアを取得する。 The sound score acquisition unit 134 acquires a sound score using one or more pieces of sound feature information acquired by the sound feature acquisition unit 132.
 音スコアとは、受け付けられた音情報に対するスコアである。音スコアは、通常、ポジティブおよびネガティブに関するスコアである。音スコアは、例えば、ポジティブな度合いを示す情報、またはネガティブな度合いを示す情報である。 A sound score is a score for received sound information. A sound score is typically a positive and negative score. A sound score is, for example, information that indicates the degree of positivity or information that indicates the degree of negativity.
 音スコア取得部134は、例えば、以下の3つの方法のいずれかにより、音スコアを取得する。
(1)演算式を用いる方法
The sound score acquisition unit 134 acquires the sound score by, for example, one of the following three methods.
(1) Method using an arithmetic formula
 音スコア取得部134は、音特徴取得部132が取得した1または2以上の各音特徴情報が有する情報量を音演算式に代入し、当該音演算式を実行し、音スコアを算出する。なお、音演算式は、1以上の各音特徴情報が有する情報量をパラメータとする式である。当該音演算式は、格納部11に格納されている。
(2)対応表を用いる方法
The sound score acquisition unit 134 assigns the amount of information possessed by each of the one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 to a sound calculation formula, executes the sound calculation formula, and calculates a sound score. Note that the sound calculation formula is a formula in which the amount of information possessed by each of the one or more pieces of sound feature information is a parameter. The sound calculation formula is stored in the storage unit 11.
(2) Using a correspondence table
 音スコア取得部134は、音特徴取得部132が取得した1または2以上の各音特徴情報が有する情報量を要素とするベクトルに最も近似するベクトルと対になる音スコアを音対応表から取得する。音対応表とは、1または2以上の各音特徴情報の集合と音スコアとの対応を示す表である。音対応表は、2以上の音対応情報を有する。音対応情報とは、1以上の各音特徴情報が有する情報量を要素とするベクトルと音スコアとの対応を示す情報である。音対応情報は、例えば、ベクトルと音スコアとの組である。
(3)機械学習による方法
The sound score acquisition unit 134 acquires from the sound correspondence table a sound score that is paired with a vector that is most similar to a vector whose elements are the amount of information possessed by one or more pieces of sound feature information acquired by the sound feature acquisition unit 132. The sound correspondence table is a table that shows the correspondence between a set of one or more pieces of sound feature information and a sound score. The sound correspondence table has two or more pieces of sound correspondence information. The sound correspondence information is information that shows the correspondence between a vector whose elements are the amount of information possessed by one or more pieces of sound feature information and a sound score. The sound correspondence information is, for example, a pair of a vector and a sound score.
(3) Machine learning method
 音スコア取得部134は、音特徴取得部132が取得した1または2以上の各音特徴情報が有する情報量を要素とするベクトルと音学習モデルとを、機械学習の予測モジュールに与え、当該予測モジュールを実行し、音スコアを取得する。 The sound score acquisition unit 134 provides a vector whose elements are the amount of information contained in one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 and a sound learning model to a machine learning prediction module, executes the prediction module, and acquires a sound score.
 なお、音学習モデルは、1以上の各音特徴情報が有する情報量を要素とするベクトルと音スコアとを有する2以上の教師データを機械学習の学習モジュールに与え、当該学習モジュールを実行することにより得られた情報である。音学習モデルは、格納部11に格納されている。 The sound learning model is information obtained by providing two or more pieces of teacher data having a vector whose elements are the amount of information contained in one or more pieces of sound feature information and a sound score to a machine learning learning module and executing the learning module. The sound learning model is stored in the storage unit 11.
 画像学習モデルや音学習モデルや後述する総合学習モデル等の学習モデルとは、機械学習の学習処理により構成された情報であり、機械学習の予測処理に使用される情報である。学習モデルは、学習器、分類器、分類モデル等と言っても良い。上記の機械学習のアルゴリズムは、深層学習、ランダムフォレスト、決定木、SVR等、問わない。また、機械学習には、例えば、TensorFlowのライブラリ、R言語のrandom forestのモジュール、fastText、TinySVM等の各種の機械学習の関数や、種々の既存のライブラリを用いることができる。 Learning models, such as the image learning model, sound learning model, and comprehensive learning model described below, are information constructed by the learning process of machine learning, and are information used in the prediction process of machine learning. A learning model may also be called a learner, classifier, classification model, etc. The above machine learning algorithms may be deep learning, random forest, decision tree, SVR, etc. In addition, for machine learning, various machine learning functions such as the TensorFlow library, the random forest module of the R language, fastText, TinySVM, and various existing libraries can be used.
 総合スコア取得部135は、1以上の画像特徴情報および1以上の音特徴情報に基づく総合スコアを取得する。 The overall score acquisition unit 135 acquires an overall score based on one or more pieces of image feature information and one or more pieces of sound feature information.
 総合スコア取得部135は、例えば、画像スコアと音スコアとを用いて総合スコアを取得する。総合スコア取得部135は、画像スコアが大きな値であるほど、大きな総合スコアを取得する。総合スコア取得部135は、音スコアが大きな値であるほど、大きな総合スコアを取得する。総合スコア取得部135は、例えば、画像スコアと音スコアとをパラメータとする増加関数により、総合スコアを取得する。総合スコア取得部135は、例えば、画像スコアと音スコアとの和である総合スコアを取得する。総合スコア取得部135は、例えば、画像スコアと音スコアの平均値である総合スコアを取得する。総合スコア取得部135は、例えば、画像スコアと音スコアの加重平均値である総合スコアを取得する。 The overall score acquisition unit 135 acquires an overall score, for example, using the image score and the sound score. The overall score acquisition unit 135 acquires a larger overall score the larger the image score value. The overall score acquisition unit 135 acquires a larger overall score the larger the sound score value. The overall score acquisition unit 135 acquires an overall score, for example, by an increasing function with the image score and the sound score as parameters. The overall score acquisition unit 135 acquires an overall score that is, for example, the sum of the image score and the sound score. The overall score acquisition unit 135 acquires an overall score that is, for example, the average value of the image score and the sound score. The overall score acquisition unit 135 acquires an overall score that is, for example, the weighted average value of the image score and the sound score.
 総合スコア取得部135は、画像スコアや音スコアを用いずに総合スコアを取得しても良い。かかる場合、総合スコア取得部135は、例えば、以下の3つの方法のいずれかにより、音スコアを取得する。
(1)演算式を用いる方法
The overall score acquiring unit 135 may acquire the overall score without using the image score or the sound score. In such a case, the overall score acquiring unit 135 acquires the sound score by, for example, one of the following three methods.
(1) Method using an arithmetic formula
 総合スコア取得部135は、画像特徴取得部131が取得した1以上の画像特徴情報が有する情報量、音特徴取得部132が取得した1以上の音特徴情報が有する情報量のうちの1または2以上の情報量を総合演算式に代入し、当該総合演算式を実行し、総合スコアを算出する。なお、総合演算式は、1以上の各特徴情報が有する情報量をパラメータとする式である。当該総合演算式は、格納部11に格納されている。
(2)対応表を用いる方法
The overall score acquisition unit 135 substitutes one or more of the amounts of information contained in the one or more pieces of image feature information acquired by the image feature acquisition unit 131 and the amount of information contained in the one or more pieces of sound feature information acquired by the sound feature acquisition unit 132 into an overall calculation formula, executes the overall calculation formula, and calculates an overall score. Note that the overall calculation formula is a formula in which the amount of information contained in each of the one or more pieces of feature information is a parameter. The overall calculation formula is stored in the storage unit 11.
(2) Using a correspondence table
 総合スコア取得部135は、画像特徴取得部131が取得した1以上の画像特徴情報が有する情報量、音特徴取得部132が取得した1以上の音特徴情報が有する情報量のうちの1以上の各情報量を要素とするベクトルに最も近似するベクトルと対になる総合スコアを総合対応表から取得する。総合対応表とは、1または2以上の各特徴情報の集合と総合スコアとの対応を示す表である。総合対応表は、2以上の総合対応情報を有する。総合対応情報とは、1以上の各特徴情報が有する情報量を要素とするベクトルと総合スコアとの対応を示す情報である。総合対応情報は、例えば、ベクトルと総合スコアとの組である。
(3)機械学習による方法
The overall score acquisition unit 135 acquires from the overall correspondence table an overall score paired with a vector that is most similar to a vector whose elements are the amounts of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and one or more pieces of sound feature information acquired by the sound feature acquisition unit 132. The overall correspondence table is a table showing the correspondence between a set of one or more pieces of feature information and an overall score. The overall correspondence table has two or more pieces of overall correspondence information. The overall correspondence information is information showing the correspondence between a vector whose elements are the amounts of information contained in one or more pieces of feature information and an overall score. The overall correspondence information is, for example, a pair of a vector and an overall score.
(3) Machine learning method
 総合スコア取得部135は、画像特徴取得部131が取得した1以上の画像特徴情報が有する情報量、音特徴取得部132が取得した1以上の音特徴情報が有する情報量のうちの1以上の各情報量を要素とするベクトルと総合学習モデルとを、機械学習の予測モジュールに与え、当該予測モジュールを実行し、総合スコアを取得する。 The overall score acquisition unit 135 provides a vector whose elements are the amount of information contained in one or more pieces of image feature information acquired by the image feature acquisition unit 131 and one or more pieces of sound feature information acquired by the sound feature acquisition unit 132, and an overall learning model to a machine learning prediction module, executes the prediction module, and acquires an overall score.
 なお、総合学習モデルは、1以上の各特徴情報が有する情報量を要素とするベクトルと総合スコアとを有する2以上の教師データを機械学習の学習モジュールに与え、当該学習モジュールを実行することにより得られた情報である。総合学習モデルは、格納部11に格納されている。 The comprehensive learning model is information obtained by providing two or more pieces of teacher data having a vector whose elements are the amount of information contained in one or more pieces of feature information and an overall score to a machine learning learning module and executing the learning module. The comprehensive learning model is stored in the storage unit 11.
 発火ノード決定部136は、1以上の画像特徴情報と1以上の音特徴情報のうちの1または2種類の情報が合致する初期発火条件と対になる1以上のノード識別子を始点格納部111から決定する。 The ignition node determination unit 136 determines from the starting point storage unit 111 one or more node identifiers that are paired with an initial ignition condition in which one or two types of information out of one or more image feature information and one or more sound feature information match.
 次に、発火ノード決定部136は、かかる1以上の各ノード識別子で識別される各発火ノードに対して、エッジにより繋がっており、1または2以上の特徴情報が発火ノードから渡されるノードであり、発火するノードのノード識別子を決定する。なお、発火ノードのノード識別子を、適宜、発火ノード識別子と言う。なお、1以上の特徴情報は、1以上の画像特徴情報と1以上の音特徴情報のうちの1または2種類の情報である。 Next, the ignition node determination unit 136 determines the node identifier of a node that is connected by an edge to each ignition node identified by the one or more node identifiers and that is to be ignited, and that receives one or more pieces of feature information from the ignition node. Note that the node identifier of the ignition node is appropriately referred to as the ignition node identifier. Note that the one or more pieces of feature information are one or two types of information from among one or more pieces of image feature information and one or more pieces of sound feature information.
 発火ノード決定部136は、例えば、エッジにより繋がっており、当該エッジの重みが、伝達条件を満たすノードのノード識別子を決定する。伝達条件とは、一のノードから当該ノードと一つのエッジにより繋がっている他のノードに、特徴情報を伝達するための条件である。伝達条件は、重みに関する条件である。伝達条件は、例えば、「重み>=閾値」「重み>閾値」である。 The firing node determination unit 136 determines the node identifier of a node that is connected by an edge, for example, and the weight of the edge satisfies a transmission condition. A transmission condition is a condition for transmitting feature information from one node to another node that is connected to the node by an edge. The transmission condition is a condition related to the weight. For example, the transmission condition is "weight >= threshold" or "weight > threshold".
 発火ノード決定部136は、例えば、エッジにより繋がっている他の1以上のノードから渡される1以上の特徴情報が、1または2以上の特徴情報に関する発火条件を満たすか否かを判断し、当該発火条件を満たすと判断したノードのノード識別子を決定する。なお、発火条件は、1または2以上の特徴情報に関する条件である。 The firing node determination unit 136, for example, determines whether one or more pieces of feature information passed from one or more other nodes connected by an edge satisfy a firing condition related to one or more pieces of feature information, and determines the node identifier of the node determined to satisfy the firing condition. Note that the firing condition is a condition related to one or more pieces of feature information.
 発火ノード決定部136は、決定したノード識別子の回数に関する回数情報を、ノード識別子に対応付けて蓄積することは好適である。つまり、発火ノード決定部136は、発火したノードの回数情報を増加させることは好適である。 It is preferable that the firing node determination unit 136 stores the number of times information regarding the number of times of the determined node identifier in association with the node identifier. In other words, it is preferable that the firing node determination unit 136 increases the number of times information of the fired node.
 状態決定部137は、差情報を用いて、ポジティブおよびネガティブを含む2以上の状態から一の状態を決定する。なお、2以上の状態とは、例えば、「ポジティブ」と「ネガティブ」、または「ポジティブ」と「ネガティブ」と「ニュートラル」である。 The state determination unit 137 uses the difference information to determine one state from two or more states including positive and negative. Note that the two or more states are, for example, "positive" and "negative", or "positive", "negative", and "neutral".
 差情報とは、総合スコアと基準スコアとの差異に関する情報である。差情報は、例えば、「総合スコア-基準スコア」「総合スコアと基準スコアとの差の絶対値」「総合スコア/基準スコア」「基準スコア/総合スコア」である。 Difference information is information about the difference between the total score and the standard score. Examples of difference information are "total score - standard score," "absolute value of the difference between the total score and the standard score," "total score/standard score," and "standard score/total score."
 状態決定部137は、例えば、総合スコア取得部135が取得した総合スコアと基準スコアとの差異を示す差情報を取得する。次に、状態決定部137は、差情報に対応する状態識別子を取得する。なお、差情報は、後述する成長部138が取得した情報でも良い。 The state determination unit 137, for example, obtains difference information indicating the difference between the total score obtained by the total score acquisition unit 135 and the reference score. Next, the state determination unit 137 obtains a state identifier corresponding to the difference information. Note that the difference information may be information obtained by the growth unit 138, which will be described later.
 状態決定部137は、例えば、総合スコア取得部135が取得した総合スコアを取得する。また、状態決定部137は、発火ノード決定部136が決定した1または2以上のノード識別子が合致する発火パターンを基準スコア格納部113から決定し、当該発火パターンと対になる基準スコアを基準スコア格納部113から取得する。次に、状態決定部137は、当該総合スコアと当該基準スコアとの差情報を取得する。次に、状態決定部137は、当該差情報に対応する状態識別子を取得する。 The state determination unit 137, for example, obtains the total score obtained by the total score acquisition unit 135. The state determination unit 137 also determines an ignition pattern that matches one or more node identifiers determined by the ignition node determination unit 136 from the standard score storage unit 113, and obtains a standard score that pairs with the ignition pattern from the standard score storage unit 113. Next, the state determination unit 137 obtains difference information between the total score and the standard score. Next, the state determination unit 137 obtains a state identifier that corresponds to the difference information.
 状態決定部137は、例えば、「総合スコア-基準スコア(差情報)>=閾値A」である場合に状態を「ポジティブ」と決定する。状態決定部137は、例えば、「総合スコア-基準スコア<閾値B」である場合に状態を「ネガティブ」と決定する。状態決定部137は、例えば、「閾値B<=総合スコア-基準スコア<閾値A」である場合に状態を「ニュートラル」と決定する。 The status determination unit 137 determines the status to be "positive" if, for example, "total score - standard score (difference information) >= threshold A." The status determination unit 137 determines the status to be "negative" if, for example, "total score - standard score < threshold B." The status determination unit 137 determines the status to be "neutral" if, for example, "threshold B <= total score - standard score < threshold A."
 成長部138は、成長処理を行う。成長部138は、脳を模倣するNNの成長処理を行う。成長部138は、受け付けられた画像情報と音情報とを用いて、NNの成長処理を行う。成長部138は、受け付けられた画像情報から取得された1以上の画像特徴情報と、音情報から取得された1以上の音特徴情報とを用いて、NNを構成するノードまたはエッジまたはノードとエッジを成長させる処理を行う。 The growth unit 138 performs a growth process. The growth unit 138 performs a growth process of a NN that mimics the brain. The growth unit 138 performs a growth process of the NN using the received image information and sound information. The growth unit 138 performs a process of growing the nodes or edges, or the nodes and edges, that constitute the NN, using one or more pieces of image feature information acquired from the received image information and one or more pieces of sound feature information acquired from the sound information.
 さらに詳細には、成長部138は、総合スコアと基準スコアとの差異に関する差情報を取得し、当該差情報に基づいて、成長処理を行う。成長部138は、差情報が成長条件に合致する場合に成長処理を行う。 More specifically, the growth unit 138 acquires difference information regarding the difference between the overall score and the reference score, and performs growth processing based on the difference information. The growth unit 138 performs growth processing when the difference information matches the growth conditions.
 成長部138は、例えば、発火ノード決定部136が決定した1以上のノード識別子に対応する発火パターンと対になる基準スコアを基準スコア格納部113から取得する。次に、成長部138は、取得された総合スコアと当該基準スコアとの差に関する差情報を取得し、当該差情報に基づいて、成長処理を行う The growth unit 138, for example, obtains from the standard score storage unit 113 a standard score that is paired with an ignition pattern corresponding to one or more node identifiers determined by the ignition node determination unit 136. Next, the growth unit 138 obtains difference information regarding the difference between the obtained total score and the standard score, and performs a growth process based on the difference information.
 成長処理は、例えば、エッジ成長処理、エッジ生成処理、ノード生成処理である。エッジ成長処理は、例えば、第一エッジ成長処理、第二エッジ成長処理である。以下、各々の処理について説明する。
(1)エッジ成長処理
The growth process is, for example, an edge growth process, an edge creation process, and a node creation process. The edge growth process is, for example, a first edge growth process and a second edge growth process. Each process will be described below.
(1) Edge growth process
 成長部138は、例えば、エッジ成長処理を行う。エッジ成長処理とは、エッジを成長させる処理である。エッジを成長させる処理は、例えば、エッジの重みを大きくする処理である。エッジの重みを大きくすることは、エッジを太くすることである。エッジを成長させる処理は、例えば、エッジの長さを長くする処理である。エッジを成長させる処理は、当該エッジが出ているノードから、他のノードに当該エッジを繋げる処理でも良い。
(1-1)第一エッジ成長処理
The growing unit 138 performs, for example, an edge growing process. The edge growing process is a process of growing an edge. The edge growing process is, for example, a process of increasing the weight of an edge. Increasing the weight of an edge means making the edge thicker. The edge growing process is, for example, a process of increasing the length of an edge. The edge growing process may be a process of connecting the edge from the node from which the edge originates to another node.
(1-1) First edge growth treatment
 成長部138は、総合スコアと基準スコアとの差に関する差情報を取得し、当該差情報が第一エッジ成長条件に合致する場合に、発火したノードに繋がる1以上の各エッジのエッジ情報の重みを大きくする第一エッジ成長処理を行う。 The growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and when the difference information matches the first edge growth condition, performs a first edge growth process that increases the weight of the edge information of one or more edges connected to the fired node.
 第一エッジ成長条件とは、エッジの重みを変更するための条件である。第一エッジ成長条件は、例えば、「差情報<=閾値」「差情報<閾値」である。つまり、通常、総合スコアと基準スコアとの差が小さい場合に、エッジの重みを重くする。第一エッジ成長条件は、変更する重みの程度を示す程度情報を有しても良い。第一エッジ成長条件は、例えば、「if(差情報<=閾値) then 重み+5」「if(差情報<閾値) then 重み+3」である。なお、「重み+5」は重みを「3」増加させることを示す。
(1-2)第二エッジ成長処理
The first edge growth condition is a condition for changing the weight of an edge. For example, the first edge growth condition is "difference information<=threshold" or "difference information<threshold". In other words, the edge weight is usually increased when the difference between the total score and the reference score is small. The first edge growth condition may have degree information indicating the degree of weight change. For example, the first edge growth condition is "if (difference information<=threshold) then weight+5" or "if (difference information<threshold) then weight+3". Note that "weight+5" indicates that the weight is increased by "3".
(1-2) Second edge growth treatment
 成長部138は、総合スコアと基準スコアとの差に関する差情報を取得し、当該差情報が第二エッジ成長条件に合致する場合に、発火ノード決定部136が決定した1以上のノード識別子で識別されるノードに繋がる1以上の各エッジのエッジ情報が有するエッジ位置情報を変更し、エッジの長さの延伸させる第二エッジ成長処理を行う。 The growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and if the difference information matches the second edge growth condition, performs a second edge growth process that changes the edge position information contained in the edge information of one or more edges connected to nodes identified by one or more node identifiers determined by the ignition node determination unit 136, and extends the length of the edges.
 第二エッジ成長条件とは、エッジの長さの延伸させるための条件である。第二エッジ成長条件は、例えば、差情報に基づく条件、回数情報に基づく条件である。第二エッジ成長条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。通常、総合スコアと基準スコアとの差が大きい場合に、発火したノードに繋がるエッジであり、他のノードに繋がっていないノードの長さを長くする。 The second edge growth condition is a condition for extending the length of an edge. The second edge growth condition is, for example, a condition based on difference information or a condition based on count information. The second edge growth condition is, for example, "difference information >= threshold", "difference information > threshold", "count information >= threshold", or "count information > threshold". Usually, when the difference between the total score and the reference score is large, the length of the edge that is connected to the fired node and is not connected to other nodes is extended.
 なお、成長部138は、例えば、状態決定部137が決定した一の状態の状態識別子(例えば、「ポジティブ」または「ネガティブ」)と対になるゴール情報を取得する。次に、成長部138は、例えば、1以上の各エッジのエッジ情報が有するエッジ位置情報を取得し、当該エッジ位置情報に対して、ゴール情報が示す方向の新たなエッジ位置情報を取得し、新たなエッジ位置情報を蓄積する第二エッジ成長処理を行う。 The growth unit 138, for example, acquires goal information paired with a state identifier (for example, "positive" or "negative") of one state determined by the state determination unit 137. Next, the growth unit 138 performs a second edge growth process, for example, acquiring edge position information contained in the edge information of each of one or more edges, acquiring new edge position information in the direction indicated by the goal information for the edge position information, and accumulating the new edge position information.
 なお、第二エッジ成長処理を行う対象は、例えば、発火ノード決定部136が決定した1以上のノードに繋がるエッジである。第二エッジ成長処理を行う対象は、例えば、発火ノード決定部136が決定した1以上のノードのうち、特定の条件に合致する一部のエッジでも良い。特定の条件は、例えば、重みに基づく条件である。特定の条件は、例えば、「重みが閾値以上」「重みが閾値より大きいこと」である。 The target of the second edge growth process is, for example, an edge connected to one or more nodes determined by the ignition node determination unit 136. The target of the second edge growth process may be, for example, a portion of edges that meet a specific condition, among the one or more nodes determined by the ignition node determination unit 136. The specific condition is, for example, a condition based on weight. The specific condition is, for example, "weight is equal to or greater than a threshold" or "weight is greater than a threshold."
 なお、第二エッジ成長処理は、後述するDendrites成長処理、後述するAXON成長処理のうちの1以上の処理でも良い。
(1-3)Dendrites成長処理
The second edge growth process may be one or more of a Dendrites growth process (to be described later) and an AXON growth process (to be described later).
(1-3) Dendrites growth treatment
 成長部138は、例えば、Dendrites成長処理を行う。Dendrites成長処理とは、Dendritesを成長させる処理である。Dendrites成長処理は、エッジ成長処理に含まれても良い。Dendritesを成長させる処理は、通常、Dendritesの長さを長くする処理である。Dendritesを成長させる処理は、当該DendritesのDendrites情報が有するDendrites位置情報に対して、当該Dendrites位置情報が示す端点の位置を接続されているノードの位置より離れる位置とする新しいDendrites位置情報を取得し、当該新しいDendrites位置情報を蓄積する処理である。 The growth unit 138 performs, for example, a dendrites growth process. The dendrites growth process is a process for growing dendrites. The dendrites growth process may be included in the edge growth process. The process for growing dendrites is usually a process for increasing the length of the dendrites. The process for growing dendrites is a process for acquiring new dendrites position information for the dendrites position information contained in the dendrites information of the dendrites, which sets the position of the end point indicated by the dendrites position information to a position away from the position of the connected node, and storing the new dendrites position information.
 成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるDendritesを成長させたDendrites情報を取得し、蓄積するDendrites成長処理を行う。 The growth unit 138 performs a dendrites growth process, for example, by acquiring and accumulating dendrites information by growing dendrites extending from nodes identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
 発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子は、発火ノード決定部136が決定した1以上のノード識別子のうちのDendrites成長条件に合致する1以上の各ノードのノード識別子であることは好適である。ただし、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上のノード識別子は、発火ノード決定部136が決定したすべてのノード識別子でも良い。 It is preferable that one or more of the node identifiers determined by the firing node determination unit 136 are node identifiers of one or more nodes that meet the Dendrites growth condition among the one or more node identifiers determined by the firing node determination unit 136. However, one or more of the node identifiers determined by the firing node determination unit 136 may be all of the node identifiers determined by the firing node determination unit 136.
 なお、ノードから延びるDendritesを成長させたDendrites情報を取得することは、当該Dendrites情報が有するDendrites位置情報を、当該Dendrites位置情報が示すDendritesの端点をノードから、より離れる位置の位置情報とすることである。 Note that obtaining dendrites information by growing dendrites extending from a node means changing the dendrites position information contained in the dendrites information to position information in which the end point of the dendrite indicated by the dendrites position information is located farther away from the node.
 Dendrites成長条件とは、Dendrites成長処理を行うための条件である。Dendrites成長条件は、例えば、差情報に基づく条件、または回数情報に基づく条件である。Dendrites成長条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。Dendrites成長条件は、第二エッジ成長条件と同じでも良いし、異なっていても良い。 Dendrites growth conditions are conditions for performing the dendrites growth process. Dendrites growth conditions are, for example, conditions based on difference information or conditions based on number information. Dendrites growth conditions are, for example, "difference information >= threshold", "difference information > threshold", "number information >= threshold", or "number information > threshold". Dendrites growth conditions may be the same as the second edge growth conditions, or may be different.
 また、ノードから延びるDendritesを成長させる処理は、当該ノードを識別するノード識別子と対になるDendrites情報に含まれるDendrites位置情報から、さらにゴール情報が示す方向の位置情報を取得し、当該位置情報をDendrites位置情報とする処理である。
(1-4)AXON成長処理
In addition, the process of growing dendrites extending from a node is a process of obtaining position information in the direction indicated by the goal information from the dendrites position information contained in the dendrites information that pairs with the node identifier that identifies the node, and setting this position information as the dendrites position information.
(1-4) AXON growth treatment
 成長部138は、例えば、AXON成長処理を行う。AXON成長処理とは、AXONを成長させる処理である。AXON成長処理は、エッジ成長処理に含まれても良い。AXONを成長させる処理は、通常、AXONの長さを長くする処理である。AXONを成長させる処理は、当該AXONのAXON情報が有するAXON位置情報に対して、当該AXON位置情報が示す端点の位置より、接続されているノードの位置から離れる位置とする新しいAXON位置情報を取得し、当該新しいAXON位置情報を蓄積する処理である。 The growth unit 138 performs, for example, an AXON growth process. The AXON growth process is a process for growing an AXON. The AXON growth process may be included in an edge growth process. The AXON growth process is usually a process for increasing the length of an AXON. The AXON growth process is a process for acquiring new AXON position information for the AXON position information contained in the AXON information of the AXON, which is a position that is farther away from the position of the connected node than the position of the end point indicated by the AXON position information, and storing the new AXON position information.
 成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるAXONを成長させたAXON情報を取得し、蓄積するAXON成長処理を行う。 The growth unit 138 performs an AXON growth process, for example, by acquiring and storing AXON information obtained by growing an AXON extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
 発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子は、発火ノード決定部136が決定した1以上のノード識別子のうちのAXON成長条件に合致する1以上の各ノードのノード識別子であることは好適である。ただし、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上のノード識別子は、発火ノード決定部136が決定したすべてのノード識別子でも良い。 It is preferable that one or more of the node identifiers determined by the firing node determination unit 136 are node identifiers of one or more nodes that meet the AXON growth condition among the one or more node identifiers determined by the firing node determination unit 136. However, one or more of the node identifiers determined by the firing node determination unit 136 may be all of the node identifiers determined by the firing node determination unit 136.
 なお、ノードから延びるAXONを成長させたAXON情報を取得することは、当該AXON情報が有するAXON位置情報を、当該AXON位置情報が示すAXONの端点をノードからより離れる位置の位置情報とすることである。 Note that obtaining AXON information by growing an AXON extending from a node means changing the AXON position information contained in the AXON information to position information in which the end point of the AXON indicated by the AXON position information is located farther away from the node.
 AXON成長条件とは、AXON成長処理を行うための条件である。AXON成長条件は、例えば、差情報、回数情報に基づく条件である。AXON成長条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。AXON成長条件は、第二エッジ成長条件と同じでも良いし、異なっていても良い。 The AXON growth conditions are conditions for performing the AXON growth process. The AXON growth conditions are conditions based on, for example, difference information and number information. The AXON growth conditions are, for example, "difference information >= threshold", "difference information > threshold", "number information >= threshold", and "number information > threshold". The AXON growth conditions may be the same as the second edge growth conditions, or may be different.
 また、ノードから延びるAXONを成長させる処理は、当該ノードを識別するノード識別子と対になるAXON情報に含まれるAXON位置情報から、さらにゴール情報が示す方向の位置情報を取得し、当該位置情報をAXON位置情報とする処理である。
(2)エッジ生成処理
In addition, the process of growing an AXON extending from a node is a process of obtaining position information in the direction indicated by the goal information from the AXON position information contained in the AXON information that pairs with the node identifier that identifies the node, and treating this position information as the AXON position information.
(2) Edge generation process
 成長部138は、例えば、エッジ生成処理を行う。エッジ生成処理とは、新たなエッジを生成する処理であると言える。エッジ生成処理とは、新たなエッジ情報を生成し、NN格納部114に蓄積する処理である。 The growth unit 138 performs, for example, edge generation processing. The edge generation processing can be said to be processing for generating new edges. The edge generation processing is processing for generating new edge information and storing it in the NN storage unit 114.
 成長部138は、総合スコアと基準スコアとの差に関する差情報を取得し、当該差情報に基づいて、状態決定部137が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるエッジに対するエッジ情報を生成し、蓄積する。 The growth unit 138 acquires difference information regarding the difference between the total score and the reference score, and based on the difference information, generates and accumulates edge information for edges extending from nodes identified by one or more of the one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by the goal information paired with a state determined by the state determination unit 137.
 成長部138は、例えば、エッジ生成条件に合致する場合に、ノード識別子で識別されるノードに対して、エッジ生成処理を行う。 The growth unit 138 performs edge generation processing on a node identified by a node identifier, for example, if the edge generation conditions are met.
 エッジ生成条件とは、エッジ情報を生成するための条件である。エッジ生成条件は、例えば、差情報に基づく条件である。エッジ生成条件は、回数情報に基づく条件でも良い。エッジ生成条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。また、エッジ生成条件は、すべての着目ノードに共通でも良いし、ノードごとに異なっていても良いし、エッジごとに異なっていても良い。エッジ生成条件がノードごとに異なっている場合、例えば、ノード情報がエッジ生成条件を有する。エッジ生成条件がエッジごとに異なっている場合、例えば、エッジ情報がエッジ生成条件を有する。 The edge generation condition is a condition for generating edge information. The edge generation condition is, for example, a condition based on difference information. The edge generation condition may be a condition based on count information. The edge generation condition is, for example, "difference information >= threshold", "difference information > threshold", "count information >= threshold", or "count information > threshold". The edge generation condition may be common to all nodes of interest, may be different for each node, or may be different for each edge. When the edge generation condition is different for each node, for example, the node information has the edge generation condition. When the edge generation condition is different for each edge, for example, the edge information has the edge generation condition.
 成長部138は、状態決定部137が決定した一の状態と対になるゴール情報が示す方向の位置に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるエッジのエッジ情報を生成し、蓄積する。 The growth unit 138 generates and stores edge information of edges extending from nodes identified by one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 at a position in a direction indicated by goal information that pairs with a state determined by the state determination unit 137.
 発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子とは、発火ノード決定部136が決定した1以上のノード識別子のうちのエッジ生成条件に合致する1以上の各ノード識別子であることは好適である。ただし、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子は、発火ノード決定部136が決定したすべてのノード識別子でも良い。 It is preferable that the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that match the edge generation condition. However, the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
 なお、エッジ情報を生成する処理は、対象となるノード識別子で識別されるノードに接続されるエッジのエッジ情報を生成する処理である。エッジ情報を生成する処理は、例えば、ユニークなエッジ識別子を取得し、対象となるノード識別子で識別されるノードと、当該ノードからゴール情報が示す方向の他のノードとを繋げるエッジの情報であり、エッジ識別子を有するエッジ情報を生成する処理である。かかるエッジ情報は、例えば、エッジ識別子と繋げる2つのノードのノード識別子とを有する。エッジ情報を生成する処理は、例えば、ユニークなエッジ識別子を取得し、対象となるノード識別子で識別されるノードから延びて、その終端の位置を当該ノードからゴール情報が示す方向の位置を特定するエッジ位置情報を取得し、当該エッジ位置情報を有するエッジ情報を生成する処理である。かかるエッジ情報は、例えば、エッジ識別子と対象となる(接続する)ノードのノード識別子とエッジの終端の位置を特定するエッジ位置情報とを有する。 The process of generating edge information is a process of generating edge information of an edge connected to a node identified by a target node identifier. The process of generating edge information is, for example, a process of acquiring a unique edge identifier, and generating edge information having an edge identifier, which is information on an edge connecting a node identified by a target node identifier to another node in a direction indicated by goal information from the node. Such edge information has, for example, an edge identifier and the node identifiers of the two nodes to be connected. The process of generating edge information is, for example, a process of acquiring a unique edge identifier, acquiring edge position information that extends from a node identified by a target node identifier and specifies the position of its end point from the node in the direction indicated by goal information, and generating edge information having the edge position information. Such edge information has, for example, an edge identifier, a node identifier of a target (connecting) node, and edge position information that specifies the position of the end point of the edge.
 なお、エッジ生成処理は、後述するDendrites生成処理、後述するAXON生成処理のうちの1以上の処理でも良い。また、エッジ生成処理は、後述するグリア細胞生成処理を含んでも良い。
(2-1)Dendrites生成処理
The edge generation process may be one or more of a dendrites generation process and an AXON generation process, which will be described later. The edge generation process may also include a glial cell generation process, which will be described later.
(2-1) Dendrites generation process
 成長部138は、例えば、Dendrites生成処理を行う。Dendrites生成処理とは、新たなDendritesを生成する処理である。Dendrites生成処理は、新たなDendrites情報を生成し、NN格納部114に蓄積する処理を含んでも良い。つまり、成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるDendritesに対するDendrites情報を生成し、蓄積する。 The growth unit 138 performs, for example, a dendrites generation process. The dendrites generation process is a process for generating new dendrites. The dendrites generation process may include a process for generating new dendrites information and storing it in the NN storage unit 114. In other words, the growth unit 138 generates and stores dendrites information for dendrites extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
 発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子とは、発火ノード決定部136が決定した1以上のノード識別子のうちのDendrites生成条件に合致する1以上の各ノード識別子であることは好適である。ただし、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子は、発火ノード決定部136が決定したすべてのノード識別子でも良い。 It is preferable that the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that match the Dendrites generation condition. However, the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
 なお、Dendrites情報を生成する処理は、対象となるノード識別子で識別されるノードに接続されるDendritesのDendrites情報を生成する処理である。Dendrites情報を生成する処理は、例えば、ユニークなDendrites識別子を取得し、対象となるノード識別子(Dendritesが接続されるノードのノード識別子)で識別されるノードからゴール情報が示す方向のDendrites位置情報を取得し、当該Dendrites識別子と当該Dendrites位置情報とを有するDendrites情報を構成し、蓄積する処理である。 The process of generating dendrites information is a process of generating dendrites information for dendrites connected to a node identified by a target node identifier. The process of generating dendrites information is a process of, for example, acquiring a unique dendrites identifier, acquiring dendrites position information in the direction indicated by the goal information from the node identified by the target node identifier (the node identifier of the node to which the dendrites are connected), and constructing and storing dendrites information having the dendrites identifier and the dendrites position information.
 また、Dendrites生成条件とは、Dendritesを生成するための条件である。Dendrites生成条件は、例えば、差情報または回数情報に基づく条件である。Dendrites生成条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。Dendrites生成条件は、エッジ生成条件と同じでも良いし、異なっていても良い。
(2-2)AXON生成処理
Moreover, the dendrites generation condition is a condition for generating dendrites. The dendrites generation condition is, for example, a condition based on difference information or number information. The dendrites generation condition is, for example, "difference information>=threshold", "difference information>threshold", "number information>=threshold", or "number information>threshold". The dendrites generation condition may be the same as the edge generation condition, or may be different.
(2-2) AXON generation process
 成長部138は、例えば、AXON生成処理を行う。AXON生成処理とは、新たなAXONを生成する処理である。AXON生成処理は、新たなAXON情報を生成し、NN格納部114に蓄積する処理を含んでも良い。つまり、成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向に、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるAXONに対するAXON情報を生成し、蓄積する。 The growth unit 138 performs, for example, an AXON generation process. The AXON generation process is a process for generating a new AXON. The AXON generation process may include a process for generating new AXON information and storing it in the NN storage unit 114. In other words, the growth unit 138 generates and stores AXON information for an AXON extending from a node identified by one or more node identifiers among one or more node identifiers determined by the ignition node determination unit 136 in a direction indicated by goal information paired with a state determined by the state determination unit 137.
 発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子とは、発火ノード決定部136が決定した1以上のノード識別子のうちのAXON生成条件に合致する1以上の各ノード識別子であることは好適である。ただし、発火ノード決定部136が決定した1以上のノード識別子のうちの1以上の各ノード識別子は、発火ノード決定部136が決定したすべてのノード識別子でも良い。 It is preferable that the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 are one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 that meet the AXON generation condition. However, the one or more node identifiers among the one or more node identifiers determined by the firing node determination unit 136 may be all node identifiers determined by the firing node determination unit 136.
 なお、AXON情報を生成する処理は、対象となるノード識別子(AXONが接続されるノードのノード識別子)で識別されるノードに接続されるAXONのAXON情報を生成する処理である。AXON情報を生成する処理は、例えば、ユニークなAXON識別子を取得し、対象となるノード識別子で識別されるノードからゴール情報が示す方向のAXON位置情報を取得し、当該AXON識別子と当該AXON位置情報とを有するAXON情報を構成し、蓄積する処理である。 The process of generating AXON information is a process of generating AXON information of an AXON connected to a node identified by a target node identifier (the node identifier of the node to which the AXON is connected). The process of generating AXON information is, for example, a process of acquiring a unique AXON identifier, acquiring AXON position information in the direction indicated by the goal information from the node identified by the target node identifier, and constructing and storing AXON information having the AXON identifier and the AXON position information.
 また、AXON生成条件とは、AXONを生成するための条件である。AXON生成条件は、例えば、差情報または回数情報に基づく条件である。AXON生成条件は、例えば、「差情報>=閾値」「差情報>閾値」「回数情報>=閾値」「回数情報>閾値」である。AXON生成条件は、エッジ生成条件と同じでも良いし、異なっていても良い。
(3)ノード生成処理
The AXON generation condition is a condition for generating an AXON. The AXON generation condition is, for example, a condition based on difference information or number information. The AXON generation condition is, for example, "difference information>=threshold", "difference information>threshold", "number information>=threshold", or "number information>threshold". The AXON generation condition may be the same as the edge generation condition, or may be different.
(3) Node generation process
 成長部138は、例えば、ノード生成処理を行う。ノード生成処理とは、新しいノード情報を生成する処理である。つまり、成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向の位置であり、発火ノード決定部136が取得した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードのノード位置情報が示す位置の近隣の位置に新しいノードのノード情報を生成し、蓄積するノード生成処理を行う。 The growth unit 138 performs, for example, a node generation process. The node generation process is a process of generating new node information. In other words, the growth unit 138 performs a node generation process to generate and store node information of a new node in a position in the vicinity of the position indicated by the node position information of a node identified by one or more node identifiers among the one or more node identifiers acquired by the ignition node determination unit 136, which is a position in the direction indicated by the goal information that pairs with one state determined by the state determination unit 137.
 成長部138は、例えば、新しいノード識別子を取得する。また、成長部138は、例えば、状態決定部137が決定した一の状態と対になるゴール情報が示す方向の位置であり、対象となるノード(発火ノード)のノード位置情報が示す位置と所定距離だけ離れた位置の新しいノード位置情報を取得する。また、成長部138は、例えば、対象となるノードのノード情報が有する情報(例えば、発火条件または発火確率情報)を取得する。そして、成長部138は、例えば、新しいノード識別子、新しいノード位置情報、および発火条件または発火確率情報のうちの1以上の情報を有するノード情報を構成し、NN格納部114に蓄積する。なお、所定距離は、予め決められた距離でも良いし、動的に変わっても良い。 The growth unit 138, for example, acquires a new node identifier. The growth unit 138 also acquires new node position information for a position in a direction indicated by goal information that pairs with a state determined by the state determination unit 137 and that is a predetermined distance away from the position indicated by the node position information of the target node (firing node). The growth unit 138 also acquires information (for example, firing condition or firing probability information) contained in the node information of the target node. The growth unit 138 then constructs node information that includes, for example, one or more pieces of information among the new node identifier, the new node position information, and the firing condition or firing probability information, and accumulates the information in the NN storage unit 114. The predetermined distance may be a predetermined distance, or may change dynamically.
 1以上のノード識別子のうちの1以上の各ノード識別子は、例えば、1以上のノード識別子のうちの、ノード生成条件に合致するノード情報に含まれる1以上の各ノード識別子であることは好適である。ただし、1以上のノード識別子のうちの1以上のノード識別子は、例えば、1以上のノード識別子のうちのすべてのノード識別子であっても良い。 It is preferable that each of the one or more node identifiers among the one or more node identifiers is, for example, one or more node identifiers included in the node information that matches the node generation condition among the one or more node identifiers. However, the one or more node identifiers among the one or more node identifiers may be, for example, all of the node identifiers among the one or more node identifiers.
 ノード生成条件とは、ノードを生成するための条件である。ノード生成条件は、例えば、差情報に基づく条件である。ノード生成条件は、例えば、「差情報>=閾値」「差情報>閾値」である。ノード生成条件は、エッジ生成条件と同じでも良いし、異なっていても良い。また、ノード生成条件は、すべての着目ノードに共通でも良いし、ノードごとに異なっていても良い。ノード生成条件がノードごとに異なっている場合、例えば、ノード情報がノード生成条件を有する。
(4)グリア細胞生成処理
A node generation condition is a condition for generating a node. The node generation condition is, for example, a condition based on difference information. The node generation condition is, for example, "difference information >= threshold" or "difference information >threshold". The node generation condition may be the same as the edge generation condition or may be different. Furthermore, the node generation condition may be common to all nodes of interest or may be different for each node. When the node generation condition is different for each node, for example, the node information has the node generation condition.
(4) Glial cell generation treatment
 成長部138は、以下のようなグリア細胞生成処理を行うことは好適である。つまり、例えば、ノード、エッジである要素の保有エネルギー量が、必要エネルギー量に対して、予め決められた条件を満たすほど少なくなった場合、成長部138は、当該要素に接続するグリア細胞情報を生成する。なお、要素は、AXON、またはDendritesでも良い。つまり、成長部138は、AXON、またはDendritesである要素の保有エネルギー量が、必要エネルギー量に対して、予め決められた条件を満たすほど少なくなった場合、当該要素に接続するグリア細胞情報を生成する。 It is preferable that the growth unit 138 performs the following glial cell generation process. That is, for example, when the amount of energy held by an element that is a node or edge becomes small enough to satisfy a predetermined condition relative to the amount of required energy, the growth unit 138 generates glial cell information that connects to the element. Note that the element may be an axon or a dendrite. That is, when the amount of energy held by an element that is an axon or a dendrite becomes small enough to satisfy a predetermined condition relative to the amount of required energy, the growth unit 138 generates glial cell information that connects to the element.
 予め決められた条件とは、例えば、「保有エネルギー量<必要エネルギー量」または「保有エネルギー量<=必要エネルギー量」または「保有エネルギー量-必要エネルギー量<=閾値」または「保有エネルギー量-必要エネルギー量<閾値」である。 The predetermined condition is, for example, "retained energy amount < required energy amount", or "retained energy amount <= required energy amount", or "retained energy amount - required energy amount <= threshold value", or "retained energy amount - required energy amount < threshold value".
 さらに具体的には、成長部138は、例えば、各要素の情報(ノード情報、エッジ情報、AXON情報、またはDendrites情報)が有する保有エネルギー量情報が示す保有エネルギー量が、各要素の情報が有する必要エネルギー量情報が示す必要エネルギー量と比較して、予め決められた条件を満たすほど少ないか否かを判断し、少ないと判断した場合に、当該要素を識別する識別子(ノード識別子、エッジ識別子、AXON識別子、またはDendrites識別子)を有するグリア細胞情報を生成し、格納部11に蓄積する。 More specifically, the growth unit 138, for example, compares the amount of retained energy indicated by the retained energy amount information of the information of each element (node information, edge information, AXON information, or Dendrites information) with the amount of required energy indicated by the required energy amount information of the information of each element to determine whether the amount of retained energy is small enough to satisfy a predetermined condition, and if it determines that the amount is small, generates glial cell information having an identifier that identifies the element (node identifier, edge identifier, AXON identifier, or Dendrites identifier) and stores it in the storage unit 11.
 基準スコア変更部139は、総合スコア取得部135が取得した総合スコアに基づいて、基準スコア格納部113の基準スコアを変更する。基準スコア変更部139は、例えば、基準スコアを、総合スコアに変更する。基準スコア変更部139は、例えば、基準スコアを、元の基準スコアと総合スコアとをパラメータとする増加関数(例えば、平均値、加重平均値)を用いて変更する。 The standard score modification unit 139 modifies the standard score in the standard score storage unit 113 based on the total score acquired by the total score acquisition unit 135. For example, the standard score modification unit 139 modifies the standard score to the total score. For example, the standard score modification unit 139 modifies the standard score using an increasing function (for example, an average value, a weighted average value) with the original standard score and the total score as parameters.
 基準スコア変更部139は、総合スコアがスコア変更条件に合致する場合のみ、基準スコア格納部113の基準スコアを変更することは好適である。スコア変更条件は、総合スコアと基準スコアとの差情報に基づく条件であることは好適である。スコア変更条件は、例えば、「差情報>=閾値」「差情報>閾値」である。なお、基準スコアを変更する程度は、例えば、差情報または総合スコアに基づくことは好適である。基準スコアを変更する程度は、例えば、「総合スコアと基準スコアとの平均値」「総合スコアと基準スコアとの加重平均値」である。 It is preferable that the standard score change unit 139 changes the standard score in the standard score storage unit 113 only when the total score matches the score change condition. It is preferable that the score change condition is a condition based on difference information between the total score and the standard score. For example, the score change condition is "difference information >= threshold" or "difference information > threshold". It is preferable that the degree to which the standard score is changed is based on, for example, the difference information or the total score. For example, the degree to which the standard score is changed is "average value of the total score and the standard score" or "weighted average value of the total score and the standard score".
 出力部14は、各種の情報を出力する。各種の情報は、例えば、発火したノード識別子、NN格納部114のNN情報、状態決定部137が取得した状態識別子である。 The output unit 14 outputs various information. The various information is, for example, the identifier of the fired node, the NN information in the NN storage unit 114, and the state identifier acquired by the state determination unit 137.
 各種の情報は、例えば、NN情報を図的に示した情報である。かかる場合、処理部13は、NN情報が有する各ノード情報からNNを構成するノードの図(例えば、球)を構成し、エッジ情報からNNを構成するエッジの図(例えば、線)を構成する。また、処理部13は、各ノード情報が有するノード位置情報が示す仮想空間上の位置にノードの図(例えば、球)を配置し、各エッジ情報が有するエッジ位置情報が示す仮想空間上の位置をエッジの端点とするエッジの図(例えば、線)を配置し、かつ、エッジが接続されるノードと当該エッジの図(例えば、線)とが接続さていることを明示する図を構成する。 The various types of information are, for example, information that graphically illustrates the NN information. In such a case, the processing unit 13 constructs a diagram (e.g., a sphere) of the nodes that make up the NN from each node information contained in the NN information, and constructs a diagram (e.g., a line) of the edges that make up the NN from the edge information. The processing unit 13 also arranges the node diagram (e.g., a sphere) at the position in virtual space indicated by the node position information contained in each node information, arranges a diagram of an edge (e.g., a line) whose end point is the position in virtual space indicated by the edge position information contained in each edge information, and constructs a diagram that clearly shows that the node to which the edge is connected is connected to the diagram of the edge (e.g., a line).
 ここで、出力とは、ディスプレイへの表示、プロジェクターを用いた投影、プリンタでの印字、音出力、外部の装置への送信、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念である。 Here, output is a concept that includes displaying on a display, projecting using a projector, printing on a printer, outputting sound, sending to an external device, storing on a recording medium, and passing on the processing results to other processing devices or other programs, etc.
 格納部11、始点格納部111、ゴール格納部112、基準スコア格納部113、およびNN格納部114は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。 The storage unit 11, the starting point storage unit 111, the goal storage unit 112, the reference score storage unit 113, and the NN storage unit 114 are preferably non-volatile recording media, but can also be realized with volatile recording media.
 格納部11等に情報が記憶される過程は問わない。例えば、記録媒体を介して情報が格納部11等で記憶されるようになってもよく、通信回線等を介して送信された情報が格納部11等で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された情報が格納部11等で記憶されるようになってもよい。 The process by which information is stored in the storage unit 11, etc. is not important. For example, information may be stored in the storage unit 11, etc. via a recording medium, information transmitted via a communication line, etc. may be stored in the storage unit 11, etc., or information inputted via an input device may be stored in the storage unit 11, etc.
 受付部12、および情報受付部121は、例えば、無線または有線の通信手段、放送を受信する手段、タッチパネルやキーボード等の入力手段のデバイスドライバーや、メニュー画面の制御ソフトウェア等で実現される。 The reception unit 12 and the information reception unit 121 are realized, for example, by wireless or wired communication means, means for receiving broadcasts, device drivers for input means such as a touch panel or keyboard, control software for a menu screen, etc.
 処理部13、画像特徴取得部131、音特徴取得部132、画像スコア取得部133、音スコア取得部134、総合スコア取得部135、発火ノード決定部136、成長部138、状態決定部137、および基準スコア変更部139は、通常、プロセッサやメモリ等から実現され得る。処理部13等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現しても良い。なお、プロセッサは、CPU、MPU、GPU等であり、その種類は問わない。 The processing unit 13, image feature acquisition unit 131, sound feature acquisition unit 132, image score acquisition unit 133, sound score acquisition unit 134, total score acquisition unit 135, firing node determination unit 136, growth unit 138, state determination unit 137, and reference score change unit 139 can usually be realized by a processor, memory, etc. The processing procedures of the processing unit 13, etc. are usually realized by software, and the software is recorded in a recording medium such as a ROM. However, they may also be realized by hardware (dedicated circuitry). The processor may be a CPU, MPU, GPU, etc., and the type does not matter.
 出力部14は、例えば、出力デバイスのドライバーソフト、または出力デバイスのドライバーソフトと出力デバイス等、または無線または有線の通信手段、放送手段で実現され得る。なお、出力デバイスは、例えば、ディスプレイやスピーカー等である。 The output unit 14 can be realized, for example, by driver software for an output device, or by a combination of driver software for an output device and an output device, or by wireless or wired communication means or broadcasting means. The output device can be, for example, a display or a speaker.
 次に、NN成長装置1の動作例について、図2のフローチャートを用いて説明する。 Next, an example of the operation of the NN growth device 1 will be explained using the flowchart in Figure 2.
 (ステップS201)情報受付部121は、情報を受け付けたか否かを判断する。情報を受け付けた場合はステップS202に行き、情報を受け付けなかった場合はステップS201に戻る。 (Step S201) The information receiving unit 121 determines whether or not information has been received. If information has been received, the process proceeds to step S202; if information has not been received, the process returns to step S201.
 (ステップS202)処理部13は、ステップS201で受け付けた情報の中に画像情報が存在するか否かを判断する。画像情報が存在する場合はステップS203に行き、存在しない場合はステップS204に行く。 (Step S202) The processing unit 13 determines whether image information is present in the information received in step S201. If image information is present, the process proceeds to step S203; if not, the process proceeds to step S204.
 (ステップS203)画像特徴取得部131は、ステップS201で受け付けられた画像情報から1以上の画像特徴情報を取得し、図示しないバッファに一時蓄積する。 (Step S203) The image feature acquisition unit 131 acquires one or more pieces of image feature information from the image information accepted in step S201, and temporarily stores the information in a buffer (not shown).
 (ステップS204)処理部13は、ステップS201で受け付けた情報の中に音情報が存在するか否かを判断する。音情報が存在する場合はステップS205に行き、存在しない場合はステップS206に行く。 (Step S204) The processing unit 13 determines whether or not sound information is present in the information received in step S201. If sound information is present, the process proceeds to step S205; if not, the process proceeds to step S206.
 (ステップS205)音特徴取得部132は、ステップS201で受け付けられた音情報から1以上の音特徴情報を取得する。 (Step S205) The sound feature acquisition unit 132 acquires one or more pieces of sound feature information from the sound information accepted in step S201.
 (ステップS206)総合スコア取得部135等は、総合スコアを取得する。かかるスコア取得処理の例について、図3のフローチャートを用いて説明する。 (Step S206) The total score acquisition unit 135 etc. acquires the total score. An example of such score acquisition processing will be explained using the flowchart in FIG. 3.
 (ステップS207)成長部138等は、成長処理を行う。成長処理の例について、図4のフローチャートを用いて説明する。 (Step S207) The growth unit 138 etc. performs growth processing. An example of the growth processing is explained using the flowchart in FIG. 4.
 (ステップS208)基準スコア変更部139は、基準スコアを変更する処理を行う。ステップS201に戻る。かかる基準変更処理の例について、図16のフローチャートを用いて説明する。 (Step S208) The standard score change unit 139 performs processing to change the standard score. Return to step S201. An example of such standard change processing will be described using the flowchart in FIG. 16.
 なお、図2のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は終了する。 In the flowchart in Figure 2, processing ends when the power is turned off or an interrupt occurs to end processing.
 次に、ステップS206のスコア取得処理の例について、図3のフローチャートを用いて説明する。 Next, an example of the score acquisition process in step S206 will be explained using the flowchart in Figure 3.
 (ステップS301)画像スコア取得部133は、取得された特徴情報の中に、画像特徴情報が存在するか否かを判断する。画像特徴情報が存在する場合はステップS302に行き、存在しない場合はステップS304に行く。 (Step S301) The image score acquisition unit 133 determines whether image feature information is present in the acquired feature information. If image feature information is present, the process proceeds to step S302; if not, the process proceeds to step S304.
 (ステップS302)画像スコア取得部133は、取得された特徴情報の中の1以上の画像特徴情報を図示しないバッファから取得する。 (Step S302) The image score acquisition unit 133 acquires one or more pieces of image feature information from the acquired feature information from a buffer (not shown).
 (ステップS303)画像スコア取得部133は、ステップS302で取得した1以上の画像特徴情報を用いて、画像スコアを取得する。 (Step S303) The image score acquisition unit 133 acquires an image score using one or more pieces of image feature information acquired in step S302.
 (ステップS304)音スコア取得部134は、取得された特徴情報の中に、音特徴情報が存在するか否かを判断する。音特徴情報が存在する場合はステップS305に行き、存在しない場合はステップS307に行く。 (Step S304) The sound score acquisition unit 134 determines whether or not sound feature information is present in the acquired feature information. If sound feature information is present, the process proceeds to step S305; if not, the process proceeds to step S307.
 (ステップS305)音スコア取得部134は、取得された特徴情報の中の1以上の音特徴情報を図示しないバッファから取得する。 (Step S305) The sound score acquisition unit 134 acquires one or more pieces of sound feature information from the acquired feature information from a buffer (not shown).
 (ステップS306)音スコア取得部134は、ステップS302で取得した1以上の音特徴情報を用いて、音スコアを取得する。 (Step S306) The sound score acquisition unit 134 acquires a sound score using one or more pieces of sound feature information acquired in step S302.
 (ステップS307)総合スコア取得部135は、取得された画像スコアまたは音スコアのうちの1以上のスコアを用いて、総合スコアを取得する。上位処理にリターンする。 (Step S307) The total score acquisition unit 135 acquires a total score using one or more of the acquired image scores or sound scores. It then returns to the upper level process.
 なお、取得された1以上の特徴情報は、ステップS302で取得された1以上の画像特徴情報、ステップS305で取得された1以上の音特徴情報のうちの1種類以上の情報である。 The one or more pieces of feature information acquired are one or more types of information selected from the group consisting of one or more pieces of image feature information acquired in step S302 and one or more pieces of sound feature information acquired in step S305.
 なお、図3のフローチャートにおいて、総合スコア取得部135は、画像スコアと音スコアとを用いずに、取得された1以上の特徴情報を用いて、総合スコアを取得しても良い。 In the flowchart of FIG. 3, the overall score acquisition unit 135 may acquire the overall score using one or more pieces of acquired feature information, without using the image score and sound score.
 次に、ステップS207の成長処理の例について、図4のフローチャートを用いて説明する。 Next, an example of the growth process in step S207 will be explained using the flowchart in Figure 4.
 (ステップS401)発火ノード決定部136は、初期に発火するノードを決定する処理を行う。かかる初期発火ノード決定処理の例について、図5のフローチャートを用いて説明する。 (Step S401) The firing node determination unit 136 performs a process to determine the node that will be fired initially. An example of such an initial firing node determination process will be described using the flowchart in FIG. 5.
 (ステップS402)発火ノード決定部136は、カウンタiに1を代入する。 (Step S402) The firing node determination unit 136 assigns 1 to counter i.
 (ステップS403)発火ノード決定部136は、ステップS401で決定した初期発火ノードの中に、i番目の初期発火ノードが存在するか否かを判断する。i番目の初期発火ノードが存在する場合はステップS404に行き、存在しない場合はステップS406に行く。 (Step S403) The ignition node determination unit 136 determines whether or not the i-th initial ignition node exists among the initial ignition nodes determined in step S401. If the i-th initial ignition node exists, the process proceeds to step S404; if not, the process proceeds to step S406.
 (ステップS404)発火ノード決定部136は、発火伝達処理を行う。発火伝達処理の例について、図6のフローチャートを用いて説明する。 (Step S404) The ignition node determination unit 136 performs ignition transmission processing. An example of the ignition transmission processing is described using the flowchart in FIG. 6.
 (ステップS405)発火ノード決定部136は、カウンタiを1、インクリメントする。ステップS403に戻る。 (Step S405) The ignition node determination unit 136 increments the counter i by 1. Return to step S403.
 (ステップS406)状態決定部137は、差情報を取得する。なお、差情報取得処理の例について、図8のフローチャートを用いて説明する。 (Step S406) The state determination unit 137 acquires the difference information. An example of the difference information acquisition process is described using the flowchart in FIG. 8.
 (ステップS407)状態決定部137は、ステップS406で取得した差情報に対応する状態識別子を取得する。なお、状態決定部137は、例えば、差情報の条件と状態識別子との対応を示す2以上の対応情報を有する対応表を参照し、取得した差情報に合致する条件と対になる状態識別子を取得する。また、対応表は、格納部11に格納されている。 (Step S407) The state determination unit 137 acquires a state identifier corresponding to the difference information acquired in step S406. Note that the state determination unit 137, for example, refers to a correspondence table having two or more pieces of correspondence information indicating the correspondence between the difference information conditions and the state identifiers, and acquires a state identifier that pairs with the condition that matches the acquired difference information. In addition, the correspondence table is stored in the storage unit 11.
 (ステップS408)成長部138は、カウンタjに1を代入する。 (Step S408) The growth unit 138 assigns 1 to counter j.
 (ステップS409)成長部138は、ステップS401からステップS405において発火したノードのうち、j番目の発火ノードが存在するか否かを判断する。j番目の発火ノードが存在する場合はステップS408に行き、存在しない場合は上位処理にリターンする。 (Step S409) The growth unit 138 determines whether or not the jth ignition node exists among the nodes that were ignited in steps S401 to S405. If the jth ignition node exists, the process proceeds to step S408; if not, the process returns to the upper level process.
 (ステップS410)成長部138は、j番目の発火ノードのノード識別子と対になる回数情報を1、増加させる。 (Step S410) The growth unit 138 increments the number of times information that is paired with the node identifier of the j-th firing node by 1.
 (ステップS411)成長部138は、j番目の発火ノードに対して、単一成長処理を行う。単一成長処理の例について、図9のフローチャートを用いて説明する。 (Step S411) The growth unit 138 performs single growth processing on the j-th firing node. An example of single growth processing is explained using the flowchart in FIG. 9.
 なお、単一成長処理とは、一の発火ノードおよび当該ノードに接続されているエッジの成長処理である。 Note that a single growth process is a growth process for one firing node and the edge connected to that node.
 (ステップS412)成長部138は、カウンタjを1、インクリメントする。ステップS407に戻る。 (Step S412) The growth unit 138 increments the counter j by 1. Return to step S407.
 次に、ステップS401の初期発火ノード決定処理の例について、図5のフローチャートを用いて説明する。 Next, an example of the initial firing node determination process in step S401 will be explained using the flowchart in Figure 5.
 (ステップS501)発火ノード決定部136は、カウンタiに1を代入する。 (Step S501) The firing node determination unit 136 assigns 1 to counter i.
 (ステップS502)発火ノード決定部136は、始点格納部111に、i番目の初期発火条件が存在するか否かを判断する。i番目の初期発火条件が存在する場合はステップS503に行き、存在しない場合は上位処理にリターンする。 (Step S502) The ignition node determination unit 136 determines whether or not the i-th initial ignition condition exists in the start point storage unit 111. If the i-th initial ignition condition exists, the process proceeds to step S503; if it does not exist, the process returns to the upper level process.
 (ステップS503)発火ノード決定部136は、始点格納部111から、i番目の初期発火条件を取得する。 (Step S503) The firing node determination unit 136 obtains the i-th initial firing condition from the starting point storage unit 111.
 (ステップS504)発火ノード決定部136は、i番目の初期発火条件の判断に使用する1以上の特徴情報を図示しないバッファから取得する。なお、1以上の各特徴情報は、例えば、画像特徴情報または音特徴情報である。 (Step S504) The ignition node determination unit 136 acquires one or more pieces of feature information to be used in determining the i-th initial ignition condition from a buffer (not shown). Each of the one or more pieces of feature information is, for example, image feature information or sound feature information.
 (ステップS505)発火ノード決定部136は、ステップS504で取得した1以上の特徴情報が、ステップS503で取得したi番目の初期発火条件を満たすか否かを判断する。i番目の初期発火条件を満たす場合はステップS506に行き、満たさない場合はステップS509に行く。 (Step S505) The ignition node determination unit 136 judges whether or not the one or more pieces of feature information acquired in step S504 satisfy the i-th initial ignition condition acquired in step S503. If the i-th initial ignition condition is satisfied, the process proceeds to step S506; if not, the process proceeds to step S509.
 (ステップS506)発火ノード決定部136は、NN格納部114を参照し、i番目の初期発火条件と対になる発火ノード識別子と対に、発火確率が存在するか否かを判断する。発火確率が存在する場合はステップS507に行き、存在しない場合はステップS508に行く。 (Step S506) The ignition node determination unit 136 refers to the NN storage unit 114 and determines whether or not a ignition probability exists for the ignition node identifier that is paired with the i-th initial ignition condition. If a ignition probability exists, the process proceeds to step S507; if not, the process proceeds to step S508.
 (ステップS507)発火ノード決定部136は、i番目の初期発火条件と対になる発火ノード識別子と対の発火確率を用いて、今回、発火するか否かを判断する。発火する場合はステップS508に行き、発火しない場合はステップS509に行く。 (Step S507) The ignition node determination unit 136 uses the ignition probability of the i-th initial ignition condition and the ignition node identifier that is paired with it to determine whether or not it will ignite this time. If it will ignite, the process proceeds to step S508, and if it will not ignite, the process proceeds to step S509.
 (ステップS508)発火ノード決定部136は、i番目の初期発火条件と対になる発火ノード識別子を有する発火情報を取得し、当該発火情報を格納部11に蓄積する。 (Step S508) The ignition node determination unit 136 acquires ignition information having an ignition node identifier that pairs with the i-th initial ignition condition, and stores the ignition information in the storage unit 11.
 (ステップS509)発火ノード決定部136は、カウンタiを1、インクリメントする。ステップS502に戻る。 (Step S509) The ignition node determination unit 136 increments the counter i by 1. Return to step S502.
 次に、ステップS404の発火伝達処理の例について、図6のフローチャートを用いて説明する。 Next, an example of the ignition transmission process in step S404 will be described using the flowchart in FIG. 6.
 (ステップS601)発火ノード決定部136は、発火ノード識別子を接続元のノードの識別子として含むすべてのエッジ情報をNN格納部114から取得する。なお、ここでの発火ノード識別子は、例えば、ステップS403のi番目の初期発火ノードのノード識別子である。 (Step S601) The firing node determination unit 136 acquires all edge information including the firing node identifier as the identifier of the connection source node from the NN storage unit 114. Note that the firing node identifier here is, for example, the node identifier of the i-th initial firing node in step S403.
 (ステップS602)発火ノード決定部136は、カウンタiに1を代入する。 (Step S602) The firing node determination unit 136 assigns 1 to counter i.
 (ステップS603)発火ノード決定部136は、ステップS601で取得したエッジ情報の中で、i番目のエッジ情報が存在するか否かを判断する。i番目のエッジ情報が存在する場合はステップS604に行き、存在しない場合は上位処理にリターンする。 (Step S603) The ignition node determination unit 136 determines whether the i-th edge information exists among the edge information acquired in step S601. If the i-th edge information exists, the process proceeds to step S604; if not, the process returns to the upper level process.
 (ステップS604)発火ノード決定部136は、i番目のエッジ情報の中に、他のノードのノード識別子が存在するか否かを判断する。他のノードのノード識別子が存在する場合はステップS605に行き、存在しない場合はステップS612に行く。なお、エッジ情報の中の他のノードのノード識別子は、当該エッジの接続先のノードのノード識別子である。 (Step S604) The firing node determination unit 136 judges whether or not the node identifier of another node is present in the i-th edge information. If the node identifier of another node is present, the process proceeds to step S605; if not, the process proceeds to step S612. Note that the node identifier of another node in the edge information is the node identifier of the node to which the edge is connected.
 (ステップS605)発火ノード決定部136は、i番目のエッジ情報の中の他のノードのノード識別子を取得する。次に、発火ノード決定部136は、当該ノード識別子で識別するノードのノード情報をNN格納部114から取得する。 (Step S605) The firing node determination unit 136 acquires the node identifier of another node in the i-th edge information. Next, the firing node determination unit 136 acquires the node information of the node identified by the node identifier from the NN storage unit 114.
 (ステップS606)発火ノード決定部136は、ステップS605で取得したノード情報を用いて、当該ノード情報に対応するノードが発火するか否かを判断する。かかる発火判断処理の例について、図7のフローチャートを用いて説明する。 (Step S606) The ignition node determination unit 136 uses the node information acquired in step S605 to determine whether or not the node corresponding to the node information will ignite. An example of such ignition determination processing will be described with reference to the flowchart in FIG. 7.
 (ステップS607)発火ノード決定部136は、ステップS606における判断結果が「発火する」であった場合はステップS608に行き、「発火しない」であった場合はステップS612に行く。 (Step S607) If the determination result in step S606 is "fire", the ignition node determination unit 136 proceeds to step S608, and if the determination result is "do not ignite", the ignition node determination unit 136 proceeds to step S612.
 (ステップS608)発火ノード決定部136は、ステップS605で取得したノード情報が有するノード識別子を有する発火情報を取得し、当該発火情報を格納部11に蓄積する。 (Step S608) The ignition node determination unit 136 acquires ignition information having the node identifier included in the node information acquired in step S605, and stores the ignition information in the storage unit 11.
 (ステップS609)発火ノード決定部136は、ステップS605で取得したノード情報が有する発火確率情報を変更する。ここで、発火ノード決定部136は、発火確率情報が特定する発火確率が増加するように、発火確率情報を変更する。なお、増加の量は問わない。 (Step S609) The ignition node determination unit 136 changes the ignition probability information contained in the node information acquired in step S605. Here, the ignition node determination unit 136 changes the ignition probability information so that the ignition probability specified by the ignition probability information increases. Note that the amount of increase does not matter.
 (ステップS610)発火ノード決定部136は、ノード間の発火の伝達(情報の伝達と言っても良い)を終了するか否かを判断する。伝達を終了する場合はステップS612に行き、伝達を終了しない場合はステップS611に行く。なお、伝達を終了する場合は、例えば、当該ノードが、NNの中の終端のノードである場合である。 (Step S610) The firing node determination unit 136 judges whether or not to end the transmission of firing (which can also be called the transmission of information) between nodes. If the transmission is to be ended, the process proceeds to step S612, and if the transmission is not to be ended, the process proceeds to step S611. Note that the transmission is to be ended, for example, when the node in question is the terminal node in the NN.
 (ステップS611)発火ノード決定部136は、当該ノードを着目ノードとした発火伝達処理を行う。発火伝達処理の例は、図6である。 (Step S611) The ignition node determination unit 136 performs ignition transmission processing with the node in question as the node of interest. An example of the ignition transmission processing is shown in FIG. 6.
 (ステップS612)発火ノード決定部136は、カウンタiを1、インクリメントする。ステップS603に戻る。 (Step S612) The ignition node determination unit 136 increments the counter i by 1. Return to step S603.
 なお、図6のフローチャートにおいて、発火ノード決定部136は、ノード間の発火の伝達(情報の伝達)を行った場合に、発火の元になったノード情報が有する保有エネルギー量情報が示すエネルギー量を減じた保有エネルギー量情報に更新することは好適である。なお、かかることは、伝達のために利用したAXONのAXON識別子と対になる保有エネルギー量情報、および伝達のために利用したDendritesのDendrites識別子と対になる保有エネルギー量情報に適用しても良い。また、エネルギー量を減じるための関数は、例えば、格納部11に格納されている、とする。また、当該関数は問わない。関数は、公知技術であるので、詳細な説明は省略する。 In the flowchart of FIG. 6, when transmitting firing (transmission of information) between nodes, the firing node determination unit 136 preferably updates the retained energy amount information by subtracting the amount of energy indicated by the retained energy amount information held by the node information that caused the firing. This may also be applied to the retained energy amount information paired with the AXON identifier of the AXON used for the transmission, and the retained energy amount information paired with the Dendrites identifier of the Dendrites used for the transmission. The function for reducing the amount of energy is stored, for example, in the storage unit 11. The function in question is not important. As the function is a publicly known technology, a detailed description will be omitted.
 また、図6のフローチャートにおいて、発火ノード決定部136は、通常、発火元のノードが受け付けた1以上の特徴情報を、発火する先のノードに渡すための処理を行う。 In addition, in the flowchart of FIG. 6, the ignition node determination unit 136 typically performs processing to pass one or more pieces of feature information received by the ignition source node to the destination node where the ignition will occur.
 次に、ステップS606の発火判断処理の例について、図7のフローチャートを用いて説明する。 Next, an example of the ignition determination process in step S606 will be explained using the flowchart in Figure 7.
 (ステップS701)発火ノード決定部136は、ステップS605で取得されたノード情報に対応する発火条件を取得する。 (Step S701) The firing node determination unit 136 obtains the firing conditions corresponding to the node information obtained in step S605.
 (ステップS702)発火ノード決定部136は、1以上の特徴情報を取得する。なお、1以上の特徴情報は、発火の元になるノードから渡された特徴情報である。 (Step S702) The ignition node determination unit 136 acquires one or more pieces of feature information. Note that the one or more pieces of feature information are passed from the node that is the source of the ignition.
 (ステップS703)発火ノード決定部136は、ステップS702で取得した1以上の特徴情報がステップS701で取得した発火条件を満たすか否かを判断する。発火条件を満たす場合はステップS704に行き、発火条件を満たさない場合はステップS707に行く。 (Step S703) The ignition node determination unit 136 judges whether or not one or more pieces of feature information acquired in step S702 satisfy the ignition condition acquired in step S701. If the ignition condition is satisfied, the process proceeds to step S704, and if the ignition condition is not satisfied, the process proceeds to step S707.
 (ステップS704)発火ノード決定部136は、着目するノード情報が発火確率情報を有するか否かを判断する。発火確率情報を有する場合はステップS705に行き、発火確率情報を有さない場合はステップS706に行く。 (Step S704) The firing node determination unit 136 judges whether the node information of interest has firing probability information. If it has firing probability information, the process proceeds to step S705, and if it does not have firing probability information, the process proceeds to step S706.
 (ステップS705)発火ノード決定部136は、着目するノード情報が有する発火確率情報を取得する。次に、発火ノード決定部136は、当該発火確率情報を用いて、発火するか否かを判断する。発火する場合はステップS706に行き、発火しない場合はステップS707に行く。 (Step S705) The ignition node determination unit 136 acquires ignition probability information contained in the node information of interest. Next, the ignition node determination unit 136 uses the ignition probability information to determine whether or not ignition will occur. If ignition will occur, the process proceeds to step S706, and if ignition will not occur, the process proceeds to step S707.
 (ステップS706)発火ノード決定部136は、判断結果に「発火する」を代入する。上位処理にリターンする。 (Step S706) The ignition node determination unit 136 assigns "ignite" to the judgment result. Returns to the upper level process.
 (ステップS707)発火ノード決定部136は、判断結果に「発火しない」を代入する。上位処理にリターンする。 (Step S707) The firing node determination unit 136 assigns "do not fire" to the judgment result. It returns to the upper level process.
 次に、ステップS406の差情報取得処理の例について、図8のフローチャートを用いて説明する。 Next, an example of the difference information acquisition process in step S406 will be explained using the flowchart in Figure 8.
 (ステップS801)状態決定部137は、ステップS206で取得された総合スコアを取得する。 (Step S801) The state determination unit 137 obtains the total score obtained in step S206.
 (ステップS802)状態決定部137は、カウンタiに1を代入する。 (Step S802) The state determination unit 137 assigns 1 to counter i.
 (ステップS803)状態決定部137は、基準スコア格納部113に、i番目の発火パターンが存在するか否かを判断する。i番目の発火パターンが存在する場合はステップS804に行き、存在しない場合はステップS809に行く (Step S803) The state determination unit 137 judges whether the i-th firing pattern exists in the standard score storage unit 113. If the i-th firing pattern exists, the process proceeds to step S804. If it does not exist, the process proceeds to step S809.
 (ステップS804)状態決定部137は、i番目の発火パターンを取得する。 (Step S804) The state determination unit 137 acquires the i-th firing pattern.
 (ステップS805)状態決定部137は、格納部11の1または2以上の発火情報を参照し、ステップS804で取得した発火パターンを満たすか否かを判断する。発火パターンを満たす場合はステップS806に行き、満たさない場合はステップS808に行く。 (Step S805) The state determination unit 137 refers to one or more pieces of ignition information in the storage unit 11 and determines whether the ignition pattern acquired in step S804 is satisfied. If the ignition pattern is satisfied, the process proceeds to step S806; if not, the process proceeds to step S808.
 (ステップS806)状態決定部137は、i番目の発火パターンと対になる基準スコアを基準スコア格納部113から取得する。 (Step S806) The state determination unit 137 obtains the reference score that is paired with the i-th firing pattern from the reference score storage unit 113.
 (ステップS807)状態決定部137は、取得した総合スコアと取得した基準スコアとを用いて、差情報を取得する。上位処理にリターンする。 (Step S807) The state determination unit 137 obtains difference information using the obtained total score and the obtained reference score. It then returns to the upper level process.
 (ステップS808)状態決定部137は、カウンタiを1、インクリメントする。ステップS803に戻る。 (Step S808) The state determination unit 137 increments the counter i by 1. Return to step S803.
 (ステップS809)状態決定部137は、デフォルトの基準スコアを基準スコア格納部113から取得する。ステップS807に行く。 (Step S809) The state determination unit 137 obtains the default standard score from the standard score storage unit 113. Go to step S807.
 次に、ステップS509の単一成長処理を行う。単一成長処理の例について、図9のフローチャートを用いて説明する。 Next, single growth processing is performed in step S509. An example of single growth processing is explained using the flowchart in Figure 9.
 (ステップS901)成長部138は、エッジ成長処理を行う。エッジ成長処理の例について、図10のフローチャートを用いて説明する。 (Step S901) The growth unit 138 performs edge growth processing. An example of the edge growth processing is explained using the flowchart in FIG. 10.
 (ステップS902)成長部138は、エッジ生成処理を行う。エッジ生成処理の例について、図12のフローチャートを用いて説明する。 (Step S902) The growth unit 138 performs edge generation processing. An example of the edge generation processing is described using the flowchart in FIG. 12.
 (ステップS903)成長部138は、ノード生成処理を行う。上位処理にリターンする。ノード生成処理の例について、図14のフローチャートを用いて説明する。 (Step S903) The growth unit 138 performs node generation processing. Then, the process returns to the upper level. An example of the node generation processing is explained using the flowchart in FIG. 14.
 なお、図~のフローチャートにおいて、しても良い。 This may also be done in the flowcharts in Figures 1 to 5.
 次に、ステップS901のエッジ成長処理の例について、図10のフローチャートを用いて説明する。 Next, an example of the edge growth process in step S901 will be explained using the flowchart in Figure 10.
 (ステップS1001)成長部138は、着目ノード識別子で識別されるノード情報をNN格納部114から取得する。 (Step S1001) The growth unit 138 obtains node information identified by the node identifier of interest from the NN storage unit 114.
 (ステップS1002)成長部138は、カウンタiに1を代入する。 (Step S1002) The growth unit 138 assigns 1 to counter i.
 (ステップS1003)成長部138は、着目ノード識別子で識別されるノードを接続元とするエッジのエッジ情報の中で、i番目のエッジ情報がNN格納部114に存在するか否かを判断する。i番目のエッジ情報が存在する場合はステップS1004に行き、存在しない場合は上位処理にリターンする。 (Step S1003) The growth unit 138 determines whether or not the i-th edge information exists in the NN storage unit 114 among the edge information of the edge whose origin is the node identified by the node identifier of interest. If the i-th edge information exists, the process proceeds to step S1004, and if not, the process returns to the upper level process.
 (ステップS1004)成長部138は、当該i番目のエッジ情報をNN格納部114から取得する。 (Step S1004) The growth unit 138 obtains the i-th edge information from the NN storage unit 114.
 (ステップS1005)成長部138は、i番目のエッジ情報に対応するエッジの先にノードが繋がっているか否かを判断する。さらに具体的には、成長部138は、i番目のエッジ情報が有するノード識別子が着目ノード識別子のみであるか否かを判断する。着目ノード識別子のみである場合はステップS1006に行き、着目ノード識別子のみではない場合(2つのノード識別子が存在する場合)はステップS1010に行く。なお、着目ノード識別子のみを含むエッジ情報は、着目ノードに接続されており、成長可能なエッジの情報である。一方、2つのノード識別子を含むエッジ情報は、成長しないエッジの情報である。 (Step S1005) The growth unit 138 determines whether or not a node is connected to the end of the edge corresponding to the i-th edge information. More specifically, the growth unit 138 determines whether or not the node identifier contained in the i-th edge information is only the focus node identifier. If it is only the focus node identifier, the process proceeds to step S1006; if it is not only the focus node identifier (if there are two node identifiers), the process proceeds to step S1010. Note that edge information containing only the focus node identifier is connected to the focus node and is information about an edge that can grow. On the other hand, edge information containing two node identifiers is information about an edge that cannot grow.
 (ステップS1006)成長部138は、第二エッジ成長条件を取得する。 (Step S1006) The growth unit 138 acquires the second edge growth conditions.
 (ステップS1007)成長部138は、ステップS207で取得された差情報を取得する。 (Step S1007) The growth unit 138 acquires the difference information acquired in step S207.
 (ステップS1008)成長部138は、ステップS1007で取得した差情報が、第二エッジ成長条件を満たすか否かを判断する。第二エッジ成長条件を満たす場合はステップS1009に行き、満たさない場合はステップS1014に行く。 (Step S1008) The growth unit 138 determines whether the difference information acquired in step S1007 satisfies the second edge growth condition. If the second edge growth condition is satisfied, the process proceeds to step S1009; if not, the process proceeds to step S1014.
 (ステップS1009)成長部138は、エッジ伸長処理を行う。ステップS1014に行く。エッジ伸長処理の例について、図10のフローチャートを用いて説明する。 (Step S1009) The growth unit 138 performs edge extension processing. Proceed to step S1014. An example of edge extension processing will be explained using the flowchart in FIG. 10.
 なお、エッジ伸長処理とは、エッジの長さを伸ばす処理であり、通常、エッジ位置情報の変更の処理、またはエッジ情報に接続先のノードのノード識別子を加える処理である。 Note that edge extension processing is processing that extends the length of an edge, and is usually processing that changes edge position information or processing that adds the node identifier of the connected node to edge information.
 (ステップS1010)成長部138は、第一エッジ成長条件を取得する。 (Step S1010) The growth unit 138 acquires the first edge growth conditions.
 (ステップS1011)成長部138は、ステップS207で取得された差情報を取得する。 (Step S1011) The growth unit 138 acquires the difference information acquired in step S207.
 (ステップS1012)成長部138は、ステップS1011で取得した差情報が、第一エッジ成長条件を満たすか否かを判断する。第一エッジ成長条件を満たす場合はステップS1013に行き、満たさない場合はステップS1014に行く。 (Step S1012) The growth unit 138 determines whether the difference information acquired in step S1011 satisfies the first edge growth condition. If the first edge growth condition is satisfied, the process proceeds to step S1013; if not, the process proceeds to step S1014.
 (ステップS1013)成長部138は、i番目のエッジ情報が有する重みを、増加した重みに変更する。 (Step S1013) The growth unit 138 changes the weight of the i-th edge information to an increased weight.
 (ステップS1014)成長部138は、カウンタiを1、インクリメントする。ステップS1003に戻る。 (Step S1014) The growth unit 138 increments the counter i by 1. Return to step S1003.
 なお、図10のフローチャートにおいて、エッジ成長処理は、エッジを構成するDendritesのDendrites成長処理、またはAXONのAXON成長処理に置き換えても良い。 In the flowchart of FIG. 10, the edge growth process may be replaced with a dendrites growth process for the dendrites that make up the edge, or an AXON growth process for the AXON.
 次に、ステップS1009のエッジ伸長処理の例について、図11のフローチャートを用いて説明する。 Next, an example of the edge extension process in step S1009 will be explained using the flowchart in Figure 11.
 (ステップS1101)成長部138は、取得されているエッジ情報に含まれるエッジ位置情報を取得する。 (Step S1101) The growth unit 138 acquires edge position information contained in the acquired edge information.
 (ステップS1102)成長部138は、ゴール情報を取得する。 (Step S1102) The growth unit 138 acquires goal information.
 (ステップS1103)成長部138は、ステップS1101で取得したエッジ位置情報とステップS1102で取得したゴール情報とを用いて、新しいエッジ位置情報を取得し、エッジ位置情報を更新する。なお、成長部138は、エッジ位置情報から、ゴール情報が示す方向の位置を特定する位置情報を取得する。 (Step S1103) The growth unit 138 uses the edge position information acquired in step S1101 and the goal information acquired in step S1102 to acquire new edge position information and update the edge position information. The growth unit 138 acquires position information from the edge position information that identifies the position in the direction indicated by the goal information.
 成長部138は、例えば、ステップS1101で取得したエッジ位置情報が示す位置からゴール情報が特定する方向に、予め決められた距離だけ離れた位置を示すエッジ位置情報を取得する。成長部138は、例えば、ステップS1101で取得したエッジ位置情報が示す位置からゴール情報が特定する方向に、他のノードが存在する場合、当該エッジ位置情報が示す位置からゴール情報が特定する方向の他のノードのノード位置情報との間であり、予め決められた距離以内の距離だけ離れた位置を示すエッジ位置情報を取得する。成長部138は、例えば、ステップS1101で取得したエッジ位置情報が示す位置からゴール情報が特定する方向に、他のノードが存在する場合、当該他のノードのノード位置情報をエッジ位置情報として取得する。つまり、成長部138が新しいエッジ位置情報を取得する場合に、現在のエッジ位置情報からゴール情報が特定する方向のエッジ位置情報を取得すれば良く、そのエッジ位置情報は問わない。なお、他のノードのノード位置情報をエッジ位置情報として取得する場合、後述するように、エッジ伸長処理により、当該エッジが他のノードと接続される場合である。かかる場合、成長部138は、当該他のノードのノード識別子を取得しても良い。 The growth unit 138 acquires edge position information indicating a position that is a predetermined distance away from the position indicated by the edge position information acquired in step S1101 in the direction specified by the goal information, for example. When another node exists in the direction specified by the goal information from the position indicated by the edge position information acquired in step S1101, for example, the growth unit 138 acquires edge position information indicating a position that is between the position indicated by the edge position information and the node position information of the other node in the direction specified by the goal information, and that is a distance within a predetermined distance. When another node exists in the direction specified by the goal information from the position indicated by the edge position information acquired in step S1101, for example, the growth unit 138 acquires the node position information of the other node as edge position information. In other words, when the growth unit 138 acquires new edge position information, it is sufficient to acquire edge position information in the direction specified by the goal information from the current edge position information, and the edge position information does not matter. Note that when the node position information of another node is acquired as edge position information, this is the case when the edge is connected to another node by edge extension processing, as described later. In such a case, the growth unit 138 may obtain the node identifier of the other node.
 (ステップS1104)成長部138は、カウンタiに1を代入する。 (Step S1104) The growth unit 138 assigns 1 to counter i.
 (ステップS1105)成長部138は、i番目のノード情報がNN格納部114に存在するか否かを判断する。i番目のノード情報が存在する場合はステップS1106に行き、存在しない場合は上位処理にリターンする。 (Step S1105) The growth unit 138 determines whether the i-th node information exists in the NN storage unit 114. If the i-th node information exists, the process proceeds to step S1106; if not, the process returns to the upper level process.
 (ステップS1106)成長部138は、i番目のノード情報が有するノード位置情報を取得する。 (Step S1106) The growth unit 138 obtains the node position information contained in the i-th node information.
 (ステップS1107)成長部138は、ステップS1106で取得したノード位置情報が接続条件を満たすか否かを判断する。接続条件を満たす場合はステップS1108に行き、満たさない場合はステップS1111に行く。なお、接続条件とは、エッジがノードに接続されるための条件である。接続条件は、例えば、ステップS1106で取得したノード位置情報が示す位置とステップS1103で取得した新しいエッジ位置情報が示す位置との距離が閾値以内または閾値より小さいことである。 (Step S1107) The growth unit 138 judges whether or not the node position information acquired in step S1106 satisfies the connection condition. If the connection condition is satisfied, the process proceeds to step S1108; if not, the process proceeds to step S1111. Note that the connection condition is a condition for an edge to be connected to a node. The connection condition is, for example, that the distance between the position indicated by the node position information acquired in step S1106 and the position indicated by the new edge position information acquired in step S1103 is within a threshold or is smaller than the threshold.
 (ステップS1108)成長部138は、i番目のノード情報が有するノード識別子を取得する。 (Step S1108) The growth unit 138 obtains the node identifier contained in the i-th node information.
 (ステップS1109)成長部138は、ステップS1103で更新したエッジ位置情報を、i番目のノード情報が有するノード位置情報に変更する。 (Step S1109) The growth unit 138 changes the edge position information updated in step S1103 to the node position information contained in the i-th node information.
 (ステップS1110)成長部138は、取得されているエッジ情報に、ステップS1108で取得したノード識別子を付加する。上位処理にリターンする。 (Step S1110) The growth unit 138 adds the node identifier obtained in step S1108 to the acquired edge information. It then returns to the upper level processing.
 (ステップS1111)成長部138は、カウンタiを1、インクリメントする。ステップS1105に戻る。 (Step S1111) The growth unit 138 increments the counter i by 1. Return to step S1105.
 なお、図11のフローチャートにおいて、エッジ伸長処理は、エッジを構成するDendritesのDendrites伸長処理、またはAXONのAXON伸長処理に置き換えても良い。 In the flowchart of FIG. 11, the edge extension process may be replaced with dendrites extension process of the dendrites that make up the edge, or with AXON extension process of AXON.
 Dendrites伸長処理とは、Dendritesを伸長させる処理であり、図11を用いた処理の説明において、エッジ情報をDendrites情報に置き換えた処理である。AXON伸長処理とは、AXONを伸長させる処理であり、図11を用いた処理の説明において、エッジ情報をAXON情報に置き換えた処理である。 Dendrites extension processing is processing that extends dendrites, and in the processing explanation using FIG. 11, edge information is replaced with dendrites information. AXON extension processing is processing that extends AXON, and in the processing explanation using FIG. 11, edge information is replaced with AXON information.
 また、図11のフローチャートにおいて、ステップS1110の処理の後、ステップS1111に進んでも良い。かかる場合、一のエッジが枝分かれし、2以上のノードに接続される場合もある。 Also, in the flowchart of FIG. 11, after processing in step S1110, the process may proceed to step S1111. In such a case, one edge may branch and be connected to two or more nodes.
 また、図11のフローチャートのステップS1107において、ステップS1103で取得した新しいエッジ位置情報と各ノードのノード位置情報との距離を算出し、距離が最小のノードのノード位置情報が接続条件を満たすか否かを判断しても良い。 In addition, in step S1107 of the flowchart in FIG. 11, the distance between the new edge position information acquired in step S1103 and the node position information of each node may be calculated, and it may be determined whether the node position information of the node with the smallest distance satisfies the connection condition.
 次に、ステップS902のエッジ生成処理の例について、図12のフローチャートを用いて説明する。 Next, an example of the edge generation process in step S902 will be described using the flowchart in FIG. 12.
 (ステップS1201)成長部138は、着目ノード識別子で識別されるノード情報をNN格納部114から取得する。 (Step S1201) The growth unit 138 obtains node information identified by the node identifier of interest from the NN storage unit 114.
 (ステップS1202)成長部138は、エッジ生成条件を取得する。 (Step S1202) The growth unit 138 acquires the edge generation conditions.
 (ステップS1203)成長部138は、既に取得している差情報を読み出す。 (Step S1203) The growth unit 138 reads the difference information that has already been acquired.
 (ステップS1204)成長部138は、ステップS1203で取得した差情報がエッジ生成条件を満たすか否かを判断する。エッジ生成条件を満たす場合はステップS1204に行き、満たさない場合は上位処理にリターンする。 (Step S1204) The growth unit 138 determines whether the difference information acquired in step S1203 satisfies the edge generation condition. If the edge generation condition is satisfied, the process proceeds to step S1204; if not, the process returns to the upper level process.
 (ステップS1205)成長部138は、エッジ情報生成処理を行う。エッジ情報生成処理の例について、図13のフローチャートを用いて説明する。 (Step S1205) The growth unit 138 performs edge information generation processing. An example of the edge information generation processing is explained using the flowchart in FIG. 13.
 (ステップS1206)成長部138は、ステップS1205で構成したエッジ情報をNN格納部114に蓄積する。上位処理にリターンする。 (Step S1206) The growth unit 138 accumulates the edge information constructed in step S1205 in the NN storage unit 114. It then returns to the upper level processing.
 次に、ステップS1205のエッジ情報生成処理の例について、図13のフローチャートを用いて説明する。 Next, an example of the edge information generation process in step S1205 will be explained using the flowchart in Figure 13.
 (ステップS1301)成長部138は、ステップS208で取得された状態識別子に対応するゴール情報をゴール格納部112から取得する。 (Step S1301) The growth unit 138 obtains goal information corresponding to the state identifier obtained in step S208 from the goal storage unit 112.
 (ステップS1302)成長部138は、着目するノード(エッジが生成されるノード)のノード位置情報とステップS1301で取得したゴール情報とを用いて、新しいエッジのエッジ位置情報を取得する。成長部138は、ノード位置情報を始点として、ゴール情報の方向に延びるエッジのエッジ位置情報を取得する。なお、例えば、エッジ位置情報が示す位置とノード位置情報が示す位置との距離が予め決まっていても良いし、決まっていなくても良い。 (Step S1302) The growing unit 138 obtains edge position information of a new edge using the node position information of the node of interest (the node where the edge is to be generated) and the goal information obtained in step S1301. The growing unit 138 obtains edge position information of an edge that starts from the node position information and extends in the direction of the goal information. Note that, for example, the distance between the position indicated by the edge position information and the position indicated by the node position information may or may not be determined in advance.
 成長部138は、例えば、着目するノードのノード位置情報が示す位置からゴール情報が特定する方向に、予め決められた距離だけ離れた位置を示すエッジ位置情報を取得する。成長部138は、例えば、着目するノードのノード位置情報が示す位置からゴール情報が特定する方向に、他のノードが存在する場合、当該他のノードのノード位置情報をエッジ位置情報として取得する。つまり、ここでは、生成したエッジが、着目するノードのノード位置情報に対応するノードと、当該他のノードとを接続するエッジとなる。成長部138は、例えば、着目するノードのノード位置情報が示す位置からゴール情報が特定する方向に、他のノードが存在する場合であり、着目するノードのノード位置情報が示す位置と他のノードのノード位置情報が示す位置との距離が閾値以上または閾値より大きい場合には、着目するノードのノード位置情報が示す位置から予め決められた距離だけ離れた位置を示すノード位置情報を取得し、着目するノードのノード位置情報が示す位置と他のノードのノード位置情報が示す位置との距離が閾値より小さい閾値以下である場合には、当該他のノードのノード位置情報をエッジ位置情報として取得する。つまり、成長部138は、ノード位置情報を始点として、ゴール情報の方向に延びるエッジのエッジ位置情報を取得すれば良く、そのエッジ位置情報は問わない。 The growth unit 138 acquires edge position information indicating a position a predetermined distance away from the position indicated by the node position information of the node of interest in the direction specified by the goal information, for example. When another node exists in the direction specified by the goal information from the position indicated by the node position information of the node of interest, for example, the growth unit 138 acquires the node position information of the other node as edge position information. In other words, here, the generated edge becomes an edge connecting the node corresponding to the node position information of the node of interest and the other node. When the distance between the position indicated by the node position information of the node of interest and the position indicated by the node position information of the other node is equal to or greater than a threshold value, for example, when another node exists in the direction specified by the goal information from the position indicated by the node position information of the node of interest, the growth unit 138 acquires node position information indicating a position a predetermined distance away from the position indicated by the node position information of the node of interest, and when the distance between the position indicated by the node position information of the node of interest and the position indicated by the node position information of the other node is equal to or less than a threshold value that is smaller than the threshold value, the growth unit 138 acquires the node position information of the other node as edge position information. In other words, the growth unit 138 only needs to obtain edge position information for an edge that starts from the node position information and extends in the direction of the goal information, and the edge position information is not important.
 (ステップS1303)成長部138は、新しいエッジのエッジ識別子を取得する。成長部138は、例えば、新しいエッジ識別子を生成する。成長部138は、例えば、エッジ識別子の集合から未使用のエッジ識別子を取得する。 (Step S1303) The growing unit 138 obtains an edge identifier for the new edge. For example, the growing unit 138 generates a new edge identifier. For example, the growing unit 138 obtains an unused edge identifier from the set of edge identifiers.
 (ステップS1304)成長部138は、エッジが接続されるノードのノード識別子(着目ノード識別子)を取得する。ここで、成長部138は、着目するノードのノード位置情報と対になるノード識別子を取得する。また、成長部138は、新たに接続されるノードのノード識別子を取得しても良い。 (Step S1304) The growing unit 138 acquires the node identifier (target node identifier) of the node to which the edge is connected. Here, the growing unit 138 acquires the node identifier that pairs with the node position information of the target node. The growing unit 138 may also acquire the node identifier of the newly connected node.
 (ステップS1305)成長部138は、ステップS1303で取得したエッジ識別子と、ステップS1302で取得したエッジ位置情報と、ステップS1304で取得した1または2つのノード識別子とを有するエッジ情報を構成する。上位処理にリターンする。 (Step S1305) The growth unit 138 constructs edge information having the edge identifier acquired in step S1303, the edge position information acquired in step S1302, and one or two node identifiers acquired in step S1304. It then returns to the upper level processing.
 なお、図13のフローチャートにおいて、生成したエッジ情報に対応するエッジは、先に繋がるノードが存在しない状況でも良いし、先に繋がるノードが存在していても良い。 In the flowchart of FIG. 13, the edge corresponding to the generated edge information may be in a situation where there is no node connected ahead, or there may be a node connected ahead.
 生成したエッジ情報に対応するエッジに、先に繋がるノードが存在する場合、成長部138は、ゴール情報の方向の位置のノード位置情報と対になるノード識別子を、繋がる先のノードのノード識別子として取得する。なお、成長部138が、常に、生成されたエッジが2つのノードを接続するようにエッジ情報を構成し、蓄積する場合、通常、エッジ成長処理は行われない。 If there is a node connected to the edge corresponding to the generated edge information, the growing unit 138 acquires the node identifier that pairs with the node position information of the position in the direction of the goal information as the node identifier of the connected node. Note that when the growing unit 138 always configures and stores edge information such that a generated edge always connects two nodes, edge growing processing is not normally performed.
 次に、ステップS903のノード生成処理の例について、図14のフローチャートを用いて説明する。 Next, an example of the node generation process in step S903 will be explained using the flowchart in Figure 14.
 (ステップS1401)成長部138は、差情報を取得する。 (Step S1401) The growth unit 138 acquires difference information.
 (ステップS1402)成長部138は、ノード生成条件を取得する。 (Step S1402) The growth unit 138 acquires the node generation conditions.
 (ステップS1403)成長部138は、ステップS1401で取得した差情報が、ステップS1402で取得したノード生成条件を満たすか否かを判断する。ノード生成条件を満たす場合はステップS1404に行き、ノード生成条件を満たさない場合は上位処理にリターンする。 (Step S1403) The growth unit 138 determines whether the difference information acquired in step S1401 satisfies the node generation condition acquired in step S1402. If the node generation condition is satisfied, the process proceeds to step S1404, and if the node generation condition is not satisfied, the process returns to the upper level process.
 (ステップS1404)成長部138は、ノード情報生成処理を行う。ノード情報生成処理の例について、図15のフローチャートを用いて説明する。 (Step S1404) The growth unit 138 performs node information generation processing. An example of the node information generation processing is explained using the flowchart in FIG. 15.
 (ステップS1405)成長部138は、ステップS1404で構成されたノード情報を、NN格納部114に蓄積する。上位処理にリターンする。 (Step S1405) The growth unit 138 accumulates the node information constructed in step S1404 in the NN storage unit 114. It then returns to the upper level processing.
 次に、ステップS1404のノード情報生成処理の例について、図15のフローチャートを用いて説明する。 Next, an example of the node information generation process in step S1404 will be explained using the flowchart in Figure 15.
 (ステップS1501)成長部138は、着目ノード識別子で識別される着目ノード情報が有するノード位置情報を取得する。 (Step S1501) The growth unit 138 acquires node position information contained in the focus node information identified by the focus node identifier.
 (ステップS1502)成長部138は、ステップS407で取得された状態識別子に対応するゴール情報をゴール格納部112から取得する。 (Step S1502) The growth unit 138 obtains goal information corresponding to the state identifier obtained in step S407 from the goal storage unit 112.
 (ステップS1503)成長部138は、ステップS1501で取得したノード位置情報とステップS1502で取得したゴール情報とを用いて、ステップS1501で取得したノード位置情報が示す位置に対して、ゴール情報が特定する方向の位置を示すノード位置情報を取得する。かかるノード位置情報は、新しいノードの位置情報である。 (Step S1503) The growth unit 138 uses the node position information acquired in step S1501 and the goal information acquired in step S1502 to acquire node position information indicating a position in the direction specified by the goal information relative to the position indicated by the node position information acquired in step S1501. This node position information is the position information of the new node.
 成長部138は、例えば、ステップS1501で取得したノード位置情報が示す位置からゴール情報が特定する方向に、予め決められた距離だけ離れた位置を示すノード位置情報を取得する。成長部138は、例えば、ステップS1501で取得したノード位置情報が示す位置からゴール情報が特定する方向に、他のノードが存在する場合、ステップS1501で取得したノード位置情報が示す位置からゴール情報が特定する方向の他のノードのノード位置情報との間であり、予め決められた距離以内の距離だけ離れた位置を示すノード位置情報を取得する。つまり、成長部138が新しいノードのノード位置情報を取得する場合に、ゴール情報が特定する方向のノード位置情報を取得すれば良く、そのノード位置情報は問わない。 The growth unit 138 acquires, for example, node position information indicating a position that is a predetermined distance away from the position indicated by the node position information acquired in step S1501 in the direction specified by the goal information. For example, if there is another node in the direction specified by the goal information from the position indicated by the node position information acquired in step S1501, the growth unit 138 acquires node position information indicating a position that is between the position indicated by the node position information acquired in step S1501 and the node position information of the other node in the direction specified by the goal information and that is within a predetermined distance. In other words, when the growth unit 138 acquires node position information of a new node, it is sufficient to acquire node position information in the direction specified by the goal information, and the node position information is not important.
 (ステップS1504)成長部138は、新しいノードのノード識別子を取得する。成長部138は、新しいノード識別子を生成する。ただし、成長部138は、ノード識別子の集合から、未使用のノード識別子を取得しても良い。 (Step S1504) The growth unit 138 obtains a node identifier for the new node. The growth unit 138 generates a new node identifier. However, the growth unit 138 may obtain an unused node identifier from the set of node identifiers.
 (ステップS1505)成長部138は、新しいノードのノード情報に使用する情報であり、着目するノードのノード情報に含まれる情報を取得する。なお、かかる情報は、例えば、発火条件、発火確率情報、保有エネルギー量情報である。 (Step S1505) The growth unit 138 acquires information contained in the node information of the node of interest, which is used for the node information of the new node. Such information includes, for example, ignition conditions, ignition probability information, and possessed energy amount information.
 (ステップS1506)成長部138は、ステップS1504で取得したノード識別子、ステップS1503で取得したノード位置情報、およびステップS1505で取得した情報を有するノード情報を構成する。上位処理にリターンする。 (Step S1506) The growth unit 138 constructs node information having the node identifier acquired in step S1504, the node position information acquired in step S1503, and the information acquired in step S1505. It then returns to the upper-level processing.
 次に、ステップS208の基準変更処理の例について、図16のフローチャートを用いて説明する。 Next, an example of the criteria change process in step S208 will be explained using the flowchart in Figure 16.
 (ステップS1601)基準スコア変更部139は、スコア変更条件を格納部11から取得する。 (Step S1601) The standard score change unit 139 obtains the score change conditions from the storage unit 11.
 (ステップS1602)基準スコア変更部139は、総合スコア、または差情報を図示しないバッファから取得する。 (Step S1602) The reference score change unit 139 obtains the total score or difference information from a buffer (not shown).
 (ステップS1603)基準スコア変更部139は、総合スコアまたは差情報がスコア変更条件を満たすか否かを判断する。スコア変更条件を満たす場合はステップS1604に行き、満たさない場合は上位処理にリターンする。 (Step S1603) The reference score change unit 139 determines whether the total score or difference information satisfies the score change condition. If the score change condition is met, the process proceeds to step S1604; if not, the process returns to the upper level process.
 (ステップS1604)基準スコア変更部139は、基準スコア格納部113にi番目の発火パターンが存在するか否かを判断する。i番目の発火パターンが存在する場合はステップS1605に行き、存在しない場合は上位処理にリターンする。 (Step S1604) The standard score change unit 139 determines whether or not the i-th firing pattern exists in the standard score storage unit 113. If the i-th firing pattern exists, the process proceeds to step S1605; if not, the process returns to the upper level process.
 (ステップS1605)基準スコア変更部139は、カウンタiに1を代入する。 (Step S1605) The reference score modification unit 139 assigns 1 to the counter i.
 (ステップS1606)基準スコア変更部139は、基準スコア格納部113から、i番目の発火パターンを取得する。 (Step S1606) The standard score change unit 139 obtains the i-th firing pattern from the standard score storage unit 113.
 (ステップS1607)基準スコア変更部139は、格納部11の発火情報(発火したノードの情報)を参照し、i番目の発火パターンを満たすか否かを判断する。i番目の発火パターンを満たす場合はステップS1608に行き、満たさない場合はステップS1610に行く。なお、i番目の発火パターンを満たす場合は、通常、当該発火パターンに含まれるすべてのノード識別子が、発火したノードのノード識別子の集合に含まれる場合である。ただし、i番目の発火パターンを満たす場合は、例えば、当該発火パターンに含まれるノード識別子のうち閾値以上の割合のノード識別子が、発火したノードのノード識別子の集合に含まれる場合でも良い。 (Step S1607) The standard score change unit 139 refers to the firing information (information on the fired node) in the storage unit 11 and determines whether the i-th firing pattern is satisfied. If the i-th firing pattern is satisfied, the process proceeds to step S1608; if not, the process proceeds to step S1610. Note that if the i-th firing pattern is satisfied, this is usually the case when all node identifiers included in the firing pattern are included in the set of node identifiers of the fired node. However, if the i-th firing pattern is satisfied, it may also be the case, for example, that a threshold or higher percentage of node identifiers included in the firing pattern are included in the set of node identifiers of the fired node.
 (ステップS1608)基準スコア変更部139は、i番目の発火パターンと対になる基準スコアを基準スコア格納部113から取得する。基準スコア変更部139は、取得した基準スコアを用いて、変更後の基準スコアを取得する。 (Step S1608) The standard score modification unit 139 obtains the standard score that is paired with the i-th firing pattern from the standard score storage unit 113. The standard score modification unit 139 uses the obtained standard score to obtain the modified standard score.
 状態識別子が「ポジティブ」である場合は、変更後の基準スコアは、通常、元の基準スコアより大きな値になる。状態識別子が「ネガティブ」である場合は、変更後の基準スコアは、通常、元の基準スコアより小さい値になる。 If the status identifier is "positive", the revised standard score will usually be greater than the original standard score. If the status identifier is "negative", the revised standard score will usually be less than the original standard score.
 (ステップS1609)基準スコア変更部139は、i番目の発火パターンと対になる基準スコアを、ステップS1608で取得した基準スコアに変更する。 (Step S1609) The standard score change unit 139 changes the standard score paired with the i-th firing pattern to the standard score obtained in step S1608.
 (ステップS1610)基準スコア変更部139は、カウンタiを1、インクリメントする。ステップS1606に戻る。 (Step S1610) The reference score modification unit 139 increments the counter i by 1. Return to step S1606.
 なお、図16のフローチャートにおいて、発火パターンごとにスコア変更条件が異なっていても良い。かかる場合、ステップS1607で満たすと判断された発火パターンと対になるスコア変更条件が満たす場合に、当該発火パターンと対になるスコア変更条件が変更される。 In the flowchart of FIG. 16, the score change condition may be different for each firing pattern. In such a case, if the score change condition paired with the firing pattern determined to be satisfied in step S1607 is satisfied, the score change condition paired with the firing pattern is changed.
 また、図16のフローチャートにおいて、基準スコア変更部139は、デフォルトの一の基準スコアを変更しても良い。 In addition, in the flowchart of FIG. 16, the standard score change unit 139 may change the default standard score.
 以上、本実施の形態によれば、脳の成長をシミュレーションできる。特に、NN成長装置1によれば、例えば、幼児期以降の人の脳の成長をシミュレーションできる。 As described above, according to this embodiment, it is possible to simulate brain growth. In particular, according to the NN growth device 1, it is possible to simulate, for example, the growth of a person's brain from infancy onwards.
 なお、本実施の形態における処理は、ソフトウェアで実現しても良い。そして、このソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布しても良い。なお、このことは、本明細書における他の実施の形態においても該当する。なお、本実施の形態におけるNN成長装置1を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、ノード識別子を有する2以上のノード情報と、エッジ識別子を有し、ノード間の結合を特定する1以上のエッジ情報とを有するニューラル・ネットワーク情報が格納されるNN格納部と、画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の特徴情報に関する条件であり、他のノードを介さずに発火するノードを決定するための条件である初期発火条件に対応付けて、他のノードを介さずに発火するノードを識別する1以上のノード識別子を有する1以上の発火始点情報が格納される始点格納部と、ポジティブおよびネガティブに関する基準スコアを格納する基準スコア格納部とにアクセス可能なコンピュータを、画像情報と音情報とを受け付ける情報受付部と、前記情報受付部が受け付けた前記画像情報を用いて、当該画像情報に対する1以上の画像特徴情報を取得する画像特徴取得部と、前記情報受付部が受け付けた前記音情報を用いて、当該音情報に対する1以上の音特徴情報を取得する音特徴取得部と、前記1以上の画像特徴情報および前記1以上の音特徴情報に基づく総合スコアを取得する総合スコア取得部と、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報が合致する初期発火条件と対になる1以上のノード識別子を前記始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報を渡されるノードであり、発火するノードのノード識別子を決定する発火ノード決定部と、前記総合スコアと前記基準スコアとの差異に関する差情報に基づいて、前記発火ノード決定部が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードに結合する1以上のエッジのエッジ情報を成長させる処理である成長処理を行う成長部として機能させるためのプログラムである。 The processing in this embodiment may be realized by software. This software may be distributed by software download or the like. This software may also be recorded on a recording medium such as a CD-ROM and distributed. This also applies to the other embodiments in this specification. The software that realizes the NN growth device 1 in this embodiment is a program such as the following. That is, this program includes a computer that can access an NN storage unit in which neural network information having two or more pieces of node information each having a node identifier and one or more pieces of edge information each having an edge identifier and identifying a connection between the nodes is stored, a start point storage unit in which one or more pieces of ignition start point information each having one or more node identifiers that identify a node that ignites without passing through other nodes is stored in association with an initial ignition condition, which is a condition related to one or more types of feature information out of one or more pieces of image feature information for image information and one or more pieces of sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes, and a standard score storage unit that stores standard scores related to positivity and negativity, an information receiving unit that receives image information and sound information, an image feature acquisition unit that uses the image information received by the information receiving unit to acquire one or more pieces of image feature information for the image information, and a process for acquiring the image feature information using the sound information received by the information receiving unit. A program for causing the program to function as a growth unit that performs a growth process that grows edge information of one or more edges that are connected to nodes identified by the one or more node identifiers by edges and that are passed one or more types of information of the one or more image feature information and the one or more sound feature information, based on difference information regarding the difference between the total score and the reference score. A sound feature acquisition unit that acquires one or more sound feature information for the sound information; a total score acquisition unit that acquires a total score based on the one or more image feature information and the one or more sound feature information; an ignition node determination unit that determines one or more node identifiers that are paired with an initial ignition condition in which one or more types of information of the one or more image feature information and the one or more sound feature information match from the starting point storage unit, and determines the node identifier of a node that will ignite, the node being connected to the node identified by the one or more node identifiers by edges and that is passed one or more types of information of the one or more image feature information and the one or more sound feature information; and a growth unit that performs a growth process that grows edge information of one or more edges that are connected to nodes identified by one or more node identifiers of the one or more node identifiers determined by the ignition node determination unit, based on difference information regarding the difference between the total score and the reference score.
 (実施の形態2)
 本実施の形態において、NN成長装置1が生成したニューラル・ネットワーク情報を用いて、受け付けた画像情報または/および音情報に対する発火パターンを取得し、当該発火パターンに対する情報を出力する情報処理装置について説明する。
(Embodiment 2)
In this embodiment, an information processing device will be described that uses neural network information generated by a neural network growing device 1 to obtain firing patterns for received image information and/or sound information, and outputs information for the firing patterns.
 また、本実施の形態において、温度情報に応じてノード間の情報の伝達速度が変わる情報処理装置について説明する。 In addition, in this embodiment, we will explain an information processing device in which the speed at which information is transmitted between nodes changes depending on temperature information.
 図17は、本実施の形態における情報処理装置2のブロック図である。情報処理装置2は、格納部21、受付部22、処理部23、および出力部24を備える。格納部21は、始点格納部111、およびNN格納部114を備える。受付部22は、情報受付部221、および温度受付部222を備える。処理部23は、特徴取得部231、情報伝達部232、発火パターン取得部233、および出力情報取得部234を備える。出力部24は、情報出力部241を備える。 FIG. 17 is a block diagram of the information processing device 2 in this embodiment. The information processing device 2 includes a storage unit 21, a reception unit 22, a processing unit 23, and an output unit 24. The storage unit 21 includes a starting point storage unit 111 and an NN storage unit 114. The reception unit 22 includes an information reception unit 221 and a temperature reception unit 222. The processing unit 23 includes a feature acquisition unit 231, an information transmission unit 232, an ignition pattern acquisition unit 233, and an output information acquisition unit 234. The output unit 24 includes an information output unit 241.
 情報処理装置2を構成する格納部21には、各種の情報が格納される。各種の情報とは、例えば、ニューラル・ネットワーク情報、1または2以上の発火始点情報、1または2以上の出力管理情報である。 The storage unit 21 that constitutes the information processing device 2 stores various types of information. The various types of information include, for example, neural network information, one or more pieces of ignition start information, and one or more pieces of output management information.
 発火始点情報は、受付情報の特徴情報を識別する情報識別子と、当該特徴情報が受け付けられた場合に最初に発火するノードを識別する1以上のノード識別子とを有する情報である。 The ignition start information is information that has an information identifier that identifies the characteristic information of the received information, and one or more node identifiers that identify the node that will be ignited first when the characteristic information is received.
 受付情報とは、情報受付部221が受け付ける情報である。受付情報は、画像情報または音情報のうちの1または2種類の情報を含む。受付情報は、2種類以上の情報でも良い。受付情報は、例えば、触覚情報、臭い情報を含んでも良い。触覚情報とは、触覚に関する情報である。臭い情報とは、臭いに関する情報である。 The reception information is information received by the information reception unit 221. The reception information includes one or two types of information, image information or sound information. The reception information may be two or more types of information. The reception information may include, for example, tactile information and smell information. Tactile information is information relating to the sense of touch. Smell information is information relating to smell.
 出力管理情報は、出力条件と出力情報とを有する情報である。出力管理情報は、出力条件と出力情報との対の情報でも良い。 Output management information is information that has output conditions and output information. Output management information may be a pair of information of output conditions and output information.
 出力条件とは、出力情報を決定するために用いられる条件である。出力条件は、発火パターンを用いた出力のための条件である。出力条件は、発火パターンそのものでも良いし、発火パターンと出力確率情報を有する情報でも良い。出力確率情報は、出力情報を取得するための確率に関する情報である。出力条件は、発火パターンと適用される発火パターンが有するノード識別子の数の下限の情報、発火パターンと適用される発火パターンが有するノード識別子の割合の下限の情報等でも良い。発火パターンは、1以上のノード識別子を有する。発火パターンとは、1または2以上のノードの発火のパターンである。出力情報は、発火パターンに対応する情報である。 An output condition is a condition used to determine output information. An output condition is a condition for output using a firing pattern. An output condition may be the firing pattern itself, or may be information having a firing pattern and output probability information. Output probability information is information regarding the probability of obtaining output information. An output condition may be information regarding a firing pattern and a lower limit of the number of node identifiers that the firing pattern to be applied has, or information regarding a lower limit of the ratio of node identifiers that the firing pattern to be applied has, etc. An firing pattern has one or more node identifiers. An firing pattern is a pattern of firing of one or more nodes. Output information is information corresponding to an firing pattern.
 出力情報は、例えば、人の感情に関する感情情報、人の体の動きに関する行動情報などである。感情情報は、例えば、嬉しい、悲しい、怯え、驚き等である。感情情報は、例えば、感情を識別するIDである。感情情報は、上述した状態識別子でも良い。行動情報は、例えば、アバター(キャラクタ)の動きに反映される情報である。行動情報は、例えば、乳児のアバターの動きに反映される情報である。なお、アバターを動作させる技術は公知技術であるので、詳細な説明は省略する。 The output information is, for example, emotional information related to a person's emotions, behavioral information related to a person's bodily movements, etc. Emotional information is, for example, happy, sad, frightened, surprised, etc. Emotional information is, for example, an ID that identifies an emotion. Emotional information may also be the above-mentioned state identifier. Behavioral information is, for example, information reflected in the movements of an avatar (character). Behavioral information is, for example, information reflected in the movements of an infant avatar. Note that the technology for moving an avatar is publicly known technology, so a detailed explanation will be omitted.
 出力条件は、発火パターンと1以上の外部情報に関する情報とを用いた条件であっても良い。外部情報とは、外部の情報である。外部情報は、ユーザコンテキストと言っても良い。外部情報は、例えば、気温、天気、におい、音、光等である。 The output condition may be a condition that uses the firing pattern and one or more pieces of information related to external information. External information is information from the outside. External information may also be called user context. Examples of external information include temperature, weather, smell, sound, light, etc.
 NN格納部114には、NN成長装置1が蓄積したニューラル・ネットワーク情報が格納される。 The NN storage unit 114 stores the neural network information accumulated by the NN growth device 1.
 受付部22は、各種の情報を受け付ける。各種の情報とは、例えば、受付情報、温度情報である。 The reception unit 22 receives various types of information. Examples of the various types of information include reception information and temperature information.
 情報受付部221は、受付情報を受け付ける。情報受付部221は、例えば、カメラが撮影した画像情報を取得する。情報受付部221は、マイクが取得した音情報を受け付けても良い。受付情報は、画像情報と音情報の両方を有しても良い。 The information receiving unit 221 receives reception information. For example, the information receiving unit 221 acquires image information captured by a camera. The information receiving unit 221 may also accept sound information acquired by a microphone. The reception information may include both image information and sound information.
 ここで、受け付けとは、カメラやマイクなどのデバイスが取得した情報の受け付け、有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどを含む概念である。 Here, reception is a concept that includes the reception of information acquired by devices such as cameras and microphones, the reception of information transmitted via wired or wireless communication lines, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories.
 温度受付部222は、温度情報を受け付ける。温度情報とは、温度を特定する情報である。温度は、例えば、外部の環境の温度である。 The temperature reception unit 222 receives temperature information. Temperature information is information that specifies a temperature. The temperature is, for example, the temperature of the external environment.
 ここで、受け付けとは、マイクやキーボードやマウス、タッチパネルなどの入力デバイスから入力された情報の受け付け、有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどを含む概念である。 Here, reception is a concept that includes the reception of information input from input devices such as a microphone, keyboard, mouse, or touch panel, the reception of information transmitted via a wired or wireless communication line, and the reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memory.
 処理部23は、各種の処理を行う。各種の処理とは、例えば、特徴取得部231、情報伝達部232、発火パターン取得部233、出力情報取得部234が行う処理である。 The processing unit 23 performs various types of processing. For example, the various types of processing are performed by the feature acquisition unit 231, the information transmission unit 232, the firing pattern acquisition unit 233, and the output information acquisition unit 234.
 特徴取得部231は、情報受付部221が受け付けた画像情報を用いて、当該画像情報に対する1または2以上の画像特徴情報を取得する。特徴取得部231は、情報受付部221が受け付けた音情報を用いて、当該音情報に対する1または2以上の音特徴情報を取得する。 The feature acquisition unit 231 uses the image information accepted by the information acceptance unit 221 to acquire one or more pieces of image feature information for the image information. The feature acquisition unit 231 uses the sound information accepted by the information acceptance unit 221 to acquire one or more pieces of sound feature information for the sound information.
 特徴取得部231が行う処理は、画像特徴取得部131、音特徴取得部132のうちの1または2つの構成要素が行う処理と同じで良い。 The processing performed by the feature acquisition unit 231 may be the same as the processing performed by one or two of the components of the image feature acquisition unit 131 and the sound feature acquisition unit 132.
 情報伝達部232は、特徴取得部231が取得した1以上の各特徴情報に対応するノード識別子を1以上の発火始点情報から決定する。かかるノード識別子は、発火するノードの識別子である。そして、かかるノード識別子は、第一段階で発火するノードの識別子である。 The information transmission unit 232 determines a node identifier corresponding to each of the one or more pieces of feature information acquired by the feature acquisition unit 231 from one or more pieces of ignition start point information. Such a node identifier is the identifier of the node that will ignite. Moreover, such a node identifier is the identifier of the node that will ignite in the first stage.
 次に、情報伝達部232は、決定した当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、特徴情報を渡されるノードであり、発火するノードのノード識別子を決定する。 Next, the information transmission unit 232 determines the node identifier of the node that is connected by an edge to the node identified by the one or more determined node identifiers, is passed feature information, and is to be fired.
 情報伝達部232は、一の発火ノードから、次に発火する発火ノードに特徴情報を渡す処理である情報伝達処理を行う。次に発火する発火ノードは、一の発火ノードと一のエッジにより繋がっているノードであり、発火すると判断されたノードである。 The information transmission unit 232 performs an information transmission process that passes characteristic information from one firing node to the next firing node. The next firing node is a node that is connected to the first firing node by an edge and is a node that is determined to fire.
 情報伝達部232は、一の発火ノードにエッジにより繋がっているノードのノード情報を取得する。次に、情報伝達部232は、当該ノード情報が発火条件を満たすか否かを判断する。そして、情報伝達部232は、発火条件を満たすノード情報が有するノード識別子を含む発火情報を構成し、蓄積する。 The information transmission unit 232 acquires node information of nodes connected to one firing node by an edge. Next, the information transmission unit 232 judges whether or not the node information satisfies the firing condition. Then, the information transmission unit 232 composes and accumulates firing information that includes the node identifier of the node information that satisfies the firing condition.
 情報伝達部232は、例えば、ノード情報が発火条件を満たすと判断した場合に、当該ノード情報が有する発火確率情報が示す確率で発火するか発火しないかを判断する。そして、情報伝達部232は、例えば、発火条件をし、発火確率情報が示す確率に基づいて発火すると判断した場合に、当該ノード情報が有するノード識別子を含む発火情報を構成し、蓄積する。 For example, when the information transmission unit 232 determines that the node information satisfies the ignition condition, it determines whether or not the node information will ignite with the probability indicated by the ignition probability information of the node information. Then, when the information transmission unit 232 determines that the node information will ignite based on the probability indicated by the ignition probability information, for example, it configures and stores ignition information including the node identifier of the node information.
 情報伝達部232は、温度受付部222が受け付けた温度情報に応じて、情報伝達処理を行うための処理時間を変えることは好適である。情報伝達部232は、例えば、高い温度を示す温度情報である場合、より低い温度を示す温度情報である場合と比較して、速く情報伝達処理を行う。情報伝達部232は、例えば、低い温度を示す温度情報である場合、より高い温度を示す温度情報である場合と比較して、情報伝達処理を遅延させる。情報伝達部232は、例えば、遅延条件に合致する場合に、予め決められた時間、情報伝達処理を遅延させる。情報伝達処理を遅延させることは、例えば、予め決められた時間、ウェイトすることである。なお、遅延条件とは、処理を遅延させるための条件であり、温度情報に基づく条件である。遅延条件は、例えば、「温度情報<=閾値」または「温度情報<閾値」である。 It is preferable that the information transmission unit 232 changes the processing time for performing the information transmission process according to the temperature information received by the temperature reception unit 222. For example, when the temperature information indicates a high temperature, the information transmission unit 232 performs the information transmission process faster than when the temperature information indicates a lower temperature. For example, when the temperature information indicates a low temperature, the information transmission unit 232 delays the information transmission process compared to when the temperature information indicates a higher temperature. For example, when a delay condition is met, the information transmission unit 232 delays the information transmission process for a predetermined time. Delaying the information transmission process means, for example, waiting for a predetermined time. The delay condition is a condition for delaying the process and is a condition based on the temperature information. The delay condition is, for example, "temperature information <= threshold" or "temperature information < threshold".
 情報伝達部232は、発火ノードのノード情報が有する発火確率情報を増加させることは好適である。ノードが発火すればするほど、当該ノードを発火しやくするためである。 It is preferable for the information transmission unit 232 to increase the firing probability information contained in the node information of the firing node. This is because the more a node fires, the easier it becomes to fire that node.
 発火パターン取得部233は、情報伝達部232が決定した1以上のノード識別子を用いた発火パターンを取得する。発火パターンとは、1または2以上の発火ノードを特定する情報の集合である。発火パターンとは、通常、同時に発火するノードを特定する情報である。発火パターンは、1または2以上のノード識別子を有する。 The firing pattern acquisition unit 233 acquires a firing pattern using one or more node identifiers determined by the information transmission unit 232. A firing pattern is a collection of information that identifies one or more firing nodes. A firing pattern is usually information that identifies nodes that fire simultaneously. A firing pattern has one or more node identifiers.
 発火パターン取得部233は、最終的に発火したノードの1または2以上のノード識別子を有する発火パターンを取得することは好適である。なお、最終的に発火したノードとは、発火したノードのうち、エッジにより接続されている他のノードに情報伝達を行わなかったノードである。 It is preferable that the firing pattern acquisition unit 233 acquires a firing pattern having one or more node identifiers of the node that finally fired. Note that the node that finally fired is a node that, among the nodes that fired, did not transmit information to other nodes connected by edges.
 出力情報取得部234は、発火パターン取得部233が取得した発火パターンに対応する出力情報を取得する。出力情報取得部234は、例えば、格納部21の1または2以上の出力管理情報を参照し、発火パターン取得部233が取得した発火パターンが満たす出力条件に対応する出力情報を取得する。 The output information acquisition unit 234 acquires output information corresponding to the firing pattern acquired by the firing pattern acquisition unit 233. The output information acquisition unit 234, for example, refers to one or more pieces of output management information in the storage unit 21, and acquires output information corresponding to the output conditions satisfied by the firing pattern acquired by the firing pattern acquisition unit 233.
 出力情報取得部234は、例えば、格納部21の1または2以上の出力管理情報を参照し、発火パターン取得部233が取得した発火パターンが満たす出力条件の発火パターンを決定する。次に、出力情報取得部234は、例えば、決定した発火パターンと対になる出力確率情報に基づく確率で、出力情報を取得するか否かを決定し、出力情報を取得すると決定した場合に、出力管理情報が有する出力情報を取得する。 The output information acquisition unit 234, for example, refers to one or more pieces of output management information in the storage unit 21, and determines the firing pattern of the output condition that is satisfied by the firing pattern acquired by the firing pattern acquisition unit 233. Next, the output information acquisition unit 234 determines whether or not to acquire output information, for example, with a probability based on the output probability information that pairs with the determined firing pattern, and if it is determined to acquire the output information, acquires the output information contained in the output management information.
 出力部24は、各種の情報を出力する。各種の情報は、例えば、出力情報である。 The output unit 24 outputs various information. The various information is, for example, output information.
 情報出力部241は、出力情報取得部234が取得した出力情報を出力する。ここで、出力とは、ディスプレイへの表示、プロジェクターを用いた投影、プリンタでの印字、音出力、外部の装置への送信、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念である。 The information output unit 241 outputs the output information acquired by the output information acquisition unit 234. Here, output is a concept that includes display on a display, projection using a projector, printing on a printer, sound output, transmission to an external device, storage on a recording medium, and delivery of processing results to other processing devices, other programs, etc.
 格納部21、およびNN格納部114は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。 The storage unit 21 and the NN storage unit 114 are preferably non-volatile recording media, but can also be realized using volatile recording media.
 格納部21等に情報が記憶される過程は問わない。例えば、記録媒体を介して情報が格納部21等で記憶されるようになってもよく、通信回線等を介して送信された情報が格納部21等で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された情報が格納部21等で記憶されるようになってもよい。 The process by which information is stored in the storage unit 21, etc. is not important. For example, information may be stored in the storage unit 21, etc. via a recording medium, information transmitted via a communication line, etc. may be stored in the storage unit 21, etc., or information inputted via an input device may be stored in the storage unit 21, etc.
 受付部22、情報受付部221、および温度受付部222は、例えば、カメラ、マイク、無線または有線の通信手段、放送を受信する手段、タッチパネルやキーボード等の入力手段のデバイスドライバーや、メニュー画面の制御ソフトウェア等で実現される。 The reception unit 22, the information reception unit 221, and the temperature reception unit 222 are realized, for example, by a camera, a microphone, a wireless or wired communication means, a means for receiving broadcasts, a device driver for an input means such as a touch panel or a keyboard, control software for a menu screen, etc.
 処理部23、特徴取得部231、情報伝達部232、発火パターン取得部233、および出力情報取得部234は、通常、プロセッサやメモリ等から実現され得る。処理部23等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現しても良い。なお、プロセッサは、CPU、MPU、GPU等であり、その種類は問わない。 The processing unit 23, feature acquisition unit 231, information transmission unit 232, firing pattern acquisition unit 233, and output information acquisition unit 234 can usually be realized by a processor, memory, etc. The processing procedures of the processing unit 23, etc. are usually realized by software, and the software is recorded in a recording medium such as a ROM. However, they may also be realized by hardware (dedicated circuitry). The processor may be a CPU, MPU, GPU, etc., and the type is not important.
 出力部24、および情報出力部241は、ディスプレイやスピーカー等の出力デバイスを含むと考えても含まないと考えても良い。出力部24等は、出力デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等で実現され得る。出力部24等は、例えば、ロボットにより構成される。 The output unit 24 and the information output unit 241 may or may not include output devices such as a display or a speaker. The output unit 24, etc. may be realized by driver software for an output device, or by driver software for an output device and an output device, etc. The output unit 24, etc. may be configured by a robot, for example.
 次に、情報処理装置2の動作例について、図18のフローチャートを用いて説明する。 Next, an example of the operation of the information processing device 2 will be described using the flowchart in FIG. 18.
 (ステップS1801)情報受付部221は、受付情報を受け付けたか否かを判断する。受付情報を受け付けた場合はステップS1802に行き、受付情報を受け付けなかった場合はステップS1801に戻る。 (Step S1801) The information reception unit 221 determines whether reception information has been received. If reception information has been received, the process proceeds to step S1802, and if reception information has not been received, the process returns to step S1801.
 (ステップS1802)特徴取得部231は、ステップS1801で受け付けられた受付情報から1以上の特徴情報を取得する。特徴取得部231は、例えば、ステップS1801で受け付けられた画像情報から1以上の特徴情報を取得する。特徴取得部231は、例えば、ステップS1801で受け付けられた音情報から1以上の特徴情報を取得する。 (Step S1802) The feature acquisition unit 231 acquires one or more pieces of feature information from the reception information accepted in step S1801. For example, the feature acquisition unit 231 acquires one or more pieces of feature information from the image information accepted in step S1801. For example, the feature acquisition unit 231 acquires one or more pieces of feature information from the sound information accepted in step S1801.
 (ステップS1803)温度受付部222は、温度情報を取得する。 (Step S1803) The temperature reception unit 222 acquires the temperature information.
 (ステップS1804)情報伝達部232は、ニューラル・ネットワークの内部における情報伝達処理を行う。情報伝達処理の例について、図19のフローチャートを用いて説明する。 (Step S1804) The information transmission unit 232 performs information transmission processing within the neural network. An example of the information transmission processing is explained using the flowchart in FIG. 19.
 (ステップS1805)発火パターン取得部233は、ステップS1804において、最後に発火したノードの1以上のノード識別子を有する発火パターンを取得する。なお、最後に発火したノードとは、発火したノードであり、特徴情報を他のノードに渡さなかったノードである。 (Step S1805) The firing pattern acquisition unit 233 acquires a firing pattern having one or more node identifiers of the node that fired last in step S1804. Note that the node that fired last is a node that fired and did not pass on feature information to other nodes.
 (ステップS1806)出力情報取得部234は、ステップS1805で取得された発火パターンに対応する出力情報を取得する。 (Step S1806) The output information acquisition unit 234 acquires output information corresponding to the firing pattern acquired in step S1805.
 (ステップS1807)ステップS1806で出力情報を取得できた場合はステップS1808に行き、取得できなかった場合はステップS1801に戻る。 (Step S1807) If the output information was obtained in step S1806, proceed to step S1808; if not, return to step S1801.
 (ステップS1808)情報出力部241は、ステップS1806で取得された出力する。ステップS1801に戻る。 (Step S1808) The information output unit 241 outputs the information acquired in step S1806. Return to step S1801.
 なお、図18のフローチャートにおいて、処理部23が状態決定部137および成長部138を有し、上述した成長処理を行っても良い。 In the flowchart of FIG. 18, the processing unit 23 may have a state determination unit 137 and a growth unit 138, and may perform the growth process described above.
 また、図18のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は終了する。 In addition, in the flowchart in Figure 18, processing ends when the power is turned off or an interrupt occurs to end processing.
 次に、ステップS1804の情報伝達処理の例について、図19のフローチャートを用いて説明する。 Next, an example of the information transmission process in step S1804 will be explained using the flowchart in Figure 19.
 (ステップS1901)情報伝達部232は、カウンタiに1を代入する。 (Step S1901) The information transmission unit 232 assigns 1 to counter i.
 (ステップS1902)情報伝達部232は、ステップS1802で取得された特徴情報のうち、i番目の特徴情報が存在するか否かを判断する。i番目の特徴情報が存在する場合はステップS1903に行き、存在しない場合は上位処理にリターンする。 (Step S1902) The information transmission unit 232 determines whether the i-th feature information exists among the feature information acquired in step S1802. If the i-th feature information exists, the process proceeds to step S1903; if it does not exist, the process returns to the upper level process.
 (ステップS1903)情報伝達部232は、格納部21の1または2以上の発火始点情報を参照し、i番目の特徴情報が満たす1以上の各発火始点情報が有するノード識別子を取得する。情報伝達部232は、当該ノード識別子を含む発火情報を構成し、格納部21に蓄積する。なお、情報伝達部232は、図示しない時計から発火した時を示すタイマー情報を取得し、当該タイマー情報と当該ノード識別子とを有する発火情報を構成し、格納部21に蓄積することは好適である。かかる1以上のノード識別子は、第一段階で発火するノードの識別子である。また、かかるノード識別子は、発火ノード識別子である。なお、ここで、情報伝達部232は、発火ノード識別子を取得できなくても良い。 (Step S1903) The information transmission unit 232 refers to one or more pieces of ignition start point information in the storage unit 21, and acquires a node identifier contained in each of the one or more pieces of ignition start point information that satisfy the i-th feature information. The information transmission unit 232 composes ignition information including the node identifier, and stores it in the storage unit 21. It is preferable that the information transmission unit 232 acquires timer information indicating the time of ignition from a clock (not shown), composes ignition information having the timer information and the node identifier, and stores it in the storage unit 21. The one or more node identifiers are identifiers of nodes that ignite in the first stage. Also, the node identifiers are ignition node identifiers. It is also possible that the information transmission unit 232 is not able to acquire ignition node identifiers.
 (ステップS1904)情報伝達部232は、カウンタjに1を代入する。 (Step S1904) The information transmission unit 232 assigns 1 to counter j.
 (ステップS1905)情報伝達部232は、ステップS1903で取得した発火ノード識別子のうち、j番目の発火ノード識別子が存在するか否かを判断する。j番目の発火ノード識別子が存在する場合はステップS1906に行き、存在しない場合はステップS1910に行く。 (Step S1905) The information transmission unit 232 determines whether or not the jth ignition node identifier exists among the ignition node identifiers acquired in step S1903. If the jth ignition node identifier exists, the process proceeds to step S1906; if not, the process proceeds to step S1910.
 (ステップS1906)情報伝達部232は、i番目の特徴情報をj番目の発火ノード識別子で識別されるノードに付加する処理を行う。なお、i番目の特徴情報をノードに付加する処理は、例えば、i番目の特徴情報を当該ノードのノード情報に書き込む処理、i番目の特徴情報と当該ノードのノード情報とを対応付ける処理である。 (Step S1906) The information transmission unit 232 performs a process of adding the i-th feature information to the node identified by the j-th firing node identifier. Note that the process of adding the i-th feature information to a node is, for example, a process of writing the i-th feature information to the node information of the node, and a process of associating the i-th feature information with the node information of the node.
 (ステップS1907)情報伝達部232は、j番目の発火ノード識別子に対応するノード情報が有する回数情報を増加させるための更新を行う。例えば、情報伝達部232は、j番目の発火ノード識別子に対応するノード情報が有する回数情報を読み出し、当該回数情報に1を加えた回数情報を、上書きする。 (Step S1907) The information transmission unit 232 performs an update to increase the number of times information contained in the node information corresponding to the j-th ignition node identifier. For example, the information transmission unit 232 reads out the number of times information contained in the node information corresponding to the j-th ignition node identifier, and overwrites the number of times information by adding 1 to the read number of times information.
 (ステップS1908)情報伝達部232は、j番目の発火ノード識別子を着目ノード識別子として、次伝達処理を行う。次伝達処理の例について、図20のフローチャートを用いて説明する。 (Step S1908) The information transmission unit 232 performs the next transmission process using the j-th ignition node identifier as the node identifier of interest. An example of the next transmission process is described using the flowchart in FIG. 20.
 なお、次伝達処理とは、着目ノード識別子で識別されるノードにエッジにより繋がっている先のノードであり、発火するノードに、着目ノード識別子で識別されるノードに対する特徴情報を渡す処理である。なお、特徴情報を渡す処理は、情報伝達処理である。 The next transmission process is a process of transmitting characteristic information for the node identified by the target node identifier to the node that is connected by an edge to the node identified by the target node identifier and that fires. The process of transmitting characteristic information is an information transmission process.
 (ステップS1909)情報伝達部232は、カウンタjを1、インクリメントする。ステップS1905に戻る。 (Step S1909) The information transmission unit 232 increments the counter j by 1. Return to step S1905.
 (ステップS1910)情報伝達部232は、カウンタiを1、インクリメントする。ステップS1902に戻る。 (Step S1910) The information transmission unit 232 increments the counter i by 1. Return to step S1902.
 次に、ステップS1908の次伝達処理の例について、図20のフローチャートを用いて説明する。 Next, an example of the next transmission process in step S1908 will be explained using the flowchart in Figure 20.
 (ステップS2001)情報伝達部232は、取得されている温度情報が遅延条件に合致するか否かを判断する。遅延条件に合致する場合はステップS2002に行き、遅延条件に合致しない場合はステップS2003に行く。 (Step S2001) The information transmission unit 232 determines whether the acquired temperature information matches the delay condition. If the delay condition is met, the process proceeds to step S2002; if the delay condition is not met, the process proceeds to step S2003.
 (ステップS2002)情報伝達部232は、WAITする。なお、WAITする時間は、予め決められていることは好適であるが、問わない。 (Step S2002) The information transmission unit 232 WAITs. Note that it is preferable that the WAIT time be determined in advance, but this is not limiting.
 (ステップS2003)情報伝達部232は、着目する発火ノード識別子を含むすべてのエッジ情報をNN格納部114から取得する。 (Step S2003) The information transmission unit 232 acquires all edge information including the ignition node identifier of interest from the NN storage unit 114.
 (ステップS2004)情報伝達部232は、カウンタiに1を代入する。 (Step S2004) The information transmission unit 232 assigns 1 to counter i.
 (ステップS2005)情報伝達部232は、ステップS2001で取得したエッジ情報の中で、i番目のエッジ情報が存在するか否かを判断する。i番目のエッジ情報が存在する場合はステップS2006に行き、存在しない場合は上位処理にリターンする。 (Step S2005) The information transmission unit 232 determines whether the i-th edge information exists among the edge information acquired in step S2001. If the i-th edge information exists, the process proceeds to step S2006; if not, the process returns to the upper level process.
 (ステップS2006)情報伝達部232は、i番目のエッジ情報の中に、他のノードのノード識別子が存在するか否かを判断する。他のノードのノード識別子が存在する場合はステップS2007に行き、存在しない場合はステップS2014に行く。なお、エッジ情報の中の他のノードのノード識別子は、当該エッジの接続先のノードのノード識別子である。また、i番目のエッジ情報の中に他のノードのノード識別子が存在する場合は、エッジが2つのノードに繋がっている場合である。 (Step S2006) The information transmission unit 232 determines whether or not the node identifier of another node is present in the i-th edge information. If the node identifier of another node is present, the process proceeds to step S2007; if not, the process proceeds to step S2014. Note that the node identifier of another node in the edge information is the node identifier of the node to which the edge is connected. If the node identifier of another node is present in the i-th edge information, this is the case when the edge is connected to two nodes.
 (ステップS2007)情報伝達部232は、i番目のエッジ情報の中の他のノードのノード識別子を取得する。次に、情報伝達部232は、当該ノード識別子で識別するノードのノード情報をNN格納部114から取得する。 (Step S2007) The information transmission unit 232 acquires the node identifier of another node in the i-th edge information. Next, the information transmission unit 232 acquires the node information of the node identified by the node identifier from the NN storage unit 114.
 (ステップS2008)情報伝達部232は、ステップS2007で取得したノード情報を用いて、当該ノード情報に対応するノードが発火するか否かを判断する。かかる発火判断処理の例について、図21のフローチャートを用いて説明する。 (Step S2008) The information transmission unit 232 uses the node information acquired in step S2007 to determine whether or not the node corresponding to the node information will ignite. An example of such ignition determination processing will be described with reference to the flowchart in FIG. 21.
 (ステップS2009)情報伝達部232は、ステップS2008における判断結果が「発火する」であった場合はステップS2010に行き、「発火しない」であった場合はステップS2014に行く。 (Step S2009) If the result of the determination in step S2008 is "fire", the information transmission unit 232 proceeds to step S2010, and if the result is "do not fire", the information transmission unit 232 proceeds to step S2014.
 (ステップS2010)情報伝達部232は、ステップS2007で取得したノード情報が有するノード識別子を有する発火情報を取得し、当該発火情報を格納部11に蓄積する。 (Step S2010) The information transmission unit 232 acquires ignition information having the node identifier included in the node information acquired in step S2007, and stores the ignition information in the storage unit 11.
 (ステップS2011)情報伝達部232は、ステップS2007で取得したノード情報が有する発火確率情報を変更する。ここで、情報伝達部232は、発火確率情報が特定する発火確率が増加するように、発火確率情報を変更する。 (Step S2011) The information transmission unit 232 changes the ignition probability information contained in the node information acquired in step S2007. Here, the information transmission unit 232 changes the ignition probability information so that the ignition probability specified by the ignition probability information increases.
 (ステップS2012)情報伝達部232は、ノード間の情報の伝達を終了するか否かを判断する。伝達を終了する場合はステップS2014に行き、伝達を終了しない場合はステップS2013に行く。なお、伝達を終了する場合は、例えば、当該ノードが、NNの中の終端のノードである場合である。また、伝達を終了する場合は、直前にステップS2010で蓄積された発火情報が有するノード識別子が、発火パターンを構成するノード識別子である。 (Step S2012) The information transmission unit 232 judges whether or not to end the transmission of information between nodes. If the transmission is to be ended, the process proceeds to step S2014, and if the transmission is not to be ended, the process proceeds to step S2013. Note that the transmission is to be ended, for example, when the node in question is the terminal node in the NN. Also, when the transmission is to be ended, the node identifiers contained in the firing information accumulated immediately before in step S2010 are the node identifiers that constitute the firing pattern.
 (ステップS2013)情報伝達部232は、当該ノードを着目ノードとした次伝達処理を行う。次伝達処理の例は、図20である。 (Step S2013) The information transmission unit 232 performs the next transmission process with the node in question as the node of interest. An example of the next transmission process is shown in FIG. 20.
 (ステップS2014)情報伝達部232は、カウンタiを1、インクリメントする。ステップS2005に戻る。 (Step S2014) The information transmission unit 232 increments the counter i by 1. Return to step S2005.
 なお、図20のフローチャートにおいて、情報伝達部232は、ノード間の情報の伝達を行った場合に、発火の元になったノード情報が有する保有エネルギー量情報が示すエネルギー量を減じた保有エネルギー量情報に更新することは好適である。なお、かかることは、伝達のために利用したAXONのAXON識別子と対になる保有エネルギー量情報、および伝達のために利用したDendritesのDendrites識別子と対になる保有エネルギー量情報に適用しても良い。また、エネルギー量を減じるための関数は、例えば、格納部21に格納されている、とする。また、当該関数は問わない。関数は、公知技術であるので、詳細な説明は省略する。 In the flowchart of FIG. 20, when the information transmission unit 232 transmits information between nodes, it is preferable to update the retained energy amount information by subtracting the amount of energy indicated by the retained energy amount information held by the node information that caused the ignition. This may also be applied to the retained energy amount information paired with the AXON identifier of the AXON used for the transmission, and the retained energy amount information paired with the Dendrites identifier of the Dendrites used for the transmission. The function for reducing the amount of energy is stored, for example, in the storage unit 21. The function in question is not important. As the function is a publicly known technology, a detailed explanation will be omitted.
 次に、ステップS2008の発火判断処理の例について、図21のフローチャートを用いて説明する。 Next, an example of the ignition determination process in step S2008 will be explained using the flowchart in Figure 21.
 (ステップS2101)情報伝達部232は、ステップS2005のノード情報に対応する発火条件を取得する。なお、発火条件は、ノードごとに異なっていても良いし、2以上のノードに共通でも良い。 (Step S2101) The information transmission unit 232 acquires the firing condition corresponding to the node information of step S2005. Note that the firing condition may be different for each node, or may be common to two or more nodes.
 (ステップS2102)情報伝達部232は、1以上の特徴情報を取得する。なお、ここでの1以上の特徴情報は、発火の元になるノードから渡された特徴情報である。 (Step S2102) The information transmission unit 232 acquires one or more pieces of feature information. Note that the one or more pieces of feature information here are pieces of feature information passed from the node that caused the ignition.
 (ステップS2103)情報伝達部232は、ステップS2102で取得した1以上の特徴情報がステップS2101で取得した発火条件を満たすか否かを判断する。発火条件を満たす場合はステップS2104に行き、発火条件を満たさない場合はステップS2107に行く。 (Step S2103) The information transmission unit 232 determines whether or not the one or more pieces of feature information acquired in step S2102 satisfy the ignition condition acquired in step S2101. If the ignition condition is satisfied, the process proceeds to step S2104, and if the ignition condition is not satisfied, the process proceeds to step S2107.
 (ステップS2104)情報伝達部232は、着目するノード情報が発火確率情報を有するか否かを判断する。発火確率情報を有する場合はステップS2105に行き、発火確率情報を有さない場合はステップS2106に行く。 (Step S2104) The information transmission unit 232 determines whether the node information of interest has firing probability information. If it has firing probability information, the process proceeds to step S2105, and if it does not have firing probability information, the process proceeds to step S2106.
 (ステップS2105)情報伝達部232は、着目するノード情報が有する発火確率情報を取得する。次に、情報伝達部232は、当該発火確率情報を用いて、発火するか否かを判断する。発火する場合はステップS2106に行き、発火しない場合はステップS2107に行く。 (Step S2105) The information transmission unit 232 acquires the firing probability information contained in the node information of interest. Next, the information transmission unit 232 uses the firing probability information to determine whether or not firing will occur. If firing will occur, the process proceeds to step S2106, and if not, the process proceeds to step S2107.
 (ステップS2106)情報伝達部232は、判断結果に「発火する」を代入する。上位処理にリターンする。 (Step S2106) The information transmission unit 232 assigns "fire" to the judgment result. It returns to the upper level process.
 (ステップS2107)情報伝達部232は、判断結果に「発火しない」を代入する。上位処理にリターンする。 (Step S2107) The information transmission unit 232 assigns "does not fire" to the judgment result. It returns to the upper level process.
 以上、本実施の形態によれば、成長した脳の動作をシミュレーションできる。つまり、情報処理装置2は、NN成長装置1が構成したNN情報を用いて、受け付けられた情報に反応する脳の動作をシミュレーションできる。また、特に、情報処理装置2によれば、例えば、幼児期以降の人の脳の動作をシミュレーションできる。 As described above, according to this embodiment, it is possible to simulate the operation of a grown brain. In other words, the information processing device 2 can simulate the operation of the brain reacting to received information using the NN information constructed by the NN growth device 1. In particular, the information processing device 2 can simulate the operation of a person's brain from infancy onwards.
 なお、本実施の形態において、情報処理装置は、NN成長装置1が行う成長処理を実現しても良い。かかる場合、情報処理装置は、ニューラル・ネットワークを成長させつつ、受け付けた受付情報に対する出力情報を出力できる。また、かかる場合の情報処理装置は、情報処理装置3である。情報処理装置3の処理部23は、情報処理装置2の構成に加えて、NN成長装置1が有する画像スコア取得部133、音スコア取得部134、総合スコア取得部135、発火ノード決定部136、状態決定部137、成長部138、基準スコア変更部139を有する。かかる場合の情報処理装置3のブロック図は、図22である。 In this embodiment, the information processing device may realize the growth process performed by the NN growth device 1. In such a case, the information processing device can output output information for the received reception information while growing the neural network. In addition, the information processing device in such a case is the information processing device 3. In addition to the configuration of the information processing device 2, the processing unit 23 of the information processing device 3 has the image score acquisition unit 133, sound score acquisition unit 134, total score acquisition unit 135, ignition node determination unit 136, state determination unit 137, growth unit 138, and reference score change unit 139 of the NN growth device 1. A block diagram of the information processing device 3 in such a case is shown in FIG. 22.
 図22において、NN成長装置1の発火ノード決定部136の処理は、情報伝達部232が行う。また、特徴取得部231は、画像特徴取得部131、音特徴取得部132を合わせた構成である。 In FIG. 22, the processing of the firing node determination unit 136 of the NN growth device 1 is performed by the information transmission unit 232. Also, the feature acquisition unit 231 is a combination of the image feature acquisition unit 131 and the sound feature acquisition unit 132.
 なお、本実施の形態における情報処理装置2を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、NN成長装置1が蓄積したニューラル・ネットワーク情報が格納されるNN格納部にアクセス可能なコンピュータを、画像情報または音情報のうちの1以上の情報である受付情報を受け付ける情報受付部と、前記情報受付部が受け付けた前記受付情報に対する1以上の特徴情報を取得する特徴取得部と、前記特徴取得部が取得した前記1以上の各特徴情報に対応するノード識別子であり、発火するノードのノード識別子を、受付情報の特徴情報を識別する情報識別子と、当該特徴情報が受け付けられた場合に最初に発火するノードを識別する1以上のノード識別子とを有する1以上の発火始点情報が格納される始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記特徴情報を渡されるノードであり、発火するノードのノード識別子を決定する情報伝達部と、前記情報伝達部が決定した1以上のノード識別子を用いた発火パターンを取得する発火パターン取得部と、前記発火パターン取得部が取得した前記発火パターンに対応する出力情報を取得する出力情報取得部と、前記出力情報を出力する情報出力部として機能させるためのプログラムである。 The software that realizes the information processing device 2 in this embodiment is a program such as the following. In other words, this program is a program for making a computer that can access the NN storage unit in which the neural network information accumulated by the NN growing device 1 is stored function as an information receiving unit that receives received information, which is one or more pieces of information from image information or sound information; a feature acquisition unit that acquires one or more pieces of feature information for the received information received by the information receiving unit; an information transmission unit that determines the node identifier of a node that will ignite, which is a node identifier corresponding to each of the one or more pieces of feature information acquired by the feature acquisition unit, from a start point storage unit in which one or more pieces of firing start point information having an information identifier that identifies the feature information of the received information and one or more node identifiers that identify the node that will ignite first when the feature information is accepted, and that is connected by an edge to the node identified by each of the one or more node identifiers and is a node to which the feature information is passed, and that will ignite; an firing pattern acquisition unit that acquires a firing pattern using one or more node identifiers determined by the information transmission unit; an output information acquisition unit that acquires output information corresponding to the firing pattern acquired by the firing pattern acquisition unit; and an information output unit that outputs the output information.
 また、図23は、本明細書で述べたプログラムを実行して、上述した種々の実施の形態のNN成長装置1、情報処理装置2、情報処理装置3を実現するコンピュータの外観を示す。上述の実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムで実現され得る。図23は、このコンピュータシステム300の概観図であり、図24は、システム300のブロック図である。 FIG. 23 also shows the appearance of a computer that executes the programs described in this specification to realize the NN growth device 1, information processing device 2, and information processing device 3 of the various embodiments described above. The above-mentioned embodiments can be realized by computer hardware and a computer program executed thereon. FIG. 23 is an overview of this computer system 300, and FIG. 24 is a block diagram of system 300.
 図23において、コンピュータシステム300は、CD-ROMドライブを含むコンピュータ301と、キーボード302と、マウス303と、モニタ304と、マイク305と、カメラ306とを含む。 In FIG. 23, computer system 300 includes computer 301, which includes a CD-ROM drive, keyboard 302, mouse 303, monitor 304, microphone 305, and camera 306.
 図24において、コンピュータ301は、CD-ROMドライブ3012に加えて、MPU3013と、CD-ROMドライブ3012等に接続されたバス3014と、ブートアッププログラム等のプログラムを記憶するためのROM3015と、MPU3013に接続され、アプリケーションプログラムの命令を一時的に記憶するとともに一時記憶空間を提供するためのRAM3016と、アプリケーションプログラム、システムプログラム、及びデータを記憶するためのハードディスク3017とを含む。ここでは、図示しないが、コンピュータ301は、さらに、LANへの接続を提供するネットワークカードを含んでも良い。 In FIG. 24, in addition to a CD-ROM drive 3012, computer 301 includes an MPU 3013, a bus 3014 connected to the CD-ROM drive 3012 etc., a ROM 3015 for storing programs such as a boot-up program, a RAM 3016 connected to the MPU 3013 for temporarily storing instructions for application programs and providing temporary storage space, and a hard disk 3017 for storing application programs, system programs, and data. Although not shown here, computer 301 may further include a network card that provides connection to a LAN.
 コンピュータシステム300に、上述した実施の形態のNN成長装置1等の機能を実行させるプログラムは、CD-ROM3101に記憶されて、CD-ROMドライブ3012に挿入され、さらにハードディスク3017に転送されても良い。これに代えて、プログラムは、図示しないネットワークを介してコンピュータ301に送信され、ハードディスク3017に記憶されても良い。プログラムは実行の際にRAM3016にロードされる。プログラムは、CD-ROM3101またはネットワークから直接、ロードされても良い。 A program that causes computer system 300 to execute functions such as the NN growth device 1 of the above-mentioned embodiment may be stored on CD-ROM 3101, inserted into CD-ROM drive 3012, and then transferred to hard disk 3017. Alternatively, the program may be sent to computer 301 via a network (not shown) and stored on hard disk 3017. The program is loaded into RAM 3016 when executed. The program may be loaded directly from CD-ROM 3101 or the network.
 プログラムは、コンピュータ301に、上述した実施の形態のNN成長装置1等の機能を実行させるオペレーティングシステム(OS)、またはサードパーティープログラム等は、必ずしも含まなくても良い。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいれば良い。コンピュータシステム300がどのように動作するかは周知であり、詳細な説明は省略する。 The program does not necessarily have to include an operating system (OS) or a third-party program that causes the computer 301 to execute functions such as the NN growth device 1 of the above-mentioned embodiment. The program only needs to include an instruction portion that calls appropriate functions (modules) in a controlled manner to obtain the desired results. How the computer system 300 operates is well known, and a detailed description will be omitted.
 なお、上記プログラムにおいて、情報を送信するステップや、情報を受信するステップなどでは、ハードウェアによって行われる処理、例えば、送信ステップにおけるモデムやインターフェースカードなどで行われる処理(ハードウェアでしか行われない処理)は含まれない。 In addition, in the above program, the steps of transmitting information and receiving information do not include processing performed by hardware, such as processing performed by a modem or interface card in the transmission step (processing that can only be performed by hardware).
 また、上記プログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、あるいは分散処理を行ってもよい。 Furthermore, the computer that executes the above program may be a single computer or multiple computers. In other words, it may perform centralized processing or distributed processing.
 また、上記各実施の形態において、一の装置に存在する2以上の通信手段は、物理的に一の媒体で実現されても良いことは言うまでもない。 Furthermore, in each of the above embodiments, it goes without saying that two or more communication means present in one device may be realized physically by one medium.
 また、上記各実施の形態において、各処理は、単一の装置によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい。 In addition, in each of the above embodiments, each process may be realized by centralized processing in a single device, or may be realized by distributed processing in multiple devices.
 本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。 The present invention is not limited to the above-described embodiment, and various modifications are possible, and it goes without saying that these are also included within the scope of the present invention.
 以上のように、本発明にかかるNN成長装置1は、脳の成長をシミュレーションできるという効果を有し、NN成長装置等として有用である。 As described above, the NN growth device 1 of the present invention has the effect of simulating brain growth and is useful as an NN growth device, etc.

Claims (16)

  1. ノード識別子を有する2以上のノード情報と、エッジ識別子を有し、ノード間の結合を特定する1以上のエッジ情報とを有するニューラル・ネットワーク情報が格納されるNN格納部と、
    画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の特徴情報に関する条件であり、他のノードを介さずに発火するノードを決定するための条件である初期発火条件に対応付けて、他のノードを介さずに発火するノードを識別する1以上のノード識別子を有する1以上の発火始点情報が格納される始点格納部と、
    ポジティブおよびネガティブに関する基準スコアを格納する基準スコア格納部と、
    画像情報と音情報とを受け付ける情報受付部と、
    前記情報受付部が受け付けた前記画像情報を用いて、当該画像情報に対する1以上の画像特徴情報を取得する画像特徴取得部と、
    前記情報受付部が受け付けた前記音情報を用いて、当該音情報に対する1以上の音特徴情報を取得する音特徴取得部と、
    前記1以上の画像特徴情報および前記1以上の音特徴情報に基づく総合スコアを取得する総合スコア取得部と、
    前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報が合致する初期発火条件と対になる1以上のノード識別子を前記始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報を渡されるノードであり、発火するノードのノード識別子を決定する発火ノード決定部と、
    前記総合スコアと前記基準スコアとの差異に関する差情報に基づいて、前記発火ノード決定部が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードに結合する1以上のエッジのエッジ情報を成長させる処理である成長処理を行う成長部とを具備するNN成長装置。
    an NN storage unit in which neural network information is stored, the neural network information including two or more pieces of node information having node identifiers and one or more pieces of edge information having edge identifiers and specifying connections between the nodes;
    a start point storage unit in which one or more pieces of ignition start point information having one or more node identifiers for identifying a node that is to be ignited without passing through other nodes are stored in association with an initial ignition condition, which is a condition related to one or more types of feature information among one or more pieces of image feature information for image information and one or more pieces of sound feature information for sound information, and which is a condition for determining a node that is to be ignited without passing through other nodes;
    a standard score storage unit for storing standard scores regarding positive and negative;
    an information receiving unit that receives image information and sound information;
    an image feature acquisition unit that acquires one or more image feature information for the image information by using the image information accepted by the information acceptance unit;
    a sound feature acquisition unit that acquires, using the sound information accepted by the information acceptance unit, one or more pieces of sound feature information for the sound information;
    a comprehensive score acquisition unit that acquires a comprehensive score based on the one or more pieces of image feature information and the one or more pieces of sound feature information;
    an ignition node determination unit that determines, from the starting point storage unit, one or more node identifiers that are paired with an initial ignition condition in which one or more types of information among the one or more image feature information and the one or more sound feature information match, and that determines a node identifier of a node to be ignited, the node being connected to the nodes identified by the one or more node identifiers by an edge and receiving one or more types of information among the one or more image feature information and the one or more sound feature information;
    a growth unit that performs a growth process, which is a process of growing edge information of one or more edges that connect to nodes identified by one or more node identifiers among the one or more node identifiers determined by the ignition node determination unit, based on difference information regarding the difference between the total score and the reference score.
  2. 前記1以上の画像特徴情報を用いて、ポジティブおよびネガティブに関するスコアである画像スコアを取得する画像スコア取得部と、
    前記情報受付部が受け付けた前記音情報を用いて、当該音情報に対する1以上の音特徴情報を取得する音特徴取得部と、
    前記1以上の音特徴情報を用いて、ポジティブおよびネガティブに関するスコアである音スコアを取得する音スコア取得部とをさらに具備し、
    前記総合スコア取得部は、
    前記画像スコアと前記音スコアとを用いて前記総合スコアを取得する、請求項1記載のNN成長装置。
    an image score acquisition unit that acquires an image score, which is a score regarding positive and negative, using the one or more pieces of image feature information;
    a sound feature acquisition unit that acquires, using the sound information accepted by the information acceptance unit, one or more pieces of sound feature information for the sound information;
    a sound score acquisition unit that acquires a sound score, which is a score regarding positive and negative, using the one or more pieces of sound feature information;
    The overall score acquisition unit,
    The apparatus of claim 1 wherein the image score and the sound score are used to obtain the overall score.
  3. 前記エッジ情報は重みを有し、
    前記発火ノード決定部は、
    前記エッジにより繋がっており、当該エッジの重みが、重みに関する伝達条件を満たすノードのノード識別子を決定し、
    前記成長部は、
    前記総合スコアと前記基準スコアとの差に関する差情報を取得し、当該差情報が第一エッジ成長条件に合致する場合に、前記1以上の各エッジの前記エッジ情報の重みを大きくする第一エッジ成長処理を行う請求項1記載のNN成長装置。
    The edge information has weights,
    The firing node determination unit
    determining node identifiers of nodes connected by the edges and whose weights satisfy a weight-related propagation condition;
    The growth portion is
    The NN growth device of claim 1, further comprising: a first edge growth process that acquires difference information regarding the difference between the overall score and the reference score, and increases the weighting of the edge information of each of the one or more edges when the difference information matches a first edge growth condition.
  4. 前記エッジ情報はエッジの端の位置を示すエッジ位置情報を有する場合があり、
    前記成長部は、
    前記総合スコアと前記基準スコアとの差に関する差情報を取得し、当該差情報が第二エッジ成長条件に合致する場合に、前記1以上の各エッジのエッジ情報が有するエッジ位置情報を変更し、エッジの長さの延伸させる第二エッジ成長処理を行う請求項1記載のNN成長装置。
    The edge information may include edge position information indicating a position of an end of an edge;
    The growth portion is
    The NN growth device of claim 1, further comprising: acquiring difference information regarding the difference between the overall score and the reference score; and, when the difference information meets a second edge growth condition, performing a second edge growth process that changes the edge position information contained in the edge information of each of the one or more edges and extends the length of the edge.
  5. ポジティブおよびネガティブを含む2以上の各状態に対応するゴールを特定するゴール情報が格納されるゴール格納部と、
    前記成長部が取得した前記差情報を用いて、ポジティブおよびネガティブを含む前記2以上の状態から一の状態を決定する状態決定部とをさらに具備し、
    前記ゴール情報は、当該ゴールの位置を特定するゴール位置情報、または当該ゴールの方向を示すゴール方向情報を有し、
    前記成長部は、
    前記状態決定部が決定した前記一の状態と対になる前記ゴール情報を取得し、前記1以上の各エッジのエッジ情報が有するエッジ位置情報を変更し、当該ゴール情報が示す方向の新たなエッジ位置情報を取得し、当該新たなエッジ位置情報を蓄積する前記第二エッジ成長処理を行う請求項4記載のNN成長装置。
    a goal storage unit for storing goal information that identifies a goal corresponding to each of two or more states including positive and negative;
    and a state determination unit that determines one state from the two or more states including positive and negative using the difference information acquired by the growth unit,
    the goal information includes goal position information that identifies the position of the goal, or goal direction information that indicates the direction of the goal,
    The growth portion is
    The NN growth device of claim 4 performs the second edge growth process, which acquires the goal information that pairs with the one state determined by the state determination unit, changes the edge position information contained in the edge information of each of the one or more edges, acquires new edge position information in the direction indicated by the goal information, and accumulates the new edge position information.
  6. 前記総合スコア取得部が取得した総合スコアに基づいて、前記基準スコア格納部の前記基準スコアを変更する基準スコア変更部をさらに具備する請求項1記載のNN成長装置。 The NN growth device according to claim 1, further comprising a standard score change unit that changes the standard score in the standard score storage unit based on the overall score acquired by the overall score acquisition unit.
  7. 前記基準スコア変更部は、
    前記総合スコアがスコア変更条件に合致する場合のみ、前記基準スコア格納部の前記基準スコアを変更する、請求項6記載のNN成長装置。
    The reference score changing unit,
    7. The neural network growing apparatus according to claim 6, wherein the reference score in the reference score storage unit is changed only when the total score meets a score change condition.
  8. 前記基準スコア格納部は、
    1以上のノード識別子を用いた1以上の各発火パターンと対になる基準スコアを格納しており、
    前記成長部は、
    前記発火ノード決定部が決定した1以上のノード識別子に対応する発火パターンと対になる基準スコアを前記基準スコア格納部から取得し、前記総合スコアと当該基準スコアとの差に関する差情報を取得し、当該差情報に基づいて、前記成長処理を行う、請求項1記載のNN成長装置。
    The standard score storage unit includes:
    storing a reference score paired with each of the one or more firing patterns using the one or more node identifiers;
    The growth portion is
    2. The NN growing device according to claim 1, further comprising: a standard score that is paired with an ignition pattern corresponding to one or more node identifiers determined by the ignition node determination unit; difference information regarding the difference between the total score and the standard score; and performing the growth process based on the difference information.
  9. 前記発火ノード決定部は、
    エッジにより繋がっている他の1以上のノードから渡される1以上の特徴情報が、1または2以上の特徴情報に関する発火条件を満たすか否かを判断し、当該発火条件を満たすと判断したノードのノード識別子を決定する、請求項1記載のNN成長装置。
    The firing node determination unit
    2. The NN growing device of claim 1, which determines whether one or more pieces of feature information passed from one or more other nodes connected by edges satisfy a firing condition for one or more pieces of feature information, and determines a node identifier of a node determined to satisfy the firing condition.
  10. 前記ノード情報は、当該ノードの位置を特定するノード位置情報を有し、
    ポジティブおよびネガティブを含む2以上の各状態に対応するゴールを特定するゴール情報が格納されるゴール格納部と、
    前記成長部が取得した前記差情報を用いて、ポジティブおよびネガティブを含む前記2以上の状態から一の状態を決定する状態決定部とをさらに具備し、
    前記成長部は、
    前記総合スコアと前記基準スコアとの差に関する差情報を取得し、当該差情報に基づいて、前記状態決定部が決定した前記一の状態と対になる前記ゴール情報が示す方向に、前記発火ノード決定部が決定した前記1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードから延びるエッジに対するエッジ情報を生成し、蓄積するエッジ生成処理を行う、請求項1記載のNN成長装置。
    The node information includes node position information that identifies a position of the node,
    a goal storage unit for storing goal information that identifies a goal corresponding to each of two or more states including positive and negative;
    and a state determination unit that determines one state from the two or more states including positive and negative using the difference information acquired by the growth unit,
    The growth portion is
    2. The NN growing device according to claim 1, wherein an edge generation process is performed to obtain difference information regarding a difference between the total score and the reference score, and based on the difference information, generate and accumulate edge information for edges extending from nodes identified by one or more node identifiers among the one or more node identifiers determined by the ignition node determination unit in a direction indicated by the goal information that pairs with the one state determined by the state determination unit.
  11. 前記発火ノード決定部は、
    決定したノード識別子の回数に関する回数情報を、ノード識別子に対応付けて蓄積し、
    前記成長部は、
    エッジ生成条件に合致する前記回数情報に対応するノード識別子で識別されるノードに対して、前記エッジ生成処理を行う、請求項10記載のNN成長装置。
    The firing node determination unit
    Storing frequency information relating to the frequency of the determined node identifier in association with the node identifier;
    The growth portion is
    11. The neural network growing apparatus according to claim 10, wherein the edge generation process is performed on a node identified by a node identifier corresponding to the number information that meets an edge generation condition.
  12. 前記ノードは、somaであり、
    前記エッジは、AXONとDendritesとを有し、
    前記エッジ情報は、AXON識別子とAXONの位置を示すAXON位置情報とを有するAXON情報と、Dendrites識別子とDendritesの位置を示すDendrites位置情報とを有するDendrites情報を有する、請求項1記載のNN成長装置。
    the node is a soma,
    The edge includes an AXON and a Dendrite.
    The NN growing apparatus according to claim 1 , wherein the edge information includes AXON information having an AXON identifier and AXON position information indicating a position of the AXON, and Dendrites information having a Dendrites identifier and Dendrites position information indicating a position of the Dendrites.
  13. 請求項1記載のNN成長装置が蓄積したニューラル・ネットワーク情報が格納されるNN格納部と、
    画像情報または音情報のうちの1種類以上の情報である受付情報を受け付ける情報受付部と、
    前記情報受付部が受け付けた前記受付情報に対する1以上の特徴情報を取得する特徴取得部と、
    前記特徴取得部が取得した前記1以上の各特徴情報に対応するノード識別子であり、発火するノードのノード識別子を、受付情報の特徴情報を識別する情報識別子と、当該特徴情報が受け付けられた場合に他のノードを介さずに発火するノードを識別する1以上のノード識別子とを有する1以上の発火始点情報が格納される始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記特徴情報を渡されるノードであり、発火するノードのノード識別子を決定する情報伝達部と、
    前記情報伝達部が決定した1以上のノード識別子を用いた発火パターンを取得する発火パターン取得部と、
    前記発火パターン取得部が取得した前記発火パターンに対応する出力情報を取得する出力情報取得部と、
    前記出力情報を出力する情報出力部とを具備する情報処理装置。
    a neural network storage unit for storing neural network information accumulated by the neural network growing device according to claim 1;
    an information receiving unit that receives reception information which is one or more types of information of image information and sound information;
    a characteristic acquisition unit that acquires one or more pieces of characteristic information for the received information received by the information receiving unit;
    an information transmission unit which determines a node identifier of a node to be ignited, the node identifier being a node identifier corresponding to the one or more pieces of feature information acquired by the feature acquisition unit, from a start point storage unit in which one or more pieces of ignition start point information are stored, the start point information having an information identifier for identifying the feature information of the received information and one or more node identifiers for identifying a node that will be ignited without passing through other nodes when the feature information is accepted, and which is connected by an edge to the node identified by the one or more node identifiers and is a node to which the feature information is passed, the node identifier of the node to be ignited;
    an ignition pattern acquisition unit that acquires an ignition pattern using one or more node identifiers determined by the information transmission unit;
    an output information acquisition unit that acquires output information corresponding to the ignition pattern acquired by the ignition pattern acquisition unit;
    and an information output unit that outputs the output information.
  14. 温度情報を受け付ける温度受付部をさらに具備し、
    前記情報伝達部は、
    発火したノードから、次に発火するノードに対して当該発火したノードに対応する前記特徴情報を渡す処理である情報伝達処理を行い、かつ前記温度受付部が受け付けた前記温度情報に応じて、前記情報伝達処理を行うための処理時間を変える、請求項13記載の情報処理装置。
    The temperature sensor further includes a temperature receiving unit that receives temperature information.
    The information transmission unit is
    The information processing device according to claim 13, further comprising: an information transmission process for transmitting the characteristic information corresponding to the fired node from the fired node to the next fired node; and a processing time for performing the information transmission process is changed depending on the temperature information received by the temperature receiving unit.
  15. ノード識別子を有する2以上のノード情報と、エッジ識別子を有し、ノード間の結合を特定する1以上のエッジ情報とを有するニューラル・ネットワーク情報が格納されるNN格納部と、画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の特徴情報に関する条件であり、他のノードを介さずに発火するノードを決定するための条件である初期発火条件に対応付けて、他のノードを介さずに発火するノードを識別する1以上のノード識別子を有する1以上の発火始点情報が格納される始点格納部と、ポジティブおよびネガティブに関する基準スコアを格納する基準スコア格納部と、情報受付部と、画像特徴取得部と、音特徴取得部と、総合スコア取得部と、発火ノード決定部と、成長部とにより実現されるニューラル・ネットワーク情報の生産方法であって、
    前記情報受付部が、画像情報と音情報とを受け付ける情報受付ステップと、
    前記画像特徴取得部が、前記情報受付ステップで受け付けられた前記画像情報を用いて、当該画像情報に対する1以上の画像特徴情報を取得する画像特徴取得ステップと、
    前記音特徴取得部が、前記情報受付ステップで受け付けられた前記音情報を用いて、当該音情報に対する1以上の音特徴情報を取得する音特徴取得ステップと、
    前記総合スコア取得部が、前記1以上の画像特徴情報および前記1以上の音特徴情報に基づく総合スコアを取得する総合スコア取得ステップと、
    前記発火ノード決定部が、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報が合致する初期発火条件と対になる1以上のノード識別子を前記始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報を渡されるノードであり、発火するノードのノード識別子を決定する発火ノード決定ステップと、
    前記成長部が、前記総合スコアと前記基準スコアとの差異に関する差情報に基づいて、前記発火ノード決定ステップで決定された1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードに結合する1以上のエッジのエッジ情報を成長させる処理である成長処理を行う成長ステップとを具備するニューラル・ネットワーク情報の生産方法。
    a starting point storage unit storing one or more ignition starting point information having one or more node identifiers for identifying nodes that ignite without passing through other nodes in association with an initial ignition condition, which is a condition related to one or more types of feature information among one or more image feature information for image information and one or more sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes; a standard score storage unit storing standard scores related to positive and negative; an information receiving unit; an image feature acquisition unit; a sound feature acquisition unit; a total score acquisition unit; an ignition node determination unit; and a growth unit,
    an information receiving step in which the information receiving unit receives image information and sound information;
    an image feature acquiring step in which the image feature acquiring unit acquires one or more image feature information for the image information by using the image information accepted in the information accepting step;
    a sound feature acquiring step in which the sound feature acquiring unit acquires one or more pieces of sound feature information for the sound information by using the sound information accepted in the information accepting step;
    a comprehensive score acquisition step in which the comprehensive score acquisition unit acquires a comprehensive score based on the one or more pieces of image feature information and the one or more pieces of sound feature information;
    an ignition node determination step in which the ignition node determination unit determines, from the starting point storage unit, one or more node identifiers that are paired with an initial ignition condition in which one or more types of information among the one or more image feature information and the one or more sound feature information match, and determines a node identifier of a node to be ignited, the node being connected to the node identified by the one or more node identifiers by an edge and receiving one or more types of information among the one or more image feature information and the one or more sound feature information;
    A method for producing neural network information comprising: a growing step in which the growing unit performs a growing process, which is a process of growing edge information of one or more edges that connect to nodes identified by one or more node identifiers among the one or more node identifiers determined in the ignition node determination step, based on difference information regarding the difference between the total score and the reference score.
  16. ノード識別子を有する2以上のノード情報と、エッジ識別子を有し、ノード間の結合を特定する1以上のエッジ情報とを有するニューラル・ネットワーク情報が格納されるNN格納部と、画像情報に対する1以上の画像特徴情報と音情報に対する1以上の音特徴情報のうちの1種類以上の特徴情報に関する条件であり、他のノードを介さずに発火するノードを決定するための条件である初期発火条件に対応付けて、他のノードを介さずに発火するノードを識別する1以上のノード識別子を有する1以上の発火始点情報が格納される始点格納部と、ポジティブおよびネガティブに関する基準スコアを格納する基準スコア格納部とにアクセス可能なコンピュータを、
    画像情報と音情報とを受け付ける情報受付部と、
    前記情報受付部が受け付けた前記画像情報を用いて、当該画像情報に対する1以上の画像特徴情報を取得する画像特徴取得部と、
    前記情報受付部が受け付けた前記音情報を用いて、当該音情報に対する1以上の音特徴情報を取得する音特徴取得部と、
    前記1以上の画像特徴情報および前記1以上の音特徴情報に基づく総合スコアを取得する総合スコア取得部と、
    前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報が合致する初期発火条件と対になる1以上のノード識別子を前記始点格納部から決定し、当該1以上の各ノード識別子で識別されるノードに対して、エッジにより繋がっており、前記1以上の画像特徴情報と前記1以上の音特徴情報のうちの1種類以上の情報を渡されるノードであり、発火するノードのノード識別子を決定する発火ノード決定部と、
    前記総合スコアと前記基準スコアとの差異に関する差情報に基づいて、前記発火ノード決定部が決定した1以上のノード識別子のうちの1以上の各ノード識別子で識別されるノードに結合する1以上のエッジのエッジ情報を成長させる処理である成長処理を行う成長部として機能させるためのプログラム。
    a computer that can access an NN storage unit in which neural network information having two or more pieces of node information each having a node identifier and one or more pieces of edge information each having an edge identifier and specifying a connection between the nodes is stored; a start point storage unit in which one or more pieces of ignition start point information each having one or more node identifiers that identify a node that ignites without passing through other nodes is stored in association with an initial ignition condition, which is a condition related to one or more types of feature information among one or more pieces of image feature information for image information and one or more pieces of sound feature information for sound information, and which is a condition for determining a node that ignites without passing through other nodes; and a standard score storage unit that stores standard scores related to positive and negative,
    an information receiving unit that receives image information and sound information;
    an image feature acquisition unit that acquires one or more image feature information for the image information by using the image information accepted by the information acceptance unit;
    a sound feature acquisition unit that acquires, using the sound information accepted by the information acceptance unit, one or more pieces of sound feature information for the sound information;
    a comprehensive score acquisition unit that acquires a comprehensive score based on the one or more pieces of image feature information and the one or more pieces of sound feature information;
    an ignition node determination unit that determines, from the starting point storage unit, one or more node identifiers that are paired with an initial ignition condition in which one or more types of information among the one or more image feature information and the one or more sound feature information match, and that determines a node identifier of a node to be ignited, the node being connected to the nodes identified by the one or more node identifiers by an edge and receiving one or more types of information among the one or more image feature information and the one or more sound feature information;
    A program for functioning as a growth unit that performs a growth process, which is a process of growing edge information of one or more edges that are connected to nodes identified by one or more node identifiers among the one or more node identifiers determined by the ignition node determination unit, based on difference information regarding the difference between the overall score and the reference score.
PCT/JP2022/042235 2022-11-14 2022-11-14 Nn growth device, information processing device, neural network information production method, and program WO2024105733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042235 WO2024105733A1 (en) 2022-11-14 2022-11-14 Nn growth device, information processing device, neural network information production method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042235 WO2024105733A1 (en) 2022-11-14 2022-11-14 Nn growth device, information processing device, neural network information production method, and program

Publications (1)

Publication Number Publication Date
WO2024105733A1 true WO2024105733A1 (en) 2024-05-23

Family

ID=91083976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042235 WO2024105733A1 (en) 2022-11-14 2022-11-14 Nn growth device, information processing device, neural network information production method, and program

Country Status (1)

Country Link
WO (1) WO2024105733A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150302294A1 (en) * 2012-07-30 2015-10-22 International Business Machines Corporation Multi-scale spatio-temporal neural network system
JP2017516180A (en) * 2014-04-15 2017-06-15 インテル・コーポレーション Neuromorphological graph compression method, system, and computer program product using multiple associative memories
WO2018189792A1 (en) * 2017-04-10 2018-10-18 ソフトバンク株式会社 Information processing device, information processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150302294A1 (en) * 2012-07-30 2015-10-22 International Business Machines Corporation Multi-scale spatio-temporal neural network system
JP2017516180A (en) * 2014-04-15 2017-06-15 インテル・コーポレーション Neuromorphological graph compression method, system, and computer program product using multiple associative memories
WO2018189792A1 (en) * 2017-04-10 2018-10-18 ソフトバンク株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
KR20210110620A (en) Interaction methods, devices, electronic devices and storage media
US20230172510A1 (en) System and Method for Capturing, Preserving, and Representing Human Experiences and Personality Through a Digital Interface.
US20200110925A1 (en) System and method for simulating facial expression of virtual facial model
Bown Player Responses to a Live Algorithm: Conceptualising computational creativity without recourse to human comparisons?
JP6701478B2 (en) Video generation apparatus, video generation model learning apparatus, method thereof, and program
JP5877418B2 (en) Scenario generation apparatus and scenario generation method
CN116647780A (en) Noise reduction control system and method for Bluetooth headset
WO2024105733A1 (en) Nn growth device, information processing device, neural network information production method, and program
Bitbol et al. QBism: An Eco-Phenomenology of Quantum Physics 1
Leonard et al. A virtual reality platform for musical creation: GENESIS-RT
JP6864085B2 (en) Information processing equipment, information processing methods, and programs
Giardina et al. Conveying audience emotions through humanoid robot gestures to an orchestra during a live musical exhibition
WO2024047804A1 (en) Nn growth device, information processing device, method for producing neural network information, and program
WO2023182024A1 (en) Acoustic signal control method, learning model generation method, and acoustic signal control program
CN108447487B (en) Method and system for training and simulating human brain thinking based on text input and output
WO2023238186A1 (en) Nn growth device, information processing device, method for producing neural network information, and program
WO2024195034A1 (en) Information processing device, information processing method, and program
Burloiu et al. Layered motion and gesture sonification in an interactive installation
CN108664890A (en) A kind of contradiction coordination approach, device, robot and storage medium
WO2019003418A1 (en) Sound information processing device, sound information processing method, and program
US11474998B2 (en) Interactive medical data querying
JP6758484B2 (en) Information processing equipment, information processing methods, and programs
JP2018033093A (en) Composition parameters optimization device, its method and program
Droumeva et al. Springboard: exploring embodied metaphor in the design of sound feedback for physical responsive environments
Cassidy et al. Auspex: Ecosystemic Emergence as Generative Soundscape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965710

Country of ref document: EP

Kind code of ref document: A1