WO2024103622A1 - Procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal - Google Patents

Procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal Download PDF

Info

Publication number
WO2024103622A1
WO2024103622A1 PCT/CN2023/088865 CN2023088865W WO2024103622A1 WO 2024103622 A1 WO2024103622 A1 WO 2024103622A1 CN 2023088865 W CN2023088865 W CN 2023088865W WO 2024103622 A1 WO2024103622 A1 WO 2024103622A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
gas
well
coal
reservoir
Prior art date
Application number
PCT/CN2023/088865
Other languages
English (en)
Chinese (zh)
Inventor
刘厅
翟成
李明洋
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2024103622A1 publication Critical patent/WO2024103622A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Definitions

  • the invention relates to the field of coal-measure gas reservoir transformation, and in particular to a coal-measure gas development method based on horizontal well methane in-situ explosion fracturing.
  • Coal-measure gas also known as the "three gases" of coal-measure gas, usually refers to coalbed methane, tight sandstone gas and shale gas that co-exist in coal-bearing strata. This genetic characteristic determines that the direction of efficient development of coal-measure gas is co-exploration and co-production.
  • the characteristic of coal-measure gas co-production is that natural gas of different phases in different lithological reservoirs is co-produced in the same well. Its purpose is to improve the development efficiency of coal-measure gas resources and the output of a single well.
  • Co-exploration and co-production of coalbed methane, tight gas and shale gas and co-production of coalbed methane, tight gas and shale gas are almost necessary technical choices for the commercial development of deep coal-measure gas.
  • the technical problem to be solved by the present invention is to address the deficiencies of the above-mentioned prior art and to provide a coal-bearing gas development method based on in-situ methane explosion fracturing in horizontal wells.
  • This method constructs a complex fracture network in the reservoir through the explosion shock wave generated by the explosion of methane-combustion aid. Compared with traditional hydraulic fracturing technology, it can form a more complex fracture network, which is beneficial to improving the recovery rate of coal-bearing gas.
  • the reservoir is depressurized, and the methane gas in the surrounding reservoirs converges to the artificial gas storage layer, which can realize the coordinated development of coal-bearing shale gas, sandstone gas and coalbed methane, avoiding the problem of resource waste caused by traditional mining methods.
  • the technical solution adopted by the present invention is:
  • a method for developing coal-measure gas based on horizontal well methane in-situ explosive fracturing specifically comprising the following steps:
  • a vertical well is constructed from the surface through a drilling platform, and the vertical well passes through the cap rock and enters the target coal-measure gas-bearing reservoir;
  • S3 construct several evenly distributed branch wells from the horizontal well section to both sides;
  • a packer is used to isolate the branch well against high pressure, and the methane pressure in the branch well is monitored in real time through a methane pressure sensor installed on the packer;
  • Drilling the drill bit opens the packer and starts extracting methane gas from the target coal-bearing gas reservoir.
  • the target coal-bearing gas-bearing reservoir described in S1 includes shale gas reservoirs, tight sandstone gas reservoirs and coalbed methane reservoirs, and the shale gas reservoirs, tight sandstone gas reservoirs and coalbed methane reservoirs are randomly and alternately distributed.
  • the length of the horizontal well section described in S2 is 400 to 1000 m.
  • the branch wells described in S3 are arranged in an alternating manner, and the spacing between adjacent branch wells on the same side is 20 to 50 m, which is specifically determined by the compressibility of the reservoir and the initial methane pressure in the branch wells; the minimum distance L between the branch well closest to the vertical well and the vertical well is 20 to 30 m, so as to ensure the stability of the vertical well.
  • the packer described in S4 is composed of a coiled tubing and a packer quick interface, a methane pressure sensor, an oxidant input channel, a one-way valve, an ignition gun and a packer housing.
  • the combustion aid is transported from the surface to the horizontal well section through the continuous tubing, and then the continuous tubing is connected to the packer through a quick interface and then transported to the branch well through the combustion aid input channel; a one-way valve is installed in the combustion aid input channel to prevent leakage of methane and the combustion aid; the transmission device of the methane pressure sensor and the ignition gun is transported through the continuous tubing, and the methane pressure is monitored and ignited after being connected to the packer through the continuous tubing and the quick interface of the packer.
  • the vertical distance l between the installation position of the packer and the horizontal well section is 10 to 15 m, thereby forming a protective rock column with a width of 2l around the horizontal well section to maintain the stability of the horizontal well section.
  • the specified methane pressure in S5 is 2-10 MPa; and the combustion aid is pure oxygen.
  • the present invention utilizes the methane desorbed from the coal-bearing gas reservoir itself as an explosive, thus avoiding the need for explosives to be transported into the reservoir. The dangerous process of explosion is prone to occur, ensuring the safety of the reservoir transformation process.
  • the present invention constructs a complex fracture network in the reservoir through the explosion shock wave generated by the combustion of methane-combustion aid. Compared with the traditional hydraulic fracturing technology, it can form a more complex fracture network, which is beneficial to improving the recovery rate of coal-bearing gas.
  • the reservoir is depressurized, and the methane gas in the surrounding reservoirs converges to the artificial gas storage layer, which can realize the coordinated development of coal-bearing shale gas, sandstone gas and coalbed methane, avoiding the problem of resource waste caused by traditional mining methods.
  • the present invention adopts the form of horizontal wells and branch wells to carry out methane in-situ explosive fracturing, which can greatly increase the range of fracturing and construct a large-scale fracture network.
  • the fractures can expand in the vertical direction of the reservoir and enter the adjacent rock formations, thereby increasing the coal-bearing gas production capacity of a single well.
  • explosive fracturing in branch wells can avoid damage to horizontal wellbores and vertical wellbores, thereby ensuring the structural stability of the gas flow channel.
  • the packer in the present invention not only has the function of isolating branch wells and resisting the overflow of explosion shock waves, but also realizes the integrated functions of gas pressure monitoring, ignition and combustion-aiding agent transportation.
  • the process flow is simple and easy to operate.
  • Fig. 1 is a cross-sectional view of a horizontal well and a combustion and explosion layer according to the present invention.
  • FIG. 2 is a schematic diagram of the branch well and the packer structure of the present invention.
  • a method for developing coal-measure gas based on in-situ methane explosion fracturing in horizontal wells specifically includes the following steps:
  • a vertical well 3 is constructed from the ground surface 1 through a drilling platform 2, and the vertical well 3 passes through the cap rock 4 and enters the target coal-bearing gas reservoir;
  • the target coal-bearing gas reservoir includes a shale gas reservoir 5, a tight sandstone gas reservoir 6 and a coalbed methane reservoir 7, and the shale gas reservoir 5, the tight sandstone gas reservoir 6 and the coalbed methane reservoir 7 are randomly and alternately distributed.
  • branch wells 9 are constructed from the horizontal well section 8 to both sides.
  • the branch wells 9 are arranged in an alternating manner up and down.
  • the spacing between adjacent branch wells 9 on the same side is 20 to 50 m, which is specifically determined by the compressibility of the reservoir and the initial methane pressure in the branch wells 9; the minimum distance L between the branch well 9 closest to the vertical well 3 and the vertical well 3 is 20 to 30 m, so as to ensure the stability of the vertical well 3.
  • the packer 10 is composed of a coiled tubing and packer quick interface 101 , a methane pressure sensor 102 , an oxidant input channel 103 , a one-way valve 104 , an ignition gun 105 and a packer housing 106 .
  • the combustion aid is transported from the surface 1 to the horizontal well section 8 through the continuous oil pipe, and then the continuous oil pipe is connected to the packer 10 through the quick interface 101, and then the combustion aid is transported to the branch well through the combustion aid input channel 103; a one-way valve 104 is installed in the combustion aid input channel 103 to prevent leakage of methane and the combustion aid; the transmission device of the methane pressure sensor 102 and the ignition gun 105 is transported through the continuous oil pipe, and the methane pressure is monitored and ignited after the continuous oil pipe is connected to the packer 10 through the quick interface 101 of the packer.
  • the vertical distance l between the installation position of the packer 10 and the horizontal well section 8 is 10 to 15 m, thereby forming a protective rock column 11 with a width of 2l around the horizontal well section 8 to maintain the stability of the horizontal well section 8.
  • the packer not only has the function of isolating branch wells and resisting the overflow of explosion shock waves, but also realizes the integrated functions of gas pressure monitoring, ignition and combustion-aid delivery.
  • the process is simple and easy to operate.
  • the specified methane pressure in the branch well 9 reaches a specified value, the specified methane pressure is 2-10 MPa; a combustion aid is transported into the branch well 9 through the combustion aid transport channel 103.
  • the combustion aid generally refers to pure oxygen, but can also be other highly oxidizing gases, liquids and solid powders.
  • the present invention constructs a complex fracture network in the reservoir through the explosion shock wave generated by the combustion of methane-combustion aid. Compared with the traditional hydraulic fracturing technology, it can form a more complex fracture network, which is beneficial to improving the recovery rate of coal-bearing gas. At the same time, after the combustion and fracturing, the reservoir is depressurized, and the methane gas in the surrounding reservoirs converges to the artificial gas storage layer, which can realize the coordinated development of coal-bearing shale gas, sandstone gas and coalbed methane, avoiding the problem of resource waste caused by traditional mining methods.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

L'invention concerne un procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal, comprenant les étapes consistant à : S1, permettre à un puits vertical de construction (3) d'atteindre un réservoir de gaz de formation houillère cible ; S2, construire une section de puits horizontale (8) dans le réservoir de gaz de formation houillère cible ; S3, construire des puits de dérivation (9) à partir de la section de puits horizontale vers les deux côtés ; S4, sceller les puits de dérivation au moyen de garnitures d'étanchéité (10) et surveiller la pression de méthane dans les puits de dérivation en temps réel ; S5, lorsque la pression de méthane atteint une valeur spécifiée, transporter un améliorant de combustion vers les puits de ramification ; S6, mélanger complètement ceux-ci, puis les allumer de façon à construire un réseau de fractures (12) autour de chacun des puits de dérivation ; S7, achever l'opération de fracturation par explosion de combustion de tous les puits de ramification de façon à former finalement un réservoir de gaz artificiel ; et S8, ouvrir les garnitures d'étanchéité pour extraire du gaz méthane. Le procédé construit les réseaux de fractures complexes dans le réservoir par l'intermédiaire d'ondes de choc d'explosion générées par une explosion de combustion, de façon à améliorer le taux de récupération de gaz de formation houillère. Après la fracturation par explosion de combustion, du gaz méthane dans des réservoirs environnants se rassemble dans le réservoir de gaz artificiel, de sorte qu'un développement coopératif de gaz de formation houillère peut être obtenu, ce qui évite le gaspillage de ressources.
PCT/CN2023/088865 2022-11-15 2023-04-18 Procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal WO2024103622A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211427907.7A CN115749717A (zh) 2022-11-15 2022-11-15 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法
CN202211427907.7 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103622A1 true WO2024103622A1 (fr) 2024-05-23

Family

ID=85371440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088865 WO2024103622A1 (fr) 2022-11-15 2023-04-18 Procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal

Country Status (2)

Country Link
CN (1) CN115749717A (fr)
WO (1) WO2024103622A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115749717A (zh) * 2022-11-15 2023-03-07 中国矿业大学 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法
CN116398106B (zh) * 2023-04-26 2024-05-07 中国矿业大学 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法
CN117189035A (zh) * 2023-09-08 2023-12-08 中国矿业大学 一种用于煤层气储层直井甲烷原位燃爆压裂方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252656A1 (en) * 2004-05-14 2005-11-17 Maguire James Q In-situ method of producing oil shale and gas (methane) hydrates, on-shore and off-shore
CN104533288A (zh) * 2014-11-20 2015-04-22 西南石油大学 一种钻鱼刺状多级分支水平井页岩气储层钻完井和增产的方法
CN112878973A (zh) * 2021-01-22 2021-06-01 中国矿业大学 一种页岩储层甲烷原位多级脉冲聚能燃爆压裂方法
CN113338873A (zh) * 2021-07-02 2021-09-03 中国矿业大学 一种页岩气藏多分支井爆压强化抽采方法
CN113338888A (zh) * 2021-07-05 2021-09-03 中国矿业大学 一种水平分支井燃爆压裂促进竖井页岩气开采的方法
CN115234200A (zh) * 2022-08-01 2022-10-25 中国矿业大学 一种非常规天然气储层甲烷原位定点燃爆压裂方法
CN115749717A (zh) * 2022-11-15 2023-03-07 中国矿业大学 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252656A1 (en) * 2004-05-14 2005-11-17 Maguire James Q In-situ method of producing oil shale and gas (methane) hydrates, on-shore and off-shore
CN104533288A (zh) * 2014-11-20 2015-04-22 西南石油大学 一种钻鱼刺状多级分支水平井页岩气储层钻完井和增产的方法
CN112878973A (zh) * 2021-01-22 2021-06-01 中国矿业大学 一种页岩储层甲烷原位多级脉冲聚能燃爆压裂方法
CN113338873A (zh) * 2021-07-02 2021-09-03 中国矿业大学 一种页岩气藏多分支井爆压强化抽采方法
CN113338888A (zh) * 2021-07-05 2021-09-03 中国矿业大学 一种水平分支井燃爆压裂促进竖井页岩气开采的方法
CN115234200A (zh) * 2022-08-01 2022-10-25 中国矿业大学 一种非常规天然气储层甲烷原位定点燃爆压裂方法
CN115749717A (zh) * 2022-11-15 2023-03-07 中国矿业大学 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法

Also Published As

Publication number Publication date
CN115749717A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2022252591A1 (fr) Procédé d'augmentation de la perméabilité à la fissuration combinant une fracturation hydraulique et une explosion par combustion in situ de méthane
WO2024103622A1 (fr) Procédé de développement de gaz de formation houillère basé sur une fracturation par explosion de combustion in situ de méthane de puits horizontal
CN105332684B (zh) 一种高压水爆与co2压裂相结合的煤层气驱替抽采工艺
CN102852546B (zh) 未采区单一松软突出煤层预抽煤巷条带瓦斯的方法
WO2014044192A1 (fr) Procédé d'extraction minière conjointe de gaz de houille et de charbon
CN107620581B (zh) 一井两用煤矿井筒检查孔的施工方法
CN102392677A (zh) 煤层气储盖层立体缝网改造增透技术
CN112878973A (zh) 一种页岩储层甲烷原位多级脉冲聚能燃爆压裂方法
CN102493795A (zh) 液化氮气在油气层内气化压裂方法
CN110145293B (zh) 一种多联产无井式煤炭地下气化方法
CN103122759A (zh) 一种煤层气井多元热流体强化开采方法
CN112878978A (zh) 一种煤炭地下气化的超临界水压裂增效制氢方法
CN108729896B (zh) 一种干热岩机器人爆炸水力复合压裂钻完井系统
CN108301811A (zh) 一种低渗透性煤层瓦斯高效抽采方法
CN114876434B (zh) 一种页岩气储层缝内甲烷原位燃爆压裂方法
CN108756884A (zh) 煤矿坚硬顶板全工作面地面提前消突方法
CN115522905B (zh) 一种页岩气储层甲烷燃爆压裂装置及其控制方法
CN101915086B (zh) 煤矿井下瓦斯钻孔压裂的方法
CN109372572A (zh) 一种低渗透性煤层瓦斯高效抽采方法
CN203362135U (zh) 提高煤层透气性的射孔装置
CN115653561A (zh) 一种煤系气储层直井甲烷原位分层燃爆压裂造储方法
CN105986801A (zh) 用于侧钻井爆炸压裂的方法和装置
CN112392484B (zh) 一种不动管柱的二氧化碳相变致裂增透装置及工作方法
CN113914846A (zh) 一种应用双羽状水平井改善煤炭地下气化气腔发育的方法
US20230235648A1 (en) Coal bed methane extraction and underground co2 storage system and method