WO2024103621A1 - 增强现实显示装置屈光度调节方法及增强现实显示装置 - Google Patents

增强现实显示装置屈光度调节方法及增强现实显示装置 Download PDF

Info

Publication number
WO2024103621A1
WO2024103621A1 PCT/CN2023/088646 CN2023088646W WO2024103621A1 WO 2024103621 A1 WO2024103621 A1 WO 2024103621A1 CN 2023088646 W CN2023088646 W CN 2023088646W WO 2024103621 A1 WO2024103621 A1 WO 2024103621A1
Authority
WO
WIPO (PCT)
Prior art keywords
diopter
augmented reality
display device
display unit
lens group
Prior art date
Application number
PCT/CN2023/088646
Other languages
English (en)
French (fr)
Inventor
冯聪
王旭
卿启杰
张韦韪
Original Assignee
深圳惠牛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳惠牛科技有限公司 filed Critical 深圳惠牛科技有限公司
Publication of WO2024103621A1 publication Critical patent/WO2024103621A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens

Definitions

  • the present invention relates to the field of optical systems, and in particular to a diopter adjustment method for an augmented reality display device.
  • the present invention also relates to an augmented reality display device.
  • Augmented Reality (AR) technology is a new technology that "seamlessly" integrates real-world information and virtual-world information. It uses computers and other scientific technologies to simulate and superimpose physical information (visual information, sound, taste, touch, etc.) that is difficult to experience in a certain time and space range in the real world, and then applies virtual information to the real world and is perceived by human senses, thereby achieving a sensory experience beyond reality. That is, the real environment and virtual objects are superimposed on the same screen or space in real time.
  • the existing augmented reality display device can adjust the diopter according to different degrees of myopia.
  • the diopter of the augmented reality display device there are two ways to adjust the diopter of the augmented reality display device.
  • One is to move the display unit to change the distance between the display unit and the lens group.
  • this adjustment method will cause the eye box range in the horizontal direction to be insufficient, resulting in blurred image edges during the adjustment process;
  • the other adjustment method is to move the display unit and the lens group at the same time to change the distance between the display unit and the lens group and the light guide component.
  • this adjustment method will cause the eye box range in the vertical direction to be insufficient, resulting in darkening or even defects in the image edges during the adjustment process.
  • the purpose of the present invention is to provide a diopter adjustment method for an augmented reality display device.
  • the eye box range can be enlarged, thereby avoiding the phenomenon of image edge blur and defect caused by insufficient eye box range.
  • the present invention also provides an augmented reality display device.
  • the present invention provides the following technical solutions:
  • a diopter adjustment method for an augmented reality display device comprising a display unit, a lens group and a light guide assembly, the lens group being arranged on a light-emitting light path of the display unit, the light emitted by the display unit being transmitted through the lens group and incident on the light guide assembly, so that the light emitted by the display unit is transmitted through the light guide assembly to an eye box area;
  • the method comprises:
  • the display unit is controlled to move along the optical axis, during which the position of the lens group remains unchanged, so that the refractive power of the augmented reality display device changes between the second refractive power value and the third refractive power value, wherein the second refractive power value is a value between the first refractive power value and the third refractive power value.
  • controlling the display unit and the lens group to move along the optical axis so that the diopter of the augmented reality display device changes between a first diopter value and a second diopter value comprises:
  • the display unit and the lens group are controlled to move along the optical axis in a direction away from the light guide assembly, so that the refractive power of the augmented reality display device tends to the first refractive power value.
  • controlling the display unit to move along the optical axis so that the diopter of the augmented reality display device changes between the second diopter value and the third diopter value comprises:
  • the display unit is controlled to move along the optical axis in a direction away from the lens group, so that the refractive power of the augmented reality display device tends to the second refractive power value.
  • d1 and d2 satisfy the following conditions: d1 is in the range of 0.1 mm to 2 mm, and d2 is in the range of 0.5 mm to 3.5 mm;
  • d2 represents the moving distance of the display unit and the lens group along the optical axis when the refractive power of the augmented reality display device changes between the first refractive power value and the second refractive power value
  • d1 represents the moving distance of the display unit along the optical axis when the refractive power of the augmented reality display device changes between the second refractive power value and the third refractive power value.
  • An augmented reality display device comprises a display unit, a lens group, a light guide component and an adjustment component, wherein the lens group is arranged on a light-emitting light path of the display unit, and light emitted by the display unit is transmitted through the lens group and incident on the light guide component, so that the light emitted by the display unit is transmitted to an eye box area through the light guide component;
  • the adjustment component is connected to the display unit and the lens group respectively, and is used to control the display unit and the lens group to move along the optical axis respectively, so as to implement the diopter adjustment method of the augmented reality display device as described above.
  • the light guide assembly comprises a first optical element and a second optical element
  • the light emitted by the display unit is transmitted through the lens group and incident on the first optical element
  • the first optical element is used to reflect the light from the lens group to the second optical element and transmit the light from the second optical element
  • the second optical element is used to reflect the light from the first optical element back to the first optical element
  • the reflection surface of the second optical element is a curved surface
  • the distance D1 between the display unit and the lens group ranges from 0.1 mm to 2.5 mm
  • the distance D2 between the lens group and the first optical element ranges from 7 mm to 11.5 mm
  • the distance D3 between the first optical element and the second optical element ranges from 6.5 mm to 11 mm.
  • the field of view angle of the augmented reality display device ranges from 35° to 50°.
  • the field of view angle variation range of the augmented reality display device is 6°> ⁇ FOV, where ⁇ FOV represents the field of view angle variation.
  • the combined focal length of the lens group and the light guide assembly changes in a range of 22 mm to 17 mm;
  • the refractive power of the augmented reality display device changes between the second refractive power value and the third refractive power value, the combined focal length of the lens group and the light guide component remains unchanged.
  • the augmented reality display device has an exit pupil distance greater than 12 mm, and an exit pupil size greater than 10*6 mm.
  • the present invention provides a method for adjusting the diopter of an augmented reality display device, wherein the augmented reality display device includes a display unit, a lens group, and a light guide component, wherein the lens group is arranged on a light-emitting optical path of the display unit, and the light emitted by the display unit is transmitted through the lens group and incident on the light guide component, so that the light emitted by the display unit is transmitted to the eye box area through the light guide component.
  • the method includes: controlling the display unit and the lens group to move along the optical axis so that the diopter of the augmented reality display device changes between a first diopter value and a second diopter value, during which the relative position between the display unit and the lens group remains unchanged, and controlling the display unit to move along the optical axis so that the diopter of the augmented reality display device changes between a second diopter value and a third diopter value, wherein the second diopter value is a value between the first diopter value and the third diopter value.
  • the diopter adjustment method of the augmented reality display device of the present invention divides the adjustable diopter range of the augmented reality display device into multiple intervals. Different intervals are adjusted by controlling the display unit and the lens group to move together or by controlling the display unit to move. Different adjustment methods are combined to adjust the diopter of the augmented reality display device. Compared with the existing adjustment method of adjusting the display unit alone or adjusting the display unit and the lens group alone, under the same adjustable diopter range, the phenomenon of image edge blur and image defect caused by insufficient eye box range can be avoided.
  • the augmented reality display device provided by the present invention can achieve the above-mentioned beneficial effects.
  • FIG1 is a schematic diagram of an augmented reality display device to which a diopter adjustment method for an augmented reality display device is applied according to an embodiment of the present invention
  • FIG. 2 is a diopter adjustment method for an augmented reality display device provided by an embodiment of the present invention.
  • FIG3 is a schematic diagram of an augmented reality display device provided by an embodiment of the present invention.
  • FIG4 is a schematic diagram of an augmented reality display device provided by yet another embodiment of the present invention.
  • FIG5 is a light path diagram showing a light blocking phenomenon in a conventional augmented reality display device
  • FIG6 is an MTF curve diagram of the eye box edge of an augmented reality display device according to an embodiment of the present invention.
  • FIG. 7 is a MTF curve diagram of the eye box edge of an augmented reality display device according to yet another embodiment of the present invention.
  • Eye box area-100 display unit-101, lens group-102, light guide component-103, adjustment component-104, first optical element-105, second optical element-106.
  • the present embodiment provides a diopter adjustment method for an augmented reality display device, which is applied to the augmented reality display device.
  • Figure 1 is a schematic diagram of an augmented reality display device to which the diopter adjustment method for an augmented reality display device is applied according to an embodiment.
  • the augmented reality display device includes a display unit 101, a lens group 102, and a light guide component 103.
  • the lens group 102 is arranged on the light output path of the display unit 101.
  • the light emitted by the display unit 101 is transmitted through the lens group 102 and is incident on the light guide component 103, so that the light emitted by the display unit 101 is transmitted through the light guide component 103 to the eye box area 100.
  • FIG. 2 is a flow chart of a diopter adjustment method for an augmented reality display device provided by an embodiment. As shown in FIG. 2 , the method includes the following steps:
  • S11 controlling the display unit 101 and the lens group 102 to move along the optical axis so that the diopter of the augmented reality display device changes between a first diopter value and a second diopter value, During this process, the relative position between the display unit 101 and the lens group 102 remains unchanged;
  • S12 Control the display unit 101 to move along the optical axis, during which the position of the lens group 102 remains unchanged, so that the refractive power of the augmented reality display device changes between the second refractive power value and the third refractive power value, wherein the second refractive power value is a value between the first refractive power value and the third refractive power value.
  • the light emitted by the display unit 101 is transmitted through the lens group 102 and incident on the light guide component 103, so that the light emitted by the display unit 101 is transmitted through the light guide component 103 and propagates to the eye box area 100.
  • the light enters the observer's eyes, and the observer can view the image information of the display unit 101.
  • the diopter of the augmented reality display device is used to characterize the distance of the virtual image from the observer, that is, -1/VID, where VID (virtual image distance) is the virtual image distance, and the unit is m.
  • the display unit 101 and the lens group 102 are moved along the optical axis, and the distance between the display unit 101 and the lens group 102 and the light guide assembly 103 is changed, so that the diopter of the present augmented reality display device can be changed; the display unit 101 is moved along the optical axis, the position of the lens group 102 remains unchanged, and the distance between the display unit 101 and the lens group 102 is changed, so that the diopter of the present augmented reality display device can also be changed.
  • the diopter of the present augmented reality display device when the display unit 101 and the lens group 102 are moved along the optical axis, the diopter of the present augmented reality display device changes between the first diopter value and the second diopter value; when the display unit 101 is moved along the optical axis, the diopter of the present augmented reality display device changes between the second diopter value and the third diopter value.
  • the adjustable diopter range is divided into a plurality of intervals.
  • the display unit 101 and the lens group 102 are controlled to move together for adjustment.
  • the display unit 101 is controlled to move for adjustment.
  • the diopter adjustment method of the augmented reality display device of this embodiment combines different adjustment methods to adjust the diopter of the augmented reality display device.
  • the first way is to move the display unit and change the distance between the display unit and the lens group to adjust the diopter.
  • the second way is to move the display unit and the lens group together.
  • the first way in order to achieve a larger adjustable diopter range, the distance between the display unit and the lens group is large, which will sacrifice the image quality, and thus it is impossible to obtain a larger eye box range in the horizontal direction, which will cause the observer to watch at a suitable distance.
  • the edge of the image is blurred.
  • the display unit and the lens group will be set to move longer.
  • FIG5 is a light path diagram of the existing augmented reality display device with light blocking, that is, the lens group 102 blocks the image light, causing the brightness of the area above the image to decrease or even completely block it, thereby reducing the eye box range in the vertical direction and causing image defects.
  • the adjustable diopter range is divided into a plurality of intervals, and different intervals are adjusted by controlling the display unit 101 and the lens group 102 to move together or by controlling the display unit 101 to move to adjust the diopter.
  • Different adjustment methods are used in combination to adjust the diopter of the augmented reality display device.
  • the distance between the display unit and the lens group can be avoided to be too large, thereby eliminating the image edge blur phenomenon;
  • the existing method two when the same adjustable diopter range is achieved, the moving stroke of the display unit and the lens group can be reduced, thereby avoiding the image defect problem caused by light blocking.
  • the second refractive index is a value between the first refractive index and the third refractive index, that is, the second refractive index is between the first refractive index and the third refractive index.
  • the magnitude relationship between the first refractive index and the third refractive index is not limited, and the first refractive index may be greater than the third refractive index, or the first refractive index may be less than the third refractive index.
  • the first refractive index may be an upper refractive index limit of the augmented reality display device, and the third refractive index may be a lower refractive index limit of the augmented reality display device.
  • controlling the display unit 101 and the lens group 102 to move along the optical axis in step S11 so that the diopter of the augmented reality display device changes between a first diopter value and a second diopter value may include the following process:
  • the display unit 101 and the lens group 102 are controlled to move along the optical axis in a direction away from the light guide component 103, so that the refractive power of the augmented reality display device tends to the first refractive power value.
  • the display unit 101 and the lens group 102 are moved in a direction close to the light guide component 103 along the optical axis, and the diopter of the present augmented reality display device changes toward the second diopter value.
  • the display unit 101 and the lens group 102 are moved in a direction away from the light guide component 103 along the optical axis, and the diopter of the present augmented reality display device changes toward the first diopter value.
  • the respective diopter values are arranged in order according to the size relationship as follows: the first diopter value, the current diopter value, the target diopter value, and the second diopter value, and the target diopter value refers to the diopter value to be adjusted. Then the display unit 101 and the lens group 102 can be moved in a direction close to the light guide component 103 along the optical axis to adjust the diopter of the augmented reality display device to the target diopter value.
  • controlling the display unit 101 to move along the optical axis so that the diopter of the augmented reality display device changes between the second diopter value and the third diopter value may include the following process:
  • the display unit 101 is controlled to move along the optical axis in a direction away from the lens group 102, so that the refractive power of the augmented reality display device tends to the second refractive power value.
  • the display unit 101 is moved along the optical axis in a direction close to the lens group 102, and the diopter of the augmented reality display device changes toward the third diopter value.
  • the display unit 101 is moved along the optical axis in a direction away from the lens group 102, and the diopter of the augmented reality display device changes toward the second diopter value.
  • the respective diopter values are arranged in order of magnitude as follows: the second diopter value, the target diopter value, the current diopter value, and the third diopter value, and the target diopter value refers to the diopter value to be adjusted.
  • the display unit 101 can be moved along the optical axis in a direction away from the lens group 102, so that the diopter of the augmented reality display device is adjusted from the current diopter value to the target diopter value.
  • the display unit 101 and the lens group 102 are first moved along the optical axis.
  • the relative position between the lens groups 102 remains unchanged, so that the refractive power of the augmented reality display device reaches a second refractive power value, and then the display unit 101 continues to be moved along the optical axis.
  • the position of the lens group 102 remains unchanged, so that the refractive power of the augmented reality display device is adjusted to reach the target refractive power value.
  • the display unit 101 can be first moved along the optical axis, during which the position of the lens group 102 remains unchanged, so that the diopter of the augmented reality display device reaches the second diopter value, and then the display unit 101 and the lens group 102 are moved along the optical axis, during which the relative position between the display unit 101 and the lens group 102 remains unchanged, and the diopter of the augmented reality display device is adjusted to reach the target diopter value.
  • d1 and d2 meet the following conditions: d1 ranges from 0.1 mm to 2 mm, and d2 ranges from 0.5 mm to 3.5 mm;
  • d2 represents the moving distance of the display unit 101 and the lens group 102 along the optical axis when the refractive power of the augmented reality display device changes between the first refractive power value and the second refractive power value
  • d1 represents the moving distance of the display unit 101 along the optical axis when the refractive power of the augmented reality display device changes between the second refractive power value and the third refractive power value.
  • FIG3 is a schematic diagram of an augmented reality display device provided by an embodiment.
  • the augmented reality display device includes a display unit 101, a lens group 102, a light guide component 103, and an adjustment component 104.
  • the lens group 102 is arranged on the light emitting path of the display unit 101.
  • the light emitted by the display unit 101 is transmitted through the lens group 102 and incident on the light guide component 103, so that the light emitted by the display unit 101 is transmitted to the eye box area 100 through the light guide component 103;
  • the adjustment component 104 is connected to the display unit 101 and the lens group 102 respectively, and is used to control the display unit 101 and the lens group 102 to move along the optical axis respectively, so as to implement the diopter adjustment method of the augmented reality display device as described in any of the above embodiments.
  • the light emitted by the display unit 101 passes through the lens group 102 and enters the light guide assembly 103, so that the light emitted by the display unit 101 is transmitted through the light guide assembly 103 and propagates to the eye box area 100.
  • the light enters the observer's eyes, and the observer can view the image information of the display unit 101.
  • the adjustment component 104 can control the display unit 101 and the lens group 102 to move along the optical axis, and change the distance from the display unit 101 and the lens group 102 to the light guide component 103, so as to change the diopter of the present augmented reality display device; the adjustment component 104 can control the display unit 101 to move along the optical axis, and the position of the lens group 102 remains unchanged, and change the distance between the display unit 101 and the lens group 102, so as to change the diopter of the present augmented reality display device.
  • the diopter of the present augmented reality display device when the display unit 101 and the lens group 102 are moved along the optical axis, the diopter of the present augmented reality display device changes between the first diopter value and the second diopter value; when the display unit 101 is moved along the optical axis, the diopter of the present augmented reality display device changes between the second diopter value and the third diopter value.
  • the adjustable diopter range is divided into a plurality of intervals, and the diopter range between the first diopter value and the second diopter value is adjusted by controlling the display unit 101 and the lens group 102 to move together, and the diopter range between the second diopter value and the third diopter value is adjusted by controlling the display unit 101 to move.
  • the augmented reality display device of this embodiment uses different adjustment methods in combination to adjust the diopter of the augmented reality display device.
  • the light guide assembly 103 includes a first optical element and a second optical element.
  • the light emitted by the display unit 101 is transmitted through the lens group 102 and incident on the first optical element.
  • the first optical element is used to reflect the light from the lens group 102 to the second optical element and transmit the light from the second optical element.
  • the second optical element is used to reflect the light from the first optical element back to the first optical element.
  • the light from the second optical element is transmitted through the first optical element and incident on the eye box area 100.
  • the light from the real world is transmitted through the second optical element and the first optical element in sequence and then incident on the eye box area 100, so that the observer can see the effect of the virtual image formed being superimposed on the real world.
  • FIG. 4 is a schematic diagram of an augmented reality display device provided by another embodiment.
  • the light emitted by the display unit 101 is transmitted through the lens group 102 and incident on the first optical element 105, and is reflected by the first optical element 105 to the second optical element 106.
  • the second optical element 106 reflects the light back to the first optical element 106.
  • the light further passes through the first optical element 105 and enters the eye box area 100.
  • the reflection surface of the second optical element 106 is a concave surface, which can reflect the incident light in a converging form.
  • the first optical element 105 can be a plane mirror, and the second optical element 106 can be a concave mirror.
  • the augmented reality display device also satisfies the following conditions: the distance D1 between the display unit 101 and the lens group 102 ranges from 0.1 mm to 2.5 mm, the distance D2 between the lens group 102 and the first optical element 105 ranges from 7 mm to 11.5 mm, and the distance D3 between the first optical element 105 and the second optical element 106 ranges from 6.5 mm to 11 mm.
  • the distance D3 between the first optical element 105 and the second optical element 106 is preferably 8 mm to 9 mm.
  • the field of view (FOV) of the augmented reality display device ranges from 35° to 50°.
  • the first diopter value may be 0D
  • the third diopter value may be -6D.
  • the field of view FOV decreases all the time, and the field of view FOV fluctuates in a small range within the first adjustment range; and in a large range within the second adjustment range: 6°> ⁇ FOV, where ⁇ FOV represents the change in the field of view angle.
  • the pupil distance of the augmented reality display device is greater than 12 mm, and the pupil size is greater than 10*6 mm. Compared with a single diopter adjustment module, the display effect of this module is better.
  • the combined focal length of the lens group 102 and the light guide component 103 changes with the change of the diopter.
  • the combined focal length of the lens group 102 and the light guide component 103 changes in the range of 22 mm to 17 mm; when the diopter of the augmented reality display device changes between the second diopter value and the third diopter value, the combined focal length of the lens group 102 and the light guide component 103 remains unchanged.
  • EFL-lens group represents the focal length of the lens group 102
  • EFL-all represents the combined focal length of the lens group 102 and the light guide assembly 103 .
  • FIG6 is an MTF curve diagram of an eye box edge of an augmented reality display device according to one embodiment
  • FIG7 is an MTF curve diagram of an eye box edge of an augmented reality display device according to another embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种增强现实显示装置及屈光度调节方法,增强现实显示装置包括显示单元、透镜组以及导光组件,透镜组设置于显示单元的出光光路上,显示单元发出的光线透射过透镜组而入射至导光组件,使得显示单元发出的光线通过导光组件传播至眼盒区域。方法包括:控制显示单元、透镜组沿着光轴移动,使得屈光度在第一屈光度值与第二屈光度值之间变化,以及控制显示单元沿着光轴移动,使得屈光度在第二屈光度值与第三屈光度值之间变化。本发明采用组合调节方式调节增强现实显示装置的屈光度,同现有单独调节显示单元或者单独调节显示屏和透镜的调节方式比,在相同可调屈光度范围的情况下,能避免因眼盒范围不够造成的边缘模糊以及图像缺损的现象。

Description

增强现实显示装置屈光度调节方法及增强现实显示装置
本申请要求于2022年11月16日提交中国专利局、申请号为202211433125.4、发明名称为“增强现实显示装置屈光度调节方法及增强现实显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学系统领域,特别是涉及一种增强现实显示装置屈光度调节方法。本发明还涉及一种增强现实显示装置。
背景技术
增强现实(Augmented Reality,AR)技术,它是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息、声音、味道、触觉等)通过计算机等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。即将真实的环境和虚拟的物体实时地叠加到了同一个画面或者空间。
为了满足非正常视力用户的观看需求,比如近视者,现有的增强现实显示装置能够根据不同近视程度调节屈光度。现有技术中,增强现实显示装置调节屈光度的方式有两种,一种为移动显示单元以改变显示单元与透镜组的间距,实际操作中该调节方式会造成水平方向眼盒范围不够,会导致调节过程中出现图像边缘模糊的情况;另一种调节方式为同时移动显示单元以及透镜组以改变显示单元以及透镜组与导光组件的间距,实际操作中该调节方式会造成竖直方向眼盒范围不够,导致调节过程中出现图像边缘变暗甚至缺损的情况。
发明内容
本发明的目的是提供一种增强现实显示装置屈光度调节方法,在相同 可调屈光度范围的情况下,能增大眼盒范围,避免因眼盒范围不够造成的图像边缘模糊以及缺损的现象。本发明还提供一种增强现实显示装置。
为实现上述目的,本发明提供如下技术方案:
一种增强现实显示装置屈光度调节方法,所述增强现实显示装置包括显示单元、透镜组以及导光组件,所述透镜组设置于所述显示单元的出光光路上,所述显示单元发出的光线透射过所述透镜组而入射至所述导光组件,使得所述显示单元发出的光线通过所述导光组件传播至眼盒区域;
所述方法包括:
控制所述显示单元、所述透镜组沿着光轴移动,使得所述增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化,在此过程中所述显示单元和所述透镜组之间的相对位置不变;
控制所述显示单元沿着光轴移动,在此过程中所述透镜组的位置不变,使得所述增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化,其中,所述第二屈光度值为所述第一屈光度值和所述第三屈光度值之间的值。
优选地,控制所述显示单元、所述透镜组沿着光轴移动,使得所述增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化包括:
控制所述显示单元、所述透镜组沿着光轴向靠近所述导光组件的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值;
控制所述显示单元、所述透镜组沿着光轴向远离所述导光组件的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第一屈光度值。
优选地,控制所述显示单元沿着光轴移动,使得所述增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化包括:
控制所述显示单元沿着光轴向靠近所述透镜组的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第三屈光度值;
控制所述显示单元沿着光轴向远离所述透镜组的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值。
优选地,d1以及d2满足以下条件:d1的范围为0.1mm-2mm,d2的范围为0.5mm-3.5mm;
其中,d2表示所述增强现实显示装置的屈光度在所述第一屈光度值与所述第二屈光度值之间变化时所述显示单元、所述透镜组沿着光轴移动的移动行程,d1表示所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述显示单元沿着光轴移动的移动行程。
一种增强现实显示装置,包括显示单元、透镜组、导光组件以及调节组件,所述透镜组设置于所述显示单元的出光光路上,所述显示单元发出的光线透射过所述透镜组而入射至所述导光组件,使得所述显示单元发出的光线通过所述导光组件传播至眼盒区域;
所述调节组件分别与所述显示单元、所述透镜组连接,用于分别控制所述显示单元、所述透镜组沿着光轴移动,以实现如上所述的增强现实显示装置屈光度调节方法。
优选地,所述导光组件包括第一光学元件和第二光学元件,所述显示单元发出的光线透射过所述透镜组而入射至所述第一光学元件,所述第一光学元件用于将来自所述透镜组的光线反射至所述第二光学元件以及将来自所述第二光学元件的光线透射出,所述第二光学元件用于将来自所述第一光学元件的光线反射回至所述第一光学元件,所述第二光学元件的反射面为曲面;
还满足以下条件:所述显示单元与所述透镜组的间距D1范围为0.1mm~2.5mm,所述透镜组与所述第一光学元件的间距D2范围为7mm~11.5mm,所述第一光学元件和所述第二光学元件的间距D3范围为6.5mm~11mm。
优选地,所述增强现实显示装置的视场角范围为35°~50°。
优选地,所述增强现实显示装置的视场角变化量范围为6°>ΔFOV,其中ΔFOV表示视场角变化量。
优选地,所述增强现实显示装置的屈光度在所述第一屈光度值与所述第二屈光度值之间变化时所述透镜组和所述导光组件的组合焦距变化范围为22mm~17mm;
所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述透镜组和所述导光组件的组合焦距不变。
优选地,所述增强现实显示装置的出瞳距大于12mm,出瞳大小10*6mm以上。
由上述技术方案可知,本发明所提供的一种增强现实显示装置屈光度调节方法,增强现实显示装置包括显示单元、透镜组以及导光组件,透镜组设置于显示单元的出光光路上,显示单元发出的光线透射过透镜组而入射至导光组件,使得显示单元发出的光线通过导光组件传播至眼盒区域。方法包括:控制显示单元、透镜组沿着光轴移动,使得增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化,在此过程中显示单元和透镜组之间的相对位置不变,以及控制显示单元沿着光轴移动,使得增强现实显示装置的屈光度在第二屈光度值与第三屈光度值之间变化,其中第二屈光度值为第一屈光度值和第三屈光度值之间的值。
本发明的增强现实显示装置屈光度调节方法,将增强现实显示装置的可调屈光度范围分成多个区间,不同的区间通过控制显示单元、透镜组一起移动进行调节屈光度或者通过控制显示单元移动进行调节屈光度,组合使用不同的调节方式实现调节增强现实显示装置的屈光度。同现有单独调节显示单元或者单独调节显示单元和透镜组的调节方式比,在相同可调屈光度范围的情况下,能避免因眼盒范围不够造成的图像边缘模糊以及图像缺损的现象。
本发明提供的一种增强现实显示装置,能够达到上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的应用本增强现实显示装置屈光度调节方法的增强现实显示装置的示意图;
图2为本发明一实施例提供的一种增强现实显示装置屈光度调节方法 的流程图;
图3为本发明一实施例提供的一种增强现实显示装置的示意图;
图4为本发明又一实施例提供的一种增强现实显示装置的示意图;
图5为现有的增强现实显示装置出现挡光现象的光路图;
图6为本发明一实施例的增强现实显示装置的眼盒边缘的MTF曲线图;
图7为本发明又一实施例的增强现实显示装置的眼盒边缘的MTF曲线图。
说明书附图中的附图标记包括:
眼盒区域-100,显示单元-101,透镜组-102,导光组件-103,调节组件-104,第一光学元件-105,第二光学元件-106。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本实施例提供一种增强现实显示装置屈光度调节方法,应用于增强现实显示装置,可参考图1,图1为一实施例的应用本增强现实显示装置屈光度调节方法的增强现实显示装置的示意图,如图1所示,所述增强现实显示装置包括显示单元101、透镜组102以及导光组件103,所述透镜组102设置于所述显示单元101的出光光路上,所述显示单元101发出的光线透射过所述透镜组102而入射至所述导光组件103,使得所述显示单元101发出的光线通过所述导光组件103传播至眼盒区域100。
请参考图2,图2为一实施例提供的一种增强现实显示装置屈光度调节方法的流程图,如图2所示,所述方法包括以下步骤:
S11:控制所述显示单元101、所述透镜组102沿着光轴移动,使得所述增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化, 在此过程中所述显示单元101和所述透镜组102之间的相对位置不变;
S12:控制所述显示单元101沿着光轴移动,在此过程中所述透镜组102的位置不变,使得所述增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化,其中,所述第二屈光度值为所述第一屈光度值和所述第三屈光度值之间的值。
显示单元101发出的光线透射过透镜组102而入射至导光组件103,使得显示单元101发出的光线通过导光组件103传导而传播至眼盒区域100。光线进入观察者眼睛,观察者能够观看到显示单元101的图像信息。增强现实显示装置的屈光度用于表征上述虚像距离观察者的远近,即-1/VID,其中VID(virtual image distance)为虚像距离,单位为m。
本增强现实显示装置中,将显示单元101、透镜组102沿着光轴移动,改变显示单元101和透镜组102到导光组件103的距离,可以改变本增强现实显示装置的屈光度;将显示单元101沿着光轴移动,透镜组102的位置不变,改变显示单元101与透镜组102的间距,也可以改变本增强现实显示装置的屈光度。具体本增强现实显示装置中,将显示单元101、透镜组102沿着光轴移动时,本增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化;将显示单元101沿着光轴移动,本增强现实显示装置的屈光度在第二屈光度值与第三屈光度值之间变化。
本增强现实显示装置中,将可调屈光度范围分成多个区间,对于第一屈光度值与第二屈光度值之间的屈光度范围,通过控制显示单元101、透镜组102一起移动进行调节,对于第二屈光度值与第三屈光度值之间的屈光度范围,通过控制显示单元101移动进行调节。本实施例的增强现实显示装置屈光度调节方法组合使用不同的调节方式,实现调节增强现实显示装置的屈光度。
现有技术中,增强现实显示装置采用的屈光度调节方式包括两种,方式一为移动显示单元,改变显示单元与透镜组的间距,实现调节屈光度;方式二为将显示单元和透镜组一起移动。对于方式一,为了达到较大的可调屈光度范围,显示单元与透镜组的间距很大,这样会牺牲图像的像质,从而无法得到水平方向上较大的眼盒范围,会导致观察者在合适距离观看 到的图像边缘模糊。对于方式二,为了达到较大的可调屈光度范围,会设置显示单元和透镜组的移动行程较长,显示单元和透镜组移动行程较大时往往会导致较大屈光度出现挡光现象,可参考图5所示,图5为现有的增强现实显示装置出现挡光现象的光路图,即透镜组102遮挡图像光线,造成图像上方区域亮度下降甚至完全遮挡,从而减小竖直方向上眼盒范围,造成图像缺损。
本实施例的增强现实显示装置屈光度调节方法中,将可调屈光度范围分成多个区间,不同的区间通过控制显示单元101、透镜组102一起移动进行调节或者通过控制显示单元101移动进行调节屈光度,组合使用不同的调节方式,实现调节增强现实显示装置的屈光度,与现有的方式一相比,在达到相同的可调屈光度范围的情况下,能够避免显示单元与透镜组间距过大,因此能够消除图像边缘模糊现象;与现有的方式二相比,在达到相同的可调屈光度范围的情况下,能够减小显示单元和透镜组的移动行程,能够避免出现因挡光现象造成的图像缺损问题。
第二屈光度值为第一屈光度值和第三屈光度值之间的值,即第二屈光度值位于第一屈光度值和第三屈光度值之间。本实施例中,对第一屈光度值、第三屈光度值的大小关系不做限定,可以是第一屈光度值大于第三屈光度值,或者可以是第一屈光度值小于第三屈光度值。示例地在一些实施方式中,第一屈光度值可以是本增强现实显示装置的屈光度上限值,第三屈光度值是本增强现实显示装置的屈光度下限值。
在一些实施方式中,步骤S11中控制显示单元101、透镜组102沿着光轴移动,使得增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化,可包括以下过程:
控制所述显示单元101、所述透镜组102沿着光轴向靠近所述导光组件103的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值;
控制所述显示单元101、所述透镜组102沿着光轴向远离所述导光组件103的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第一屈光度值。
即本增强现实显示装置中,将显示单元101、透镜组102沿着光轴向靠近导光组件103的方向移动,本增强现实显示装置的屈光度向着第二屈光度值变化。将显示单元101、透镜组102沿着光轴向远离导光组件103的方向移动,本增强现实显示装置的屈光度向着第一屈光度值变化。示例地,若增强现实显示装置的当前屈光度值、目标屈光度值均在第一屈光度值和第二屈光度值之间,各个屈光度值按照大小关系依次排列为:第一屈光度值、当前屈光度值、目标屈光度值、第二屈光度值,目标屈光度值是指想要调节达到的屈光度值。则可以将显示单元101、透镜组102沿着光轴向靠近导光组件103的方向移动,将增强现实显示装置的屈光度调节到目标屈光度值。
在一些实施方式中,在步骤S12中控制显示单元101沿着光轴移动,使得增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化,可包括以下过程:
控制所述显示单元101沿着光轴向靠近所述透镜组102的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第三屈光度值;
控制所述显示单元101沿着光轴向远离所述透镜组102的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值。
即本增强现实显示装置中,将显示单元101沿着光轴向靠近透镜组102的方向移动,本增强现实显示装置的屈光度向着第三屈光度值变化。将显示单元101沿着光轴向远离透镜组102的方向移动,本增强现实显示装置的屈光度向着第二屈光度值变化。示例地,若增强现实显示装置的当前屈光度值、目标屈光度值均在第二屈光度值和第三屈光度值之间,各个屈光度值按照大小关系依次排列为:第二屈光度值、目标屈光度值、当前屈光度值、第三屈光度值,目标屈光度值是指想要调节达到的屈光度值。则可以将显示单元101沿着光轴向远离透镜组102的方向移动,使增强现实显示装置的屈光度由当前屈光度值调节到目标屈光度值。
示例地,若增强现实显示装置的当前屈光度值在第一屈光度值和第二屈光度值之间,目标屈光度值在第二屈光度值和第三屈光度值之间。则先将显示单元101、透镜组102沿着光轴移动,在此过程中显示单元101和 透镜组102之间的相对位置不变,使增强现实显示装置的屈光度到达第二屈光度值,然后继续将显示单元101沿着光轴移动,在此过程中透镜组102的位置不变,使增强现实显示装置的屈光度调节到达目标屈光度值。
同理地,若增强现实显示装置的当前屈光度值在第二屈光度值和第三屈光度值之间,目标屈光度值在第一屈光度值和第二屈光度值之间。则可以先将显示单元101沿着光轴移动,在此过程中透镜组102的位置不变,使增强现实显示装置的屈光度到达第二屈光度值,然后将显示单元101、透镜组102沿着光轴移动,在此过程中显示单元101和透镜组102之间的相对位置不变,调节使增强现实显示装置的屈光度到达目标屈光度值。
在一些实施方式中,满足以下条件:d1以及d2满足以下条件:d1的范围为0.1mm-2mm,d2的范围为0.5mm-3.5mm;
其中,d2表示所述增强现实显示装置的屈光度在所述第一屈光度值与所述第二屈光度值之间变化时所述显示单元101、所述透镜组102沿着光轴移动的移动行程,d1表示所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述显示单元101沿着光轴移动的移动行程。
本实施例还提供一种增强现实显示装置,可参考图3,图3为一实施例提供的一种增强现实显示装置的示意图,如图3所示,所述增强现实显示装置包括显示单元101、透镜组102、导光组件103以及调节组件104,所述透镜组102设置于所述显示单元101的出光光路上,所述显示单元101发出的光线透射过所述透镜组102而入射至所述导光组件103,使得所述显示单元101发出的光线通过所述导光组件103传播至眼盒区域100;
所述调节组件104分别与所述显示单元101、所述透镜组102连接,用于分别控制所述显示单元101、所述透镜组102沿着光轴移动,以实现如以上任一实施例所述的增强现实显示装置屈光度调节方法。
显示单元101发出的光线透射过透镜组102而入射至导光组件103,使得显示单元101发出的光线通过导光组件103传导而传播至眼盒区域100。光线进入观察者眼睛,观察者能够观看到显示单元101的图像信息。
本增强现实显示装置中,调节组件104可以控制显示单元101、透镜组102沿着光轴移动,改变显示单元101和透镜组102到导光组件103的距离,可以改变本增强现实显示装置的屈光度;调节组件104可以控制显示单元101沿着光轴移动,透镜组102的位置不变,改变显示单元101与透镜组102的间距,也可以改变本增强现实显示装置的屈光度。具体本增强现实显示装置中,将显示单元101、透镜组102沿着光轴移动时,本增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化;将显示单元101沿着光轴移动,本增强现实显示装置的屈光度在第二屈光度值与第三屈光度值之间变化。
本实施例的增强现实显示装置中,将可调屈光度范围分成多个区间,对于第一屈光度值与第二屈光度值之间的屈光度范围,通过控制显示单元101、透镜组102一起移动进行调节,对于第二屈光度值与第三屈光度值之间的屈光度范围,通过控制显示单元101移动进行调节。本实施例的增强现实显示装置组合使用不同的调节方式,实现调节增强现实显示装置的屈光度。
在一些实施方式中,所述导光组件103包括第一光学元件和第二光学元件,所述显示单元101发出的光线透射过所述透镜组102而入射至所述第一光学元件,所述第一光学元件用于将来自所述透镜组102的光线反射至所述第二光学元件以及将来自所述第二光学元件的光线透射出,所述第二光学元件用于将来自所述第一光学元件的光线反射回至所述第一光学元件。来自第二光学元件的光线透射过第一光学元件,入射至眼盒区域100,来自真实世界的光线依次地透射过第二光学元件、第一光学元件后入射至眼盒区域100,从而使观察者能够观看到形成的虚像叠加到真实世界的效果。
优选地,第二光学元件的反射面为曲面,这样第二光学元件对来自显示单元101的光线具有一定的偏折能力。可参考图4,图4为又一实施例提供的一种增强现实显示装置的示意图,如图所示,显示单元101发出的光线透射过透镜组102而入射至第一光学元件105,被第一光学元件105反射至第二光学元件106,第二光学元件106将光线反射回至第一光学元 件105,光线进一步透射过第一光学元件105后入射至眼盒区域100。图1、图3和图4中带箭头的实线表示来自显示单元101的光线的传播方向,带箭头的虚线表示来自外界的光线的传播方向。其中第二光学元件106的反射面为凹面,能够将入射光线以会聚形式反射出。第一光学元件105可采用平面镜,第二光学元件106可采用凹面镜。
进一步地,本增强现实显示装置还满足以下条件:所述显示单元101与所述透镜组102的间距D1范围为0.1mm~2.5mm,所述透镜组102与所述第一光学元件105的间距D2范围为7mm~11.5mm,所述第一光学元件105和所述第二光学元件106的间距D3范围为6.5mm~11mm。第一光学元件105和第二光学元件106的间距D3优选为8mm-9mm。
在一些实施方式中所述增强现实显示装置的视场角FOV范围为35°~50°。
进一步地本实施方式中,可以是第一屈光度值为0D,第三屈光度值为-6D。随着本增强现实显示装置的屈光度从0D减小的过程中,视场角FOV一直减小,在第一调节行程内视场角FOV以小范围波动;在第二调节行程内视场角FOV以大范围波动:6°>ΔFOV,其中ΔFOV表示视场角变化量。
进一步地本实施方式中,所述增强现实显示装置的出瞳距大于12mm,出瞳大小10*6mm以上。对比单一调节屈光度模组,该模组的显示效果更佳。
透镜组102和导光组件103的组合焦距随着屈光度的改变发生变化,在一些实施方式中,本增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化时透镜组102和导光组件103的组合焦距变化范围为22mm~17mm;所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述透镜组102和所述导光组件103的组合焦距不变。
以下各表中单位为mm。EFL-透镜组表示透镜组102的焦距,EFL-all表示透镜组102和导光组件103的组合焦距。
d2=1.8mm,0D-FOV:44°,-6D-FOV:40°,ΔFOV=4°,D3=9mm,眼盒大小13mm*8.2mm。
d2=1.8mm,0D-FOV:47.5°,-6D-FOV:44°,ΔFOV=2.5°,D3=9.4mm,眼盒大小10.3mm*6.5mm。
d2=0.6mm,0D-FOV:49.5°,-6D-FOV:43.9°,ΔFOV=5.6°,D3=10.7mm,眼盒大小12.5mm*8.8mm。
d2=3.4mm,0D-FOV:45.5°,-6D--FOV:43.1°,ΔFOV=1.2°,D3=9.3mm,眼盒大小14.2mm*6.2mm。
d2=1.8mm,0D-FOV:44.9°,-6D--FOV:40.9°,ΔFOV=4°,D3=9.6mm,眼盒大小11.3mm*7mm。
示例地可参考图6和图7,图6为一实施例的增强现实显示装置的眼盒边缘的MTF曲线图,图7为又一实施例的增强现实显示装置的眼盒边缘的MTF曲线图。
以上对本发明所提供的增强现实显示装置屈光度调节方法及增强现实显示装置进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种增强现实显示装置屈光度调节方法,其特征在于,所述增强现实显示装置包括显示单元、透镜组以及导光组件,所述透镜组设置于所述显示单元的出光光路上,所述显示单元发出的光线透射过所述透镜组而入射至所述导光组件,使得所述显示单元发出的光线通过所述导光组件传播至眼盒区域;
    所述方法包括:
    控制所述显示单元、所述透镜组沿着光轴移动,使得所述增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化,在此过程中所述显示单元和所述透镜组之间的相对位置不变;
    控制所述显示单元沿着光轴移动,在此过程中所述透镜组的位置不变,使得所述增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化,其中,所述第二屈光度值为所述第一屈光度值和所述第三屈光度值之间的值。
  2. 根据权利要求1所述的增强现实显示装置屈光度调节方法,其特征在于,控制所述显示单元、所述透镜组沿着光轴移动,使得所述增强现实显示装置的屈光度在第一屈光度值与第二屈光度值之间变化包括:
    控制所述显示单元、所述透镜组沿着光轴向靠近所述导光组件的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值;
    控制所述显示单元、所述透镜组沿着光轴向远离所述导光组件的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第一屈光度值。
  3. 根据权利要求1所述的增强现实显示装置屈光度调节方法,其特征在于,控制所述显示单元沿着光轴移动,使得所述增强现实显示装置的屈光度在所述第二屈光度值与第三屈光度值之间变化包括:
    控制所述显示单元沿着光轴向靠近所述透镜组的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第三屈光度值;
    控制所述显示单元沿着光轴向远离所述透镜组的方向移动,使得所述增强现实显示装置的屈光度趋向于所述第二屈光度值。
  4. 根据权利要求1所述的增强现实显示装置屈光度调节方法,其特 征在于,满足以下条件:d2的范围为0.5mm-3.5mm,d1的范围为0.1mm-2mm;
    其中,d2表示所述增强现实显示装置的屈光度在所述第一屈光度值与所述第二屈光度值之间变化时所述显示单元、所述透镜组沿着光轴移动的移动行程,d1表示所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述显示单元沿着光轴移动的移动行程。
  5. 一种增强现实显示装置,其特征在于,包括显示单元、透镜组、导光组件以及调节组件,所述透镜组设置于所述显示单元的出光光路上,所述显示单元发出的光线透射过所述透镜组而入射至所述导光组件,使得所述显示单元发出的光线通过所述导光组件传播至眼盒区域;
    所述调节组件分别与所述显示单元、所述透镜组连接,用于分别控制所述显示单元、所述透镜组沿着光轴移动,以实现如权利要求1至4任一项所述的增强现实显示装置屈光度调节方法。
  6. 根据权利要求5所述的增强现实显示装置,其特征在于,所述导光组件包括第一光学元件和第二光学元件,所述显示单元发出的光线透射过所述透镜组而入射至所述第一光学元件,所述第一光学元件用于将来自所述透镜组的光线反射至所述第二光学元件以及将来自所述第二光学元件的光线透射出,所述第二光学元件用于将来自所述第一光学元件的光线反射回至所述第一光学元件,所述第二光学元件的反射面为曲面;
    还满足以下条件:所述显示单元与所述透镜组的间距D1范围为0.1mm~2.5mm,所述透镜组与所述第一光学元件的间距D2范围为7mm~11.5mm,所述第一光学元件和所述第二光学元件的间距D3范围为6.5mm~11mm。
  7. 根据权利要求5所述的增强现实显示装置,其特征在于,所述增强现实显示装置的视场角范围为35°~50°。
  8. 根据权利要求7所述的增强现实显示装置,其特征在于,所述增强现实显示装置的视场角变化量范围为6°>ΔFOV,其中ΔFOV表示视场角变化量。
  9. 根据权利要求5所述的增强现实显示装置,其特征在于,所述增 强现实显示装置的屈光度在所述第一屈光度值与所述第二屈光度值之间变化时所述透镜组和所述导光组件的组合焦距变化范围为22mm~17mm;
    所述增强现实显示装置的屈光度在所述第二屈光度值与所述第三屈光度值之间变化时所述透镜组和所述导光组件的组合焦距不变。
  10. 根据权利要求5所述的增强现实显示装置,其特征在于,所述增强现实显示装置的出瞳距大于12mm,出瞳大小10*6mm以上。
PCT/CN2023/088646 2022-11-16 2023-04-17 增强现实显示装置屈光度调节方法及增强现实显示装置 WO2024103621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211433125.4A CN115494649B (zh) 2022-11-16 2022-11-16 增强现实显示装置屈光度调节方法及增强现实显示装置
CN202211433125.4 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024103621A1 true WO2024103621A1 (zh) 2024-05-23

Family

ID=85035294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088646 WO2024103621A1 (zh) 2022-11-16 2023-04-17 增强现实显示装置屈光度调节方法及增强现实显示装置

Country Status (2)

Country Link
CN (1) CN115494649B (zh)
WO (1) WO2024103621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494649B (zh) * 2022-11-16 2023-01-31 深圳惠牛科技有限公司 增强现实显示装置屈光度调节方法及增强现实显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501942A (zh) * 2016-12-30 2017-03-15 深圳超多维科技有限公司 一种虚拟现实装置
CN107807446A (zh) * 2017-11-13 2018-03-16 歌尔科技有限公司 头戴显示设备调节方法及头戴显示设备
CN111771152A (zh) * 2018-02-27 2020-10-13 脸谱科技有限责任公司 用于头戴式显示器中的散光校正的系统和方法
CN216210238U (zh) * 2021-09-27 2022-04-05 浙江水晶光电科技股份有限公司 一种光学模组和近眼显示光学系统
CN114675417A (zh) * 2020-12-24 2022-06-28 华为技术有限公司 一种显示模组、虚像的位置调节方法及装置
CN115494649A (zh) * 2022-11-16 2022-12-20 深圳惠牛科技有限公司 增强现实显示装置屈光度调节方法及增强现实显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572132B1 (ko) * 2014-03-10 2015-12-07 (주)그린광학 시도 조절이 가능한 전방 상향 시현용 광학계
CN105068249A (zh) * 2015-08-03 2015-11-18 众景视界(北京)科技有限公司 全息智能眼镜
CN106324841B (zh) * 2016-11-24 2019-05-31 宁波视睿迪光电有限公司 增强现实显示装置及增强现实眼镜
WO2018191846A1 (zh) * 2017-04-17 2018-10-25 深圳市柔宇科技有限公司 头戴式显示设备及屈光度自适应调节方法
CN111158153B (zh) * 2020-02-25 2022-06-24 京东方科技集团股份有限公司 近眼显示装置和增强现实设备
CN114384697A (zh) * 2020-10-16 2022-04-22 舜宇光学(浙江)研究院有限公司 近眼显示光学装置及其方法和近眼显示设备
CN217484607U (zh) * 2022-06-02 2022-09-23 海信视像科技股份有限公司 一种头戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501942A (zh) * 2016-12-30 2017-03-15 深圳超多维科技有限公司 一种虚拟现实装置
CN107807446A (zh) * 2017-11-13 2018-03-16 歌尔科技有限公司 头戴显示设备调节方法及头戴显示设备
CN111771152A (zh) * 2018-02-27 2020-10-13 脸谱科技有限责任公司 用于头戴式显示器中的散光校正的系统和方法
CN114675417A (zh) * 2020-12-24 2022-06-28 华为技术有限公司 一种显示模组、虚像的位置调节方法及装置
CN216210238U (zh) * 2021-09-27 2022-04-05 浙江水晶光电科技股份有限公司 一种光学模组和近眼显示光学系统
CN115494649A (zh) * 2022-11-16 2022-12-20 深圳惠牛科技有限公司 增强现实显示装置屈光度调节方法及增强现实显示装置

Also Published As

Publication number Publication date
CN115494649B (zh) 2023-01-31
CN115494649A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US9087471B2 (en) Adaptive brightness control of head mounted display
US9851565B1 (en) Increasing effective eyebox size of an HMD
US9733477B2 (en) Dual axis internal optical beam tilt for eyepiece of an HMD
KR102139268B1 (ko) 눈 투영 시스템
US8817379B2 (en) Whole image scanning mirror display system
US9983413B1 (en) Display apparatus and method of displaying using context and focus image renderers and optical combiners
US10890776B1 (en) Pancake lens ghosting mitigation
KR101852680B1 (ko) 증강현실 또는 혼합현실의 구현이 가능한 머리 장착형 디스플레이 장치 및 방법
US9989774B1 (en) Display apparatus and method of displaying using optical combiners and context and focus image renderers
WO2024098665A1 (zh) 一种增强现实显示装置
WO2024103621A1 (zh) 增强现实显示装置屈光度调节方法及增强现实显示装置
WO2019144637A1 (zh) 显示装置及可穿戴设备
CN105629476A (zh) 一种近眼显示光学系统
US20230090308A1 (en) Augmented reality device based on waveguide with variable curvature, method for operating the augmented reality device, augmented reality glasses, optical compensator
EP3090301B1 (en) An apparatus or method for projecting light internally towards and away from an eye of a user
US10962782B2 (en) Exit pupil expansion via curved waveguide
US20190094444A1 (en) Optical coupling of waveguide and dlp light engine
US20220229303A1 (en) Display device module and head-mounted display device
WO2013135943A1 (en) Image providing apparatus and method
WO2020021160A1 (en) Display apparatus and method of displaying using curved optical combiner
CN110082908A (zh) 显示装置
CN1621890A (zh) 一种全景虚拟光学成像系统
KR102524150B1 (ko) 투명 디스플레이를 이용한 대화면 직시형 증강현실 영상 제공 장치 및 방법
CN2690909Y (zh) 一种光学成像装置
TW202338443A (zh) 最大化視野範圍的混合波導