WO2024101960A1 - 배터리 관리 장치 및 그것의 동작 방법 - Google Patents

배터리 관리 장치 및 그것의 동작 방법 Download PDF

Info

Publication number
WO2024101960A1
WO2024101960A1 PCT/KR2023/018100 KR2023018100W WO2024101960A1 WO 2024101960 A1 WO2024101960 A1 WO 2024101960A1 KR 2023018100 W KR2023018100 W KR 2023018100W WO 2024101960 A1 WO2024101960 A1 WO 2024101960A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
battery cells
ratio
battery cell
Prior art date
Application number
PCT/KR2023/018100
Other languages
English (en)
French (fr)
Inventor
이순종
권기욱
김나리
김철택
이정빈
김순종
김원경
김인식
송영석
윤성열
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220151066A external-priority patent/KR20240069505A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024101960A1 publication Critical patent/WO2024101960A1/ko

Links

Images

Definitions

  • Embodiments disclosed herein relate to a battery management device and method of operating the same.
  • the secondary battery is a battery capable of charging and discharging, and includes both conventional Ni/Cd batteries, Ni/MH batteries, etc., and recent lithium ion batteries.
  • lithium-ion batteries have the advantage of having a much higher energy density than conventional Ni/Cd batteries, Ni/MH batteries, etc.
  • lithium-ion batteries can be manufactured in small and light sizes, so they are used as a power source for mobile devices. Recently, its range of use has expanded as a power source for electric vehicles, and it is attracting attention as a next-generation energy storage medium.
  • Batteries used in vehicles or ESS can pose a significant risk if a fire occurs during use. If a short circuit inside the battery becomes severe, it can lead to thermal runaway and cause a fire.
  • One of the causes of the internal short circuit is lithium precipitation on the battery cathode surface. In the case of a normal battery, lithium ions from the anode are reduced into the cathode when charging, but in a defective battery, some lithium ions may precipitate in the form of lithium metal on the surface of the cathode, and if the precipitated lithium continues to grow through repeated charging, the anode Alternatively, an internal short circuit may occur due to contact with the anode collector.
  • One purpose of the embodiments disclosed in this document is to provide a battery management device that can diagnose tap disconnection of a plurality of battery cells and a method of operating the same.
  • One purpose of the embodiments disclosed in this document is to provide a battery management device and a method of operating the same that can diagnose the status of a plurality of battery cells based on the resting voltage after charging and discharging the plurality of battery cells.
  • a battery management device includes an information acquisition unit that acquires the open circuit voltage of a plurality of battery cells, and a plurality of battery cells related to a change in the open circuit voltage of the plurality of battery cells for a preset time. Calculate each first voltage, calculate a second voltage that is an average of the first voltages of each of the plurality of battery cells, and calculate a deviation based on the first voltage and the second voltage of each of the plurality of battery cells. and a controller that diagnoses the plurality of battery cells based on the ratio and deviation of the first voltage and the second voltage of each of the plurality of battery cells.
  • the controller may diagnose the plurality of battery cells multiple times and finally diagnose a battery cell that has been diagnosed more than a set number of times as a defective battery cell.
  • the controller may diagnose the plurality of battery cells for each discharge after the plurality of battery cells are discharged multiple times.
  • the controller may diagnose a battery cell whose ratio between the first voltage and the second voltage among the plurality of battery cells is not within a preset range as a defective battery cell.
  • the first voltage may be an open circuit voltage value that is recovered after the battery cell is used.
  • the information acquisition unit may obtain the open circuit voltage of the plurality of battery cells after charging or discharging of the plurality of battery cells is performed and a set time has passed.
  • the controller selects battery cells among the plurality of battery cells in which the ratio of the first voltage and the second voltage is not within a preset range and the deviation between the first voltage and the second voltage is greater than or equal to a set value. It can be diagnosed as a defective battery cell.
  • the controller may make a final diagnosis of a defective battery cell if the ratio is not within a preset range and the battery cell in which the deviation of the second voltage is greater than or equal to the set value is continuously diagnosed a set number of times.
  • the controller may determine that a battery cell in which the change in open circuit voltage of the plurality of battery cells is more than a threshold is noise without performing diagnosis.
  • the controller defines a ranking of each of the plurality of battery cells based on a ratio of the first voltage and the second voltage of each of the plurality of battery cells, and determines the ranking of each of the plurality of battery cells. Based on this, a plurality of battery cells can be diagnosed.
  • the controller may include a first battery cell having the largest ratio of the first voltage to the second voltage, a second battery cell having the second largest voltage, and a third battery cell having the smallest ratio among the plurality of battery cells. Determine, calculate a first difference that is the difference between the ratio of the first battery cell and the ratio of the second battery cell, and calculate a second difference that is the difference between the ratio of the second battery cell and the ratio of the third battery cell. may be calculated, and the state of the first battery cell may be diagnosed based on the ratio of the first battery cell, the first difference, and the second difference.
  • the controller is configured to control battery cells in which the ratio of the first battery cells is greater than or equal to a first threshold, the ratio between the first difference and the second difference is greater than or equal to a second threshold, and the deviation is greater than or equal to a set value. can be diagnosed as a defective battery cell.
  • a method of operating a battery management device includes obtaining open circuit voltages of a plurality of battery cells, the plurality of batteries related to a change in the open circuit voltage of the plurality of battery cells for a preset time. Calculating a first voltage of each cell, calculating a second voltage that is an average of the first voltages of each of the plurality of battery cells, based on the first voltage and the second voltage of each of the plurality of battery cells It may include calculating a deviation and diagnosing the plurality of battery cells based on the ratio and deviation of the first voltage and the second voltage of each of the plurality of battery cells.
  • diagnosing the plurality of battery cells based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells includes diagnosing the plurality of battery cells multiple times and diagnosing the plurality of battery cells. It may include a final diagnosis of a battery cell whose number of cycles is more than a set number as a defective battery cell.
  • the step of diagnosing the plurality of battery cells multiple times may include diagnosing the plurality of battery cells for each discharge after the plurality of battery cells are discharged multiple times.
  • the step of diagnosing the plurality of battery cells based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells includes determining the first voltage and the second voltage among the plurality of battery cells. A battery cell whose ratio does not fall within a preset range can be diagnosed as a defective battery cell.
  • the step of obtaining the open circuit voltage of the plurality of battery cells may include obtaining the open circuit voltage of the plurality of battery cells after charging or discharging of the plurality of battery cells is performed and a set time has passed. .
  • defining a ranking of each of the plurality of battery cells based on a ratio of the first voltage and the second voltage of each of the plurality of battery cells and determining the ranking of each of the plurality of battery cells based on the ranking of each of the plurality of battery cells may further be included.
  • the step of diagnosing a plurality of battery cells based on the ranking of each of the plurality of battery cells includes selecting the first battery cell having the largest ratio between the first voltage and the second voltage among the plurality of battery cells. and determining the second largest battery cell and the smallest third battery cell, calculating a first difference, which is the difference between the ratio of the first battery cell and the ratio of the second battery cell, calculating a second difference, which is the difference between the ratio of the second battery cell and the ratio of the third battery cell, and calculating the second difference of the first battery cell based on the ratio of the first battery cell, the first difference, and the second difference. It may include diagnosing the condition.
  • the battery management device and its operating method according to an embodiment disclosed in this document can accurately diagnose tab disconnection of a plurality of battery cells.
  • the battery management device and its operating method according to an embodiment disclosed in this document can diagnose the status of a plurality of battery cells by calculating the voltage change for each battery cell based on the resting voltage after charging and discharging the plurality of battery cells. there is.
  • a battery management device and a method of operating the same may operate at least one battery among a plurality of battery cells based on the ratio of the open circuit voltage change of the plurality of battery cells and the average of the open circuit voltage change. You can diagnose cell tab disconnection.
  • a battery management device and a method of operating the same include selecting a tab of at least one battery cell among a plurality of battery cells based on the ranking of the ratio of the voltage change and the average voltage change of the plurality of battery cells. A disconnection can be diagnosed.
  • FIG. 1 is a block diagram showing the configuration of a general battery pack.
  • FIG. 2 is a block diagram showing a battery management device according to an embodiment disclosed in this document.
  • FIG. 3 is a diagram illustrating an example in which a battery management device diagnoses a plurality of battery cells according to an embodiment disclosed in this document.
  • FIGS. 4A, 4B, and 4C are diagrams for explaining an example of a battery management device diagnosing a plurality of battery cells according to an embodiment disclosed in this document.
  • FIG. 5 is a flowchart showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • FIG. 6 is a flowchart specifically showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • FIG. 7 is a flowchart showing a method of operating a battery management device according to another embodiment disclosed in this document.
  • Figure 8 is a flowchart specifically showing a method of operating a battery management device according to another embodiment disclosed in this document.
  • FIG. 9 is a block diagram showing the hardware configuration of a computing system for performing a method of operating a battery management device according to an embodiment disclosed in this document.
  • FIG. 1 is a block diagram showing the configuration of a general battery pack.
  • FIG. 1 it schematically shows a battery control system including a battery pack 1 and a higher level controller 2 included in the upper level system according to an embodiment of the present invention.
  • the battery pack 1 is composed of one or more battery cells and includes a plurality of battery cells 10 capable of being charged and discharged, and a (+) terminal side or (-) terminal of the plurality of battery cells 10.
  • a switching unit 14 is connected in series to the terminal to control the charge/discharge current flow of the plurality of battery cells 10, and monitors the voltage, current, temperature, etc. of the battery pack 1 to prevent overcharge and overdischarge. It includes a battery management system 20 that controls and manages to prevent etc.
  • the battery pack 1 may be provided with a plurality of battery cells 10, a sensor 12, a switching unit 14, and a battery management system 20.
  • the switching unit 14 is an element for controlling the current flow for charging or discharging the plurality of battery cells 10, for example, at least one relay or magnetic contactor depending on the specifications of the battery pack 1. etc. can be used.
  • the battery management system 20 is an interface that receives measured values of the various parameters described above, and may include a plurality of terminals and a circuit connected to these terminals to process the input values.
  • the battery management system 20 may control ON/OFF of the switching unit 14, for example, a relay or a contactor, and is connected to a plurality of battery cells 10 to operate the plurality of battery cells 10. Each status can be monitored.
  • the battery management system 20 may include the battery management device 100 of FIG. 2 .
  • the battery management system 20 may be a different system from the battery management device 100 of FIG. 2 . That is, the battery management device 100 of FIG. 2 may be included in the battery pack 1 or may be configured as another device external to the battery pack 1.
  • the upper controller 2 may transmit control signals for a plurality of battery cells 10 to the battery management system 20 . Accordingly, the operation of the battery management system 20 may be controlled based on a signal applied from the upper controller 2.
  • FIG. 2 is a block diagram showing a battery management device according to an embodiment disclosed in this document.
  • the battery management device 100 may include an information acquisition unit 110 and a controller 120.
  • the battery management device 100 may be included in the battery management system 20 of FIG. 1 . According to another embodiment, the battery management device 100 may be included in the upper controller 2 of FIG. 1. According to another embodiment, the battery management device 100 may be included in a separate device not shown in the battery pack 1 of FIG. 1 .
  • the information acquisition unit 110 may acquire the open circuit voltage of a plurality of battery cells. For example, the information acquisition unit 110 may acquire the open circuit voltage of each of the plurality of battery cells in time series.
  • the information acquisition unit 110 may acquire the voltage of a plurality of battery cells in a rest period when a set time has elapsed after the plurality of battery cells are charged or discharged. Since the voltage of a battery cell with a tap disconnection may change quickly and significantly compared to a normal battery cell during the rest period, the information acquisition unit 110 may acquire the voltage of a plurality of battery cells during the rest period.
  • the information acquisition unit 110 may obtain the open circuit voltage of the plurality of battery cells after charging or discharging of the plurality of battery cells is performed and a set time has passed.
  • the controller 120 may calculate the first voltage of each of the plurality of battery cells, which is a change in the open circuit voltage of each of the plurality of battery cells corresponding to two different times. For example, the controller 120 calculates the difference between the open circuit voltage of the plurality of battery cells corresponding to the first time and the open circuit voltage of the plurality of battery cells corresponding to the second time to determine the first time of each of the plurality of battery cells. 1 voltage can be calculated.
  • the controller 120 may calculate a second voltage that is the average of the first voltages of each of the plurality of battery cells.
  • the second voltage may be an average of the open circuit voltage deviations of a plurality of battery cells corresponding to two different times.
  • the controller 120 may calculate the deviation based on the first voltage and second voltage of each of the plurality of battery cells. For example, the controller 120 may calculate the standard deviation of the first voltage of each of the plurality of battery cells with respect to the second voltage.
  • the controller 120 may calculate the ratio between the first voltage and the second voltage of each of the plurality of battery cells. For example, the controller 120 may calculate the ratio of each of the plurality of battery cells by dividing the first voltage of each of the plurality of battery cells by the second voltage.
  • the controller 120 may diagnose a plurality of battery cells based on the ratio and deviation of the first and second voltages of each of the plurality of battery cells. For example, the controller 120 may diagnose a battery cell whose ratio of the first voltage to the second voltage among the plurality of battery cells is not within a preset range as a defective battery cell. According to an embodiment, the controller 120 may diagnose a battery cell whose first voltage is not within 0.8 to 1.2 times the second voltage among a plurality of battery cells as a defective battery cell.
  • the controller 120 may diagnose a plurality of battery cells multiple times. For example, the controller 120 may diagnose a plurality of battery cells for each discharge after the plurality of battery cells are discharged multiple times. In this case, the controller 120 may store diagnosis results for a plurality of battery cells for each diagnosis multiple times. Additionally, the controller 120 may finally diagnose a battery cell for which the number of times it has been diagnosed is more than a set number as a defective battery cell. For example, when a plurality of battery cells are discharged 10 times, the controller 120 may diagnose the plurality of battery cells after discharging, and may classify a battery cell diagnosed as defective more than 7 times as a defective battery cell. A final diagnosis can be made. Accordingly, the battery management device 100 disclosed in this document can minimize the possibility of erroneous diagnosis occurring. However, it is not limited to the above-mentioned values, and the user can adjust the number of times the battery cell is finally diagnosed through the controller 120.
  • the controller 120 may set the two different times to be different from each other by a preset time.
  • the controller 120 can set two different times to be 600 seconds apart.
  • the first voltage may be an open circuit voltage value recovered after the battery cell is used.
  • the controller 120 selects a battery cell in which the ratio of the first voltage and the second voltage among the plurality of battery cells is not within a preset range and the deviation between the first voltage and the second voltage is more than the set value as a defective battery. Diagnosis can be made with cells. For example, the controller 120 may finally diagnose a battery cell as a defective battery cell if the ratio is not within a preset range and the battery cell with a deviation of the second voltage is greater than or equal to the set value is continuously diagnosed a set number of times. For example, the set number of times may include 2 times, but may be more times to reduce errors.
  • the controller 120 may determine that a battery cell in which the change in open circuit voltage of a plurality of battery cells is more than a threshold is noise without performing diagnosis. For example, if the voltage changes more significantly than other battery cells or more than a preset threshold, there is a high probability that it is noise, so the controller 120 may perform diagnosis excluding the value determined to be noise.
  • FIG. 3 is a diagram illustrating an example in which a battery management device diagnoses a plurality of battery cells according to an embodiment disclosed in this document.
  • the information acquisition unit 110 may acquire the open circuit voltage 300 of a plurality of battery cells in time series.
  • the controller 120 may calculate the change in open circuit voltage of each of the plurality of battery cells corresponding to two different times. For example, the controller 120 may calculate the change in the open circuit voltage of each of the plurality of battery cells as the difference between the voltage of the plurality of battery cells corresponding to 600 seconds and the voltage of the plurality of battery cells corresponding to 1200 seconds. there is.
  • the controller 120 may calculate a second voltage that is an average of the first voltages of each of the plurality of battery cells, and the state of the plurality of battery cells based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells. can be diagnosed. For example, the controller 120 may diagnose a battery cell in which the ratio of the first voltage to the second voltage of each of the plurality of battery cells is not within a preset range as a defective battery cell. That is, the controller 120 may diagnose a battery cell whose open circuit voltage recovery ratio is higher or lower than the average open circuit voltage recovery ratio as a defective battery cell.
  • the battery management device 100 can accurately diagnose tab disconnection of a plurality of battery cells.
  • the battery management device 100 may diagnose the status of a plurality of battery cells by calculating the voltage change for each battery cell based on the resting voltage after charging and discharging the plurality of battery cells.
  • the battery management device 100 may diagnose tap disconnection of at least one of the plurality of battery cells based on the ratio of the voltage change and the average voltage change of the plurality of battery cells. You can.
  • the information acquisition unit 110 may acquire the voltage of a plurality of battery cells in a rest period when a set time has elapsed after the plurality of battery cells are charged or discharged. During the dormant period, battery cells with disconnected tabs may experience rapid and large voltage changes compared to normal battery cells, so the information acquisition unit 110 may acquire the voltage of a plurality of battery cells during the dormant period.
  • the controller 120 may calculate the first voltage of each of the plurality of battery cells related to the voltage change of each of the plurality of battery cells corresponding to two different times. For example, the controller 120 calculates the first voltage of each of the plurality of battery cells by calculating the difference between the voltage of the plurality of battery cells corresponding to the first time and the voltage of the plurality of battery cells corresponding to the second time. can do.
  • the controller 120 may calculate a second voltage that is the average of the first voltages of each of the plurality of battery cells.
  • the second voltage may be an average of the voltage deviations of a plurality of battery cells corresponding to two different times.
  • the controller 120 may calculate the ratio between the first voltage and the second voltage of each of the plurality of battery cells. For example, the controller 120 may calculate the ratio of each of the plurality of battery cells by dividing the first voltage of each of the plurality of battery cells by the second voltage.
  • the controller 120 may define the ranking of each of the plurality of battery cells based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells. For example, the controller 120 may define the ranking of each of the plurality of battery cells from the first to the last ranking based on the ratio of each of the plurality of battery cells. For another example, the controller 120 determines the first battery cell, the second battery cell with the second largest ratio, and the third battery cell with the smallest ratio between the first voltage and the second voltage among the plurality of battery cells. You can.
  • the controller 120 may diagnose the status of a plurality of battery cells based on the ranking of each of the plurality of battery cells. For example, the controller 120 controls the ratio of the first battery cell (the ratio of the first voltage and the second voltage of the first battery cell) and the ratio of the second battery cell (the ratio of the first voltage and the second voltage of the second battery cell). The first difference, which is the difference in voltage ratio), can be calculated. Additionally, the controller 120 may calculate a second difference, which is the difference between the ratio of the second battery cell and the ratio of the third battery cell (ratio of the first voltage and the second voltage of the third battery cell). In this case, the controller 120 may diagnose the state of the first battery cell based on the ratio, first difference, and second difference of the first battery cell.
  • the controller 120 determines that a tap disconnection has occurred in the first battery cell when the ratio of the first battery cell is greater than or equal to the first threshold and the ratio between the first difference and the second difference is greater than or equal to the second threshold. It can be diagnosed.
  • the controller 120 may set the two different times to be different from each other by a preset time.
  • the controller 120 can set two different times to be 600 seconds apart.
  • the controller 120 may periodically set two different times to be different from each other by a preset time, such as 600 seconds, 1200 seconds, or 1800 seconds.
  • the controller 120 may diagnose a plurality of battery cells based on the ratio, rank, and deviation of the first voltage and the second voltage of each of the plurality of battery cells. For example, the controller 120 may diagnose that the battery cell is not abnormal if any one of ratio, rank, and deviation does not meet the criteria. For another example, the controller 120 may diagnose that the battery cell is abnormal if any one of the ratio, rank, and deviation exceeds a standard. That is, the controller 120 can diagnose a plurality of battery cells by comprehensively considering the ratio, rank, and deviation.
  • FIGS. 4A, 4B, and 4C are diagrams for explaining an example of a battery management device diagnosing a plurality of battery cells according to an embodiment disclosed in this document.
  • the information acquisition unit 110 may acquire the voltage 310 of a plurality of battery cells in time series.
  • the controller 120 may calculate the voltage change of each of the plurality of battery cells corresponding to two different times. For example, the controller 120 may calculate the voltage change of each of the plurality of battery cells as the difference between the voltage of the plurality of battery cells corresponding to 600 seconds and the voltage of the plurality of battery cells corresponding to 1200 seconds. Additionally, the controller 120 may calculate the voltage change of each of the plurality of battery cells as the difference between the voltage of the plurality of battery cells corresponding to 1200 seconds and the voltage of the plurality of battery cells corresponding to 1800 seconds. That is, the controller 120 can calculate the voltage change 320 of each of the plurality of battery cells every 600 seconds.
  • the controller 120 may calculate a second voltage that is the average of the first voltage of each of the plurality of battery cells, and may calculate the second voltage of the plurality of batteries based on the ratio 330 of the first voltage and the second voltage of each of the plurality of battery cells. You can define the rank of each cell. For example, the controller 120 selects a first battery cell with the largest ratio and a second battery cell with the second largest ratio based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells corresponding to 3600 seconds. And, the smallest third battery cell can be determined.
  • the controller 120 may calculate a first difference, which is the difference between the ratio of the first voltage and the second voltage of the first battery cell and the ratio of the first voltage and the second voltage of the second battery cell, A second difference, which is the difference between the ratio of the first voltage and the second voltage of the second battery cell and the ratio of the first voltage and the second voltage of the third battery cell, can be calculated. Additionally, the controller 120 may diagnose the state of the first battery cell based on the ratio, first difference, and second difference between the first and second voltages of the first battery cell.
  • the controller 120 controls the first voltage when the ratio between the first voltage and the second voltage of the first battery cell is greater than or equal to the first threshold and the ratio between the first difference and the second difference is greater than or equal to the second threshold. It can be diagnosed as a tap disconnection in the battery cell. That is, the controller 120 may diagnose that a tab disconnection occurred in the first battery cell at 3600 seconds.
  • FIG. 5 is a flowchart showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • the operations shown in FIG. 5 may be performed through the battery management device 100 of FIG. 2.
  • the information acquisition unit 110 may obtain the open circuit voltage of each of the plurality of battery cells. For example, in step S110, the information acquisition unit 110 may obtain the open circuit voltage of the plurality of battery cells after charging or discharging of the plurality of battery cells is performed and a set time has passed.
  • step S120 the controller 120 may calculate a first voltage of each of the plurality of battery cells related to a change in the open circuit voltage of the plurality of battery cells for a preset time.
  • step S130 the controller 120 may calculate a second voltage that is the average of the first voltages of each of the plurality of battery cells.
  • step S140 the controller 120 may calculate the deviation based on the first voltage and second voltage of each of the plurality of battery cells.
  • step S150 the controller 120 may diagnose a plurality of battery cells based on the ratio and deviation of the first voltage and the second voltage of each of the plurality of battery cells. For example, in step S150, the controller 120 may diagnose a battery cell whose ratio of the first voltage to the second voltage among the plurality of battery cells is not within a preset range as a defective battery cell.
  • FIG. 6 is a flowchart specifically showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • the operations shown in FIG. 6 may be performed through the battery management device 100 of FIG. 2.
  • the controller 120 may diagnose a plurality of battery cells multiple times. For example, the controller 120 may diagnose a plurality of battery cells for each discharge after the plurality of battery cells are discharged multiple times.
  • step S220 the controller 120 may finally diagnose a battery cell for which the number of times it has been diagnosed is more than a set number as a defective battery cell.
  • steps S210 to S240 may be performed by being included in step S150 of FIG. 5.
  • FIG. 7 is a diagram showing the operation of a battery management device according to another embodiment disclosed in this document. According to the embodiment, the operations shown in FIG. 7 may be performed through the battery management device 100 of FIG. 2.
  • the controller 120 may define the ranking of each of the plurality of battery cells based on the ratio of the first voltage and the second voltage of each of the plurality of battery cells.
  • step S320 the controller 120 may diagnose a plurality of battery cells based on the ranking of each of the plurality of battery cells.
  • step S320 may be performed together with step S150. That is, the controller 120 may diagnose each of the plurality of battery cells based on the rank, ratio, and deviation of each of the plurality of battery cells.
  • FIG. 8 is a diagram specifically showing the operation of a battery management device according to another embodiment disclosed in this document. According to the embodiment, the operations shown in FIG. 8 may be performed through the battery management device 100 of FIG. 2.
  • step S410 the controller 120 selects a first battery cell with the largest ratio of the first voltage to the second voltage among the plurality of battery cells, a second battery cell with the second largest voltage, and a third battery cell with the smallest voltage. Battery cells can be judged.
  • step S420 the controller 120 may calculate a first difference, which is the difference between the ratio of the first battery cell and the ratio of the second battery cell.
  • step S430 the controller 120 may calculate a second difference, which is the difference between the ratio of the second battery cell and the ratio of the third battery cell.
  • step S440 the controller 120 may diagnose the state of the first battery cell based on the ratio, first difference, and second difference of the first battery cell.
  • Steps S410 to S440 may be performed by being included in step S320 of FIG. 7 .
  • FIG. 9 is a block diagram showing the hardware configuration of a computing system for performing a method of operating a battery management device according to an embodiment disclosed in this document.
  • the computing system 1000 may include an MCU 1010, a memory 1020, an input/output I/F 1030, and a communication I/F 1040. there is.
  • the MCU 1010 stores various programs stored in the memory 1020 (e.g., a voltage and current collection program for a plurality of battery cells, a program for calculating voltage changes in a plurality of battery cells, and a program for calculating the average voltage change in a plurality of battery cells. programs, multiple battery cell diagnostic programs, etc.), and through these programs, various information including the voltage, current, voltage change, average of voltage change, and whether the tap is disconnected of the multiple battery cells is processed, and the above-mentioned diagram It may be a processor that performs the functions of the controller included in the battery management device shown in 2.
  • the memory 1020 may store various programs, such as a voltage and current collection program of a plurality of battery cells, a program for calculating voltage changes in a plurality of battery cells, a program for calculating the average voltage change in a plurality of battery cells, and a diagnosis program for a plurality of battery cells. . Additionally, the memory 1020 can store various information such as voltage, current, voltage change, average of voltage change, and whether or not a tab is disconnected, of a plurality of battery cells.
  • Memory 1020 may be volatile memory or non-volatile memory.
  • the memory 1020 as a volatile memory may use RAM, DRAM, SRAM, etc.
  • the memory 1020 as a non-volatile memory may be ROM, PROM, EAROM, EPROM, EEPROM, flash memory, etc.
  • the examples of memories 1020 listed above are merely examples and are not limited to these examples.
  • the input/output I/F (1030) is an interface that connects the MCU (1010) with input devices (not shown) such as a keyboard, mouse, and touch panel, and output devices such as a display (not shown) to transmit and receive data. can be provided.
  • the communication I/F 1040 is a component that can transmit and receive various data with a server, and may be various devices that can support wired or wireless communication.
  • the battery management device can transmit and receive information such as voltage, current, voltage change, average voltage change, and whether a tap is disconnected of a plurality of battery cells from a separately provided external server through the communication I/F 1040. .
  • the computer program according to an embodiment disclosed in this document may be recorded in the memory 1020 and processed by the MCU 1010, so that it may be implemented as a module that performs each function shown in FIG. 2, for example. there is.

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 문서에 개시된 일 실시예에 따른 배터리 관리 장치는 복수의 배터리 셀의 개방 회로 전압을 획득하는 정보 획득부 및 기 설정된 시간 동안 상기 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 상기 복수의 배터리 셀 각각의 제1 전압을 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압 및 상기 제2 전압에 기반하여 편차를 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율 및 상기 편차에 기반하여 상기 복수의 배터리 셀을 진단하는 컨트롤러를 포함할 수 있다.

Description

배터리 관리 장치 및 그것의 동작 방법
관련출원과의 상호인용
본 발명은 2022.11.11.에 출원된 한국 특허 출원 제10-2022-0151067호 및 2022.11.11.에 출원된 한국 특허 출원 제10-2022-0151066호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로 포함한다.
기술분야
본 문서에 개시된 실시예들은 배터리 관리 장치 및 그것의 동작 방법에 관한 것이다.
최근 이차 전지에 대한 연구 개발이 활발히 이루어지고 있다. 여기서 이차 전지는 충방전이 가능한 전지로서, 종래의 Ni/Cd 배터리, Ni/MH 배터리 등과 최근의 리튬 이온 배터리를 모두 포함하는 의미이다. 이차 전지 중 리튬 이온 배터리는 종래의 Ni/Cd 배터리, Ni/MH 배터리 등에 비하여 에너지 밀도가 훨씬 높다는 장점이 있다, 또한, 리튬 이온 배터리는 소형, 경량으로 제작할 수 있어 이동 기기의 전원으로 사용되며, 최근에는 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
차량 또는 ESS(Energy Storage System)에서 사용되는 배터리는 사용 중에 화재가 발생하면 큰 위험이 발생할 수 있다. 배터리 내부 단락이 심해지면 열 폭주로 이어져 화재가 발생할 수 있는데, 내부 단락의 원인 중 하나는 배터리 음극 표면의 리튬 석출이다. 정상 배터리의 경우 충전 시 양극에서 나온 리튬 이온이 음극 내로 환원되지만, 불량 배터리는 일부의 리튬 이온이 음극 표면에서 리튬 금속의 형태로 석출될 수 있고, 석출된 리튬이 반복적인 충전으로 지속 성장하면 양극 또는 양극 콜렉터와 접촉하여 내부 단락이 발생할 수 있다.
본 문서에 개시된 실시예들의 일 목적은 복수의 배터리 셀의 탭 단선을 진단할 수 있는 배터리 관리 장치 및 그것의 동작 방법을 제공하는데 있다.
본 문서에 개시된 실시예들의 일 목적은 복수의 배터리 셀의 충방전 후 휴지기 전압에 기반하여 복수의 배터리 셀의 상태를 진단할 수 있는 배터리 관리 장치 및 그것의 동작 방법을 제공하는데 있다.
본 문서에 개시된 실시예들의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치는 복수의 배터리 셀의 개방 회로 전압을 획득하는 정보 획득부 및 기 설정된 시간 동안 상기 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 상기 복수의 배터리 셀 각각의 제1 전압을 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압 및 상기 제2 전압에 기반하여 편차를 산출하고, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율 및 편차에 기반하여 상기 복수의 배터리 셀을 진단하는 컨트롤러를 포함할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀을 복수회 진단하고, 진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전마다 상기 복수의 배터리 셀을 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
일 실시예에서, 상기 제1 전압은 배터리 셀이 사용된 후 회복되는 개방 회로 전압값일 수 있다.
일 실시예에서, 상기 정보 획득부는, 상기 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 상기 복수의 배터리 셀의 개방 회로 전압을 획득할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않으며 제1 전압과 상기 제2 전압의 편차가 설정값 이상인 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 비율이 기 설정된 범위에 포함되지 않으며 상기 제2 전압의 편차가 설정값 이상인 배터리 셀로 설정된 회수만큼 연속적으로 진단된 경우 불량 배터리 셀로 최종 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀의 개방 회로 전압의 변화가 임계값 이상인 배터리 셀의 경우 진단을 수행하지 않고 노이즈로 판단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율을 기초로 상기 복수의 배터리 셀 각각의 순위를 정의하고, 상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 복수의 배터리 셀 중 상기 제1 전압과 상기 제2 전압의 비율이 가장 큰 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단하고, 상기 제1 배터리 셀의 비율과 상기 제2 배터리 셀의 비율의 차이인 제1 차이를 산출하고, 상기 제2 배터리 셀의 비율과 상기 제3 배터리 셀의 비율의 차이인 제2 차이를 산출하고, 상기 제1 배터리 셀의 비율, 상기 제1 차이 및 상기 제2 차이에 기반하여 상기 제1 배터리 셀의 상태를 진단할 수 있다.
일 실시예에서, 상기 컨트롤러는, 상기 제1 배터리 셀의 비율이 제1 임계값 이상이고, 상기 제1 차이와 상기 제2 차이의 비율이 제2 임계값 이상이며 상기 편차가 설정값 이상인 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법은 복수의 배터리 셀의 개방 회로 전압을 획득하는 단계, 기 설정된 시간 동안 상기 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 상기 복수의 배터리 셀 각각의 제1 전압을 산출하는 단계, 상기 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출하는 단계, 상기 복수의 배터리 셀 각각의 제1 전압 및 상기 제2 전압에 기반하여 편차를 산출하는 단계 및 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율 및 편차에 기반하여 상기 복수의 배터리 셀을 진단하는 단계를 포함할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율에 기반하여 상기 복수의 배터리 셀을 진단하는 단계는, 상기 복수의 배터리 셀을 복수회 진단하는 단계 및 진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단하는 단계를 포함할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀을 복수회 진단하는 단계는, 상기 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전마다 상기 복수의 배터리 셀을 진단할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율에 기반하여 상기 복수의 배터리 셀을 진단하는 단계는, 상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀의 개방 회로 전압을 획득하는 단계는, 상기 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 상기 복수의 배터리 셀의 개방 회로 전압을 획득할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율을 기초로 상기 복수의 배터리 셀 각각의 순위를 정의하는 단계 및 상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단하는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단하는 단계는, 상기 복수의 배터리 셀 중 상기 제1 전압과 상기 제2 전압의 비율이 가장 큰 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단하는 단계, 상기 제1 배터리 셀의 비율과 상기 제2 배터리 셀의 비율의 차이인 제1 차이를 산출하는 단계, 상기 제2 배터리 셀의 비율과 상기 제3 배터리 셀의 비율의 차이인 제2 차이를 산출하는 단계 및 상기 제1 배터리 셀의 비율, 상기 제1 차이 및 상기 제2 차이에 기반하여 상기 제1 배터리 셀의 상태를 진단하는 단계를 포함할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은, 복수의 배터리 셀의 탭 단선을 정확하게 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은, 복수의 배터리 셀의 충방전 후 휴지기 전압에 기반하여 배터리 셀 별 전압 변화를 산출하여 복수의 배터리 셀의 상태를 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은, 복수의 배터리 셀의 개방 회로 전압 변화와 개방 회로 전압 변화의 평균의 비율에 기반하여 복수의 배터리 셀 중 적어도 어느 하나의 배터리 셀의 탭 단선을 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은, 복수의 배터리 셀의 전압 변화와 평균 전압 변화의 비율의 순위에 기반하여 복수의 배터리 셀 중 적어도 어느 하나의 배터리 셀의 탭 단선을 진단할 수 있다.
이 외에, 본 문서를 통해 직접적 또는 간접적으로 파악되는 다양한 효과들이 제공될 수 있다.
도 1은 일반적인 배터리 팩의 구성을 나타내는 블록도이다.
도 2는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치를 보여주는 블록도이다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치가 복수의 배터리 셀을 진단하는 예시를 설명하기 위한 도면이다.
도 4a, 도 4b 및 도 4c는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치가 복수의 배터리 셀을 진단하는 예시를 설명하기 위한 도면이다.
도 5는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 6은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 구체적으로 보여주는 흐름도이다.
도 7은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 8은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작 방법을 구체적으로 보여주는 흐름도이다.
도 9는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 수행하기 위한 컴퓨팅 시스템의 하드웨어 구성을 나타내는 블록도이다.
이하, 본 문서에 개시된 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 문서에 개시된 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 문서에 개시된 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 문서에 개시된 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 일반적인 배터리 팩의 구성을 나타내는 블록도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 배터리 팩(1)과 상위 시스템에 포함되어 있는 상위 제어기(2)를 포함하는 배터리 제어 시스템을 개략적으로 나타낸다.
도 1에 도시된 바와 같이, 배터리 팩(1)은 하나의 이상의 배터리 셀로 이루어지고 충방전 가능한 복수의 배터리 셀(10)과, 복수의 배터리 셀(10)의 (+) 단자 측 또는 (-) 단자 측에 직렬로 연결되어 복수의 배터리 셀(10)의 충방전 전류 흐름을 제어하기 위한 스위칭부(14)와, 배터리 팩(1)의 전압, 전류, 온도 등을 모니터링하여, 과충전 및 과방전 등을 방지하도록 제어 관리하는 배터리 관리 시스템(20)을 포함한다. 이 때, 배터리 팩(1)에는 복수의 배터리 셀(10), 센서(12), 스위칭부(14) 및 배터리 관리 시스템(20)이 복수 개 구비될 수 있다.
여기서, 스위칭부(14)는 복수의 배터리 셀(10)의 충전 또는 방전에 대한 전류 흐름을 제어하기 위한 소자로서, 예를 들면, 배터리 팩(1)의 사양에 따라서 적어도 하나의 릴레이, 마그네틱 접촉기 등이 이용될 수 있다.
배터리 관리 시스템(20)은 상술한 각종 파라미터를 측정한 값을 입력받는 인터페이스로서, 복수의 단자와, 이들 단자와 연결되어 입력받은 값들의 처리를 수행하는 회로 등을 포함할 수 있다. 또한, 배터리 관리 시스템(20)은, 스위칭부(14) 예를 들어, 릴레이 또는 접촉기 등의 ON/OFF를 제어할 수도 있으며, 복수의 배터리 셀(10)에 연결되어 복수의 배터리 셀(10) 각각의 상태를 감시할 수 있다. 실시예에 따르면, 배터리 관리 시스템(20)은 도 2의 배터리 관리 장치(100)를 포함할 수 있다. 다른 실시예에 따르면, 배터리 관리 시스템(20)은 도 2의 배터리 관리 장치(100)와 상이한 다른 시스템일 수 있다. 즉, 도 2의 배터리 관리 장치(100)는 배터리 팩(1)에 포함될 수도 있고, 배터리 팩(1) 외부의 다른 장치로 구성될 수도 있다.
상위 제어기(2)는 배터리 관리 시스템(20)으로 복수의 배터리 셀(10)에 대한 제어 신호를 전송할 수 있다. 이에 따라, 배터리 관리 시스템(20)은 상위 제어기(2)로부터 인가되는 신호에 기초하여 동작이 제어될 수 있을 것이다.
도 2는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치를 보여주는 블록도이다.
도 2를 참조하면, 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치(100)는 정보 획득부(110) 및 컨트롤러(120)를 포함할 수 있다.
실시예에 따르면, 배터리 관리 장치(100)는 도 1의 배터리 관리 시스템(20)에 포함될 수 있다. 다른 실시예에 따르면 배터리 관리 장치(100)는 도 1의 상위 제어기(2)에 포함될 수 있다. 다른 실시예에 따르면, 배터리 관리 장치(100)는 도 1의 배터리 팩(1)에 도시되지 않은 별개 장치에 포함될 수 있다.
정보 획득부(110)는 복수의 배터리 셀의 개방 회로 전압을 획득할 수 있다. 예를 들어, 정보 획득부(110)는 복수의 배터리 셀 각각의 개방 회로 전압을 시계열적으로 획득할 수 있다.
실시예에 따르면, 정보 획득부(110)는 복수의 배터리 셀이 충전 또는 방전된 후 설정된 시간만큼 경과된 휴지기에 복수의 배터리 셀의 전압을 획득할 수 있다. 휴지기에는 탭 단선이 된 배터리 셀이 정상 배터리 셀 대비 전압 변화가 빠르고 크게 발생할 수 있기 때문에, 정보 획득부(110)는 휴지기에 복수의 배터리 셀의 전압을 획득할 수 있다.
실시예에 따르면, 정보 획득부(110)는 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 복수의 배터리 셀의 개방 회로 전압을 획득할 수 있다.
컨트롤러(120)는 서로 다른 두 시간에 대응되는 복수의 배터리 셀 각각의 개방 회로 전압의 변화인 복수의 배터리 셀 각각의 제1 전압을 산출할 수 있다. 예를 들어, 컨트롤러(120)는 제1 시간에 대응되는 복수의 배터리 셀의 개방 회로 전압과 제2 시간에 대응되는 복수의 배터리 셀의 개방 회로 전압의 차이를 산출하여 복수의 배터리 셀 각각의 제1 전압을 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출할 수 있다. 예를 들어, 제2 전압은 서로 다른 두 시간에 대응되는 복수의 배터리 셀의 개방 회로 전압 편차의 평균일 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압 및 제2 전압에 기반하여 편차를 산출할 수 있다. 예를 들어, 컨트롤러(120)는 제2 전압에 대하여 복수의 배터리 셀 각각의 제1 전압의 표준 편차를 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율을 산출할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압을 제2 전압으로 나누어 복수의 배터리 셀 각각의 비율을 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율 및 편차에 기반하여 복수의 배터리 셀을 진단할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압과 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다. 실시예에 따르면, 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압이 제2 전압의 0.8배에서 1.2배 이내에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
실시예에 따르면, 컨트롤러(120)는 복수의 배터리 셀을 복수회 진단할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전마다 복수의 배터리 셀을 진단할 수 있다. 이 경우, 컨트롤러(120)는 복수회 진단마다 복수의 배터리 셀에 대한 진단 결과를 저장할 수 있다. 또한, 컨트롤러(120)는 진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀이 10회 방전이 수행되는 경우, 방전이 수행된 이후 복수의 배터리 셀을 진단할 수 있고, 7회 이상 불량으로 진단된 배터리 셀을 불량 배터리 셀로 최종 진단할 수 있다. 따라서, 본 문서에 개시된 배터리 관리 장치(100)는 착오 진단이 발생하는 가능성을 최소화할 수 있다. 다만, 상술한 수치에 한정되는 것은 아니고, 사용자는 컨트롤러(120)를 통해 배터리 셀이 최종 진단되는 설정 회수를 조절할 수 있다.
실시예에 따르면, 컨트롤러(120)는 서로 다른 두 시간을 기 설정된 시간만큼 차이나도록 설정할 수 있다. 예를 들어, 컨트롤러(120)는 서로 다른 두 시간을 600초 차이나도록 설정할 수 있다.
실시예에 따르면, 제1 전압은 배터리 셀 이 사용된 후 회복되는 개방 회로 전압값일 수 있다.
실시예에 따르면, 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압과 제2 전압의 비율이 기 설정된 범위에 포함되지 않으며 제1 전압과 제2 전압의 편차가 설정값 이상인 배터리 셀을 불량 배터리 셀로 진단할 수 있다. 예를 들어, 컨트롤러(120)는 비율이 기 설정된 범위에 포함되지 않으며 제2 전압의 편차가 설정값 이상인 배터리 셀로 설정된 회수만큼 연속적으로 진단된 경우 불량 배터리 셀로 최종 진단할 수 있다. 예를 들어, 설정된 회수는 2회를 포함할 수 있지만 오차를 줄이기 위해서 더 많은 회수가 될 수 있다.
실시예에 따르면, 컨트롤러(120)는 복수의 배터리 셀의 개방 회로 전압의 변화가 임계값 이상인 배터리 셀의 경우 진단을 수행하지 않고 노이즈로 판단할 수 있다. 예를 들어, 다른 배터리 셀보다 또는 기 설정된 임계값보다 전압이 더 크게 변하는 경우 노이즈일 확률이 높기 때문에 컨트롤러(120)는 노이즈로 판단된 값을 제외하고 진단을 수행할 수 있다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치가 복수의 배터리 셀을 진단하는 예시를 설명하기 위한 도면이다.
도 3을 참조하면, 정보 획득부(110)는 복수의 배터리 셀의 개방 회로 전압(300)을 시계열적으로 획득할 수 있다.
컨트롤러(120)는 서로 다른 두 시간에 대응되는 복수의 배터리 셀 각각의 개방 회로 전압의 변화를 산출할 수 있다. 예를 들어, 컨트롤러(120)는 600초에 대응되는 복수의 배터리 셀의 전압과 1200초에 대응되는 복수의 배터리 셀의 전압의 차이로 복수의 배터리 셀 각각의 개방 회로 전압의 변화를 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출할 수 있고, 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율을 기초로 복수의 배터리 셀의 상태를 진단할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다. 즉, 컨트롤러(120)는 개방 회로 전압의 회복비가 평균 개방 회로 전압의 회복비보다 높거나 낮은 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치(100)는, 복수의 배터리 셀의 탭 단선을 정확하게 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치(100)는, 복수의 배터리 셀의 충방전 후 휴지기 전압에 기반하여 배터리 셀 별 전압 변화를 산출하여 복수의 배터리 셀의 상태를 진단할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치(100)는, 복수의 배터리 셀의 전압 변화와 평균 전압 변화의 비율에 기반하여 복수의 배터리 셀 중 적어도 어느 하나의 배터리 셀의 탭 단선을 진단할 수 있다.
다시 도 2를 참조하면, 실시예에 따르면, 정보 획득부(110)는 복수의 배터리 셀이 충전 또는 방전된 후 설정된 시간만큼 경과된 휴지기에 복수의 배터리 셀의 전압을 획득할 수 있다. 휴지기에는 탭 단선이 된 배터리 셀은 정상 배터리 셀 대비 전압 변화가 빠르고 크게 발생할 수 있기 때문에, 정보 획득부(110)는 휴지기에 복수의 배터리 셀의 전압을 획득할 수 있다.
컨트롤러(120)는 서로 다른 두 시간에 대응되는 복수의 배터리 셀 각각의 전압 변화와 관련된 복수의 배터리 셀 각각의 제1 전압을 산출할 수 있다. 예를 들어, 컨트롤러(120)는 제1 시간에 대응되는 복수의 배터리 셀의 전압과 제2 시간에 대응되는 복수의 배터리 셀의 전압의 차이를 산출하여 복수의 배터리 셀 각각의 제1 전압을 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출할 수 있다. 예를 들어, 제2 전압은 서로 다른 두 시간에 대응되는 복수의 배터리 셀의 전압 편차의 평균일 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율을 산출할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압을 제2 전압으로 나누어 복수의 배터리 셀 각각의 비율을 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율을 기초로 복수의 배터리 셀 각각의 순위를 정의할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 각각의 비율에 기반하여 1 순위부터 마지막 순위까지 복수의 배터리 셀 각각의 순위를 정의할 수 있다. 다른 예를 들어, 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압과 제2 전압의 비율이 가장 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 순위에 기반하여 복수의 배터리 셀의 상태를 진단할 수 있다. 예를 들어, 컨트롤러(120)는 제1 배터리 셀의 비율(제1 배터리 셀의 제1 전압과 제2 전압의 비율)과 제2 배터리 셀의 비율(제2 배터리 셀의 제1 전압과 제2 전압의 비율)의 차이인 제1 차이를 산출할 수 있다. 또한, 컨트롤러(120)는 제2 배터리 셀의 비율과 제3 배터리 셀의 비율(제3 배터리 셀의 제1 전압과 제2 전압의 비율)의 차이인 제2 차이를 산출할 수 있다. 이 경우, 컨트롤러(120)는 제1 배터리 셀의 비율, 제1 차이 및 제2 차이에 기반하여 제1 배터리 셀의 상태를 진단할 수 있다.
실시예에 따르면, 컨트롤러(120)는 제1 배터리 셀의 비율이 제1 임계값 이상이고, 제1 차이와 제2 차이의 비율이 제2 임계값 이상인 경우 제1 배터리 셀에 탭 단선이 발생한 것으로 진단할 수 있다.
실시예에 따르면, 컨트롤러(120)는 서로 다른 두 시간을 기 설정된 시간만큼 차이나도록 설정할 수 있다. 예를 들어, 컨트롤러(120)는 서로 다른 두 시간을 600초 차이나도록 설정할 수 있다. 다른 예를 들어, 컨트롤러(120)는 서로 다른 두 시간을 600초, 1200초, 1800초 등으로 기 설정된 시간만큼 차이나도록 주기적으로 설정할 수 있다.
실시예에 따르면, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율, 순위, 편차에 모두 기반하여 복수의 배터리 셀을 진단할 수 있다. 예를 들어, 컨트롤러(120)는 비율, 순위 및 편차 중 어느 하나라도 기준을 만족하지 못하면 배터리 셀이 이상이 아닌 것으로 진단할 수 있다. 다른 예를 들어, 컨트롤러(120)는 비율, 순위 및 편차 중 어느 하나라도 기준을 넘으면 배터리 셀이 이상인 것으로 진단할 수 있다. 즉, 컨트롤러(120)는 비율, 순위 및 편차를 종합적으로 고려하여 복수의 배터리 셀을 진단할 수 있다.
도 4a, 도 4b 및 도 4c는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치가 복수의 배터리 셀을 진단하는 예시를 설명하기 위한 도면이다.
도 4a, 도 4b 및 도 4c를 참조하면, 정보 획득부(110)는 복수의 배터리 셀의 전압(310)을 시계열적으로 획득할 수 있다.
컨트롤러(120)는 서로 다른 두 시간에 대응되는 복수의 배터리 셀 각각의 전압 변화를 산출할 수 있다. 예를 들어, 컨트롤러(120)는 600초에 대응되는 복수의 배터리 셀의 전압과 1200초에 대응되는 복수의 배터리 셀의 전압의 차이로 복수의 배터리 셀 각각의 전압 변화를 산출할 수 있다. 또한, 컨트롤러(120)는 1200초에 대응되는 복수의 배터리 셀의 전압과 1800초에 대응되는 복수의 배터리 셀의 전압의 차이로 복수의 배터리 셀 각각의 전압 변화를 산출할 수 있다. 즉, 컨트롤러(120)는 600초 마다 복수의 배터리 셀 각각의 전압 변화(320)를 산출할 수 있다.
컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출할 수 있고, 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율(330)을 기초로 복수의 배터리 셀 각각의 순위를 정의할 수 있다. 예를 들어, 컨트롤러(120)는 3600초에 대응되는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율에 기반하여 비율이 가장 큰 제1 배터리 셀과 비율이 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단할 수 있다. 이 경우, 컨트롤러(120)는 제1 배터리 셀의 제1 전압과 제2 전압의 비율과 제2 배터리 셀의 제1 전압과 제2 전압의 비율의 차이인 제1 차이를 산출할 수 있고, 제2 배터리 셀의 제1 전압과 제2 전압의 비율과 제3 배터리 셀의 제1 전압과 제2 전압의 비율의 차이인 제2 차이를 산출할 수 있다. 또한, 컨트롤러(120)는 제1 배터리 셀의 제1 전압과 제2 전압의 비율, 제1 차이 및 제2 차이에 기반하여 제1 배터리 셀의 상태를 진단할 수 있다.
실시예에 따르면, 컨트롤러(120)는 제1 배터리 셀의 제1 전압과 제2 전압의 비율이 제1 임계값 이상이고, 제1 차이와 제2 차이의 비율이 제2 임계값 이상인 경우 제1 배터리 셀에 탭 단선이 발생한 것으로 진단할 수 있다. 즉, 컨트롤러(120)는 3600초에서 제1 배터리 셀에 탭 단선이 발생한 것으로 진단할 수 있다.
도 5는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
실시예에 따르면, 도 5에 도시된 동작들은 도 2의 배터리 관리 장치(100)를 통해 수행될 수 있다.
S110 단계에서, 정보 획득부(110)는 복수의 배터리 셀 각각의 개방 회로 전압을 획득할 수 있다. 예를 들어, S110 단계에서 정보 획득부(110)는 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 복수의 배터리 셀의 개방 회로 전압을 획득할 수 있다.
S120 단계에서, 컨트롤러(120)는 기 설정된 시간 동안 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 복수의 배터리 셀 각각의 제1 전압을 산출할 수 있다.
S130 단계에서, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출할 수 있다.
S140 단계에서, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압 및 제2 전압에 기반하여 편차를 산출할 수 있다.
S150 단계에서, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율 및 편차에 기반하여 복수의 배터리 셀을 진단할 수 있다. 예를 들어, S150 단계에서 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압과 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단할 수 있다.
도 6은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 구체적으로 보여주는 흐름도이다.
실시예에 따르면, 도 6에 도시된 동작들은 도 2의 배터리 관리 장치(100)를 통해 수행될 수 있다.
도 6을 참조하면, S210 단계에서, 컨트롤러(120)는 복수의 배터리 셀을 복수회 진단할 수 있다. 예를 들어, 컨트롤러(120)는 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전 마다 복수의 배터리 셀을 진단할 수 있다.
S220 단계에서, 컨트롤러(120)는 진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단할 수 있다.
실시예에 따르면, S210 단계 내지 S240 단계는 도 5의 S150 단계에 포함되어 수행될 수 있다.
도 7은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작을 보여주는 도면이다. 실시예에 따르면 도 7에 도시된 동작들은 도 2의 배터리 관리 장치(100)를 통해 수행될 수 있다.
도 7을 참조하면, S310 단계에서, 컨트롤러(120)는 복수의 배터리 셀 각각의 제1 전압과 제2 전압의 비율을 기초로 복수의 배터리 셀 각각의 순위를 정의할 수 있다.
S320 단계에서, 컨트롤러(120)는 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단할 수 있다. 실시예에 따르면, S320 단계는 S150 단계와 함께 수행될 수 있다. 즉, 컨트롤러(120)는 복수의 배터리 셀 각각의 순위, 비율, 편차에 기반하여 복수의 배터리 셀 각각을 진단할 수 있다.
도 8은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작을 구체적으로 보여주는 도면이다. 실시예에 따르면 도 8에 도시된 동작들은 도 2의 배터리 관리 장치(100)를 통해 수행될 수 있다.
도 8을 참조하면, S410 단계에서 컨트롤러(120)는 복수의 배터리 셀 중 제1 전압과 제2 전압의 비율이 가장 큰 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단할 수 있다.
S420 단계에서, 컨트롤러(120)는 제1 배터리 셀의 비율과 제2 배터리 셀의 비율의 차이인 제1 차이를 산출할 수 있다.
S430 단계에서, 컨트롤러(120)는 제2 배터리 셀의 비율과 제3 배터리 셀의 비율의 차이인 제2 차이를 산출할 수 있다.
S440 단계에서, 컨트롤러(120)는 제1 배터리 셀의 비율, 제1 차이 및 제2 차이에 기반하여 제1 배터리 셀의 상태를 진단할 수 있다.
S410 단계 내지 S440 단계는 도 7의 S320 단계에 포함되어 수행될 수 있다.
도 9는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 수행하기 위한 컴퓨팅 시스템의 하드웨어 구성을 나타내는 블록도이다.
도 9를 참조하면, 본 문서에 개시된 일 실시예에 따른 컴퓨팅 시스템(1000)은 MCU(1010), 메모리(1020), 입출력 I/F(1030) 및 통신 I/F(1040)를 포함할 수 있다.
MCU(1010)는 메모리(1020)에 저장되어 있는 각종 프로그램(예를 들면, 복수의 배터리 셀의 전압, 전류 수집 프로그램, 복수의 배터리 셀의 전압 변화 산출 프로그램, 복수의 배터리 셀의 전압 변화 평균 산출 프로그램, 복수의 배터리 셀 진단 프로그램 등)을 실행시키고, 이러한 프로그램들을 통해 복수의 배터리 셀의 전압, 전류, 전압 변화, 전압 변화의 평균, 탭 단선 여부 등을 포함한 각종 정보를 처리하며, 전술한 도 2에 나타낸 배터리 관리 장치에 포함된 컨트롤러의 기능들을 수행하도록 하는 프로세서일 수 있다.
메모리(1020)는 복수의 배터리 셀의 전압, 전류 수집 프로그램, 복수의 배터리 셀의 전압 변화 산출 프로그램, 복수의 배터리 셀의 전압 변화 평균 산출 프로그램, 복수의 배터리 셀 진단 프로그램 등 각종 프로그램을 저장할 수 있다. 또한, 메모리(1020)는 복수의 배터리 셀의 전압, 전류, 전압 변화, 전압 변화의 평균, 탭 단선 여부 등 각종 정보를 저장할 수 있다.
이러한 메모리(1020)는 필요에 따라서 복수 개 마련될 수도 있을 것이다. 메모리(1020)는 휘발성 메모리일 수도 있으며 비휘발성 메모리일 수 있다. 휘발성 메모리로서의 메모리(1020)는 RAM, DRAM, SRAM 등이 사용될 수 있다. 비휘발성 메모리로서의 메모리(1020)는 ROM, PROM, EAROM, EPROM, EEPROM, 플래시 메모리 등이 사용될 수 있다. 상기 열거한 메모리(1020)들의 예를 단지 예시일 뿐이며 이들 예로 한정되는 것은 아니다.
입출력 I/F(1030)는, 키보드, 마우스, 터치 패널 등의 입력 장치(미도시)와 디스플레이(미도시) 등의 출력 장치와 MCU(1010) 사이를 연결하여 데이터를 송수신할 수 있도록 하는 인터페이스를 제공할 수 있다.
통신 I/F(1040)는 서버와 각종 데이터를 송수신할 수 있는 구성으로서, 유선 또는 무선 통신을 지원할 수 있는 각종 장치일 수 있다. 예를 들면, 배터리 관리 장치는 통신 I/F(1040)를 통해 별도로 마련된 외부 서버로부터 복수의 배터리 셀의 전압, 전류, 전압 변화, 전압 변화의 평균, 탭 단선 여부와 같은 정보를 송수신할 수 있다.
이와 같이, 본 문서에 개시된 일 실시예에 따른 컴퓨터 프로그램은 메모리(1020)에 기록되고, MCU(1010)에 의해 처리됨으로써, 예를 들면 도 2에서 도시한 각 기능들을 수행하는 모듈로서 구현될 수도 있다.
이상의 설명은 본 문서에 개시된 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 문서에 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 문서에 개시된 실시예들은 본 문서에 개시된 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 문서에 개시된 기술 사상의 범위가 한정되는 것은 아니다. 본 문서에 개시된 기술 사상의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 문서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (19)

  1. 복수의 배터리 셀의 개방 회로 전압을 획득하는 정보 획득부; 및
    기 설정된 시간 동안 상기 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 상기 복수의 배터리 셀 각각의 제1 전압을 산출하고,
    상기 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출하고,
    상기 복수의 배터리 셀 각각의 제1 전압 및 상기 제2 전압에 기반하여 편차를 산출하고,
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율 및 상기 편차에 기반하여 상기 복수의 배터리 셀을 진단하는 컨트롤러; 를 포함하는 배터리 관리 장치.
  2. 제 1 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀을 복수회 진단하고,
    진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단하는, 배터리 관리 장치.
  3. 제 2 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전마다 상기 복수의 배터리 셀을 진단하는, 배터리 관리 장치.
  4. 제 1 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단하는, 배터리 관리 장치.
  5. 제 1 항에 있어서,
    상기 제1 전압은 배터리 셀이 사용된 후 회복되는 개방 회로 전압값인, 배터리 관리 장치.
  6. 제 1 항에 있어서,
    상기 정보 획득부는,
    상기 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 상기 복수의 배터리 셀의 개방 회로 전압을 획득하는, 배터리 관리 장치.
  7. 제 1 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않으며 제1 전압과 상기 제2 전압의 편차가 설정값 이상인 배터리 셀을 불량 배터리 셀로 진단하는, 배터리 관리 장치.
  8. 제 7 항에 있어서,
    상기 컨트롤러는,
    상기 비율이 기 설정된 범위에 포함되지 않으며 상기 제2 전압의 편차가 설정값 이상인 배터리 셀로 설정된 회수만큼 연속적으로 진단된 경우 불량 배터리 셀로 최종 진단하는, 배터리 관리 장치.
  9. 제 1 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀의 개방 회로 전압의 변화가 임계값 이상인 배터리 셀의 경우 진단을 수행하지 않고 노이즈로 판단하는, 배터리 관리 장치.
  10. 제 1 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율을 기초로 상기 복수의 배터리 셀 각각의 순위를 정의하고,
    상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단하는, 배터리 관리 장치.
  11. 제 10 항에 있어서,
    상기 컨트롤러는,
    상기 복수의 배터리 셀 중 상기 제1 전압과 상기 제2 전압의 비율이 가장 큰 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단하고,
    상기 제1 배터리 셀의 비율과 상기 제2 배터리 셀의 비율의 차이인 제1 차이를 산출하고,
    상기 제2 배터리 셀의 비율과 상기 제3 배터리 셀의 비율의 차이인 제2 차이를 산출하고,
    상기 제1 배터리 셀의 비율, 상기 제1 차이 및 상기 제2 차이에 기반하여 상기 제1 배터리 셀의 상태를 진단하는, 배터리 관리 장치.
  12. 제 11 항에 있어서,
    상기 컨트롤러는,
    상기 제1 배터리 셀의 비율이 제1 임계값 이상이고,
    상기 제1 차이와 상기 제2 차이의 비율이 제2 임계값 이상이며 상기 편차가 설정값 이상인 배터리 셀을 불량 배터리 셀로 진단하는, 배터리 관리 장치.
  13. 복수의 배터리 셀의 개방 회로 전압을 획득하는 단계;
    기 설정된 시간 동안 상기 복수의 배터리 셀의 개방 회로 전압의 변화에 관련된 상기 복수의 배터리 셀 각각의 제1 전압을 산출하는 단계;
    상기 복수의 배터리 셀 각각의 제1 전압의 평균인 제2 전압을 산출하는 단계;
    상기 복수의 배터리 셀 각각의 제1 전압 및 상기 제2 전압에 기반하여 편차를 산출하는 단계; 및
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율 및 상기 편차에 기반하여 상기 복수의 배터리 셀을 진단하는 단계; 를 포함하는 배터리 관리 장치의 동작 방법.
  14. 제 13 항에 있어서,
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율에 기반하여 상기 복수의 배터리 셀을 진단하는 단계는,
    상기 복수의 배터리 셀을 복수회 진단하는 단계; 및
    진단된 회수가 설정 회수 이상인 배터리 셀을 불량 배터리 셀로 최종 진단하는 단계; 를 포함하는, 배터리 관리 장치의 동작 방법.
  15. 제 14 항에 있어서,
    상기 복수의 배터리 셀을 복수회 진단하는 단계는,
    상기 복수의 배터리 셀이 복수회 방전이 수행된 이후 각각의 방전마다 상기 복수의 배터리 셀을 진단하는, 배터리 관리 장치의 동작 방법.
  16. 제 13 항에 있어서,
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율에 기반하여 상기 복수의 배터리 셀을 진단하는 단계는,
    상기 복수의 배터리 셀 중 제1 전압과 상기 제2 전압의 비율이 기 설정된 범위에 포함되지 않는 배터리 셀을 불량 배터리 셀로 진단하는, 배터리 관리 장치의 동작 방법.
  17. 제 13 항에 있어서,
    상기 복수의 배터리 셀의 개방 회로 전압을 획득하는 단계는,
    상기 복수의 배터리 셀의 충전 또는 방전이 수행되고 설정된 시간 이후에 상기 복수의 배터리 셀의 개방 회로 전압을 획득하는, 배터리 관리 장치의 동작 방법.
  18. 제 13 항에 있어서,
    상기 복수의 배터리 셀 각각의 제1 전압과 상기 제2 전압의 비율을 기초로 상기 복수의 배터리 셀 각각의 순위를 정의하는 단계; 및
    상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단하는 단계; 를 더 포함하는, 배터리 관리 장치.
  19. 제 18 항에 있어서,
    상기 복수의 배터리 셀 각각의 순위에 기초하여 복수의 배터리 셀을 진단하는 단계는,
    상기 복수의 배터리 셀 중 상기 제1 전압과 상기 제2 전압의 비율이 가장 큰 제1 배터리 셀과, 두번째로 큰 제2 배터리 셀과, 가장 작은 제3 배터리 셀을 판단하는 단계;
    상기 제1 배터리 셀의 비율과 상기 제2 배터리 셀의 비율의 차이인 제1 차이를 산출하는 단계;
    상기 제2 배터리 셀의 비율과 상기 제3 배터리 셀의 비율의 차이인 제2 차이를 산출하는 단계; 및
    상기 제1 배터리 셀의 비율, 상기 제1 차이 및 상기 제2 차이에 기반하여 상기 제1 배터리 셀의 상태를 진단하는 단계; 를 포함하는, 배터리 관리 장치.
PCT/KR2023/018100 2022-11-11 2023-11-10 배터리 관리 장치 및 그것의 동작 방법 WO2024101960A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0151067 2022-11-11
KR1020220151066A KR20240069505A (ko) 2022-11-11 배터리 관리 장치 및 그것의 동작 방법
KR20220151067 2022-11-11
KR10-2022-0151066 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101960A1 true WO2024101960A1 (ko) 2024-05-16

Family

ID=91033341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018100 WO2024101960A1 (ko) 2022-11-11 2023-11-10 배터리 관리 장치 및 그것의 동작 방법

Country Status (1)

Country Link
WO (1) WO2024101960A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542771B1 (ko) * 2014-03-31 2015-08-07 엘지전자 주식회사 전기자동차 및 그 동작방법
KR20170122593A (ko) * 2016-04-27 2017-11-06 현대자동차주식회사 연료전지 핀홀 진단방법 및 시스템
KR20210074003A (ko) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 배터리 퇴화도 진단 장치 및 방법
KR102362208B1 (ko) * 2019-11-15 2022-02-10 삼성에스디아이 주식회사 이상 셀 검출 장치, 배터리 시스템 및 배터리 시스템의 이상 셀 검출 방법
KR20220074797A (ko) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542771B1 (ko) * 2014-03-31 2015-08-07 엘지전자 주식회사 전기자동차 및 그 동작방법
KR20170122593A (ko) * 2016-04-27 2017-11-06 현대자동차주식회사 연료전지 핀홀 진단방법 및 시스템
KR102362208B1 (ko) * 2019-11-15 2022-02-10 삼성에스디아이 주식회사 이상 셀 검출 장치, 배터리 시스템 및 배터리 시스템의 이상 셀 검출 방법
KR20210074003A (ko) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 배터리 퇴화도 진단 장치 및 방법
KR20220074797A (ko) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차

Similar Documents

Publication Publication Date Title
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2022035149A1 (ko) 배터리 이상 진단 장치 및 방법
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
WO2022154354A1 (ko) 배터리 시스템 진단 장치 및 방법
WO2020166827A1 (ko) 슬레이브 bms 점검 시스템 및 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2019103412A1 (ko) 배터리 장치 및 배터리 온도 조절방법
WO2022149917A1 (ko) 배터리 관리 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법
WO2022103213A1 (ko) 배터리 진단 장치 및 방법
WO2021230642A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2019107978A1 (ko) 배터리 팩
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2024101960A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2022019703A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2019156403A1 (ko) 이차 전지 상태 추정 장치 및 방법
WO2019107983A1 (ko) 배터리 팩
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
WO2022097931A1 (ko) 배터리 관리 장치 및 방법
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법