WO2024101365A1 - Skin treatment device - Google Patents

Skin treatment device Download PDF

Info

Publication number
WO2024101365A1
WO2024101365A1 PCT/JP2023/040106 JP2023040106W WO2024101365A1 WO 2024101365 A1 WO2024101365 A1 WO 2024101365A1 JP 2023040106 W JP2023040106 W JP 2023040106W WO 2024101365 A1 WO2024101365 A1 WO 2024101365A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
skin
light source
wavelength
led
Prior art date
Application number
PCT/JP2023/040106
Other languages
French (fr)
Japanese (ja)
Inventor
知司 小杉
一範 山中
正志 東平
Original Assignee
ヤーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤーマン株式会社 filed Critical ヤーマン株式会社
Publication of WO2024101365A1 publication Critical patent/WO2024101365A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • This disclosure relates to a skin treatment device.
  • a known conventional technology for irradiating light onto the skin surface for beauty purposes is a light-irradiating cosmetic device equipped with a light-emitting unit having a first light source unit with a predetermined wavelength spectrum, a second light source unit with a wavelength spectrum different from that of the first light source unit, and an emission port through which at least a portion of the electromagnetic waves emitted from the first light source unit and at least a portion of the electromagnetic waves emitted from the second light source unit are emitted when electromagnetic waves are emitted from the first light source unit and the second light source unit, respectively (Patent Document 1).
  • the present disclosure therefore aims to irradiate various types of light onto the skin appropriately and efficiently.
  • a skin treatment device in one aspect, includes a first light source that generates light of a predetermined wavelength, a second light source that generates light of a wavelength different from the predetermined wavelength of the first light source, a first exit surface from which the light from the first light source is emitted, and a second exit surface from which the light from the second light source is emitted, in which the path along which the light from the first light source reaches the first exit surface does not intersect with the path along which the light from the second light source reaches the second exit surface.
  • FIG. 1 is a perspective view showing an overall appearance of a light irradiation device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a configuration of a light irradiation unit of the light irradiation device of FIG. 1 .
  • 3 is a vertical sectional perspective view showing the structure of the light irradiation unit in FIG. 2.
  • FIG. 3 is a vertical cross-sectional view showing the structure of the light irradiation unit in FIG. 2 . 1.
  • FIG. 4 is a perspective view showing another example of the configuration of the light irradiation unit of the light irradiation device of FIG.
  • FIG. 6 is a vertical sectional perspective view showing the structure of the light irradiation unit in FIG. 5 .
  • FIG. 6 is a vertical cross-sectional view showing the structure of the light irradiation unit in FIG. 5 .
  • 2 is a block diagram showing an outline of a control system of the light irradiation device of FIG. 1 .
  • FIG. 2 is a perspective view showing the overall appearance of a light irradiation device including a sensor unit.
  • FIG. 10 is a plan view of the light irradiation device of FIG. 9 . 4 is an explanatory diagram of characteristics of light (predetermined light) emitted from an LED.
  • FIG. FIG. 1 is a diagram showing test results (part 1) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 13 is a diagram showing test results (part 2) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 13 is a diagram showing test results (part 3) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 13 is a diagram showing test results (part 4) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 5 is a diagram showing test results (part 5) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 13 is a diagram showing test results (part 6) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 17 is a table showing the evaluation results obtained from the test results of FIGS. 13A to 13E.
  • FIG. 13 is a diagram showing test results (part 7) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 13 is a diagram showing test results (part 8) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 9 is a diagram showing test results (part 9) concerning the melanin production suppression effect by irradiation with green LED light.
  • FIG. 10 is a diagram showing test results (part 10) concerning the melanin production suppression effect by irradiation with green LED light.
  • 1 is a table showing the relationship between the radiation intensity of green LED light and the effect (the effect of suppressing melanin production).
  • 1 is a graph (part 1) showing the relationship between the radiation intensity of green LED light and the effect.
  • FIG. 2 is a graph (part 2) showing the relationship between the radiation intensity of green LED light and the effect.
  • 13 is a graph (part 3) showing the relationship between the radiation intensity of green LED light and the effect.
  • 13 is a graph showing another test result regarding the relationship between the radiant intensity of green LED light and the effect.
  • FIG. 13 is a diagram showing test results (part 1) relating to differences in melanin production inhibitory effects caused by differences in wavelength.
  • FIG. 13 is a diagram showing test results (part 2) relating to differences in melanin production inhibitory effects caused by differences in wavelength.
  • FIG. 13 is a diagram showing test results (part 3) relating to differences in melanin production inhibitory effects caused by differences in wavelength.
  • FIG. 1 shows test results regarding the expression level of keratin 10.
  • the up-down direction is defined along each axis of a three-dimensional Cartesian coordinate system as shown in each drawing, and the upward and downward directions are defined according to the direction of the arrows, and the longitudinal direction and width direction are also defined.
  • the longitudinal direction and width direction are mutually orthogonal within the same plane, and the up-down direction is mutually orthogonal to the longitudinal direction and width direction.
  • a line of sight along the up-down direction is a planar view, and a cross section along the up-down direction is a longitudinal cross section.
  • the up-down direction is a direction perpendicular to the upper surface of the light transmitting section 41 of the light guide 4, which will be described later, and is also perpendicular to the upper surface of the filter 33, which will be described later. Therefore, the plan view is a line of sight along a direction perpendicular to the upper surface of the light transmitting section 41 of the light guide 4, which will be described later. The plan view is also a line of sight along a direction perpendicular to the surface of the user's skin when the skin treatment device is in use. The direction of light emitted from the head unit 3 is upward.
  • FIG. 1 is a perspective view showing the overall appearance of a light irradiation device 1 according to an embodiment, as an example of a specific configuration of a skin treatment device according to the present invention.
  • the light irradiation device 1 generates light that can be irradiated to human skin.
  • the light may have a beauty-related effect on a human, particularly on the skin.
  • the beauty-related effect is arbitrary and may include hair removal, skin beautification, elimination of sagging, tightening, fat burning, lifting, face slimming, improving skin firmness, luster, and moisture, or any combination of one or more of such effects.
  • the beauty-related effect may be a quantifiable effect or may not be a quantifiable effect.
  • the light irradiation device 1 shown in FIG. 1 is a portable type that can be held by the user's hand, but the form of the skin treatment device (light irradiation device) according to the present invention is arbitrary, and may be a fixed type that is placed on a stand for use, or may be a movable type that is movably supported on a fixed device via an arm or the like. Furthermore, the skin treatment device (light irradiation device) according to the present invention may be in the form of a mask that is worn on the face, or a form that can be wrapped around the body for use, for example.
  • the light irradiation device 1 includes a grip portion 2 and a head portion 3.
  • the user can locally irradiate light from the light irradiation device 1 to a desired area by holding the grip portion 2 in the hand and pointing the skin-facing portion 3a of the head portion 3 toward a desired area on the user's face or body.
  • the grip portion 2 has a shape that allows it to be easily held by the user's hand.
  • the grip portion 2 may include an input section (not shown) that includes various buttons such as a power on/off button, a mode switching button, and an intensity adjustment button.
  • the various buttons may be mechanical buttons or touch switches.
  • the grip portion 2 may also be provided with a display section (not shown) that displays the status of the light irradiation device 1, etc.
  • the head portion 3 is provided at the end of the grip portion 2.
  • the head portion 3 may be fixed to the grip portion 2, may be detachable, or may be movable relative to the grip portion 2.
  • the head portion 3 (or a part of the head portion 3) may also include multiple attachments that can be attached to and detached from the grip portion 2.
  • the shape of the skin-facing portion 3a of the head portion 3 in a plan view can be any shape, such as a circle, an ellipse, a rectangle, a rounded rectangle, a polygon, or a rounded polygon.
  • the skin-facing portion 3a is formed in a concave shape in its longitudinal section (i.e., a section along the up-down direction) so that the light emission surface having beauty-related effects is the surface facing the user's skin and is recessed into the user's skin.
  • the light emission surface of the skin-facing portion 3a is exposed, but because it is concave, it does not come into contact with the user's skin and does not get dirty.
  • Light Irradiation Unit 2 to 4 are diagrams showing the configuration and structure of the light irradiation unit 30 of the light irradiation device 1 according to the embodiment.
  • the upper side of the light irradiation unit 30 faces the user's skin.
  • the light irradiation unit 30 is built into the head unit 3. Specifically, the light irradiation unit 30 is provided on the head unit 3 in such a manner that the upper end of the light irradiation unit 30 is exposed from the upper end of the head unit 3. Note that, although the light irradiation unit 30 is provided as a structure separated from the head unit 3 in the example shown in the figure, it may be configured as an integral part of the head unit 3.
  • the light irradiation unit 30 generates light that is irradiated onto the skin via the skin-facing portion 3a. That is, the light irradiation unit 30 irradiates light onto the skin via the skin-facing portion 3a.
  • the light irradiation unit 30 includes an IPL (Intense Pulsed Light) 31 as a first light source, a first reflector 32, a filter 33, a second reflector 35, an LED (Light Emitting Diode) 37 as a second light source, and a light guide 4.
  • IPL Intelligent Pulsed Light
  • the IPL 31, which serves as the first light source, is a light source that emits light of a specific wavelength that has a beauty-related effect.
  • One IPL 31 may be disposed, or multiple IPLs 31 may be disposed. When multiple IPLs 31 are disposed, the multiple IPLs 31 may be disposed, for example, side-by-side along the longitudinal or width direction.
  • the first reflector 32 is a reflector that reflects the light emitted from the IPL 31 and guides it upward.
  • the filter 33 is disposed above the IPL 31 and the first reflector 32, and passes the light emitted from the IPL 31 (including the light reflected by the first reflector 32), and cuts out light emitted from the IPL 31 that has a specific wavelength or less.
  • the value (range) of the wavelength of the light cut by the filter 33 is not limited to a specific value, but is appropriately set, for example, taking into consideration the wavelength of light that has a beauty-related effect.
  • the value (range) of the wavelength of the light cut by the filter 33 may be set to 400 nm, for example, so that the filter 33 cuts out light with a wavelength of 400 nm or less.
  • the light emitted from the IPL 31 may pass through one filter 33, or may pass through two or more types of filters.
  • the two or more types of filters may cut different wavelengths of light.
  • each of the two or more types of filters may be a filter that cuts light below a specific wavelength, and the specific wavelengths may be different.
  • an IPL 31 may be provided for each filter, or multiple control modes may be provided.
  • the light emitted from IPL 31 may be adjusted by a filter to, for example, light having a central wavelength in the wavelength range of 400 nm or more and 800 nm or less (in other words, roughly the visible light range), or in the wavelength range of 400 nm or more (in other words, roughly the visible light range or more).
  • the first reflector 32 and the filter 33 are held in a lower holder 34 arranged to surround the sides of the first reflector 32 and the filter 33.
  • the first reflector 32 is housed together with the IPL 31 in the generally peripheral wall-shaped (in other words, cylindrical) lower holder 34, and a flat filter 33 is arranged near the upper end of the lower holder 34 so as to cover the upper opening of the first reflector 32.
  • the lower holder 34 is formed, for example, from resin, and is fixed to the head portion 3.
  • the second reflector 35 is a reflector that is disposed around the upper periphery of the filter 33 and reflects and guides the light of the IPL 31 that has passed through the filter 33.
  • the second reflector 35 is a rounded rectangle with semicircular ends in the longitudinal direction in a plan view, and is formed as a peripheral wall above the filter 33 along the edge of the filter 33.
  • the second reflector 35 is held by the upper holder 36.
  • the peripheral wall-shaped upper holder 36 is disposed at the upper end of the peripheral wall-shaped (cylindrical) lower holder 34, with the lower edge of the upper holder 36 engaging with the upper edge of the lower holder 34.
  • the peripheral wall-shaped second reflector 35 is attached to the inner surface (in other words, the inner wall surface) of the upper holder 36.
  • the upper holder 36 is formed, for example, from silicone rubber, and is fixed to the upper end of the lower holder 34.
  • the second reflector 35 is disposed to better guide the light to the center of the light guide 4 by reflecting light that is inclined in the vertical direction among the light emitted from the IPL 31 and passed through the filter 33 (including the light reflected by the first reflector 32 and passed through the filter 33).
  • the inner space of the second reflector 35 in a plan view and the plate surface of the filter 33 generally overlap each other in the vertical direction.
  • At least a portion of the light emitted from the IPL 31 is reflected by the first reflector 32 and passes through the filter 33, and at least a portion of the light is reflected by the second reflector 35 and guided to the light guide 4.
  • the LED 37 as the second light source is a light source that generates light of a specific wavelength that has a beauty-related effect. Specifically, when irradiated onto the skin, for example, it generates light that has an antibacterial effect to improve acne, an antioxidant effect and an effect of suppressing melanin production to improve spots, an effect of improving lymph flow and reducing swelling by repairing damaged cells, and an effect of improving wrinkles by promoting collagen production associated with activation of dermal fibroblasts.
  • the wavelength of light generated by the IPL 31 as the first light source and the wavelength of light generated by the LED 37 as the second light source are mutually different.
  • a single LED 37 may be disposed, or multiple LEDs 37 may be disposed. When multiple LEDs 37 are disposed, the multiple LEDs 37 may be disposed, for example, side-by-side in a plane that is approximately parallel to the plate surface of the filter 33.
  • the LEDs 37 are arranged in a plane parallel to the plate surface of the filter 33. Specifically, the LEDs 37 are arranged in a line on the upper surface of a holder flange 38 that is provided in a brim-like projection near the upper end of the outer surface (in other words, the outer wall surface) of the lower holder 34.
  • the LEDs 37 are arranged so as to surround the upper opening of the lower holder 34 in a plan view, and further so as to surround the upper openings of the IPL 31 and the first reflector 32.
  • the holder flange 38 is formed, for example, from silicone rubber, and is fixed to a position near the upper end of the outer surface (outer wall surface) of the lower holder 34.
  • the LEDs 37 are arranged around the entire periphery of the upper end opening of the lower holder 34 in a plan view, surrounding the entire periphery of the IPL 31, but the LEDs 37 may be arranged around at least a portion of the periphery of the IPL 31 in a plan view.
  • the LEDs 37 may be arranged on both or only one of the longitudinal sides of the IPL 31 in a plan view, or on both or only one of the widthwise sides.
  • Multiple LED elements may be mounted on one chip. Also, multiple (i.e., multiple types of) LED elements having mutually different center wavelengths may be mounted on one chip.
  • the LED 37 may generate light having a central wavelength in the wavelength range of 430 nm or more and 480 nm or less.
  • the LED 37 may also emit light having a central wavelength in the wavelength range of 490 nm or more and 525 nm or less.
  • the LED 37 may also emit light having a central wavelength in the wavelength range of 530 nm or more and 600 nm or less.
  • the LED 37 may also emit light having a central wavelength in the wavelength range of 610 nm or more and 650 nm or less.
  • the LED 37 may also generate light having a central wavelength in the wavelength range of 800 nm or more and 2500 nm or less. By irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 800 nm or more and 2500 nm or less alternately or simultaneously, a warming effect is expected.
  • the second light source (specifically, in this embodiment, LED 37) may generate any one of a plurality of lights having a central wavelength within any one of the above-mentioned wavelength ranges, or a combination of at least two of the plurality of lights.
  • any one of the light from the multiple types of LEDs that generate light with different center wavelengths may be emitted, or the light from the multiple types of LEDs may be emitted alternately or simultaneously.
  • multiple types of LED elements that generate light with different center wavelengths may be mounted on one chip, and the ratio of the numbers of each of the multiple types of LED elements on one chip may be set to an appropriate ratio as appropriate.
  • the LED 37 may be configured to irradiate light, for example, with a radiation intensity in the range of 0.5 mW/ cm2 or more and 62 mW/ cm2 or less, and more preferably with a radiation intensity in the range of 11.5 mW/ cm2 or more and 30 mW/ cm2 or less.
  • the LED 37 may be configured to irradiate light with an irradiation energy in the range of 0.09 J/ cm2 or more and 30 J/cm2 or less, and more preferably with an irradiation energy in the range of 0.09 J/ cm2 or more and 11 J/ cm2 or less.
  • the light irradiation device 1 may be configured to freely switch between a plurality of modes by selecting the IPL 31 and the LED 37. Specifically, the light irradiation device 1 may be configured to freely switch between, for example, a skin beautifying mode, an anti-aging care mode, a daily care mode for daily use, a special care mode for use approximately two to three times a week, a mode for use on a large area such as the face, a spot care mode for areas of concern such as blemishes or dullness, and a mode for facial fine hair care and skin texture adjustment.
  • a skin beautifying mode for example, an anti-aging care mode, a daily care mode for daily use, a special care mode for use approximately two to three times a week, a mode for use on a large area such as the face, a spot care mode for areas of concern such as blemishes or dullness, and a mode for facial fine hair care and skin texture adjustment.
  • the attachments can be attached and detached using magnets or fitting parts, and may be attachments that include at least part of the configuration of the light irradiation unit 30.
  • the attachment include a filter 33 and an LED 37, it is possible to select a suitable configuration for the filter 33 and the LED 37 according to the purpose.
  • At least one of the IPL 31 and the LED 37 may remain on the grip 2/head 3 side, and the upper part of the light irradiation unit 30 may be configured as an attachment including the light guide 4 that comes into contact with the skin.
  • an irradiation area such as wide area or spot care while keeping the cost of the light irradiation unit 30 components down.
  • the configuration included in the attachment that is detachable from the grip portion 2 is not limited to a specific configuration, and the attachment may include, for example, at least the light guide 4 out of the IPL 31 as the first light source, the LED 37 as the second light source, and the light guide 4, or may include at least the LED 37 as the second light source and the light guide 4.
  • the attachment that is detachable from the grip unit 2 may be configured so that the type of attachment attached to the head unit 3 (or part of the head unit 3) can be identified.
  • the identification unit may be realized, for example, based on a magnetic sensor, a contact-type sensor, switching, etc., and by automatically identifying the attachment, appropriate processing can be performed without the need to operate a button, etc.
  • the light irradiation device 1 of the embodiment comprises an IPL 31 as a first light source that generates light of a predetermined wavelength, an LED 37 as a second light source that generates light of a wavelength different from the predetermined wavelength of the IPL 31, a first exit surface 411 from which the light from the IPL 31 is emitted, and a second exit surface 421 from which the light from the LED 37 is emitted, and the path along which the light from the IPL 31 reaches the first exit surface 411 and the path along which the light from the LED 37 reaches the second exit surface 421 do not intersect, and the second exit surface 421 is inclined with respect to the first exit surface 411.
  • the light irradiation unit 30 has a path and an exit surface corresponding to each of the two types of light. Specifically, the light irradiation unit 30 has a path AR1 corresponding to the light of the IPL 31 and a first exit surface 411 which is an exit surface corresponding to the light of the IPL 31, and a path AR2 corresponding to the light of the LED 37 and a second exit surface 421 which is an exit surface corresponding to the light of the LED 37.
  • the light guide 4 is interposed between the IPL 31 as the first light source and the LED 37 as the second light source and the user's skin, and is configured to collect the light of the LED 37 in the center in a plan view on the user's skin side and irradiate the light of the LED 37 within the light irradiation surface of the IPL 31.
  • the light guide 4 has a light passing section 41 in the center and a ring-shaped light guide section 42 that surrounds the periphery of the light passing section 41. In other words, the light passing section 41 and the light guide section 42 of the light guide 4 do not overlap each other in a plan view.
  • the light guide 4 is formed, for example, from a transparent resin or glass.
  • the light guide 42 is disposed around the entire periphery of the light passing portion 41 in a plan view, so as to completely surround the periphery of the light passing portion 41, but the light guide 42 may be disposed around at least a portion of the periphery of the light passing portion 41 in a plan view, for example, to match the portion where the LED 37 is disposed in a plan view. In other words, the light guide 42 may be disposed around at least a portion of the periphery of the IPL 31 in a plan view.
  • the light passing portion 41 is formed in a flat plate shape, and the light guide portion 42 is formed in a generally peripheral wall shape (in other words, cylindrical shape) that surrounds the periphery of the light passing portion 41.
  • the flat light passing portion 41 is provided inside the peripheral wall-shaped (cylindrical) light guide portion 42, in the middle in the vertical direction, so as to be supported by the inner peripheral surface of the light guide portion 42.
  • the light transmitting portion 41 of the light guide 4 overlaps with the IPL 31 and the filter 33 in the vertical direction.
  • the plate surface of the light transmitting portion 41 of the light guide 4 and the plate surface of the filter 33 generally overlap with each other in the vertical direction.
  • the light guide section 42 of the light guide 4 surrounds the sides (in other words, the periphery) of the upper holder 36, and its lower end face faces the array of the multiple LEDs 37 that surround the upper end opening of the lower holder 34 in the vertical direction, covering the upper side (upper surface) of the array of the multiple LEDs 37.
  • the light guide section 42 surrounds the sides (in other words, the periphery) of the IPL 31, the filter 33, and the light transmitting section 41 in the vertical direction, and overlaps with the LEDs 37.
  • the light passing section 41 and the light guiding section 42 of the light guide 4 may be formed as an integrated part (in other words, a single continuous member or component) as in the example shown in the figure, or may be formed as separate parts (in other words, multiple components).
  • the light passing portion 41 and the light guiding portion 42 are formed as separate parts (multiple members), they may be formed from the same material, or may be formed from materials different from each other.
  • a shielding member or shielding film that does not allow light to pass i.e., optically separates the light passing portion 41 and the light guiding portion 42
  • a space may be provided at least partially between the light passing portion 41 and the light guide portion 42.
  • a space is provided between the light passing portion 41 and the light guide portion 42 over the entire circumference thereof in a plan view, it is expected that light will not pass between the light passing portion 41 and the light guide portion 42.
  • the light passing portion 41 may be supported by the upper holder 36.
  • a support part may be provided at least partially between the light passing portion 41 and the light guide portion 42, made of a material that does not allow light to pass therethrough, to support the light passing portion 41 against the inner surface of the light guide portion 42.
  • At least one of the second reflector 35 and the upper holder 36 in the example shown in the figure may be extended upward to optically separate the part/member corresponding to the light passing section 41 from the part/member corresponding to the light guiding section 42.
  • the upper surface of the light passing section 41 of the light guide 4 constitutes a first exit surface 411 from which light from the IPL 31 is emitted.
  • the upper end surface of the light guiding section 42 of the light guide 4 constitutes a second exit surface 421 from which light from the LED 37 is emitted.
  • the upper surface of the light guide 4 i.e., the surface facing the user's skin, that is, in a plan view, has the first exit surface 411 in the center and a second exit surface 421 that surrounds the periphery of the first exit surface 411.
  • the second exit surface 421 is formed all around the first exit surface 411 in a plan view, surrounding the entire periphery of the first exit surface 411, but the second exit surface 421 may be formed on at least a portion of the periphery of the first exit surface 411 in a plan view, for example, to match the portion where the LED 37 is arranged in a plan view.
  • the second exit surface 421 may be formed on at least a portion of the periphery of the IPL 31 in a plan view.
  • the contact portion 44 is the outer edge of the second emission surface 421, and comes into contact with the user's skin when the light irradiation device 1 is in use.
  • the contact portion 44 also corresponds to the outer periphery of the skin-facing portion 3a. With the contact portion 44 in contact with the skin, the light irradiation device 1 is moved appropriately, and the light of the IPL 31 and the light of the LED 37 are irradiated onto the user's skin, thereby providing a beauty-related effect.
  • the second exit surface 421 which is the upper end surface of the light guide section 42 of the light guide 4, slopes downward from an outer edge portion (i.e., contact portion 44) located above the periphery of the first exit surface 411 in a plan view toward the periphery of the first exit surface 411, forming a bank portion of the concave skin-facing portion 3a.
  • the second exit surface 421 has a downward slope toward the first exit surface 411 and is formed into a slightly convex curved surface.
  • the first emission surface 411 is parallel to the user's skin surface and faces directly against the skin surface, while the second emission surface 421 is inclined relative to the first emission surface 411 and, by extension, inclined relative to the user's skin surface.
  • At least a portion of the light emitted from the IPL 31 is reflected by the first reflector 32 and passes through the filter 33, and at least a portion of the light is reflected by the second reflector 35 and guided to the center of the light guide 4, passes through the light passing portion 41 of the light guide 4, and is emitted from the first exit surface 411.
  • the light emitted from the LED 37 enters the light guide section 42 of the light guide body 4, is guided by the light guide section 42 (in other words, passes through the light guide section 42), and is emitted from the second emission surface 421.
  • the path along which the light from the IPL 31 reaches the first exit surface 411 of the light passing section 41 (in other words, the path of the light from the IPL 31 to the first exit surface 411) and the path along which the light from the LED 37 reaches the second exit surface 421 of the light guide section 42 (in other words, the path of the light from the LED 37 to the second exit surface 421) do not intersect with each other.
  • the second exit surface 421, which is the upper end surface of the light guide 42 is inclined relative to the first exit surface 411, which is the upper surface of the light passing portion 41 of the light guide 4, the light passing through the light guide 42 is refracted at the second exit surface 421, and the light of the IPL 31 which passes through the light passing portion 41 and is emitted from the first exit surface 411 and the light of the LED 37 which passes through the light guide 42 and is emitted from the second exit surface 421 are irradiated onto approximately the same area of the user's skin (i.e., the light of the IPL 31 which is emitted from the first exit surface 411 and the light of the LED 37 which is emitted from the second exit surface 421 intersect).
  • a shielding member or shielding film that does not allow light to pass between the space surrounded by the light guide 42 and the inside of the light guide 42, such as the upper holder 36 in the example shown in the figure (i.e., optically separates the space surrounded by the light guide 42 from the inside of the light guide 42).
  • the space surrounded by the light guide 42 is a space that roughly overlaps with the plate surface of the filter 33 in the vertical direction (in other words, in a plan view).
  • FIG. 8 is a block diagram showing an outline of a control system of the light irradiation device 1. As shown in FIG.
  • the light irradiation device 1 includes a control device 8, which is electrically connected to a power source 9, an IPL 31 as a first light source, and an LED 37 as a second light source.
  • the control device 8 and the power source 9 are housed, for example, inside the grip portion 2.
  • the control device 8 operates based on power from the power source 9 and controls the IPL 31 and the LED 37.
  • the IPL 31 and the LED 37 operate based on power from the power source 9 under the control of the control device 8.
  • the power source 9 may include an external power source and/or an internal power source.
  • the internal power source may be a rechargeable battery.
  • the control device 8 includes an IPL driver 81 and an LED driver 82.
  • the IPL driver 81 controls the IPL 31 to emit light at predetermined intervals by supplying power from the power source 9.
  • the LED driver 82 controls the LED 37 to emit light by supplying power from the power source 9.
  • the IPL driver 81 and the LED driver 82 may be controlled to irradiate the light of the IPL 31 and the light of the LED 37 simultaneously, or may be controlled not to irradiate them simultaneously (i.e., to irradiate them alternately). Simultaneous irradiation of the light of the IPL 31 and the light of the LED 37 can obtain multiple effects in a short time. On the other hand, by irradiating the light of the IPL 31 and the light of the LED 37 alternately, rather than irradiating them simultaneously, it is possible to perform processing specialized for a specific purpose.
  • the LED 37 may be turned off 0.1 to 0.2 seconds before the IPL 31 is irradiated, and the irradiation of the LED 37 may be turned on again after the IPL 31 is irradiated, so that individual processing of the IPL 31 and the LED 37 is repeated within one mode.
  • the control within one mode is not limited to this, and suitable control may be performed according to the purpose.
  • the light irradiation device 1 may include a sensor unit 5 for determining the condition of the user's skin in the vicinity of the light irradiation unit 30 (specifically, the second emission surface 421 of the light guide unit 42 of the light guide 4).
  • the sensor unit 5 is provided on both sides in the width direction of the skin facing portion 3a in a plan view, in other words, on both sides in the width direction of the light guide 4.
  • the sensor unit 5 is arranged on both sides in the width direction of the skin-facing portion 3a in a planar view, but the sensor unit 5 may be arranged on both sides in the longitudinal direction, or only on one side, or only on one side in the width direction, of the skin-facing portion 3a in a planar view.
  • the sensor unit 5 has a light-emitting element 52 mounted on the upper surface of the substrate 51 as a light-emitting unit that generates test light, a light-receiving element 53 as a light-receiving unit that receives the test light reflected by the user's skin, and an opening 54 through which the light emitted from the light-emitting element 52 and the light incident on the light-receiving element 53 pass.
  • the light-emitting element 52 as a light-emitting section is specifically composed of a light-emitting diode.
  • the wavelength of the inspection light emitted from the light-emitting element 52 is not limited to a specific wavelength, but is preferably a wavelength that has good sensitivity to changes in the degree of reflection depending on the presence or absence and the density of skin blemishes.
  • the inspection light emitted from the light-emitting element 52 may be, for example, light having a central wavelength in the wavelength range of visible light, specifically light having a central wavelength in the wavelength range of 380 nm or more and 780 nm or less.
  • White light may be used as the inspection light.
  • the inspection light is not limited to white light, and light of a color other than white light may be used as the inspection light, for example, light whose degree of reflection changes significantly depending on the presence or absence and the darkness of skin blemishes, making it possible to accurately grasp the state of skin blemishes.
  • the light emitted from the LED 37 serving as the second light source of the light irradiation unit 30 may be used as the inspection light, in which case the light emitting element 52 serving as the light emitting unit may not be provided.
  • the light-receiving element 53 which serves as a light-receiving unit paired with the light-emitting element 52, is specifically composed of a photodiode.
  • a photodiode capable of detecting at least the inspection light emitted from the light-emitting element 52 is used as the light-receiving element 53.
  • a photodiode capable of detecting at least one of white light, R (red light), G (green light), and B (blue light) may be used as the light-receiving element 53.
  • the opening 54 is the portion that faces the user's skin, and may be made of any material that has excellent translucency and allows light to pass through, such as glass or polycarbonate.
  • the light-emitting element 52 When a voltage is applied to the light-emitting element 52, the light-emitting element 52 emits light and emits inspection light. The inspection light then reaches the user's skin surface through the opening 54, is reflected by the skin surface, and is incident on the light-receiving element 53 through the opening 54. The more inspection light that is incident on the light-receiving element 53 (in other words, the stronger the light), the larger the current that flows through the light-receiving element 53.
  • the amount of reflected test light varies depending on the color of the user's skin surface, specifically the amount of melanin in the user's skin. That is, if there is a lot of melanin and the skin is dark, the test light is absorbed relatively well by the skin surface, and the amount of reflected light is low. On the other hand, if there is little melanin and the skin is white, the amount of test light absorbed by the skin surface is relatively low, and the amount of reflected light is high. Therefore, in abnormal areas of the skin, such as blemishes caused by melanin, more test light is absorbed and the amount of reflected light is low compared to normal areas of the skin without blemishes. For this reason, skin abnormalities such as blemishes can be detected based on the amount of reflected light.
  • the inspection light emitted from the light-emitting element 52 be light of a wavelength that is easily absorbed by melanin, for example, since the difference in the amount of reflected light becomes large depending on the presence or absence and the darkness of skin blemishes.
  • the more melanin there is in the user's skin the less light is reflected relative to the amount of inspection light emitted from the light-emitting element 52, and the less light is incident on the light-receiving element 53, which in turn reduces the current flowing through the light-receiving element 53.
  • the sensor unit 5 detects skin abnormalities such as blemishes based on the electrical output value output from the light receiving element 53 in response to the amount of light received by the light receiving element 53. Specifically, the sensor unit 5 determines the presence or absence and the darkness of blemishes on the skin, and judges the condition of the user's skin, for example, based on the value of the output voltage calculated as the product of the current flowing through the light receiving element 53 and the resistance placed in the negative feedback circuit.
  • the sensor unit 5 may determine the condition of the user's skin based on a time-series change in the electrical output value output from the light receiving element 53, or may determine the condition of the user's skin based on the relationship between the voltage applied to the light emitting element 52 and the electrical output value output from the light receiving element 53 (for example, the ratio between the voltage and the electrical output value).
  • the light irradiation device 1 adjusts the output intensity of the light irradiation unit 30 according to the user's skin condition determined by the sensor unit 5 while at least one of the IPL 31 as the first light source and the LED 37 as the second light source irradiates light. For example, a command is transmitted from the sensor unit 5 to the IPL drive unit 81 and the LED drive unit 82 of the control device 8. Based on the command transmitted from the sensor unit 5, the IPL drive unit 81 adjusts the power supplied from the power source 9 to the IPL 31 to adjust the light emission intensity of the IPL 31, and the LED drive unit 82 adjusts the power supplied from the power source 9 to the LED 37 to adjust the light emission intensity of the LED 37.
  • the light irradiation device 1 may, for example, increase the output of the light irradiation unit 30, specifically at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that there is a skin abnormality such as a blemish on the skin, and may stop the output of the light irradiation unit 30, specifically at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that there is no skin abnormality such as a blemish on the skin.
  • the light irradiation device 1 may also increase the output of the light irradiation unit 30, specifically the output of at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that the skin blemish is dark and the degree of abnormality is severe, and decrease the output of the light irradiation unit 30, specifically the output of at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that the skin blemish is light and the degree of abnormality is mild.
  • the sensor unit 5 may determine the presence or absence and the degree of skin abnormalities such as blemishes based on a comparison with the base skin color of each user (i.e., the color of the skin part without skin abnormalities such as blemishes).
  • the head unit 3 of the light irradiation device 1 including the sensor unit 5 is abutted against a part of the skin with no or few skin abnormalities such as blemishes, and the electrical output value output from the light receiving element 53 at this time (referred to as the "base state"; it may also be the relationship between the voltage applied to the light emitting element 52 and the electrical output value output from the light receiving element 53 (for example, the ratio of the voltage to the electrical output value). The same applies below) is stored in a memory provided in, for example, the control device 8.
  • the base state is data corresponding to a skin color with no or few skin abnormalities such as blemishes.
  • the light irradiation device 1 including the sensor unit 5 is operated to obtain the electrical output value output from the light receiving element 53 for each part of the skin while performing skin treatment (referred to as the "state of each part").
  • the base state and the state of each part are compared from time to time, and if the difference between the base state and the state of each part is equal to or greater than a preset condition (e.g., a threshold value), it may be determined that there is a skin abnormality such as a blemish, or that the degree of the skin abnormality such as a blemish is severe, and the output of the light irradiation unit 30 may be adjusted based on the determination result.
  • a preset condition e.g., a threshold value
  • parts of the skin that have no or few skin abnormalities such as blemishes include the forehead and face line (specifically, the area around the jawline).
  • the base state is stored and set before starting skin treatment, and when it is determined during skin treatment that the skin color is whiter than the base state (in other words, there are no or few skin abnormalities such as blemishes), the electrical output value output from the light receiving element 53 at that time may be stored as a new base state, for example in a memory provided in the control device 8.
  • the base state may be updated (in other words, calibrated) as appropriate when it is determined that the skin color is whiter than the current base state.
  • the base state may be acquired and appropriately updated (appropriately calibrated) while skin treatment is being performed, without storing the base state before skin treatment begins. That is, the electrical output value output from the light receiving element 53 when skin treatment begins may be stored in a memory provided in the control device 8 as the (initial) base state, and then, as skin treatment proceeds, when it is determined that the skin color is whiter than the base state stored at that time (in other words, there are no or few skin abnormalities such as blemishes), the electrical output value output from the light receiving element 53 at that time may be stored in a memory provided in the control device 8 as the new base state.
  • the output of the light irradiation unit 30 can be appropriately adjusted to match the skin color of each user.
  • the output of the light irradiation unit 30 can be appropriately adjusted without being affected by differences in skin color between users, making it possible to perform even better skin treatment.
  • the attachments may include, for example, at least the light guide 4 out of the IPL 31 as the first light source, the LED 37 as the second light source, the light guide 4, and the sensor unit 5, or may include at least the LED 37 and the light guide 4 as the second light source.
  • LEDs 37 can be arranged according to the purpose, but for certain applications, it is preferable to use green LEDs. This will be explained in detail below with reference to Figure 11 onwards.
  • FIG. 11 is an explanatory diagram of the characteristics of the light emitted from the LED 37 (hereinafter also referred to as "predetermined light”), with the horizontal axis representing the wavelength and the vertical axis representing the intensity, and shows an example of the characteristics.
  • the LED 37 is preferably a light source that generates a predetermined light having a central wavelength in a wavelength range longer than 490 nm and equal to or less than 525 nm.
  • the basis (technical significance) of the superiority of this wavelength range (and the wavelength of approximately 505 nm within it) will be described later with reference to Figures 12A, 12B, and 20 onwards. Note that 505 nm and its vicinity are strictly blue-green wavelengths, and 525 nm and its vicinity are strictly green wavelengths, but hereinafter the wavelength range longer than 490 nm and equal to or less than 525 nm may be referred to as "green".
  • the specified light has a central wavelength of approximately 505 nm, as shown in FIG. 11. With such a central wavelength, melanin production in the irradiated area of the user's skin can be suppressed more effectively than in the case where the specified light is not irradiated, as described below.
  • the specified light can be irradiated in a manner that has a better melanin production suppression effect in the irradiated area of the user's skin than when the specified light is not irradiated, by 5% or more, and more preferably by 10% or more.
  • the predetermined light preferably has a half-width at half maximum (see FIG. 11) of ⁇ 20 nm or less, and more preferably about ⁇ 10 nm. This maximizes the effect of suppressing melanin production in the irradiated area of the user's skin.
  • the light irradiation unit 30 irradiates the predetermined light preferably at a radiation intensity in the range of 0.5 mW/cm 2 or more and 62 mW/cm 2 or less, more preferably at a radiation intensity in the range of 11.5 mW/cm 2 or more and 30 mW/cm 2 or less. The test results regarding this will be described later with reference to FIG. 16 and subsequent figures.
  • the light irradiating section 30 preferably irradiates the predetermined light with irradiation energy in the range of 5 J/cm 2 or more and 30 J/cm 2 or less.
  • LED 37 may be combined with other LEDs having other central wavelengths to form a single chip.
  • LED 37 and a red LED are combined into a single chip LED, the ratio of the number of green LEDs to red LEDs on one chip may be appropriately adapted.
  • the control device 8 irradiates the skin with a predetermined light via the LED 37. At this time, the control device 8 may achieve continuous light irradiation for 1 minute or more, with the irradiation time of the predetermined light accounting for 1/2 or more.
  • the control device 8 may also control the emission of light from the head unit 3 in one or more operating modes.
  • the one or more operating modes may include a predetermined operating mode associated with the melanin production suppression effect, or a predetermined operating mode associated with an effect related to the melanin production suppression effect.
  • the control device 8 causes the head unit 3 to output a predetermined light in the predetermined operating mode.
  • Melanin the pigment that causes pigmentation in the skin, is produced in melanocytes and plays an important role in preventing DNA damage from harmful ultraviolet rays. However, it is also the cause of spots, and there is a high demand for improving this. Therefore, we conducted an experiment to verify the effectiveness of green LED light, which suppresses cellular activity, to see if it also affects melanoma activity and reduces melanin production.
  • the inventors of this application requested Toin University of Yokohama to carry out the following test in order to verify the melanin production inhibitory effect of green LEDs.
  • the melanin production inhibitory effect was verified using mouse-derived B164A5 cells (B16 melanoma cells, Riken BRC) and human-derived melanoma cells (HMV-II cells, KAC Co., Ltd.) obtained at the university.
  • mouse-derived B164A5 cells B16 melanoma cells, Riken BRC
  • human-derived melanoma cells HMV-II cells, KAC Co., Ltd.
  • Ushio Electric's SMT525 (wavelength 525 nm) and SMT505 (wavelength 505 nm) were used as the light source for the green LEDs.
  • B16 melanoma cells were seeded in a 6-well plate at 1 ⁇ 10 4 and 2 ⁇ 10 4 cells/mL, and cultured at 37° C. and 5% CO 2 for 3 days, after which the medium was replaced with phenol red-free medium. Irradiated with green LED once a day for 3 days, and then cultured for 1 day. Then, Cell Counting Kit-8 (manufactured by Dojindo Chemical Industries, Ltd.) was added and cultured for 3 hours. After culture, the medium was dispensed, the absorbance at 450 nm was measured, and the number of surviving cells was calculated. The higher the absorbance at 450 nm, the higher the number of surviving cells.
  • B16 melanoma cells were seeded in a 6-well plate at 1 ⁇ 10 4 and 2 ⁇ 10 4 cells/mL, and after 3 days of culture at 37° C. and 5% CO 2 , the medium was replaced with a phenol red-free medium containing 100 nM of melanin synthesis inducer ⁇ -MSH.
  • the cells were washed with 1 mL of PBS (-), dissolved in 2 mol/L aqueous sodium hydroxide solution containing 10 wt% dimethyl sulfoxide (DMSO), and the amount of melanin produced was measured from the absorbance at 405 nm. Furthermore, the amount of cell-derived protein was measured using RC DCTM protein assay (manufactured by BioRad). Based on the measurement results, the amount of melanin per amount of cell-derived protein was calculated.
  • PBS PBS
  • DMSO dimethyl sulfoxide
  • Figure 12A shows the number of viable B16 melanoma cells when irradiated with green LED light with a wavelength of 505 nm
  • Figure 12B shows the number of viable B16 melanoma cells when irradiated with green LED light with a wavelength of 525 nm.
  • concentrations after 30 minutes and 60 minutes were measured when the initial cell concentrations were 1 x 10 4 (Cells/mL) and 2 x 10 4 (Cells/mL).
  • the melanin synthesis inducer ⁇ -MSH had a low effect on the proliferation of melanoma cells in HMV-II cells, so theophylline, an MSH enhancer, was used as a melanin synthesis inducer to evaluate HMV-II cells.
  • 2 mL of 1 ⁇ 10 4 cells/mL HMV-II cell dispersion was dispensed into a 66-well plate, seeded at 1 ⁇ 10 4 cells/mL, and cultured at 37° C. under 5% CO 2 for 3 days, after which the medium was replaced with 2 mL of phenol red-free medium containing 25 ⁇ L of Theophylline after 40 mM culture.
  • Irradiation with 505 nm LED light was performed once a day for 3 days, and then cultured for 1 day.
  • the cells were dissolved in 2 mol/L aqueous sodium hydroxide solution with 300 ⁇ L of 2 M NaOH solution containing 10 wt% dimethyl sulfoxide (DMSO), and the amount of melanin produced was measured from the absorbance at 405 nm.
  • the amount of cell-derived protein was measured using RC DCTM protein assay (manufactured by BioRad). Based on the measurement results, the amount of melanin per amount of cell-derived protein was calculated.
  • HMV-II cells were seeded at 1 x 10 4 cells/mL in a 6-well plate, cultured at 37°C, 5% CO 2 for 3 days, and then replaced with phenol red-free medium. After 3 days of 505 nm LED irradiation once a day, the cells were cultured for 1 day. Then, Cell Counting Kit-8 (Dojindo Chemical Industries, Ltd.) was added and the cells were cultured for 3 hours. After the culture, the medium was dispensed and the absorbance at 450 nm was measured. After the measurement, the survival rate was calculated as a relative value to the absorbance at 450 nm without LED light irradiation.
  • Figure 13E is a table showing the evaluation results obtained from the test results of Figures 13A to 13D. As can be seen from these, 505 nm has a higher melanin production suppression effect than 525 nm, and it was more pronounced at 20 minutes than at 10 minutes. Furthermore, suppression was seen at 30 and 60 minutes with 505 nm, but no suppression effect was seen at 30 minutes with 525 nm, but suppression was seen at 60 minutes.
  • Fig. 16 to Fig. 19 show other test results.
  • Fig. 16 is a table showing the relationship between the radiation intensity of green LED light and the effect (the effect of suppressing melanin production)
  • Fig. 17 to Fig. 19 are graphs showing the relationship between the radiation intensity of green LED light and the effect.
  • B16 melanoma 4A5 was provided by Riken BRC.
  • the word "cells” used hereafter refers to these.
  • the cells and cell culture were performed as described in steps S1 to S3 below, and the following media were used.
  • Dulbecco's Modified Eagle Medium DMEM, Cat No. 10566-016, Gibco, USA
  • FBS Fetal Bovine Serum
  • Antifungal agent Antibiotic-Antimycotic 100X, Cat No. 15240-062, Invitrogen, USA
  • Step S2 The green LED light irradiation medium was removed, washed with phosphate buffer saline (PBS(-), Cat No.
  • Step S3 After washing with PBS after culturing, alamarBlue (registered trademark) (Cat No.
  • DAL1100, Invitrogen (registered trademark), USA) was diluted 10-fold with serum-free DMEM, and 2 mL of alamarBlue solution was treated to the cells and cultured at 37 ° C. for 2 hours in a CO2 incubator.
  • the alamarBlue solution was collected and placed in a 96-well plate (Cat No. 9017, costar, USA), and the absorbance at 570 nm and 600 nm (OD570, OD600) was measured using a microplate reader (SPARK (registered trademark) 10M, TECAN, Switzerland).
  • SPARK registered trademark
  • the alamarBlue solution was removed from the 60 mm dish, and after washing with PBS (-), 1 mL of 1 M aqueous sodium hydroxide solution containing 10% DMSO was added to solubilize the melanin, and the mixture was incubated at 85 ° C for 10 minutes. 100 ⁇ L of the melanin solution was placed in a 96-well plate, and the absorbance at 405 nm (OD405) was measured using a microplate reader. The cell viability of the LED application group was calculated by taking the control OD570-600 as 100%. In addition, the melanin production rate was calculated by taking the control and LED irradiation application group OD405 and the OD570-600 measured with alamarBlue as the melanin production rate per cell. A significant difference test was performed using an unpaired t-test between the control and LED application groups. The significance level for both tests was set to less than 5% on both sides.
  • the radiation intensity of the specified light from the light irradiation unit 30 is preferably in the range of 0.5 mW/cm 2 or more, and more preferably 11.5 mW/cm 2 or more.
  • Fig. 19A shows the difference in effect when irradiating green LED light with a wavelength of 520 nm at different radiation intensities.
  • the test shown in Fig. 19A was also carried out in the same manner as Fig. 8 and the like.
  • the control indicates the test result without any irradiation.
  • the test results of 9 mW/ cm2 and 62 W/ cm2 are compared with the control.
  • Graphs A, B, and C correspond to cell viability, melanin production rate, and melanin production rate per cell, respectively.
  • the radiation intensity of the predetermined light from the light irradiation unit 30 when the radiation intensity of the predetermined light from the light irradiation unit 30 becomes higher than a certain level, the effect does not become significantly large (i.e., it becomes saturated). From these, as described above, it can be said that the radiation intensity of the predetermined light from the light irradiation unit 30 is preferably in the range of 0.5 mW/ cm2 or more and 62 mW/ cm2 or less , and more preferably in the range of 11.5 mW/ cm2 or more and 62 mW/ cm2 or less. Also, from the viewpoint of power consumption, it can be said that an upper limit value of about 30 mW/ cm2 is desirable instead of 62 mW/cm2.
  • the irradiation energy of the predetermined light from the light irradiation unit 30 was in the range of 0.09 J/cm 2 or more and 11 J/cm 2 or less.
  • the tests were performed with the irradiation energy of the predetermined light from the light irradiation unit 30 in the range of 0.09 J/cm 2 or more and 45 J/cm 2 or less. Effective effects were also confirmed even with a relatively small irradiation energy range of 0.09 J/cm 2 or more and 11 J/cm 2 or less.
  • the light irradiation device 1 may irradiate the above-mentioned green LED light onto the dry skin of the user, but may also irradiate the green LED light onto skin to which a gel or liquid containing a substance to be permeated has been applied.
  • the substance to be permeated may be any substance.
  • the substance may be a substance that can be applied to human skin, and typically may be a substance that can be expected to have various effects, such as cosmetic effects.
  • Figure 20 shows other test results, and shows the test results when LED light with wavelengths of 450 nm, 520 nm, and 850 nm was irradiated.
  • Figure 20 shows the test results for cell survival rate, melanin production rate, and melanin production rate per cell when LED37 was irradiated with wavelengths of 450 nm, 520 nm, and 850 nm.
  • the control shows the test results when nothing was irradiated.
  • test results shown in Figure 20 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test method was substantially the same.
  • Figure 21 shows further test results, and is a diagram showing test results relating to the difference in melanin production suppression effect caused by the difference between three types of wavelengths.
  • Figure 21 shows test results for the melanin production rate per cell when irradiated with LED 37 wavelengths of 505 nm, 525 nm, and 630 nm. Note that in Figure 21, the control also shows the test results when nothing was irradiated.
  • test results shown in Figure 21 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test methods were substantially similar.
  • Figure 22 shows further test results, and is a diagram showing test results relating to the difference in melanin production suppression effect caused by the difference between four types of wavelengths.
  • Figure 22 shows test results for cell survival rate when irradiated with LED 37 wavelengths of 470 nm, 490 nm, 505 nm, and 525 nm. Note that in Figure 22, the control also shows the test results when nothing was irradiated.
  • test results shown in Figure 22 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test method was substantially the same.
  • the survival rate of B16 melanoma cells was lower at wavelengths of 470 nm, 505 nm, and 525 nm compared to the wavelength of 490 nm.
  • the superiority of wavelengths of 470 nm, 505 nm, and 525 nm over the wavelength of 490 nm was demonstrated.
  • Figure 23 shows the test results for the expression level of keratin 10.
  • Figure 23 shows the test results for the expression level of keratin 10 when irradiated with LED 37 at wavelengths of 470 nm, 505 nm, and 590 nm.
  • test method is outlined below:
  • Step S1 Cell preculture Human epidermal keratinocytes (NHEK) were put to sleep in a T-75 flask using a medium and cultured in a CO2 incubator (5% CO2 , 37°C, humidified). When the cells reached about 80% confluence, they were passaged to a T-225 flask, cultured until the required number of cells was obtained, and then used for the subsequent test.
  • the cell passage method is as follows. After washing the cells with PBS (-/-), the cells were detached using 0.05% Trypsin-EDTA, and a trypsin neutralizing solution was added to neutralize the trypsin.
  • the cell suspension was collected in a centrifuge tube and centrifuged (room temperature, 180 xg, 5 min). The supernatant was removed, new medium was added to suspend the cells, and the number of cells was counted. The cells were suspended to the desired cell density using a medium, and seeded in a culture vessel to be used in the test.
  • Step S2 Cell treatment The cells were seeded on a 60 mm dish at 900,000 cells/dish/3 mL. The next day after seeding, 5 mL of medium was added, making a total of 8 mL, and device treatment was performed for 30 seconds. Treatment was performed every 24 hours ⁇ 1 hour, and a total of three facial treatments were performed with the facial beauty device. Calcium chloride was added to the medium at the same time as the first device treatment, making the medium 8 mL. Then, treatment was performed for 72 hours.
  • Step S4 Quantitative PCR
  • the RNA sample was diluted to approximately 100 ng/ ⁇ L before use.
  • the RT-PCR reaction was performed under the following conditions: 50°C, 30 min-95°C, 15 min-(94°C, 15 sec-60°C, 60 sec) x 40 cycles.
  • the GAPDH gene was used as an internal standard gene.
  • the expression level of keratin 10 was significantly greater at a wavelength of 505 nm than at wavelengths of 470 nm and 590 nm.
  • the superiority of the 505 nm wavelength over the 470 nm and 590 nm wavelengths was demonstrated.
  • the epidermis is arranged in four layers: the basal layer, the spinous layer, the granular layer, and the stratum corneum.
  • turnover occurs in four stages: cell proliferation in the basal layer, keratin (K10) synthesis in the spinous layer, cell death (apoptosis and necrosis) in the granular layer, and cleavage by a proteolytic enzyme (KLK8) in the stratum corneum.
  • turnover the process in which epidermal cells are generated in the basal layer, mature as they migrate toward the upper layers, and are formed by exfoliation at the stratum corneum is called turnover.
  • keratin 10 is expressed in the spinous layer and is useful in the turnover process due to the mechanism of turnover.
  • the expression of keratin 10 suggests that normal turnover is proceeding.
  • test results shown in Figures 12A, 12B, and 20 to 23 show that irradiating the skin with light having a central wavelength in the wavelength range longer than 490 nm and equal to or less than 525 nm is more advantageous in terms of the effect of suppressing melanin production and the effect of expressing keratin 10 than irradiating the skin with light having a central wavelength in other wavelength ranges.
  • the light irradiation unit 30 includes an IPL 31 as the first light source and an LED 37 as the second light source, but the mechanisms and mechanisms used as the first light source and the second light source are not limited to an IPL or an LED, and other mechanisms and mechanisms may be used as the first light source and the second light source.
  • a halogen lamp or a laser may be used as the first light source and the second light source.
  • Light irradiation device skin treatment device 2 gripping part 3 head part 3a skin facing part 30 light irradiation part 31
  • IPL intense pulsed light
  • First reflector 33
  • Filter 34
  • Lower holder 35
  • Second reflector 36
  • Upper holder 37
  • LED Light Emitting Diode
  • Holder flange 4
  • Light guide 41
  • Light passing portion 411
  • First emission surface 42
  • Light guide portion 421 Second emission surface
  • Light shielding portion 44
  • Contact portion 5
  • Light emitting element 53
  • Light receiving element 54 Opening 8 Control device 81 IPL driving portion 82
  • LED driving portion 9 Power source

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A light irradiation device 1 comprises an IPL 31 as a first light source that generates light of a predetermined wavelength, an LED 37 as a second light source that generates light of a wavelength different from the predetermined wavelength of the IPL 31, a first output surface 411 from which the light from the IPL 31 is output, and a second output surface 421 from which the light from the LED 37 is output. A path along which the light from the IPL 31 travels to reach the first output surface 411 and a path along which the light from the LED 37 travels to reach the second output surface 421 do not intersect with each other.

Description

肌処理装置Skin treatment device
 本開示は、肌処理装置に関する。 This disclosure relates to a skin treatment device.
 美容のために皮膚表面に光を照射する従来の技術として、所定の波長スペクトルを持つ第1の光源部と、第1の光源部とは異なる波長スペクトルを持つ第2の光源部と、第1の光源部及び第2の光源部から電磁波をそれぞれ放射させた場合に、第1の光源部から放射される電磁波の少なくとも一部及び第2の光源部から放射される電磁波の少なくとも一部が出射される出射口と、を有する発光ユニットを備える光照射型美容装置が知られている(特許文献1)。 A known conventional technology for irradiating light onto the skin surface for beauty purposes is a light-irradiating cosmetic device equipped with a light-emitting unit having a first light source unit with a predetermined wavelength spectrum, a second light source unit with a wavelength spectrum different from that of the first light source unit, and an emission port through which at least a portion of the electromagnetic waves emitted from the first light source unit and at least a portion of the electromagnetic waves emitted from the second light source unit are emitted when electromagnetic waves are emitted from the first light source unit and the second light source unit, respectively (Patent Document 1).
特開2022-068686号公報JP 2022-068686 A
 ところで、各種光を肌に適切かつ効率的に照射することができれば便利で良好な効果を安定して期待できる。  However, if various types of light could be irradiated onto the skin appropriately and efficiently, it would be convenient and we could expect stable, favorable results.
 そこで、本開示は、各種光を肌に適切かつ効率的に照射することを目的とする。 The present disclosure therefore aims to irradiate various types of light onto the skin appropriately and efficiently.
 1つの側面では、所定波長の光を発生する第1光源と、前記第1光源の前記所定波長と異なる波長の光を発生する第2光源と、前記第1光源からの光が出射される第1出射面と、前記第2光源からの光が出射される第2出射面と、を備え、前記第1光源の光が前記第1出射面へと至る経路と、前記第2光源の光が前記第2出射面へと至る経路とが交差しない、肌処理装置が開示される。 In one aspect, a skin treatment device is disclosed that includes a first light source that generates light of a predetermined wavelength, a second light source that generates light of a wavelength different from the predetermined wavelength of the first light source, a first exit surface from which the light from the first light source is emitted, and a second exit surface from which the light from the second light source is emitted, in which the path along which the light from the first light source reaches the first exit surface does not intersect with the path along which the light from the second light source reaches the second exit surface.
 本開示によれば、各種光を肌に適切かつ効率的に照射することが可能となる。 According to this disclosure, it is possible to irradiate the skin with various types of light appropriately and efficiently.
本発明の実施形態に係る光照射装置の全体の外観を示す斜視図である。1 is a perspective view showing an overall appearance of a light irradiation device according to an embodiment of the present invention. 図1の光照射装置の光照射部の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of a light irradiation unit of the light irradiation device of FIG. 1 . 図2の光照射部の構造を示す縦断面斜視図である。3 is a vertical sectional perspective view showing the structure of the light irradiation unit in FIG. 2. 図2の光照射部の構造を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing the structure of the light irradiation unit in FIG. 2 . 図1の光照射装置の光照射部の他の構成の例を示す斜視図である。1. FIG. 4 is a perspective view showing another example of the configuration of the light irradiation unit of the light irradiation device of FIG. 図5の光照射部の構造を示す縦断面斜視図である。FIG. 6 is a vertical sectional perspective view showing the structure of the light irradiation unit in FIG. 5 . 図5の光照射部の構造を示す縦断面図である。FIG. 6 is a vertical cross-sectional view showing the structure of the light irradiation unit in FIG. 5 . 図1の光照射装置の制御系の概略を示すブロック図である。2 is a block diagram showing an outline of a control system of the light irradiation device of FIG. 1 . 光照射装置がセンサ部を備える場合の全体の外観を示す斜視図である。FIG. 2 is a perspective view showing the overall appearance of a light irradiation device including a sensor unit. 図9の光照射装置の平面図である。FIG. 10 is a plan view of the light irradiation device of FIG. 9 . LEDから発生される光(所定光)の特性の説明図である。4 is an explanatory diagram of characteristics of light (predetermined light) emitted from an LED. FIG. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その1)を示す図である。FIG. 1 is a diagram showing test results (part 1) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その2)を示す図である。FIG. 13 is a diagram showing test results (part 2) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その3)を示す図である。FIG. 13 is a diagram showing test results (part 3) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その4)を示す図である。FIG. 13 is a diagram showing test results (part 4) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その5)を示す図である。FIG. 5 is a diagram showing test results (part 5) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その6)を示す図である。FIG. 13 is a diagram showing test results (part 6) concerning the melanin production suppression effect by irradiation with green LED light. 図13Aから図13Eの試験結果から得られる評価結果の表図である。FIG. 17 is a table showing the evaluation results obtained from the test results of FIGS. 13A to 13E. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その7)を示す図である。FIG. 13 is a diagram showing test results (part 7) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その8)を示す図である。FIG. 13 is a diagram showing test results (part 8) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その9)を示す図である。FIG. 9 is a diagram showing test results (part 9) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光照射によるメラニン産出抑制効果に係る試験結果(その10)を示す図である。FIG. 10 is a diagram showing test results (part 10) concerning the melanin production suppression effect by irradiation with green LED light. 緑色LED光の放射強度と効果(メラニンの産生を抑制効果)の関係を表す表である。1 is a table showing the relationship between the radiation intensity of green LED light and the effect (the effect of suppressing melanin production). 緑色LED光の放射強度と効果の関係を表すグラフ(その1)である。1 is a graph (part 1) showing the relationship between the radiation intensity of green LED light and the effect. 緑色LED光の放射強度と効果の関係を表すグラフ(その2)である。2 is a graph (part 2) showing the relationship between the radiation intensity of green LED light and the effect. 緑色LED光の放射強度と効果の関係を表すグラフ(その3)である。13 is a graph (part 3) showing the relationship between the radiation intensity of green LED light and the effect. 緑色LED光の放射強度と効果の関係に関する別の試験結果を示すグラフである。13 is a graph showing another test result regarding the relationship between the radiant intensity of green LED light and the effect. 波長の相違に起因したメラニン産出抑制効果の相違に係る試験結果(その1)を示す図である。FIG. 13 is a diagram showing test results (part 1) relating to differences in melanin production inhibitory effects caused by differences in wavelength. 波長の相違に起因したメラニン産出抑制効果の相違に係る試験結果(その2)を示す図である。FIG. 13 is a diagram showing test results (part 2) relating to differences in melanin production inhibitory effects caused by differences in wavelength. 波長の相違に起因したメラニン産出抑制効果の相違に係る試験結果(その3)を示す図である。FIG. 13 is a diagram showing test results (part 3) relating to differences in melanin production inhibitory effects caused by differences in wavelength. ケラチン10の発現量に関する試験結果を示す図である。FIG. 1 shows test results regarding the expression level of keratin 10.
 以下、添付図面を参照しながら各実施例について詳細に説明する。本発明の説明では、各図中に示すように3次元直交座標系の各軸に沿って、上下方向を定義するとともに矢印の向きに従って上向き及び下向きを定義し、また、長手方向及び幅方向を定義する。長手方向と幅方向とは同一平面内において相互に直交し、上下方向は長手方向及び幅方向と相互に直交する。上下方向に沿う視線が平面視であり、また、上下方向に沿う断面が縦断面である。 Each embodiment will be described in detail below with reference to the attached drawings. In the description of the present invention, the up-down direction is defined along each axis of a three-dimensional Cartesian coordinate system as shown in each drawing, and the upward and downward directions are defined according to the direction of the arrows, and the longitudinal direction and width direction are also defined. The longitudinal direction and width direction are mutually orthogonal within the same plane, and the up-down direction is mutually orthogonal to the longitudinal direction and width direction. A line of sight along the up-down direction is a planar view, and a cross section along the up-down direction is a longitudinal cross section.
 なお、上下方向は、後述する導光体4の光通過部41の上面に対して直交する方向であり、また、後述するフィルタ33の上面に対して直交する方向である。したがって、平面視は、後述する導光体4の光通過部41の上面に対して直交する方向に沿う視線である。平面視は、また、肌処理装置の使用時のユーザの肌面に対して直交する方向に沿う視線である。また、ヘッド部3から出射される光の向きが上向きである。なお、各図中に示す各方向は、本発明に係る肌処理装置の各部の構造を説明するためのあくまでも便宜上のものであり、肌処理装置が使用される際の当該肌処理装置にとっての各方向(言い換えると、当該肌処理装置の姿勢)とは関係がない。 The up-down direction is a direction perpendicular to the upper surface of the light transmitting section 41 of the light guide 4, which will be described later, and is also perpendicular to the upper surface of the filter 33, which will be described later. Therefore, the plan view is a line of sight along a direction perpendicular to the upper surface of the light transmitting section 41 of the light guide 4, which will be described later. The plan view is also a line of sight along a direction perpendicular to the surface of the user's skin when the skin treatment device is in use. The direction of light emitted from the head unit 3 is upward. The directions shown in each figure are merely for the sake of convenience in explaining the structure of each part of the skin treatment device according to the present invention, and are not related to the directions of the skin treatment device when the skin treatment device is in use (in other words, the posture of the skin treatment device).
(全体構成)
 図1は、本発明に係る肌処理装置の具体的な構成態様の一例としての、実施形態に係る光照射装置1の全体の外観を示す斜視図である。
(overall structure)
FIG. 1 is a perspective view showing the overall appearance of a light irradiation device 1 according to an embodiment, as an example of a specific configuration of a skin treatment device according to the present invention.
 光照射装置1は、人の肌に照射可能な光を発生する。光は、人の特に肌の美容関連効果を有してもよい。この場合、美容関連効果は、任意であり、脱毛、美肌、たるみの解消や、引き締め、脂肪燃焼、リフトアップ、小顔化、肌のハリやツヤ、潤いの向上、又はそのような類の1つ以上の任意の組合せを含んでよい。また、美容関連効果は、数値化可能な効果であってもよいし、数値化可能でない効果であってもよい。 The light irradiation device 1 generates light that can be irradiated to human skin. The light may have a beauty-related effect on a human, particularly on the skin. In this case, the beauty-related effect is arbitrary and may include hair removal, skin beautification, elimination of sagging, tightening, fat burning, lifting, face slimming, improving skin firmness, luster, and moisture, or any combination of one or more of such effects. Furthermore, the beauty-related effect may be a quantifiable effect or may not be a quantifiable effect.
 図1に示す光照射装置1はユーザの手により把持可能な携帯型であるが、本発明に係る肌処理装置(光照射装置)としての形態は任意であり、台上に載置して使用する固定型でもよく、また、固定機器にアーム等を介して可動に支持される可動式に適用されてもよい。また、本発明に係る肌処理装置(光照射装置)は、例えば、顔に装着するマスクの形態や体に巻き付けて使用可能な形態であってもよい。 The light irradiation device 1 shown in FIG. 1 is a portable type that can be held by the user's hand, but the form of the skin treatment device (light irradiation device) according to the present invention is arbitrary, and may be a fixed type that is placed on a stand for use, or may be a movable type that is movably supported on a fixed device via an arm or the like. Furthermore, the skin treatment device (light irradiation device) according to the present invention may be in the form of a mask that is worn on the face, or a form that can be wrapped around the body for use, for example.
 光照射装置1は、把持部2と、ヘッド部3とを含む。この場合、ユーザは、把持部2を手で把持して、自身の顔部や体における所望の部位にヘッド部3の肌対向部3aを向けることで、所望の部位に対して光照射装置1からの光を局所的に照射できる。 The light irradiation device 1 includes a grip portion 2 and a head portion 3. In this case, the user can locally irradiate light from the light irradiation device 1 to a desired area by holding the grip portion 2 in the hand and pointing the skin-facing portion 3a of the head portion 3 toward a desired area on the user's face or body.
 把持部2は、ユーザの手で把持され易い形態を有する。把持部2は、電源のオン/オフボタン、モード切替ボタン、強さ調整ボタンなどの各種ボタンを含む入力部(図示せず)を含んでよい。なお、各種ボタンは、機械式のボタンであってもよいし、タッチスイッチであってもよい。また、把持部2には、光照射装置1の状態などを表示する表示部(図示せず)が設けられてもよい。 The grip portion 2 has a shape that allows it to be easily held by the user's hand. The grip portion 2 may include an input section (not shown) that includes various buttons such as a power on/off button, a mode switching button, and an intensity adjustment button. The various buttons may be mechanical buttons or touch switches. The grip portion 2 may also be provided with a display section (not shown) that displays the status of the light irradiation device 1, etc.
 ヘッド部3は、把持部2の端部に設けられる。なお、ヘッド部3は、把持部2に対して固定されてもよいし、取り外し可能であってもよいし、把持部2に対して可動であってもよい。また、ヘッド部3(又は、ヘッド部3の一部)として、把持部2に対して着脱可能なアタッチメントを複数備えてもよい。 The head portion 3 is provided at the end of the grip portion 2. The head portion 3 may be fixed to the grip portion 2, may be detachable, or may be movable relative to the grip portion 2. The head portion 3 (or a part of the head portion 3) may also include multiple attachments that can be attached to and detached from the grip portion 2.
 ヘッド部3の肌対向部3aの平面視における形態(即ち、上下方向に沿って視たときの形態)は、円形、楕円形、矩形、角丸矩形、多角形、角丸多角形など任意である。 The shape of the skin-facing portion 3a of the head portion 3 in a plan view (i.e., the shape when viewed in the vertical direction) can be any shape, such as a circle, an ellipse, a rectangle, a rounded rectangle, a polygon, or a rounded polygon.
 肌対向部3aは、縦断面(即ち、上下方向に沿う断面)が、ユーザの肌側の面である、美容関連効果を有する光の出射面がユーザの肌に対して凹む凹状の形態に形成されている。そして、肌対向部3aは、光の出射面が露出しているが、凹状の形態であるため、ユーザの肌と接触しないので汚れない。 The skin-facing portion 3a is formed in a concave shape in its longitudinal section (i.e., a section along the up-down direction) so that the light emission surface having beauty-related effects is the surface facing the user's skin and is recessed into the user's skin. The light emission surface of the skin-facing portion 3a is exposed, but because it is concave, it does not come into contact with the user's skin and does not get dirty.
(光照射部)
 図2乃至図4は、実施形態に係る光照射装置1の光照射部30の構成、構造を示す図である。光照射部30の上側が、ユーザの肌側である。
(Light Irradiation Unit)
2 to 4 are diagrams showing the configuration and structure of the light irradiation unit 30 of the light irradiation device 1 according to the embodiment. The upper side of the light irradiation unit 30 faces the user's skin.
 ヘッド部3には、光照射部30が内蔵される。具体的には、光照射部30の上端がヘッド部3の上端から露出する態様で、光照射部30がヘッド部3に設けられる。なお、光照射部30は、図に示す例ではヘッド部3と区分された構造として設けられているが、ヘッド部3と一体化された構成であってもよい。 The light irradiation unit 30 is built into the head unit 3. Specifically, the light irradiation unit 30 is provided on the head unit 3 in such a manner that the upper end of the light irradiation unit 30 is exposed from the upper end of the head unit 3. Note that, although the light irradiation unit 30 is provided as a structure separated from the head unit 3 in the example shown in the figure, it may be configured as an integral part of the head unit 3.
 光照射部30は、肌対向部3aを介して肌に照射される光を生成する。すなわち、光照射部30は、肌対向部3aを介して肌に光を照射する。 The light irradiation unit 30 generates light that is irradiated onto the skin via the skin-facing portion 3a. That is, the light irradiation unit 30 irradiates light onto the skin via the skin-facing portion 3a.
 光照射部30は、第1光源としてのIPL(Intense Pulsed Light)31と、第1リフレクタ32と、フィルタ33と、第2リフレクタ35と、第2光源としてのLED(Light Emitting Diode)37と、導光体4と、を含む。 The light irradiation unit 30 includes an IPL (Intense Pulsed Light) 31 as a first light source, a first reflector 32, a filter 33, a second reflector 35, an LED (Light Emitting Diode) 37 as a second light source, and a light guide 4.
 第1光源としてのIPL31は、美容関連効果を有する所定波長の光を発生する光源である。 The IPL 31, which serves as the first light source, is a light source that emits light of a specific wavelength that has a beauty-related effect.
 IPL31は、1個配置されてもよく、或いは、複数個配置されてもよい。複数個配置される場合、IPL31は、例えば、長手方向又は幅方向に沿って横並びで複数個配置されてもよい。 One IPL 31 may be disposed, or multiple IPLs 31 may be disposed. When multiple IPLs 31 are disposed, the multiple IPLs 31 may be disposed, for example, side-by-side along the longitudinal or width direction.
 第1リフレクタ32は、IPL31から放射された光を反射させて上向きに案内するための反射器である。 The first reflector 32 is a reflector that reflects the light emitted from the IPL 31 and guides it upward.
 フィルタ33は、IPL31及び第1リフレクタ32の上方に配置されて、IPL31から放射された光(尚、第1リフレクタ32で反射した光を含む)を通過させて、IPL31から放射された光のうち特定の波長以下の光をカットするフィルタである。フィルタ33がカットする光の波長の値(範囲)は、特定の値に限定されるものではなく、例えば美容関連効果を有する光の波長が考慮されるなどしたうえで適当な値に適宜設定される。フィルタ33がカットする光の波長の値(範囲)は、例えば、400nmに設定され、フィルタ33によって400nm以下の波長の光がカットされるようにしてもよい。 The filter 33 is disposed above the IPL 31 and the first reflector 32, and passes the light emitted from the IPL 31 (including the light reflected by the first reflector 32), and cuts out light emitted from the IPL 31 that has a specific wavelength or less. The value (range) of the wavelength of the light cut by the filter 33 is not limited to a specific value, but is appropriately set, for example, taking into consideration the wavelength of light that has a beauty-related effect. The value (range) of the wavelength of the light cut by the filter 33 may be set to 400 nm, for example, so that the filter 33 cuts out light with a wavelength of 400 nm or less.
 IPL31から放射された光は、一のフィルタ33を通過してもよく、或いは、2種類以上のフィルタを通過してもよい。2種類以上のフィルタが配設される場合、2種類以上のフィルタは、カットする光の波長が相互に異なってもよい。例えば、2種類以上のフィルタは、各々、特定の波長以下の光をカットするフィルタであり、特定の波長がそれぞれ異なってもよい。2種類以上のフィルタが配設される場合、IPL31は、フィルタごとに設けられてもよく、或いは、複数の制御モードが用意されてもよい。 The light emitted from the IPL 31 may pass through one filter 33, or may pass through two or more types of filters. When two or more types of filters are provided, the two or more types of filters may cut different wavelengths of light. For example, each of the two or more types of filters may be a filter that cuts light below a specific wavelength, and the specific wavelengths may be different. When two or more types of filters are provided, an IPL 31 may be provided for each filter, or multiple control modes may be provided.
 IPL31から放射された光は、フィルタにより、例えば、400nm以上かつ800nm以下の波長範囲(言い換えると、概ね可視光領域)、又は、400nm以上の波長範囲(言い換えると、概ね可視光以上の領域)に中心波長を有する光に調整されるようにしてもよい。 The light emitted from IPL 31 may be adjusted by a filter to, for example, light having a central wavelength in the wavelength range of 400 nm or more and 800 nm or less (in other words, roughly the visible light range), or in the wavelength range of 400 nm or more (in other words, roughly the visible light range or more).
 第1リフレクタ32及びフィルタ33は、これら第1リフレクタ32及びフィルタ33の側方を囲うように配設された下側ホルダ34に保持される。具体的には、概ね周壁状(別言すると、筒状)の下側ホルダ34内にIPL31とともに第1リフレクタ32が収容され、当該第1リフレクタ32の上端開口を覆うように、下側ホルダ34の上端寄りの位置に平板状のフィルタ33が配設される。下側ホルダ34は、例えば、樹脂によって形成され、ヘッド部3に対して固定される。 The first reflector 32 and the filter 33 are held in a lower holder 34 arranged to surround the sides of the first reflector 32 and the filter 33. Specifically, the first reflector 32 is housed together with the IPL 31 in the generally peripheral wall-shaped (in other words, cylindrical) lower holder 34, and a flat filter 33 is arranged near the upper end of the lower holder 34 so as to cover the upper opening of the first reflector 32. The lower holder 34 is formed, for example, from resin, and is fixed to the head portion 3.
 第2リフレクタ35は、フィルタ33の上方周囲に配置されて、フィルタ33を通過したIPL31の光を反射させて案内するための反射器である。第2リフレクタ35は、平面視において長手方向の両端各々が半円形である角丸長方形で、フィルタ33の上方において当該フィルタ33の縁部に沿う周壁状に形成される。 The second reflector 35 is a reflector that is disposed around the upper periphery of the filter 33 and reflects and guides the light of the IPL 31 that has passed through the filter 33. The second reflector 35 is a rounded rectangle with semicircular ends in the longitudinal direction in a plan view, and is formed as a peripheral wall above the filter 33 along the edge of the filter 33.
 第2リフレクタ35は、上側ホルダ36に保持される。具体的には、周壁状(筒状)の下側ホルダ34の上端に、周壁状の上側ホルダ36が、当該上側ホルダ36の下縁部と下側ホルダ34の上縁部とがかみ合って配設される。そして、上側ホルダ36の内側面(別言すると、内壁面)に周壁状の第2リフレクタ35が取り付けられる。上側ホルダ36は、例えば、シリコンゴムによって形成され、下側ホルダ34の上端に固定される。 The second reflector 35 is held by the upper holder 36. Specifically, the peripheral wall-shaped upper holder 36 is disposed at the upper end of the peripheral wall-shaped (cylindrical) lower holder 34, with the lower edge of the upper holder 36 engaging with the upper edge of the lower holder 34. The peripheral wall-shaped second reflector 35 is attached to the inner surface (in other words, the inner wall surface) of the upper holder 36. The upper holder 36 is formed, for example, from silicone rubber, and is fixed to the upper end of the lower holder 34.
 第2リフレクタ35は、IPL31から放射されてフィルタ33を通過した光(尚、第1リフレクタ32で反射してフィルタ33を通過した光を含む)のうち上下方向に対して傾斜している光を反射させることにより、導光体4の中央部分へと一層良好に光を導くために配設される。ただし、フィルタ33の上方にリフレクタが設けられることは本発明において必須の構成ではなく、第2リフレクタ35が設けられなくてもよい。 The second reflector 35 is disposed to better guide the light to the center of the light guide 4 by reflecting light that is inclined in the vertical direction among the light emitted from the IPL 31 and passed through the filter 33 (including the light reflected by the first reflector 32 and passed through the filter 33). However, it is not essential for the present invention to have a reflector above the filter 33, and the second reflector 35 does not have to be disposed.
 第2リフレクタ35の平面視における内側の空間部分とフィルタ33の板面とは、上下方向において相互に概ね重なっている。 The inner space of the second reflector 35 in a plan view and the plate surface of the filter 33 generally overlap each other in the vertical direction.
 IPL31から放射された光は、少なくとも一部が第1リフレクタ32で反射しつつフィルタ33を通過し、さらに、少なくとも一部が第2リフレクタ35で反射しつつ導光体4へと導かれる。 At least a portion of the light emitted from the IPL 31 is reflected by the first reflector 32 and passes through the filter 33, and at least a portion of the light is reflected by the second reflector 35 and guided to the light guide 4.
 第2光源としてのLED37は、美容関連効果を有する所定波長の光を発生する光源であり、具体的には例えば、肌に照射することにより、抗菌作用によるニキビ改善効果、抗酸化作用やメラニンの産生抑制作用によるシミ改善効果、損傷細胞修復作用によるリンパ流改善効果やむくみ改善効果、真皮の線維芽細胞活性化に伴うコラーゲン産生量の促進作用によるシワ改善効果などを有する光を発生する光源である。第1光源としてのIPL31が発生する光の波長と第2光源としてのLED37が発生する光の波長とは相互に異なる。 The LED 37 as the second light source is a light source that generates light of a specific wavelength that has a beauty-related effect. Specifically, when irradiated onto the skin, for example, it generates light that has an antibacterial effect to improve acne, an antioxidant effect and an effect of suppressing melanin production to improve spots, an effect of improving lymph flow and reducing swelling by repairing damaged cells, and an effect of improving wrinkles by promoting collagen production associated with activation of dermal fibroblasts. The wavelength of light generated by the IPL 31 as the first light source and the wavelength of light generated by the LED 37 as the second light source are mutually different.
 LED37は、1個配置されてもよく、或いは、複数個配置されてもよい。複数個配置される場合、LED37は、例えば、フィルタ33の板面に対して略平行な面内に横並びで複数個配置されてもよい。 A single LED 37 may be disposed, or multiple LEDs 37 may be disposed. When multiple LEDs 37 are disposed, the multiple LEDs 37 may be disposed, for example, side-by-side in a plane that is approximately parallel to the plate surface of the filter 33.
 この実施形態では、複数個のLED37が、フィルタ33の板面に対して平行な面内に並べられて配置されている。具体的には、複数個のLED37が、下側ホルダ34の外側面(別言すると、外壁面)の上端寄りの位置につば状に張り出して設けられるホルダつば部38の上面に並べられて配列されている。複数個のLED37は、平面視において、下側ホルダ34の上端開口を囲むように、延いてはIPL31や第1リフレクタ32の上端開口を囲むように配列されている。ホルダつば部38は、例えば、シリコンゴムによって形成され、下側ホルダ34の外側面(外壁面)の上端寄りの位置に固定される。 In this embodiment, the LEDs 37 are arranged in a plane parallel to the plate surface of the filter 33. Specifically, the LEDs 37 are arranged in a line on the upper surface of a holder flange 38 that is provided in a brim-like projection near the upper end of the outer surface (in other words, the outer wall surface) of the lower holder 34. The LEDs 37 are arranged so as to surround the upper opening of the lower holder 34 in a plan view, and further so as to surround the upper openings of the IPL 31 and the first reflector 32. The holder flange 38 is formed, for example, from silicone rubber, and is fixed to a position near the upper end of the outer surface (outer wall surface) of the lower holder 34.
 図に示す例では平面視における下側ホルダ34の上端開口の全周にわたってLED37が配置されてIPL31の周囲を全周にわたって取り囲むようにしているが、LED37は、平面視におけるIPL31の周囲のうちの少なくとも一部に配置されるようにしてもよい。例えば、LED37が、平面視におけるIPL31の、長手方向における両方の側方又はどちらか一方の側方のみ、或いは、幅方向における両方の側方又はどちらか一方の側方のみに配置されるようにしてもよい。 In the example shown in the figure, the LEDs 37 are arranged around the entire periphery of the upper end opening of the lower holder 34 in a plan view, surrounding the entire periphery of the IPL 31, but the LEDs 37 may be arranged around at least a portion of the periphery of the IPL 31 in a plan view. For example, the LEDs 37 may be arranged on both or only one of the longitudinal sides of the IPL 31 in a plan view, or on both or only one of the widthwise sides.
 複数のLEDの素子が1チップに実装されるようにしてもよい。また、相互に異なる中心波長を有する複数の(即ち、複数種類の)LEDの素子が1チップに実装されるようにしてもよい。 Multiple LED elements may be mounted on one chip. Also, multiple (i.e., multiple types of) LED elements having mutually different center wavelengths may be mounted on one chip.
 LED37は、例えば、430nm以上かつ480nm以下の波長範囲に中心波長を有する光を発生するようにしてもよい。IPL31の光と430nm以上かつ480nm以下の波長範囲に中心波長を有するLED37の光とを交互に若しくは同時に照射することにより、抗菌作用によるニキビ改善などが期待される。 The LED 37 may generate light having a central wavelength in the wavelength range of 430 nm or more and 480 nm or less. By irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 430 nm or more and 480 nm or less alternately or simultaneously, it is expected that acne will be improved due to the antibacterial effect.
 LED37は、また、490nm以上かつ525nm以下の波長範囲に中心波長を有する光を発生するようにしてもよい。IPL31の光と490nm以上かつ525nm以下の波長範囲に中心波長を有するLED37の光とを交互に若しくは同時に照射することにより、美白成分の浸透促進、また、抗酸化作用やメラニンの産生抑制作用によるシミ改善などが期待される。 The LED 37 may also emit light having a central wavelength in the wavelength range of 490 nm or more and 525 nm or less. By alternately or simultaneously irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 490 nm or more and 525 nm or less, it is expected that the penetration of whitening ingredients will be promoted and blemishes will be improved by the antioxidant effect and the melanin production inhibition effect.
 LED37は、また、530nm以上かつ600nm以下の波長範囲に中心波長を有する光を発生するようにしてもよい。IPL31の光と530nm以上かつ600nm以下の波長範囲に中心波長を有するLED37の光とを交互に若しくは同時に照射することにより、損傷細胞修復作用によるリンパ流改善やむくみ改善などが期待される。 The LED 37 may also emit light having a central wavelength in the wavelength range of 530 nm or more and 600 nm or less. By alternately or simultaneously irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 530 nm or more and 600 nm or less, it is expected that lymph flow will improve and swelling will be reduced by repairing damaged cells.
 LED37は、また、610nm以上かつ650nm以下の波長範囲に中心波長を有する光を発生するようにしてもよい。IPL31の光と610nm以上かつ650nm以下の波長範囲に中心波長を有するLED37の光とを交互に若しくは同時に照射することにより、エイジングケアとして、真皮の線維芽細胞活性化に伴うコラーゲン産生量の促進作用よるシワ改善などが期待される。 The LED 37 may also emit light having a central wavelength in the wavelength range of 610 nm or more and 650 nm or less. By alternately or simultaneously irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 610 nm or more and 650 nm or less, it is expected that as an anti-aging care, wrinkles will be improved by promoting collagen production due to the activation of fibroblasts in the dermis.
 LED37は、また、800nm以上かつ2500nm以下の波長範囲に中心波長を有する光を発生するようにしてもよい。IPL31の光と800nm以上かつ2500nm以下の波長範囲に中心波長を有するLED37の光とを交互に若しくは同時に照射することにより、加温作用などが期待される。 The LED 37 may also generate light having a central wavelength in the wavelength range of 800 nm or more and 2500 nm or less. By irradiating the light of the IPL 31 and the light of the LED 37 having a central wavelength in the wavelength range of 800 nm or more and 2500 nm or less alternately or simultaneously, a warming effect is expected.
 第2光源(この実施形態では具体的には、LED37)は、上記の複数の波長範囲のうちのいずれかに中心波長を有する複数の光のうちのいずれか1つの光、又は、複数の光のうちの少なくとも2つの光を組み合わせた光を発生するようにしてよい。 The second light source (specifically, in this embodiment, LED 37) may generate any one of a plurality of lights having a central wavelength within any one of the above-mentioned wavelength ranges, or a combination of at least two of the plurality of lights.
 なお、中心波長が相互に異なる光を発生させる複数種類のLEDを配置して、モードに合わせて制御するようにしてもよい。この場合、中心波長が相互に異なる光を発生させる複数種類のLEDの光のうちのいずれか1つの光を照射したり、複数種類のLEDの光を交互に若しくは同時に照射したりしてよい。この場合は、中心波長が相互に異なる光を発生させる複数種類のLEDの素子が1チップに搭載されてもよく、1チップにおける複数種類のLEDの素子各々の数の比率は適当な比率に適宜設定されてよい。 It is also possible to arrange multiple types of LEDs that generate light with different center wavelengths and control them according to the mode. In this case, any one of the light from the multiple types of LEDs that generate light with different center wavelengths may be emitted, or the light from the multiple types of LEDs may be emitted alternately or simultaneously. In this case, multiple types of LED elements that generate light with different center wavelengths may be mounted on one chip, and the ratio of the numbers of each of the multiple types of LED elements on one chip may be set to an appropriate ratio as appropriate.
 LED37は、例えば、好ましくは、0.5mW/cm以上かつ62mW/cm以下の範囲の放射強度で、より好ましくは、11.5mW/cm以上かつ30mW/cm以下の範囲の放射強度で、で光を照射するようにしてよい。LED37は、例えば、0.09J/cm以上かつ30J/cm以下の範囲の照射エネルギで、より好ましくは、0.09J/cm以上かつ11J/cm以下の範囲の照射エネルギで光を照射するようにしてよい。 The LED 37 may be configured to irradiate light, for example, with a radiation intensity in the range of 0.5 mW/ cm2 or more and 62 mW/ cm2 or less, and more preferably with a radiation intensity in the range of 11.5 mW/ cm2 or more and 30 mW/ cm2 or less. The LED 37 may be configured to irradiate light with an irradiation energy in the range of 0.09 J/ cm2 or more and 30 J/cm2 or less, and more preferably with an irradiation energy in the range of 0.09 J/ cm2 or more and 11 J/ cm2 or less.
 光照射装置1は、IPL31とLED37との選択により、複数種類のモードの切替えが自在であるように構成されてもよい。光照射装置1は、具体的には例えば、美肌のモード、エイジングケアのモード、毎日使うデイリーケアのモード、週に2~3回を目安にしたスペシャルケアのモード、顔などの広い領域に使用するモード、シミやくすみの気になる部分へのスポットケアのモード、及び、顔のウブ毛ケアと肌のキメを整えるモードなどの切替えが自在であるように構成されてもよい。 The light irradiation device 1 may be configured to freely switch between a plurality of modes by selecting the IPL 31 and the LED 37. Specifically, the light irradiation device 1 may be configured to freely switch between, for example, a skin beautifying mode, an anti-aging care mode, a daily care mode for daily use, a special care mode for use approximately two to three times a week, a mode for use on a large area such as the face, a spot care mode for areas of concern such as blemishes or dullness, and a mode for facial fine hair care and skin texture adjustment.
 ヘッド部3(又は、ヘッド部3の一部)として把持部2に対して着脱可能なアタッチメントを複数備える場合、アタッチメントは、マグネットや嵌合部品による着脱が可能で、光照射部30の構成のうちの少なくとも一部を備えたアタッチメントであってもよい。この場合、例えば、フィルタ33及びLED37を含むアタッチメントとすることにより、フィルタ33とLED37とに関して目的に合わせて好適な構成を選択することができる。 When the head unit 3 (or part of the head unit 3) is provided with multiple attachments that can be attached and detached to the grip unit 2, the attachments can be attached and detached using magnets or fitting parts, and may be attachments that include at least part of the configuration of the light irradiation unit 30. In this case, for example, by making the attachment include a filter 33 and an LED 37, it is possible to select a suitable configuration for the filter 33 and the LED 37 according to the purpose.
 また、IPL31とLED37とのうちの少なくとも一方を把持部2/ヘッド部3側に残すとともに、光照射部30の上部を構成して肌に接する導光体4を含むアタッチメントとするようにしてもよい。この場合、光照射部30の部品にかかるコストをおさえつつ、広域やスポットケアなどの照射領域を選択することができる。 Alternatively, at least one of the IPL 31 and the LED 37 may remain on the grip 2/head 3 side, and the upper part of the light irradiation unit 30 may be configured as an attachment including the light guide 4 that comes into contact with the skin. In this case, it is possible to select an irradiation area such as wide area or spot care while keeping the cost of the light irradiation unit 30 components down.
 すなわち、把持部2に対して着脱可能なアタッチメントに含められる構成は特定の構成に限定されるものではなく、アタッチメントは、第1光源としてのIPL31、第2光源としてのLED37、及び導光体4のうちの、例えば、少なくとも導光体4を含むようにしたり、少なくとも第2光源としてのLED37及び導光体4を含むようにしたりしてよい。 In other words, the configuration included in the attachment that is detachable from the grip portion 2 is not limited to a specific configuration, and the attachment may include, for example, at least the light guide 4 out of the IPL 31 as the first light source, the LED 37 as the second light source, and the light guide 4, or may include at least the LED 37 as the second light source and the light guide 4.
 なお、把持部2に対して着脱可能なアタッチメントは、ヘッド部3(又は、ヘッド部3の一部)として装着されたアタッチメントの種別が識別され得るような構成としてもよい。識別部は、例えば、磁気センサや接触通電によるセンサなどやスイッチングなどに基づいて実現されてもよく、アタッチメントを自動識別することにより、ボタン操作などをしなくても適した処理を実施することができる。 The attachment that is detachable from the grip unit 2 may be configured so that the type of attachment attached to the head unit 3 (or part of the head unit 3) can be identified. The identification unit may be realized, for example, based on a magnetic sensor, a contact-type sensor, switching, etc., and by automatically identifying the attachment, appropriate processing can be performed without the need to operate a button, etc.
(導光体)
 実施形態に係る光照射装置1は、所定波長の光を発生する第1光源としてのIPL31と、IPL31の所定波長と異なる波長の光を発生する第2光源としてのLED37と、IPL31からの光が出射される第1出射面411と、LED37からの光が出射される第2出射面421と、を備え、IPL31の光が第1出射面411へと至る経路と、LED37の光が第2出射面421へと至る経路とが交差しないようにしており、また、第2出射面421が、第1出射面411に対して傾斜しているようにしている。
(Light guide)
The light irradiation device 1 of the embodiment comprises an IPL 31 as a first light source that generates light of a predetermined wavelength, an LED 37 as a second light source that generates light of a wavelength different from the predetermined wavelength of the IPL 31, a first exit surface 411 from which the light from the IPL 31 is emitted, and a second exit surface 421 from which the light from the LED 37 is emitted, and the path along which the light from the IPL 31 reaches the first exit surface 411 and the path along which the light from the LED 37 reaches the second exit surface 421 do not intersect, and the second exit surface 421 is inclined with respect to the first exit surface 411.
 図4に示すように、光照射部30は、2種類の光の各々に対応する経路及び出射面を有する。具体的には、光照射部30は、IPL31の光に対応する経路AR1及びIPL31の光に対応する出射面である第1出射面411と、LED37の光に対応する経路AR2及びLED37の光に対応する出射面である第2出射面421とを有する。 As shown in FIG. 4, the light irradiation unit 30 has a path and an exit surface corresponding to each of the two types of light. Specifically, the light irradiation unit 30 has a path AR1 corresponding to the light of the IPL 31 and a first exit surface 411 which is an exit surface corresponding to the light of the IPL 31, and a path AR2 corresponding to the light of the LED 37 and a second exit surface 421 which is an exit surface corresponding to the light of the LED 37.
 導光体4は、第1光源としてのIPL31及び第2光源としてのLED37とユーザの肌との間に介在し、ユーザの肌側において、LED37の光を平面視における中央に集めてIPL31の光の照射面内にLED37の光を照射するようにするための構成である。導光体4は、平面視において、中央部分の光通過部41と、当該光通過部41の周囲を取り囲む帯環状の光案内部42とを有する。すなわち、導光体4の光通過部41と光案内部42とは、平面視において相互に重ならない。導光体4は、例えば、透明な樹脂やガラスにより形成される。 The light guide 4 is interposed between the IPL 31 as the first light source and the LED 37 as the second light source and the user's skin, and is configured to collect the light of the LED 37 in the center in a plan view on the user's skin side and irradiate the light of the LED 37 within the light irradiation surface of the IPL 31. In a plan view, the light guide 4 has a light passing section 41 in the center and a ring-shaped light guide section 42 that surrounds the periphery of the light passing section 41. In other words, the light passing section 41 and the light guide section 42 of the light guide 4 do not overlap each other in a plan view. The light guide 4 is formed, for example, from a transparent resin or glass.
 図に示す例では平面視における光通過部41の全周にわたって光案内部42が配設されて光通過部41の周囲を全周にわたって取り囲むようにしているが、光案内部42は、例えば平面視においてLED37が配置されている部分に合わせて、平面視における光通過部41の周囲のうちの少なくとも一部に配設されるものであればよい。言い換えると、光案内部42は、平面視におけるIPL31の周囲のうちの少なくとも一部に配設されるものであればよい。 In the example shown in the figure, the light guide 42 is disposed around the entire periphery of the light passing portion 41 in a plan view, so as to completely surround the periphery of the light passing portion 41, but the light guide 42 may be disposed around at least a portion of the periphery of the light passing portion 41 in a plan view, for example, to match the portion where the LED 37 is disposed in a plan view. In other words, the light guide 42 may be disposed around at least a portion of the periphery of the IPL 31 in a plan view.
 光通過部41は平板状に形成され、光案内部42は光通過部41の周囲を取り囲む概ね周壁状(言い換えると、筒状)に形成される。平板状の光通過部41は、周壁状(筒状)の光案内部42の内側の、上下方向における中間部に、光案内部42の内周面に支持されるように設けられる。 The light passing portion 41 is formed in a flat plate shape, and the light guide portion 42 is formed in a generally peripheral wall shape (in other words, cylindrical shape) that surrounds the periphery of the light passing portion 41. The flat light passing portion 41 is provided inside the peripheral wall-shaped (cylindrical) light guide portion 42, in the middle in the vertical direction, so as to be supported by the inner peripheral surface of the light guide portion 42.
 導光体4の光通過部41は、上下方向において、IPL31及びフィルタ33と重なっている。特に、導光体4の光通過部41の板面とフィルタ33の板面とは、上下方向において相互に概ね重なっている。 The light transmitting portion 41 of the light guide 4 overlaps with the IPL 31 and the filter 33 in the vertical direction. In particular, the plate surface of the light transmitting portion 41 of the light guide 4 and the plate surface of the filter 33 generally overlap with each other in the vertical direction.
 導光体4の光案内部42は、上側ホルダ36の側方(別言すると、周囲)を囲むとともに、下端面が、下側ホルダ34の上端開口を囲む複数個のLED37の配列と上下方向において対向して、これら複数個のLED37の配列の上方(上面)を覆っている。すなわち、光案内部42は、上下方向において、IPL31、フィルタ33、及び光通過部41の側方(別言すると、周囲)を囲み、且つ、LED37と重なっている。 The light guide section 42 of the light guide 4 surrounds the sides (in other words, the periphery) of the upper holder 36, and its lower end face faces the array of the multiple LEDs 37 that surround the upper end opening of the lower holder 34 in the vertical direction, covering the upper side (upper surface) of the array of the multiple LEDs 37. In other words, the light guide section 42 surrounds the sides (in other words, the periphery) of the IPL 31, the filter 33, and the light transmitting section 41 in the vertical direction, and overlaps with the LEDs 37.
 導光体4の光通過部41と光案内部42とは、図に示す例のように一体の部品(言い換えると、ひとつながりの部材、部品)として形成されてもよく、或いは、別々の部品(言い換えると、複数の部材)として形成されてもよい。 The light passing section 41 and the light guiding section 42 of the light guide 4 may be formed as an integrated part (in other words, a single continuous member or component) as in the example shown in the figure, or may be formed as separate parts (in other words, multiple components).
 光通過部41と光案内部42とが別々の部品(複数の部材)として形成される場合には、それぞれが、同じ材質によって形成されてもよく、或いは、相互に異なる材質によって形成されてもよい。光通過部41と光案内部42とが別々の部品(複数の部材)として形成される場合には、また、図5乃至図7に示すように、光通過部41と光案内部42との間に、光遮蔽部43として、光を通過させない(即ち、光通過部41と光案内部42とを光学的に仕切る)遮蔽部材や遮蔽膜が配設されてもよい。 When the light passing portion 41 and the light guiding portion 42 are formed as separate parts (multiple members), they may be formed from the same material, or may be formed from materials different from each other. When the light passing portion 41 and the light guiding portion 42 are formed as separate parts (multiple members), as shown in Figures 5 to 7, a shielding member or shielding film that does not allow light to pass (i.e., optically separates the light passing portion 41 and the light guiding portion 42) may be disposed between the light passing portion 41 and the light guiding portion 42 as a light shielding portion 43.
 光通過部41と光案内部42とが別々の部品(複数の部材)として形成される場合には、また、光通過部41と光案内部42との間の少なくとも一部に空間が設けられるようにしてもよい。平面視における光通過部41の全周にわたって光案内部42との間に空間が設けられる場合には、光通過部41と光案内部42との間で光を通過させない作用が期待される。この場合、光通過部41は、上側ホルダ36に支持されるようにしてもよい。この場合、あるいは、光通過部41と光案内部42との間の少なくとも一部に、光を通過させない材質で形成された、光案内部42の内周面に対して光通過部41を支持するため支持部品が配設されるようにしてもよい。 When the light passing portion 41 and the light guide portion 42 are formed as separate parts (multiple members), a space may be provided at least partially between the light passing portion 41 and the light guide portion 42. When a space is provided between the light passing portion 41 and the light guide portion 42 over the entire circumference thereof in a plan view, it is expected that light will not pass between the light passing portion 41 and the light guide portion 42. In this case, the light passing portion 41 may be supported by the upper holder 36. In this case, or alternatively, a support part may be provided at least partially between the light passing portion 41 and the light guide portion 42, made of a material that does not allow light to pass therethrough, to support the light passing portion 41 against the inner surface of the light guide portion 42.
 また、図に示す例における第2リフレクタ35と上側ホルダ36とのうちの少なくとも一方を上方に延長させて、光通過部41に相当する部品/部材と、光案内部42に相当する部品/部材とを、光学的に仕切るようにしてもよい。 In addition, at least one of the second reflector 35 and the upper holder 36 in the example shown in the figure may be extended upward to optically separate the part/member corresponding to the light passing section 41 from the part/member corresponding to the light guiding section 42.
 導光体4の光通過部41の上面(即ち、ユーザの肌側の面)は、IPL31からの光が出射される第1出射面411を構成する。導光体4の光案内部42の上端面(即ち、ユーザの肌側の端面)は、LED37からの光が出射される第2出射面421を構成する。導光体4の上面(即ち、ユーザの肌と対向する面)は、すなわち、平面視において、中央部分の第1出射面411と、当該第1出射面411の周囲を取り囲む第2出射面421とを有する。 The upper surface of the light passing section 41 of the light guide 4 (i.e., the surface facing the user's skin) constitutes a first exit surface 411 from which light from the IPL 31 is emitted. The upper end surface of the light guiding section 42 of the light guide 4 (i.e., the end surface facing the user's skin) constitutes a second exit surface 421 from which light from the LED 37 is emitted. The upper surface of the light guide 4 (i.e., the surface facing the user's skin), that is, in a plan view, has the first exit surface 411 in the center and a second exit surface 421 that surrounds the periphery of the first exit surface 411.
 図に示す例では平面視における第1出射面411の全周にわたって第2出射面421が形成されて第1出射面411の周囲を全周にわたって取り囲むようにしているが、第2出射面421は、例えば平面視においてLED37が配置されている部分に合わせて、平面視における第1出射面411の周囲のうちの少なくとも一部に形成されるものであればよい。言い換えると、第2出射面421は、平面視におけるIPL31の周囲のうちの少なくとも一部に形成されるものであればよい。 In the example shown in the figure, the second exit surface 421 is formed all around the first exit surface 411 in a plan view, surrounding the entire periphery of the first exit surface 411, but the second exit surface 421 may be formed on at least a portion of the periphery of the first exit surface 411 in a plan view, for example, to match the portion where the LED 37 is arranged in a plan view. In other words, the second exit surface 421 may be formed on at least a portion of the periphery of the IPL 31 in a plan view.
 接触部44は、第2出射面421の外縁部であり、光照射装置1の使用時にユーザの肌に当接する。接触部44は、肌対向部3aの外周縁にも該当する。接触部44が肌に当接した状態で光照射装置1が適宜動かされながら、ユーザの肌にIPL31の光及びLED37の光が照射されて美容関連効果が与えられる。 The contact portion 44 is the outer edge of the second emission surface 421, and comes into contact with the user's skin when the light irradiation device 1 is in use. The contact portion 44 also corresponds to the outer periphery of the skin-facing portion 3a. With the contact portion 44 in contact with the skin, the light irradiation device 1 is moved appropriately, and the light of the IPL 31 and the light of the LED 37 are irradiated onto the user's skin, thereby providing a beauty-related effect.
 導光体4の光案内部42の上端面である第2出射面421は、平面視における第1出射面411の周縁よりも上方に位置する外縁部(即ち、接触部44)から、第1出射面411の周縁へと向けて下り勾配で傾斜し、凹状の肌対向部3aの土手部分を形成する。図に示す例では、第2出射面421は、第1出射面411へと向けて下り勾配を有し、且つ、やや凸状の曲面に形成されている。 The second exit surface 421, which is the upper end surface of the light guide section 42 of the light guide 4, slopes downward from an outer edge portion (i.e., contact portion 44) located above the periphery of the first exit surface 411 in a plan view toward the periphery of the first exit surface 411, forming a bank portion of the concave skin-facing portion 3a. In the example shown in the figure, the second exit surface 421 has a downward slope toward the first exit surface 411 and is formed into a slightly convex curved surface.
 光照射装置1の使用時において、第1出射面411はユーザの肌面と平行になって肌面に対して正対し、一方、第2出射面421は、第1出射面411に対して傾斜し、延いてはユーザの肌面に対して傾斜する。 When the light irradiation device 1 is in use, the first emission surface 411 is parallel to the user's skin surface and faces directly against the skin surface, while the second emission surface 421 is inclined relative to the first emission surface 411 and, by extension, inclined relative to the user's skin surface.
 IPL31から放射された光は、少なくとも一部が第1リフレクタ32で反射しつつフィルタ33を通過し、さらに、少なくとも一部が第2リフレクタ35で反射しつつ導光体4の中央部分へと導かれて、導光体4の光通過部41を通過して第1出射面411から出射される。 At least a portion of the light emitted from the IPL 31 is reflected by the first reflector 32 and passes through the filter 33, and at least a portion of the light is reflected by the second reflector 35 and guided to the center of the light guide 4, passes through the light passing portion 41 of the light guide 4, and is emitted from the first exit surface 411.
 LED37から放射された光は、導光体4の光案内部42へと入射して当該光案内部42によって案内されて(言い換えると、光案内部42を通過して)、第2出射面421から出射される。 The light emitted from the LED 37 enters the light guide section 42 of the light guide body 4, is guided by the light guide section 42 (in other words, passes through the light guide section 42), and is emitted from the second emission surface 421.
 このとき、IPL31の光が光通過部41の第1出射面411へと至る経路(言い換えると、IPL31の光の、第1出射面411までの経路)とLED37の光が光案内部42の第2出射面421へと至る経路(言い換えると、LED37の光の、第2出射面421までの経路)とが相互に交差しない。 At this time, the path along which the light from the IPL 31 reaches the first exit surface 411 of the light passing section 41 (in other words, the path of the light from the IPL 31 to the first exit surface 411) and the path along which the light from the LED 37 reaches the second exit surface 421 of the light guide section 42 (in other words, the path of the light from the LED 37 to the second exit surface 421) do not intersect with each other.
 そのうえで、導光体4の光通過部41の上面である第1出射面411に対して光案内部42の上端面である第2出射面421が傾斜していることにより、光案内部42を通過してきた光が第2出射面421で屈折し、光通過部41を通過して第1出射面411から出射されたIPL31の光と光案内部42を通過して第2出射面421から出射されたLED37の光とが、ユーザの肌の略同じ領域へと照射される(即ち、第1出射面411から出射されたIPL31の光と第2出射面421から出射されたLED37の光とは交差する)。これにより、光通過部41を通過して第1出射面411から出射されたIPL31の光と光案内部42を通過して第2出射面421から出射されたLED37の光とを、すなわち波長が相互に異なる複数種類の光を、ユーザの肌の略同じ領域へと交互に若しくは同時に照射することができ、ユーザの肌に対して複数種類の美容関連効果を効率的に与えることが可能となる。 In addition, since the second exit surface 421, which is the upper end surface of the light guide 42, is inclined relative to the first exit surface 411, which is the upper surface of the light passing portion 41 of the light guide 4, the light passing through the light guide 42 is refracted at the second exit surface 421, and the light of the IPL 31 which passes through the light passing portion 41 and is emitted from the first exit surface 411 and the light of the LED 37 which passes through the light guide 42 and is emitted from the second exit surface 421 are irradiated onto approximately the same area of the user's skin (i.e., the light of the IPL 31 which is emitted from the first exit surface 411 and the light of the LED 37 which is emitted from the second exit surface 421 intersect). This allows the light of the IPL 31 that passes through the light passing section 41 and is emitted from the first emission surface 411 and the light of the LED 37 that passes through the light guide section 42 and is emitted from the second emission surface 421, i.e., multiple types of light with different wavelengths, to be irradiated alternately or simultaneously onto approximately the same area of the user's skin, making it possible to efficiently impart multiple types of beauty-related effects to the user's skin.
 なお、IPL31の光が導光体4の光案内部42によって囲まれる空間及び光通過部41を通過して第1出射面411へと至る経路と、LED37の光が導光体4の光案内部42内を通過して第2出射面421へと至る経路とが相互に交差しないようにするため、図に示す例における上側ホルダ36のような、光案内部42によって囲まれる空間と光案内部42の内部との間で光を通過させない(即ち、光案内部42によって囲まれる空間と光案内部42の内部とを光学的に仕切る)遮蔽部材や遮蔽膜が配設されることが好ましい。例えば第2リフレクタ35が設けられない場合に、上側ホルダ36は設置されるようにしたり、下側ホルダ34を上方に延長させたりすることが好ましい。なお、光案内部42によって囲まれる空間は、上下方向において(言い換えると、平面視において)フィルタ33の板面と相互に概ね重なる空間である。 In order to prevent the path of the light of the IPL 31 passing through the space surrounded by the light guide 42 of the light guide 4 of the light guide body 4 and the light passing section 41 to the first emission surface 411 from intersecting with the path of the light of the LED 37 passing through the light guide 42 of the light guide body 4 to the second emission surface 421, it is preferable to provide a shielding member or shielding film that does not allow light to pass between the space surrounded by the light guide 42 and the inside of the light guide 42, such as the upper holder 36 in the example shown in the figure (i.e., optically separates the space surrounded by the light guide 42 from the inside of the light guide 42). For example, when the second reflector 35 is not provided, it is preferable to install the upper holder 36 or extend the lower holder 34 upward. In addition, the space surrounded by the light guide 42 is a space that roughly overlaps with the plate surface of the filter 33 in the vertical direction (in other words, in a plan view).
(制御系)
 図8は、光照射装置1の制御系の概略を示すブロック図である。
(Control system)
FIG. 8 is a block diagram showing an outline of a control system of the light irradiation device 1. As shown in FIG.
 光照射装置1は、制御装置8を含み、制御装置8には、電源9並びに第1光源としてのIPL31及び第2光源としてのLED37が電気的に接続される。制御装置8や電源9は、例えば、把持部2の内部に収容される。 The light irradiation device 1 includes a control device 8, which is electrically connected to a power source 9, an IPL 31 as a first light source, and an LED 37 as a second light source. The control device 8 and the power source 9 are housed, for example, inside the grip portion 2.
 制御装置8は、電源9からの電力に基づいて動作し、IPL31及びLED37を制御する。IPL31及びLED37は、制御装置8による制御下で、電源9からの電力に基づいて動作する。電源9は、外部電源及び/又は内部電源を含んでよい。なお、内部電源は、充電可能なバッテリであってよい。 The control device 8 operates based on power from the power source 9 and controls the IPL 31 and the LED 37. The IPL 31 and the LED 37 operate based on power from the power source 9 under the control of the control device 8. The power source 9 may include an external power source and/or an internal power source. The internal power source may be a rechargeable battery.
 制御装置8は、IPL駆動部81及びLED駆動部82を含む。IPL駆動部81は、電源9から電力を供給してIPL31を所定間隔で発光させる制御を行う。LED駆動部82は、電源9から電力を供給してLED37を発光させる制御を行う。 The control device 8 includes an IPL driver 81 and an LED driver 82. The IPL driver 81 controls the IPL 31 to emit light at predetermined intervals by supplying power from the power source 9. The LED driver 82 controls the LED 37 to emit light by supplying power from the power source 9.
 IPL駆動部81とLED駆動部82とは、IPL31の光とLED37の光とを、同時に照射するように制御されてもよく、或いは、同時には照射しないように(即ち、交互に照射するように)制御されてもよい。IPL31の光とLED37の光との同時照射は、短時間で複数の効果を得ることができる。一方で、IPL31の光とLED37の光とを同時照射せずに、各々の光を交互に照射することで、特定の目的に特化した処理を実施することができる。例えば、LED37はIPL31が照射される0.1~0.2秒前にオフになり、IPL31が照射されたあと再びLED37の照射がオンになるなどを実施して、1つのモード内にIPL31とLED37との各々の単独処理を繰り返す態様としてもよい。1つのモード内の制御はこれに限定されることなく、目的に応じて好適な制御を実施するようにしてよい。 The IPL driver 81 and the LED driver 82 may be controlled to irradiate the light of the IPL 31 and the light of the LED 37 simultaneously, or may be controlled not to irradiate them simultaneously (i.e., to irradiate them alternately). Simultaneous irradiation of the light of the IPL 31 and the light of the LED 37 can obtain multiple effects in a short time. On the other hand, by irradiating the light of the IPL 31 and the light of the LED 37 alternately, rather than irradiating them simultaneously, it is possible to perform processing specialized for a specific purpose. For example, the LED 37 may be turned off 0.1 to 0.2 seconds before the IPL 31 is irradiated, and the irradiation of the LED 37 may be turned on again after the IPL 31 is irradiated, so that individual processing of the IPL 31 and the LED 37 is repeated within one mode. The control within one mode is not limited to this, and suitable control may be performed according to the purpose.
(センサ部)
 図9及び図10に示すように、光照射装置1は、光照射部30(具体的には、導光体4の光案内部42の第2出射面421)の近傍に、ユーザの肌の状態を判定するセンサ部5を備えるようにしてもよい。図に示す例では、平面視における肌対向部3aの幅方向における両側それぞれに、言い換えると、導光体4の幅方向における両側それぞれに、センサ部5が備えられている。
(Sensor section)
9 and 10, the light irradiation device 1 may include a sensor unit 5 for determining the condition of the user's skin in the vicinity of the light irradiation unit 30 (specifically, the second emission surface 421 of the light guide unit 42 of the light guide 4). In the example shown in the figures, the sensor unit 5 is provided on both sides in the width direction of the skin facing portion 3a in a plan view, in other words, on both sides in the width direction of the light guide 4.
 図に示す例では平面視における肌対向部3aの幅方向における両方の側方それぞれにセンサ部5が配置されるようにしているが、センサ部5は、平面視における肌対向部3aの、長手方向における両方の側方又はどちらか一方の側方のみ、或いは、幅方向におけるどちらか一方の側方のみに配置されるようにしてもよい。 In the example shown in the figure, the sensor unit 5 is arranged on both sides in the width direction of the skin-facing portion 3a in a planar view, but the sensor unit 5 may be arranged on both sides in the longitudinal direction, or only on one side, or only on one side in the width direction, of the skin-facing portion 3a in a planar view.
 センサ部5は、それぞれ、基板51の上面に実装された、検査光を発生する発光部としての発光素子52と、ユーザの肌で反射した検査光を受光する受光部としての受光素子53と、発光素子52から出射された光と受光素子53へと入射される光とが通過する開口54と、を有する。 The sensor unit 5 has a light-emitting element 52 mounted on the upper surface of the substrate 51 as a light-emitting unit that generates test light, a light-receiving element 53 as a light-receiving unit that receives the test light reflected by the user's skin, and an opening 54 through which the light emitted from the light-emitting element 52 and the light incident on the light-receiving element 53 pass.
 発光部としての発光素子52は、具体的には、発光ダイオードによって構成される。発光素子52から出射される検査光の波長は、特定の波長には限定されないものの、肌のシミの有無や濃さによって反射の程度の変化の感度が良好な波長であることが好ましい。発光素子52から出射される検査光は、例えば、可視光の波長範囲に中心波長を有する光でよく、具体的には、380nm以上かつ780nm以下の波長範囲に中心波長を有する光でよい。 The light-emitting element 52 as a light-emitting section is specifically composed of a light-emitting diode. The wavelength of the inspection light emitted from the light-emitting element 52 is not limited to a specific wavelength, but is preferably a wavelength that has good sensitivity to changes in the degree of reflection depending on the presence or absence and the density of skin blemishes. The inspection light emitted from the light-emitting element 52 may be, for example, light having a central wavelength in the wavelength range of visible light, specifically light having a central wavelength in the wavelength range of 380 nm or more and 780 nm or less.
 検査光として白色光が用いられてもよい。ただし、検査光は白色光に限定されるものではなく、検査光として、白色光以外で、例えば、肌のシミの有無や濃さによって反射の程度が有意に変化して肌のシミの状態を正確に把握し得る色の光が用いられてもよい。 White light may be used as the inspection light. However, the inspection light is not limited to white light, and light of a color other than white light may be used as the inspection light, for example, light whose degree of reflection changes significantly depending on the presence or absence and the darkness of skin blemishes, making it possible to accurately grasp the state of skin blemishes.
 なお、光照射部30の第2光源としてのLED37から出射される光を検査光として使用してもよく、その場合には発光部としての発光素子52は設けられなくてもよい。 In addition, the light emitted from the LED 37 serving as the second light source of the light irradiation unit 30 may be used as the inspection light, in which case the light emitting element 52 serving as the light emitting unit may not be provided.
 発光部としての発光素子52と対になる受光部としての受光素子53は、具体的には、フォトダイオードによって構成される。受光素子53として、少なくとも発光素子52から出射される検査光を検知可能なフォトダイオードが用いられる。受光素子53として、例えば、白色光、R(赤色光)、G(緑色光)、及びB(青色光)のうちの少なくとも1つを検知可能なフォトダイオードが用いられてよい。 The light-receiving element 53, which serves as a light-receiving unit paired with the light-emitting element 52, is specifically composed of a photodiode. A photodiode capable of detecting at least the inspection light emitted from the light-emitting element 52 is used as the light-receiving element 53. For example, a photodiode capable of detecting at least one of white light, R (red light), G (green light), and B (blue light) may be used as the light-receiving element 53.
 開口54は、ユーザの肌と対向する部分であり、ガラスやポリカーボネートなど透光性に優れて光が透過可能な任意の部材が配設されてよい。 The opening 54 is the portion that faces the user's skin, and may be made of any material that has excellent translucency and allows light to pass through, such as glass or polycarbonate.
 発光素子52に電圧が印加されると当該発光素子52が発光して検査光が出射される。そして、検査光が、開口54を介してユーザの肌面へと到達し、当該肌面で反射して、開口54を介して受光素子53へと入射される。受光素子53へと入射される検査光が多い(言い換えると、強い)ほど、大きな電流が受光素子53を流れる。 When a voltage is applied to the light-emitting element 52, the light-emitting element 52 emits light and emits inspection light. The inspection light then reaches the user's skin surface through the opening 54, is reflected by the skin surface, and is incident on the light-receiving element 53 through the opening 54. The more inspection light that is incident on the light-receiving element 53 (in other words, the stronger the light), the larger the current that flows through the light-receiving element 53.
 検査光の反射光量は、ユーザの肌面の色によって、具体的にはユーザの肌のメラニンの量によって変化する。すなわち、メラニンが多く肌が黒い場合は、検査光が肌面で比較的多く吸収されて、反射光量は少なくなる。一方、メラニンが少なく肌が白い場合は、肌面での検査光の吸収量が比較的少なく、反射光量は多くなる。したがって、メラニンを原因とするシミなどの肌の異常部分では、シミなどが無い肌の正常部分と比べて、検査光が多く吸収されて反射光量が少なくなる。このため、反射光量の多寡に基づいて、シミなどの肌の異常を検知することができる。 The amount of reflected test light varies depending on the color of the user's skin surface, specifically the amount of melanin in the user's skin. That is, if there is a lot of melanin and the skin is dark, the test light is absorbed relatively well by the skin surface, and the amount of reflected light is low. On the other hand, if there is little melanin and the skin is white, the amount of test light absorbed by the skin surface is relatively low, and the amount of reflected light is high. Therefore, in abnormal areas of the skin, such as blemishes caused by melanin, more test light is absorbed and the amount of reflected light is low compared to normal areas of the skin without blemishes. For this reason, skin abnormalities such as blemishes can be detected based on the amount of reflected light.
 上記のことを考慮すると、発光素子52から出射される検査光は、例えば、肌のシミの有無や濃さによって反射光量の差異が大きくなる点において、メラニンに吸収され易い波長の光であることが好ましい。 In consideration of the above, it is preferable that the inspection light emitted from the light-emitting element 52 be light of a wavelength that is easily absorbed by melanin, for example, since the difference in the amount of reflected light becomes large depending on the presence or absence and the darkness of skin blemishes.
 そして、発光素子52から出射された検査光の光量に対して、例えばユーザの肌のメラニンが多いほど反射光量が少なくなって受光素子53へと入射される光量が少なくなり、延いては受光素子53に流れる電流が小さくなる。 Then, for example, the more melanin there is in the user's skin, the less light is reflected relative to the amount of inspection light emitted from the light-emitting element 52, and the less light is incident on the light-receiving element 53, which in turn reduces the current flowing through the light-receiving element 53.
 そこで、センサ部5は、受光素子53の受光量に応じて当該受光素子53から出力される電気的出力値に基づいて、シミなどの肌の異常を検出する。センサ部5は、具体的には例えば、受光素子53を流れる電流と負帰還回路に配置されている抵抗との積として求められる出力電圧の値に基づいて、肌のシミの有無や濃さを判断してユーザの肌の状態を判定する。 The sensor unit 5 detects skin abnormalities such as blemishes based on the electrical output value output from the light receiving element 53 in response to the amount of light received by the light receiving element 53. Specifically, the sensor unit 5 determines the presence or absence and the darkness of blemishes on the skin, and judges the condition of the user's skin, for example, based on the value of the output voltage calculated as the product of the current flowing through the light receiving element 53 and the resistance placed in the negative feedback circuit.
 センサ部5は、受光素子53から出力される電気的出力値の時系列的な変化に基づいてユーザの肌の状態を判定するようにしてもよく、或いは、発光素子52へと印加された電圧と受光素子53から出力される電気的出力値との間の関係(例えば、電圧と電気的出力値との比)に基づいてユーザの肌の状態を判定するようにしてもよい。 The sensor unit 5 may determine the condition of the user's skin based on a time-series change in the electrical output value output from the light receiving element 53, or may determine the condition of the user's skin based on the relationship between the voltage applied to the light emitting element 52 and the electrical output value output from the light receiving element 53 (for example, the ratio between the voltage and the electrical output value).
 光照射装置1は、第1光源としてのIPL31と第2光源としてのLED37とのうちの少なくとも一方が光の照射を行いながら、センサ部5によって判定されたユーザの肌の状態に応じて、光照射部30の出力の強さを調整する。例えば、センサ部5から制御装置8のIPL駆動部81やLED駆動部82に対して指令が伝送される。そして、センサ部5から伝送される指令に基づいて、IPL駆動部81は、電源9からIPL31へと供給する電力を調整してIPL31の発光強度を調整し、また、LED駆動部82は、電源9からLED37へと供給する電力を調整してLED37の発光強度を調整する。 The light irradiation device 1 adjusts the output intensity of the light irradiation unit 30 according to the user's skin condition determined by the sensor unit 5 while at least one of the IPL 31 as the first light source and the LED 37 as the second light source irradiates light. For example, a command is transmitted from the sensor unit 5 to the IPL drive unit 81 and the LED drive unit 82 of the control device 8. Based on the command transmitted from the sensor unit 5, the IPL drive unit 81 adjusts the power supplied from the power source 9 to the IPL 31 to adjust the light emission intensity of the IPL 31, and the LED drive unit 82 adjusts the power supplied from the power source 9 to the LED 37 to adjust the light emission intensity of the LED 37.
 光照射装置1は、例えば、センサ部5が肌にシミなどの肌の異常があると判断したときに光照射部30の出力を、具体的にはIPL31とLED37とのうちの少なくとも一方の出力を強くし、一方で、センサ部5が肌にシミなどの肌の異常は無いと判断したときに光照射部30の出力を、具体的にはIPL31とLED37とのうちの少なくとも一方の出力を止めてもよい。 The light irradiation device 1 may, for example, increase the output of the light irradiation unit 30, specifically at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that there is a skin abnormality such as a blemish on the skin, and may stop the output of the light irradiation unit 30, specifically at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that there is no skin abnormality such as a blemish on the skin.
 光照射装置1は、また、センサ部5が肌のシミが濃く異常の程度が重いと判断したときに光照射部30の出力を、具体的にはIPL31とLED37とのうちの少なくとも一方の出力を強くし、一方で、センサ部5が肌のシミが薄く異常の程度が軽いと判断したときに光照射部30の出力を、具体的にはIPL31とLED37とのうちの少なくとも一方の出力を弱くしてもよい。 The light irradiation device 1 may also increase the output of the light irradiation unit 30, specifically the output of at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that the skin blemish is dark and the degree of abnormality is severe, and decrease the output of the light irradiation unit 30, specifically the output of at least one of the IPL 31 and the LED 37, when the sensor unit 5 determines that the skin blemish is light and the degree of abnormality is mild.
 上記のように光照射部30の出力を調整する際に、センサ部5は、ユーザ各々のベースとなる肌の色(即ち、シミなどの肌の異常が無い肌の部分の色)との比較に基づいてシミなどの肌の異常の有無や程度を判断するようにしてもよい。この場合は、例えば、シミなどの肌の異常が無い若しくは少ない肌の部分にセンサ部5を含む光照射装置1のヘッド部3を当接させ、このときの受光素子53から出力される電気的出力値(「ベース状態」と称する;尚、発光素子52へと印加された電圧と受光素子53から出力される電気的出力値との間の関係(例えば、電圧と電気的出力値との比)でもよい。以下同じ)を例えば制御装置8に設けたメモリに記憶させる。ベース状態は、すなわち、シミなどの肌の異常が無い若しくは少ない肌の色に対応するデータである。そのうえで、センサ部5を含む光照射装置1を作動させて、肌処理を行いながら肌の各部位について受光素子53から出力される電気的出力値(「各部位状態」と称する)を取得する。そして、ベース状態と各部位状態とを随時比較し、ベース状態と各部位状態との差異が予め設定された条件(例えば、閾値)以上である場合に、シミなどの肌の異常があると判断したり、シミなどの肌の異常の程度が重いと判断したりして、判断結果に基づいて光照射部30の出力を調整するようにしてもよい。なお、シミなどの肌の異常が無い若しくは少ない肌の部分として、例えば、おでこやフェイスライン(具体的には、えら付近)が挙げられる。 When adjusting the output of the light irradiation unit 30 as described above, the sensor unit 5 may determine the presence or absence and the degree of skin abnormalities such as blemishes based on a comparison with the base skin color of each user (i.e., the color of the skin part without skin abnormalities such as blemishes). In this case, for example, the head unit 3 of the light irradiation device 1 including the sensor unit 5 is abutted against a part of the skin with no or few skin abnormalities such as blemishes, and the electrical output value output from the light receiving element 53 at this time (referred to as the "base state"; it may also be the relationship between the voltage applied to the light emitting element 52 and the electrical output value output from the light receiving element 53 (for example, the ratio of the voltage to the electrical output value). The same applies below) is stored in a memory provided in, for example, the control device 8. The base state is data corresponding to a skin color with no or few skin abnormalities such as blemishes. Then, the light irradiation device 1 including the sensor unit 5 is operated to obtain the electrical output value output from the light receiving element 53 for each part of the skin while performing skin treatment (referred to as the "state of each part"). The base state and the state of each part are compared from time to time, and if the difference between the base state and the state of each part is equal to or greater than a preset condition (e.g., a threshold value), it may be determined that there is a skin abnormality such as a blemish, or that the degree of the skin abnormality such as a blemish is severe, and the output of the light irradiation unit 30 may be adjusted based on the determination result. Examples of parts of the skin that have no or few skin abnormalities such as blemishes include the forehead and face line (specifically, the area around the jawline).
 上記のようにベース状態と各部位状態とを比較して光照射部30の出力を調整する場合には、肌処理を始める前にベース状態を記憶させて設定したうえで、肌処理を行っている最中にベース状態よりも肌の色が白い(言い換えると、シミなどの肌の異常が無い若しくは少ない)と判断されたときは、そのときの受光素子53から出力される電気的出力値を新たなベース状態として例えば制御装置8に設けたメモリに記憶させるようにしてもよい。すなわち、ベース状態は、現在のベース状態よりも肌の色が白いと判断されたときに適宜更新(言い換えると、適宜校正)されるようにしてもよい。 When adjusting the output of the light irradiation unit 30 by comparing the base state with the state of each part as described above, the base state is stored and set before starting skin treatment, and when it is determined during skin treatment that the skin color is whiter than the base state (in other words, there are no or few skin abnormalities such as blemishes), the electrical output value output from the light receiving element 53 at that time may be stored as a new base state, for example in a memory provided in the control device 8. In other words, the base state may be updated (in other words, calibrated) as appropriate when it is determined that the skin color is whiter than the current base state.
 上記のようにベース状態と各部位状態とを比較して光照射部30の出力を調整する場合には、また、肌処理を始める前にベース状態を記憶させることなく、肌処理を行いながらベース状態を取得しかつ適宜更新(適宜校正)するようにしてもよい。すなわち、肌処理を開始したときの受光素子53から出力される電気的出力値を(当初の)ベース状態として例えば制御装置8に設けたメモリに記憶させたうえで、肌処理を進めながらその時に記憶されているベース状態よりも肌の色が白い(言い換えると、シミなどの肌の異常が無い若しくは少ない)と判断されたときは、そのときの受光素子53から出力される電気的出力値を新たなベース状態として例えば制御装置8に設けたメモリに記憶させるようにしてもよい。 When the output of the light irradiation unit 30 is adjusted by comparing the base state with the state of each part as described above, the base state may be acquired and appropriately updated (appropriately calibrated) while skin treatment is being performed, without storing the base state before skin treatment begins. That is, the electrical output value output from the light receiving element 53 when skin treatment begins may be stored in a memory provided in the control device 8 as the (initial) base state, and then, as skin treatment proceeds, when it is determined that the skin color is whiter than the base state stored at that time (in other words, there are no or few skin abnormalities such as blemishes), the electrical output value output from the light receiving element 53 at that time may be stored in a memory provided in the control device 8 as the new base state.
 ベース状態と各部位状態とを比較することにより、ユーザ各々の肌の色に合わせた光照射部30の出力の調整を適切に行うことができ、言い換えると、ユーザごとの肌の色の違いの影響を受けることなく光照射部30の出力の調整を適切に行うことができ、一層良好な肌処理を行うことが可能となる。 By comparing the base state with the state of each part, the output of the light irradiation unit 30 can be appropriately adjusted to match the skin color of each user. In other words, the output of the light irradiation unit 30 can be appropriately adjusted without being affected by differences in skin color between users, making it possible to perform even better skin treatment.
 なお、光照射部30(具体的には、導光体4の光案内部42の第2出射面421)の近傍に、ユーザの肌の状態を判定するセンサ部5を備える場合で、ヘッド部3(又は、ヘッド部3の一部)として把持部2に対して着脱可能なアタッチメントを複数備える場合は、アタッチメントは、第1光源としてのIPL31、第2光源としてのLED37、導光体4、及びセンサ部5のうちの、例えば、少なくとも導光体4を含むようにしたり、少なくとも第2光源としてのLED37及び導光体4を含むようにしたりしてよい。 In addition, when the sensor unit 5 for determining the condition of the user's skin is provided near the light irradiation unit 30 (specifically, the second emission surface 421 of the light guide unit 42 of the light guide 4), and the head unit 3 (or part of the head unit 3) includes multiple attachments that can be attached to and detached from the grip unit 2, the attachments may include, for example, at least the light guide 4 out of the IPL 31 as the first light source, the LED 37 as the second light source, the light guide 4, and the sensor unit 5, or may include at least the LED 37 and the light guide 4 as the second light source.
 ここで、本実施例において、LED37に関しては、上述したように目的に合わせたLEDを配置することができるが、特定の用途では、緑色LEDを使用することが好ましい。以下、図11以降を参照して、詳説する。 In this embodiment, as described above, LEDs 37 can be arranged according to the purpose, but for certain applications, it is preferable to use green LEDs. This will be explained in detail below with reference to Figure 11 onwards.
 図11は、LED37から発生される光(以下、「所定光」とも称する)の特性の説明図であり、横軸に波長を取り、縦軸に強度を取り、特性の一例が示されている。 FIG. 11 is an explanatory diagram of the characteristics of the light emitted from the LED 37 (hereinafter also referred to as "predetermined light"), with the horizontal axis representing the wavelength and the vertical axis representing the intensity, and shows an example of the characteristics.
 LED37は、好ましくは、490nmよりも長くかつ525nm以下の波長範囲に中心波長を有する所定光を発生する光源である。この波長範囲(及びそのうちの略505nmという波長)の優位性の根拠(技術的意義)は、図12A、図12B、及び図20以降を参照して後述する。なお、505nm及びその近傍は、厳密には青緑色の波長であり、525nm及びその近傍は、厳密には緑色の波長であるが、以下では490nmよりも長くかつ525nm以下の波長範囲を、“緑色”と表現する場合がある。 The LED 37 is preferably a light source that generates a predetermined light having a central wavelength in a wavelength range longer than 490 nm and equal to or less than 525 nm. The basis (technical significance) of the superiority of this wavelength range (and the wavelength of approximately 505 nm within it) will be described later with reference to Figures 12A, 12B, and 20 onwards. Note that 505 nm and its vicinity are strictly blue-green wavelengths, and 525 nm and its vicinity are strictly green wavelengths, but hereinafter the wavelength range longer than 490 nm and equal to or less than 525 nm may be referred to as "green".
 所定光は、より好ましくは、図11に示すように、略505nmの中心波長を有する。このような中心波長であれば、そうでない場合に比べて、後述するように、照射されたユーザの肌部位におけるメラニン産生を抑制できる。例えば、所定光は、照射されたユーザの肌部位において、所定光を照射しない場合に比べて5%以上、より好ましくは、10%以上良好なメラニン産生抑制効果を有する態様で、照射可能である。 More preferably, the specified light has a central wavelength of approximately 505 nm, as shown in FIG. 11. With such a central wavelength, melanin production in the irradiated area of the user's skin can be suppressed more effectively than in the case where the specified light is not irradiated, as described below. For example, the specified light can be irradiated in a manner that has a better melanin production suppression effect in the irradiated area of the user's skin than when the specified light is not irradiated, by 5% or more, and more preferably by 10% or more.
 所定光は、好ましくは、半値半幅(図11参照)が±20nm以下であり、より好ましくは、±10nm程度である。これにより、照射されたユーザの肌部位におけるメラニン産生の抑制効果の最大化を図ることができる。 The predetermined light preferably has a half-width at half maximum (see FIG. 11) of ±20 nm or less, and more preferably about ±10 nm. This maximizes the effect of suppressing melanin production in the irradiated area of the user's skin.
 光照射部30は、所定光を、好ましくは、好ましくは、0.5mW/cm以上かつ62mW/cm以下の範囲の放射強度で、より好ましくは、11.5mW/cm以上かつ30mW/cm以下の範囲の放射強度で、照射する。これに関する試験結果は、図16以降を参照して後述する。 The light irradiation unit 30 irradiates the predetermined light preferably at a radiation intensity in the range of 0.5 mW/cm 2 or more and 62 mW/cm 2 or less, more preferably at a radiation intensity in the range of 11.5 mW/cm 2 or more and 30 mW/cm 2 or less. The test results regarding this will be described later with reference to FIG. 16 and subsequent figures.
 また、光照射部30は、好ましくは、所定光を、5J/cm以上かつ30J/cm以下の範囲の照射エネルギで照射する。 Moreover, the light irradiating section 30 preferably irradiates the predetermined light with irradiation energy in the range of 5 J/cm 2 or more and 30 J/cm 2 or less.
 なお、複数のLED37の素子を1チップに実装することも可能である。あるいは、LED37は、他の中心波長を有する他のLEDと組み合わせて1チップ化されてもよい。例えば、LED37と赤色のLEDを1チップLED化する場合、一のチップにおける緑色LEDと赤色LEDの数の比率は、適切に適合されてよい。 It is also possible to implement multiple LED 37 elements on a single chip. Alternatively, LED 37 may be combined with other LEDs having other central wavelengths to form a single chip. For example, when LED 37 and a red LED are combined into a single chip LED, the ratio of the number of green LEDs to red LEDs on one chip may be appropriately adapted.
 制御装置8は、LED37を介して肌に所定光を照射する。この際、制御装置8は、所定光の照射時間の占める割合が1/2以上となる1分以上の連続的な光照射を実現してよい。 The control device 8 irradiates the skin with a predetermined light via the LED 37. At this time, the control device 8 may achieve continuous light irradiation for 1 minute or more, with the irradiation time of the predetermined light accounting for 1/2 or more.
 また、制御装置8は、1つ以上の動作モードでヘッド部3からの光の照射を制御してよい。1つ以上の動作モードは、メラニン産生抑制効果に対応付けられている所定動作モード、又は、メラニン産生抑制効果に関連する効果に対応付けられている所定動作モードを有してよい。この場合、制御装置8は、所定動作モードにおいて、所定光をヘッド部3から出力させる。 The control device 8 may also control the emission of light from the head unit 3 in one or more operating modes. The one or more operating modes may include a predetermined operating mode associated with the melanin production suppression effect, or a predetermined operating mode associated with an effect related to the melanin production suppression effect. In this case, the control device 8 causes the head unit 3 to output a predetermined light in the predetermined operating mode.
 次に、上述した所定光の効果(メラニン産生の抑制効果)について、試験結果等を参照して、更に説明する。 Next, the effect of the above-mentioned specified light (the effect of suppressing melanin production) will be further explained with reference to test results, etc.
 可視光線は生体侵襲性が小さいため、医療分野や美容皮膚分野への応用を目的に生体に対する可視光線の影響についてさまざまな研究がなされてきた(今川ら、日レ医誌、32、444(2012))。例えば、赤色光は皮膚の老化を防止し、緑、黄色光は過剰な細胞活動を抑制する手段として重要な役割を果たすとの報告もある。 Because visible light is minimally invasive to the body, various studies have been conducted on its effects on the body with the aim of applying it to the medical and cosmetic dermatology fields (Imagawa et al., Japan Medical Journal, 32, 444 (2012)). For example, it has been reported that red light prevents skin aging, while green and yellow light play an important role in suppressing excessive cell activity.
 皮膚における色素沈着の原因となるメラニン色素は、メラノサイト内で生成され有害な紫外線からDNAの損傷を防ぐ重要な役割を果たす反面、シミの原因でもありこれを改善したいニーズは高い。そこで細胞活動を抑制する緑色LED光が、同様にメラノーマの活動に影響を及ぼし、メラニン産生量を低減するかについて効果検証を行った。 Melanin, the pigment that causes pigmentation in the skin, is produced in melanocytes and plays an important role in preventing DNA damage from harmful ultraviolet rays. However, it is also the cause of spots, and there is a high demand for improving this. Therefore, we conducted an experiment to verify the effectiveness of green LED light, which suppresses cellular activity, to see if it also affects melanoma activity and reduces melanin production.
 本願発明者は、緑色LEDによるメラニン産生抑制効果を検証するために、以下に示す試験を、桐蔭横浜大学に依頼した。メラニン産生抑制効果の検証は、同大学にて入手されたマウス由来B164A5細胞(B16メラノーマ細胞、理研BRC)及びヒト由来メラノーマ細胞(HMV-II細胞、(株)ケー・エー・シー)を用いて行われた。また緑色LEDの光源にはウシオ電機製SMT525(波長525nm)、SMT505(波長505nm)を用いた。 The inventors of this application requested Toin University of Yokohama to carry out the following test in order to verify the melanin production inhibitory effect of green LEDs. The melanin production inhibitory effect was verified using mouse-derived B164A5 cells (B16 melanoma cells, Riken BRC) and human-derived melanoma cells (HMV-II cells, KAC Co., Ltd.) obtained at the university. In addition, Ushio Electric's SMT525 (wavelength 525 nm) and SMT505 (wavelength 505 nm) were used as the light source for the green LEDs.
(B16メラノ―マ細胞による細胞生存数)
B16メラノーマ細胞は6穴のウェルプレートに1×10および2×10Cells/mLで播種し、37℃、5%CO下で3日間培養後、フェノールレッド不含培地に置換した。緑色LED照射を1日1回、3日間行った後、1日間培養した。その後、Cell Counting Kit-8(同仁化学社製)を添加し、3時間培養した。培養後、培地を分注し、450nmの吸光度を測定し、細胞生存数を算出した。450nmの吸光度が大きいほど、細胞生存数が大きいことを意味する。
(Cell survival rate by B16 melanoma cells)
B16 melanoma cells were seeded in a 6-well plate at 1×10 4 and 2×10 4 cells/mL, and cultured at 37° C. and 5% CO 2 for 3 days, after which the medium was replaced with phenol red-free medium. Irradiated with green LED once a day for 3 days, and then cultured for 1 day. Then, Cell Counting Kit-8 (manufactured by Dojindo Chemical Industries, Ltd.) was added and cultured for 3 hours. After culture, the medium was dispensed, the absorbance at 450 nm was measured, and the number of surviving cells was calculated. The higher the absorbance at 450 nm, the higher the number of surviving cells.
(B16メラノ―マ細胞によるメラニン産生抑制の評価)
B16メラノーマ細胞は6穴のウェルプレートに1×10および2×10Cells/mLで播種し、37℃、5%CO下で3日間培養後、100nMのメラニン合成誘導剤α-MSHを含むフェノールレッド不含培地に置換した。緑色LED照射を1日1回、3日間行った後、1日間培養後、細胞をPBS(-)1mLで洗浄、10wt%ジメチルスルホキシド(DMSO)を含む2mol/Lの水酸化ナトリウム水溶液で細胞を溶解させ、405nmに対する吸光度からメラニン産生量を測定した。さらに、RC DCTMプロテインアッセイ(BioRad社製)を用いて、細胞由来タンパク量を測定した。測定結果をもとに、細胞由来タンパク量あたりのメラニン量を算出した。
(Evaluation of Inhibition of Melanin Production by B16 Melanoma Cells)
B16 melanoma cells were seeded in a 6-well plate at 1×10 4 and 2×10 4 cells/mL, and after 3 days of culture at 37° C. and 5% CO 2 , the medium was replaced with a phenol red-free medium containing 100 nM of melanin synthesis inducer α-MSH. After 3 days of green LED irradiation once a day and 1 day of culture, the cells were washed with 1 mL of PBS (-), dissolved in 2 mol/L aqueous sodium hydroxide solution containing 10 wt% dimethyl sulfoxide (DMSO), and the amount of melanin produced was measured from the absorbance at 405 nm. Furthermore, the amount of cell-derived protein was measured using RC DCTM protein assay (manufactured by BioRad). Based on the measurement results, the amount of melanin per amount of cell-derived protein was calculated.
(緑色LED光照射によるメラニン産出抑制効果)
波長505nmおよび525nmの緑色LED光を照射するとB16メラノーマ細胞の生存数が低下し、メラニン産生量が減少することが確認された。この傾向は505nmの緑色LED光の方が顕著であった。これは、図12A及び図12Bに示す試験結果からわかる。図12Aは、波長505nmの緑色LED光を照射したときの、B16メラノーマ細胞の生存数を示す図であり、図12Bは、波長525nmの緑色LED光を照射したときの、B16メラノーマ細胞の生存数を示す図である。本試験では、初期の細胞の濃度が1×10(Cells/mL)であるときと、2×10(Cells/mL)であるときとで、30分後の濃度と60分後の濃度がそれぞれ測定された。
(Melanin production suppression effect by green LED light irradiation)
It was confirmed that the number of viable B16 melanoma cells decreased and the amount of melanin production decreased when green LED light with wavelengths of 505 nm and 525 nm was irradiated. This tendency was more pronounced with green LED light with wavelengths of 505 nm. This can be seen from the test results shown in Figures 12A and 12B. Figure 12A shows the number of viable B16 melanoma cells when irradiated with green LED light with a wavelength of 505 nm, and Figure 12B shows the number of viable B16 melanoma cells when irradiated with green LED light with a wavelength of 525 nm. In this test, the concentrations after 30 minutes and 60 minutes were measured when the initial cell concentrations were 1 x 10 4 (Cells/mL) and 2 x 10 4 (Cells/mL).
(ヒト由来HMV-IIメラノ―マ細胞HMV-IIによるメラニン産生抑制の評価)
マウス由来B16メラノーマ細胞とヒト由来HMV-IIメラノーマ細胞とでは、美白剤に対する薬剤感受性が異なることが報告をされている。上記B16細胞の評価においてメラニン産出抑制効果は505nmの緑色LED光の方が顕著であっため、HMV-II細胞では波長を505nmに絞りその影響を評価した。
(Evaluation of inhibition of melanin production by human-derived HMV-II melanoma cells HMV-II)
It has been reported that mouse-derived B16 melanoma cells and human-derived HMV-II melanoma cells have different drug sensitivities to skin whitening agents. In the evaluation of the B16 cells, the melanin production inhibitory effect was more pronounced with 505 nm green LED light, so the wavelength was narrowed down to 505 nm for the HMV-II cells to evaluate their effects.
 B16細胞と異なりHMV-II細胞ではメラニン合成誘導剤α-MSH添加によるメラノーマ細胞の増殖効果が低かった。そのためHMV-II細胞の評価にはMSHの増強剤であるTheophylline(テオフィリン)をメラニン合成誘導剤として用いた。
1×10Cells/mLのHMV-II細胞分散液を66穴のウェルプレートに2mLずつ分注、1×10Cells/mLで播種し、37℃、5%CO下で3日間培養した後、40mMの培養後、Theophylline25μLを含むフェノールレッド不含培地2mLに置換した。505nmのLED光の照射を1日1回、3日間行った後、1日間培養し、10wt%ジメチルスルホキシド(DMSO)を含む2MのNaOH溶液を300μLにて2mol/Lの水酸化ナトリウム水溶液で細胞を溶解させ、405nmに対する吸光度からメラニン産生量を測定した。さらに、RC DCTMプロテインアッセイ(BioRad社製)を用いて、細胞由来タンパク量を測定した。測定結果をもとに、細胞由来タンパク量あたりのメラニン量を算出した。
Unlike B16 cells, the melanin synthesis inducer α-MSH had a low effect on the proliferation of melanoma cells in HMV-II cells, so theophylline, an MSH enhancer, was used as a melanin synthesis inducer to evaluate HMV-II cells.
2 mL of 1×10 4 cells/mL HMV-II cell dispersion was dispensed into a 66-well plate, seeded at 1×10 4 cells/mL, and cultured at 37° C. under 5% CO 2 for 3 days, after which the medium was replaced with 2 mL of phenol red-free medium containing 25 μL of Theophylline after 40 mM culture. Irradiation with 505 nm LED light was performed once a day for 3 days, and then cultured for 1 day. The cells were dissolved in 2 mol/L aqueous sodium hydroxide solution with 300 μL of 2 M NaOH solution containing 10 wt% dimethyl sulfoxide (DMSO), and the amount of melanin produced was measured from the absorbance at 405 nm. Furthermore, the amount of cell-derived protein was measured using RC DCTM protein assay (manufactured by BioRad). Based on the measurement results, the amount of melanin per amount of cell-derived protein was calculated.
(HMV-II細胞による生存率)
HMV-II細胞を6穴のウェルプレートに1×10Cells/mLで播種し、37℃、5%CO下で3日間培養後、フェノールレッド不含培地に置換した。505nmのLED照射を1日1回、3日間行った後、1日間培養した。その後、Cell Counting Kit-8(同仁化学社製)を添加し、3時間培養した。培養後、培地を分注し、450nmの吸光度を測定した。測定後、LED光未照射の450nmの吸光度に対する相対値として生存率を算出した。
(Survival rate by HMV-II cells)
HMV-II cells were seeded at 1 x 10 4 cells/mL in a 6-well plate, cultured at 37°C, 5% CO 2 for 3 days, and then replaced with phenol red-free medium. After 3 days of 505 nm LED irradiation once a day, the cells were cultured for 1 day. Then, Cell Counting Kit-8 (Dojindo Chemical Industries, Ltd.) was added and the cells were cultured for 3 hours. After the culture, the medium was dispensed and the absorbance at 450 nm was measured. After the measurement, the survival rate was calculated as a relative value to the absorbance at 450 nm without LED light irradiation.
(緑色LED光照射によるメラニン産出抑制効果)
505nmLED光を照射するとHMV-II細胞の生存率が低下し、メラニン産生量が減少することが確認された。
(Melanin production suppression effect by green LED light irradiation)
It was confirmed that irradiation with 505 nm LED light reduced the survival rate of HMV-II cells and reduced the amount of melanin produced.
 B16細胞、HMV-II細胞の双方において、緑色LED光照射はメラニン産出抑制効果に有効であることが検証された。これは、図13Aから図13Dに示す他の試験結果からわかる。図13Aから図13Dに示す他の試験も、図12A及び図12Bを参照して上述した試験と同様に実施された。なお、図13Eは、図13Aから図13Dの試験結果から得られる評価結果の表図である。これらからわかるように、505nmの方が525nmよりもメラニン産生抑制効果が高く、10分よりも20分の方が顕著であった。また、505nmは30分、60分でも抑制が見られたが525nmでは30分では抑制効果が見られなかったが、60分では抑制されていた。 In both B16 cells and HMV-II cells, it was verified that green LED light irradiation is effective in suppressing melanin production. This can be seen from other test results shown in Figures 13A to 13D. The other tests shown in Figures 13A to 13D were also conducted in the same manner as the tests described above with reference to Figures 12A and 12B. Note that Figure 13E is a table showing the evaluation results obtained from the test results of Figures 13A to 13D. As can be seen from these, 505 nm has a higher melanin production suppression effect than 525 nm, and it was more pronounced at 20 minutes than at 10 minutes. Furthermore, suppression was seen at 30 and 60 minutes with 505 nm, but no suppression effect was seen at 30 minutes with 525 nm, but suppression was seen at 60 minutes.
 本実施例は、緑色LED光、特に波長505nmにおいてシミの原因となるメラニンの産生を抑制する効果が認められた。これは、図14Aから図15Bに示す試験結果からわかる。図14A及び図14Bは、それぞれ、1回目と2回目の試験結果を示し、図15A及び図15Bは、それぞれ、1回目と2回目の試験結果を示す。図14Aから図15Bに示す他の試験も、図12A及び図12Bを参照して上述した試験と同様に実施された。 In this embodiment, green LED light, particularly at a wavelength of 505 nm, was found to be effective in suppressing the production of melanin, which causes blemishes. This can be seen from the test results shown in Figures 14A to 15B. Figures 14A and 14B show the results of the first and second tests, respectively, and Figures 15A and 15B show the results of the first and second tests, respectively. The other tests shown in Figures 14A to 15B were also conducted in the same manner as the tests described above with reference to Figures 12A and 12B.
 図16から図19は、他の試験結果を示す図であり、図16は、緑色LED光の放射強度と効果(メラニンの産生を抑制効果)の関係を表す表であり、図17から図19は、緑色LED光の放射強度と効果の関係を表すグラフである。 Fig. 16 to Fig. 19 show other test results. Fig. 16 is a table showing the relationship between the radiation intensity of green LED light and the effect (the effect of suppressing melanin production), and Fig. 17 to Fig. 19 are graphs showing the relationship between the radiation intensity of green LED light and the effect.
 図16から図19に示す他の試験は、以下の通り行われた。
B16メラノーマ4A5は、理研BRCから提供されたものを用いた。本実験の内容につき、以降に示す細胞という言葉はこれを指すものとする。以下のステップS1からステップS3に記載のとおりの細胞と細胞培養を行い、培地は以下のものを使用した。
10.0%(v/v) Fetal Bovine Serum(FBS,Cat No.SH30071.03,Hyclone(登録商標),UK)および1.0%(v/v)の抗真菌剤(Antibiotic-Antimycotic 100X, Cat No.15240-062,Invitrogen,USA)を含むDulbecco’s Modified Eagle Medium(DMEM,Cat No.10566-016,Gibco,USA)を用いた。100nMのα-Melanocyte stimulating hormone(α-MSH,Cat No. M4135,Sigma-Aldrich,USA)および100μMのテオフィリン(Cat No. T1633,Sigma-Aldrich,USA)を含む10%のFBS含有のDMEMを調製したもの。
ステップS1:細胞培養および継代
60mmのdish(Cat No.353002,Falcon(登録商標),USA)に3.0×105cells/dishの密度で細胞を播種し、COインキュベータ内(CO濃度=5%、37℃)で24時間培養した。
ステップS2:緑色LED光照射
培地を除去し、Phosphate buffer saline(PBS(-),Cat No.198601,Nissui,Japan)で洗浄後、8mLのハンクス平衡塩溶液(+)(HBSS(+),Cat No.084-08965,Wako,japan)に交換後、照射条件に従って照射機器を適用した。さらにHBSS(+)を除去し、3mLの試験培地に交換して72時間培養した。なお、照射条件に関して、照射時間は3分とした。
ステップS3:培養後にPBSで洗浄後、alamarBlue(登録商標)(Cat No. DAL1100,Invitrogen(登録商標),USA)を無血清DMEMにて10倍希釈したalamarBlue溶液を細胞に2mL処理し、COインキュベータにて37℃、2時間培養した。alamarBlue溶液を回収して96穴プレート(Cat No.9017,costar,USA)に200μL入れ、マイクロプレートリーダー(SPARK(登録商標)10M,TECAN,Switzerland)を用い570nmおよび600nmの吸光度(OD570,OD600)を測定した。ブランクとしてalamarBlue溶液を用いた。60mmdishからalamarBlue溶液を除去し、PBS(-)で洗浄後にメラニンを可溶化するため、10%DMSOを含有する1Mの水酸化ナトリウム水溶液を1mL加え、85℃下で10分間インキュベートした。メラニン溶解液を96穴プレートに100μL入れ、マイクロプレートリーダーを用い405nmの吸光度(OD405)を測定した。対照のOD570-600を100%として、LED適用群の細胞生存率を算出した。また、対照のOD405を100%として、メラニン生成率を算出した。さらに、対照、LED照射適用群のOD405とalamarBlueにて測定したOD570-600で除した値を細胞あたりのメラニン生成率として算出した。有意差検定は対照とLED適用群を対応のないt検定で有意差検定を実施した。検定はいずれも両側で有意水準を5%未満とした。
Another test, shown in Figures 16 to 19, was carried out as follows.
B16 melanoma 4A5 was provided by Riken BRC. In the content of this experiment, the word "cells" used hereafter refers to these. The cells and cell culture were performed as described in steps S1 to S3 below, and the following media were used.
Dulbecco's Modified Eagle Medium (DMEM, Cat No. 10566-016, Gibco, USA) containing 10.0% (v/v) Fetal Bovine Serum (FBS, Cat No. SH30071.03, Hyclone (registered trademark), UK) and 1.0% (v/v) antifungal agent (Antibiotic-Antimycotic 100X, Cat No. 15240-062, Invitrogen, USA) was used. DMEM containing 10% FBS was prepared containing 100 nM α-Melanocyte stimulating hormone (α-MSH, Cat No. M4135, Sigma-Aldrich, USA) and 100 μM theophylline (Cat No. T1633, Sigma-Aldrich, USA).
Step S1: Cell culture and subculture Cells were seeded at a density of 3.0×105 cells/dish in a 60 mm dish (Cat No. 353002, Falcon (registered trademark), USA) and cultured in a CO2 incubator ( CO2 concentration = 5%, 37°C) for 24 hours.
Step S2: The green LED light irradiation medium was removed, washed with phosphate buffer saline (PBS(-), Cat No. 198601, Nissui, Japan), and then replaced with 8 mL of Hank's balanced salt solution (+) (HBSS(+), Cat No. 084-08965, Wako, Japan), and the irradiation device was applied according to the irradiation conditions. Furthermore, the HBSS(+) was removed, and replaced with 3 mL of test medium, followed by culturing for 72 hours. Regarding the irradiation conditions, the irradiation time was set to 3 minutes.
Step S3: After washing with PBS after culturing, alamarBlue (registered trademark) (Cat No. DAL1100, Invitrogen (registered trademark), USA) was diluted 10-fold with serum-free DMEM, and 2 mL of alamarBlue solution was treated to the cells and cultured at 37 ° C. for 2 hours in a CO2 incubator. The alamarBlue solution was collected and placed in a 96-well plate (Cat No. 9017, costar, USA), and the absorbance at 570 nm and 600 nm (OD570, OD600) was measured using a microplate reader (SPARK (registered trademark) 10M, TECAN, Switzerland). The alamarBlue solution was used as a blank. The alamarBlue solution was removed from the 60 mm dish, and after washing with PBS (-), 1 mL of 1 M aqueous sodium hydroxide solution containing 10% DMSO was added to solubilize the melanin, and the mixture was incubated at 85 ° C for 10 minutes. 100 μL of the melanin solution was placed in a 96-well plate, and the absorbance at 405 nm (OD405) was measured using a microplate reader. The cell viability of the LED application group was calculated by taking the control OD570-600 as 100%. In addition, the melanin production rate was calculated by taking the control and LED irradiation application group OD405 and the OD570-600 measured with alamarBlue as the melanin production rate per cell. A significant difference test was performed using an unpaired t-test between the control and LED application groups. The significance level for both tests was set to less than 5% on both sides.
 図16から図19からわかるように、B16メラノーマ細胞に緑色LED(505nm)を照射した際に、いずれの出力においてもメラニン生成率は対照と比較して有意に低い値を示し、メラニン生成抑制を認めた。0.5mW/cm~11.5mW/cmのなかでも最も出力の高い11.5mW/cm適用においては、細胞あたりのメラニン生成率についても対照と比較して有意に低い値を示し、本条件の中では最も出力の高いものがより生成能の抑制傾向がみられた。これらから、上述したとおり、光照射部30から所定光の放射強度は、好ましくは、0.5mW/cm以上の範囲であり、より好ましくは、11.5mW/cm以上であると、いうことができる。 As can be seen from Figures 16 to 19, when B16 melanoma cells were irradiated with a green LED (505 nm), the melanin production rate was significantly lower than the control at all outputs, and melanin production was suppressed. When the highest output of 11.5 mW/cm 2 was applied among 0.5 mW/cm 2 to 11.5 mW/cm 2 , the melanin production rate per cell was also significantly lower than the control, and the highest output among these conditions tended to suppress production. From these, as described above, it can be said that the radiation intensity of the specified light from the light irradiation unit 30 is preferably in the range of 0.5 mW/cm 2 or more, and more preferably 11.5 mW/cm 2 or more.
 また、図19Aには、波長520nmの緑色LED光を、異なる放射強度で照射した場合の効果の相違が示されている。なお、図19Aに示す試験についても、図8等と同様の態様で実施された。図19Aにおいて、コントロールとは、何も照射しない試験結果を示す。ここでは、コントロールに対して、9mW/cmと62W/cmの各試験結果が比較されている。グラフA,B,Cは、それぞれ、細胞生存率、メラニン生成率、細胞あたりのメラニン生成率に対応する。 Also, Fig. 19A shows the difference in effect when irradiating green LED light with a wavelength of 520 nm at different radiation intensities. The test shown in Fig. 19A was also carried out in the same manner as Fig. 8 and the like. In Fig. 19A, the control indicates the test result without any irradiation. Here, the test results of 9 mW/ cm2 and 62 W/ cm2 are compared with the control. Graphs A, B, and C correspond to cell viability, melanin production rate, and melanin production rate per cell, respectively.
 図19Aからわかるように、光照射部30から所定光の放射強度がある程度以上高くなると、効果が有意に大きくならない(すなわち飽和する)。これらから、上述したとおり、光照射部30から所定光の放射強度は、好ましくは、0.5mW/cm以上かつ62mW/cm以下の範囲であり、より好ましくは、11.5mW/cm以上かつ62mW/cm以下の範囲であると、いうことができる。また、消費電力の観点からは、62mW/cmに代えて、30mW/cm程度の上限値が望ましいともいえる。 As can be seen from Fig. 19A, when the radiation intensity of the predetermined light from the light irradiation unit 30 becomes higher than a certain level, the effect does not become significantly large (i.e., it becomes saturated). From these, as described above, it can be said that the radiation intensity of the predetermined light from the light irradiation unit 30 is preferably in the range of 0.5 mW/ cm2 or more and 62 mW/ cm2 or less , and more preferably in the range of 11.5 mW/ cm2 or more and 62 mW/ cm2 or less. Also, from the viewpoint of power consumption, it can be said that an upper limit value of about 30 mW/ cm2 is desirable instead of 62 mW/cm2.
 また、上記の各試験では、光照射部30からの所定光の照射エネルギは、0.09J/cm以上かつ11J/cm以下の範囲であった。なお、本明細書に開示の他の試験結果も合わせると、光照射部30からの所定光の照射エネルギは、0.09J/cm以上かつ45J/cm以下の範囲で試験が行われた。そして、照射エネルギが比較的小さい0.09J/cm以上かつ11J/cm以下の範囲でも、有効な効果が確認された。 In each of the above tests, the irradiation energy of the predetermined light from the light irradiation unit 30 was in the range of 0.09 J/cm 2 or more and 11 J/cm 2 or less. In addition, taking into account other test results disclosed in this specification, the tests were performed with the irradiation energy of the predetermined light from the light irradiation unit 30 in the range of 0.09 J/cm 2 or more and 45 J/cm 2 or less. Effective effects were also confirmed even with a relatively small irradiation energy range of 0.09 J/cm 2 or more and 11 J/cm 2 or less.
 なお、光照射装置1は、ユーザの乾燥状態の肌に、上述した光緑色LED光照射してもよいが、肌への浸透対象を含むジェルや液体などを付与した肌に緑色LED光を照射してもよい。この場合、浸透対象の対象物は、任意である。対象物は、人の皮膚に付与可能な物質であり、典型的には、美容効果などの各種効果を期待できる物質であってよい。 The light irradiation device 1 may irradiate the above-mentioned green LED light onto the dry skin of the user, but may also irradiate the green LED light onto skin to which a gel or liquid containing a substance to be permeated has been applied. In this case, the substance to be permeated may be any substance. The substance may be a substance that can be applied to human skin, and typically may be a substance that can be expected to have various effects, such as cosmetic effects.
 次に、図20以降を参照して、肌に照射する光の好ましい波長範囲について更に説明する。 Next, we will further explain the preferred wavelength range of light to be irradiated onto the skin with reference to Figure 20 onwards.
 前出の図12A及び図12Bを参照して上述した試験では、波長505nmおよび525nmの緑色LED光を照射するとB16メラノーマ細胞の生存数が低下し、メラニン産生量が減少することが示された。 The test described above with reference to Figures 12A and 12B above showed that irradiation with green LED light of wavelengths of 505 nm and 525 nm reduced the survival rate of B16 melanoma cells and reduced melanin production.
 図20は、他の試験結果を示す図であり、波長450nm、520nm、及び850nmのLED光を照射した場合の試験結果を示す。図20では、細胞生存率、メラニン生成率、及び細胞あたりのメラニン生成率について、LED37の波長450nm、520nm、及び850nmのそれぞれを照射した場合の試験結果が示されている。なお、図20において、コントロールとは、何も照射しない試験結果を示す。 Figure 20 shows other test results, and shows the test results when LED light with wavelengths of 450 nm, 520 nm, and 850 nm was irradiated. Figure 20 shows the test results for cell survival rate, melanin production rate, and melanin production rate per cell when LED37 was irradiated with wavelengths of 450 nm, 520 nm, and 850 nm. In Figure 20, the control shows the test results when nothing was irradiated.
 なお、図20に示す試験結果は、前出の図12A及び図12Bを参照して上述した試験とは異なる機関で実施されたが、試験方法は実質的に同様であった。 Note that the test results shown in Figure 20 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test method was substantially the same.
 図20からわかるように、波長520nm及び450nmにて優位的にメラニン生成抑制が確認された。すなわち、B16メラノーマ細胞の生存数が低下し、メラニン産生量が減少することが示された。また、波長450nmよりも520nmの方が、メラニン産生抑制効果が高くなる可能性も示唆されたことがわかる。なお、波長850nmでは多少の抑制傾向は見られたが有意差はなく、一番低い結果となった。 As can be seen from Figure 20, significant inhibition of melanin production was confirmed at wavelengths of 520 nm and 450 nm. In other words, it was shown that the survival number of B16 melanoma cells decreased, and the amount of melanin produced decreased. It was also suggested that the melanin production inhibitory effect may be greater at 520 nm than at 450 nm. Although some tendency for inhibition was observed at a wavelength of 850 nm, there was no significant difference, and it was the lowest result.
 図21は、更なる他の試験結果を示す図であり、3種類の波長の相違に起因したメラニン産出抑制効果の相違に係る試験結果を示す図である。図21では、細胞あたりのメラニン生成率について、LED37の波長505nm、525nm、及び630nmのそれぞれを照射した場合の試験結果が示されている。なお、図21においても、コントロールとは、何も照射しない試験結果を示す。 Figure 21 shows further test results, and is a diagram showing test results relating to the difference in melanin production suppression effect caused by the difference between three types of wavelengths. Figure 21 shows test results for the melanin production rate per cell when irradiated with LED 37 wavelengths of 505 nm, 525 nm, and 630 nm. Note that in Figure 21, the control also shows the test results when nothing was irradiated.
 なお、図21に示す試験結果は、前出の図12A及び図12Bを参照して上述した試験とは異なる機関で実施されたが、試験方法は実質的に同様であった。 Note that the test results shown in Figure 21 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test methods were substantially similar.
 図21からわかるように、波長525nmや波長630nmでは、波長505nmのような有意なメラニン生成抑制が確認されなかった。 As can be seen from Figure 21, no significant inhibition of melanin production was observed at wavelengths of 525 nm or 630 nm, as was observed at a wavelength of 505 nm.
 図22は、更なる他の試験結果を示す図であり、4種類の波長の相違に起因したメラニン産出抑制効果の相違に係る試験結果を示す図である。図22では、細胞生存率について、LED37の波長470nm、490nm、505nm、及び525nmのそれぞれを照射した場合の試験結果が示されている。なお、図22においても、コントロールとは、何も照射しない試験結果を示す。 Figure 22 shows further test results, and is a diagram showing test results relating to the difference in melanin production suppression effect caused by the difference between four types of wavelengths. Figure 22 shows test results for cell survival rate when irradiated with LED 37 wavelengths of 470 nm, 490 nm, 505 nm, and 525 nm. Note that in Figure 22, the control also shows the test results when nothing was irradiated.
 なお、図22に示す試験結果は、前出の図12A及び図12Bを参照して上述した試験とは異なる機関で実施されたが、試験方法は実質的に同様であった。 Note that the test results shown in Figure 22 were conducted by a different institution than the tests described above with reference to Figures 12A and 12B, but the test method was substantially the same.
 図22からわかるように、波長470nm、505nm及び525nmでは、波長490nmに比べて、B16メラノーマ細胞の生存率が低いことが示された。すなわち、波長490nmに対する波長470nm、505nm及び525nmの優位性(メラニン産出抑制効果に係る優位性)が示された。 As can be seen from Figure 22, the survival rate of B16 melanoma cells was lower at wavelengths of 470 nm, 505 nm, and 525 nm compared to the wavelength of 490 nm. In other words, the superiority of wavelengths of 470 nm, 505 nm, and 525 nm over the wavelength of 490 nm (superiority in terms of the effect of inhibiting melanin production) was demonstrated.
 図23は、ケラチン10の発現量に関する試験結果を示す図である。図23では、ケラチン10の発現量について、LED37の波長470nm、505nm及び590nmのそれぞれを照射した場合の試験結果が示されている。 Figure 23 shows the test results for the expression level of keratin 10. Figure 23 shows the test results for the expression level of keratin 10 when irradiated with LED 37 at wavelengths of 470 nm, 505 nm, and 590 nm.
 試験方法の概要は以下の通りである。 The test method is outlined below:
(ステップS1)細胞前培養
ヒト表皮角化細胞(NHEK)は培地を用いてT-75フラスコに起眠し、COインキュベータ(5%のCO,37°C,湿潤)内で培養した。約80%コンフルエントに達した時点で細胞をT-225フラスコに継代し、必要細胞数が得られるまで培養後、その後の試験に用いた。細胞の継代方法は以下の通り。細胞をPBS(-/-)で洗浄後、0.05%のTrypsin-EDTAを用いて細胞を剥離し、トリプシン中和液を加えてトリプシンを中和した。次に、細胞懸濁液を遠心管に回収し、遠心(室温,180xg,5min)した。上清を除き、新たに培地を加えて細胞を懸濁し、細胞数をカウントした。培地を用いて、目的の細胞密度に懸濁し、試験で使用する培養器に播種した。
(Step S1) Cell preculture Human epidermal keratinocytes (NHEK) were put to sleep in a T-75 flask using a medium and cultured in a CO2 incubator (5% CO2 , 37°C, humidified). When the cells reached about 80% confluence, they were passaged to a T-225 flask, cultured until the required number of cells was obtained, and then used for the subsequent test. The cell passage method is as follows. After washing the cells with PBS (-/-), the cells were detached using 0.05% Trypsin-EDTA, and a trypsin neutralizing solution was added to neutralize the trypsin. Next, the cell suspension was collected in a centrifuge tube and centrifuged (room temperature, 180 xg, 5 min). The supernatant was removed, new medium was added to suspend the cells, and the number of cells was counted. The cells were suspended to the desired cell density using a medium, and seeded in a culture vessel to be used in the test.
(ステップS2)細胞処理
細胞は900,000cells/dish/3mLで60mmディッシュに播種した。播種翌日、培地を5mL添加し、合計8mLとして、30秒間機器処理を行った。24時間±1時間おきに処理を行い、合計3回美顔器処理を行った。塩化カルシウムは初回機器処理時に同様に培地を8mLとし、添加した。その後、72時間処理を行った。
(Step S2) Cell treatment The cells were seeded on a 60 mm dish at 900,000 cells/dish/3 mL. The next day after seeding, 5 mL of medium was added, making a total of 8 mL, and device treatment was performed for 30 seconds. Treatment was performed every 24 hours ± 1 hour, and a total of three facial treatments were performed with the facial beauty device. Calcium chloride was added to the medium at the same time as the first device treatment, making the medium 8 mL. Then, treatment was performed for 72 hours.
(ステップS3)RNA抽出
最終機器処理から24時間後の細胞を用いて、RNeasy Plus Mini KitによるRNA抽出を実施した。方法はキットのプロトコルに従った。RNA抽出後、NanoDrop Eightを用いて濃度を測定し、-80℃で保存した。
(Step S3) RNA Extraction RNA was extracted using RNeasy Plus Mini Kit using cells 24 hours after the final instrument treatment. The method was according to the kit's protocol. After RNA extraction, the concentration was measured using NanoDrop Eight and stored at -80°C.
(ステップS4)定量PCR
FastLane Cell Probe Kit 付属のQuantiTect Probe RT-PCR Kitを使用し、下表の組成でOne Step real-time RT-PCRを行った。RNAサンプルは約100ng/μLとなるように希釈して使用した。RT-PCR反応は、50℃・30min-95℃・15min-(94℃・15sec-60℃・60sec)×40cyclesの条件で行った。内部標準遺伝子としてGAPDH遺伝子を用いた。
(Step S4) Quantitative PCR
One Step real-time RT-PCR was performed using the QuantiTect Probe RT-PCR Kit included with the FastLane Cell Probe Kit with the composition shown in the table below. The RNA sample was diluted to approximately 100 ng/μL before use. The RT-PCR reaction was performed under the following conditions: 50°C, 30 min-95°C, 15 min-(94°C, 15 sec-60°C, 60 sec) x 40 cycles. The GAPDH gene was used as an internal standard gene.
 図23からわかるように、波長505nmでは、波長470nm及び590nmに比べて、ケラチン10の発現量が有意に大きくなることが示された。すなわち、波長470nmや590nmに対する波長505nmの優位性(ケラチン10の発現効果に係る優位性)が示された。 As can be seen from Figure 23, the expression level of keratin 10 was significantly greater at a wavelength of 505 nm than at wavelengths of 470 nm and 590 nm. In other words, the superiority of the 505 nm wavelength over the 470 nm and 590 nm wavelengths (superiority in terms of the expression effect of keratin 10) was demonstrated.
 ここで、ターンオーバーの機序を説明する。表皮は基底層、有棘層、顆粒層、角質層の4つの層状に配列している。細胞レベルでのターンオーバーは、基底層での細胞増殖、有棘層でのケラチン(K10)合成、顆粒層での細胞死(アポトーシスとネクローシス)、角質層での蛋白分解酵素(KLK8)による切断の4段階によって行われている。人体の皮膚では、基底層で表皮細胞が生成し、上層へ向かって移動しながら成熟し、角質層で剥離することによって形成される過程をターンオーバーという。 Here, we explain the mechanism of turnover. The epidermis is arranged in four layers: the basal layer, the spinous layer, the granular layer, and the stratum corneum. At the cellular level, turnover occurs in four stages: cell proliferation in the basal layer, keratin (K10) synthesis in the spinous layer, cell death (apoptosis and necrosis) in the granular layer, and cleavage by a proteolytic enzyme (KLK8) in the stratum corneum. In human skin, the process in which epidermal cells are generated in the basal layer, mature as they migrate toward the upper layers, and are formed by exfoliation at the stratum corneum is called turnover.
 ケラチンの合成が減少すれば、表皮の構造が維持できずにしわやたるみが生じる。早いターンオーバーでは、未熟な表皮細胞が角質にならないうちに外界にさらされることになる。また、過剰なターンオーバーはアトピー性皮膚炎の病態を引き起こす。遅いターンオーバーでは、垢となって剥がれるべき角質が残留して肥厚する。さらに異常な遅延は乾癬や角化症などを引き起こす。そのため、細胞増殖以外の指標も、正常なターンオーバーを考える上で必要不可欠な因子である。 If keratin synthesis decreases, the epidermal structure cannot be maintained, resulting in wrinkles and sagging. With rapid turnover, immature epidermal cells are exposed to the outside world before they have become keratinized. Excessive turnover can also lead to the pathology of atopic dermatitis. With slow turnover, keratin that should have peeled off as dandruff remains and thickens. Furthermore, abnormal delays can lead to psoriasis, keratosis, and other conditions. Therefore, indicators other than cell proliferation are also essential factors when considering normal turnover.
 このように、ターンオーバーの機序より、ケラチン10は有棘層で発現され、ターンオーバーの過程の中で有用なものである。ケラチン10が発現しているということは正常なターンオーバーが進んでいると示唆される。 In this way, keratin 10 is expressed in the spinous layer and is useful in the turnover process due to the mechanism of turnover. The expression of keratin 10 suggests that normal turnover is proceeding.
 また、青色光照射によって、TGF-β質なる伝達経路を阻害することにより、ヒト皮膚線維芽細胞における細胞増殖とコラーゲン発現を阻害することを報告する論文も知られている(Ge Ge等による論文「Induced skin aging by blue-light irradiation in human skin fibroblasts via TGF-β, JNK and EGFR pathways」、Journal of Dermatological Science)。この点からも、波長505nmが波長470nmに比べて有利であることが強く推認される。 Also, there is a paper reporting that blue light irradiation inhibits the TGF-β signaling pathway, thereby inhibiting cell proliferation and collagen expression in human skin fibroblasts (Ge Ge et al., "Induced skin aging by blue-light irradiation in human skin fibroblasts via TGF-β, JNK and EGFR pathways," Journal of Dermatological Science). From this point of view, it is strongly inferred that a wavelength of 505 nm is more advantageous than a wavelength of 470 nm.
 以上の図12A、図12B及び図20から図23に示す試験結果から、490nmよりも長くかつ525nm以下の波長範囲に中心波長を有する光を肌に照射することは、他の波長範囲の中心波長を有する光を肌に照射する場合に比べて、メラニン産出抑制効果やケラチン10の発現効果の観点から有利であることがわかる。 The test results shown in Figures 12A, 12B, and 20 to 23 show that irradiating the skin with light having a central wavelength in the wavelength range longer than 490 nm and equal to or less than 525 nm is more advantageous in terms of the effect of suppressing melanin production and the effect of expressing keratin 10 than irradiating the skin with light having a central wavelength in other wavelength ranges.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
 例えば、上記の実施の形態では光照射部30が第1光源としてIPL31を含むとともに第2光源としてLED37を含むようにしているが、第1光源や第2光源として用いられる仕組みや機序はIPLやLEDに限定されるものではなく、第1光源や第2光源として他の仕組みや機序が用いられるようにしてもよい。第1光源や第2光源として、例えば、ハロゲンランプやレーザが用いられるようにしてもよい。 For example, in the above embodiment, the light irradiation unit 30 includes an IPL 31 as the first light source and an LED 37 as the second light source, but the mechanisms and mechanisms used as the first light source and the second light source are not limited to an IPL or an LED, and other mechanisms and mechanisms may be used as the first light source and the second light source. For example, a halogen lamp or a laser may be used as the first light source and the second light source.
1   光照射装置(肌処理装置)
2   把持部
3   ヘッド部
3a  肌対向部
30  光照射部
31  IPL(Intense Pulsed Light)
32  第1リフレクタ
33  フィルタ
34  下側ホルダ
35  第2リフレクタ
36  上側ホルダ
37  LED(Light Emitting Diode)
38  ホルダつば部
4   導光体
41  光通過部
411 第1出射面
42  光案内部
421 第2出射面
43  光遮蔽部
44  接触部
5   センサ部
51  基板
52  発光素子
53  受光素子
54  開口
8   制御装置
81  IPL駆動部
82  LED駆動部
9   電源
1. Light irradiation device (skin treatment device)
2 gripping part 3 head part 3a skin facing part 30 light irradiation part 31 IPL (intense pulsed light)
32 First reflector 33 Filter 34 Lower holder 35 Second reflector 36 Upper holder 37 LED (Light Emitting Diode)
38 Holder flange 4 Light guide 41 Light passing portion 411 First emission surface 42 Light guide portion 421 Second emission surface 43 Light shielding portion 44 Contact portion 5 Sensor portion 51 Substrate 52 Light emitting element 53 Light receiving element 54 Opening 8 Control device 81 IPL driving portion 82 LED driving portion 9 Power source

Claims (11)

  1.  所定波長の光を発生する第1光源と、
     前記第1光源の前記所定波長と異なる波長の光を発生する第2光源と、
     前記第1光源からの光が出射される第1出射面と、
     前記第2光源からの光が出射される第2出射面と、を備え、
     前記第1光源の光が前記第1出射面へと至る経路と、前記第2光源の光が前記第2出射面へと至る経路とが交差しない、肌処理装置。
    A first light source that generates light of a predetermined wavelength;
    a second light source that generates light having a wavelength different from the predetermined wavelength of the first light source;
    a first exit surface through which light from the first light source is emitted;
    a second exit surface through which light from the second light source is emitted,
    A skin treatment device, wherein a path along which light from the first light source reaches the first exit surface and a path along which light from the second light source reaches the second exit surface do not intersect.
  2.  前記第2出射面が、前記第1出射面に対して傾斜している、請求項1に記載の肌処理装置。 The skin treatment device of claim 1, wherein the second exit surface is inclined relative to the first exit surface.
  3.  前記第1出射面と前記第2出射面とを有する導光体が設けられる、請求項1に記載の肌処理装置。 The skin treatment device according to claim 1, further comprising a light guide having the first exit surface and the second exit surface.
  4.  前記第2光源は、430nm以上かつ480nm以下の波長範囲に中心波長を有する光、490nm以上かつ525nm以下の波長範囲に中心波長を有する光、530nm以上かつ600nm以下の波長範囲に中心波長を有する光、610nm以上かつ650nm以下の波長範囲に中心波長を有する光、及び800nm以上かつ2500nm以下の波長範囲に中心波長を有する光のうちのいずれか1つの光又は少なくとも2つの光を組み合わせた光を発生する、請求項1に記載の肌処理装置。 The skin treatment device according to claim 1, wherein the second light source generates light having a central wavelength in the wavelength range of 430 nm or more and 480 nm or less, light having a central wavelength in the wavelength range of 490 nm or more and 525 nm or less, light having a central wavelength in the wavelength range of 530 nm or more and 600 nm or less, light having a central wavelength in the wavelength range of 610 nm or more and 650 nm or less, and light having a central wavelength in the wavelength range of 800 nm or more and 2500 nm or less, or a combination of at least two of these lights.
  5.  前記第1光源は、IPLを含む、請求項1に記載の肌処理装置。 The skin treatment device of claim 1, wherein the first light source includes an IPL.
  6.  前記第2光源は、LEDを含む、請求項1に記載の肌処理装置。 The skin treatment device of claim 1, wherein the second light source includes an LED.
  7.  所定波長の光を発生する第1光源と、
     前記第1光源の前記所定波長と異なる波長の光を発生する第2光源と、
     前記第1光源及び前記第2光源とユーザの肌との間に介在する導光体と、
     前記導光体の近傍に前記ユーザの肌の状態を判定するセンサ部と、を備え、
     前記第1光源と前記第2光源とのうちの少なくとも一方が光の照射を行いながら、前記センサ部が前記ユーザの肌の状態を判定し、判定された前記ユーザの肌の状態に応じて前記第1光源と前記第2光源とのうちの少なくとも一方の出力を調整する、肌処理装置。
    A first light source that generates light of a predetermined wavelength;
    a second light source that generates light having a wavelength different from the predetermined wavelength of the first light source;
    a light guide interposed between the first light source and the second light source and a user's skin;
    a sensor unit disposed in the vicinity of the light guide for determining a skin condition of the user;
    A skin processing device in which, while at least one of the first light source and the second light source irradiates light, the sensor unit determines the condition of the user's skin, and adjusts the output of at least one of the first light source and the second light source according to the determined skin condition of the user.
  8.  前記センサ部は、検査光を発生する発光部と、前記ユーザの肌で反射した前記検査光を受光する受光部と、含み、前記受光部の受光量に応じて前記受光部から出力される電気的出力値に基づいて前記ユーザの肌の状態を判定する、請求項7に記載の肌処理装置。 The skin treatment device according to claim 7, wherein the sensor unit includes a light-emitting unit that generates test light and a light-receiving unit that receives the test light reflected by the user's skin, and determines the condition of the user's skin based on an electrical output value output from the light-receiving unit according to the amount of light received by the light-receiving unit.
  9.  前記センサ部は、前記第2光源が発生する光が前記ユーザの肌で反射した光を受光する受光部を含み、前記受光部の受光量に応じて前記受光部から出力される電気的出力値に基づいて前記ユーザの肌の状態を判定する、請求項7に記載の肌処理装置。 The skin treatment device according to claim 7, wherein the sensor unit includes a light receiving unit that receives light emitted by the second light source and reflected by the skin of the user, and determines the condition of the user's skin based on an electrical output value output from the light receiving unit according to the amount of light received by the light receiving unit.
  10.  把持部と、当該把持部に対して着脱可能なアタッチメントと、を含み、
     前記アタッチメントが、前記第1光源、前記第2光源、及び前記導光体のうちの少なくとも前記導光体を含む、請求項3に記載の肌処理装置。
    A gripping portion and an attachment detachable from the gripping portion,
    The skin treatment device of claim 3 , wherein the attachment includes at least the light guide of the first light source, the second light source, and the light guide.
  11.  把持部と、当該把持部に対して着脱可能なアタッチメントと、を含み、
     前記アタッチメントが、前記第1光源、前記第2光源、前記導光体、及び前記センサ部のうちの少なくとも前記導光体を含む、請求項7に記載の肌処理装置。
    A gripping portion and an attachment detachable from the gripping portion,
    The skin treatment device according to claim 7 , wherein the attachment includes at least the light guide of the first light source, the second light source, the light guide, and the sensor unit.
PCT/JP2023/040106 2022-11-07 2023-11-07 Skin treatment device WO2024101365A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022178354 2022-11-07
JP2022-178354 2022-11-07
JP2023011024 2023-01-27
JP2023-011024 2023-01-27
JP2023033483 2023-03-06
JP2023-033483 2023-03-06
JP2023104208 2023-06-26
JP2023-104208 2023-06-26

Publications (1)

Publication Number Publication Date
WO2024101365A1 true WO2024101365A1 (en) 2024-05-16

Family

ID=91032537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040106 WO2024101365A1 (en) 2022-11-07 2023-11-07 Skin treatment device

Country Status (1)

Country Link
WO (1) WO2024101365A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125075A (en) * 2003-07-18 2005-05-19 Ya Man Ltd Beautiful skin apparatus
US20150112411A1 (en) * 2013-10-18 2015-04-23 Varaya Photoceuticals, Llc High powered light emitting diode photobiology compositions, methods and systems
JP2018201917A (en) * 2017-06-06 2018-12-27 マクセルホールディングス株式会社 Light-projecting beauty care device
JP2022022118A (en) * 2020-07-22 2022-02-03 アモーレパシフィック コーポレーション Skin beauty equipment and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125075A (en) * 2003-07-18 2005-05-19 Ya Man Ltd Beautiful skin apparatus
US20150112411A1 (en) * 2013-10-18 2015-04-23 Varaya Photoceuticals, Llc High powered light emitting diode photobiology compositions, methods and systems
JP2018201917A (en) * 2017-06-06 2018-12-27 マクセルホールディングス株式会社 Light-projecting beauty care device
JP2022022118A (en) * 2020-07-22 2022-02-03 アモーレパシフィック コーポレーション Skin beauty equipment and control method thereof

Similar Documents

Publication Publication Date Title
CA2555396C (en) Method and device for the treatment of mammalian tissues
JP4398813B2 (en) Skin care equipment
RU2394615C2 (en) Method of cosmetic processing of skin surface area in mammals
US20110184499A1 (en) Skin treatment device and system
KR101929360B1 (en) Skin care apparatus for integrating skin diagnosis and treatment
US8286641B2 (en) Skin treatment with electromagnetic or mechanical waveform energy
US9555261B2 (en) Phototherapeutic device and phototherapeutic method
KR101805683B1 (en) Skin care apparatus using plasma and near infrared ray
US20060265030A1 (en) System and method for photodynamic cell therapy
JP2015142718A (en) Apparatus and method for percutaneous absorption enhancement
WO2024101365A1 (en) Skin treatment device
KR102108634B1 (en) Apparatus for skin treatment
KR200432206Y1 (en) Portable skin beautifying apparatus
KR20180027445A (en) Skin therapy device
WO2024101301A1 (en) Skin treatment apparatus and skin treatment method
WO2024101371A1 (en) Skin action device
KR101990358B1 (en) Plasma discharge mask
CN114028728A (en) LED light treatment mask cover and intelligent control method thereof
KR102614001B1 (en) Skin care apparatus and skin care method using the same
JP2009172095A (en) Cosmetic appliance
CN214318862U (en) Phototherapy treatment head and phototherapy treatment device
RU2783111C1 (en) Method for protecting neurons in neurodegenerative diseases and apparatus for implementation thereof
US20230059845A1 (en) Phototherapeutic treatment of skin disorders
Mokashi et al. Photoaging
Fu Growth factors and skin repair and regeneration