WO2024101081A1 - Organopolysiloxane and rubber composition - Google Patents

Organopolysiloxane and rubber composition Download PDF

Info

Publication number
WO2024101081A1
WO2024101081A1 PCT/JP2023/037407 JP2023037407W WO2024101081A1 WO 2024101081 A1 WO2024101081 A1 WO 2024101081A1 JP 2023037407 W JP2023037407 W JP 2023037407W WO 2024101081 A1 WO2024101081 A1 WO 2024101081A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
organopolysiloxane
formula
rubber composition
Prior art date
Application number
PCT/JP2023/037407
Other languages
French (fr)
Japanese (ja)
Inventor
宗直 廣神
恒雄 木村
真治 入船
勉 中村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024101081A1 publication Critical patent/WO2024101081A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to an organopolysiloxane and a rubber composition, and more specifically to an organopolysiloxane containing a mercapto group, a divalent hydrocarbon group, and an organooxy group and/or a hydroxyl group, and a rubber composition containing the same.
  • Tires made of silica-filled rubber compositions have excellent performance in automotive applications, particularly in terms of abrasion resistance, rolling resistance, and wet grip. Improvements in these performances are closely related to improvements in fuel efficiency of tires, and therefore have been the subject of active research in recent years.
  • a silica-filled rubber composition reduces the rolling resistance of a tire and improves wet grip, it has a high unvulcanized viscosity, requires multi-stage kneading, etc., and has problems with workability. Therefore, in a rubber composition in which an inorganic filler such as silica is simply blended, the dispersion of the filler is insufficient, and problems arise in that the breaking strength and abrasion resistance are significantly reduced. Therefore, a sulfur-containing organosilicon compound was essential in order to improve the dispersibility of the inorganic filler in the rubber and to chemically bond the inorganic filler to the rubber matrix.
  • sulfur-containing organosilicon compounds compounds containing an alkoxysilyl group and a polysulfide silyl group in the molecule, such as bis-triethoxysilylpropyl tetrasulfide and bis-triethoxysilylpropyl disulfide, are known to be effective (see Patent Documents 1 to 4).
  • Patent Document 10 discloses a rubber composition for tires that uses a polysiloxane having a mercapto group and a long-chain alkyl group.
  • tires made from this composition have improved rolling resistance and wet grip properties, they suffer from a problem of significantly deteriorating vulcanization characteristics.
  • the present invention has been made in consideration of the above circumstances, and aims to provide an organopolysiloxane that, when added to a rubber composition, is excellent in vulcanization characteristics, tensile properties after vulcanization, wet grip properties, and low rolling resistance, and can realize the desired fuel-efficient tire, and a rubber composition containing this organopolysiloxane.
  • the inventors conducted extensive research to achieve the above object, and discovered that when an organopolysiloxane containing an arylene group and/or an alkylene group, a mercapto group-containing organic group, and an organooxy group and/or a hydroxyl group is added to a rubber composition, it is possible to improve the vulcanization characteristics, tensile properties after vulcanization, wet grip properties, and rolling resistance, and that a tire made from this rubber composition can achieve low fuel consumption tire properties, thus completing the present invention.
  • An organopolysiloxane represented by the following average composition formula (1): ( R1 ) a ( R2 ) b ( OR3 ) c ( R4 ) d SiO (4-2a-bcd)/2 (1)
  • R 1 's each independently represent an arylene group having 6 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms
  • R 2 's each independently represent a mercapto group-containing organic group
  • R 3's each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms
  • R 4 's each independently represent an alkyl group having 1 to 12 carbon atoms
  • a, b, c, and d each represent numbers satisfying 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇
  • a rubber composition containing the organopolysiloxane of any one of 1 to 3 is provided.
  • the rubber composition containing the organopolysiloxane of the present invention has excellent vulcanization characteristics, as well as tensile properties after vulcanization, wet grip properties, and low rolling resistance, and tires formed using this rubber composition can achieve low fuel consumption tire properties.
  • Organopolysiloxane The organopolysiloxane according to the present invention is represented by the following average composition formula (1). ( R1 ) a ( R2 ) b ( OR3 ) c ( R4 ) d SiO (4-2a-bcd)/2 (1)
  • R 1 's each independently represent an arylene group having 6 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms.
  • the arylene group having 6 to 10 carbon atoms include phenylene, biphenylene, and naphthylene groups.
  • the alkylene group having 1 to 10 carbon atoms may be linear, branched or cyclic, and examples thereof include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene and decamethylene groups.
  • R 1 is preferably a linear alkylene group represented by the following formula (2).
  • alkylene group represented by formula (2) above include, but are not limited to, groups represented by the following formulas:
  • Each R2 independently represents a mercapto group-containing organic group.
  • this organic group include alkyl groups having 1 to 10 carbon atoms, such as methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, and n-decyl groups; aryl groups having 6 to 10 carbon atoms, such as phenyl and naphthyl groups; and aralkyl groups having 7 to 10 carbon atoms, such as benzyl and phenylethyl groups.
  • R2 is preferably a mercapto group-containing alkyl group represented by the following formula (3).
  • n an integer of 1 to 10.
  • Each R3 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
  • alkyl groups having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, undecyl, dodecyl, and octadecyl groups.
  • alkenyl group having 2 to 10 carbon atoms include vinyl, propenyl, and pentenyl groups.
  • Examples of the aryl group having 6 to 10 carbon atoms and the aralkyl group having 7 to 10 carbon atoms include the same groups as those exemplified for R 2 above.
  • R3 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably an ethyl group.
  • R 4 each independently represents an alkyl group having 1 to 12 carbon atoms, and specific examples thereof include those having 1 to 12 carbon atoms among the alkyl groups having 1 to 20 carbon atoms exemplified for R 3 above. Among these, from the viewpoint of improving processability by reducing the viscosity of the rubber composition and further improving fuel economy, R 4 is preferably an alkyl group having 6 to 12 carbon atoms, and more preferably an alkyl group having 6 to 10 carbon atoms.
  • a, b, c, and d represent the average number of moles of each organic group when the total number of moles of silicon atoms is taken as 1, and represent numbers that satisfy 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, and 0 ⁇ 2a+b+c+d ⁇ 4.
  • the numbers preferably satisfy 0 ⁇ 2a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, and 0 ⁇ d ⁇ 1, more preferably 0.2 ⁇ 2a ⁇ 0.95, 0.05 ⁇ b ⁇ 0.8, 1 ⁇ c ⁇ 2.5, and 0 ⁇ d ⁇ 0.6, and even more preferably 0.3 ⁇ 2a ⁇ 0.8, 0.05 ⁇ b ⁇ 0.7, 1 ⁇ c ⁇ 2.5, and 0.1 ⁇ d ⁇ 0.5.
  • kinetic viscosity of the organopolysiloxane of the present invention at 25° C. is preferably 2 to 10,000 mm 2 /s, and more preferably 10 to 5,000 mm 2 /s.
  • the organopolysiloxane of the present invention can be produced, for example, by co-hydrolysis and condensation of an organosilicon compound represented by the following general formula (4), an organosilicon compound represented by the following general formula (5), and, if necessary, an organosilicon compound represented by the following general formula (6).
  • R3 and m are as defined above, R5 each independently represents an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms, and y represents an integer of 1 to 3, preferably 2 or 3.
  • Examples of the alkyl group having 1 to 12 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the aralkyl group having 7 to 10 carbon atoms for R5 include the same groups as exemplified for R2 and R4 above. Among these, R5 is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • organosilicon compound represented by the above formula (4) examples include bistrimethoxysilylethyl, bistriethoxysilylethyl, bistrimethoxysilylpropyl, bistriethoxysilylpropyl, bistrimethoxysilylhexyl, and bistriethoxysilylhexyl.
  • organosilicon compound represented by the above formula (5) examples include ⁇ -mercaptomethyltrimethoxysilane, ⁇ -mercaptomethylmethyldimethoxysilane, ⁇ -mercaptomethyltriethoxysilane, ⁇ -mercaptomethylmethyldiethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, and the like.
  • organosilicon compounds represented by the above formula (6) include methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethylmethyldimethoxysilane, ethyltriethoxysilane, ethylmethyldiethoxysilane, butyltrimethoxysilane, butylmethyldimethoxysilane, butyltriethoxysilane, butylmethyldiethoxysilane, hexyltrimethoxysilane, hexylmethyldimethoxysilane, hexyltriethoxysilane, hexylmethyldiethoxysilane, and octyltrimethoxysilane.
  • the amounts of the organosilicon compounds represented by the above formulas (4), (5) and (6) used are selected so that a to d in the above formula (1) are the numbers described above.
  • the organosilicon compound represented by the formula (4) is preferably 20 to 95 mol%, more preferably 30 to 80 mol%
  • the organosilicon compound represented by the formula (5) is preferably 5 to 80 mol%, more preferably 5 to 70 mol%
  • the organosilicon compound represented by the formula (6) is preferably 0 to 60 mol%, more preferably 5 to 50 mol%.
  • the co-hydrolysis condensation can be carried out by a known method.
  • the amount of water used can also be a known amount, usually 0.3 to 0.99 moles per mole of the total of hydrolyzable silyl groups in the organosilicon compound, with 0.4 to 0.9 moles being preferred.
  • an organic solvent may be used as necessary.
  • the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and decane; ether solvents such as diethyl ether, tetrahydrofuran, and 1,4-dioxane; amide solvents such as formamide, dimethylformamide, and N-methylpyrrolidone; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; and alcohol solvents such as methanol, ethanol, n-propanol, and i-propanol.
  • ethanol and i-propanol are preferred from the viewpoint of excellent hydrolysis reactivity.
  • a solvent when used, its amount is not particularly limited, but is preferably about twice the mass of the organosilicon compound or less, and more preferably about the same amount as the mass of the organosilicon compound or less.
  • a catalyst may be used, if necessary, in the production of the organopolysiloxane of the present invention.
  • the catalyst include acidic catalysts such as hydrochloric acid and acetic acid; Lewis acid catalysts such as tetrabutyl orthotitanate and ammonium fluoride; alkali metal salts such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium acetate, potassium acetate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, calcium carbonate, sodium methoxide, and sodium ethoxide; and amine compounds such as triethylamine, tributylamine, pyridine, and 4-dimethylaminopyridine.
  • Hydrochloric acid for example, can be used as a catalyst for the hydrolysis reaction (and/or partial condensation) of silanes
  • potassium hydroxide for example, can be used as a catalyst for the condensation (oligomerization) of silanols.
  • the amount of catalyst is preferably 0.0001 to 0.05 (unit: molar equivalent) per mole of the total of hydrolyzable silyl groups in the organosilicon compound.
  • the reaction conditions for the cohydrolysis condensation are usually 20 to 100°C, preferably 60 to 85°C, and usually 30 minutes to 20 hours, preferably 1 minute to 10 hours.
  • the rubber composition of the present invention contains the organopolysiloxane (A) represented by the above-mentioned formula (1), and may further contain a diene rubber (B) and a filler (C).
  • the blending amount of organopolysiloxane (A) represented by the above formula (1) is preferably 3 to 20 parts by mass, and more preferably 5 to 12 parts by mass, per 100 parts by mass of filler (C) described below.
  • diene rubber (B) any rubber that has been generally used in various rubber compositions can be used, and specific examples include natural rubber (NR); diene rubbers such as various isoprene rubbers (IR), various styrene-butadiene copolymer rubbers (SBR), various polybutadiene rubbers (BR), and acrylonitrile-butadiene copolymer rubbers (NBR), and these may be used alone or in a mixture of two or more.
  • non-diene rubbers such as butyl rubber (IIR) and ethylene-propylene copolymer rubbers (EPR, EPDM) can also be used in combination.
  • the filler (C) examples include silica, talc, clay, aluminum hydroxide, magnesium hydroxide, calcium carbonate, titanium oxide, etc.
  • silica is preferred, and the rubber composition of the present invention is more preferably used as a silica-containing rubber composition.
  • the amount of filler (C) compounded is preferably 5 to 200 parts by mass, and more preferably 30 to 120 parts by mass, per 100 parts by mass of diene rubber.
  • the rubber composition of the present invention may contain various additives that are generally used in tires and other general rubbers, such as carbon black, vulcanizing agents, crosslinking agents, vulcanization accelerators, crosslinking accelerators, various oils, antioxidants, plasticizers, etc.
  • additives such as carbon black, vulcanizing agents, crosslinking agents, vulcanization accelerators, crosslinking accelerators, various oils, antioxidants, plasticizers, etc.
  • the amounts of these additives may be conventional amounts, provided they do not conflict with the objectives of the present invention.
  • the rubber composition of the present invention can be obtained by adding and kneading the above components (A) to (C) and, if necessary, other components, according to a conventional method.
  • the rubber composition of the present invention can be used for the production of rubber products, such as tires, by vulcanizing or crosslinking the rubber composition.
  • rubber products such as tires
  • a tire obtained by using the rubber composition of the present invention has significantly improved rolling resistance performance and wet grip performance, and therefore can achieve the desired low fuel consumption.
  • the structure of the tire may be a conventionally known structure, and the manufacturing method may be a conventionally known manufacturing method.
  • the gas to be filled in the tire may be normal air, air with an adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium.
  • part means parts by mass
  • kinetic viscosity is a value measured at 25°C using a capillary kinetic viscometer.
  • the resulting organopolysiloxane had a mercapto equivalent of 800 and was represented by the following average composition formula: ( -C2H6- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 2.00 ( -C8H17 ) 0.11 SiO 0.50
  • Example 1-2 Into a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 231 g (0.6 mol) of bistriethoxysilylethane (Shin-Etsu Chemical Co., Ltd., KBE-3026), 95.2 g (0.4 mol) of 3-mercaptopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-803), 55.4 g (0.2 mol) of octyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-3083), and 200 g of ethanol were placed, and then 19.4 g of 0.5 N hydrochloric acid (1.08 mol of water) was dropped at 25° C.
  • bistriethoxysilylethane Shin-Etsu Chemical Co., Ltd., KBE-3026
  • the resulting organopolysiloxane had a mercapto equivalent of 750 and was represented by the following average composition formula: ( -C2H6- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 1.67 ( -C8H17 ) 0.11 SiO 0.67
  • Examples 1-3 In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 231 g (0.6 mol) of bistriethoxysilylethane (Shin-Etsu Chemical Co., Ltd., KBE-3026), 47.6 g (0.2 mol) of 3-mercaptopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-803), 111 g (0.4 mol) of octyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-3083), and 200 g of ethanol were placed, and then 16.2 g of 0.5 N hydrochloric acid (0.9 mol of water) was dropped at 25° C.
  • bistriethoxysilylethane Shin-Etsu Chemical Co., Ltd., KBE-3026
  • 47.6 g 0.2 mol
  • the resulting organopolysiloxane had a mercapto equivalent of 1,600 and was represented by the following average composition formula: ( -C2H6- ) 0.33 ( -C3H6SH ) 0.11 ( -OC2H5 ) 2.00 ( -C8H17 ) 0.22 SiO 0.50
  • the resulting organopolysiloxane had a mercapto equivalent of 800 and was represented by the following average composition formula: ( -C6H12- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 1.67 ( -C8H17 ) 0.11 SiO 0.67
  • the obtained rubber was again kneaded using an internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.) until the internal temperature reached 140°C, discharged, and then stretched using rolls. To this was added zinc oxide, a vulcanization accelerator and sulfur as shown in Table 1, and the mixture was kneaded to obtain a rubber composition.
  • MIXTRON manufactured by Kobe Steel, Ltd.
  • SBR SLR-4602 (manufactured by Trinseo)
  • BR BR-01 (manufactured by JSR Corporation)
  • Oil AC-12 (Idemitsu Kosan Co., Ltd.)
  • Carbon black Seast 3 (manufactured by Tokai Carbon Co., Ltd.)
  • Silica Nipsil AQ (manufactured by Tosoh Silica Corporation)
  • Sulfide silane: KBE-846 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Stearic acid industrial stearic acid (Kao Corporation)
  • Anti-aging agent Nocrac 6C (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
  • Wax Ozoace 0355 (manufactured by Nippon Seiro Co., Ltd.)
  • Zinc oxide Zinc oxide No.
  • the unvulcanized and vulcanized properties of the rubber compositions obtained in Examples 2-1 to 2-5 and Comparative Examples 2-1 and 2-2 were measured by the following methods. The results are shown in Tables 1 and 2.
  • the vulcanized properties were measured using vulcanized rubber sheets (thickness 2 mm) obtained by press molding (160°C, 10 to 40 minutes) the obtained rubber compositions.
  • a larger index value indicates a higher modulus and better tensile properties.
  • Dynamic viscoelasticity (strain dispersion) A viscoelasticity measuring device (manufactured by Metravib) was used to measure the storage modulus E' (0.5%) at a strain of 0.5% and the storage modulus E' (3.0%) at a strain of 3.0% at a temperature of 25°C and a frequency of 55 Hz, and the value of [E' (0.5%) - E' (3.0%)] was calculated. Note that a sheet having a thickness of 0.2 cm and a width of 0.5 cm was used as the test piece, the clamp distance was 2 cm, and the initial load was 1 N.
  • the rubber compositions of Examples 2-1 to 2-5 have excellent vulcanization characteristics, and are good in tensile properties, silica dispersibility, wet grip properties, and rolling resistance after vulcanization, compared to the rubber composition of Comparative Example 2-1 which does not contain the organopolysiloxane of the present invention.
  • the rubber composition of Comparative Example 2-2 which uses a mercapto group-containing organopolysiloxane that does not have alkylene groups or arylene groups that directly bond silicon atoms to each other, shows significantly reduced vulcanization characteristics, and is inferior in tensile properties and rolling resistance after vulcanization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

This organopolysiloxane represented by average composition formula (1) can realize, when being added to a rubber composition, a desired low fuel consumption tire having excellent vulcanization characteristics, tensile characteristics after vulcanization, wet-grip properties, and low rolling resistance performance. (1): (R1)a(R2)b(OR3)c(R4)dSiO(4-2a-b-c-d)/2 (Each R1 independently represents an arylene group having 6-10 carbon atoms or an alkylene group having 1-10 carbon atoms, each R2 independently represents a mercapto group-containing organic group, each R3 independently represents a hydrogen atom, an alkyl group having 1-20 carbon atoms, an aryl group having 6-10 carbon atoms, an aralkyl group having 7-10 carbon atoms, or an alkenyl group having 2-10 carbon atoms, each R4 independently represents an alkyl group having 1-12 carbon atoms, and a, b, c, and d represent numbers satisfying 0<a<1, 0<b<1, 0<c<3, 0≤d<1, and 0<2a+b+c+d<4.)

Description

オルガノポリシロキサンおよびゴム組成物Organopolysiloxane and rubber composition
 本発明は、オルガノポリシロキサンおよびゴム組成物に関し、さらに詳述すると、メルカプト基と、2価炭化水素基と、オルガノオキシ基および/または水酸基とを含有するオルガノポリシロキサン、ならびにそれを含有するゴム組成物に関する。 The present invention relates to an organopolysiloxane and a rubber composition, and more specifically to an organopolysiloxane containing a mercapto group, a divalent hydrocarbon group, and an organooxy group and/or a hydroxyl group, and a rubber composition containing the same.
 シリカ充填ゴム組成物からなるタイヤは、自動車用途で優れた性能を有し、特に、耐磨耗性、転がり抵抗およびウェットグリップ性に優れている。これらの性能の向上は、タイヤの低燃費性向上と密接に関連しているため、昨今盛んに研究されている。 Tires made of silica-filled rubber compositions have excellent performance in automotive applications, particularly in terms of abrasion resistance, rolling resistance, and wet grip. Improvements in these performances are closely related to improvements in fuel efficiency of tires, and therefore have been the subject of active research in recent years.
 低燃費性向上には、ゴム組成物のシリカ充填率を上げることが必須であるが、シリカ充填ゴム組成物は、タイヤの転がり抵抗を低減し、ウェットグリップ性を向上させるものの、未加硫粘度が高く、多段練り等を要し、作業性に問題がある。そのため、シリカ等の無機質充填剤を単に配合したゴム組成物では、充填剤の分散が不足し、破壊強度および耐磨耗性が大幅に低下するといった問題が生じる。
 そこで、無機質充填剤のゴム中への分散性を向上させるとともに、無機質充填剤とゴムマトリックスを化学結合させるために、含硫黄有機ケイ素化合物が必須であった。
In order to improve fuel economy, it is essential to increase the silica filling rate of the rubber composition, and although a silica-filled rubber composition reduces the rolling resistance of a tire and improves wet grip, it has a high unvulcanized viscosity, requires multi-stage kneading, etc., and has problems with workability. Therefore, in a rubber composition in which an inorganic filler such as silica is simply blended, the dispersion of the filler is insufficient, and problems arise in that the breaking strength and abrasion resistance are significantly reduced.
Therefore, a sulfur-containing organosilicon compound was essential in order to improve the dispersibility of the inorganic filler in the rubber and to chemically bond the inorganic filler to the rubber matrix.
 含硫黄有機ケイ素化合物としては、アルコキシシリル基とポリスルフィドシリル基を分子内に含む化合物、例えば、ビス-トリエトキシシリルプロピルテトラスルフィドやビス-トリエトキシシリルプロピルジスルフィド等が有効であることが知られている(特許文献1~4参照)。
 また、上記ポリスルフィド基を有する有機ケイ素化合物の他に、シリカの分散性に有利なチオエステル型の封鎖メルカプト基含有有機ケイ素化合物や、水素結合によるシリカとの親和性に有利な加水分解性シリル基部分にアミノアルコール化合物をエステル交換したタイプの含硫黄有機ケイ素化合物の応用も知られている(特許文献5~9参照)。
As sulfur-containing organosilicon compounds, compounds containing an alkoxysilyl group and a polysulfide silyl group in the molecule, such as bis-triethoxysilylpropyl tetrasulfide and bis-triethoxysilylpropyl disulfide, are known to be effective (see Patent Documents 1 to 4).
In addition to the above-mentioned organosilicon compounds having polysulfide groups, the use of thioester-type organosilicon compounds containing blocked mercapto groups, which are advantageous for the dispersibility of silica, and sulfur-containing organosilicon compounds of the type in which an aminoalcohol compound is transesterified with a hydrolyzable silyl group moiety, which is advantageous for affinity with silica through hydrogen bonding, is also known (see Patent Documents 5 to 9).
 しかし、上記各特許文献に開示された含硫黄有機ケイ素化合物を使用しても、所望の低燃費性を実現するタイヤ用ゴム組成物を得るには至っていない。また、これらの含硫黄有機ケイ素化合物は、スルフィド型の化合物と比較して高コストであるうえ、製造法が複雑であることから、生産性に問題があるなど、種々課題が残されている。 However, even when the sulfur-containing organosilicon compounds disclosed in the above patent documents are used, it has not yet been possible to obtain a rubber composition for tires that achieves the desired fuel efficiency. Furthermore, these sulfur-containing organosilicon compounds are more expensive than sulfide-type compounds, and the manufacturing method is complicated, which means that there are problems with productivity and various other issues remain.
 また、特許文献10では、メルカプト基と長鎖アルキル基を有するポリシロキサンを用いたタイヤ用ゴム組成物が開示されているが、この組成物から得られたタイヤでは、転がり抵抗およびウェットグリップ性は改善するものの、加硫特性が大幅に悪化してしまう問題点があった。 Patent Document 10 discloses a rubber composition for tires that uses a polysiloxane having a mercapto group and a long-chain alkyl group. However, although tires made from this composition have improved rolling resistance and wet grip properties, they suffer from a problem of significantly deteriorating vulcanization characteristics.
特表2004-525230号公報JP 2004-525230 A 特開2004-18511号公報JP 2004-18511 A 特開2002-145890号公報JP 2002-145890 A 米国特許第6229036号明細書U.S. Pat. No. 6,229,036 特開2005-8639号公報JP 2005-8639 A 特開2008-150546号公報JP 2008-150546 A 特開2010-132604号公報JP 2010-132604 A 特許第4571125号公報Patent No. 4571125 米国特許第6414061号明細書U.S. Pat. No. 6,414,061 特許第5339008号公報Patent No. 5339008
 本発明は、上記事情に鑑みなされたもので、ゴム組成物に添加した際に、加硫特性、加硫後の引張特性、ウェットグリップ性および低転がり抵抗性に優れ、所望の低燃費タイヤを実現し得るオルガノポリシロキサン、およびこのオルガノポリシロキサンを含むゴム組成物を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide an organopolysiloxane that, when added to a rubber composition, is excellent in vulcanization characteristics, tensile properties after vulcanization, wet grip properties, and low rolling resistance, and can realize the desired fuel-efficient tire, and a rubber composition containing this organopolysiloxane.
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、アリーレン基および/またはアルキレン基、メルカプト基含有有機基、ならびにオルガノオキシ基および/または水酸基を含有するオルガノポリシロキサンが、ゴム組成物に添加した場合に、加硫特性、加硫後の引張特性、ウェットグリップ性、および転がり抵抗を改善することができることを見出すとともに、このゴム組成物からなるタイヤが、低燃費タイヤ特性を実現し得ることを見出し、本発明を完成した。 The inventors conducted extensive research to achieve the above object, and discovered that when an organopolysiloxane containing an arylene group and/or an alkylene group, a mercapto group-containing organic group, and an organooxy group and/or a hydroxyl group is added to a rubber composition, it is possible to improve the vulcanization characteristics, tensile properties after vulcanization, wet grip properties, and rolling resistance, and that a tire made from this rubber composition can achieve low fuel consumption tire properties, thus completing the present invention.
 すなわち、本発明は、
1. 下記平均組成式(1)で表されるオルガノポリシロキサン、
 (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2     (1)
(式中、R1は、それぞれ独立して、炭素数6~10のアリーレン基または炭素数1~10のアルキレン基を表し、R2は、それぞれ独立して、メルカプト基含有有機基を表し、R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表し、R4は、それぞれ独立して炭素数1~12のアルキル基を表し、a、b、cおよびdは、0<a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表す。)
2. 前記R1が、下記一般式(2)で表される基であり、前記R2が、下記一般式(3)で表される基である1のオルガノポリシロキサン、
Figure JPOXMLDOC01-appb-C000002
(式中、mは、1~10の整数を表し、nは、1~10の整数を表し、破線は、結合手を表す。)
3. 前記dが、0<d<1を満たす数である1のオルガノポリシロキサン、
4. 1~3のいずれかのオルガノポリシロキサンを含むゴム組成物
を提供する。
That is, the present invention provides
1. An organopolysiloxane represented by the following average composition formula (1):
( R1 ) a ( R2 ) b ( OR3 ) c ( R4 ) d SiO (4-2a-bcd)/2 (1)
(In the formula, R 1 's each independently represent an arylene group having 6 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms; R 2 's each independently represent a mercapto group-containing organic group; R 3's each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms; R 4 's each independently represent an alkyl group having 1 to 12 carbon atoms; and a, b, c, and d each represent numbers satisfying 0<a<1, 0<b<1, 0<c<3, 0≦d<1, and 0<2a+b+c+d<4.)
2. The organopolysiloxane according to 1, wherein R 1 is a group represented by the following general formula (2) and R 2 is a group represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000002
(In the formula, m represents an integer of 1 to 10, n represents an integer of 1 to 10, and the dashed line represents a bond.)
3. An organopolysiloxane in which d is a number satisfying 0<d<1;
4. A rubber composition containing the organopolysiloxane of any one of 1 to 3 is provided.
 本発明のオルガノポリシロキサンを含むゴム組成物は、加硫特性、ならびに加硫後の引張特性、ウェットグリップ性、および低転がり抵抗性に優れ、このゴム組成物を用いて形成されたタイヤは、低燃費タイヤ特性を実現し得る。 The rubber composition containing the organopolysiloxane of the present invention has excellent vulcanization characteristics, as well as tensile properties after vulcanization, wet grip properties, and low rolling resistance, and tires formed using this rubber composition can achieve low fuel consumption tire properties.
 以下、本発明について具体的に説明する。
[1]オルガノポリシロキサン
 本発明に係るオルガノポリシロキサンは、下記平均組成式(1)で表される。
 (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2     (1)
The present invention will be specifically described below.
[1] Organopolysiloxane The organopolysiloxane according to the present invention is represented by the following average composition formula (1).
( R1 ) a ( R2 ) b ( OR3 ) c ( R4 ) d SiO (4-2a-bcd)/2 (1)
 上記式(1)において、R1は、それぞれ独立して炭素数6~10のアリーレン基または炭素数1~10のアルキレン基を表す。
 上記炭素数6~10のアリーレン基としては、フェニレン、ビフェニレン、ナフチレン基等が挙げられる。
 上記炭素数1~10のアルキレン基としては、直鎖、分岐、環状のいずれでもよく、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デカメチレン基等が挙げられる。
 これらの中でも、R1としては、下記式(2)で表される直鎖状のアルキレン基が好ましい。
In the above formula (1), R 1 's each independently represent an arylene group having 6 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms.
Examples of the arylene group having 6 to 10 carbon atoms include phenylene, biphenylene, and naphthylene groups.
The alkylene group having 1 to 10 carbon atoms may be linear, branched or cyclic, and examples thereof include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene and decamethylene groups.
Among these, R 1 is preferably a linear alkylene group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
(式中、mは、1~10の整数を表す。破線は結合手を表す(以下同じ)。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, m represents an integer of 1 to 10. The dashed lines represent bonds (the same applies below).)
 上記式(2)で表されるアルキレン基の具体例としては、下記式で表される基が挙げられるが、これらに限定されるものではない。 Specific examples of the alkylene group represented by formula (2) above include, but are not limited to, groups represented by the following formulas:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 R2は、それぞれ独立してメルカプト基含有有機基を表す。
 この有機基としては、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-オクチル、n-デシル基等の炭素数1~10のアルキル基;フェニル、ナフチル基等の炭素数6~10のアリール基;ベンジル、フェニルエチル基等の炭素数7~10のアラルキル基などが挙げられる。
 これらの中でも、R2としては、下記式(3)で表されるメルカプト基含有アルキル基が好ましい。
Each R2 independently represents a mercapto group-containing organic group.
Examples of this organic group include alkyl groups having 1 to 10 carbon atoms, such as methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, and n-decyl groups; aryl groups having 6 to 10 carbon atoms, such as phenyl and naphthyl groups; and aralkyl groups having 7 to 10 carbon atoms, such as benzyl and phenylethyl groups.
Among these, R2 is preferably a mercapto group-containing alkyl group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
(式中、nは、1~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, n represents an integer of 1 to 10.)
 上記式(3)で表されるメルカプト基含有アルキル基の具体例としては、下記式で表されるものが挙げられるが、これらに限定されるものではない。 Specific examples of the mercapto-containing alkyl group represented by formula (3) above include, but are not limited to, those represented by the following formulas:
*-CH2SH
*-C24SH
*-C36SH
*-C48SH
*-C510SH
*-C612SH
*-C714SH
*-C816SH
*-C918SH
*-C1020SH
(式中、*-は結合手を示す。以下同様。)
* -CH2SH
* -C2H4SH
* -C3H6SH
* -C4H8SH
* -C5H10SH
* -C6H12SH
* -C7H14SH
* -C8H16SH
* -C9H18SH
* -C10H20SH
(In the formula, * - indicates a bond. The same applies below.)
 R3は、それぞれ独立して、水素原子、炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6、より一層好ましくは炭素数1~3のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表す。
 炭素数1~20のアルキル基の具体例としては、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、ウンデシル、ドデシル、オクタデシル基等が挙げられる。
 炭素数2~10のアルケニル基の具体例としては、ビニル、プロペニル、ペンテニル基等が挙げられる。
 炭素数6~10のアリール基および炭素数7~10のアラルキル基としては、上記R2で例示した基と同様のものが挙げられる。
 これらの中でも、R3としては、水素原子、メチル基、エチル基が好ましく、エチル基がより好ましい。
Each R3 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
Specific examples of alkyl groups having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, undecyl, dodecyl, and octadecyl groups.
Specific examples of the alkenyl group having 2 to 10 carbon atoms include vinyl, propenyl, and pentenyl groups.
Examples of the aryl group having 6 to 10 carbon atoms and the aralkyl group having 7 to 10 carbon atoms include the same groups as those exemplified for R 2 above.
Among these, R3 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably an ethyl group.
 R4は、それぞれ独立して炭素数1~12のアルキル基を表し、その具体例としては、上記R3で例示した炭素数1~20のアルキル基のうち、炭素数1~12のものが挙げられる。
 これらの中でも、ゴム組成物の粘度を低下させることで加工性を向上させ、さらには低燃費性をより向上させる観点から、R4としては、炭素数6~12のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。
R 4 each independently represents an alkyl group having 1 to 12 carbon atoms, and specific examples thereof include those having 1 to 12 carbon atoms among the alkyl groups having 1 to 20 carbon atoms exemplified for R 3 above.
Among these, from the viewpoint of improving processability by reducing the viscosity of the rubber composition and further improving fuel economy, R 4 is preferably an alkyl group having 6 to 12 carbon atoms, and more preferably an alkyl group having 6 to 10 carbon atoms.
 a、b、cおよびdは、ケイ素原子の合計モル数を1とした場合の各有機基の平均モル数を意味し、0<2a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表すが、シリカの分散性およびゴム物性の点から好ましくは0<2a<1、0<b<1、0<c<3、0<d<1を満たす数であり、より好ましくは0.2≦2a≦0.95、0.05≦b≦0.8、1≦c≦2.5、0<d≦0.6を満たす数であり、さらに好ましくは0.3≦2a≦0.8、0.05≦b≦0.7、1≦c≦2.5、0.1≦d≦0.5を満たす数である。 a, b, c, and d represent the average number of moles of each organic group when the total number of moles of silicon atoms is taken as 1, and represent numbers that satisfy 0<2a<1, 0<b<1, 0<c<3, 0≦d<1, and 0<2a+b+c+d<4. From the viewpoint of silica dispersibility and rubber properties, the numbers preferably satisfy 0<2a<1, 0<b<1, 0<c<3, and 0<d<1, more preferably 0.2≦2a≦0.95, 0.05≦b≦0.8, 1≦c≦2.5, and 0<d≦0.6, and even more preferably 0.3≦2a≦0.8, 0.05≦b≦0.7, 1≦c≦2.5, and 0.1≦d≦0.5.
 本発明のオルガノポリシロキサンの毛細管式動粘度計による25℃における動粘度は、特に限定されるものではないが、加工性の点から、2~10,000mm2/sが好ましく、10~5,000mm2/sがより好ましい。 There are no particular limitations on the kinetic viscosity of the organopolysiloxane of the present invention at 25° C. as measured with a capillary kinetic viscometer, but from the standpoint of processability it is preferably 2 to 10,000 mm 2 /s, and more preferably 10 to 5,000 mm 2 /s.
 本発明のオルガノポリシロキサンは、例えば、下記一般式(4)で表される有機ケイ素化合物と、下記一般式(5)で表される有機ケイ素化合物と、必要により、下記一般式(6)で表される有機ケイ素化合物とを共加水分解縮合することにより製造することができる。 The organopolysiloxane of the present invention can be produced, for example, by co-hydrolysis and condensation of an organosilicon compound represented by the following general formula (4), an organosilicon compound represented by the following general formula (5), and, if necessary, an organosilicon compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000006
(式中、R3およびmは、上記と同じ意味を表し、R5は、それぞれ独立して、炭素数1~12のアルキル基、炭素数6~10のアリール基、または炭素数7~10のアラルキル基を表し、yは、1~3の整数、好ましくは、2または3を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R3 and m are as defined above, R5 each independently represents an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms, and y represents an integer of 1 to 3, preferably 2 or 3.)
Figure JPOXMLDOC01-appb-C000007
(式中、R3、R5、nおよびyは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 3 , R 5 , n and y have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000008
(式中、R3、R4およびyは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 3 , R 4 and y are as defined above.)
 R5の炭素数1~12のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基としては、上記R2およびR4で例示した基と同様のものが挙げられるが、それらの中でも、R5としては、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。 Examples of the alkyl group having 1 to 12 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the aralkyl group having 7 to 10 carbon atoms for R5 include the same groups as exemplified for R2 and R4 above. Among these, R5 is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
 上記式(4)で表される有機ケイ素化合物の具体的としては、ビストリメトキシシリルエチル、ビストリエトキシシリルエチル、ビストリメトキシシリルプロピル、ビストリエトキシシリルプロピル、ビストリメトキシシリルヘキシル、ビストリエトキシシリルヘキシル等が挙げられる。
 上記式(5)で表される有機ケイ素化合物の具体的としては、α-メルカプトメチルトリメトキシシラン、α-メルカプトメチルメチルジメトキシシラン、α-メルカプトメチルトリエトキシシラン、α-メルカプトメチルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等が挙げられる。
Specific examples of the organosilicon compound represented by the above formula (4) include bistrimethoxysilylethyl, bistriethoxysilylethyl, bistrimethoxysilylpropyl, bistriethoxysilylpropyl, bistrimethoxysilylhexyl, and bistriethoxysilylhexyl.
Specific examples of the organosilicon compound represented by the above formula (5) include α-mercaptomethyltrimethoxysilane, α-mercaptomethylmethyldimethoxysilane, α-mercaptomethyltriethoxysilane, α-mercaptomethylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldiethoxysilane, and the like.
 上記式(6)で表される有機ケイ素化合物の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、エチルメチルジメトキシシラン、エチルトリエトキシシラン、エチルメチルジエトキシシラン、ブチルトリメトキシシラン、ブチルメチルジメトキシシラン、ブチルトリエトキシシラン、ブチルメチルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジエトキシシラン、オクチルトリメトキシシラン、オクチルメチルジメトキシシラン、オクチルトリエトキシシラン、オクチルメチルジエトキシシラン、デシルトリメトキシシラン、デシルメチルジメトキシシラン、デシルトリエトキシシラン、デシルメチルジエトキシシラン等のアルキル基含有有機ケイ素化合物;フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、p-スチリルトリメトキシシラン、p-スチリルメチルジメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルメチルジエトキシシラン等のアリール基含有有機ケイ素化合物が挙げられる。 Specific examples of organosilicon compounds represented by the above formula (6) include methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethylmethyldimethoxysilane, ethyltriethoxysilane, ethylmethyldiethoxysilane, butyltrimethoxysilane, butylmethyldimethoxysilane, butyltriethoxysilane, butylmethyldiethoxysilane, hexyltrimethoxysilane, hexylmethyldimethoxysilane, hexyltriethoxysilane, hexylmethyldiethoxysilane, and octyltrimethoxysilane. , octylmethyldimethoxysilane, octyltriethoxysilane, octylmethyldiethoxysilane, decyltrimethoxysilane, decylmethyldimethoxysilane, decyltriethoxysilane, decylmethyldiethoxysilane, and other alkyl group-containing organosilicon compounds; phenyltrimethoxysilane, diphenyldimethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, p-styryltrimethoxysilane, p-styrylmethyldimethoxysilane, p-styryltriethoxysilane, p-styrylmethyldiethoxysilane, and other aryl group-containing organosilicon compounds.
 ここで、上記式(4)、(5)および(6)で表される有機ケイ素化合物の使用量は、上記式(1)において、a~dが上述した数となるように選択される。式(4)、(5)および(6)で表される有機ケイ素化合物全体に対し、式(4)で表される有機ケイ素化合物は、好ましくは20~95モル%、より好ましくは30~80モル%であり、式(5)で表される有機ケイ素化合物は、好ましくは5~80モル%、より好ましくは5~70モル%であり、式(6)で表される有機ケイ素化合物は、好ましくは0~60モル%、より好ましくは5~50モル%である。 The amounts of the organosilicon compounds represented by the above formulas (4), (5) and (6) used are selected so that a to d in the above formula (1) are the numbers described above. Based on the total amount of the organosilicon compounds represented by the formulas (4), (5) and (6), the organosilicon compound represented by the formula (4) is preferably 20 to 95 mol%, more preferably 30 to 80 mol%, the organosilicon compound represented by the formula (5) is preferably 5 to 80 mol%, more preferably 5 to 70 mol%, and the organosilicon compound represented by the formula (6) is preferably 0 to 60 mol%, more preferably 5 to 50 mol%.
 共加水分解縮合は、公知の方法によって行うことができる。使用する水の量も公知の量とすることができ、通常、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し、0.3~0.99モルであるが、0.4~0.9モルが好ましい。 The co-hydrolysis condensation can be carried out by a known method. The amount of water used can also be a known amount, usually 0.3 to 0.99 moles per mole of the total of hydrolyzable silyl groups in the organosilicon compound, with 0.4 to 0.9 moles being preferred.
 本発明のオルガノポリシロキサンの製造には、必要に応じて有機溶媒を用いてもよい。
 有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタン、デカン等の脂肪族炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ホルムアミド、ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール等のアルコール系溶媒などが挙げられる。
 これらの中でも、加水分解反応性に優れるという観点から、エタノール、i-プロパノールが好ましい。
 溶媒を使用する場合、その使用量は特に限定されないが、上記有機ケイ素化合物の質量の2倍量以下程度が好適であり、特に有機ケイ素化合物の質量と同量以下程度が好ましい。
In producing the organopolysiloxane of the present invention, an organic solvent may be used as necessary.
Specific examples of the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and decane; ether solvents such as diethyl ether, tetrahydrofuran, and 1,4-dioxane; amide solvents such as formamide, dimethylformamide, and N-methylpyrrolidone; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; and alcohol solvents such as methanol, ethanol, n-propanol, and i-propanol.
Among these, ethanol and i-propanol are preferred from the viewpoint of excellent hydrolysis reactivity.
When a solvent is used, its amount is not particularly limited, but is preferably about twice the mass of the organosilicon compound or less, and more preferably about the same amount as the mass of the organosilicon compound or less.
 また、本発明のオルガノポリシロキサンの製造には、必要に応じて触媒を用いてもよい。
 触媒の具体例としては、塩酸、酢酸等の酸性触媒;テトラブチルオルトチタネート、アンモニウムフルオリド等のルイス酸触媒;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、酢酸ナトリウム、酢酸カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸カルシウム、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属塩;トリエチルアミン、トリブチルアミン、ピリジン、4-ジメチルアミノピリジン等のアミン化合物などが挙げられる。
 シランの加水分解反応(および/または一部縮合)の触媒として、例えば塩酸を使用することができ、シラノールの縮合(オリゴマー化)の触媒として、例えば水酸化カリウムを使用することができる。
 触媒の量(シランの加水分解反応の触媒とシラノールの縮合反応の触媒を併用する場合はそれぞれの量)は、反応性に優れるという観点から、有機ケイ素化合物中の加水分解性シリル基の合計1モルに対し、0.0001~0.05(単位:モル当量)が好ましい。
In addition, a catalyst may be used, if necessary, in the production of the organopolysiloxane of the present invention.
Specific examples of the catalyst include acidic catalysts such as hydrochloric acid and acetic acid; Lewis acid catalysts such as tetrabutyl orthotitanate and ammonium fluoride; alkali metal salts such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium acetate, potassium acetate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, calcium carbonate, sodium methoxide, and sodium ethoxide; and amine compounds such as triethylamine, tributylamine, pyridine, and 4-dimethylaminopyridine.
Hydrochloric acid, for example, can be used as a catalyst for the hydrolysis reaction (and/or partial condensation) of silanes, and potassium hydroxide, for example, can be used as a catalyst for the condensation (oligomerization) of silanols.
From the viewpoint of excellent reactivity, the amount of catalyst (when a catalyst for the silane hydrolysis reaction and a catalyst for the silanol condensation reaction are used in combination, the amount of each catalyst) is preferably 0.0001 to 0.05 (unit: molar equivalent) per mole of the total of hydrolyzable silyl groups in the organosilicon compound.
 共加水分解縮合の反応条件は、通常、20~100℃、好ましくは60~85℃にて、通常30分~20時間、好ましくは1分~10時間である。 The reaction conditions for the cohydrolysis condensation are usually 20 to 100°C, preferably 60 to 85°C, and usually 30 minutes to 20 hours, preferably 1 minute to 10 hours.
[2]ゴム組成物
 本発明のゴム組成物は、上述した式(1)で表されるオルガノポリシロキサン(A)を含むものであり、さらに、ジエン系ゴム(B)、充填剤(C)を含んでいてもよい。
 上記式(1)で表されるオルガノポリシロキサン(A)の配合量は、得られるゴムの物性や、発揮される効果の程度と経済性とのバランス等を考慮すると、後述する充填剤(C)100質量部に対し、3~20質量部が好ましく、5~12質量部がより好ましい。
[2] Rubber Composition The rubber composition of the present invention contains the organopolysiloxane (A) represented by the above-mentioned formula (1), and may further contain a diene rubber (B) and a filler (C).
Taking into consideration the physical properties of the resulting rubber and the balance between the degree of effect exerted and economic efficiency, the blending amount of organopolysiloxane (A) represented by the above formula (1) is preferably 3 to 20 parts by mass, and more preferably 5 to 12 parts by mass, per 100 parts by mass of filler (C) described below.
 ジエン系ゴム(B)としては、従来、各種ゴム組成物に一般的に用いられている任意のゴムを用いることができ、その具体例としては、天然ゴム(NR);各種イソプレンゴム(IR)、各種スチレン-ブタジエン共重合体ゴム(SBR)、各種ポリブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴムなどが挙げられ、これらは、1種単独で用いても、2種以上混合して用いてもよい。また、ジエン系ゴム以外に、ブチルゴム(IIR)、エチレン-プロピレン共重合体ゴム(EPR,EPDM)等の非ジエン系ゴムなどを併用することができる。 As the diene rubber (B), any rubber that has been generally used in various rubber compositions can be used, and specific examples include natural rubber (NR); diene rubbers such as various isoprene rubbers (IR), various styrene-butadiene copolymer rubbers (SBR), various polybutadiene rubbers (BR), and acrylonitrile-butadiene copolymer rubbers (NBR), and these may be used alone or in a mixture of two or more. In addition to diene rubbers, non-diene rubbers such as butyl rubber (IIR) and ethylene-propylene copolymer rubbers (EPR, EPDM) can also be used in combination.
 充填剤(C)としては、シリカ、タルク、クレー、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、酸化チタン等が挙げられる。これらの中でも、シリカが好ましく、本発明のゴム組成物は、シリカ含有ゴム組成物として用いることがより好ましい。
 この場合、充填剤(C)の配合量は、得られるゴムの物性や、発揮される効果の程度と経済性とのバランス等を考慮すると、ジエン系ゴム100質量部に対し、5~200質量部が好ましく、30~120質量部がより好ましい。
Examples of the filler (C) include silica, talc, clay, aluminum hydroxide, magnesium hydroxide, calcium carbonate, titanium oxide, etc. Among these, silica is preferred, and the rubber composition of the present invention is more preferably used as a silica-containing rubber composition.
In this case, taking into consideration the physical properties of the resulting rubber and the balance between the degree of effect exerted and economic efficiency, the amount of filler (C) compounded is preferably 5 to 200 parts by mass, and more preferably 30 to 120 parts by mass, per 100 parts by mass of diene rubber.
 なお、本発明のゴム組成物には、上記(A)~(C)の各成分に加えて、カーボンブラック、加硫剤、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、可塑剤等のタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができる。これら添加剤の配合量も本発明の目的に反しない限り、従来の一般的な配合量とすることができる。 In addition to the above components (A) to (C), the rubber composition of the present invention may contain various additives that are generally used in tires and other general rubbers, such as carbon black, vulcanizing agents, crosslinking agents, vulcanization accelerators, crosslinking accelerators, various oils, antioxidants, plasticizers, etc. The amounts of these additives may be conventional amounts, provided they do not conflict with the objectives of the present invention.
 本発明のゴム組成物は、常法に従い、上記(A)~(C)成分および必要に応じてその他の成分を加えて混練することで得ることができる。 The rubber composition of the present invention can be obtained by adding and kneading the above components (A) to (C) and, if necessary, other components, according to a conventional method.
[3]ゴム製品(タイヤ)
 本発明のゴム組成物は、これを加硫または架橋するゴム製品、例えば、タイヤ等のゴム製品の製造に使用することができる。特に、タイヤを製造する場合、本発明のゴム組成物がトレッドに用いられていることが好ましい。
[3] Rubber products (tires)
The rubber composition of the present invention can be used for the production of rubber products, such as tires, by vulcanizing or crosslinking the rubber composition. In particular, when tires are produced, it is preferable that the rubber composition of the present invention is used in the tread.
 本発明のゴム組成物を用いて得られるタイヤは、転がり抵抗性能やウェットグリップ性能が大幅に向上していることから、所望の低燃費性を実現できる。
 なお、タイヤの構造は、従来公知の構造とすることができ、その製法も、従来公知の製法を採用すればよい。また、気体入りのタイヤの場合、タイヤ内に充填する気体として通常空気や、酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
A tire obtained by using the rubber composition of the present invention has significantly improved rolling resistance performance and wet grip performance, and therefore can achieve the desired low fuel consumption.
The structure of the tire may be a conventionally known structure, and the manufacturing method may be a conventionally known manufacturing method. In the case of a gas-filled tire, the gas to be filled in the tire may be normal air, air with an adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium.
 以下、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記例において、「部」は質量部を意味し、動粘度は毛細管式動粘度計を用いて25℃で測定した値である。 The present invention will be explained in more detail below with reference to synthesis examples, working examples, and comparative examples, but the present invention is not limited to these examples. In the following examples, "parts" means parts by mass, and the kinetic viscosity is a value measured at 25°C using a capillary kinetic viscometer.
[1]オルガノポリシロキサンの合成
[実施例1-1]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビストリエトキシシリルエタン(信越化学工業(株)製、KBE-3026)231g(0.6mol)、3-メルカプトプロピルトリエトキシシラン(信越化学工業(株)製、KBE-803)95.2g(0.4mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)55.4g(0.2mol)、エタノール200gを納めた後、25℃にて0.5N塩酸16.2g(水0.9mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、動粘度が10mm2/sの無色透明液体を得た。得られたオルガノポリシロキサンのメルカプト当量は800であり、下記平均組成式で表されるものであった。
(-C26-)0.33(-C36SH)0.22(-OC252.00(-C8170.11SiO0.50
[1] Synthesis of organopolysiloxane [Example 1-1]
In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 231 g (0.6 mol) of bistriethoxysilylethane (KBE-3026, Shin-Etsu Chemical Co., Ltd.), 95.2 g (0.4 mol) of 3-mercaptopropyltriethoxysilane (KBE-803, Shin-Etsu Chemical Co., Ltd.), 55.4 g (0.2 mol) of octyltriethoxysilane (KBE-3083, Shin-Etsu Chemical Co., Ltd.), and 200 g of ethanol were placed, and then 16.2 g of 0.5 N hydrochloric acid (0.9 mol of water) was dropped at 25° C. Then, the mixture was stirred at 80° C. for 10 hours. Then, 3.0 g of propylene oxide was dropped and the mixture was stirred at 80° C. for 2 hours. Further, the mixture was concentrated under reduced pressure and filtered to obtain a colorless transparent liquid having a kinetic viscosity of 10 mm 2 /s. The resulting organopolysiloxane had a mercapto equivalent of 800 and was represented by the following average composition formula:
( -C2H6- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 2.00 ( -C8H17 ) 0.11 SiO 0.50
[実施例1-2]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビストリエトキシシリルエタン(信越化学工業(株)製、KBE-3026)231g(0.6mol)、3-メルカプトプロピルトリエトキシシラン(信越化学工業(株)製、KBE-803)95.2g(0.4mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)55.4g(0.2mol)、エタノール200gを納めた後、25℃にて0.5N塩酸19.4g(水1.08mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、動粘度が30mm2/sの無色透明液体を得た。得られたオルガノポリシロキサンのメルカプト当量は750であり、下記平均組成式で表されるものであった。
(-C26-)0.33(-C36SH)0.22(-OC251.67(-C8170.11SiO0.67
[Example 1-2]
Into a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 231 g (0.6 mol) of bistriethoxysilylethane (Shin-Etsu Chemical Co., Ltd., KBE-3026), 95.2 g (0.4 mol) of 3-mercaptopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-803), 55.4 g (0.2 mol) of octyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-3083), and 200 g of ethanol were placed, and then 19.4 g of 0.5 N hydrochloric acid (1.08 mol of water) was dropped at 25° C. Then, the mixture was stirred at 80° C. for 10 hours. Then, 3.0 g of propylene oxide was dropped, and the mixture was stirred at 80° C. for 2 hours. Further, the mixture was concentrated under reduced pressure and filtered to obtain a colorless and transparent liquid having a kinetic viscosity of 30 mm 2 /s. The resulting organopolysiloxane had a mercapto equivalent of 750 and was represented by the following average composition formula:
( -C2H6- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 1.67 ( -C8H17 ) 0.11 SiO 0.67
[実施例1-3]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビストリエトキシシリルエタン(信越化学工業(株)製、KBE-3026)231g(0.6mol)、3-メルカプトプロピルトリエトキシシラン(信越化学工業(株)製、KBE-803)47.6g(0.2mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)111g(0.4mol)、エタノール200gを納めた後、25℃にて0.5N塩酸16.2g(水0.9mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、動粘度が10mm2/sの無色透明液体を得た。得られたオルガノポリシロキサンのメルカプト当量は1600であり、下記平均組成式で表されるものであった。
(-C26-)0.33(-C36SH)0.11(-OC252.00(-C8170.22SiO0.50
[Examples 1-3]
In a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 231 g (0.6 mol) of bistriethoxysilylethane (Shin-Etsu Chemical Co., Ltd., KBE-3026), 47.6 g (0.2 mol) of 3-mercaptopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-803), 111 g (0.4 mol) of octyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., KBE-3083), and 200 g of ethanol were placed, and then 16.2 g of 0.5 N hydrochloric acid (0.9 mol of water) was dropped at 25° C. Then, the mixture was stirred at 80° C. for 10 hours. Then, 3.0 g of propylene oxide was dropped, and the mixture was stirred at 80° C. for 2 hours. Further, the mixture was concentrated under reduced pressure and filtered to obtain a colorless transparent liquid having a kinetic viscosity of 10 mm 2 /s. The resulting organopolysiloxane had a mercapto equivalent of 1,600 and was represented by the following average composition formula:
( -C2H6- ) 0.33 ( -C3H6SH ) 0.11 ( -OC2H5 ) 2.00 ( -C8H17 ) 0.22 SiO 0.50
[実施例1-4]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた1Lセパラブルフラスコに、ビストリエトキシシリルヘキサン(信越化学工業(株)製、KBE-3066)246g(0.6mol)、3-メルカプトプロピルトリエトキシシラン(信越化学工業(株)製、KBE-803)95.2g(0.4mol)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)55.4g(0.2mol)、エタノール200gを納めた後、25℃にて0.5N塩酸19.4g(水1.08mol)を滴下した。次いで、80℃にて10時間撹拌した。その後、プロピレンオキサイド3.0gを滴下し、80℃で2時間撹拌した。さらに、減圧濃縮、濾過することで、動粘度が25mm2/sの無色透明液体を得た。得られたオルガノポリシロキサンのメルカプト当量は800であり、下記平均組成式で表されるものであった。
(-C612-)0.33(-C36SH)0.22(-OC251.67(-C8170.11SiO0.67
[Examples 1 to 4]
Into a 1 L separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 246 g (0.6 mol) of bistriethoxysilylhexane (KBE-3066, manufactured by Shin-Etsu Chemical Co., Ltd.), 95.2 g (0.4 mol) of 3-mercaptopropyltriethoxysilane (KBE-803, manufactured by Shin-Etsu Chemical Co., Ltd.), 55.4 g (0.2 mol) of octyltriethoxysilane (KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.), and 200 g of ethanol were placed, and then 19.4 g of 0.5 N hydrochloric acid (1.08 mol of water) was dropped at 25° C. Then, the mixture was stirred at 80° C. for 10 hours. Then, 3.0 g of propylene oxide was dropped, and the mixture was stirred at 80° C. for 2 hours. Further, the mixture was concentrated under reduced pressure and filtered to obtain a colorless transparent liquid having a kinetic viscosity of 25 mm 2 /s. The resulting organopolysiloxane had a mercapto equivalent of 800 and was represented by the following average composition formula:
( -C6H12- ) 0.33 ( -C3H6SH ) 0.22 ( -OC2H5 ) 1.67 ( -C8H17 ) 0.11 SiO 0.67
[合成例1]
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた2Lセパラブルフラスコに、3-メルカプトプロピルトリエトキシシラン(信越化学工業(株)製、KBE-803)238g(1.0モル)、オクチルトリエトキシシラン(信越化学工業(株)製、KBE-3083)831g(3.0モル)、エタノール100gを納めた後、25℃にて0.5N塩酸水54g(水3.0モル)を滴下した。その後、80℃にて10時間撹拌し、次いで、25℃まで冷却した。プロピレンオキサイド3.0gを滴下し、25℃にて1時間撹拌し、さらに、減圧濃縮、濾過することで、動粘度が10mm2/sの無色透明液体を得た。得られたオルガノポリシロキサンのメルカプト当量は850であり、下記平均組成式で表されるものであった。
(-C36-SH)0.25(-OC251.50(-C8170.75SiO0.75
[Synthesis Example 1]
238 g (1.0 mol) of 3-mercaptopropyltriethoxysilane (KBE-803, manufactured by Shin-Etsu Chemical Co., Ltd.), 831 g (3.0 mol) of octyltriethoxysilane (KBE-3083, manufactured by Shin-Etsu Chemical Co., Ltd.), and 100 g of ethanol were placed in a 2 L separable flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, and then 54 g of 0.5 N hydrochloric acid solution (3.0 mol of water) was dropped at 25° C. The mixture was then stirred at 80° C. for 10 hours and then cooled to 25° C. 3.0 g of propylene oxide was dropped, stirred at 25° C. for 1 hour, concentrated under reduced pressure, and filtered to obtain a colorless, transparent liquid with a kinetic viscosity of 10 mm 2 /s. The mercapto equivalent of the obtained organopolysiloxane was 850 and was represented by the following average composition formula:
( -C3H6 -SH ) 0.25 ( -OC2H5 ) 1.50 ( -C8H17 ) 0.75 SiO 0.75
[2]ゴム組成物の調製
[実施例2-1~2-5、比較例2-1,2-2]
 4Lのインターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて、表1記載のSBRとBRを30秒間混練した。
 次いで、表1記載のオイル成分、カーボンブラック、シリカ、スルフィドシラン、実施例および合成例で得られたオルガノポリシロキサン、ステアリン酸、老化防止剤、並びにワックスを加え、内温を150℃まで上昇させ、150℃で2分間保持をかけた後、排出した。その後、ロールを用いて延伸した。得られたゴムを、再度インターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて内温が140℃になるまで混練し、排出した後、ロールを用いて延伸した。
 これに表1記載の酸化亜鉛、加硫促進剤および硫黄を加えて混練し、ゴム組成物を得た。
[2] Preparation of rubber composition [Examples 2-1 to 2-5, Comparative Examples 2-1 and 2-2]
The SBR and BR shown in Table 1 were mixed for 30 seconds using a 4 L internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.).
Next, the oil components, carbon black, silica, sulfide silane, organopolysiloxanes obtained in the Examples and Synthesis Examples, stearic acid, antioxidants, and waxes shown in Table 1 were added, the internal temperature was raised to 150°C, and the mixture was held at 150°C for 2 minutes and then discharged. It was then stretched using rolls. The obtained rubber was again kneaded using an internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.) until the internal temperature reached 140°C, discharged, and then stretched using rolls.
To this was added zinc oxide, a vulcanization accelerator and sulfur as shown in Table 1, and the mixture was kneaded to obtain a rubber composition.
 SBR:SLR-4602(トリンセオ製)
 BR:BR-01(JSR(株)製)
 オイル:AC-12(出光興産(株)製)
 カーボンブラック:シースト3(東海カーボン(株)製)
 シリカ:ニプシルAQ(東ソー・シリカ(株)製)
 スルフィドシラン:KBE-846(信越化学工業(株)製)
 ステアリン酸:工業用ステアリン酸(花王(株)製)
 老化防止剤:ノクラック6C(大内新興化学工業(株)製)
 ワックス:オゾエース0355(日本精蝋(株)製)
 酸化亜鉛:亜鉛華3号(三井金属鉱業(株)製)
 加硫促進剤(a):ノクセラーD(大内新興化学工業(株)製)
 加硫促進剤(b):ノクセラーDM-P(大内新興化学工業(株)製)
 加硫促進剤(c):ノクセラーCZ-G(大内新興化学工業(株)製)
 硫黄:5%オイル処理硫黄(細井化学工業(株))製)
SBR: SLR-4602 (manufactured by Trinseo)
BR: BR-01 (manufactured by JSR Corporation)
Oil: AC-12 (Idemitsu Kosan Co., Ltd.)
Carbon black: Seast 3 (manufactured by Tokai Carbon Co., Ltd.)
Silica: Nipsil AQ (manufactured by Tosoh Silica Corporation)
Sulfide silane: KBE-846 (manufactured by Shin-Etsu Chemical Co., Ltd.)
Stearic acid: industrial stearic acid (Kao Corporation)
Anti-aging agent: Nocrac 6C (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Wax: Ozoace 0355 (manufactured by Nippon Seiro Co., Ltd.)
Zinc oxide: Zinc oxide No. 3 (manufactured by Mitsui Mining & Smelting Co., Ltd.)
Vulcanization accelerator (a): Noccelaer D (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Vulcanization accelerator (b): Noccela DM-P (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Vulcanization accelerator (c): Noccela CZ-G (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Sulfur: 5% oil-treated sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.)
 上記実施例2-1~2-5、比較例2-1,2-2で得られたゴム組成物について、未加硫物性および加硫物性を下記の方法で測定した。結果を表1,2に併せて示す。なお、加硫物性に関しては、得られたゴム組成物をプレス成形(160℃、10~40分)して得られた加硫ゴムシート(厚み2mm)を用いて測定した。 The unvulcanized and vulcanized properties of the rubber compositions obtained in Examples 2-1 to 2-5 and Comparative Examples 2-1 and 2-2 were measured by the following methods. The results are shown in Tables 1 and 2. The vulcanized properties were measured using vulcanized rubber sheets (thickness 2 mm) obtained by press molding (160°C, 10 to 40 minutes) the obtained rubber compositions.
〔未加硫物性〕
(1)ムーニー粘度
 JIS K 6300-1:2013に準拠し、余熱1分、測定4分、温度130℃にて測定し、比較例2-1を100として指数で表した。指数値が小さいほど、ムーニー粘度が低く加工性に優れることを示す。
(2)加硫特性(T90)
 ロータレスレオメーターを用いて160℃の加硫速度を測定し、加硫曲線から最低トルクMLおよび最高トルクMHを求め、T90(最大トルク値の90%トルク値に到達する迄の時間(分))を求めた。比較例2-1を100として指数で表した。指数値が小さいほど、加硫速度が速く生産性に優れることを示す。
〔加硫物性〕
(3)硬度
 JIS K 6253-3:2012に準拠しデュロメーター(タイプA)硬さを測定し、比較例2-1を100として指数で表した。指数値が大きいほど、硬度が高く優れている。
(4)引張特性
 JIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、300%モジュラス(M300)[MPa]を25℃にて測定した。得られた結果を、比較例2-1を100として指数表示した。指数値が大きいほど、モジュラスが高く引張特性に優れることを示す。
(5)動的粘弾性(歪分散)
 粘弾性測定装置(メトラビブ社製)を使用し、温度25℃、周波数55Hzの条件にて、歪0.5%の貯蔵弾性率E’(0.5%)と歪3.0%の貯蔵弾性率E’(3.0%)を測定し、[E’(0.5%)-E’(3.0%)]の値を算出した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。
 [E’(0.5%)-E’(3.0%)]の値は、比較例2-1を100として指数で表し、指数値が小さい程、シリカの分散性が良好であることを示す。
(6)動的粘弾性(温度分散)
 粘弾性測定装置(メトラビブ社製)を使用し、引張の動歪1%、周波数55Hzの条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。
 tanδ(0℃)、tanδ(60℃)の値は、比較例2-1を100として指数で表した。tanδ(0℃)の値は、指数値が大きいほどウェットグリップ性が良好であることを示す。tanδ(60℃)の値は、指数値が小さいほど転がり抵抗が良好であることを示す。
[Unvulcanized physical properties]
(1) Mooney Viscosity Measured according to JIS K 6300-1:2013 with 1 minute residual heat, 4 minutes measurement, and at a temperature of 130°C, and expressed as an index with Comparative Example 2-1 being 100. The smaller the index value, the lower the Mooney viscosity and the better the processability.
(2) Vulcanization characteristics (T90)
The vulcanization rate at 160°C was measured using a rotorless rheometer, and the minimum torque ML and maximum torque MH were obtained from the vulcanization curve, and T90 (the time (min) required to reach 90% of the maximum torque) was calculated. The results were expressed as an index, with Comparative Example 2-1 being set at 100. The smaller the index value, the faster the vulcanization rate and the more excellent the productivity.
[Vulcanization properties]
(3) Hardness The durometer (type A) hardness was measured in accordance with JIS K 6253-3:2012, and expressed as an index with Comparative Example 2-1 being 100. The larger the index value, the higher and more excellent the hardness.
(4) Tensile properties JIS No. 3 dumbbell-shaped test pieces were punched out, and a tensile test was carried out in accordance with JIS K6251 at a tensile speed of 500 mm/min to measure the 300% modulus (M 300 ) [MPa] at 25° C. The results were expressed as an index, with Comparative Example 2-1 being set at 100. A larger index value indicates a higher modulus and better tensile properties.
(5) Dynamic viscoelasticity (strain dispersion)
A viscoelasticity measuring device (manufactured by Metravib) was used to measure the storage modulus E' (0.5%) at a strain of 0.5% and the storage modulus E' (3.0%) at a strain of 3.0% at a temperature of 25°C and a frequency of 55 Hz, and the value of [E' (0.5%) - E' (3.0%)] was calculated. Note that a sheet having a thickness of 0.2 cm and a width of 0.5 cm was used as the test piece, the clamp distance was 2 cm, and the initial load was 1 N.
The value of [E'(0.5%)-E'(3.0%)] is expressed as an index with Comparative Example 2-1 being set at 100, and the smaller the index value, the better the dispersibility of silica.
(6) Dynamic viscoelasticity (temperature dispersion)
A viscoelasticity measuring device (manufactured by Metravib) was used to measure under conditions of a tensile dynamic strain of 1% and a frequency of 55 Hz. The test specimen was a sheet having a thickness of 0.2 cm and a width of 0.5 cm, with a clamp distance of 2 cm and an initial load of 1 N.
The values of tan δ (0°C) and tan δ (60°C) are expressed as indexes with Comparative Example 2-1 being 100. The larger the index value of tan δ (0°C), the better the wet grip performance. The smaller the index value of tan δ (60°C), the better the rolling resistance.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示されるように、実施例2-1~2-5のゴム組成物は、本発明のオルガノポリシロキサンを含まない比較例2-1のゴム組成物と比較し、加硫特性に優れ、加硫後の引張特性、シリカ分散性、ウェットグリップ性および転がり抵抗が良好であることがわかる。
 一方、ケイ素原子同士を直接結合するアルキレン基およびアリーレン基を有しないメルカプト基含有オルガノポリシロキサンを用いた比較例2-2のゴム組成物は、加硫特性が著しく低下し、加硫後の引張特性および転がり抵抗が劣っていることがわかる。
As shown in Table 1, the rubber compositions of Examples 2-1 to 2-5 have excellent vulcanization characteristics, and are good in tensile properties, silica dispersibility, wet grip properties, and rolling resistance after vulcanization, compared to the rubber composition of Comparative Example 2-1 which does not contain the organopolysiloxane of the present invention.
On the other hand, the rubber composition of Comparative Example 2-2, which uses a mercapto group-containing organopolysiloxane that does not have alkylene groups or arylene groups that directly bond silicon atoms to each other, shows significantly reduced vulcanization characteristics, and is inferior in tensile properties and rolling resistance after vulcanization.

Claims (4)

  1.  下記平均組成式(1)で表されるオルガノポリシロキサン。
     (R1a(R2b(OR3c(R4dSiO(4-2a-b-c-d)/2     (1)
    (式中、R1は、それぞれ独立して、炭素数6~10のアリーレン基または炭素数1~10のアルキレン基を表し、R2は、それぞれ独立して、メルカプト基含有有機基を表し、R3は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、または炭素数2~10のアルケニル基を表し、R4は、それぞれ独立して炭素数1~12のアルキル基を表し、a、b、cおよびdは、0<a<1、0<b<1、0<c<3、0≦d<1、かつ0<2a+b+c+d<4を満たす数を表す。)
    An organopolysiloxane represented by the following average composition formula (1):
    ( R1 ) a ( R2 ) b ( OR3 ) c ( R4 ) d SiO (4-2a-bcd)/2 (1)
    (In the formula, R 1 's each independently represent an arylene group having 6 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms; R 2 's each independently represent a mercapto group-containing organic group; R 3's each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms; R 4 's each independently represent an alkyl group having 1 to 12 carbon atoms; and a, b, c, and d each represent a number satisfying 0<a<1, 0<b<1, 0<c<3, 0≦d<1, and 0<2a+b+c+d<4.)
  2.  前記R1が、下記一般式(2)で表される基であり、前記R2が、下記一般式(3)で表される基である請求項1記載のオルガノポリシロキサン。
    Figure JPOXMLDOC01-appb-C000001
    (式中、mは、1~10の整数を表し、nは、1~10の整数を表し、破線は、結合手を表す。)
    2. The organopolysiloxane according to claim 1, wherein R 1 is a group represented by the following general formula (2), and R 2 is a group represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, m represents an integer of 1 to 10, n represents an integer of 1 to 10, and the dashed line represents a bond.)
  3.  前記dが、0<d<1を満たす数である請求項1記載のオルガノポリシロキサン。 The organopolysiloxane according to claim 1, wherein d is a number satisfying 0<d<1.
  4.  請求項1~3のいずれか1項記載のオルガノポリシロキサンを含むゴム組成物。 A rubber composition containing the organopolysiloxane according to any one of claims 1 to 3.
PCT/JP2023/037407 2022-11-10 2023-10-16 Organopolysiloxane and rubber composition WO2024101081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180014 2022-11-10
JP2022180014A JP2024069801A (en) 2022-11-10 2022-11-10 Organopolysiloxane and rubber composition

Publications (1)

Publication Number Publication Date
WO2024101081A1 true WO2024101081A1 (en) 2024-05-16

Family

ID=91032754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037407 WO2024101081A1 (en) 2022-11-10 2023-10-16 Organopolysiloxane and rubber composition

Country Status (2)

Country Link
JP (1) JP2024069801A (en)
WO (1) WO2024101081A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055452A1 (en) * 2001-03-30 2003-07-10 University Of California Hybrid organic-inorganic adsorbents
JP2004051573A (en) * 2002-07-22 2004-02-19 Toyota Central Res & Dev Lab Inc Mesoporous material
WO2004097850A1 (en) * 2003-04-25 2004-11-11 Sekisui Chemical Co., Ltd. Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
WO2004112177A1 (en) * 2003-06-13 2004-12-23 Sekisui Chemical Co., Ltd. Proton conductive film, method for producing same, and fuel cell using same
JP2006070139A (en) * 2004-09-01 2006-03-16 Toyota Central Res & Dev Lab Inc Mesostructured silica material and method for producing the same
WO2007065268A1 (en) * 2005-12-08 2007-06-14 Queen's University At Kingston Optical sensor using functionalized composite materials
JP2012097257A (en) * 2010-10-07 2012-05-24 Shin-Etsu Chemical Co Ltd Silicone coating composition with scratch resistance, coated article, and method for producing the same
US20180201816A1 (en) * 2015-10-07 2018-07-19 Chem Optics Inc. Adhesive composition for photocurable interface and surface modification method of substrate using the same
WO2021166396A1 (en) * 2020-02-18 2021-08-26 信越化学工業株式会社 Organopolysiloxane, rubber composition, and tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055452A1 (en) * 2001-03-30 2003-07-10 University Of California Hybrid organic-inorganic adsorbents
JP2004051573A (en) * 2002-07-22 2004-02-19 Toyota Central Res & Dev Lab Inc Mesoporous material
WO2004097850A1 (en) * 2003-04-25 2004-11-11 Sekisui Chemical Co., Ltd. Proton-conductive film, process for producing the same, and fuel cell empolying the proton-conductive film
WO2004112177A1 (en) * 2003-06-13 2004-12-23 Sekisui Chemical Co., Ltd. Proton conductive film, method for producing same, and fuel cell using same
JP2006070139A (en) * 2004-09-01 2006-03-16 Toyota Central Res & Dev Lab Inc Mesostructured silica material and method for producing the same
WO2007065268A1 (en) * 2005-12-08 2007-06-14 Queen's University At Kingston Optical sensor using functionalized composite materials
JP2012097257A (en) * 2010-10-07 2012-05-24 Shin-Etsu Chemical Co Ltd Silicone coating composition with scratch resistance, coated article, and method for producing the same
US20180201816A1 (en) * 2015-10-07 2018-07-19 Chem Optics Inc. Adhesive composition for photocurable interface and surface modification method of substrate using the same
WO2021166396A1 (en) * 2020-02-18 2021-08-26 信越化学工業株式会社 Organopolysiloxane, rubber composition, and tire

Also Published As

Publication number Publication date
JP2024069801A (en) 2024-05-22

Similar Documents

Publication Publication Date Title
JP5495153B2 (en) Rubber composition and pneumatic tire using the same
TW201802219A (en) Organic silicon compound, and rubber compounding agent and rubber composition in which same is used
KR101979960B1 (en) Organosilicon compound and method for preparing the same, rubber compounding agent and rubber composition
JP6349999B2 (en) Rubber composition and pneumatic tire using the same
TW201808971A (en) Organic silicon compound, and additive for rubber and rubber composition using same
JP2008163125A (en) Rubber composition and pneumatic tire using the same
JP5463042B2 (en) Rubber composition and tire using the same
JP2023153343A (en) Rubber composition including organopolysiloxane, and tire
JP6213091B2 (en) Rubber composition for undertread
JP6384338B2 (en) Organopolysiloxane, rubber compounding agent, rubber composition and tire
KR102205799B1 (en) Sulfur-containing organosilicon compound and method for preparing the same, rubber compounding agent, and rubber composition
WO2024101081A1 (en) Organopolysiloxane and rubber composition
JP2001192454A (en) Organopolysiloxane, compounding agent for rubber, rubber composition containing the agent and tire
JP7413987B2 (en) Rubber compositions and tires
JP4336920B2 (en) Rubber composition
JP7021650B2 (en) Rubber compositions and organosilicon compounds
WO2024101082A1 (en) Rubber composition and organopolysiloxane
TW202043313A (en) Rubber composition
JP7415961B2 (en) Rubber composition containing organosilicon compound
JP2015205844A (en) Sulfur-containing organic silicon compound and manufacturing method therefor, compounding agent for rubber, rubber composition and tire
JP6206152B2 (en) Sulfur-containing organosilicon compound and production method thereof, compounding agent for rubber, and rubber composition
JP2023143258A (en) Rubber composition and surface-treated silica
JP2021046357A (en) Organosilicon compound, mixture of organosilicon compound, production method of the same, rubber composition containing mixture of organosilicon compound, and tire
KR20180028027A (en) Silane-modified polymer, and rubber compounding agent and rubber composition using the same
JP2014108995A (en) Rubber composition and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888434

Country of ref document: EP

Kind code of ref document: A1