WO2024101079A1 - Light emitting element, light emitting element array and electronic device - Google Patents

Light emitting element, light emitting element array and electronic device Download PDF

Info

Publication number
WO2024101079A1
WO2024101079A1 PCT/JP2023/037378 JP2023037378W WO2024101079A1 WO 2024101079 A1 WO2024101079 A1 WO 2024101079A1 JP 2023037378 W JP2023037378 W JP 2023037378W WO 2024101079 A1 WO2024101079 A1 WO 2024101079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
quantum
layer
compound semiconductor
active
Prior art date
Application number
PCT/JP2023/037378
Other languages
French (fr)
Japanese (ja)
Inventor
秀輝 渡邊
康貴 比嘉
倫太郎 幸田
敬錫 宋
達也 真藤
修平 山口
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024101079A1 publication Critical patent/WO2024101079A1/en

Links

Definitions

  • the technology disclosed herein (hereinafter also referred to as "the technology”) relates to a light-emitting device, a light-emitting device array, and a method for manufacturing a light-emitting device.
  • Patent Document 1 discloses a "laser element characterized by the inclusion of a tunnel junction.”
  • the intensity of the light generated by this active layer is affected by temperature changes around the active layer.
  • the characteristics of the active layer are not affected by temperature changes.
  • the primary objective of this technology is to provide a light-emitting element, a light-emitting element array, and an electronic device that reduce the effects of temperature changes.
  • This technology is at least two active layers including quantum nanostructures;
  • the light emitting device is provided in which the at least two active layers generate light having wavelengths different from each other.
  • the quantum nanostructure may include any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
  • the quantum nanostructures included in at least two of the active layers may have different shapes.
  • the quantum wells included in at least two of the active layers may have different lengths in the optical axis direction.
  • the quantum nanostructures contained in at least two of the active layers may have different compositions.
  • the shapes of the quantum dots contained in at least two of the active layers may be different from each other in a direction perpendicular to the optical axis direction.
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The barrier layers included in at least two of the active layers may have different shapes.
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The barrier layers included in at least two of the active layers may have different compositions.
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
  • the barrier layers included in at least two of the active layers may be doped with impurities at different concentrations.
  • the active layer may have a structure in which the quantum nanostructure and a barrier layer are stacked on top of each other, and at least two of the active layers may have different doping profiles of impurities doped into the barrier layers.
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
  • the first compound semiconductor layer and the second compound semiconductor layer may be tunnel junctioned to each other.
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
  • the first compound semiconductor layer and the second compound semiconductor layer may be wafer-bonded to each other.
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
  • the first compound semiconductor layer and the second compound semiconductor layer may be tunnel-junctioned and wafer-bonded to each other.
  • the active layer may be configured such that the higher the light intensity the longer the photoluminescence wavelength.
  • the light emitting element may be an edge emitting laser.
  • the light emitting element may be a surface emitting laser.
  • the present technology provides a light-emitting element having a plurality of light-emitting elements arranged two-dimensionally in a plan view,
  • the present invention provides a light-emitting element array, in which the quantum nanostructures included in the active layers of at least two of the light-emitting elements have shapes different from each other.
  • the present technology provides a light-emitting element having a plurality of light-emitting elements arranged two-dimensionally in a plan view
  • the present invention provides a light-emitting element array, in which the quantum nanostructures contained in the active layers of at least two of the light-emitting elements have compositions different from each other.
  • the present technology also provides an electronic device including the light-emitting element.
  • This technology can provide a light-emitting element, a light-emitting element array, and an electronic device that reduce the effects of temperature changes. Note that the effects described here are not necessarily limited to those described herein, and may be any of the effects described in this disclosure.
  • FIG. 11 is a graph showing an example of a correlation between the temperature of a case in which a light-emitting element is mounted and the rate of change in characteristics of the light-emitting element.
  • 1 is a cross-sectional view showing a configuration example of a light-emitting device 100 according to an embodiment of the present technology.
  • 1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology.
  • 1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology.
  • 1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology.
  • 1 is a cross-sectional view showing a configuration example of a light-emitting device 100 according to an embodiment of the present technology.
  • 4 is a flowchart showing an example of a method for manufacturing the light-emitting device 100 according to an embodiment of the present technology.
  • 1 is a perspective view showing a configuration example of a light-emitting element array 200 according to an embodiment of the present technology.
  • 1 is a block diagram showing a schematic configuration example of a distance measurement device (range-finding device) 1000 including a surface-emitting laser (light-emitting element) 100 according to an embodiment of the present technology.
  • 1 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile object control system to which the present technology can be applied.
  • 1A to 1C are diagrams illustrating examples of installation positions of a distance measuring device 12031 according to an embodiment of the present technology.
  • top means the upper direction or upper side in the drawing
  • bottom means the lower direction or lower side in the drawing
  • left means the left direction or left side in the drawing
  • right means the right direction or right side in the drawing.
  • the same or equivalent elements or members are given the same reference numerals, and duplicate explanations are omitted.
  • First embodiment of the present technology (example 1 of light-emitting device) 2.
  • Second embodiment of the present technology (example 2 of light-emitting device) 3.
  • Third embodiment of the present technology (example 3 of light-emitting device) 4.
  • Fourth embodiment of the present technology (light-emitting device example 4) 5.
  • Fifth embodiment of the present technology (example 5 of light-emitting device) 6.
  • Sixth embodiment of the present technology (example of light-emitting element array) 7.
  • Seventh embodiment of the present technology (example 1 of electronic device) 8.
  • Eighth embodiment of the present technology (electronic device example 2)
  • light emitting devices such as edge emitting lasers (EELs) and vertical cavity surface emitting lasers (VCSELs) include an active layer that generates light. It is known that the intensity of the light generated by the active layer is affected by temperature changes around the active layer.
  • EELs edge emitting lasers
  • VCSELs vertical cavity surface emitting lasers
  • Figure 1 is a graph showing an example of the correlation between the temperature of the case in which the light-emitting element is mounted and the rate of change in the characteristics of the light-emitting element when driven at a constant voltage.
  • I indicates the value of the current flowing through the light-emitting element.
  • L indicates the intensity of light generated by the light-emitting element.
  • This graph shows the characteristics of a surface-emitting laser with a peak wavelength of the resonance spectrum of 940 nm and a gain peak wavelength of 925 nm for the active layer.
  • the case temperature is near 70 degrees
  • the wavelength of the resonance spectrum and the gain peak wavelength match. Therefore, as shown in Figure 1, when the case temperature is near 70 degrees, the intensity L of the generated light changes to 121%, becoming the highest.
  • the present technology provides a light-emitting device that has at least two active layers including a quantum nanostructure, and the wavelengths of light generated by the at least two active layers are different from each other.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a light-emitting device 100 according to an embodiment of the present technology.
  • the light-emitting device 100 according to an embodiment of the present technology can be, for example, an edge-emitting laser (EEL: Edge Emitting Laser) or a surface-emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser).
  • EEL Edge Emitting Laser
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the light-emitting element 100 has at least two active layers that generate light.
  • the light-emitting element 100 has three active layers 30A, 30B, and 30C.
  • the light-emitting element 100 has a second cladding layer 21 having a second conductivity type, an active layer 30A, a first compound semiconductor layer 10A having a first conductivity type, a second compound semiconductor layer 20A having a second conductivity type, an active layer 30B, a first compound semiconductor layer 10B having a first conductivity type, a second compound semiconductor layer 20B having a second conductivity type, an active layer 30C, and a first cladding layer 11 having a first conductivity type stacked in this order.
  • the first cladding layer 11 is laminated on a substrate.
  • this substrate include a sapphire substrate, a GaAs substrate, a GaN substrate, a SiC substrate, an alumina substrate, a ZnS substrate, a ZnO substrate, an AlN substrate, a LiMgO substrate, a LiGaO2 substrate, a MgAl2O4 substrate, an InP substrate, a Si substrate, and substrates having a base layer or a buffer layer formed on the surface (main surface) of these substrates.
  • the first conductivity type may be n-type, and the second conductivity type may be p-type.
  • the first conductivity type may be p-type, and the second conductivity type may be n-type.
  • n-type impurities include silicon (Si), selenium (Se), and tellurium (Te).
  • p-type impurities include zinc (Zn), magnesium (Mg), beryllium (Be), and carbon (C).
  • Each of the first compound semiconductor layer 10 (10A, 10B) and the second compound semiconductor layer 20 (20A, 20B) may be a layer having a single structure, a multilayer structure, or a superlattice structure. Furthermore, each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be a layer having a composition gradient layer or a concentration gradient layer.
  • the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be formed, for example, by metal-organic chemical vapor deposition (MOCVD, MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), atomic layer deposition (ALD), migration enhanced epitaxy (MEE), plasma-assisted physical vapor deposition (PPD), etc., but are not limited to these.
  • MOCVD metal-organic chemical vapor deposition
  • MOVPE molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • ALD atomic layer deposition
  • MEE migration enhanced epitaxy
  • PPD plasma-assisted physical vapor deposition
  • trimethylgallium (( CH3 ) 3Ga ) is used as the source gas for gallium.
  • trimethylaluminum (( CH3 ) 3Al ) is used as the source gas for aluminum.
  • trimethylindium (( CH3 ) 3In ) is used as the source gas for indium.
  • trimethylarsenic (( CH3 ) 3As ) is used as the source gas for As.
  • monosilane ( SiH4 ) is used as the source gas for silicon.
  • carbon tetrabromide ( CBr4 ) or diethyltellurium ( C4H10Te ) is used as the source gas for carbon.
  • the light emitting device 100 may include a first DBR layer and a second DBR layer.
  • Each of the first DBR layer and the second DBR layer may be composed of, for example, a semiconductor multilayer film or a dielectric multilayer film.
  • the dielectric material include oxides, nitrides (e.g., SiN x , AlN x , AlGaN x , GaN x , BN x , etc.) and fluorides of Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti , etc.
  • the dielectric material may be SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x , etc.
  • the light reflecting layer can be formed by alternately stacking two or more types of dielectric films made of dielectric materials having different refractive indices among these dielectric materials.
  • Each of the first DBR layer and the second DBR layer may be a multilayer film such as SiOx / SiNy , SiOx / TaOy , SiOx / NbOy , SiOx / ZrOy , or SiOx / AlNy .
  • the number of layers in each of the first DBR layer and the second DBR layer can be 2 or more, preferably 5 to 50.
  • the length in the optical axis direction of each of the first DBR layer and the second DBR layer can be, for example, 0.6 ⁇ m to 5.0 ⁇ m.
  • the optical reflectance of each of the first DBR layer and the second DBR layer is 95% or more, preferably 99% or more.
  • the material, film thickness, number of layers, etc. constituting each dielectric film are appropriately selected. The thickness of each dielectric film is appropriately adjusted depending on the material used, etc.
  • the first DBR layer and the second DBR layer which are made of a dielectric multilayer film, can each be formed based on a known method.
  • PVD methods such as vacuum deposition, sputtering, reactive sputtering, ECR plasma sputtering, magnetron sputtering, ion beam assisted deposition, ion plating, and laser ablation; various CVD methods; coating methods such as spraying, spin coating, and dipping; a method combining two or more of these methods; a method combining these methods with one or more of the following: full or partial pretreatment, irradiation with inert gas (Ar, He, Xe, etc.) or plasma, irradiation with oxygen gas, ozone gas, plasma, oxidation treatment (heat treatment), and exposure treatment.
  • inert gas Ar, He, Xe, etc.
  • plasma irradiation with oxygen gas
  • ozone gas ozone gas
  • plasma oxidation treatment
  • a first compound semiconductor layer 10 having a first conductivity type, a second compound semiconductor layer 20 having a second conductivity type, and an active layer 30 are laminated in this order. At this time, it is preferable that the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are tunnel junctioned with each other. As a result, when a reverse bias voltage is applied to each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20, a current flows due to the tunnel effect.
  • the concentration of the impurity doped into each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 is 1 x 1018 /cm3 or more, preferably 1 x 1019 / cm3 .
  • the wavelengths of the light generated by at least two active layers are different from each other.
  • the three active layers 30A, 30B, and 30C may each generate a different wavelength of light.
  • the wavelengths of the light generated by the two active layers 30A and 30B may be different from each other, and the wavelength of the light generated by the remaining active layer 30C may be approximately the same as the wavelength of the light generated by one of the other two active layers 30A and 30B. This can reduce the effects of temperature changes.
  • the wavelengths of light generated by at least two active layers are different from each other. Therefore, even if one active layer is affected by a change in temperature, the other active layer may not be affected as much.
  • the active layers complement each other, and the light-emitting device 100 as a whole can reduce the effects of temperature changes. As a result, the light-emitting device 100 according to an embodiment of the present technology can maintain high light-emitting intensity and gain over a wide temperature range.
  • the wavelength ⁇ of light and the energy E of light are related by the following equation (1). Note that h is Planck's constant, v is the frequency of light, and c is the speed of light.
  • FIG. 3 is an energy band diagram explaining the principle of the light-emitting device 100 according to one embodiment of the present technology.
  • the active layers 30A, 30B, and 30C each have a different energy band shape.
  • the active layers 30A, 30B, and 30C each generate a different wavelength of light.
  • Each of the active layers 30A, 30B, and 30C may include a quantum nanostructure.
  • the quantum nanostructure may include any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
  • Each of the active layers 30A, 30B, and 30C may include a quantum well structure, such as a single quantum well structure (SQW structure) or a multiple quantum well structure (MQW structure).
  • the active layer including the quantum well structure has a structure in which at least one quantum well layer and a barrier layer are stacked on top of each other.
  • Combinations of compound semiconductors constituting the quantum well layer and the barrier layer include, for example, In y Ga (1-y) As and GaAs, In y Ga (1-y) As and In z Ga (1-z) As [where y>z], or In y Ga (1-y) As and AlGaAs.
  • the active layer may be a multiple quantum well structure in which a quantum well layer made of InGaAs and having a length in the optical axis direction of 3.0 to 10.0 nm and a barrier layer made of AlGaAs and having a length in the optical axis direction of 4.0 to 15.0 nm are stacked on top of each other.
  • the shapes of the quantum nanostructures contained in at least two active layers are different from each other.
  • the shapes of the quantum nanostructures contained in each of the three active layers 30A, 30B, and 30C may be different.
  • the shapes of the quantum nanostructures contained in the two active layers 30A and 30B may be different from each other, and the shape of the quantum nanostructure contained in the remaining active layer 30C may be approximately the same as the quantum nanostructure contained in one of the other two active layers 30A and 30B.
  • each of the active layers 30A, 30B, and 30C includes a quantum well structure. Therefore, it is preferable that the lengths in the optical axis direction of the quantum well layers included in at least two active layers are different from each other.
  • the lengths in the optical axis direction of the quantum well layers 31A, 31B, and 31C included in each of the active layers 30A, 30B, and 30C are different from each other.
  • the wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. According to the Schrödinger equation, the quantum level formed in the quantum well layer is determined by the length in the optical axis direction of the quantum well layer. Therefore, the wavelengths of light generated by the active layers 30A, 30B, and 30C are different due to the different lengths in the optical axis direction of the quantum well layers.
  • the energy band diagram shown in FIG. 3 is an energy band diagram when the active layer includes a quantum well structure. As shown in FIG. 3, the length in the optical axis direction of the quantum well layer 31C included in the active layer 30C on the substrate side (left side of the diagram) is the shortest, and the length in the optical axis direction of the quantum well layer 31A included in the active layer 30A on the light emission side (right side of the diagram) is the longest.
  • the length in the optical axis direction of the quantum well layer can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
  • each of the active layers 30A, 30B, and 30C has a structure in which quantum nanostructures and barrier layers are stacked on top of each other.
  • each of the active layers 30A, 30B, and 30C has a structure in which quantum well layers 31A, 31B, and 31C and barrier layers 32A, 32B, and 32C are stacked on top of each other.
  • the quantum level formed in the quantum well layer is determined by the shape of the barrier layer. Therefore, by having the barrier layers of at least two active layers have different shapes, the wavelengths of light generated by each of the active layers 30A, 30B, and 30C may be different.
  • the band gap energy of a quantum well layer is affected by the surrounding temperature.
  • the wavelength of the light generated by the active layer changes with temperature.
  • the intensity of the light decreases due to the spread of the carrier distribution within the quantum well layer and the deviation of carriers from the quantum well layer.
  • each of the active layers 30A, 30B, and 30C has a different resonance spectrum peak wavelength and gain peak wavelength. Therefore, the emission band and gain band of the light-emitting device 100 as a whole are widened. As a result, the effects of temperature changes can be reduced.
  • the quantum well layer 31C included in the active layer 30C on the substrate side has the shortest length in the optical axis direction
  • the quantum well layer 31A included in the active layer 30A on the light emission side has the longest length in the optical axis direction
  • the quantum well layer 31C included in the active layer 30C on the substrate side may have the longest length in the optical axis direction
  • the quantum well layer 31A included in the active layer 30A on the light emission side may have the shortest length in the optical axis direction.
  • the quantum well layer 31B included in the intermediate active layer 30B may have the shortest length in the optical axis direction.
  • each quantum well layer 31A, 31B, 31C in the optical axis direction is preferably designed so that the higher the optical intensity of the mode formed in the quantum well layer, the longer the photoluminescence wavelength. This also applies to the other embodiments described below.
  • the active layer includes a quantum well structure.
  • the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may include a quantum wire and/or a quantum dot.
  • the shapes and/or sizes of the quantum wires included in at least two active layers may be different from each other, and the shapes and/or sizes of the quantum dots included in at least two active layers may be different from each other.
  • active layer 30A may include a quantum well structure
  • active layer 30B may include quantum wires
  • active layer 30C may include quantum dots.
  • the shapes of the quantum dots included in at least two active layers may differ from each other in a direction perpendicular to the optical axis direction.
  • the shapes of the quantum dots included in each of the active layers 30A, 30B, and 30C may differ from each other in two dimensions.
  • FIG. 4 is an energy band diagram illustrating the principle of the light-emitting device 100 according to an embodiment of the present technology.
  • the active layers 30A, 30B, and 30C have different energy band shapes.
  • the wavelengths of light generated by the active layers 30A, 30B, and 30C are different.
  • the active layer includes a quantum well structure. Therefore, it is preferable that the compositions of the quantum well layers included in at least two active layers are different from each other.
  • the compositions of the quantum well layers 31A, 31B, and 31C included in each active layer 30A, 30B, and 30C are different from each other.
  • the wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, due to the different compositions of the quantum well layers, the wavelengths of light generated by each active layer 30A, 30B, and 30C are different.
  • the quantum well layer contains InGaAs.
  • the quantum well layer 31C contained in the active layer 30C on the substrate side has the lowest In composition
  • the quantum well layer 31A contained in the active layer 30A on the light emission side has the highest In composition.
  • the composition of the quantum well layer can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
  • the active layer includes a quantum well structure.
  • the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may include a quantum wire and/or a quantum dot.
  • the quantum wires included in at least two active layers may have different compositions
  • the quantum dots included in at least two active layers may have different compositions.
  • the active layer has a structure in which a quantum nanostructure and a barrier layer are stacked on top of each other. According to the Schrodinger equation, the quantum level formed in the active layer is determined by the composition of the barrier layer. Therefore, the wavelengths of light generated by each active layer may be different by having the barrier layers of different compositions included in at least two active layers.
  • FIG. 5 is an energy band diagram illustrating the principle of the light-emitting device 100 according to one embodiment of the present technology. As shown in FIG. 5, the active layers 30A, 30B, and 30C have different energy band shapes. As a result, the active layers 30A, 30B, and 30C generate different wavelengths of light.
  • each of the active layers 30A, 30B, and 30C includes a quantum well structure. Therefore, it is preferable that the compositions of the barrier layers included in at least two active layers are different from each other.
  • the compositions of the barrier layers 32A, 32B, and 302 included in each of the active layers 30A, 30B, and 30C are different from each other.
  • the wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, because the compositions of the barrier layers 32A, 32B, and 32C are different, the wavelength of light generated by each of the active layers 30A, 30B, and 30C is different.
  • the quantum well layer contains InGaAs
  • the barrier layer contains AlGaAs.
  • the Al composition of the barrier layer 32C contained in the active layer 30C on the substrate side is the highest, and the Al composition of the barrier layer 32A contained in the active layer 30A on the light emission side (right side of the figure) is the lowest.
  • the compositions of the barrier layers 32A, 32B, and 32C can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
  • Each of the active layers 30A, 30B, and 30C may include a strained quantum well.
  • the lattice constants of the quantum well layer and the barrier layer may be made different by making the composition of the barrier layer different. This reduces the band gap energy of the quantum well layer in which compressive strain occurs. Also, the band gap energy of the quantum well layer in which tensile strain occurs increases.
  • the active layer includes a quantum well structure.
  • the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may be configured to include a quantum wire and/or a quantum dot.
  • the active layer has a structure in which a quantum nanostructure and a barrier layer are stacked on top of each other.
  • the quantum level formed in the active layer is determined by the band shape when an electric field is applied to the semiconductor. Therefore, the wavelengths of light generated by each active layer may be different by doping the barrier layers of at least two active layers with different concentrations of impurities.
  • the active layers 30A, 30B, and 30C have different energy band shapes. This results in the wavelengths of light generated by the active layers 30A, 30B, and 30C being different.
  • the active layer includes a quantum well structure. Therefore, it is preferable that the concentrations of impurities doped into the barrier layers included in at least two active layers are different from each other.
  • the concentrations of impurities doped into the barrier layers 32A, 32B, and 32C included in each active layer 30A, 30B, and 30C are different from each other.
  • the wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, the wavelength of light generated by each active layer 30A, 30B, and 30C is different due to the different concentrations of impurities doped into each barrier layer 32A, 32B, and 32C.
  • the quantum well layer contains InGaAs
  • the barrier layer contains AlGaAs.
  • the barrier layer 32C included in the active layer 30C on the substrate side (left side of the figure) has the highest impurity concentration
  • the barrier layer 32A included in the active layer 30A on the light emission side (right side of the figure) has the lowest impurity concentration.
  • the impurity may be, for example, an ion such as As or P.
  • the impurity concentration doped into each of the barrier layers 32A, 32B, and 32C can be adjusted so that the active layer 30C on the substrate side generates light with a wavelength of 915 nm, the intermediate active layer 30B generates light with a wavelength of 920 nm, and the active layer 30A on the light emission side generates light with a wavelength of 925 nm.
  • the doping profiles of the impurities doped into the barrier layers included in at least two active layers may be different from each other.
  • the doping profile is the distribution of the impurity concentration from the surface to the depth direction. Even if the concentrations of the impurities doped into each of the barrier layers 32A, 32B, and 32C are the same, by making the doping profiles of the impurities different, it is possible to make the wavelengths of the light generated by each of the active layers 30A, 30B, and 30C different.
  • the active layer includes a quantum well structure.
  • the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may be configured to include a quantum wire and/or a quantum dot.
  • the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are mutually tunnel-junctioned.
  • the impurity doping concentration of each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 is 1 ⁇ 10 18 /cm 3 or more, preferably 1 ⁇ 10 19 / cm 3 , in order to reduce the voltage drop at the interface between the first compound semiconductor layer 10 and the second compound semiconductor layer 20 and to allow a current to flow with high efficiency.
  • the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be wafer-bonded to each other.
  • the wafer bonding may be, for example, plasma activated bonding or surface activated bonding.
  • FIG. 6 is a cross-sectional view showing an example configuration of a light-emitting device 100 according to an embodiment of the present technology.
  • This example configuration is generally the same as the example configuration shown in FIG. 2, but differs from the example configuration shown in FIG. 2 in that a bonding layer 40 is laminated between the first compound semiconductor layer 10 and the second compound semiconductor layer 20.
  • the bonding layer 40 preferably has a low band gap energy and is highly doped with impurities.
  • the bonding layer 40 may contain, for example, InGaAs.
  • Fig. 7 is a flowchart showing an example of a method for manufacturing the light-emitting device 100 according to an embodiment of the present technology.
  • step S1 a first cladding layer 11 having a first conductivity type, an active layer 30B, and a second compound semiconductor layer 20 having a second conductivity type are laminated on a first substrate (not shown in FIG. 6) in this order from the first substrate side.
  • step S2 a second cladding layer 21 having a second conductivity type, an active layer 30A, and a first compound semiconductor layer 10 having a first conductivity type are laminated in this order from the second substrate side on a second substrate (not shown in FIG. 6) different from the above substrate.
  • step S3 the surfaces of the second compound semiconductor layer 20 stacked on the first substrate and the first compound semiconductor layer 10 stacked on the second substrate are activated. Specifically, for example, natural oxide films and contaminations present on the surfaces are physically removed by an ion beam in a high vacuum state.
  • step S4 the surface of the second compound semiconductor layer 20 laminated on the first substrate and the surface of the first compound semiconductor layer 10 laminated on the second substrate are brought into contact and pressed together with a predetermined pressure. This forms a bonding layer 40, and the wafers are bonded.
  • step S5 the second substrate is removed.
  • the light-emitting device 100 has two active layers 30, but by repeating the above process, it may have three or more active layers 30.
  • the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are tunnel-junctioned to each other.
  • the tunnel-junctioned first compound semiconductor layer 10 and second compound semiconductor layer 20 may be wafer-bonded to each other using the above-mentioned process.
  • the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be tunnel-junctioned and wafer-bonded to each other.
  • the present technology provides a light-emitting element array in which a plurality of light-emitting elements 100 according to any one of the first to fifth embodiments are arranged two-dimensionally in a plan view, and the shapes of the quantum nanostructures included in the active layers of at least two of the light-emitting elements are different from each other. This will be described with reference to Fig. 8.
  • Fig. 8 is a perspective view showing a configuration example of a light-emitting element array 200 according to an embodiment of the present technology.
  • a plurality of light-emitting elements 100 are arranged two-dimensionally in a planar view.
  • the shapes of the quantum nanostructures contained in the active layers of at least two of the light-emitting elements 100 are different from each other.
  • the compositions of the quantum nanostructures contained in the active layers of at least two of the light-emitting elements 100 may be different from each other.
  • the wavelengths of light generated by each active layer are different in two-dimensional directions in a plan view.
  • the wavelengths of light generated by at least two active layers arranged in the optical axis direction may be different from each other, or the wavelengths of light generated by at least two active layers arranged in the in-plane direction may be different from each other.
  • An electronic device is an electronic device including the light-emitting element 100 according to any one of the first to eighth embodiments of the present technology. Since the electronic device includes the light-emitting element 100, it is possible to reduce the influence of temperature changes.
  • Fig. 9 is a block diagram showing a schematic configuration example of a distance measuring device (distance measuring device) 1000 including a surface emitting laser (light emitting element) 100 according to an embodiment of the present technology.
  • the distance measuring device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method.
  • the distance measuring device 1000 includes the light emitting element 100 as a light source.
  • the distance measuring device 1000 includes, for example, the light emitting element 100, a light receiving device 125, lenses 117, 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
  • the light-emitting element 100 is driven by a laser driver (driver).
  • the laser driver has an anode terminal and a cathode terminal that are connected to the anode electrode and cathode electrode of the light-emitting element 100 via wiring or conductive bumps, respectively.
  • the laser driver is configured to include circuit elements such as capacitors and transistors.
  • the light receiving device 125 detects the light reflected by the subject S.
  • the lens 117 is a collimating lens that converts the light emitted from the light emitting element 100 into parallel light.
  • the lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
  • the signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150.
  • the control unit 150 is configured to include, for example, a Time to Digital Converter (TDC).
  • the reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the light emitting element 100.
  • the control unit 150 is, for example, a processor that controls the light emitting element 100, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170.
  • the control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140.
  • the control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160.
  • the display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150.
  • the control unit 150 stores the information about the distance to the specimen S in the storage unit 170.
  • FIG. 10 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the present technology can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030.
  • the distance measurement device 12031 includes the distance measurement device 1000 described above.
  • the outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby.
  • the outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 11 is a diagram showing an example of the installation position of a distance measurement device 12031 according to an embodiment of the present technology.
  • a vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
  • the distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
  • the distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100.
  • the distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100.
  • the distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100.
  • the forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
  • FIG. 11 shows an example of the detection ranges of distance measuring devices 12101 to 12104.
  • Detection range 12111 indicates the detection range of distance measuring device 12101 provided on the front nose
  • detection ranges 12112 and 12113 indicate the detection ranges of distance measuring devices 12102 and 12103 provided on the side mirrors, respectively
  • detection range 12114 indicates the detection range of distance measuring device 12104 provided on the rear bumper or back door.
  • the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
  • the present technology can also be configured as follows. [1] at least two active layers including quantum nanostructures; A light-emitting device, wherein at least two of the active layers generate light having wavelengths different from each other. [2]
  • the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
  • [3] The shapes of the quantum nanostructures included in at least two of the active layers are different from each other.
  • [4] The lengths of the quantum wells included in at least two of the active layers in the optical axis direction are different from each other.
  • compositions of the quantum nanostructures contained in at least two of the active layers are different from each other; The light-emitting element according to any one of [1] to [4].
  • the shapes of the quantum dots included in at least two of the active layers are different from each other in a direction perpendicular to the optical axis direction.
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The shapes of the barrier layers included in at least two of the active layers are different from each other.
  • the light-emitting element according to any one of [1] to [6].
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The barrier layers included in at least two of the active layers have different compositions.
  • the light-emitting element according to any one of [1] to [7].
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The barrier layers of at least two of the active layers are doped with impurities having different concentrations from each other.
  • the light-emitting element according to any one of [1] to [8].
  • the active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other, The barrier layers of at least two of the active layers have different doping profiles of impurities.
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order; the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned with each other; The light-emitting element according to any one of [1] to [10].
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order; the first compound semiconductor layer and the second compound semiconductor layer are wafer-bonded to each other; The light-emitting element according to any one of [1] to [11].
  • a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order; the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned and wafer-bonded to each other;
  • the active layer is configured such that the photoluminescence wavelength becomes longer as the light intensity increases.
  • [16] A surface emitting laser.
  • a plurality of light-emitting elements according to any one of [1] to [16] are arranged two-dimensionally in a plan view, A light-emitting element array, wherein the shapes of the quantum nanostructures included in the active layers of at least two of the light-emitting elements are different from each other.
  • a plurality of light-emitting elements according to any one of [1] to [16] are arranged two-dimensionally in a plan view, A light-emitting element array, wherein the quantum nanostructures contained in the active layers of at least two of the light-emitting elements have compositions different from each other.
  • An electronic device comprising the light-emitting element according to any one of [1] to [16].

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

The present invention reduces the influence of temperature changes. The present technology provides a light emitting element which is provided with at least two active layers that each have a quantum nanostructure, wherein the wavelengths of light produced by the at least two active layers are different from each other. The quantum nanostructure may comprise one structure that is selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. The forms of the quantum nanostructures contained in the at least two active layers may be different from each other. The lengths in the optical axis direction of the quantum wells contained in the at least two active layers may be different from each other.

Description

発光素子、発光素子アレイ、および電子機器Light-emitting element, light-emitting element array, and electronic device
 本開示に係る技術(以下「本技術」とも呼ぶ)は、発光素子、発光素子アレイ、および発光素子の製造方法に関する。 The technology disclosed herein (hereinafter also referred to as "the technology") relates to a light-emitting device, a light-emitting device array, and a method for manufacturing a light-emitting device.
 近年、端面発光レーザなどの発光素子の分野において、光を生成する活性層がトンネル接合などを介して複数積層されている発光素子がトレンドになっている。このような発光素子は、マルチジャンクション型の発光素子と呼ばれている。 In recent years, in the field of light-emitting devices such as edge-emitting lasers, there has been a trend toward light-emitting devices in which multiple light-generating active layers are stacked via tunnel junctions or the like. Such light-emitting devices are called multi-junction type light-emitting devices.
 たとえば、特許文献1では、「トンネル接合が挿入されていることを特徴とするレーザ素子」が開示されている。 For example, Patent Document 1 discloses a "laser element characterized by the inclusion of a tunnel junction."
特開2006-190976号公報JP 2006-190976 A
 しかし、この活性層が生成する光の強度は、活性層の周囲の温度変化に影響されることが知られている。安定した光を出力するために、活性層の特性は、温度変化に影響されないことが好ましい。 However, it is known that the intensity of the light generated by this active layer is affected by temperature changes around the active layer. In order to output stable light, it is preferable that the characteristics of the active layer are not affected by temperature changes.
 そこで、本技術は、温度変化の影響を低減する発光素子、発光素子アレイ、および電子機器を提供することを主目的とする。 The primary objective of this technology is to provide a light-emitting element, a light-emitting element array, and an electronic device that reduce the effects of temperature changes.
 本技術は、
 量子ナノ構造を含む活性層を少なくとも2つ備えており、
 少なくとも2つの前記活性層が生成する光の波長が、互いに異なっている、発光素子を提供する。
 前記量子ナノ構造が、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含んでよい。
 少なくとも2つの前記活性層が含む前記量子ナノ構造の形状が、互いに異なっていてよい。
 少なくとも2つの前記活性層が含む前記量子井戸の光軸方向の長さが、互いに異なっていてよい。
 少なくとも2つの前記活性層が含む前記量子ナノ構造の組成が、互いに異なっていてよい。
 少なくとも2つの前記活性層が含む前記量子ドットの形状が、光軸方向に直交する方向に互いに異なっていてよい。
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層の形状が互いに異なっていてよい。
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層の組成が互いに異なっていてよい。
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物の濃度が互いに異なっていてよい。
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、 少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物のドーピングプロファイルが互いに異なっていてよい。
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合されていてよい。
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにウェハ接合されていてよい。
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合およびウェハ接合されていてよい。
 前記活性層が、光強度が高いほどフォトルミネッセンス波長が長くなるように構成されていてよい。
 前記発光素子は、端面発光レーザでありうる。
 前記発光素子は、面発光レーザでありうる。
 また、本技術は、複数の前記発光素子が、平面視において2次元状に配列されており、
 少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の形状が互いに異なっている、発光素子アレイを提供する。
 また、本技術は、複数の前記発光素子が、平面視において2次元状に配列されており、
 少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の組成が互いに異なっている、発光素子アレイを提供する。
 また、本技術は、前記発光素子を備えている電子機器を提供する。
This technology is
at least two active layers including quantum nanostructures;
The light emitting device is provided in which the at least two active layers generate light having wavelengths different from each other.
The quantum nanostructure may include any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
The quantum nanostructures included in at least two of the active layers may have different shapes.
The quantum wells included in at least two of the active layers may have different lengths in the optical axis direction.
The quantum nanostructures contained in at least two of the active layers may have different compositions.
The shapes of the quantum dots contained in at least two of the active layers may be different from each other in a direction perpendicular to the optical axis direction.
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers included in at least two of the active layers may have different shapes.
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers included in at least two of the active layers may have different compositions.
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers included in at least two of the active layers may be doped with impurities at different concentrations.
The active layer may have a structure in which the quantum nanostructure and a barrier layer are stacked on top of each other, and at least two of the active layers may have different doping profiles of impurities doped into the barrier layers.
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
The first compound semiconductor layer and the second compound semiconductor layer may be tunnel junctioned to each other.
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
The first compound semiconductor layer and the second compound semiconductor layer may be wafer-bonded to each other.
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
The first compound semiconductor layer and the second compound semiconductor layer may be tunnel-junctioned and wafer-bonded to each other.
The active layer may be configured such that the higher the light intensity the longer the photoluminescence wavelength.
The light emitting element may be an edge emitting laser.
The light emitting element may be a surface emitting laser.
In addition, the present technology provides a light-emitting element having a plurality of light-emitting elements arranged two-dimensionally in a plan view,
The present invention provides a light-emitting element array, in which the quantum nanostructures included in the active layers of at least two of the light-emitting elements have shapes different from each other.
In addition, the present technology provides a light-emitting element having a plurality of light-emitting elements arranged two-dimensionally in a plan view,
The present invention provides a light-emitting element array, in which the quantum nanostructures contained in the active layers of at least two of the light-emitting elements have compositions different from each other.
The present technology also provides an electronic device including the light-emitting element.
 本技術によれば、温度変化の影響を低減する発光素子、発光素子アレイ、および電子機器を提供できる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 This technology can provide a light-emitting element, a light-emitting element array, and an electronic device that reduce the effects of temperature changes. Note that the effects described here are not necessarily limited to those described herein, and may be any of the effects described in this disclosure.
発光素子が搭載されるケースの温度と、発光素子の特性の変化率との相関関係の一例を示すグラフである。11 is a graph showing an example of a correlation between the temperature of a case in which a light-emitting element is mounted and the rate of change in characteristics of the light-emitting element. 本技術の一実施形態に係る発光素子100の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。1 is an energy band diagram illustrating the principle of a light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子100の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子100の製造方法の一例を示すフローチャートである。4 is a flowchart showing an example of a method for manufacturing the light-emitting device 100 according to an embodiment of the present technology. 本技術の一実施形態に係る発光素子アレイ200の構成例を示す斜視図である。1 is a perspective view showing a configuration example of a light-emitting element array 200 according to an embodiment of the present technology. 本技術の一実施形態に係る面発光レーザ(発光素子)100を備えた距離測定装置(測距装置)1000の概略的な構成例を示すブロック図である。1 is a block diagram showing a schematic configuration example of a distance measurement device (range-finding device) 1000 including a surface-emitting laser (light-emitting element) 100 according to an embodiment of the present technology. 本技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。1 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile object control system to which the present technology can be applied. 本技術の一実施形態に係る距離測定装置12031の設置位置の例を示す図である。1A to 1C are diagrams illustrating examples of installation positions of a distance measuring device 12031 according to an embodiment of the present technology.
 以下、本技術を実施するための好適な実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が限定されることはない。また、本技術は、下記の実施例およびその変形例のいずれかを組み合わせることができる。 Below, a preferred embodiment for implementing the present technology will be described with reference to the drawings. Note that the embodiment described below is an example of a representative embodiment of the present technology, and does not limit the scope of the present technology. In addition, the present technology can be combined with any of the following examples and their variations.
 以下の実施形態の説明において、略平行、略直交のような「略」を伴った用語で構成を説明することがある。たとえば、略平行とは、完全に平行であることを意味するだけでなく、実質的に平行である、すなわち、完全に平行な状態からたとえば数%程度ずれた状態を含むことも意味する。他の「略」を伴った用語についても同様である。また、各図は模式図であり、必ずしも厳密に図示されたものではない。図面のスケールは、技術の特徴を分かり易くするために強調している。そのため、図面のスケールと実際のデバイスのスケールは必ずしも同一ではないことに留意すべきである。 In the following description of the embodiments, configurations may be described using terms that include "approximately", such as "approximately parallel" and "approximately perpendicular". For example, "approximately parallel" does not only mean completely parallel, but also means that it is substantially parallel, that is, it includes a state that is deviated from a completely parallel state by, for example, about a few percent. The same applies to other terms that include "approximately". In addition, each figure is a schematic diagram, and is not necessarily an accurate depiction. The scale of the drawings has been exaggerated to make the characteristics of the technology easier to understand. Therefore, it should be noted that the scale of the drawings and the scale of the actual device are not necessarily the same.
 特に断りがない限り、図面において、「上」とは図中の上方向または上側を意味し、「下」とは、図中の下方向または下側を意味し、「左」とは図中の左方向または左側を意味し、「右」とは図中の右方向または右側を意味する。また、図面については、同一または同等の要素または部材には同一の符号を付し、重複する説明は省略する。 Unless otherwise specified, in the drawings, "top" means the upper direction or upper side in the drawing, "bottom" means the lower direction or lower side in the drawing, "left" means the left direction or left side in the drawing, and "right" means the right direction or right side in the drawing. In addition, in the drawings, the same or equivalent elements or members are given the same reference numerals, and duplicate explanations are omitted.
 説明は以下の順序で行う。
 1.本技術の第1実施形態(発光素子の例1)
 2.本技術の第2実施形態(発光素子の例2)
 3.本技術の第3実施形態(発光素子の例3)
 4.本技術の第4実施形態(発光素子の例4)
 5.本技術の第5実施形態(発光素子の例5)
 6.本技術の第6実施形態(発光素子アレイの例)
 7.本技術の第7実施形態(電子機器の例1)
 8.本技術の第8実施形態(電子機器の例2)
The explanation will be given in the following order.
1. First embodiment of the present technology (example 1 of light-emitting device)
2. Second embodiment of the present technology (example 2 of light-emitting device)
3. Third embodiment of the present technology (example 3 of light-emitting device)
4. Fourth embodiment of the present technology (light-emitting device example 4)
5. Fifth embodiment of the present technology (example 5 of light-emitting device)
6. Sixth embodiment of the present technology (example of light-emitting element array)
7. Seventh embodiment of the present technology (example 1 of electronic device)
8. Eighth embodiment of the present technology (electronic device example 2)
[1.本技術の第1実施形態(発光素子の例1)]
[(1)概要]
 従来、たとえば、端面発光レーザ(EEL:Edge Emitting Laser)および面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)などの発光素子は、光を生成する活性層を備えている。この活性層が生成する光の強度は、活性層の周囲の温度変化に影響されることが知られている。
[1. First embodiment of the present technology (example 1 of light-emitting device)]
[(1) Overview]
Conventionally, light emitting devices such as edge emitting lasers (EELs) and vertical cavity surface emitting lasers (VCSELs) include an active layer that generates light. It is known that the intensity of the light generated by the active layer is affected by temperature changes around the active layer.
 このことについて図1を参照しつつ説明する。図1は、発光素子が搭載されるケースの温度と、一定の電圧で駆動したときの、発光素子の特性の変化率との相関関係の一例を示すグラフである。Iは、発光素子を流れる電流の値を示す。Lは、発光素子が生成する光の強度を示す。このグラフは、共振スペクトルのピーク波長が940nmであり、活性層の利得ピーク波長が925nmである面発光レーザの特性を示している。この例では、面発光レーザの駆動による自己発熱およびケースの温度変化によって、ケース温度が70度の近傍であるとき、共振スペクトルの波長と利得ピーク波長が一致する。そのため、図1に示されるとおり、ケース温度が70度の近傍であるとき、生成する光の強度Lが121%に変化して、最も高くなった。 This will be explained with reference to Figure 1. Figure 1 is a graph showing an example of the correlation between the temperature of the case in which the light-emitting element is mounted and the rate of change in the characteristics of the light-emitting element when driven at a constant voltage. I indicates the value of the current flowing through the light-emitting element. L indicates the intensity of light generated by the light-emitting element. This graph shows the characteristics of a surface-emitting laser with a peak wavelength of the resonance spectrum of 940 nm and a gain peak wavelength of 925 nm for the active layer. In this example, due to self-heating caused by driving the surface-emitting laser and temperature changes in the case, when the case temperature is near 70 degrees, the wavelength of the resonance spectrum and the gain peak wavelength match. Therefore, as shown in Figure 1, when the case temperature is near 70 degrees, the intensity L of the generated light changes to 121%, becoming the highest.
 一方で、ケース温度が70度より高いとき、および、ケース温度が70度より低いとき、生成する光の強度Lが低くなった。光を安定して出力するためには、このように温度変化に影響されることは好ましくない。 On the other hand, when the case temperature was higher than 70 degrees and when the case temperature was lower than 70 degrees, the intensity L of the generated light was low. In order to output light stably, it is not desirable to be affected by temperature changes in this way.
 そこで、本技術は、量子ナノ構造を含む活性層を少なくとも2つ備えており、少なくとも2つの前記活性層が生成する光の波長が、互いに異なっている、発光素子を提供する。 The present technology provides a light-emitting device that has at least two active layers including a quantum nanostructure, and the wavelengths of light generated by the at least two active layers are different from each other.
 本技術の一実施形態に係る発光素子の構成例について図2を参照しつつ説明する。図2は、本技術の一実施形態に係る発光素子100の構成例を示す断面図である。本技術の一実施形態に係る発光素子100は、たとえば、端面発光レーザ(EEL:Edge Emitting Laser)、または、面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)などでありうる。 An example of the configuration of a light-emitting device according to an embodiment of the present technology will be described with reference to FIG. 2. FIG. 2 is a cross-sectional view showing an example of the configuration of a light-emitting device 100 according to an embodiment of the present technology. The light-emitting device 100 according to an embodiment of the present technology can be, for example, an edge-emitting laser (EEL: Edge Emitting Laser) or a surface-emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser).
 図2に示されるとおり、発光素子100は、光を生成する活性層を少なくとも2つ備えている。この構成例では、発光素子100は、3つの活性層30A,30B,30Cを備えている。より詳しく説明すると、発光素子100は、第2導電型を有する第2クラッド層21、活性層30A、第1導電型を有する第1化合物半導体層10A、第2導電型を有する第2化合物半導体層20A、活性層30B、第1導電型を有する第1化合物半導体層10B、第2導電型を有する第2化合物半導体層20B、活性層30C、および第1導電型を有する第1クラッド層11が、この順に積層されている。 As shown in FIG. 2, the light-emitting element 100 has at least two active layers that generate light. In this configuration example, the light-emitting element 100 has three active layers 30A, 30B, and 30C. To explain in more detail, the light-emitting element 100 has a second cladding layer 21 having a second conductivity type, an active layer 30A, a first compound semiconductor layer 10A having a first conductivity type, a second compound semiconductor layer 20A having a second conductivity type, an active layer 30B, a first compound semiconductor layer 10B having a first conductivity type, a second compound semiconductor layer 20B having a second conductivity type, an active layer 30C, and a first cladding layer 11 having a first conductivity type stacked in this order.
 図示を省略するが、第1クラッド層11は、基板上に積層されている。この基板として、たとえば、サファイア基板、GaAs基板、GaN基板、SiC基板、アルミナ基板、ZnS基板、ZnO基板、AlN基板、LiMgO基板、LiGaO2基板、MgAl2O4基板、InP基板、Si基板、およびこれらの基板の表面(主面)に下地層やバッファ層が形成されたものなどを挙げることができる。 Although not shown in the figure, the first cladding layer 11 is laminated on a substrate. Examples of this substrate include a sapphire substrate, a GaAs substrate, a GaN substrate, a SiC substrate, an alumina substrate, a ZnS substrate, a ZnO substrate, an AlN substrate, a LiMgO substrate, a LiGaO2 substrate, a MgAl2O4 substrate, an InP substrate, a Si substrate, and substrates having a base layer or a buffer layer formed on the surface (main surface) of these substrates.
 第1導電型としてn型が挙げられ、第2導電型としてp型が挙げられる。あるいは、第1導電型としてp型が挙げられ、第2導電型としてn型が挙げられる。n型不純物としては、たとえば、ケイ素(Si)、セレン(Se)、またはテルル(Te)などを挙げることができる。p型不純物としては、たとえば、亜鉛(Zn)、マグネシウム(Mg)、ベリリウム(Be)、またはカーボン(C)などを挙げることができる。 The first conductivity type may be n-type, and the second conductivity type may be p-type. Alternatively, the first conductivity type may be p-type, and the second conductivity type may be n-type. Examples of n-type impurities include silicon (Si), selenium (Se), and tellurium (Te). Examples of p-type impurities include zinc (Zn), magnesium (Mg), beryllium (Be), and carbon (C).
 第1化合物半導体層10(10A,10B)および第2化合物半導体層20(20A,20B)のそれぞれは、単一構造、多層構造、または超格子構造の層であってよい。さらには、第1化合物半導体層10および第2化合物半導体層20のそれぞれは、組成傾斜層または濃度傾斜層を備えた層であってよい。 Each of the first compound semiconductor layer 10 (10A, 10B) and the second compound semiconductor layer 20 (20A, 20B) may be a layer having a single structure, a multilayer structure, or a superlattice structure. Furthermore, each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be a layer having a composition gradient layer or a concentration gradient layer.
 第1化合物半導体層10および第2化合物半導体層20などのそれぞれの形成方法として、たとえば、有機金属化学的気相成長法(MOCVD法、MOVPE法)、分子線エピタキシー法(MBE法)、ハイドライド気相成長法(HVPE法)、原子層堆積法(ALD法)、マイグレーション・エンハンスト・エピタキシー法(MEE法)、プラズマアシステッド物理的気相成長法(PPD法)等が用いられるが、これらに限定されない。 The first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be formed, for example, by metal-organic chemical vapor deposition (MOCVD, MOVPE), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), atomic layer deposition (ALD), migration enhanced epitaxy (MEE), plasma-assisted physical vapor deposition (PPD), etc., but are not limited to these.
 なお、MOCVD法を用いる場合は、ガリウムの原料ガスとしては、たとえばトリメチルガリウム((CHGa)などを用いる。アルミニウムの原料ガスとしては、たとえばトリメチルアルミニウム((CHAl)などを用いる。インジウムの原料ガスとしては、たとえばトリメチルインジウム((CHIn)などを用いる。Asの原料ガスとしては、たとえばトリメチルヒ素((CHAs)などを用いる。また、ケイ素の原料ガスとしては、たとえばモノシラン(SiH)などを用いる。炭素の原料ガスとしては、たとえば四臭化炭素(CBr)やジエチルテルル(C10Te)などを用いる。 When the MOCVD method is used, for example, trimethylgallium (( CH3 ) 3Ga ) is used as the source gas for gallium. For example, trimethylaluminum (( CH3 ) 3Al ) is used as the source gas for aluminum. For example, trimethylindium (( CH3 ) 3In ) is used as the source gas for indium. For example, trimethylarsenic (( CH3 ) 3As ) is used as the source gas for As. For example, monosilane ( SiH4 ) is used as the source gas for silicon. For example, carbon tetrabromide ( CBr4 ) or diethyltellurium ( C4H10Te ) is used as the source gas for carbon.
 図示を省略するが、発光素子100は、第1DBR層および第2DBR層を備えていてよい。第1DBR層および第2DBR層のそれぞれは、たとえば、半導体多層膜または誘電体多層膜から構成されることができる。誘電体材料としては、たとえば、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(たとえば、SiN、AlN、AlGaN、GaN、BN等)、または、フッ化物等が挙げられる。具体的には、誘電体材料は、SiO、TiO、NbO、ZrO、TaO、ZnO、AlO、HfO、SiN、AlN等でありうる。これらの誘電体材料の内、屈折率が異なる誘電体材料からなる2種類以上の誘電体膜を交互に積層することにより、光反射層を構成できる。第1DBR層および第2DBR層のそれぞれは、たとえば、SiO/SiN、SiO/TaO、SiO/NbO、SiO/ZrO、SiO/AlN等の多層膜であってよい。 Although not shown, the light emitting device 100 may include a first DBR layer and a second DBR layer. Each of the first DBR layer and the second DBR layer may be composed of, for example, a semiconductor multilayer film or a dielectric multilayer film. Examples of the dielectric material include oxides, nitrides (e.g., SiN x , AlN x , AlGaN x , GaN x , BN x , etc.) and fluorides of Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti , etc. Specifically, the dielectric material may be SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x , etc. The light reflecting layer can be formed by alternately stacking two or more types of dielectric films made of dielectric materials having different refractive indices among these dielectric materials. Each of the first DBR layer and the second DBR layer may be a multilayer film such as SiOx / SiNy , SiOx / TaOy , SiOx / NbOy , SiOx / ZrOy , or SiOx / AlNy .
 第1DBR層および第2DBR層のそれぞれの積層数は、2以上、好ましくは5から50程度まででありうる。第1DBR層および第2DBR層のそれぞれの光軸方向の長さは、たとえば、0.6μmから5.0μm程度まででありうる。第1DBR層および第2DBR層のそれぞれの光反射率は95%以上、好ましくは99%以上である。なお、所望の光反射率を得るために、各誘電体膜を構成する材料、膜厚、積層数等は適宜選択される。用いられる材料等により、各誘電体膜の厚さは適宜調整される。 The number of layers in each of the first DBR layer and the second DBR layer can be 2 or more, preferably 5 to 50. The length in the optical axis direction of each of the first DBR layer and the second DBR layer can be, for example, 0.6 μm to 5.0 μm. The optical reflectance of each of the first DBR layer and the second DBR layer is 95% or more, preferably 99% or more. In order to obtain the desired optical reflectance, the material, film thickness, number of layers, etc. constituting each dielectric film are appropriately selected. The thickness of each dielectric film is appropriately adjusted depending on the material used, etc.
 誘電体多層膜で構成される第1DBR層および第2DBR層のそれぞれは、周知の方法に基づき形成できる。たとえば、真空蒸着法、スパッタリング法、反応性スパッタリング法、ECRプラズマスパッタリング法、マグネトロンスパッタリング法、イオンビームアシスト蒸着法、イオンプレーティング法、レーザアブレーション法等のPVD法;各種CVD法;スプレー法、スピンコート法、ディップ法等の塗布法;これらの方法の2種以上を組み合わせる方法;これらの方法と、全体または部分的な前処理、不活性ガス(Ar、He、Xe等)またはプラズマの照射、酸素ガスやオゾンガス、プラズマの照射、酸化処理(熱処理)、露光処理のいずれか1種以上と、を組み合わせる方法などを用いることができる。 The first DBR layer and the second DBR layer, which are made of a dielectric multilayer film, can each be formed based on a known method. For example, PVD methods such as vacuum deposition, sputtering, reactive sputtering, ECR plasma sputtering, magnetron sputtering, ion beam assisted deposition, ion plating, and laser ablation; various CVD methods; coating methods such as spraying, spin coating, and dipping; a method combining two or more of these methods; a method combining these methods with one or more of the following: full or partial pretreatment, irradiation with inert gas (Ar, He, Xe, etc.) or plasma, irradiation with oxygen gas, ozone gas, plasma, oxidation treatment (heat treatment), and exposure treatment.
 図2に示されるとおり、第1導電型を有する第1化合物半導体層10、第2導電型を有する第2化合物半導体層20、および活性層30がこの順に積層されている。このとき、第1化合物半導体層10および第2化合物半導体層20が、互いにトンネル接合されていることが好ましい。これにより、第1化合物半導体層10および第2化合物半導体層20のそれぞれに逆方向のバイアス電圧を印可すると、トンネル効果によって電流が流れる。第1化合物半導体層10および第2化合物半導体層20の界面における電圧の降下を低減させて、高効率で電流を流すために、第1化合物半導体層10および第2化合物半導体層20のそれぞれにドープされる不純物の濃度は、1×1018/cm以上、好ましくは1×1019/cmである。 As shown in Fig. 2, a first compound semiconductor layer 10 having a first conductivity type, a second compound semiconductor layer 20 having a second conductivity type, and an active layer 30 are laminated in this order. At this time, it is preferable that the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are tunnel junctioned with each other. As a result, when a reverse bias voltage is applied to each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20, a current flows due to the tunnel effect. In order to reduce the voltage drop at the interface between the first compound semiconductor layer 10 and the second compound semiconductor layer 20 and to flow a current with high efficiency, the concentration of the impurity doped into each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 is 1 x 1018 /cm3 or more, preferably 1 x 1019 / cm3 .
[(2)活性層]
 このとき、少なくとも2つの活性層が生成する光の波長が、互いに異なっていることが好ましい。この構成例では、3つの活性層30A,30B,30Cのそれぞれが生成する光の波長が異なっていてもよい。あるいは、2つの活性層30A,30Bが生成する光の波長が互いに異なっており、残りの1つの活性層30Cが生成する光の波長が、ほかの2つの活性層30A,30Bのうち一方が生成する光の波長と略同一であってもよい。これにより、温度変化の影響を低減できる。
[(2) Active Layer]
In this case, it is preferable that the wavelengths of the light generated by at least two active layers are different from each other. In this configuration example, the three active layers 30A, 30B, and 30C may each generate a different wavelength of light. Alternatively, the wavelengths of the light generated by the two active layers 30A and 30B may be different from each other, and the wavelength of the light generated by the remaining active layer 30C may be approximately the same as the wavelength of the light generated by one of the other two active layers 30A and 30B. This can reduce the effects of temperature changes.
 従来のマルチジャンクション型の発光素子は、それぞれの活性層が生成する光の波長が略同一になるように設計されることが一般的である。そのため、温度変化により、それぞれの活性層の特性が同じように影響を受けるという問題がある。  Conventional multi-junction light-emitting elements are generally designed so that the wavelengths of light generated by each active layer are roughly the same. This creates the problem that temperature changes affect the characteristics of each active layer in the same way.
 一方、本技術の一実施形態に係る発光素子100は、少なくとも2つの活性層が生成する光の波長が、互いに異なっている。そのため、温度が変化して、1つの活性層が影響を受けても、他の1つの活性層が影響を受けにくいことがありうる。それぞれの活性層が補完し合って、発光素子100全体として温度変化の影響を低減できる。その結果、本技術の一実施形態に係る発光素子100は、広い温度域において、高い発光強度および利得を維持できる。 On the other hand, in the light-emitting device 100 according to an embodiment of the present technology, the wavelengths of light generated by at least two active layers are different from each other. Therefore, even if one active layer is affected by a change in temperature, the other active layer may not be affected as much. The active layers complement each other, and the light-emitting device 100 as a whole can reduce the effects of temperature changes. As a result, the light-emitting device 100 according to an embodiment of the present technology can maintain high light-emitting intensity and gain over a wide temperature range.
 この光の波長λと、光のエネルギーEとは、次の関係式(1)によって関係づけられている。なお、hはプランク定数であり、vは光の振動数であり、cは光の速度である。 The wavelength λ of light and the energy E of light are related by the following equation (1). Note that h is Planck's constant, v is the frequency of light, and c is the speed of light.
 E=hv=hc/λ ・・・(1) E = hv = hc/λ ... (1)
 したがって、少なくとも2つの活性層のバンドギャップエネルギーを互いに異ならせることにより、この2つの活性層が生成する光の波長を互いに異ならせることができる。このバンドギャップエネルギーについて図3を参照しつつ説明する。図3は、本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。図3に示されるとおり、それぞれの活性層30A,30B,30Cは、エネルギーバンドの形状が異なっている。これにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なっている。 Therefore, by making the band gap energies of at least two active layers different from each other, the wavelengths of light generated by these two active layers can be made different from each other. This band gap energy will be described with reference to FIG. 3. FIG. 3 is an energy band diagram explaining the principle of the light-emitting device 100 according to one embodiment of the present technology. As shown in FIG. 3, the active layers 30A, 30B, and 30C each have a different energy band shape. As a result, the active layers 30A, 30B, and 30C each generate a different wavelength of light.
 それぞれの活性層30A,30B,30Cは、量子ナノ構造を含むことができる。この量子ナノ構造は、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含むことができる。 Each of the active layers 30A, 30B, and 30C may include a quantum nanostructure. The quantum nanostructure may include any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
 それぞれの活性層30A,30B,30Cは、たとえば単一量子井戸構造(SQW構造)または多重量子井戸構造(MQW構造)などの量子井戸構造を含むことができる。量子井戸構造を含む活性層は、少なくとも1層の量子井戸層および障壁層が互いに積層された構造を有する。量子井戸層および障壁層を構成する化合物半導体の組合せとして、たとえば、InGa(1-y)AsおよびGaAs、InGa(1-y)AsおよびInGa(1-z)As[ただしy>z]、または、InGa(1-y)AsおよびAlGaAs等が挙げられる。 Each of the active layers 30A, 30B, and 30C may include a quantum well structure, such as a single quantum well structure (SQW structure) or a multiple quantum well structure (MQW structure). The active layer including the quantum well structure has a structure in which at least one quantum well layer and a barrier layer are stacked on top of each other. Combinations of compound semiconductors constituting the quantum well layer and the barrier layer include, for example, In y Ga (1-y) As and GaAs, In y Ga (1-y) As and In z Ga (1-z) As [where y>z], or In y Ga (1-y) As and AlGaAs.
 活性層が量子井戸構造を含むとき、活性層は、たとえば、光軸方向の長さが3.0~10.0nmのInGaAsからなる量子井戸層と、光軸方向の長さが4.0~15.0nmのAlGaAsからなる障壁層と、が互いに複数積層される多重量子井戸構造であってよい。 When the active layer includes a quantum well structure, the active layer may be a multiple quantum well structure in which a quantum well layer made of InGaAs and having a length in the optical axis direction of 3.0 to 10.0 nm and a barrier layer made of AlGaAs and having a length in the optical axis direction of 4.0 to 15.0 nm are stacked on top of each other.
 このとき、少なくとも2つの活性層が含む量子ナノ構造の形状が、互いに異なっていることが好ましい。この構成例では、3つの活性層30A,30B,30Cのそれぞれが含む量子ナノ構造の形状が異なっていてもよい。あるいは、2つの活性層30A,30Bが含む量子ナノ構造の形状が互いに異なっており、残りの1つの活性層30Cが含む量子ナノ構造の形状が、ほかの2つの活性層30A,30Bのうち一方が含む量子ナノ構造と略同一であってもよい。 In this case, it is preferable that the shapes of the quantum nanostructures contained in at least two active layers are different from each other. In this configuration example, the shapes of the quantum nanostructures contained in each of the three active layers 30A, 30B, and 30C may be different. Alternatively, the shapes of the quantum nanostructures contained in the two active layers 30A and 30B may be different from each other, and the shape of the quantum nanostructure contained in the remaining active layer 30C may be approximately the same as the quantum nanostructure contained in one of the other two active layers 30A and 30B.
 特に、この構成例では、それぞれの活性層30A,30B,30Cが量子井戸構造を含んでいる。そのため、少なくとも2つの活性層が含む量子井戸層の光軸方向の長さが、互いに異なっていることが好ましい。この構成例では、それぞれの活性層30A,30B,30Cが含む量子井戸層31A,31B,31Cの光軸方向の長さが、互いに異なっている。量子井戸層が生成する光の波長は、量子井戸層内に形成される量子の準位により決まる。シュレーディンガー方程式により、量子井戸層内に形成される量子の準位は、量子井戸層の光軸方向の長さにより決まる。したがって、量子井戸層の光軸方向の長さが異なっていることにより、活性層30A,30B,30Cが生成する光の波長が異なる。 In particular, in this configuration example, each of the active layers 30A, 30B, and 30C includes a quantum well structure. Therefore, it is preferable that the lengths in the optical axis direction of the quantum well layers included in at least two active layers are different from each other. In this configuration example, the lengths in the optical axis direction of the quantum well layers 31A, 31B, and 31C included in each of the active layers 30A, 30B, and 30C are different from each other. The wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. According to the Schrödinger equation, the quantum level formed in the quantum well layer is determined by the length in the optical axis direction of the quantum well layer. Therefore, the wavelengths of light generated by the active layers 30A, 30B, and 30C are different due to the different lengths in the optical axis direction of the quantum well layers.
 図3に示されるエネルギーバンド図は、活性層が量子井戸構造を含むときのエネルギーバンド図である。図3に示されるとおり、基板側(図の左側)の活性層30Cが含む量子井戸層31Cの光軸方向の長さが最も短くなっており、光の出射側(図の右側)の活性層30Aが含む量子井戸層31Aの光軸方向の長さが最も長くなっている。たとえば、基板側の活性層30Cが生成する光の波長が915nm、中間の活性層30Bが生成する光の波長が920nm、光の出射側の活性層30Aが生成する光の波長が925nmになるように、量子井戸層の光軸方向の長さを調整することができる。 The energy band diagram shown in FIG. 3 is an energy band diagram when the active layer includes a quantum well structure. As shown in FIG. 3, the length in the optical axis direction of the quantum well layer 31C included in the active layer 30C on the substrate side (left side of the diagram) is the shortest, and the length in the optical axis direction of the quantum well layer 31A included in the active layer 30A on the light emission side (right side of the diagram) is the longest. For example, the length in the optical axis direction of the quantum well layer can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
 また、それぞれの活性層30A,30B,30Cは、量子ナノ構造および障壁層が互いに積層されている構造になっている。この構成例では、それぞれの活性層30A,30B,30Cは、量子井戸層31A,31B,31Cおよび障壁層32A,32B,32Cが互いに積層されている構造になっている。シュレーディンガー方程式により、量子井戸層内に形成される量子の準位は、障壁層の形状により決まる。したがって、少なくとも2つの活性層が含む障壁層の形状が互いに異なっていることにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なっていてもよい。 Furthermore, each of the active layers 30A, 30B, and 30C has a structure in which quantum nanostructures and barrier layers are stacked on top of each other. In this configuration example, each of the active layers 30A, 30B, and 30C has a structure in which quantum well layers 31A, 31B, and 31C and barrier layers 32A, 32B, and 32C are stacked on top of each other. According to the Schrödinger equation, the quantum level formed in the quantum well layer is determined by the shape of the barrier layer. Therefore, by having the barrier layers of at least two active layers have different shapes, the wavelengths of light generated by each of the active layers 30A, 30B, and 30C may be different.
 従来、量子井戸層のバンドギャップエネルギーは、周囲の温度に影響される。そのため、活性層が生成する光の波長は温度により変化する。さらに、量子井戸層内のキャリア分布の広がり、および、量子井戸層からのキャリアの逸脱により、光の強度が低下することが知られている。 Traditionally, the band gap energy of a quantum well layer is affected by the surrounding temperature. As a result, the wavelength of the light generated by the active layer changes with temperature. Furthermore, it is known that the intensity of the light decreases due to the spread of the carrier distribution within the quantum well layer and the deviation of carriers from the quantum well layer.
 本技術によれば、それぞれの活性層30A,30B,30Cが、互いに異なる共振スペクトルのピーク波長および利得ピーク波長を有する。そのため、発光素子100全体として発光帯域および利得帯域が広くなる。その結果、温度変化の影響を低減できる。 According to this technology, each of the active layers 30A, 30B, and 30C has a different resonance spectrum peak wavelength and gain peak wavelength. Therefore, the emission band and gain band of the light-emitting device 100 as a whole are widened. As a result, the effects of temperature changes can be reduced.
 なお、この構成例では、基板側の活性層30Cが含む量子井戸層31Cの光軸方向の長さが最も短くなっており、光の出射側の活性層30Aが含む量子井戸層31Aの光軸方向の長さが最も長くなっているが、この構成に限られない。たとえば、基板側の活性層30Cが含む量子井戸層31Cの光軸方向の長さが最も長くなっており、光の出射側の活性層30Aが含む量子井戸層31Aの光軸方向の長さが最も短くなっていてもよい。さらに、たとえば、中間の活性層30Bが含む量子井戸層31Bの光軸方向の長さが最も短くなっていてもよい。 In this configuration example, the quantum well layer 31C included in the active layer 30C on the substrate side has the shortest length in the optical axis direction, and the quantum well layer 31A included in the active layer 30A on the light emission side has the longest length in the optical axis direction, but this configuration is not limited to this. For example, the quantum well layer 31C included in the active layer 30C on the substrate side may have the longest length in the optical axis direction, and the quantum well layer 31A included in the active layer 30A on the light emission side may have the shortest length in the optical axis direction. Furthermore, for example, the quantum well layer 31B included in the intermediate active layer 30B may have the shortest length in the optical axis direction.
 それぞれの量子井戸層31A,31B,31Cの光軸方向の長さは、量子井戸層に形成されるモードの光強度が高いほどフォトルミネッセンス波長が長くなるように設計されることが好ましい。後述する他の実施形態においても同様である。 The length of each quantum well layer 31A, 31B, 31C in the optical axis direction is preferably designed so that the higher the optical intensity of the mode formed in the quantum well layer, the longer the photoluminescence wavelength. This also applies to the other embodiments described below.
 以上、活性層が量子井戸構造を含んでいる実施例について説明した。上述したように、量子ナノ構造は、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む。そのため、活性層が量子細線および/または量子ドットを含んでいる構成であってもよい。つまり、少なくとも2つの活性層が含む量子細線の形状および/またはサイズが、互いに異なっていてよいし、少なくとも2つの活性層が含む量子ドットの形状および/またはサイズが、互いに異なっていてよい。 The above describes an embodiment in which the active layer includes a quantum well structure. As described above, the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may include a quantum wire and/or a quantum dot. In other words, the shapes and/or sizes of the quantum wires included in at least two active layers may be different from each other, and the shapes and/or sizes of the quantum dots included in at least two active layers may be different from each other.
 さらに、たとえば、活性層30Aが量子井戸構造を含み、活性層30Bが量子細線を含み、活性層30Cが量子ドットを含んでいてもよい。 Furthermore, for example, active layer 30A may include a quantum well structure, active layer 30B may include quantum wires, and active layer 30C may include quantum dots.
 なお、活性層が量子ドットを含む構成であるとき、少なくとも2つの活性層が含む量子ドットの形状が、光軸方向に直交する方向に互いに異なっていてよい。つまり、第2クラッド層21側から発光素子100を平面視したときに、それぞれの活性層30A,30B,30Cが含む量子ドットの形状が、2次元方向に互いに異なっていてよい。 When the active layers are configured to include quantum dots, the shapes of the quantum dots included in at least two active layers may differ from each other in a direction perpendicular to the optical axis direction. In other words, when the light-emitting device 100 is viewed in plan from the second cladding layer 21 side, the shapes of the quantum dots included in each of the active layers 30A, 30B, and 30C may differ from each other in two dimensions.
 本技術の第1実施形態に係る発光素子について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element according to the first embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[2.本技術の第2実施形態(発光素子の例2)]
 本技術の一実施形態に係る発光素子は、少なくとも2つの活性層が含む量子ナノ構造の組成が、互いに異なっていてよい。このことについて図4を参照しつつ説明する。図4は、本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。図4に示されるとおり、それぞれの活性層30A,30B,30Cは、エネルギーバンドの形状が異なっている。これにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なっている。
[2. Second embodiment of the present technology (example 2 of light-emitting element)]
In the light-emitting device according to an embodiment of the present technology, the compositions of the quantum nanostructures contained in at least two active layers may be different from each other. This will be described with reference to FIG. 4. FIG. 4 is an energy band diagram illustrating the principle of the light-emitting device 100 according to an embodiment of the present technology. As shown in FIG. 4, the active layers 30A, 30B, and 30C have different energy band shapes. As a result, the wavelengths of light generated by the active layers 30A, 30B, and 30C are different.
 特に、この構成例では、活性層が量子井戸構造を含んでいる。そのため、少なくとも2つの活性層が含む量子井戸層の組成が、互いに異なっていることが好ましい。この構成例では、それぞれの活性層30A,30B,30Cが含む量子井戸層31A,31B,31Cの組成が、互いに異なっている。量子井戸層が生成する光の波長は、量子井戸層内に形成される量子の準位により決まる。したがって、量子井戸層の組成が異なっていることにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なる。 In particular, in this configuration example, the active layer includes a quantum well structure. Therefore, it is preferable that the compositions of the quantum well layers included in at least two active layers are different from each other. In this configuration example, the compositions of the quantum well layers 31A, 31B, and 31C included in each active layer 30A, 30B, and 30C are different from each other. The wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, due to the different compositions of the quantum well layers, the wavelengths of light generated by each active layer 30A, 30B, and 30C are different.
 この構成例では、量子井戸層がInGaAsを含んでいる。基板側(図の左側)の活性層30Cが含む量子井戸層31CのIn組成が最も低くなっており、光の出射側(図の右側)の活性層30Aが含む量子井戸層31AのIn組成が最も高くなっている。たとえば、基板側の活性層30Cが生成する光の波長が915nm、中間の活性層30Bが生成する光の波長が920nm、光の出射側の活性層30Aが生成する光の波長が925nmになるように、量子井戸層の組成を調整することができる。 In this configuration example, the quantum well layer contains InGaAs. The quantum well layer 31C contained in the active layer 30C on the substrate side (left side of the figure) has the lowest In composition, and the quantum well layer 31A contained in the active layer 30A on the light emission side (right side of the figure) has the highest In composition. For example, the composition of the quantum well layer can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
 以上、活性層が量子井戸構造を含んでいる実施例について説明した。上述したように、量子ナノ構造は、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む。そのため、活性層が量子細線および/または量子ドットを含んでいる構成であってもよい。つまり、少なくとも2つの活性層が含む量子細線の組成が、互いに異なっていてよいし、少なくとも2つの活性層が含む量子ドットの組成が、互いに異なっていてよい。 The above describes an embodiment in which the active layer includes a quantum well structure. As described above, the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may include a quantum wire and/or a quantum dot. In other words, the quantum wires included in at least two active layers may have different compositions, and the quantum dots included in at least two active layers may have different compositions.
 本技術の第2実施形態に係る発光素子について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element according to the second embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[3.本技術の第3実施形態(発光素子の例3)]
 活性層は、量子ナノ構造および障壁層が互いに積層されている構造になっている。シュレーディンガー方程式により、活性層に形成される量子の準位は、障壁層の組成により決まる。したがって、少なくとも2つの活性層が含む障壁層の組成が互いに異なっていることにより、それぞれの活性層が生成する光の波長が異なっていてもよい。
[3. Third embodiment of the present technology (example 3 of light-emitting device)]
The active layer has a structure in which a quantum nanostructure and a barrier layer are stacked on top of each other. According to the Schrodinger equation, the quantum level formed in the active layer is determined by the composition of the barrier layer. Therefore, the wavelengths of light generated by each active layer may be different by having the barrier layers of different compositions included in at least two active layers.
 このことについて図5を参照しつつ説明する。図5は、本技術の一実施形態に係る発光素子100の原理を説明するエネルギーバンド図である。図5に示されるとおり、それぞれの活性層30A,30B,30Cは、エネルギーバンドの形状が異なっている。これにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なっている。 This will be explained with reference to FIG. 5. FIG. 5 is an energy band diagram illustrating the principle of the light-emitting device 100 according to one embodiment of the present technology. As shown in FIG. 5, the active layers 30A, 30B, and 30C have different energy band shapes. As a result, the active layers 30A, 30B, and 30C generate different wavelengths of light.
 特に、この構成例では、それぞれの活性層30A,30B,30Cが量子井戸構造を含んでいる。そのため、少なくとも2つの活性層が含む障壁層の組成が互いに異なっていることが好ましい。この構成例では、それぞれの活性層30A,30B,30Cが含む障壁層32A,32B,302の組成が、互いに異なっている。量子井戸層が生成する光の波長は、量子井戸層内に形成される量子の準位により決まる。したがって、障壁層32A,32B,32Cの組成が異なっていることにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なる。 In particular, in this configuration example, each of the active layers 30A, 30B, and 30C includes a quantum well structure. Therefore, it is preferable that the compositions of the barrier layers included in at least two active layers are different from each other. In this configuration example, the compositions of the barrier layers 32A, 32B, and 302 included in each of the active layers 30A, 30B, and 30C are different from each other. The wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, because the compositions of the barrier layers 32A, 32B, and 32C are different, the wavelength of light generated by each of the active layers 30A, 30B, and 30C is different.
 この構成例では、量子井戸層がInGaAsを含んでおり、障壁層がAlGaAsを含んでいる。基板側(図の左側)の活性層30Cが含む障壁層32CのAl組成が最も高くなっており、光の出射側(図の右側)の活性層30Aが含む障壁層32Aが含むAl組成が最も低くなっている。たとえば、基板側の活性層30Cが生成する光の波長が915nm、中間の活性層30Bが生成する光の波長が920nm、光の出射側の活性層30Aが生成する光の波長が925nmになるように、障壁層32A,32B,32Cの組成を調整することができる。 In this configuration example, the quantum well layer contains InGaAs, and the barrier layer contains AlGaAs. The Al composition of the barrier layer 32C contained in the active layer 30C on the substrate side (left side of the figure) is the highest, and the Al composition of the barrier layer 32A contained in the active layer 30A on the light emission side (right side of the figure) is the lowest. For example, the compositions of the barrier layers 32A, 32B, and 32C can be adjusted so that the wavelength of light generated by the active layer 30C on the substrate side is 915 nm, the wavelength of light generated by the intermediate active layer 30B is 920 nm, and the wavelength of light generated by the active layer 30A on the light emission side is 925 nm.
 なお、それぞれの活性層30A,30B,30Cは、ひずみ量子井戸を含んでいてよい。障壁層の組成を異ならせることにより、量子井戸層と障壁層の格子定数を異ならせてよい。これにより、圧縮ひずみが生じる量子井戸層のバンドギャップエネルギーは縮小する。また、引っ張りひずみが生じる量子井戸層のバンドギャップエネルギーは拡大する。 Each of the active layers 30A, 30B, and 30C may include a strained quantum well. The lattice constants of the quantum well layer and the barrier layer may be made different by making the composition of the barrier layer different. This reduces the band gap energy of the quantum well layer in which compressive strain occurs. Also, the band gap energy of the quantum well layer in which tensile strain occurs increases.
 以上、活性層が量子井戸構造を含んでいる実施例について説明した。上述したように、量子ナノ構造は、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む。そのため、活性層が量子細線および/または量子ドットを含んでいる構成であってもよい。 The above describes an embodiment in which the active layer includes a quantum well structure. As described above, the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may be configured to include a quantum wire and/or a quantum dot.
 本技術の第3実施形態に係る発光素子について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element according to the third embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[4.本技術の第4実施形態(発光素子の例4)]
 活性層は、量子ナノ構造および障壁層が互いに積層されている構造になっている。シュレーディンガー方程式により、活性層に形成される量子の準位は、半導体に電界が印可された際のバンド形状によって決まる。したがって、少なくとも2つの活性層が含む障壁層にドープされている不純物の濃度が互いに異なっていることにより、それぞれの活性層が生成する光の波長が異なっていてもよい。
[4. Fourth embodiment of the present technology (light-emitting device example 4)]
The active layer has a structure in which a quantum nanostructure and a barrier layer are stacked on top of each other. According to the Schrodinger equation, the quantum level formed in the active layer is determined by the band shape when an electric field is applied to the semiconductor. Therefore, the wavelengths of light generated by each active layer may be different by doping the barrier layers of at least two active layers with different concentrations of impurities.
 このことについて再び図5を参照しつつ説明する。図5に示されるとおり、それぞれの活性層30A,30B,30Cは、エネルギーバンドの形状が異なっている。これにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なっている。 This will be explained again with reference to FIG. 5. As shown in FIG. 5, the active layers 30A, 30B, and 30C have different energy band shapes. This results in the wavelengths of light generated by the active layers 30A, 30B, and 30C being different.
 特に、この構成例では、活性層が量子井戸構造を含んでいる。そのため、少なくとも2つの活性層が含む障壁層にドープされている不純物の濃度が互いに異なっていることが好ましい。この構成例では、それぞれの活性層30A,30B,30Cが含む障壁層32A,32B,32Cにドープされている不純物の濃度が、互いに異なっている。量子井戸層が生成する光の波長は、量子井戸層内に形成される量子の準位により決まる。したがって、それぞれの障壁層32A,32B,32Cにドープされている不純物の濃度が異なっていることにより、それぞれの活性層30A,30B,30Cが生成する光の波長が異なる。 In particular, in this configuration example, the active layer includes a quantum well structure. Therefore, it is preferable that the concentrations of impurities doped into the barrier layers included in at least two active layers are different from each other. In this configuration example, the concentrations of impurities doped into the barrier layers 32A, 32B, and 32C included in each active layer 30A, 30B, and 30C are different from each other. The wavelength of light generated by the quantum well layer is determined by the quantum level formed in the quantum well layer. Therefore, the wavelength of light generated by each active layer 30A, 30B, and 30C is different due to the different concentrations of impurities doped into each barrier layer 32A, 32B, and 32C.
 この構成例では、量子井戸層がInGaAsを含んでおり、障壁層がAlGaAsを含んでいる。基板側(図の左側)の活性層30Cが含む障壁層32Cにドープされている不純物の濃度が最も高くなっており、光の出射側(図の右側)の活性層30Aが含む障壁層32Aにドープされている不純物の濃度が最も低くなっている。不純物は、たとえばAsまたはPなどのイオンでありうる。たとえば、基板側の活性層30Cが生成する光の波長が915nm、中間の活性層30Bが生成する光の波長が920nm、光の出射側の活性層30Aが生成する光の波長が925nmになるように、それぞれの障壁層32A,32B,32Cにドープされている不純物の濃度を調整することができる。 In this configuration example, the quantum well layer contains InGaAs, and the barrier layer contains AlGaAs. The barrier layer 32C included in the active layer 30C on the substrate side (left side of the figure) has the highest impurity concentration, and the barrier layer 32A included in the active layer 30A on the light emission side (right side of the figure) has the lowest impurity concentration. The impurity may be, for example, an ion such as As or P. For example, the impurity concentration doped into each of the barrier layers 32A, 32B, and 32C can be adjusted so that the active layer 30C on the substrate side generates light with a wavelength of 915 nm, the intermediate active layer 30B generates light with a wavelength of 920 nm, and the active layer 30A on the light emission side generates light with a wavelength of 925 nm.
 また、少なくとも2つの活性層が含む障壁層にドープされている不純物のドーピングプロファイルが互いに異なっていてよい。ドーピングプロファイルとは、表面から深さ方向への不純物濃度の分布である。それぞれの障壁層32A,32B,32Cにドープされる不純物の濃度が同じでも、不純物のドーピングプロファイルを異ならせることにより、それぞれの活性層30A,30B,30Cが生成する光の波長を異ならせることができる。 Furthermore, the doping profiles of the impurities doped into the barrier layers included in at least two active layers may be different from each other. The doping profile is the distribution of the impurity concentration from the surface to the depth direction. Even if the concentrations of the impurities doped into each of the barrier layers 32A, 32B, and 32C are the same, by making the doping profiles of the impurities different, it is possible to make the wavelengths of the light generated by each of the active layers 30A, 30B, and 30C different.
 以上、活性層が量子井戸構造を含んでいる実施例について説明した。上述したように、量子ナノ構造は、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む。そのため、活性層が量子細線および/または量子ドットを含んでいる構成であってもよい。 The above describes an embodiment in which the active layer includes a quantum well structure. As described above, the quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot. Therefore, the active layer may be configured to include a quantum wire and/or a quantum dot.
 本技術の第4実施形態に係る発光素子について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element according to the fourth embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[5.本技術の第5実施形態(発光素子の例5)]
 第1~第4実施形態では、第1化合物半導体層10および第2化合物半導体層20が、互いにトンネル接合されている。第1化合物半導体層10および第2化合物半導体層20のそれぞれに逆方向のバイアス電圧を印可するとき、第1化合物半導体層10および第2化合物半導体層20の界面における電圧の降下を低減させて、高効率で電流を流すために、第1化合物半導体層10および第2化合物半導体層20のそれぞれの不純物のドーピング濃度は1×1018/cm以上、好ましくは1×1019/cmである。
[5. Fifth embodiment of the present technology (light-emitting device example 5)]
In the first to fourth embodiments, the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are mutually tunnel-junctioned. When a reverse bias voltage is applied to each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20, the impurity doping concentration of each of the first compound semiconductor layer 10 and the second compound semiconductor layer 20 is 1×10 18 /cm 3 or more, preferably 1× 10 19 / cm 3 , in order to reduce the voltage drop at the interface between the first compound semiconductor layer 10 and the second compound semiconductor layer 20 and to allow a current to flow with high efficiency.
 一方で、第1化合物半導体層10および第2化合物半導体層20の界面における電圧の降下を低減させる他の方法として、第1化合物半導体層10および第2化合物半導体層20が、互いにウェハ接合されていてよい。ウェハ接合は、たとえば、プラズマ活性化接合または表面活性化接合であってよい。 On the other hand, as another method for reducing the voltage drop at the interface between the first compound semiconductor layer 10 and the second compound semiconductor layer 20, the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be wafer-bonded to each other. The wafer bonding may be, for example, plasma activated bonding or surface activated bonding.
 このことについて図6を参照しつつ説明する。図6は、本技術の一実施形態に係る発光素子100の構成例を示す断面図である。この構成例は、図2に示される構成例とおおむね同じであるが、第1化合物半導体層10と第2化合物半導体層20との間に接合層40が積層されている構成であることが、図2に示される構成例と異なっている。 This will be explained with reference to FIG. 6. FIG. 6 is a cross-sectional view showing an example configuration of a light-emitting device 100 according to an embodiment of the present technology. This example configuration is generally the same as the example configuration shown in FIG. 2, but differs from the example configuration shown in FIG. 2 in that a bonding layer 40 is laminated between the first compound semiconductor layer 10 and the second compound semiconductor layer 20.
 この接合層40は、バンドギャップエネルギーが低く、不純物が高濃度にドープされていることが好ましい。接合層40は、たとえばInGaAsを含んでよい。これにより、第1クラッド層11および第2クラッド層21に順方向のバイアス電圧を印可すると、トンネル効果により高効率で電流を流すことができる。その結果、第1化合物半導体層10および第2化合物半導体層20の界面における電圧の降下を低減できる。 The bonding layer 40 preferably has a low band gap energy and is highly doped with impurities. The bonding layer 40 may contain, for example, InGaAs. With this, when a forward bias voltage is applied to the first cladding layer 11 and the second cladding layer 21, a current can be passed with high efficiency due to the tunnel effect. As a result, the voltage drop at the interface between the first compound semiconductor layer 10 and the second compound semiconductor layer 20 can be reduced.
 本実施形態の発光素子100の製造方法の一例について図7を参照しつつ説明する。図7は、本技術の一実施形態に係
る発光素子100の製造方法の一例を示すフローチャートである。
An example of a method for manufacturing the light-emitting device 100 of the present embodiment will be described with reference to Fig. 7. Fig. 7 is a flowchart showing an example of a method for manufacturing the light-emitting device 100 according to an embodiment of the present technology.
 まず、ステップS1において、第1基板(図6においては図示を省略)上に、第1導電型を有する第1クラッド層11、活性層30B、および第2導電型を有する第2化合物半導体層20を、第1基板側からこの順に積層する。 First, in step S1, a first cladding layer 11 having a first conductivity type, an active layer 30B, and a second compound semiconductor layer 20 having a second conductivity type are laminated on a first substrate (not shown in FIG. 6) in this order from the first substrate side.
 次に、ステップS2において、上記の基板とは異なる第2基板(図6においては図示を省略)上に、第2導電型を有する第2クラッド層21、活性層30A、および第1導電型を有する第1化合物半導体層10を、第2基板側からこの順に積層する。 Next, in step S2, a second cladding layer 21 having a second conductivity type, an active layer 30A, and a first compound semiconductor layer 10 having a first conductivity type are laminated in this order from the second substrate side on a second substrate (not shown in FIG. 6) different from the above substrate.
 次に、ステップS3において、第1基板上に積層されている第2化合物半導体層20と、第2基板上に積層されている第1化合物半導体層10と、のそれぞれの表面を活性化させる。具体的には、たとえば、高い真空状態で、イオンビームによって表面に存在する自然酸化膜やコンタミネーションなどを物理的に除去する。 Next, in step S3, the surfaces of the second compound semiconductor layer 20 stacked on the first substrate and the first compound semiconductor layer 10 stacked on the second substrate are activated. Specifically, for example, natural oxide films and contaminations present on the surfaces are physically removed by an ion beam in a high vacuum state.
 次に、ステップS4において、第1基板上に積層されている第2化合物半導体層20の表面と、第2基板上に積層されている第1化合物半導体層10の表面と、を接触させて、所定の圧力で押しつける。これにより、接合層40が形成されて、ウェハ接合がなされる。 Next, in step S4, the surface of the second compound semiconductor layer 20 laminated on the first substrate and the surface of the first compound semiconductor layer 10 laminated on the second substrate are brought into contact and pressed together with a predetermined pressure. This forms a bonding layer 40, and the wafers are bonded.
 最後に、ステップS5において、第2基板を除去する。 Finally, in step S5, the second substrate is removed.
 なお、図6に示されるとおり、この構成例では、発光素子100は2つの活性層30を備えているが、上記のプロセスを繰り返すことにより、3つ以上の活性層30を備えていてもよい。 As shown in FIG. 6, in this configuration example, the light-emitting device 100 has two active layers 30, but by repeating the above process, it may have three or more active layers 30.
 また、第1~第4実施形態では、第1化合物半導体層10および第2化合物半導体層20が、互いにトンネル接合されている。トンネル接合されている第1化合物半導体層10および第2化合物半導体層20を、上記のプロセスを用いて互いにウェハ接合してもよい。つまり、第1化合物半導体層10および第2化合物半導体層20が、互いにトンネル接合およびウェハ接合されていてよい。 In addition, in the first to fourth embodiments, the first compound semiconductor layer 10 and the second compound semiconductor layer 20 are tunnel-junctioned to each other. The tunnel-junctioned first compound semiconductor layer 10 and second compound semiconductor layer 20 may be wafer-bonded to each other using the above-mentioned process. In other words, the first compound semiconductor layer 10 and the second compound semiconductor layer 20 may be tunnel-junctioned and wafer-bonded to each other.
 本技術の第5実施形態に係る発光素子について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element according to the fifth embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[6.本技術の第6実施形態(発光素子アレイの例)]
 本技術は、第1~第5実施形態のいずれかの複数の発光素子100が、平面視において2次元状に配列されており、少なくとも2つの発光素子が備えている活性層が含む前記量子ナノ構造の形状が互いに異なっている、発光素子アレイを提供する。このことについて図8を参照しつつ説明する。図8は、本技術の一実施形態に係る発光素子アレイ200の構成例を示す斜視図である。
[6. Sixth embodiment of the present technology (example of light-emitting element array)]
The present technology provides a light-emitting element array in which a plurality of light-emitting elements 100 according to any one of the first to fifth embodiments are arranged two-dimensionally in a plan view, and the shapes of the quantum nanostructures included in the active layers of at least two of the light-emitting elements are different from each other. This will be described with reference to Fig. 8. Fig. 8 is a perspective view showing a configuration example of a light-emitting element array 200 according to an embodiment of the present technology.
 図8に示されるとおり、第1~第5実施形態のいずれかの複数の発光素子100が、平面視において2次元状に配列されている。このとき、少なくとも2つの発光素子100が備えている活性層が含む量子ナノ構造の形状が互いに異なっていることが好ましい。また、少なくとも2つの発光素子100が備えている活性層が含む量子ナノ構造の組成が互いに異なっていてもよい。 As shown in FIG. 8, a plurality of light-emitting elements 100 according to any one of the first to fifth embodiments are arranged two-dimensionally in a planar view. In this case, it is preferable that the shapes of the quantum nanostructures contained in the active layers of at least two of the light-emitting elements 100 are different from each other. In addition, the compositions of the quantum nanostructures contained in the active layers of at least two of the light-emitting elements 100 may be different from each other.
 この図のように発光素子100が2次元状に配列されているとき、発光素子アレイ200の中央付近は高温になり、発光素子アレイ200の端部は低温になる傾向にある。このような温度や電流の不均一性は、発光素子100の故障につながることがある。温度や電流の不均一性を保障するために、平面視における2次元方向に、それぞれの活性層が生成する光の波長が異なっていることが好ましい。つまり、光軸方向に配置されている少なくとも2つの活性層が生成する光の波長が互いに異なっていてもよいし、面内方向に配置されている少なくとも2つの活性層が生成する光の波長が互いに異なっていてもよい。 When the light-emitting elements 100 are arranged two-dimensionally as in this figure, the center of the light-emitting element array 200 tends to be hotter, and the ends of the light-emitting element array 200 tend to be colder. Such non-uniformity in temperature and current can lead to failure of the light-emitting elements 100. To ensure non-uniformity in temperature and current, it is preferable that the wavelengths of light generated by each active layer are different in two-dimensional directions in a plan view. In other words, the wavelengths of light generated by at least two active layers arranged in the optical axis direction may be different from each other, or the wavelengths of light generated by at least two active layers arranged in the in-plane direction may be different from each other.
 本技術の第6実施形態に係る発光素子アレイについて説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the light-emitting element array according to the sixth embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[7.本技術の第7実施形態(電子機器の例1)]
 本技術の一実施形態に係る電子機器は、本技術の第1から第8の実施形態のうちいずれか1つの実施形態に係る発光素子100を備えている電子機器である。発光素子100を備えているため、温度変化の影響を低減できる。
[7. Seventh embodiment of the present technology (example 1 of electronic device)]
An electronic device according to an embodiment of the present technology is an electronic device including the light-emitting element 100 according to any one of the first to eighth embodiments of the present technology. Since the electronic device includes the light-emitting element 100, it is possible to reduce the influence of temperature changes.
 電子機器の一例として、測距装置が挙げられる。図9は、本技術の一実施形態に係る面発光レーザ(発光素子)100を備えた距離測定装置(測距装置)1000の概略的な構成例を示すブロック図である。距離測定装置1000は、TOF(Time Of Flight)方式により被検体Sまでの距離を測定するものである。距離測定装置1000は、光源として発光素子100を備えている。距離測定装置1000は、例えば、発光素子100、受光装置125、レンズ117、130、信号処理部140、制御部150、表示部160および記憶部170を備えている。 One example of electronic equipment is a distance measuring device. Fig. 9 is a block diagram showing a schematic configuration example of a distance measuring device (distance measuring device) 1000 including a surface emitting laser (light emitting element) 100 according to an embodiment of the present technology. The distance measuring device 1000 measures the distance to a subject S using a TOF (Time Of Flight) method. The distance measuring device 1000 includes the light emitting element 100 as a light source. The distance measuring device 1000 includes, for example, the light emitting element 100, a light receiving device 125, lenses 117, 130, a signal processing unit 140, a control unit 150, a display unit 160, and a memory unit 170.
 発光素子100は、レーザドライバ(ドライバ)により駆動される。該レーザドライバは、発光素子100のアノード電極及びカソード電極にそれぞれ配線又は導電バンプを介して接続される陽極端子及び陰極端子を有する。該レーザドライバは、例えばコンデンサ、トランジスタ等の回路素子を含んで構成されている。 The light-emitting element 100 is driven by a laser driver (driver). The laser driver has an anode terminal and a cathode terminal that are connected to the anode electrode and cathode electrode of the light-emitting element 100 via wiring or conductive bumps, respectively. The laser driver is configured to include circuit elements such as capacitors and transistors.
 受光装置125は、被検体Sで反射された光を検出する。レンズ117は、発光素子100から出射された光を平行光化するためのレンズであり、コリメートレンズである。レンズ130は、被検体Sで反射された光を集光し、受光装置125に導くためのレンズであり、集光レンズである。 The light receiving device 125 detects the light reflected by the subject S. The lens 117 is a collimating lens that converts the light emitted from the light emitting element 100 into parallel light. The lens 130 is a focusing lens that collects the light reflected by the subject S and guides it to the light receiving device 125.
 信号処理部140は、受光装置125から入力された信号と、制御部150から入力された参照信号との差分に対応する信号を生成するための回路である。制御部150は、例えば、Time to Digital Converter (TDC)を含んで構成されている。参照信号は、制御部150から入力される信号であってもよいし、発光素子100の出力を直接検出する検出部の出力信号であってもよい。制御部150は、例えば、発光素子100、受光装置125、信号処理部140、表示部160および記憶部170を制御するプロセッサである。制御部150は、信号処理部140で生成された信号に基づいて、被検体Sまでの距離を計測する回路である。制御部150は、被検体Sまでの距離についての情報を表示するための映像信号を生成し、表示部160に出力する。表示部160は、制御部150から入力された映像信号に基づいて、被検体Sまでの距離についての情報を表示する。制御部150は、被検体Sまでの距離についての情報を記憶部170に格納する。 The signal processing unit 140 is a circuit for generating a signal corresponding to the difference between the signal input from the light receiving device 125 and the reference signal input from the control unit 150. The control unit 150 is configured to include, for example, a Time to Digital Converter (TDC). The reference signal may be a signal input from the control unit 150, or may be an output signal of a detection unit that directly detects the output of the light emitting element 100. The control unit 150 is, for example, a processor that controls the light emitting element 100, the light receiving device 125, the signal processing unit 140, the display unit 160, and the storage unit 170. The control unit 150 is a circuit that measures the distance to the specimen S based on the signal generated by the signal processing unit 140. The control unit 150 generates a video signal for displaying information about the distance to the specimen S and outputs it to the display unit 160. The display unit 160 displays information about the distance to the specimen S based on the video signal input from the control unit 150. The control unit 150 stores the information about the distance to the specimen S in the storage unit 170.
 本技術の第7の実施形態に係る電子機器について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the electronic device according to the seventh embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
[8.本技術の第8実施形態(電子機器の例2)]
 図10は、本技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
[8. Eighth embodiment of the present technology (example 2 of electronic device)]
FIG. 10 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the present technology can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図10に示される例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 10, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、距離測定装置12031が接続される。距離測定装置12031には、上述の距離測定装置1000が含まれる。車外情報検出ユニット12030は、距離測定装置12031に車外の物体(被検体S)との距離を計測させ、それにより得られた距離データを取得する。車外情報検出ユニット12030は、取得した距離データに基づいて、人、車、障害物、標識等の物体検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, a distance measurement device 12031 is connected to the outside-vehicle information detection unit 12030. The distance measurement device 12031 includes the distance measurement device 1000 described above. The outside-vehicle information detection unit 12030 causes the distance measurement device 12031 to measure the distance to an object outside the vehicle (subject S), and acquires the distance data obtained thereby. The outside-vehicle information detection unit 12030 may perform object detection processing of people, cars, obstacles, signs, etc. based on the acquired distance data.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate control target values for the driving force generating device, steering mechanism, or braking device based on information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output control commands to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including vehicle collision avoidance or impact mitigation, following driving based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。この例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In this example, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図11は、本技術の一実施形態に係る距離測定装置12031の設置位置の例を示す図である。図11では、車両12100は、距離測定装置12031として、距離測定装置12101,12102,12103,12104,12105を有する。 FIG. 11 is a diagram showing an example of the installation position of a distance measurement device 12031 according to an embodiment of the present technology. In FIG. 11, a vehicle 12100 has distance measurement devices 12101, 12102, 12103, 12104, and 12105 as the distance measurement device 12031.
 距離測定装置12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる距離測定装置12101及び車室内のフロントガラスの上部に備えられる距離測定装置12105は、主として車両12100の前方のデータを取得する。サイドミラーに備えられる距離測定装置12102,12103は、主として車両12100の側方のデータを取得する。リアバンパ又はバックドアに備えられる距離測定装置12104は、主として車両12100の後方のデータを取得する。距離測定装置12101及び12105で取得される前方のデータは、主として先行車両又は、歩行者、障害物、信号機、交通標識等の検出に用いられる。 The distance measuring devices 12101, 12102, 12103, 12104, and 12105 are provided, for example, on the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The distance measuring device 12101 provided on the front nose and the distance measuring device 12105 provided on the top of the windshield inside the vehicle cabin mainly obtain data in front of the vehicle 12100. The distance measuring devices 12102 and 12103 provided on the side mirrors mainly obtain data on the sides of the vehicle 12100. The distance measuring device 12104 provided on the rear bumper or back door mainly obtains data on the rear of the vehicle 12100. The forward data obtained by the distance measuring devices 12101 and 12105 is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, etc.
 なお、図11には、距離測定装置12101ないし12104の検出範囲の一例が示されている。検出範囲12111は、フロントノーズに設けられた距離測定装置12101の検出範囲を示し、検出範囲12112,12113は、それぞれサイドミラーに設けられた距離測定装置12102,12103の検出範囲を示し、検出範囲12114は、リアバンパ又はバックドアに設けられた距離測定装置12104の検出範囲を示す。 Note that FIG. 11 shows an example of the detection ranges of distance measuring devices 12101 to 12104. Detection range 12111 indicates the detection range of distance measuring device 12101 provided on the front nose, detection ranges 12112 and 12113 indicate the detection ranges of distance measuring devices 12102 and 12103 provided on the side mirrors, respectively, and detection range 12114 indicates the detection range of distance measuring device 12104 provided on the rear bumper or back door.
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを基に、検出範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can determine the distance to each three-dimensional object within the detection ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance data obtained from the distance measuring devices 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest three-dimensional object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、距離測定装置12101ないし12104から得られた距離データを元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance data obtained from the distance measuring devices 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the degree of risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
 本技術の第8の実施形態に係る電子機器について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。 The above description of the electronic device according to the eighth embodiment of the present technology can be applied to other embodiments of the present technology, unless there is a particular technical contradiction.
 なお、本技術に係る実施形態は、上述したそれぞれの実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。それぞれの実施形態において記載した具体的な数値、形状、材料(組成を含む)等は一例であって、これらに限定されるものではない。 Note that the embodiments of this technology are not limited to the above-mentioned embodiments, and various modifications are possible without departing from the spirit of this technology. The specific values, shapes, materials (including compositions), etc. described in each embodiment are merely examples, and are not intended to be limiting.
 また、本技術は、以下のような構成をとることもできる。
[1]
 量子ナノ構造を含む活性層を少なくとも2つ備えており、
 少なくとも2つの前記活性層が生成する光の波長が、互いに異なっている、発光素子。
[2]
 前記量子ナノ構造が、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む、
 [1]に記載の発光素子。
[3]
 少なくとも2つの前記活性層が含む前記量子ナノ構造の形状が、互いに異なっている、
 [1]または[2]に記載の発光素子。
[4]
 少なくとも2つの前記活性層が含む前記量子井戸の光軸方向の長さが、互いに異なっている、
 [2]に記載の発光素子。
[5]
 少なくとも2つの前記活性層が含む前記量子ナノ構造の組成が、互いに異なっている、
 [1]から[4]のいずれか一つに記載の発光素子。
[6]
 少なくとも2つの前記活性層が含む前記量子ドットの形状が、光軸方向に直交する方向に互いに異なっている、
 [2]から[5]のいずれか一つに記載の発光素子。
[7]
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層の形状が互いに異なっている、
 [1]から[6]のいずれか一つに記載の発光素子。
[8]
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層の組成が互いに異なっている、
 [1]から[7]のいずれか一つに記載の発光素子。
[9]
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物の濃度が互いに異なっている、
 [1]から[8]のいずれか一つに記載の発光素子。
[10]
 前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
 少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物のドーピングプロファイルが互いに異なっている、
 [1]から[9]のいずれか一つに記載の発光素子。
[11]
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合されている、
 [1]から[10]のいずれか一つに記載の発光素子。
[12]
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにウェハ接合されている、
 [1]から[11]のいずれか一つに記載の発光素子。
[13]
 第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
 前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合およびウェハ接合されている、
 [1]から[12]のいずれか一つに記載の発光素子。
[14]
 前記活性層が、光強度が高いほどフォトルミネッセンス波長が長くなるように構成されている、
 [1]から[13]のいずれか一つに記載の発光素子。
[15]
 端面発光レーザである、
 [1]から[14]のいずれか一つに記載の発光素子。
[16]
 面発光レーザである、
 [1]から[15]のいずれか一つに記載の発光素子。
[17]
 [1]から[16]のいずれか一つに記載の複数の発光素子が、平面視において2次元状に配列されており、
 少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の形状が互いに異なっている、発光素子アレイ。
[18]
 [1]から[16]のいずれか一つに記載の複数の発光素子が、平面視において2次元状に配列されており、
 少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の組成が互いに異なっている、発光素子アレイ。
[19]
 [1]から[16]のいずれか一つに記載の発光素子を備えている電子機器。
The present technology can also be configured as follows.
[1]
at least two active layers including quantum nanostructures;
A light-emitting device, wherein at least two of the active layers generate light having wavelengths different from each other.
[2]
The quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
The light-emitting element according to [1].
[3]
The shapes of the quantum nanostructures included in at least two of the active layers are different from each other.
The light-emitting element according to [1] or [2].
[4]
The lengths of the quantum wells included in at least two of the active layers in the optical axis direction are different from each other.
The light-emitting element according to [2].
[5]
The compositions of the quantum nanostructures contained in at least two of the active layers are different from each other;
The light-emitting element according to any one of [1] to [4].
[6]
The shapes of the quantum dots included in at least two of the active layers are different from each other in a direction perpendicular to the optical axis direction.
The light-emitting element according to any one of [2] to [5].
[7]
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The shapes of the barrier layers included in at least two of the active layers are different from each other.
The light-emitting element according to any one of [1] to [6].
[8]
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers included in at least two of the active layers have different compositions.
The light-emitting element according to any one of [1] to [7].
[9]
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers of at least two of the active layers are doped with impurities having different concentrations from each other.
The light-emitting element according to any one of [1] to [8].
[10]
The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
The barrier layers of at least two of the active layers have different doping profiles of impurities.
The light-emitting element according to any one of [1] to [9].
[11]
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned with each other;
The light-emitting element according to any one of [1] to [10].
[12]
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
the first compound semiconductor layer and the second compound semiconductor layer are wafer-bonded to each other;
The light-emitting element according to any one of [1] to [11].
[13]
a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned and wafer-bonded to each other;
The light-emitting element according to any one of [1] to [12].
[14]
The active layer is configured such that the photoluminescence wavelength becomes longer as the light intensity increases.
The light-emitting element according to any one of [1] to [13].
[15]
It is an edge-emitting laser.
The light-emitting element according to any one of [1] to [14].
[16]
A surface emitting laser.
The light-emitting element according to any one of [1] to [15].
[17]
A plurality of light-emitting elements according to any one of [1] to [16] are arranged two-dimensionally in a plan view,
A light-emitting element array, wherein the shapes of the quantum nanostructures included in the active layers of at least two of the light-emitting elements are different from each other.
[18]
A plurality of light-emitting elements according to any one of [1] to [16] are arranged two-dimensionally in a plan view,
A light-emitting element array, wherein the quantum nanostructures contained in the active layers of at least two of the light-emitting elements have compositions different from each other.
[19]
An electronic device comprising the light-emitting element according to any one of [1] to [16].
 100 発光素子
 10 第1化合物半導体層
 11 第1クラッド層
 20 第2化合物半導体層
 21 第2クラッド層
 30 活性層
 31 量子井戸層
 32 障壁層
 40 接合層
 200 発光素子アレイ 
Reference Signs List 100 Light emitting element 10 First compound semiconductor layer 11 First cladding layer 20 Second compound semiconductor layer 21 Second cladding layer 30 Active layer 31 Quantum well layer 32 Barrier layer 40 Bonding layer 200 Light emitting element array

Claims (19)

  1.  量子ナノ構造を含む活性層を少なくとも2つ備えており、
     少なくとも2つの前記活性層が生成する光の波長が、互いに異なっている、発光素子。
    at least two active layers including quantum nanostructures;
    A light-emitting device, wherein at least two of the active layers generate light having wavelengths different from each other.
  2.  前記量子ナノ構造が、量子井戸構造、量子細線、および量子ドットからなる群から選択されるいずれか1つを含む、
     請求項1に記載の発光素子。
    The quantum nanostructure includes any one selected from the group consisting of a quantum well structure, a quantum wire, and a quantum dot.
    The light-emitting device according to claim 1 .
  3.  少なくとも2つの前記活性層が含む前記量子ナノ構造の形状が、互いに異なっている、
     請求項1に記載の発光素子。
    The shapes of the quantum nanostructures included in at least two of the active layers are different from each other.
    The light-emitting device according to claim 1 .
  4.  少なくとも2つの前記活性層が含む前記量子井戸の光軸方向の長さが、互いに異なっている、
     請求項2に記載の発光素子。
    The lengths of the quantum wells included in at least two of the active layers in the optical axis direction are different from each other.
    The light-emitting device according to claim 2 .
  5.  少なくとも2つの前記活性層が含む前記量子ナノ構造の組成が、互いに異なっている、
     請求項1に記載の発光素子。
    The compositions of the quantum nanostructures contained in at least two of the active layers are different from each other;
    The light-emitting device according to claim 1 .
  6.  少なくとも2つの前記活性層が含む前記量子ドットの形状が、光軸方向に直交する方向に互いに異なっている、
     請求項2に記載の発光素子。
    The shapes of the quantum dots included in at least two of the active layers are different from each other in a direction perpendicular to the optical axis direction.
    The light-emitting device according to claim 2 .
  7.  前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
     少なくとも2つの前記活性層が含む前記障壁層の形状が互いに異なっている、
     請求項1に記載の発光素子。
    The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
    The shapes of the barrier layers included in at least two of the active layers are different from each other.
    The light-emitting device according to claim 1 .
  8.  前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
     少なくとも2つの前記活性層が含む前記障壁層の組成が互いに異なっている、
     請求項1に記載の発光素子。
    The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
    The barrier layers included in at least two of the active layers have different compositions.
    The light-emitting device according to claim 1 .
  9.  前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
     少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物の濃度が互いに異なっている、
     請求項1に記載の発光素子。
    The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
    The barrier layers of at least two of the active layers are doped with impurities having different concentrations from each other.
    The light-emitting device according to claim 1 .
  10.  前記活性層が、前記量子ナノ構造および障壁層が互いに積層されている構造であり、
     少なくとも2つの前記活性層が含む前記障壁層にドープされている不純物のドーピングプロファイルが互いに異なっている、
     請求項1に記載の発光素子。
    The active layer has a structure in which the quantum nanostructure and a barrier layer are stacked on each other,
    The barrier layers of at least two of the active layers have different doping profiles of impurities.
    The light-emitting device according to claim 1 .
  11.  第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
     前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合されている、
     請求項1に記載の発光素子。
    a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
    the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned with each other;
    The light-emitting device according to claim 1 .
  12.  第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
     前記第1化合物半導体層および前記第2化合物半導体層が、互いにウェハ接合されている、
     請求項1に記載の発光素子。
    a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
    the first compound semiconductor layer and the second compound semiconductor layer are wafer-bonded to each other;
    The light-emitting device according to claim 1 .
  13.  第1導電型を有する第1化合物半導体層、第2導電型を有する第2化合物半導体層、および前記活性層がこの順に積層されており、
     前記第1化合物半導体層および前記第2化合物半導体層が、互いにトンネル接合およびウェハ接合されている、
     請求項1に記載の発光素子。
    a first compound semiconductor layer having a first conductivity type, a second compound semiconductor layer having a second conductivity type, and the active layer are laminated in this order;
    the first compound semiconductor layer and the second compound semiconductor layer are tunnel-junctioned and wafer-bonded to each other;
    The light-emitting device according to claim 1 .
  14.  前記活性層が、光強度が高いほどフォトルミネッセンス波長が長くなるように構成されている、
     請求項1に記載の発光素子。
    The active layer is configured such that the photoluminescence wavelength becomes longer as the light intensity increases.
    The light-emitting device according to claim 1 .
  15.  端面発光レーザである、
     請求項1に記載の発光素子。
    It is an edge-emitting laser.
    The light-emitting device according to claim 1 .
  16.  面発光レーザである、
     請求項1に記載の発光素子。
    A surface emitting laser.
    The light-emitting device according to claim 1 .
  17.  請求項1に記載の複数の発光素子が、平面視において2次元状に配列されており、
     少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の形状が互いに異なっている、発光素子アレイ。
    A plurality of light-emitting elements according to claim 1 are arranged two-dimensionally in a plan view,
    A light-emitting element array, wherein the shapes of the quantum nanostructures included in the active layers of at least two of the light-emitting elements are different from each other.
  18.  請求項1に記載の複数の発光素子が、平面視において2次元状に配列されており、
     少なくとも2つの前記発光素子が備えている活性層が含む前記量子ナノ構造の組成が互いに異なっている、発光素子アレイ。
    A plurality of light-emitting elements according to claim 1 are arranged two-dimensionally in a plan view,
    A light-emitting element array, wherein the quantum nanostructures contained in the active layers of at least two of the light-emitting elements have compositions different from each other.
  19.  請求項1に記載の発光素子を備えている電子機器。  An electronic device equipped with the light-emitting device according to claim 1.
PCT/JP2023/037378 2022-11-10 2023-10-16 Light emitting element, light emitting element array and electronic device WO2024101079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022180099 2022-11-10
JP2022-180099 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101079A1 true WO2024101079A1 (en) 2024-05-16

Family

ID=91032753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037378 WO2024101079A1 (en) 2022-11-10 2023-10-16 Light emitting element, light emitting element array and electronic device

Country Status (1)

Country Link
WO (1) WO2024101079A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233213A1 (en) * 2005-04-13 2006-10-19 Fow-Sen Choa Multi-quantum well optical waveguide with broadband optical gain
JP2007520071A (en) * 2004-01-29 2007-07-19 エルヴェーエー・スペース・ソーラー・パワー・ゲーエムベーハー Semiconductor structure with active region
JP2009210577A (en) * 2008-02-29 2009-09-17 Osram Opto Semiconductors Gmbh Sensor system having lighting system and detecting device
JP2019201162A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Optical device
US11152767B1 (en) * 2020-06-02 2021-10-19 Seminex Corporation AlInGaAs/InGaAsP/InP edge emitting semiconductor laser including multiple monolithic laser diodes
WO2022239330A1 (en) * 2021-05-10 2022-11-17 ソニーセミコンダクタソリューションズ株式会社 Surface-emitting laser, surface-emitting laser array, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520071A (en) * 2004-01-29 2007-07-19 エルヴェーエー・スペース・ソーラー・パワー・ゲーエムベーハー Semiconductor structure with active region
US20060233213A1 (en) * 2005-04-13 2006-10-19 Fow-Sen Choa Multi-quantum well optical waveguide with broadband optical gain
JP2009210577A (en) * 2008-02-29 2009-09-17 Osram Opto Semiconductors Gmbh Sensor system having lighting system and detecting device
JP2019201162A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Optical device
US11152767B1 (en) * 2020-06-02 2021-10-19 Seminex Corporation AlInGaAs/InGaAsP/InP edge emitting semiconductor laser including multiple monolithic laser diodes
WO2022239330A1 (en) * 2021-05-10 2022-11-17 ソニーセミコンダクタソリューションズ株式会社 Surface-emitting laser, surface-emitting laser array, and electronic apparatus

Similar Documents

Publication Publication Date Title
WO2022239330A1 (en) Surface-emitting laser, surface-emitting laser array, and electronic apparatus
WO2024101079A1 (en) Light emitting element, light emitting element array and electronic device
US20220247153A1 (en) Surface light-emission laser device
WO2023248628A1 (en) Light-emitting element, electronic device, and method for manufacturing light-emitting element
WO2022158312A1 (en) Surface-emitting laser
WO2023238621A1 (en) Surface emission laser
WO2023248654A1 (en) Surface-emitting laser and ranging device
JP7475501B2 (en) Surface emitting laser, electronic device, and method for manufacturing surface emitting laser
WO2022176482A1 (en) Surface-emitting laser
WO2023233850A1 (en) Surface light emitting element
WO2023233818A1 (en) Surface light emitting element
WO2023067890A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2023181658A1 (en) Surface-emitting laser, light source device, and electronic apparatus
WO2023153084A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2023149087A1 (en) Surface-emitting laser, surface-emitting laser array, and light source device
US20240146031A1 (en) Surface emitting laser and electronic device
WO2022185766A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2024014140A1 (en) Surface emitting laser and method for manufacturing surface emitting laser
WO2023162488A1 (en) Surface emitting laser, light source device, and ranging device
WO2022130825A1 (en) Surface-emitting laser device
WO2021220879A1 (en) Light-emitting element array and method for manufacturing light-emitting element array
EP4336685A1 (en) Surface emitting laser element, electronic device, and method for producing surface emitting laser element
WO2023162463A1 (en) Light-emitting device and vos (vcsel-on-silicon) device
WO2023132139A1 (en) Surface-emitting laser
WO2022176483A1 (en) Surface light emitting element, optical properties detection method and optical properties adjustment method